2012-01-01
Background Extensive studies have demonstrated that the COBRA gene is critical for biosynthesis of cell wall constituents comprising structural tissues of roots, stalks, leaves and other vegetative organs, however, its role in fruit development and ripening remains largely unknown. Results We identified a tomato gene (SlCOBRA-like) homologous to Arabidopsis COBRA, and determined its role in fleshy fruit biology. The SlCOBRA-like gene is highly expressed in vegetative organs and in early fruit development, but its expression in fruit declines dramatically during ripening stages, implying a primary role in early fruit development. Fruit-specific suppression of SlCOBRA-like resulted in impaired cell wall integrity and up-regulation of genes encoding proteins involved in cell wall degradation during early fruit development. In contrast, fruit-specific overexpression of SlCOBRA-like resulted in increased wall thickness of fruit epidermal cells, more collenchymatous cells beneath the epidermis, elevated levels of cellulose and reduced pectin solubilization in the pericarp cells of red ripe fruits. Moreover, transgenic tomato fruits overexpressing SlCOBRA-like exhibited desirable early development phenotypes including enhanced firmness and a prolonged shelf life. Conclusions Our results suggest that SlCOBRA-like plays an important role in fruit cell wall architecture and provides a potential genetic tool for extending the shelf life of tomato and potentially additional fruits. PMID:23140186
Ng, Jovyn K T; Schröder, Roswitha; Sutherland, Paul W; Hallett, Ian C; Hall, Miriam I; Prakash, Roneel; Smith, Bronwen G; Melton, Laurence D; Johnston, Jason W
2013-11-19
There is a paucity of information regarding development of fruit tissue microstructure and changes in the cell walls during fruit growth, and how these developmental processes differ between cultivars with contrasting softening behaviour. In this study we compare two apple cultivars that show different softening rates during fruit development and ripening. We investigate whether these different softening behaviours manifest themselves late during ethylene-induced softening in the ripening phase, or early during fruit expansion and maturation. 'Scifresh' (slow softening) and 'Royal Gala' (rapid softening) apples show differences in cortical microstructure and cell adhesion as early as the cell expansion phase. 'Scifresh' apples showed reduced loss of firmness and greater dry matter accumulation compared with 'Royal Gala' during early fruit development, suggesting differences in resource allocation that influence tissue structural properties. Tricellular junctions in 'Scifresh' were rich in highly-esterified pectin, contributing to stronger cell adhesion and an increased resistance to the development of large airspaces during cell expansion. Consequently, mature fruit of 'Scifresh' showed larger, more angular shaped cells than 'Royal Gala', with less airspaces and denser tissue. Stronger cell adhesion in ripe 'Scifresh' resulted in tissue fracture by cell rupture rather than by cell-to-cell-separation as seen in 'Royal Gala'. CDTA-soluble pectin differed in both cultivars during development, implicating its involvement in cell adhesion. Low pectin methylesterase activity during early stages of fruit development coupled with the lack of immuno-detectable PG was associated with increased cell adhesion in 'Scifresh'. Our results indicate that cell wall structures leading to differences in softening rates of apple fruit develop early during fruit growth and well before the induction of the ripening process.
2013-01-01
Background There is a paucity of information regarding development of fruit tissue microstructure and changes in the cell walls during fruit growth, and how these developmental processes differ between cultivars with contrasting softening behaviour. In this study we compare two apple cultivars that show different softening rates during fruit development and ripening. We investigate whether these different softening behaviours manifest themselves late during ethylene-induced softening in the ripening phase, or early during fruit expansion and maturation. Results ‘Scifresh’ (slow softening) and ‘Royal Gala’ (rapid softening) apples show differences in cortical microstructure and cell adhesion as early as the cell expansion phase. ‘Scifresh’ apples showed reduced loss of firmness and greater dry matter accumulation compared with ‘Royal Gala’ during early fruit development, suggesting differences in resource allocation that influence tissue structural properties. Tricellular junctions in ‘Scifresh’ were rich in highly-esterified pectin, contributing to stronger cell adhesion and an increased resistance to the development of large airspaces during cell expansion. Consequently, mature fruit of ‘Scifresh’ showed larger, more angular shaped cells than ‘Royal Gala’, with less airspaces and denser tissue. Stronger cell adhesion in ripe ‘Scifresh’ resulted in tissue fracture by cell rupture rather than by cell-to-cell-separation as seen in ‘Royal Gala’. CDTA-soluble pectin differed in both cultivars during development, implicating its involvement in cell adhesion. Low pectin methylesterase activity during early stages of fruit development coupled with the lack of immuno-detectable PG was associated with increased cell adhesion in ‘Scifresh’. Conclusions Our results indicate that cell wall structures leading to differences in softening rates of apple fruit develop early during fruit growth and well before the induction of the ripening process. PMID:24252512
Kang, Chunying; Darwish, Omar; Geretz, Aviva; Shahan, Rachel; Alkharouf, Nadim; Liu, Zhongchi
2013-01-01
Fragaria vesca, a diploid woodland strawberry with a small and sequenced genome, is an excellent model for studying fruit development. The strawberry fruit is unique in that the edible flesh is actually enlarged receptacle tissue. The true fruit are the numerous dry achenes dotting the receptacle’s surface. Auxin produced from the achene is essential for the receptacle fruit set, a paradigm for studying crosstalk between hormone signaling and development. To investigate the molecular mechanism underlying strawberry fruit set, next-generation sequencing was employed to profile early-stage fruit development with five fruit tissue types and five developmental stages from floral anthesis to enlarged fruits. This two-dimensional data set provides a systems-level view of molecular events with precise spatial and temporal resolution. The data suggest that the endosperm and seed coat may play a more prominent role than the embryo in auxin and gibberellin biosynthesis for fruit set. A model is proposed to illustrate how hormonal signals produced in the endosperm and seed coat coordinate seed, ovary wall, and receptacle fruit development. The comprehensive fruit transcriptome data set provides a wealth of genomic resources for the strawberry and Rosaceae communities as well as unprecedented molecular insight into fruit set and early stage fruit development. PMID:23898027
Zhang, Shuaibin; Xu, Meng; Qiu, Zhengkun; Wang, Ketao; Du, Yongchen; Gu, Lianfeng; Cui, Xia
2016-03-18
Early fruit development is crucial for crop production in tomato. After fertilization, the ovary undergoes cell division and cell expansion before maturation. Although the roles of regulatory signals such as hormone and carbohydrate during early fruit development have been studied, the spatial distribution and the sequential initiation of these regulatory signals still need to be explored. Using the tomato cultivar 'Moneymaker', we analyzed the transcriptome of the ovule and the ovary wall/pericarp dissected from four different stages of the early developing fruits by stereoscope. These datasets give us the whole picture about the spatial and temporal signal distribution in early development of ovule and pericarp. Our results indicate that the hormone signal was initiated in both ovule and pericarp after fertilization. After that, different signals were activated in ovule and pericarp due to their distinct developmental processes. Our study provides spatiotemporal regulatory landscape of gene expression with sequential information which was not studied by previous work and further strengthens the comprehension of the regulatory and metabolic events controlling early fruit development.
Global gene expression analysis of apple fruit development from the floral bud to ripe fruit
Janssen, Bart J; Thodey, Kate; Schaffer, Robert J; Alba, Rob; Balakrishnan, Lena; Bishop, Rebecca; Bowen, Judith H; Crowhurst, Ross N; Gleave, Andrew P; Ledger, Susan; McArtney, Steve; Pichler, Franz B; Snowden, Kimberley C; Ward, Shayna
2008-01-01
Background Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45–55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Results Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Conclusion Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development. PMID:18279528
Global gene expression analysis of apple fruit development from the floral bud to ripe fruit.
Janssen, Bart J; Thodey, Kate; Schaffer, Robert J; Alba, Rob; Balakrishnan, Lena; Bishop, Rebecca; Bowen, Judith H; Crowhurst, Ross N; Gleave, Andrew P; Ledger, Susan; McArtney, Steve; Pichler, Franz B; Snowden, Kimberley C; Ward, Shayna
2008-02-17
Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45-55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.
Early anther ablation triggers parthenocarpic fruit development in tomato.
Medina, Mónica; Roque, Edelín; Pineda, Benito; Cañas, Luis; Rodriguez-Concepción, Manuel; Beltrán, José Pío; Gómez-Mena, Concepción
2013-08-01
Fruit set and fruit development in tomato is largely affected by changes in environmental conditions, therefore autonomous fruit set independent of fertilization is a highly desirable trait in tomato. Here, we report the production and characterization of male-sterile transgenic plants that produce parthenocarpic fruits in two tomato cultivars (Micro-Tom and Moneymaker). We generated male-sterility using the cytotoxic gene barnase targeted to the anthers with the PsEND1 anther-specific promoter. The ovaries of these plants grew in the absence of fertilization producing seedless, parthenocarpic fruits. Early anther ablation is essential to trigger the developing of the transgenic ovaries into fruits, in the absence of the signals usually generated during pollination and fertilization. Ovaries are fully functional and can be manually pollinated to obtain seeds. The transgenic plants obtained in the commercial cultivar Moneymaker show that the parthenocarpic development of the fruit does not have negative consequences in fruit quality. Throughout metabolomic analyses of the tomato fruits, we have identified two elite lines which showed increased levels of several health promoting metabolites and volatile compounds. Thus, early anther ablation can be considered a useful tool to promote fruit set and to obtain seedless and good quality fruits in tomato plants. These plants are also useful parental lines to be used in hybrid breeding approaches. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Yin, Yong-Gen; Kobayashi, Yoshie; Sanuki, Atsuko; Kondo, Satoru; Fukuda, Naoya; Ezura, Hiroshi; Sugaya, Sumiko; Matsukura, Chiaki
2010-01-01
Salinity stress enhances sugar accumulation in tomato (Solanum lycopersicum) fruits. To elucidate the mechanisms underlying this phenomenon, the transport of carbohydrates into tomato fruits and the regulation of starch synthesis during fruit development in tomato plants cv. ‘Micro-Tom’ exposed to high levels of salinity stress were examined. Growth with 160 mM NaCl doubled starch accumulation in tomato fruits compared to control plants during the early stages of development, and soluble sugars increased as the fruit matured. Tracer analysis with 13C confirmed that elevated carbohydrate accumulation in fruits exposed to salinity stress was confined to the early development stages and did not occur after ripening. Salinity stress also up-regulated sucrose transporter expression in source leaves and increased activity of ADP-glucose pyrophosphorylase (AGPase) in fruits during the early development stages. The results indicate that salinity stress enhanced carbohydrate accumulation as starch during the early development stages and it is responsible for the increase in soluble sugars in ripe fruit. Quantitative RT-PCR analyses of salinity-stressed plants showed that the AGPase-encoding genes, AgpL1 and AgpS1 were up-regulated in developing fruits, and AgpL1 was obviously up-regulated by sugar at the transcriptional level but not by abscisic acid and osmotic stress. These results indicate AgpL1 and AgpS1 are involved in the promotion of starch biosynthesis under the salinity stress in ABA- and osmotic stress-independent manners. These two genes are differentially regulated at the transcriptional level, and AgpL1 is suggested to play a regulatory role in this event. PMID:19995825
USDA-ARS?s Scientific Manuscript database
Identification of genes with differential transcript abundance (GDTA) in seedless mutants may enhance understanding of seedless citrus development. Transcriptome analysis was conducted at three time points during early fruit development (Phase 1) of three seedy citrus genotypes: Fallglo [Bower citru...
Tiwari, Aparna; Vivian-Smith, Adam; Ljung, Karin; Offringa, Remko; Heuvelink, Ep
2013-03-01
Fruit-set involves a series of physiological and morphological changes that are well described for tomato and Arabidopsis, but largely unknown for sweet pepper (Capsicum annuum). The aim of this paper is to investigate whether mechanisms of fruit-set observed in Arabidopsis and tomato are also applicable to C. annuum. To do this, we accurately timed the physiological and morphological changes in a post-pollinated and un-pollinated ovary. A vascular connection between ovule and replum was observed in fertilized ovaries that undergo fruit development, and this connection was absent in unfertilized ovaries that abort. This indicates that vascular connection between ovule and replum is an early indicator for successful fruit development after pollination and fertilization. Evaluation of histological changes in the carpel of a fertilized and unfertilized ovary indicated that increase in cell number and cell diameter both contribute to early fruit growth. Cell division contributes more during early fruit growth while cell expansion contributes more at later stages of fruit growth in C. annuum. The simultaneous occurrence of a peak in auxin concentration and a strong increase in cell diameter in the carpel of seeded fruits suggest that indole-3-acetic acid stimulates a major increase in cell diameter at later stages of fruit growth. The series of physiological and morphological events observed during fruit-set in C. annuum are similar to what has been reported for tomato and Arabidopsis. This indicates that tomato and Arabidopsis are suitable model plants to understand details of fruit-set mechanisms in C. annuum. Copyright © Physiologia Plantarum 2012.
Garrido-Bigotes, Adrián; Figueroa, Nicolás E; Figueroa, Pablo M; Figueroa, Carlos R
2018-01-01
Jasmonates (JAs) are signalling molecules involved in stress responses, development and secondary metabolism biosynthesis, although their roles in fleshy-fruit development and ripening processes are not well known. In strawberry fruit, it has been proposed that JAs could regulate the early development through the activation of the JAs biosynthesis. Moreover, it has been reported that JA treatment increases anthocyanin content in strawberry fruit involving the bioactive jasmonate biosynthesis. Nevertheless, JA signalling pathway, of which main components are the COI1-JAZ co-receptor and the MYC transcription factors (TFs), has not been characterized in strawberry until now. Here we identified and characterized the woodland strawberry (Fragaria vesca) JAZ and MYC genes as well as studied their expression during development and ripening stages in commercial strawberry (Fragaria × ananassa) fruit. We described twelve putative JAZ proteins and two MYC TFs, which showed high conservation with respect to their orthologs in Arabidopsis thaliana and in other fleshy-fruit species such as Malus × domestica, Vitis vinifera and Solanum lycopersicum as revealed by gene synteny and phylogenetic analyses. Noteworthy, their expression levels exhibited a significant decrease from fruit development to ripening stages in F. × ananassa, along with others of the JA signalling-related genes such as FaNINJA and FaJAMs, encoding for negative regulators of JA responses. Moreover, we found that main JA signalling-related genes such as FaMYC2, and FaJAZ1 are promptly induced by JA treatment at early times in F. × ananassa fruit. These results suggest the conservation of the canonical JA signalling pathway in strawberry and a possible role of this pathway in early strawberry fruit development, which also correlates negatively with the beginning of the ripening process.
Figueroa, Nicolás E.; Figueroa, Pablo M.
2018-01-01
Jasmonates (JAs) are signalling molecules involved in stress responses, development and secondary metabolism biosynthesis, although their roles in fleshy-fruit development and ripening processes are not well known. In strawberry fruit, it has been proposed that JAs could regulate the early development through the activation of the JAs biosynthesis. Moreover, it has been reported that JA treatment increases anthocyanin content in strawberry fruit involving the bioactive jasmonate biosynthesis. Nevertheless, JA signalling pathway, of which main components are the COI1-JAZ co-receptor and the MYC transcription factors (TFs), has not been characterized in strawberry until now. Here we identified and characterized the woodland strawberry (Fragaria vesca) JAZ and MYC genes as well as studied their expression during development and ripening stages in commercial strawberry (Fragaria × ananassa) fruit. We described twelve putative JAZ proteins and two MYC TFs, which showed high conservation with respect to their orthologs in Arabidopsis thaliana and in other fleshy-fruit species such as Malus × domestica, Vitis vinifera and Solanum lycopersicum as revealed by gene synteny and phylogenetic analyses. Noteworthy, their expression levels exhibited a significant decrease from fruit development to ripening stages in F. × ananassa, along with others of the JA signalling-related genes such as FaNINJA and FaJAMs, encoding for negative regulators of JA responses. Moreover, we found that main JA signalling-related genes such as FaMYC2, and FaJAZ1 are promptly induced by JA treatment at early times in F. × ananassa fruit. These results suggest the conservation of the canonical JA signalling pathway in strawberry and a possible role of this pathway in early strawberry fruit development, which also correlates negatively with the beginning of the ripening process. PMID:29746533
Wang, Yifei; Johnson-Cicalese, Jennifer; Singh, Ajay P; Vorsa, Nicholi
2017-09-01
Cranberry flavonoids, including anthocyanins, flavonol glycosides and proanthocyanidins, and organic acids were characterized and quantified by HPLC and LC-MS/MS during fruit development and ripening in eight cranberry cultivars. Anthocyanin biosynthesis initiated at early fruit development and reached highest level in mature fruit, with significant differences between cultivars. Major flavonol glycosides, including the most abundant quercetin-3-galactoside and myricetin-3-galactoside, showed consistent concentrations during the season with moderate fluctuation, and were at similar levels in mature fruits of the eight cultivars. Proanthocyanidins declined during fruit development and then increased slightly in later maturation stages. Levels of various proanthocyanidin oligomers/polymers with different degree-of-polymerization were highly correlated within a cultivar during fruit development. Cultivars with coancestry exhibited similar levels (high/low) of anthocyanins or proanthocyanidins, indicating genetic effects on biosynthesis of such flavonoids. All cultivars showed similar levels of malic and citric acids, and declining levels of quinic acid during fruit development. Benzoic acid was extremely low early in the season and increased sharply during fruit ripening. Levels of quinic and citric acids were significantly different among cultivars in the mature fruit. Concentrations of proanthocyanidins, anthocyanins, quinic acid and benzoic acid have a strong developmental association in developing ovaries. Copyright © 2017 Elsevier B.V. All rights reserved.
Profiling Taste and Aroma Compound Metabolism during Apricot Fruit Development and Ripening
Xi, Wanpeng; Zheng, Huiwen; Zhang, Qiuyun; Li, Wenhui
2016-01-01
Sugars, organic acids and volatiles of apricot were determined by HPLC and GC-MS during fruit development and ripening, and the key taste and aroma components were identified by integrating flavor compound contents with consumers’ evaluation. Sucrose and glucose were the major sugars in apricot fruit. The contents of all sugars increased rapidly, and the accumulation pattern of sugars converted from glucose-predominated to sucrose-predominated during fruit development and ripening. Sucrose synthase (SS), sorbitol oxidase (SO) and sorbitol dehydrogenase (SDH) are under tight developmental control and they might play important roles in sugar accumulation. Almost all organic acids identified increased during early development and then decrease rapidly. During early development, fruit mainly accumulated quinate and malate, with the increase of citrate after maturation, and quinate, malate and citrate were the predominant organic acids at the ripening stage. The odor activity values (OAV) of aroma volatiles showed that 18 aroma compounds were the characteristic components of apricot fruit. Aldehydes and terpenes decreased significantly during the whole development period, whereas lactones and apocarotenoids significantly increased with fruit ripening. The partial least squares regression (PLSR) results revealed that β-ionone, γ-decalactone, sucrose and citrate are the key characteristic flavor factors contributing to consumer acceptance. Carotenoid cleavage dioxygenases (CCD) may be involved in β-ionone formation in apricot fruit. PMID:27347931
Protein Synthesis in Relation to Ripening of Pome Fruits 1
Frenkel, Chaim; Klein, Isaac; Dilley, D. R.
1968-01-01
Protein synthesis by intact Bartlett pear fruits was studied with ripening as measured by flesh softening, chlorophyll degradation, respiration, ethylene synthesis, and malic enzyme activity. Protein synthesis is required for normal ripening, and the proteins synthesized early in the ripening process are, in fact, enzymes required for ripening. 14C-Phenylalanine is differentially incorporated into fruit proteins separated by acrylamide gel electrophoresis of pome fruits taken at successive ripening stages. Capacity for malic enzyme synthesis increases during the early stage of ripening. Fruit ripening and ethylene synthesis are inhibited when protein synthesis is blocked by treatment with cycloheximide at the early-climacteric stage. Cycloheximide became less effective as the climacteric developed. Ethylene did not overcome inhibition of ripening by cycloheximide. The respiratory climacteric is not inhibited by cycloheximide. It is concluded that normal ripening of pome fruits is a highly coordinated process of biochemical differentiation involving directed protein synthesis. PMID:16656897
Mounet, Fabien; Moing, Annick; Garcia, Virginie; Petit, Johann; Maucourt, Michael; Deborde, Catherine; Bernillon, Stéphane; Le Gall, Gwénaëlle; Colquhoun, Ian; Defernez, Marianne; Giraudel, Jean-Luc; Rolin, Dominique; Rothan, Christophe; Lemaire-Chamley, Martine
2009-01-01
Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12–35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality. PMID:19144766
ZHANG, CAIXI; TANABE, KENJI; TAMURA, FUMIO; ITAI, AKIHIRO; WANG, SHIPING
2005-01-01
• Background and Aims In fruit crops, fruit size at harvest is an important aspect of quality. With Japanese pears (Pyrus pyrifolia), later maturing cultivars usually have larger fruits than earlier maturing cultivars. It is considered that the supply of photosynthate during fruit development is a critical determinant of size. To assess the interaction of assimilate supply and early/late maturity of cultivars and its effect on final fruit size, the pattern of carbon assimilate partitioning from spur leaves (source) to fruit and other organs (sinks) during fruit growth was investigated using three genotypes differing in maturation date. • Methods Partitioning of photosynthate from spur leaves during fruit growth was investigated by exposure of spurs to 13CO2 and measurement of the change in 13C abundance in dry matter with time. Leaf number and leaf area per spur, fresh fruit weight, cell number and cell size of the mesocarp were measured and used to model the development of the spur leaf and fruit. • Key Results Compared with the earlier-maturing cultivars ‘Shinsui’ and ‘Kousui’, the larger-fruited, later-maturing cultivar ‘Shinsetsu’ had a greater total leaf area per spur, greater source strength (source weight × source specific activity), with more 13C assimilated per spur and allocated to fruit, smaller loss of 13C in respiration and export over the season, and longer duration of cell division and enlargement. Histology shows that cultivar differences in final fruit size were mainly attributable to the number of cells in the mesocarp. • Conclusions Assimilate availability during the period of cell division was crucial for early fruit growth and closely correlated with final fruit size. Early fruit growth of the earlier-maturing cultivars, but not the later-maturing ones, was severely restrained by assimilate supply rather than by sink limitation. PMID:15655106
Beshir, Wasiye F.; Mbong, Victor B. M.; Hertog, Maarten L. A. T. M.; Geeraerd, Annemie H.; Van den Ende, Wim; Nicolaï, Bart M.
2017-01-01
In recent years, the application of isotopically labeled substrates has received extensive attention in plant physiology. Measuring the propagation of the label through metabolic networks may provide information on carbon allocation in sink fruit during fruit development. In this research, gas chromatography coupled to mass spectrometry based metabolite profiling was used to characterize the changing metabolic pool sizes in developing apple fruit at five growth stages (30, 58, 93, 121, and 149 days after full bloom) using 13C-isotope feeding experiments on hypanthium tissue discs. Following the feeding of [U-13C]glucose, the 13C-label was incorporated into the various metabolites to different degrees depending on incubation time, metabolic pathway activity, and growth stage. Evidence is presented that early in fruit development the utilization of the imported sugars was faster than in later developmental stages, likely to supply the energy and carbon skeletons required for cell division and fruit growth. The declined 13C-incorporation into various metabolites during growth and maturation can be associated with the reduced metabolic activity, as mirrored by the respiratory rate. Moreover, the concentration of fructose and sucrose increased during fruit development, whereas concentrations of most amino and organic acids and polyphenols declined. In general, this study showed that the imported compounds play a central role not only in carbohydrate metabolism, but also in the biosynthesis of amino acid and related protein synthesis and secondary metabolites at the early stage of fruit development. PMID:29093725
Fine-tuning of the flavonoid and monolignol pathways during apple early fruit development.
Baldi, Paolo; Moser, Mirko; Brilli, Matteo; Vrhovsek, Urska; Pindo, Massimo; Si-Ammour, Azeddine
2017-05-01
A coordinated regulation of different branches of the flavonoid pathway was highlighted that may contribute to elucidate the role of this important class of compounds during the early stages of apple fruit development. Apple (Malus × domestica Borkh.) is an economically important fruit appreciated for its organoleptic characteristics and its benefits for human health. The first stages after fruit set represent a very important and still poorly characterized developmental process. To enable the profiling of genes involved in apple early fruit development, we combined the suppression subtractive hybridization (SSH) protocol to next-generation sequencing. We identified and characterized genes induced and repressed during fruit development in the apple cultivar 'Golden Delicious'. Our results showed an opposite regulation of genes coding for enzymes belonging to flavonoid and monolignol pathways, with a strong induction of the former and a simultaneous repression of the latter. Two isoforms of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase, key enzymes located at the branching point between flavonoid and monolignol pathways, showed opposite expression patterns during the period in analysis, suggesting a possible regulation mechanism. A targeted metabolomic analysis supported the SSH results and revealed an accumulation of the monomers catechin and epicatechin as well as several forms of procyanidin oligomers in apple fruitlets starting early after anthesis, together with a decreased production of other classes of flavonoids such as some flavonols and the dihydrochalcone phlorizin. Moreover, gene expression and metabolites accumulation of 'Golden Delicious' were compared to a wild apple genotype of Manchurian crabapple (Malus mandshurica (Maxim.) Kom.). Significant differences in both gene expression and metabolites accumulation were found between the two genotypes.
Antoine, Sandrine; Pailly, Olivier; Gibon, Yves; Luro, François; Santini, Jérémie; Giannettini, Jean; Berti, Liliane
2016-08-01
The physiological roles of organic acids in fruit cells are not fully understood, especially in citrus, whereas the decline in titratable acidity during ripening shown by many citrus fruits is due to the utilization of citric acid. We induced carbohydrate depletion by removing source leaves at two key periods in mandarin development (early and full citric acid accumulation). Then, we assessed the resulting changes in the short term (within 48 h) and long term (several weeks until ripening). Control mature fruits were characterized by elevated fresh weight, large diameters and high quantities of malic acid, citric acid and sucrose. At the same stage, fruits subjected to early or late defoliation had higher glucose, fructose, citric acid concentrations and lower sucrose concentrations. They differed only in their malic acid concentrations, which were higher in early defoliation fruits and similar in late defoliation fruits when compared to control fruits. Finally, fruits subjected to late defoliation were characterized by high proline and γ-aminobutyric acid concentrations, and low fructose and glucose concentrations. We have shown that short- and long-term carbohydrate limitation modifies sugar and organic acid metabolism during mandarin fruit growth. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Effect of CPPU on Carbohydrate and Endogenous Hormone Levels in Young Macadamia Fruit
Lu, Chaozhong; Lin, Wenqiu; Zou, Minghong; Zhang, Hanzhou; Wan, Jifeng; Huang, Xuming
2016-01-01
N-(2-Chloro-4-pyridyl)-N′-phenylurea (CPPU) is a highly active cytokinin-like plant growth regulator that promotes chlorophyll biosynthesis, cell division, and cell expansion. It also increases fruit set and accelerates fruit enlargement. However, there has been no report about the effect of CPPU on fruit development and its physiological mechanism in macadamia. In this study, we investigated the effect of CPPU treatment at early fruit development via foliar spray or raceme soaking at 20 mg·L-1 on fruit set and related physiology in macadamia. Changes in carbohydrate contents and endogenous hormones in leaves, bearing shoots and fruit were also examined. Results showed that CPPU significantly reduced young fruit drop and delayed the wave of fruit drop by 1–2 weeks. The treatment significantly decreased the contents of total soluble sugars and starch in the leaves, but increased them in the bearing shoots and total soluble sugars in the husk (pericarp) and seeds. These findings suggested that CPPU promoted carbohydrate mobilization from the leaves to the fruit. In addition, CPPU increased the contents of indole-3-acetic acid (IAA), gibberellin acid (GA3), and zeatin riboside (ZR) and decreased the abscisic acid (ABA) in the husk. Therefore, CPPU treatment reduced the early fruit drop by increasing carbohydrate availability and by modifying the balance among endogenous hormones. PMID:27387814
Symptoms to pollen and fruits early in life and allergic disease at 4 years of age.
Mai, X-M; Neuman, A; Ostblom, E; Pershagen, G; Nordvall, L; Almqvist, C; van Hage, M; Wickman, M
2008-11-01
The predictive value of reported early symptoms to pollen or fruits on later allergic disease is unclear. Our aim is to evaluate if symptoms to pollen and/or to fruits early in life are associated with allergic disease and sensitization to pollen at 4 years. The study included 3619 children from the Barn (Children), Allergy, Milieu, Stockholm, Epidemiology project (BAMSE) birth cohort. Reported symptoms of wheeze, sneeze or rash to birch, grass or weed, symptoms (vomiting, diarrhea, rash, facial edema, sneeze, or wheeze) to fruits including tree-nuts at 1 or 2 years of age, and definitions of asthma, rhinitis and eczema at 4 years were derived from questionnaire data. Sensitization to pollen allergens was defined as allergen-specific IgE-antibodies to any pollen (birch/timothy/mugwort) > or =0.35 kU(A)/l. At 1 or 2 years of age, 6% of the children were reported to have pollen-related symptoms, 6% had symptoms to fruits, and 1.4% to both pollen and fruits. Children with symptoms to both pollen and fruits at 1 or 2 years of age had an increased risk for sensitization to any pollen allergen at age 4 (OR(adj) = 4.4, 95% CI = 2.1-9.2). This group of children also had a substantially elevated risk for developing any allergic disease (asthma, rhinitis, or eczema) at 4 years irrespective of sensitization to pollen (OR(adj) = 8.6, 95% CI = 4.5-16.4). The prevalence of reported symptoms to pollen and fruits is very low in early childhood. However, children with early symptoms to both pollen and fruits appear to have a markedly elevated risk for allergic disease.
Gupta, Yogesh; Pathak, Ashish K; Singh, Kashmir; Mantri, Shrikant S; Singh, Sudhir P; Tuli, Rakesh
2015-02-14
Annona squamosa L., a popular fruit tree, is the most widely cultivated species of the genus Annona. The lack of transcriptomic and genomic information limits the scope of genome investigations in this important shrub. It bears aggregate fruits with numerous seeds. A few rare accessions with very few seeds have been reported for Annona. A massive pyrosequencing (Roche, 454 GS FLX+) of transcriptome from early stages of fruit development (0, 4, 8 and 12 days after pollination) was performed to produce expression datasets in two genotypes, Sitaphal and NMK-1, that show a contrast in the number of seeds set in fruits. The data reported here is the first source of genome-wide differential transcriptome sequence in two genotypes of A. squamosa, and identifies several candidate genes related to seed development. Approximately 1.9 million high-quality clean reads were obtained in the cDNA library from the developing fruits of both the genotypes, with an average length of about 568 bp. Quality-reads were assembled de novo into 2074 to 11004 contigs in the developing fruit samples at different stages of development. The contig sequence data of all the four stages of each genotype were combined into larger units resulting into 14921 (Sitaphal) and 14178 (NMK-1) unigenes, with a mean size of more than 1 Kb. Assembled unigenes were functionally annotated by querying against the protein sequences of five different public databases (NCBI non redundant, Prunus persica, Vitis vinifera, Fragaria vesca, and Amborella trichopoda), with an E-value cut-off of 10(-5). A total of 4588 (Sitaphal) and 2502 (NMK-1) unigenes did not match any known protein in the NR database. These sequences could be genes specific to Annona sp. or belong to untranslated regions. Several of the unigenes representing pathways related to primary and secondary metabolism, and seed and fruit development expressed at a higher level in Sitaphal, the densely seeded cultivar in comparison to the poorly seeded NMK-1. A total of 2629 (Sitaphal) and 3445 (NMK-1) Simple Sequence Repeat (SSR) motifs were identified respectively in the two genotypes. These could be potential candidates for transcript based microsatellite analysis in A. squamosa. The present work provides early-stage fruit specific transcriptome sequence resource for A. squamosa. This repository will serve as a useful resource for investigating the molecular mechanisms of fruit development, and improvement of fruit related traits in A. squamosa and related species.
Katz, Ehud; Boo, Kyung Hwan; Kim, Ho Youn; Eigenheer, Richard A.; Phinney, Brett S.; Shulaev, Vladimir; Negre-Zakharov, Florence; Sadka, Avi; Blumwald, Eduardo
2011-01-01
Label-free LC-MS/MS-based shot-gun proteomics was used to quantify the differential protein synthesis and metabolite profiling in order to assess metabolic changes during the development of citrus fruits. Our results suggested the occurrence of a metabolic change during citrus fruit maturation, where the organic acid and amino acid accumulation seen during the early stages of development shifted into sugar synthesis during the later stage of citrus fruit development. The expression of invertases remained unchanged, while an invertase inhibitor was up-regulated towards maturation. The increased expression of sucrose-phosphate synthase and sucrose-6-phosphate phosphatase and the rapid sugar accumulation suggest that sucrose is also being synthesized in citrus juice sac cells during the later stage of fruit development. PMID:21841177
Kumar, S Sravan; Manoj, P; Shetty, N P; Prakash, Maya; Giridhar, P
2015-08-01
Basella rubra L. (Basellaceae) commonly known as Malabar spinach is a leafy vegetable which accumulates pigments in its fruits. To find out the feasibility of utilizing pigment rich extracts of its fruit as natural food colourant, fruits at different stages were analysed for pigment profiling, carbohydrate content, physical dimensions and weight. Total betalains content increased rapidly from early (green) through intermediate (half-done red-violet) to matured stage (red-violet). Maximum pigment content was observed in ripened fruits (143.76 mg/100 g fresh weight). The major betalain pigment characterized was gomphrenin I in ripened fruits (26.06 mg), followed by intermediate fruits (2.15 mg) and least in early fruits (0.23 mg) in 100 g of fresh deseeded fruits. Total carbohydrates content and the chroma values (redness) were also increased during ontogeny of B. rubra fruits. The textural characters of developing fruits showed the smoothness of green fruits with lower rupture force (0.16 N/s) than ripe ones (0.38 N/s). The pigment-rich fruit extract was used as natural colourant in ice-cream, to evaluate its effect on physicochemical properties and acceptability of the product. After six months of storage at -20 °C, 86.63 % colour was retained in ice-cream. The ice-cream had good overall sensorial quality and was liked by consumers indicating that addition of B. rubra fruit extract did not alter the sensory quality of the product. The colour values also indicate that there was no significant decrease of this pigment-rich extracts of fruits for its incorporation in food products.
Van Mele, Paul; Vayssières, Jean-François; Van Tellingen, Esther; Vrolijks, Jan
2007-06-01
Six mango, Mangifera indica L., plantations around Parakou, northern Benin, were sampled at 2-wk intervals for fruit fly damage from early April to late May in 2005. Mean damage ranged from 1 to 24% with a weaver ant, Oecophylla longinoda (Latreille), being either abundant or absent. The fruit fly complex is made up of Ceratitis spp. and Bactrocera invadens Drew et al., a new invasive species in West Africa. In 2006, Ceratitis spp. peaked twice in the late dry season in early April and early May, whereas B. invadens populations quickly increased at the onset of the rains, from mid-May onward. Exclusion experiments conducted in 2006 with 'Eldon', 'Kent', and 'Gouverneur' confirmed that at high ant abundance levels, Oecophylla significantly reduced fruit fly infestation. Although fruit fly control methods are still at an experimental stage in this part of the world, farmers who tolerated weaver ants in their orchard were rewarded by significantly better fruit quality. Conservation biological control with predatory ants such as Oecophylla in high-value tree crops has great potential for African and Asian farmers. Implications for international research for development at the Consultative Group on International Agricultural Research level are discussed.
Abscisic acid and pyrabactin improve vitamin C contents in raspberries.
Miret, Javier A; Munné-Bosch, Sergi
2016-07-15
Abscisic acid (ABA) is a plant growth regulator with roles in senescence, fruit ripening and environmental stress responses. ABA and pyrabactin (a non-photosensitive ABA agonist) effects on red raspberry (Rubus idaeus L.) fruit development (including ripening) were studied, with a focus on vitamin and antioxidant composition. Application of ABA and/or pyrabactin just after fruit set did not affect the temporal pattern of fruit development and ripening; neither provitamin A (carotenoids) nor vitamin E contents were modified. In contrast, ABA and pyrabactin altered the vitamin C redox state at early stages of fruit development and more than doubled vitamin C contents at the end of fruit ripening. These were partially explained by changes in ascorbate oxidation and recycling. Therefore, ABA and pyrabactin applications may be used to increase vitamin C content of ripe fruits, increasing fruit quality and value. However, treatments containing pyrabactin-combined with ABA or alone-diminished protein content, thus partially limiting its potential applicability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molecular cloning and characterisation of banana fruit polyphenol oxidase.
Gooding, P S; Bird, C; Robinson, S P
2001-09-01
Polyphenol oxidase (PPO; EC 1.10.3.2) is the enzyme thought to be responsible for browning in banana [Musa cavendishii (AAA group, Cavendish subgroup) cv. Williams] fruit. Banana flesh was high in PPO activity throughout growth and ripening. Peel showed high levels of activity early in development but activity declined until ripening started and then remained constant. PPO activity in fruit was not substantially induced after wounding or treatment with 5-methyl jasmonate. Banana flowers and unexpanded leaf roll had high PPO activities with lower activities observed in mature leaves, roots and stem. Four different PPO cDNA clones were amplified from banana fruit (BPO1, BPO11, BPO34 and BPO35). Full-length cDNA and genomic clones were isolated for the most abundant sequence (BPO1) and the genomic clone was found to contain an 85-bp intron. Introns have not been previously found in PPO genes. Northern analysis revealed the presence of BPO1 mRNA in banana flesh early in development but little BPO1 mRNA was detected at the same stage in banana peel. BPO11 transcript was only detected in very young flesh and there was no detectable expression of BPO34 or BPO35 in developing fruit samples. PPO transcripts were also low throughout ripening in both flesh and peel. BPO1 transcripts were readily detected in flowers, stem, roots and leaf roll samples but were not detected in mature leaves. BPO11 showed a similar pattern of expression to BPO1 in these tissues but transcript levels were much lower. BPO34 and BPO35 mRNAs were only detected at a low level in flowers and roots and BPO34 transcript was detected in mature leaves, the only clone to do so. The results suggest that browning of banana fruit during ripening results from release of pre-existing PPO enzyme, which is synthesised very early in fruit development.
Ernesto Bianchetti, Ricardo; Silvestre Lira, Bruno; Santos Monteiro, Scarlet; Demarco, Diego; Purgatto, Eduardo; Rothan, Christophe; Rossi, Magdalena; Freschi, Luciano
2018-04-18
Light signaling has long been reported to influence fruit biology, though the regulatory impact of fruit-localized photoreceptors on fruit development and metabolism remains elusive. Studies performed in phytochrome(PHY)-deficient tomato (Solanum lycopersicum) mutants suggest that SlPHYA, SlPHYB2 and to a lesser extent SlPHYB1 influence fruit development and ripening. By employing fruit-specific RNAi-mediated silencing of SlPHY genes, we demonstrated that fruit-localized SlPHYA and SlPHYB2 play contrasting roles in regulating plastid biogenesis and maturation in tomato. Data revealed that fruit-localized SlPHYA, rather than SlPHYB1 or SlPHYB2, positively influence tomato plastid differentiation and division machinery via changes in both light and cytokinin signaling-related gene expression. Fruit-localized SlPHYA and SlPHYB2 were also shown to modulate sugar metabolism in early developing fruits via overlapping, yet distinct, mechanisms involving the coordinated transcriptional regulation of sink- and starch biosynthesis-related genes. Fruit-specific SlPHY silencing also drastically altered the transcriptional profile of genes encoding light repressor proteins and carotenoid biosynthesis regulators, leading to reduced carotenoid biosynthesis during fruit ripening. Therefore, besides providing conclusive evidence on the regulation of tomato quality by fruit-localized phytochromes, our data also demonstrate the existence of an intricate PHY-hormonal interplay during fruit development and ripening.
Lombardo, Verónica A.; Osorio, Sonia; Borsani, Julia; Lauxmann, Martin A.; Bustamante, Claudia A.; Budde, Claudio O.; Andreo, Carlos S.; Lara, María V.; Fernie, Alisdair R.; Drincovich, María F.
2011-01-01
Fruit from rosaceous species collectively display a great variety of flavors and textures as well as a generally high content of nutritionally beneficial metabolites. However, relatively little analysis of metabolic networks in rosaceous fruit has been reported. Among rosaceous species, peach (Prunus persica) has stone fruits composed of a juicy mesocarp and lignified endocarp. Here, peach mesocarp metabolic networks were studied across development using metabolomics and analysis of key regulatory enzymes. Principal component analysis of peach metabolic composition revealed clear metabolic shifts from early through late development stages and subsequently during postharvest ripening. Early developmental stages were characterized by a substantial decrease in protein abundance and high levels of bioactive polyphenols and amino acids, which are substrates for the phenylpropanoid and lignin pathways during stone hardening. Sucrose levels showed a large increase during development, reflecting translocation from the leaf, while the importance of galactinol and raffinose is also inferred. Our study further suggests that posttranscriptional mechanisms are key for metabolic regulation at early stages. In contrast to early developmental stages, a decrease in amino acid levels is coupled to an induction of transcripts encoding amino acid and organic acid catabolic enzymes during ripening. These data are consistent with the mobilization of amino acids to support respiration. In addition, sucrose cycling, suggested by the parallel increase of transcripts encoding sucrose degradative and synthetic enzymes, appears to operate during postharvest ripening. When taken together, these data highlight singular metabolic programs for peach development and may allow the identification of key factors related to agronomic traits of this important crop species. PMID:22021422
Li, Mingjun; Ma, Fengwang; Liang, Dong; Li, Juan; Wang, Yanlei
2010-12-09
Ascorbic acid (AsA) is a unique antioxidant as well as an enzyme cofactor. Although it has multiple roles in plants, it is unclear how its accumulation is controlled at the expression level, especially in sink tissues. Kiwifruit (Actinidia) is well-known for its high ascorbate content. Our objective was to determine whether AsA accumulates in the fruits primarily through biosynthesis or because it is imported from the foliage. We systematically investigated AsA levels, biosynthetic capacity, and mRNA expression of genes involved in AsA biosynthesis in kiwi (A. deliciosa cv. Qinmei). Recycling and AsA localization were also monitored during fruit development and among different tissue types. Over time, the amount of AsA, with its capacity for higher biosynthesis and lower recycling, peaked at 30 days after anthesis (DAA), and then decreased markedly up to 60 DAA before declining more slowly. Expression of key genes showed similar patterns of change, except for L-galactono-1,4-lactone dehydrogenase and L-galactose-1-phosphate phosphatase (GPP). However, GPP had good correlation with the rate of AsA accumulation. The expression of these genes could be detected in phloem of stem as well as petiole of leaf and fruit. Additionally, fruit petioles had greater ascorbate amounts, although that was the site of lowest expression by most genes. Fruit microtubule tissues also had higher AsA. However, exogenous applications of AsA to those petioles did not lead to its transport into fruits, and distribution of ascorbate was cell-specific in the fruits, with more accumulation occurring in larger cells. These results suggest that AsA biosynthesis in kiwi during early fruit development is the main reason for its accumulation in the fruits. We also postulate here that GPP is a good candidate for regulating AsA biosynthesis whereas GDP-L-galactose-1-phosphate phosphorylase is not.
de Freitas, Sergio Tonetto; Shackel, Kenneth A; Mitcham, Elizabeth J
2011-05-01
Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.
Fernández-Otero, C I; de la Torre, F; Iglesias, R; Rodríguez-Gacio, M C; Matilla, A J
2007-01-01
In this work, four cDNA clones (Pd-ACS1,AJ890088; Pd-ETR1 and Pd-ERS1, AJ890092, AJ890091; and Pd-CTR1, AJ890089) encoding an ACC-synthase, two putative ethylene (ET) receptors, and a putative MAPKKK, respectively, were isolated and phylogenetically characterized in Prunus domestica L. subsp. insititia. Their expression was studied by real-time PCR during flower (closed, open and senescent) and fruit (early green, late green, maturation and ripening) development of damson plum, which is climateric. While two peaks of ET production were quantified at early green and ripening stages in whole fruits, the seed was not able to produce it during maturation and ripening stages. All studied genes were differentially expressed during flower and fruit development. In general, the level of transcripts of Pd-ACS1 was higher in fruits than in flowers. However, it was noteworthy that: (1) Pd-ACS1 expression was hardly detected in closed flowers and at low levels during early green stage; and fruit development provoked a notable differential expression in seeds, and pericarp; (2) the results of Pd-ACS1 expression during fruit development suggest a preponderant role of this gene from late green stage onward. The stamen was the only floral organ in which expression of both Pd-ETR1 and Pd-ERS1 receptor genes was not significantly altered during development; however, their expression decreased concomitantly with development of pistil (only floral organ to register a net ET production when fertilized) and during first days of ovary development (the highest ET production during all fruit development). Contrary to Pd-ERS1, the level of Pd-ETR1 mRNA was temporally quite similar in the seed. With regard Pd-ETR1, even its expression was very scarce during maturation of mesocarp, was stimulated during ripening. In the epicarp, Pd-ERS1 and Pd-ETR1 were low expressed during pit hardening increasing onward and decreasing during ripening. Pd-CTR1 expression was in the seed>mesocarp>epicarp. Spatial and temporal levels of Pd-ACS1, Pd-ETR1, Pd-ERS1 and Pd-CTR1 mRNAs described in this work demonstrate that the expression of these genes is not always constitutive and that control of its transcription may play an important role in regulating the development of reproductive organs of damson plum.
Hu, Lisong; Wu, Gang; Hao, Chaoyun; Yu, Huan; Tan, Lehe
2016-07-01
Artocarpus heterophyllus Lam., commonly known as jackfruit, produces the largest tree-borne fruit known thus far. The edible part of the fruit develops from the perianths, and contains many sugar-derived compounds. However, its sugar metabolism is poorly understood. A fruit perianth transcriptome was sequenced on an Illumina HiSeq 2500 platform, producing 32,459 unigenes with an average length of 1345nt. Sugar metabolism was characterized by comparing expression patterns of genes related to sugar metabolism and evaluating correlations with enzyme activity and sugar accumulation during fruit perianth development. During early development, high expression levels of acid invertases and corresponding enzyme activities were responsible for the rapid utilization of imported sucrose for fruit growth. The differential expression of starch metabolism-related genes and corresponding enzyme activities were responsible for starch accumulated before fruit ripening but decreased during ripening. Sucrose accumulated during ripening, when the expression levels of genes for sucrose synthesis were elevated and high enzyme activity was observed. The comprehensive transcriptome analysis presents fundamental information on sugar metabolism and will be a useful reference for further research on fruit perianth development in jackfruit. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The University of Florida (UF) stone fruit breeding and genetics program was created in 1952 to develop early ripening stone fruit cultivars with high quality, adaptation to summer rainfall, low chilling requirements, and the ability to withstand high disease pressure. Diverse germplasm sources were...
Alkio, Merianne; Jonas, Uwe; Sprink, Thorben; van Nocker, Steven; Knoche, Moritz
2012-01-01
Background and Aims The cuticular membrane (CM) of Prunus avium (sweet cherry) and other fleshy fruit is under stress. Previous research indicates that the resultant strain promotes microscopic cuticular cracking. Microcracks impair the function of the CM as a barrier against pathogens and uncontrolled water loss/uptake. Stress and strain result from a cessation of CM deposition during early development, while the fruit surface continues to expand. The cessation of CM deposition, in turn, may be related to an early downregulation of CM-related genes. The aims of this study were to identify genes potentially involved in CM formation in sweet cherry fruit and to quantify their expression levels. Methods Fruit growth and CM deposition were quantified weekly from anthesis to maturity and rates of CM deposition were calculated. Sequences of genes expressed in the sweet cherry fruit skin (exocarp) were generated using high-throughput sequencing of cDNA and de novo assembly and analysed using bioinformatics tools. Relative mRNA levels of selected genes were quantified in the exocarp and fruit flesh (mesocarp) weekly using reverse transcriptase-quantitative real-time PCR and compared with the calculated CM deposition rate over time. Key Results The rate of CM deposition peaked at 93 (±5) μg per fruit d−1 about 19 d after anthesis. Based on sequence analyses, 18 genes were selected as potentially involved in CM formation. Selected sweet cherry genes shared up to 100 and 98 % similarity with the respective Prunus persica (peach) and Arabidopsis thaliana genes. Expression of 13 putative CM-related genes was restricted to the exocarp and correlated positively with the CM deposition rate. Conclusions The results support the view that the cessation of CM deposition during early sweet cherry fruit development is accounted for by a downregulation of genes involved in CM deposition. Genes that merit further investigation include PaWINA, PaWINB, PaLipase, PaLTPG1, PaATT1, PaLCR, PaGPAT4/8, PaLACS2, PaLACS1 and PaCER1. PMID:22610921
2014-01-01
Background Pollen donor compositions differ during the early stages of reproduction due to various selection mechanisms. In addition, ovules linearly ordered within a fruit have different probabilities of reaching maturity. Few attempts, however, have been made to directly examine the magnitude and timing of selection, as well as the mechanisms during early life stages and within fruit. Robinia pseudoacacia, which contains linear fruit and non-random ovule maturation and abortion patterns, has been used to study the viability of selection within fruit and during the early stages of reproduction. To examine changes in the pollen donor composition during the early stages of reproduction and of progeny originating from different positions within fruit, paternity analyses were performed for three early life stages (aborted seeds, mature seeds and seedlings) in the insect-pollinated tree R. pseudoacacia. Results Selection resulted in an overall decrease in the level of surviving selfed progeny at each life stage. The greatest change was observed between the aborted seed stage and mature seed stage, indicative of inbreeding depression (the reduced fitness of a given population that occurs when related individual breeding was responsible for early selection). A selective advantage was detected among paternal trees. Within fruits, the distal ends showed higher outcrossing rates than the basal ends, indicative of selection based on the order of seeds within the fruit. Conclusions Our results suggest that selection exists both within linear fruit and during the early stages of reproduction, and that this selection can affect male reproductive success during the early life stages. This indicates that tree species with mixed-mating systems may have evolved pollen selection mechanisms to increase the fitness of progeny and adjust the population genetic composition. The early selection that we detected suggests that inbreeding depression caused the high abortion rate and low seed set in R. pseudoacacia. PMID:24655746
Yuan, Cun-Quan; Sun, Yu-Han; Li, Yun-Fei; Zhao, Ke-Qi; Hu, Rui-Yang; Li, Yun
2014-03-21
Pollen donor compositions differ during the early stages of reproduction due to various selection mechanisms. In addition, ovules linearly ordered within a fruit have different probabilities of reaching maturity. Few attempts, however, have been made to directly examine the magnitude and timing of selection, as well as the mechanisms during early life stages and within fruit. Robinia pseudoacacia, which contains linear fruit and non-random ovule maturation and abortion patterns, has been used to study the viability of selection within fruit and during the early stages of reproduction. To examine changes in the pollen donor composition during the early stages of reproduction and of progeny originating from different positions within fruit, paternity analyses were performed for three early life stages (aborted seeds, mature seeds and seedlings) in the insect-pollinated tree R. pseudoacacia. Selection resulted in an overall decrease in the level of surviving selfed progeny at each life stage. The greatest change was observed between the aborted seed stage and mature seed stage, indicative of inbreeding depression (the reduced fitness of a given population that occurs when related individual breeding was responsible for early selection). A selective advantage was detected among paternal trees. Within fruits, the distal ends showed higher outcrossing rates than the basal ends, indicative of selection based on the order of seeds within the fruit. Our results suggest that selection exists both within linear fruit and during the early stages of reproduction, and that this selection can affect male reproductive success during the early life stages. This indicates that tree species with mixed-mating systems may have evolved pollen selection mechanisms to increase the fitness of progeny and adjust the population genetic composition. The early selection that we detected suggests that inbreeding depression caused the high abortion rate and low seed set in R. pseudoacacia.
Teribia, Natalia; Tijero, Verónica; Munné-Bosch, Sergi
2016-12-25
Sweet cherries are highly appreciated by consumers worldwide and are usually cold-stored during postharvest to prevent over-ripening before distribution to the market. Sweet cherry is a non-climacteric fruit, for which ripening is known to be regulated by abscisic acid. Here we aimed to examine the hormone profiles, including measurements of abscisic acid, auxins, cytokinins and gibberellins by ultrahigh performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), in relation to variations in sugar and anthocyanin contents, during growth and ripening of this fruit. Hormonal profiling revealed that indole-3-acetic acid, GA 1 and trans-zeatin levels decreased at early stages of fruit development, while GA 3 levels decreased at early stages but also later, once anthocyanin accumulation started. Conversely, abscisic acid levels rose significantly once the fruit started to synthetize anthocyanins, and isopentenyladenosine levels also increased during the ripening of sweet cherries. A strong negative correlation was found between GA 4 levels and both fruit biomass and anthocyanin levels, and between the levels of trans-zeatin and both fruit biomass and total sugar contents. In contrast, abscisic acid and isopentenyladenosine levels correlated positively with fruit biomass, anthocyanin and total soluble sugar content. Results suggest that auxins, cytokinins and gibberellins may act coordinately with abscisic acid in the regulation of sweet cherry development and ripening. Furthermore, it is shown that hormonal profile measurements by UHPLC-MS/MS may be a helpful tool to elucidate the timing of action of each specific hormonal compound during ripening, which has important applications in the agri-food biotechnological sector. Copyright © 2016 Elsevier B.V. All rights reserved.
Anti-oxidant effects of kiwi fruit in vitro and in vivo.
Iwasawa, Haruyo; Morita, Erika; Yui, Satoru; Yamazaki, Masatoshi
2011-01-01
We previously reported that kiwi fruit is rich in polyphenols and has immunostimulatory activity. Polyphenols are widely known for having anti-oxidant effects. We also revealed potential anti-oxidant effects of kiwi fruit in vivo by oral administration to mice. Here, we compared the anti-oxidant effects of kiwi fruit with those of other fruits in vitro. Then, we examined the inhibitory effects of kiwi fruit on oxidation in the human body. There are two varieties of kiwi fruit, green kiwi and gold kiwi. We also examined variation between these varieties. Comparison of the anti-oxidant effects in vitro demonstrated that kiwi fruit had stronger anti-oxidant effects than orange and grapefruit, which are rich in vitamin C; gold kiwi had the strongest anti-oxidant effects. Kiwi fruit inhibited oxidation of biological substances in the human body. In particular, kiwi fruit may inhibit early lipid oxidation. In this study, kiwi fruit had strong anti-oxidant effects and may prevent the development and deterioration of diseases caused by oxidative stress.
Cheng, Lailiang
2012-01-01
Both sorbitol and sucrose are imported into apple fruit from leaves. The metabolism of sorbitol and sucrose fuels fruit growth and development, and accumulation of sugars in fruit is central to the edible quality of apple. However, our understanding of the mechanisms controlling sugar metabolism and accumulation in apple remains quite limited. We identified members of various gene families encoding key enzymes or transporters involved in sugar metabolism and accumulation in apple fruit using homology searches and comparison of their expression patterns in different tissues, and analyzed the relationship of their transcripts with enzyme activities and sugar accumulation during fruit development. At the early stage of fruit development, the transcript levels of sorbitol dehydrogenase, cell wall invertase, neutral invertase, sucrose synthase, fructokinase and hexokinase are high, and the resulting high enzyme activities are responsible for the rapid utilization of the imported sorbitol and sucrose for fruit growth, with low levels of sugar accumulation. As the fruit continues to grow due to cell expansion, the transcript levels and activities of these enzymes are down-regulated, with concomitant accumulation of fructose and elevated transcript levels of tonoplast monosaccharide transporters (TMTs), MdTMT1 and MdTMT2; the excess carbon is converted into starch. At the late stage of fruit development, sucrose accumulation is enhanced, consistent with the elevated expression of sucrose-phosphate synthase (SPS), MdSPS5 and MdSPS6, and an increase in its total activity. Our data indicate that sugar metabolism and accumulation in apple fruit is developmentally regulated. This represents a comprehensive analysis of the genes involved in sugar metabolism and accumulation in apple, which will serve as a platform for further studies on the functions of these genes and subsequent manipulation of sugar metabolism and fruit quality traits related to carbohydrates. PMID:22412983
2012-01-01
Background Fruit growth in apple (Malus × domestica Borkh.) is mediated by cell production and expansion. Genes involved in regulating these processes and thereby fruit growth, are not well characterized. We hypothesized that the apple homolog(s) of AINTEGUMENTA (ANT), an APETALA2–repeat containing transcription factor, regulates cell production during fruit growth in apple. Results Two ANT genes, MdANT1 and MdANT2, were isolated from apple and their expression was studied during multiple stages of fruit development. MdANT1 and MdANT2 expression was high during early fruit growth coincident with the period of cell production, rapidly declined during exit from cell production, and remained low during the rest of fruit development. The effects of increase in carbohydrate availability during fruit growth were characterized. Increase in carbohydrate availability enhanced fruit growth largely through an increase in cell production. Expression of MdANT1 and MdANT2 increased sharply by up to around 5-fold in response to an increase in carbohydrate availability. Expression of the ANT genes was compared across two apple genotypes, ‘Gala’ and ‘Golden Delicious Smoothee’ (GS), which differ in the extent of fruit growth, largely due to differences in cell production. In comparison to ‘Gala’, the larger fruit-size genotype, GS, displayed higher levels and a longer duration of MdANT1 and MdANT2 expression. Expression of the ANTs and cell cycle genes in the fruit core and cortex tissues isolated using laser capture microdissection was studied. During early fruit growth, expression of the MdANTs was higher within the cortex, the tissue that constitutes the majority of the fruit. Additionally, MdANT1 and MdANT2 expression was positively correlated with that of A- and B-type CYCLINS, B-type CYCLIN-DEPENDENT-KINASES (CDKBs) and MdDEL1. Conclusions Multiple lines of evidence from this study suggest that MdANT1 and MdANT2 regulate cell production during fruit growth in apple. ANTs may coordinate the expression of cell proliferation genes and thereby affect the competence of cells for cell production during fruit growth. Together, data from this study implicate MdANT1 and MdANT2 in the regulation of fruit growth in apple. PMID:22731507
Dash, Madhumita; Malladi, Anish
2012-06-25
Fruit growth in apple (Malus × domestica Borkh.) is mediated by cell production and expansion. Genes involved in regulating these processes and thereby fruit growth, are not well characterized. We hypothesized that the apple homolog(s) of AINTEGUMENTA (ANT), an APETALA2-repeat containing transcription factor, regulates cell production during fruit growth in apple. Two ANT genes, MdANT1 and MdANT2, were isolated from apple and their expression was studied during multiple stages of fruit development. MdANT1 and MdANT2 expression was high during early fruit growth coincident with the period of cell production, rapidly declined during exit from cell production, and remained low during the rest of fruit development. The effects of increase in carbohydrate availability during fruit growth were characterized. Increase in carbohydrate availability enhanced fruit growth largely through an increase in cell production. Expression of MdANT1 and MdANT2 increased sharply by up to around 5-fold in response to an increase in carbohydrate availability. Expression of the ANT genes was compared across two apple genotypes, 'Gala' and 'Golden Delicious Smoothee' (GS), which differ in the extent of fruit growth, largely due to differences in cell production. In comparison to 'Gala', the larger fruit-size genotype, GS, displayed higher levels and a longer duration of MdANT1 and MdANT2 expression. Expression of the ANTs and cell cycle genes in the fruit core and cortex tissues isolated using laser capture microdissection was studied. During early fruit growth, expression of the MdANTs was higher within the cortex, the tissue that constitutes the majority of the fruit. Additionally, MdANT1 and MdANT2 expression was positively correlated with that of A- and B-type CYCLINS, B-type CYCLIN-DEPENDENT-KINASES (CDKBs) and MdDEL1. Multiple lines of evidence from this study suggest that MdANT1 and MdANT2 regulate cell production during fruit growth in apple. ANTs may coordinate the expression of cell proliferation genes and thereby affect the competence of cells for cell production during fruit growth. Together, data from this study implicate MdANT1 and MdANT2 in the regulation of fruit growth in apple.
Ectopic expression of ORANGE promotes carotenoid accumulation and fruit development in tomato.
Yazdani, Mohammad; Sun, Zhaoxia; Yuan, Hui; Zeng, Shaohua; Thannhauser, Theodore W; Vrebalov, Julia; Ma, Qiyue; Xu, Yimin; Fei, Zhangjun; Van Eck, Joyce; Tian, Shiping; Tadmor, Yaakov; Giovannoni, James J; Li, Li
2018-05-05
Carotenoids are critically important to plants and humans. The ORANGE (OR) gene is a key regulator for carotenoid accumulation, but its physiological roles in crops remain elusive. In this study, we generated transgenic tomato ectopically overexpressing the Arabidopsis wild-type OR (AtOR WT ) and a 'golden SNP'-containing OR (AtOR H is ). We found that AtOR H is initiated chromoplast formation in very young fruit and stimulated carotenoid accumulation at all fruit developmental stages, uncoupled from other ripening activities. The elevated levels of carotenoids in the AtOR lines were distributed in the same subplastidial fractions as in wild-type tomato, indicating an adaptive response of plastids to sequester the increased carotenoids. Microscopic analysis revealed that the plastid sizes were increased in both AtOR WT and AtOR H is lines at early fruit developmental stages. Moreover, AtOR overexpression promoted early flowering, fruit set and seed production. Ethylene production and the expression of ripening-associated genes were also significantly increased in the AtOR transgenic fruit at ripening stages. RNA-Seq transcriptomic profiling highlighted the primary effects of OR overexpression on the genes in the processes related to RNA, protein and signalling in tomato fruit. Taken together, these results expand our understanding of OR in mediating carotenoid accumulation in plants and suggest additional roles of OR in affecting plastid size as well as flower and fruit development, thus making OR a target gene not only for nutritional biofortification of agricultural products but also for alteration of horticultural traits. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Akagi, Takashi; Ikegami, Ayako; Tsujimoto, Tomoyuki; Kobayashi, Shozo; Sato, Akihiko; Kono, Atsushi; Yonemori, Keizo
2009-01-01
Proanthocyanidins (PAs) are secondary metabolites that contribute to the protection of the plant and also to the taste of the fruit, mainly through astringency. Persimmon (Diospyros kaki) is unique in being able to accumulate abundant PAs in the fruit flesh. Fruits of the nonastringent (NA)-type mutants lose their ability to produce PA at an early stage of fruit development, while those of the normal astringent (A) type remain rich in PA until fully ripened. The expression of many PA pathway genes was coincidentally terminated in the NA type at an early stage of fruit development. The five genes encoding the Myb transcription factor were isolated from an A-type cultivar (Kuramitsu). One of them, DkMyb4, showed an expression pattern synchronous to that of the PA pathway genes in A- and NA-type fruit flesh. The ectopic expression of DkMyb4 in kiwifruit (Actinidia deliciosa) induced PA biosynthesis but not anthocyanin biosynthesis. The suppression of DkMyb4 in persimmon calluses caused a substantial down-regulation of the PA pathway genes and PA biosynthesis. Furthermore, analysis of the DNA-binding ability of DkMyb4 showed that it directly binds to the MYBCORE cis-motif in the promoters of the some PA pathway genes. All our results indicate that DkMyb4 acts as a regulator of PA biosynthesis in persimmon and, therefore, suggest that the reduction in the DkMyb4 expression causes the NA-type-specific down-regulation of PA biosynthesis and resultant NA trait. PMID:19783643
Seed development and viviparous germination in one accession of a tomato rin mutant
Wang, Xu; Zhang, Lili; Xu, Xiaochun; Qu, Wei; Li, Jingfu; Xu, Xiangyang; Wang, Aoxue
2016-01-01
In an experimental field, seed vivipary occurred in one accession of tomato rin mutant fruit at approximately 45–50 days after pollination (DAP). In this study, the possible contributory factors to this viviparous germination were investigated. Firstly, developing seeds were freshly excised from the fruit tissue every 5 days from 25–60 DAP. Germination occurred when isolated seeds were incubated on water, but was inhibited when they remained ex situ in fruit mucilage gel. The effect of abscisic acid (ABA) and osmoticum, separate and together, on germination of developing seeds was investigated. Additionally, ABA content in the seed and mucilage gel, as well as fruit osmolality were measured. The results showed that ABA concentrations in seeds were low during early development and increased later, peaking at about 50 DAP. ABA concentrations in rin accession were similar to those of the control cultivar and thus are not directly associated with the occurrence of vivipary. Developing seeds of rin accession are more sensitive than control seeds to all inhibitory compounds. However, osmolality in rin fruit at later developmental stages becomes less negative that is required to permit germination of developing seeds. Hence, hypo-osmolality in rin fruit may be an important factor in permitting limited viviparous germination. PMID:27436947
Ricarte, Antonio; Marcos-García, M. Ángeles; Hancock, E. Geoffrey; Rotheray, Graham E.
2015-01-01
Ten species of Copestylum (Diptera: Syrphidae) were reared from fruits and flowers in Costa Rica, Ecuador and Trinidad. Seven were new and in this paper, we describe them, their development sites and the third stage larva and/or the puparium of all ten species. One new synonym is proposed, Copestylum pinkusi (Curran) [= Copestylum cinctiventre (Curran)]. Similarities and differences between these new and other Copestylum species, suggest they separate into two groups, referred to as the Vagum and Cinctiventre species groups. Features characterising these groups for both adult and early stages are assessed. Each species was also distinguished using adult and early stage characters. Within the Vagum group, adults were more disparate morphologically than the larval stage; this was reversed in the Cinctiventre group. Adult colour patterns are probably cryptic in function and for disguise. Vagum species have disruptive marks, while the Cinctiventre species have reflective colours. Biologically, the groups are almost distinguished by larval development sites. Vagum species use predominantly fruits and have a larval stage that is relatively generalised in form and habit. Cinctiventre species are confined to developing in flowers and the larva is more specialised. A key to both adult and early stages of all ten species is provided. PMID:26580811
An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.
Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu
2016-11-21
Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.
An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development
Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu
2016-01-01
Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis. PMID:27869146
Gene expression in developing watermelon fruit
Wechter, W Patrick; Levi, Amnon; Harris, Karen R; Davis, Angela R; Fei, Zhangjun; Katzir, Nurit; Giovannoni, James J; Salman-Minkov, Ayelet; Hernandez, Alvaro; Thimmapuram, Jyothi; Tadmor, Yaakov; Portnoy, Vitaly; Trebitsh, Tova
2008-01-01
Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon genotype with a similar phenotype, i.e. seeded, bright red flesh, dark green rind, etc., determined that ethylene levels were highest during the green fruit stage followed by a decrease during the white and pink fruit stages. Additionally, quantitative Real-Time PCR was used to validate modulation of 127 ESTs that were differentially expressed in developing and ripening fruits based on array analysis. Conclusion This study identified numerous ESTs with putative involvement in the watermelon fruit developmental and ripening process, in particular the involvement of the vascular system and ethylene. The production of ethylene during fruit development in watermelon gives further support to the role of ethylene in fruit development in non-climacteric fruits. PMID:18534026
Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong
2015-01-01
Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening. PMID:25637453
Nicklas, T A; Baranowski, T; Baranowski, J C; Cullen, K; Rittenberry, L; Olvera, N
2001-07-01
Children's intakes of fruit, juice, and vegetables (FJV) do not meet the recommended minimum of five daily servings, placing them at increased risk for development of cancer and other diseases. Because children's food preferences and practices are initiated early in life (e.g., 2-5 years of age), early dietary intervention programs may have immediate nutritional benefit, as well as reduce chronic disease risk when learned healthful habits and preferences are carried into adulthood. Families and child-care settings are important social environments within which food-related behaviors among young children are developed. FJV preferences, the primary predictor of FJV consumption in children, are influenced by availability, variety, and repeated exposure. Caregivers (parents and child-care providers) can influence children's eating practices by controlling availability and accessibility of foods, meal structure, food modeling, food socialization practices, and food-related parenting style. Much remains to be learned about how these influences and practices affect the development of FJV preferences and consumption early in life.
Elucidating the functional role of endoreduplication in tomato fruit development
Chevalier, Christian; Nafati, Mehdi; Mathieu-Rivet, Elodie; Bourdon, Matthieu; Frangne, Nathalie; Cheniclet, Catherine; Renaudin, Jean-Pierre; Gévaudant, Frédéric; Hernould, Michel
2011-01-01
Background Endoreduplication is the major source of endopolyploidy in higher plants. The process of endoreduplication results from the ability of cells to modify their classical cell cycle into a partial cell cycle where DNA synthesis occurs independently from mitosis. Despite the ubiquitous occurrence of the phenomenon in eukaryotic cells, the physiological meaning of endoreduplication remains vague,although several roles during plant development have been proposed, mostly related to cell differentiation and cell size determination. Scope Here recent advances in the knowledge of endoreduplication and fruit organogenesis are reviewed, focusing on tomato (Solanum lycopersicum) as a model, and the functional analyses of endoreduplication-associated regulatory genes in tomato fruit are described. Conclusions The cyclin-dependent kinase inhibitory kinase WEE1 and the anaphase promoting complex activator CCS52A both participate in the control of cell size and the endoreduplication process driving cell expansion during early fruit development in tomato. Moreover the fruit-specific functional analysis of the tomato CDK inhibitor KRP1 reveals that cell size and fruit size determination can be uncoupled from DNA ploidy levels, indicating that endoreduplication acts rather as a limiting factor for cell growth. The overall functional data contribute to unravelling the physiological role of endoreduplication in growth induction of fleshy fruits. PMID:21199834
Competition for Assimilates and Fruit Position Affect Fruit Set in Indeterminate Greenhouse Tomato
Bertin, N.
1995-01-01
Localization and characterization of fruit set in winter tomato crops was investigated to determine the main internal and external controlling factors and to establish a quantitative relationship between fruit set and competition for assimilates. Individual fruit growth and development was assessed on a beef tomato cultivar during the reproductive period (first nine inflorescences). A non-destructive photograph technique was used to measure fruit growth from very early stages of their development and then calliper measurements were made on big fruits. From these measurements we determined the precise developmental stage at which fruit growth stopped. Fruit potential growth, which is defined as the growth achieved in non-limiting conditions for assimilate supply, was also assessed by this method on plants thinned to one flower per inflorescence. The latter was used to calculate the ratio between actual and potential growth, which was found to be a good index of the competition for assimilates. Time lags of fruit set were observed mainly on distal organs. When more than three flowers were left on each inflorescence, distal organs developed at the same time as proximal organs of the following inflorescence. Consequently they were submitted to a double competition within one inflorescence and among inflorescences. It was shown that, what is commonly named ‘fruit set failure’, is not an irreversible death of the organ and that a small fruit could resume growth after a delay of several weeks as soon as the first fruits ripened and thus ceased to compete for assimilates. In that case proximal fruits resumed growth before distal ones. The delayed fruits contained only few seeds but a germination test confirmed that fertilization took place before fruit set failed. Competition for assimilates was calculated during plant development by the ratio between actual and potential fruit growth. Potential growth of proximal fruits was strongly dependent on the position of the inflorescence on the stem, whereas potential growth of distal fruits was lower than or equal to that of proximal fruits of the same inflorescence and it was independent on the inflorescence position. We took into account both inflorescence and fruit positions to establish a quantitative relationship between fruit set of individual inflorescences and the ratio between actual and potential fruit growth. PMID:21247913
Giménez, Estela; Dominguez, Eva; Pineda, Benito; Heredia, Antonio; Moreno, Vicente; Angosto, Trinidad
2015-01-01
Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene ARLEQUIN/TOMATO AGAMOUS-LIKE1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato. PMID:26019301
Dos Santos, Rayane C; Ribeiro, Leonardo M; Mercadante-Simões, Maria Olívia; Costa, Márcia R; Nietsche, Silvia; Pereira, Marlon C T
2014-12-01
Stenospermy was identified in naturally occurring sugar-apple (Annona squamosa) mutants with great potential for use in genetic improvement programs. However, to date, there have been no detailed studies of the development of aspermic fruit in this species. The aim of the present study was to characterize the anatomy of developing fruit in the 'Brazilian Seedless' mutant. Flower buds in pre-anthesis and developing fruits were subjected to common plant anatomy techniques. The abnormal ovules are unitegmic and orthotropic and have a long funiculus. There is evidence of fertilization, including the presence of embryos in early development and the proliferation of starch grains in the embryo sac. However, the embryos and embryo sac degenerate, although this does not affect pericarp development. Ovule abortion does not occur. The perisperm, which is formed from the peripheral layers of the nucellus, fills the cavity left by the embryo sac. The mature fruit contains numerous small sterile seeds with abundant perisperm and unlignified integument that is restricted to the micropylar region. The majority of perisperm cells are living and appear to be metabolically active in the periphery. Therefore, stenospermy leads to the formation of sterile seeds in A. squamosa, and the perisperm possibly play an important role in fruit development.
Sandhu, J S; Krasnyanski, S F; Domier, L L; Korban, S S; Osadjan, M D; Buetow, D E
2000-04-01
Respiratory syncytial virus (RSV) is one of the most important pathogens of infancy and early childhood. Here a fruit-based edible subunit vaccine against RSV was developed by expressing the RSV fusion (F) protein gene in transgenic tomato plants. The F-gene was expressed in ripening tomato fruit under the control of the fruit-specific E8 promoter. Oral immunization of mice with ripe transgenic tomato fruits led to the induction of both serum and mucosal RSV-F specific antibodies. The ratio of immunoglobulin subclasses produced in response to immunization suggested that a type 1 T-helper cell immune response was preferentially induced. Serum antibodies showed an increased titer when the immunized mice were exposed to inactivated RSV antigen.
Sinley, Rachel C; Albrecht, Julie A
2015-09-01
American Indians experience higher rates of obesity than any other ethnic group living in the USA. This disparity begins to develop in early childhood, and the excess weight carried by American Indian children contributes to health conditions that can affect their quality of life by the time they enter preschool. These children consume less than recommended amounts of fruits and vegetables, a dietary pattern that may be related to the development of obesity and other health conditions. This qualitative study explored the fruit and vegetable intake of American Indian toddlers through use of the information-motivation-behavioral skills (IMB) model. Focus groups with caregivers of American Indian toddlers and interviews with stakeholders in American Indian communities were conducted to investigate perceptions of knowledge, motivational, and behavioral skills related to the fruit and vegetable intake of American Indian toddlers. Study participants communicated that peer support, food insecurities, cultural norms, self-efficacy, and skills to prepare fruits and vegetables impact their ability to provide fruits and vegetables to toddlers. Study participants expressed a desire to increase their knowledge regarding fruits and vegetables, including variety, benefits, and recommendations for consumption. Findings from this qualitative study provide essential insights into perceptions of fruits and vegetables among caregivers of American Indian toddlers and stakeholders in American Indian communities. Future research will utilize these findings to develop a culturally appropriate IMB-model-based fruit and vegetable-focused nutrition education program for American Indian families.
Farvid, Maryam S; Chen, Wendy Y; Michels, Karin B; Cho, Eunyoung; Willett, Walter C; Eliassen, A Heather
2016-05-11
To evaluate the association between fruit and vegetable intake during adolescence and early adulthood and risk of breast cancer. Prospective cohort study. Health professionals in the United States. 90 476 premenopausal women aged 27-44 from the Nurses' Health Study II who completed a questionnaire on diet in 1991 as well as 44 223 of those women who completed a questionnaire about their diet during adolescence in 1998. Incident cases of invasive breast cancer, identified through self report and confirmed by pathology report. There were 3235 cases of invasive breast cancer during follow-up to 2013. Of these, 1347 cases were among women who completed a questionnaire about their diet during adolescence (ages 13-18). Total fruit consumption during adolescence was associated with a lower risk of breast cancer. The hazard ratio was 0.75 (95% confidence interval 0.62 to 0.90; P=0.01 for trend) for the highest (median intake 2.9 servings/day) versus the lowest (median intake 0.5 serving/day) fifth of intake. The association for fruit intake during adolescence was independent of adult fruit intake. There was no association between risk and total fruit intake in early adulthood and total vegetable intake in either adolescence or early adulthood. Higher early adulthood intake of fruits and vegetables rich in α carotene was associated with lower risk of premenopausal breast cancer. The hazard ratio was 0.82 (0.70 to 0.96) for the highest fifth (median intake 0.5 serving/day) versus the lowest fifth (median intake 0.03 serving/day) intake. The association with adolescent fruit intake was stronger for both estrogen and progesterone receptor negative cancers than estrogen and progesterone receptor positive cancers (P=0.02 for heterogeneity). For individual fruits and vegetables, greater consumption of apple, banana, and grapes during adolescence and oranges and kale during early adulthood was significantly associated with a reduced risk of breast cancer. Fruit juice intake in adolescence or early adulthood was not associated with risk. There is an association between higher fruit intake and lower risk of breast cancer. Food choices during adolescence might be particularly important. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Chen, Wendy Y; Michels, Karin B; Cho, Eunyoung; Willett, Walter C; Eliassen, A Heather
2016-01-01
Objective To evaluate the association between fruit and vegetable intake during adolescence and early adulthood and risk of breast cancer. Design Prospective cohort study. Setting Health professionals in the United States. Participants 90 476 premenopausal women aged 27-44 from the Nurses’ Health Study II who completed a questionnaire on diet in 1991 as well as 44 223 of those women who completed a questionnaire about their diet during adolescence in 1998. Main outcome measure Incident cases of invasive breast cancer, identified through self report and confirmed by pathology report. Results There were 3235 cases of invasive breast cancer during follow-up to 2013. Of these, 1347 cases were among women who completed a questionnaire about their diet during adolescence (ages 13-18). Total fruit consumption during adolescence was associated with a lower risk of breast cancer. The hazard ratio was 0.75 (95% confidence interval 0.62 to 0.90; P=0.01 for trend) for the highest (median intake 2.9 servings/day) versus the lowest (median intake 0.5 serving/day) fifth of intake. The association for fruit intake during adolescence was independent of adult fruit intake. There was no association between risk and total fruit intake in early adulthood and total vegetable intake in either adolescence or early adulthood. Higher early adulthood intake of fruits and vegetables rich in α carotene was associated with lower risk of premenopausal breast cancer. The hazard ratio was 0.82 (0.70 to 0.96) for the highest fifth (median intake 0.5 serving/day) versus the lowest fifth (median intake 0.03 serving/day) intake. The association with adolescent fruit intake was stronger for both estrogen and progesterone receptor negative cancers than estrogen and progesterone receptor positive cancers (P=0.02 for heterogeneity). For individual fruits and vegetables, greater consumption of apple, banana, and grapes during adolescence and oranges and kale during early adulthood was significantly associated with a reduced risk of breast cancer. Fruit juice intake in adolescence or early adulthood was not associated with risk. Conclusion There is an association between higher fruit intake and lower risk of breast cancer. Food choices during adolescence might be particularly important. PMID:27170029
Distefano, G; Gentile, A; Hedhly, A; La Malfa, S
2018-03-01
One of the key environmental factors affecting plant reproductive systems is temperature. Characterising such effects is especially relevant for some commercially important genera such as Citrus. In this genus, failure of fertilisation results in parthenocarpic fruit development and seedlessness, which is a much-prized character. Here, we characterise the effects of temperature on flower and ovary development, and on pollen-pistil interactions in 'Comune' clementine (Citrus clementina Hort. ex Tan.). We examine flower bud development, in vitro pollen germination and pollen-pistil interaction at different temperatures (15, 20, 25 or 30 °C). These temperatures span the range from 'cold' to 'hot' weather during the flowering season in many citrus-growing regions. Temperature had a strong effect on flower and ovary development, pollen germination, and pollen tube growth kinetics. In particular, parthenocarpic fruit development (indicated by juice vesicle growth) was initiated early if flowers were exposed to warmer temperatures during anthesis. Exposure to different temperatures during flower bud development also alters expression of the self-incompatibility reaction. This affects the point in the pistil at which pollen tube growth is arrested and confirms the role of sub- and supra-optimal temperatures in determining the numbers of pollen tubes reaching the ovary. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Liu, Changying; Zhao, Aichun; Zhu, Panpan; Li, Jun; Han, Leng; Wang, Xiling; Fan, Wei; Lü, Ruihua; Wang, Chuanhong; Li, Zhengang; Lu, Cheng; Yu, Maode
2015-01-01
Although ethylene is well known as an essential regulator of fruit development, little work has examined the role ethylene plays in the development and maturation of mulberry (Morus L.) fruit. To study the mechanism of ethylene action during fruit development in this species, we measured the ethylene production, fruit firmness, and soluble solids content (SSC) during fruit development and harvest. By comparing the results with those from other climacteric fruit, we concluded that Morus fruit are probably climacteric. Genes associated with the ethylene signal transduction pathway of Morus were characterized from M. notabilis Genome Database, including four ethylene receptor genes, a EIN2-like gene, a CTR1-like gene, four EIN3-like genes, and a RTE1-like gene. The expression patterns of these genes were analyzed in the fruit of M. atropurpurea cv. Jialing No.40. During fruit development, transcript levels of MaETR2, MaERS, MaEIN4, MaRTE, and MaCTR1 were lower at the early stages and higher after 26 days after full bloom (DAF), while MaETR1, MaEIL1, MaEIL2, and MaEIL3 remained constant. In ripening fruit, the transcripts of MaACO1 and MaACS3 increased, while MaACS1 and MaACO2 decreased after harvest. The transcripts of MaACO1, MaACO2, and MaACS3 were inhibited by ethylene, and 1-MCP (1–methylcyclopropene) upregulated MaACS3. The transcripts of the MaETR-like genes, MaRTE, and MaCTR1 were inhibited by ethylene and 1-MCP, suggesting that ethylene may accelerate the decline of MaETRs transcripts. No significant changes in the expression of MaEIN2, MaEIL1, and MaEIL3 were observed during ripening or in response to ethylene, while the expressions of MaEIL2 and MaEIL4 increased rapidly after 24 h after harvest (HAH) and were upregulated by ethylene. The present study provides insights into ethylene biosynthesis and signal transduction in Morus plants and lays a foundation for the further understanding of the mechanisms underlying Morus fruit development and ripening. PMID:25822202
A Fruitful Exchange/Conflict: Engineers and Mathematicians in Early Modern Italy
ERIC Educational Resources Information Center
Maffioli, Cesare S.
2013-01-01
Exchanges of learning and controversies between engineers and mathematicians were important factors in the development of early modern science. This theme is discussed by focusing, first, on architectural and mathematical dynamism in mid 16th-century Milan. While some engineers-architects referred to Euclid and Vitruvius for improving their…
Banerjee, Arnab; Meenakumari, K J; Krishna, Amitabh
2007-01-01
The present study was undertaken in the fruit bat Cynopterus sphinx, which breeds twice in quick succession at Varanasi, India. Its gestation period varies significantly in the two successive pregnancies of the year owing to delayed embryonic development during the first (winter) pregnancy. The primary aim of the present study was to determine the role of metabolic factors in delayed embryonic development in the fruit bat C. sphinx. Variation in bodyweight, fat deposition, oxygen (O(2)) consumption rate, basal metabolic rate (BMR), body temperature (Tb) and hepatic succinate dehydrogenase (SDH) activity, along with circulating levels of thyroid hormones (tri-iodothyronine and thyroxine), were examined as metabolic factors during the two successive pregnancies in C. sphinx. The increase in bodyweight observed in November was due to accumulation of white adipose tissue in the posterior abdominal region. A significant decline in O(2) consumption rate, BMR, Tb and SDH activity was found in early winter in November-December, which coincides closely with the period of fat accumulation and with the period of delayed embryonic development in C. sphinx. A significantly higher O(2) consumption rate, BMR, Tb and SDH activity was noted during the second pregnancy in, when embryonic development was relatively faster. Thyroid hormone levels were high during the period of embryonic delay compared with levels during the remaining months. The results of the present study suggest that the delayed embryonic development in C. sphinx during early winter may be due to a low O(2) consumption rate, BMR, Tb and SDH activity in November-December. The energy saved by suppressing embryonic development in this species may be advantageous for fat accumulation. Increased thyroid hormone levels during the early winter period might facilitate fat accumulation in C. sphinx.
Paul, Jean-Yves; Khanna, Harjeet; Kleidon, Jennifer; Hoang, Phuong; Geijskes, Jason; Daniells, Jeff; Zaplin, Ella; Rosenberg, Yvonne; James, Anthony; Mlalazi, Bulukani; Deo, Pradeep; Arinaitwe, Geofrey; Namanya, Priver; Becker, Douglas; Tindamanyire, James; Tushemereirwe, Wilberforce; Harding, Robert; Dale, James
2017-04-01
Vitamin A deficiency remains one of the world's major public health problems despite food fortification and supplements strategies. Biofortification of staple crops with enhanced levels of pro-vitamin A (PVA) offers a sustainable alternative strategy to both food fortification and supplementation. As a proof of concept, PVA-biofortified transgenic Cavendish bananas were generated and field trialed in Australia with the aim of achieving a target level of 20 μg/g of dry weight (dw) β-carotene equivalent (β-CE) in the fruit. Expression of a Fe'i banana-derived phytoene synthase 2a (MtPsy2a) gene resulted in the generation of lines with PVA levels exceeding the target level with one line reaching 55 μg/g dw β-CE. Expression of the maize phytoene synthase 1 (ZmPsy1) gene, used to develop 'Golden Rice 2', also resulted in increased fruit PVA levels although many lines displayed undesirable phenotypes. Constitutive expression of either transgene with the maize polyubiquitin promoter increased PVA accumulation from the earliest stage of fruit development. In contrast, PVA accumulation was restricted to the late stages of fruit development when either the banana 1-aminocyclopropane-1-carboxylate oxidase or the expansin 1 promoters were used to drive the same transgenes. Wild-type plants with the longest fruit development time had also the highest fruit PVA concentrations. The results from this study suggest that early activation of the rate-limiting enzyme in the carotenoid biosynthetic pathway and extended fruit maturation time are essential factors to achieve optimal PVA concentrations in banana fruit. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Mohorianu, Irina; Schwach, Frank; Jing, Runchun; Lopez-Gomollon, Sara; Moxon, Simon; Szittya, Gyorgy; Sorefan, Karim; Moulton, Vincent; Dalmay, Tamas
2011-07-01
Plants feature a particularly diverse population of short (s)RNAs, the central component of all RNA silencing pathways. Next generation sequencing techniques enable deeper insights into this complex and highly conserved mechanism and allow identification and quantification of sRNAs. We employed deep sequencing to monitor the sRNAome of developing tomato fruits covering the period between closed flowers and ripened fruits by profiling sRNAs at 10 time-points. It is known that microRNAs (miRNAs) play an important role in development but very little information is available about the majority of sRNAs that are not miRNAs. Here we show distinctive patterns of sRNA expression that often coincide with stages of the developmental process such as flowering, early and late fruit maturation. Moreover, thousands of non-miRNA sRNAs are differentially expressed during fruit development and ripening. Some of these differentially expressed sRNAs derived from transposons but many derive from protein coding genes or regions that show homology to protein coding genes, several of which are known to play a role in flower and fruit development. These findings raise the possibility of a regulative role of these sRNAs during fruit onset and maturation in a crop species. We also identified six new miRNAs and experimentally validated two target mRNAs. These two mRNAs are targeted by the same miRNA but do not belong to the same gene family, which is rare for plant miRNAs. Expression pattern and putative function of these targets indicate a possible role in glutamate accumulation, which contributes to establishing the taste of the fruit. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Moral, Juan; Trapero, Antonio
2012-10-01
Anthracnose, caused by Colletotrichum spp., is a destructive disease of olive fruit worldwide. The objective of this study was to investigate the influence of agronomical and weather factors on inoculum production using detached olive fruit and on the development of epidemics in the field. The pathogen produced very large numbers of conidia on rotted (>1.87 × 10(8) conidia/fruit) or mummified (>2.16 × 10(4) conidia/fruit) fruit under optimal conditions. On mummified fruit, conidial production was highest on mummies incubated at 20 to 25°C and 96 h of wetness. Repeated washings of mummies reduced conidial production until it was very low after five washings. When mummies were placed in the tree canopy, conidial production was not reduced after 6 months (May to October); but, when they were held on the soil or buried in the soil, conidial production comparatively decreased up to 10,000 times. Anthracnose epidemics on susceptible 'Hojiblanca' and 'Picudo' during three seasons (2005-08) were influenced by rainfall, temperature, and fruit ripening, and had three main phases: the latent period (May to October); the onset of the epidemic, which coincided with the beginning of fruit ripening (early November); and disease development, which was predicted by the Weibull model (November to March). No epidemics developed on the susceptible cultivars during the driest season (2007-08) or on the resistant 'Picual' olive during any of the three seasons. These results provide the basis for a forecasting system of olive anthracnose which could greatly improve the management of this disease.
... age-related cataract. They recommend eating plenty of green leafy vegetables, fruits, nuts and other healthy foods. Also, don’t smoke, because smoking may speed cataract development. To screen for early signs of eye disease, Bishop recommends ...
Duarte, M O; Mendes-Rodrigues, C; Alves, M F; Oliveira, P E; Sampaio, D S
2017-03-01
Mixed cross and self-pollen load on the stigma (mixed pollination) of species with late-acting self-incompatibility system (LSI) can lead to self-fertilized seed production. This "cryptic self-fertility" may allow selfed seedling development in species otherwise largely self-sterile. Our aims were to check if mixed pollinations would lead to fruit set in LSI Adenocalymma peregrinum, and test for evidence of early-acting inbreeding depression in putative selfed seeds from mixed pollinations. Experimental pollinations were carried out in a natural population. Fruit and seed set from self-, cross and mixed pollinations were analysed. Further germination tests were carried out for the seeds obtained from treatments. Our results confirm self-incompatibility, and fruit set from cross-pollinations was three-fold that from mixed pollinations. This low fruit set in mixed pollinations is most likely due to a greater number of self- than cross-fertilized ovules, which promotes LSI action and pistil abortion. Likewise, higher percentage of empty seeds in surviving fruits from mixed pollinations compared with cross-pollinations is probably due to ovule discounting caused by self-fertilization. Moreover, germinability of seeds with developed embryos was lower in fruits from mixed than from cross-pollinations, and the non-viable seeds from mixed pollinations showed one-third of the mass of those from cross-pollinations. The great number of empty seeds, lower germinability, lower mass of non-viable seeds, and higher variation in seed mass distribution in mixed pollinations, strongly suggests early-acing inbreeding depression in putative selfed seeds. In this sense, LSI and inbreeding depression acting together probably constrain self-fertilized seedling establishment in A. peregrinum. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Tadych, Mariusz; Vorsa, Nicholi; Wang, Yifei; Bergen, Marshall S.; Johnson-Cicalese, Jennifer; Polashock, James J.; White, James F.
2015-01-01
Cranberry fruit are a rich source of bioactive compounds that may function as constitutive or inducible barriers against rot-inducing fungi. The content and composition of these compounds change as the season progresses. Several necrotrophic fungi cause cranberry fruit rot disease complex. These fungi remain mostly asymptomatic until the fruit begins to mature in late August. Temporal fluctuations and quantitative differences in selected organic acid profiles between fruit of six cranberry genotypes during the growing season were observed. The concentration of benzoic acid in fruit increased while quinic acid decreased throughout fruit development. In general, more rot-resistant genotypes (RR) showed higher levels of benzoic acid early in fruit development and more gradual decline in quinic acid levels than that observed in the more rot-susceptible genotypes. We evaluated antifungal activities of selected cranberry constituents and found that most bioactive compounds either had no effects or stimulated growth or reactive oxygen species (ROS) secretion of four tested cranberry fruit rot fungi, while benzoic acid and quinic acid reduced growth and suppressed secretion of ROS by these fungi. We propose that variation in the levels of ROS suppressive compounds, such as benzoic and quinic acids, may influence virulence by the fruit rot fungi. Selection for crops that maintain high levels of virulence suppressive compounds could yield new disease resistant varieties. This could represent a new strategy for control of disease caused by necrotrophic pathogens that exhibit a latent or endophytic phase. PMID:26322038
Souleyre, Edwige J F; Marshall, Sean D G; Oakeshott, John G; Russell, Robyn J; Plummer, Kim M; Newcomb, Richard D
2011-05-01
Esters are an important component of apple (Malus×domestica) flavour. Their biosynthesis increases in response to the ripening hormone ethylene, but their metabolism by carboxylesterases (CXEs) is poorly understood. We have identified 16 members of the CXE multigene family from the commercial apple cultivar, 'Royal Gala', that contain all the conserved features associated with CXE members of the α/β hydrolase fold superfamily. The expression of two genes, MdCXE1 and MdCXE16 was characterised in an apple fruit development series and in a transgenic line of 'Royal Gala' (AO3) that is unable to synthesise ethylene in fruit. In wild-type MdCXE1 is expressed at low levels during early stages of fruit development, rising to a peak of expression in apple fruit at harvest maturity. It is not significantly up-regulated by ethylene in the skin of AO3 fruit. MdCXE16 is expressed constitutively in wild-type throughout fruit development, and is up-regulated by ethylene in skin of AO3 fruit. Semi-purified recombinant MdCXE1 was able to hydrolyse a range of 4-methyl umbelliferyl ester substrates that included those containing acyl moieties that are found in esters produced by apple fruit. Kinetic characterisation of MdCXE1 revealed that the enzyme could be inhibited by organophosphates and that its ability to hydrolyse esters showed increasing affinity (K(m)) but decreasing turnover (k(cat)) as substrate acyl carbon length increases from C2 to C16. Our results suggest that MdCXE1 may have an impact on apple flavour through its ability to hydrolyse relevant flavour esters in ripe apple fruit. Copyright © 2011 Elsevier Ltd. All rights reserved.
Calvo-Garrido, Carlos; Viñas, Inmaculada; Elmer, Philip A G; Usall, Josep; Teixidó, Neus
2014-04-01
Necrotic tissues within grape (Vitis vinifera) bunches represent an important source of Botrytis cinerea inoculum for Botrytis bunch rot (BBR) at harvest in vineyards. This research quantified the incidence of B. cinerea on necrotic floral and fruit tissues and the efficacy of biologically based treatments for suppression of B. cinerea secondary inoculum within developing bunches. At veraison (2009 and 2010), samples of aborted flowers, aborted fruits and calyptras were collected, and the incidence and sporulation of B. cinerea were determined. Aborted fruits presented significantly higher incidence in untreated samples. Early-season applications of Candida sake plus Fungicover®, Fungicover alone or Ulocladium oudemansii significantly reduced B. cinerea incidence on aborted flowers and calyptras by 46-85%. Chitosan treatment significantly reduced B. cinerea incidence on calyptras. None of the treatments reduced B. cinerea incidence on aborted fruits. Treatments significantly reduced sporulation severity by 48% or more. Treatments were effective at reducing B. cinerea secondary inoculum on necrotic tissues, in spite of the variable control on aborted fruits. This is the first report to quantify B. cinerea on several tissues of bunch trash and to describe the effective suppression of saprophytic B. cinerea inoculum by biologically based treatments. © 2013 Society of Chemical Industry.
Teaching the West in the Early American Republic: Old Chestnuts and the Fruits of New Research.
ERIC Educational Resources Information Center
Larson, John Lauritz
2000-01-01
Contends that the literature on westward expansion during the early republic does not provide a platform for assisting teachers in the development of a coherent story on the rise of the west. Provides suggestions for recovering the truth about westward expansion using the available literature, both current and old. (CMK)
Inhibitory effect of Epstein-Barr virus activation by Citrus fruits, a cancer chemopreventor.
Iwase, Y; Takemura, Y; Ju-ichi, M; Kawaii, S; Yano, M; Okuda, Y; Mukainaka, T; Tsuruta, A; Okuda, M; Takayasu, J; Tokuda, H; Nishino, H
1999-05-24
To search useful compounds in Citrus fruit for cancer chemoprevention, we carried out a primary screening of extracts of fruit peels and seeds from 78 species of the genus Citrus and those from two Fortunella and one Poncirus species, which were closely related to the genus Citrus. These Citrus extracts inhibited the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) as a useful screening method for anti-tumor promoters. Our results indicated that Citrus containing substances may be inhibit susceptibility factors involved in the events leading to the development of cancer.
Textural properties of mango cultivars during ripening.
Jha, Shyam Narayan; Jaiswal, Pranita; Narsaiah, Kairam; Kaur, Poonam Preet; Singh, Ashish Kumar; Kumar, Ramesh
2013-12-01
Firmness and toughness of fruit, peel and pulp of seven different mango cultivars were studied over a ripening period of ten days to investigate the effects of harvesting stages (early, mid and late) on fruit quality. Parameters were measured at equatorial region of fruits using TA-Hdi Texture Analyzer. The textural characteristics showed a rapid decline in their behaviour until mangoes got ripened and thereafter, the decline became almost constant indicating the completion of ripening. However, the rate of decline in textural properties was found to be cultivar specific. In general, the changes in textural attributes were found to be significantly influenced by ripening period and stage of harvesting, but firmness attributes (peel, fruit and pulp) of early harvested mangoes did not differ significantly from mid harvested mangoes, while peel, fruit and pulp firmness of late harvested mangoes were found to be significantly lower than early and mid harvested mangoes.
The Major Qualitative Characteristics of Olive (Olea europaea L.) Cultivated in Southwest China.
Cheng, Zizhang; Zhan, Mingming; Yang, Zeshen; Zumstein, Kristina; Chen, Huaping; Huang, Qianming
2017-01-01
Olive trees, originated from Mediterranean, have been cultivated in China for decades and show great adaption to local environment. However, research on this topic is limited. In this study, the major qualitative characteristics and changes of olive grown in southwest China were investigated. The results showed that oil accumulated during fruit development and reached its maximum value when fruit had fully ripened. Phenolic and flavonoid contents increase rapidly in the early growth stage (0-90 DAFB) and then begin to decrease as fruit ripens. Compared with olive from the Mediterranean, olive from China has special characteristics: higher moisture content in the fruit combined with lower percentages of unsaturated fatty acids and oil content. This is due to southwest China's climate which is wetter and cooler compared to the Mediterranean. Our study suggests that southwest China's higher annual rainfall might contribute to higher fruit moisture content while its low temperatures would be conducive to higher unsaturated fatty acid levels in the fruit.
The Major Qualitative Characteristics of Olive (Olea europaea L.) Cultivated in Southwest China
Cheng, Zizhang; Zhan, Mingming; Yang, Zeshen; Zumstein, Kristina; Chen, Huaping; Huang, Qianming
2017-01-01
Olive trees, originated from Mediterranean, have been cultivated in China for decades and show great adaption to local environment. However, research on this topic is limited. In this study, the major qualitative characteristics and changes of olive grown in southwest China were investigated. The results showed that oil accumulated during fruit development and reached its maximum value when fruit had fully ripened. Phenolic and flavonoid contents increase rapidly in the early growth stage (0–90 DAFB) and then begin to decrease as fruit ripens. Compared with olive from the Mediterranean, olive from China has special characteristics: higher moisture content in the fruit combined with lower percentages of unsaturated fatty acids and oil content. This is due to southwest China's climate which is wetter and cooler compared to the Mediterranean. Our study suggests that southwest China's higher annual rainfall might contribute to higher fruit moisture content while its low temperatures would be conducive to higher unsaturated fatty acid levels in the fruit. PMID:28579990
Bolduc, Francois V; Lau, Amanda; Rosenfelt, Cory S; Langer, Steven; Wang, Nan; Smithson, Lisa; Lefebvre, Diana; Alexander, R Todd; Dickson, Clayton T; Li, Liang; Becker, Allan B; Subbarao, Padmaja; Turvey, Stuart E; Pei, Jacqueline; Sears, Malcolm R; Mandhane, Piush J
2016-06-01
In-utero nutrition is an under-studied aspect of cognitive development. Fruit has been an important dietary constituent for early hominins and humans. Among 808 eligible CHILD-Edmonton sub-cohort subjects, 688 (85%) had 1-year cognitive outcome data. We found that each maternal daily serving of fruit (sum of fruit plus 100% fruit juice) consumed during pregnancy was associated with a 2.38 point increase in 1-year cognitive development (95% CI 0.39, 4.37; p<0.05). Consistent with this, we found 30% higher learning Performance index (PI) scores in Drosophila offspring from parents who consumed 30% fruit juice supplementation prenatally (PI: 85.7; SE 1.8; p<0.05) compared to the offspring of standard diet parents (PI: 65.0 SE 3.4). Using the Drosophila model, we also show that the cyclic adenylate monophosphate (cAMP) pathway may be a major regulator of this effect, as prenatal fruit associated cognitive enhancement was blocked in Drosophila rutabaga mutants with reduced Ca(2+)-Calmodulin-dependent adenylyl cyclase. Moreover, gestation is a critical time for this effect as postnatal fruit intake did not enhance cognitive performance in either humans or Drosophila. Our study supports increased fruit consumption during pregnancy with significant increases in infant cognitive performance. Validation in Drosophila helps control for potential participant bias or unmeasured confounders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Detection of Expansin Proteins and Activity during Tomato Fruit Ontogeny1
Rose, Jocelyn K.C.; Cosgrove, Daniel J.; Albersheim, Peter; Darvill, Alan G.; Bennett, Alan B.
2000-01-01
Expansins are plant proteins that have the capacity to induce extension in isolated cell walls and are thought to mediate pH-dependent cell expansion. J.K.C. Rose, H.H. Lee, and A.B. Bennett ([1997] Proc Natl Acad Sci USA 94: 5955–5960) reported the identification of an expansin gene (LeExp1) that is specifically expressed in ripening tomato (Lycopersicon esculentum) fruit where cell wall disassembly, but not cell expansion, is prominent. Expansin expression during fruit ontogeny was examined using antibodies raised to recombinant LeExp1 or a cell elongation-related expansin from cucumber (CsExp1). The LeExp1 antiserum detected expansins in extracts from ripe, but not preripe tomato fruit, in agreement with the pattern of LeExp1 mRNA accumulation. In contrast, antibodies to CsExp1 cross-reacted with expansins in early fruit development and the onset of ripening, but not at a later ripening stage. These data suggest that ripening-related and expansion-related expansin proteins have distinct antigenic epitopes despite overall high sequence identity. Expansin proteins were detected in a range of fruit species and showed considerable variation in abundance; however, appreciable levels of expansin were not present in fruit of the rin or Nr tomato mutants that exhibit delayed and reduced softening. LeExp1 protein accumulation was ethylene-regulated and matched the previously described expression of mRNA, suggesting that expression is not regulated at the level of translation. We report the first detection of expansin activity in several stages of fruit development and while characteristic creep activity was detected in young and developing tomato fruit and in ripe pear, avocado, and pepper, creep activity in ripe tomato showed qualitative differences, suggesting both hydrolytic and expansin activities. PMID:10938374
Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H.; Trivedi, Prabodh K.
2016-01-01
Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana. PMID:27539368
Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H; Trivedi, Prabodh K
2016-08-19
Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana.
Waves and aggregation patterns in myxobacteria
NASA Astrophysics Data System (ADS)
Igoshin, Oleg A.; Welch, Roy; Kaiser, Dale; Oster, George
2004-03-01
Under starvation conditions, a population of myxobacteria aggregates to build a fruiting body whose shape is species-specific and within which the cells sporulate. Early in this process, cells often pass through a "ripple phase" characterized by traveling linear, concentric, and spiral waves. These waves are different from the waves observed during slime mold aggregation that depend on diffusible morphogens, because myxobacteria communicate by direct contact. The difference is most dramatic when waves collide: rather than annihilating one another, myxobacterial waves appear to pass through one another unchanged. Under certain conditions, the spacing and location of the nascent fruiting bodies is determined by the wavelength and pattern of the waves. Later in fruiting body development, waves are replaced by streams of cells that circulate around small initial aggregates enlarging and rounding them. Still later, pairs of motile aggregates coalesce to form larger aggregates that develop into fruiting bodies. Here we present a mathematical model that quantitatively explains these wave and aggregation phenomena.
Domingos, Sara; Fino, Joana; Paulo, Octávio S; Oliveira, Cristina M; Goulao, Luis F
2016-03-01
Flower-to-fruit transition depends of nutrient availability and regulation at the molecular level by sugar and hormone signalling crosstalk. However, in most species, the identities of fruit initiation regulators and their targets are largely unknown. To ascertain the main pathways involved in stenospermocarpic table grape fruit set, comprehensive transcriptional and metabolomic analyses were conducted specifically targeting the early phase of this developmental stage in 'Thompson Seedless'. The high-throughput analyses performed disclosed the involvement of 496 differentially expressed genes and 28 differently accumulated metabolites in the sampled inflorescences. Our data show broad transcriptome reprogramming of molecule transporters, globally down-regulating gene expression, and suggest that regulation of sugar- and hormone-mediated pathways determines the downstream activation of berry development. The most affected gene was the SWEET14 sugar transporter. Hormone-related transcription changes were observed associated with increased indole-3-acetic acid, stimulation of ethylene and gibberellin metabolisms and cytokinin degradation, and regulation of MADS-box and AP2-like ethylene-responsive transcription factor expression. Secondary metabolism, the most representative biological process at transcriptome level, was predominantly repressed. The results add to the knowledge of molecular events occurring in grapevine inflorescence fruit set and provide a list of candidates, paving the way for genetic manipulation aimed at model research and plant breeding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Seasonal occurrence and impact of Halyomorpha halys (Hemiptera: Pentatomidae) in tree fruit.
Nielsen, Anne L; Hamilton, George C
2009-06-01
Halyomorpha halys is an introduced stink bug species from Asia that is spreading throughout the Mid-Atlantic United States. It is native to South Korea, Japan, and eastern China, where it is an occasional pest of tree fruit, including apple and pear. Cage experiments with adults placed on apple and peach during critical plant growth stages demonstrate that it can cause damage to developing fruit during mid- and late season growth periods and that feeding occurs on all regions of the fruit. Feeding that occurred during pit hardening/mid-season and final swell periods were apparent as damage at harvest, whereas feeding at shuck split/petal fall in peaches and apples caused fruit abscission. Tree fruit at two commercial farms were sampled weekly in 2006-2007 to determine H. halys seasonality. Low densities of nymphs in apple suggest that it is an unsuitable developmental host. Both nymphs and adults were found on pear fruits with peak populations occurring in early July and mid-August, the time when pit hardening/mid-season and swell period damage occurs. At both farms, stink bug damage was greater than 25% damaged fruit per tree. We attribute this to H. halys because population densities were significantly higher than native pentatomids at both locations in both beat samples and blacklight trap captures. The data presented here documents the potential for H. halys to cause damage in orchards throughout the Mid-Atlantic United States and shows the need for development of appropriate control strategies.
Chidley, Hemangi G; Deshpande, Ashish B; Oak, Pranjali S; Pujari, Keshav H; Giri, Ashok P; Gupta, Vidya S
2017-03-01
Ripening-associated softening is one of the important attributes that largely determines the shelf-life of mango (Mangifera indica Linn.) fruits. To reveal the effect of pre-climacteric ethylene treatment on ripening-related softening of Alphonso mango, ethylene treatment was given to mature, raw Alphonso fruits. Changes in the pool of reducing and non-reducing sugars, enzymatic activity of three glycosidases: β-d-galactosidase, α-d-mannosidase and β-d-glucosidase and their relative transcript abundance were analysed for control and ethylene treated fruits during ripening. Early activity of all the three glycosidases and accelerated accumulation of reducing and non-reducing sugars on ethylene treatment was evident. β-d-Galactosidase showed the highest activity among three glycosidases in control fruits and marked increase in activity upon ethylene treatment. This was confirmed by the histochemical assay of its activity in control and ethylene treated ripe fruits. Relative transcript abundance revealed high transcript levels of β-d-galactosidase in control fruits. Ethylene-treated fruits showed early and remarkable increase in the β-d-galactosidase transcripts while α-d-mannosidase transcript variants displayed early accumulation. The findings suggest reduction in the shelf-life of Alphonso mango upon pre-climacteric ethylene treatment, a significant role of β-d-galactosidase and α-d-mannosidase in the ripening related softening of Alphonso fruits and transcriptional regulation of their expression by ethylene. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Costa, Marcio G C; Moreira, Cristina D; Melton, John R; Otoni, Wagner C; Moore, Gloria A
2012-02-01
In the present study, the full-length cDNA sequences of PSY, PDS, and ZDS, encoding the early carotenoid biosynthetic enzymes in the carotenoid pathway of grapefruit (Citrus paradisi), were isolated and characterized for the first time. CpPSY contained a 1311-bp open reading frame (ORF) encoding a polypeptide of 436 amino acids, CpPDS contained a 1659-bp ORF encoding a polypeptide of 552 amino acids, and CpZDS contained a 1713-bp ORF encoding a polypeptide of 570 amino acids. Phylogenetic analysis indicated that CpPSY shares homology with PSYs from Citrus, tomato, pepper, Arabidopsis, and the monocot PSY1 group, while CpPDS and CpZDS are most closely related to orthologs from Citrus and tomato. Expression analysis revealed fluctuations in CpPSY, CpPDS, and CpZDS transcript abundance and a non-coordinated regulation between the former and the two latter genes during fruit development in albedo and juice vesicles of white ('Duncan') and red ('Flame') grapefruits. A 3× higher upregulation of CpPSY expression in juice vesicles of red-fleshed 'Flame' as compared to white-fruited 'Duncan' was observed in the middle stages of fruit development, which correlates with the well documented accumulation pattern of lycopene in red grapefruit. Together with previous data, our results suggest that the primary mechanism controlling lycopene accumulation in red grapefruit involves the transcriptional upregulation of CpPSY, which controls the flux into the carotenoid pathway, and the downregulated expression of CpLCYB2, which controls the step of cyclization of lycopene in chromoplasts during fruit ripening. A correlation between CpPSY expression and fruit color evolution in red grapefruit is demonstrated.
Chen, Shuxia; Zhang, Ranran; Hao, Lining; Chen, Weifeng; Cheng, Siqiong
2015-01-01
Changes in volatile content, as well as associated gene expression and enzyme activity in developing cucumber fruits were investigated in two Cucumis sativus L. lines (No. 26 and No. 14) that differ significantly in fruit flavor. Total volatile, six-carbon (C6) aldehyde, linolenic and linoleic acid content were higher during the early stages, whereas the nine-carbon (C9) aldehyde content was higher during the latter stages in both lines. Expression of C. sativus hydroperoxide lyase (CsHPL) mirrored 13-hydroperoxide lyase (13-HPL) enzyme activity in variety No. 26, whereas CsHPL expression was correlated with 9-hydroperoxide lyase (9-HPL) enzyme activity in cultivar No. 14. 13-HPL activity decreased significantly, while LOX (lipoxygenase) and 9-HPL activity increased along with fruit ripening in both lines, which accounted for the higher C6 and C9 aldehyde content at 0-6 day post anthesis (dpa) and 9-12 dpa, respectively. Volatile compounds from fruits at five developmental stages were analyzed by principal component analysis (PCA), and heatmaps of volatile content, gene expression and enzyme activity were constructed. PMID:25799542
Martínez-Fuentes, Amparo; Mesejo, Carlos; Reig, Carmina; Agustí, Manuel
2010-08-30
In Citrus the inhibitory effect of fruit on flower formation is the main cause of alternate bearing. Although there are some studies reporting the effect on flowering of the time of fruit removal in a well-defined stage of fruit development, few have investigated the effect throughout the entire fruit growth stage from early fruitlet growth to fruit maturity. The objective of this study was to determine the phenological fruit developmental stage at which the fruit begins its inhibitory effect on flowering in sweet orange by manual removal of fruits, and the role of carbohydrates and nitrogen in the process. Fruit exerted its inhibitory effect from the time it was close to reaching its maximum weight, namely 90% of its final size (November) in the present experiments, to bud sprouting (April). The reduction in flowering paralleled the reduction in bud sprouting. This reduction was due to a decrease in the number of generative sprouted buds, whereas mixed-typed shoots were largely independent of the time of fruit removal, and vegetative shoots increased in frequency. The number of leaves and/or flowers per sprouted shoot was not significantly modified by fruit load. In 'Valencia' sweet orange, fruit inhibits flowering from the time it completes its growth. Neither soluble sugar content nor starch accumulation in leaves due to fruit removal was related to flowering intensity, but some kind of imbalance in nitrogen metabolism was observed in trees tending to flower scarcely. Copyright (c) 2010 Society of Chemical Industry.
2013-01-01
Background The transition from the vegetative mycelium to the primordium during fruiting body development is the most complex and critical developmental event in the life cycle of many basidiomycete fungi. Understanding the molecular mechanisms underlying this process has long been a goal of research on basidiomycetes. Large scale assessment of the expressed transcriptomes of these developmental stages will facilitate the generation of a more comprehensive picture of the mushroom fruiting process. In this study, we coupled 5'-Serial Analysis of Gene Expression (5'-SAGE) to high-throughput pyrosequencing from 454 Life Sciences to analyze the transcriptomes and identify up-regulated genes among vegetative mycelium (Myc) and stage 1 primordium (S1-Pri) of Coprinopsis cinerea during fruiting body development. Results We evaluated the expression of >3,000 genes in the two respective growth stages and discovered that almost one-third of these genes were preferentially expressed in either stage. This identified a significant turnover of the transcriptome during the course of fruiting body development. Additionally, we annotated more than 79,000 transcription start sites (TSSs) based on the transcriptomes of the mycelium and stage 1 primoridum stages. Patterns of enrichment based on gene annotations from the GO and KEGG databases indicated that various structural and functional protein families were uniquely employed in either stage and that during primordial growth, cellular metabolism is highly up-regulated. Various signaling pathways such as the cAMP-PKA, MAPK and TOR pathways were also identified as up-regulated, consistent with the model that sensing of nutrient levels and the environment are important in this developmental transition. More than 100 up-regulated genes were also found to be unique to mushroom forming basidiomycetes, highlighting the novelty of fruiting body development in the fungal kingdom. Conclusions We implicated a wealth of new candidate genes important to early stages of mushroom fruiting development, though their precise molecular functions and biological roles are not yet fully known. This study serves to advance our understanding of the molecular mechanisms of fruiting body development in the model mushroom C. cinerea. PMID:23514374
USDA-ARS?s Scientific Manuscript database
Early research during the 1930’s focused on attractants for the Mexican fruit fly indicated that fermentation products were effective attractants for Mexican fruit flies and other tropical Tephritidae, but that attraction to fruit components was only of academic interest. Tests reported here were ca...
Khodadadi, Mostafa; Dehghani, Hamid; Jalali Javaran, Mokhtar
2017-01-01
Enhancing water use efficiency of coriander (Coriandrum sativum L.) is a major focus for coriander breeding to cope with drought stress. The purpose of this study was; (a) to identify the predominant mechanism(s) of drought resistance in coriander and (b) to evaluate the genetic control mechanism(s) of traits associated with drought resistance and higher fruit yield. To reach this purpose, 15 half-diallel hybrids of coriander and their six parents were evaluated under well-watered and water deficit stressed (WDS) in both glasshouse lysimetric and field conditions. The parents were selected for their different response to water deficit stress following preliminary experiments. Results revealed that the genetic control mechanism of fruit yield is complex, variable and highly affected by environment. The mode of inheritance and nature of gene action for percent assimilate partitioned to fruits were similar to those for flowering time in both well-watered and WDS conditions. A significant negative genetic linkage was found between fruit yield and percent assimilate partitioned to root, percent assimilate partitioned to shoot, root number, root diameter, root dry mass, root volume, and early flowering. Thus, to improve fruit yield under water deficit stress, selection of low values of these traits could be used. In contrast, a significant positive genetic linkage between fruit yield and percent assimilate partitioned to fruits, leaf relative water content and chlorophyll content indicate selection for high values of these traits. These secondary or surrogate traits could be selected during early segregating generations. The early ripening parent (P1; TN-59-230) contained effective genes involved in preferred percent assimilate partitioning to fruit and drought stress resistance. In conclusion, genetic improvement of fruit yield and drought resistance could be simultaneously gained in coriander when breeding for drought resistance. PMID:28473836
Follett, P A; Sanxter, S S
2001-10-01
We determined whether immersion in 49 degrees C water for 20 min, a quarantine treatment developed for disinfestation of fruit flies in lychee, Litchi chinensis Sonn., and longan, Dimocarpus longan (Lourd.) Steud., exported from Hawaii, would also disinfest fruit of two species of Cryptophlebia. The pattern of tolerance to heat in Cryptophlebia illepida (Butler) was generally eggs < neonates < early instars = late instars < pupae. No C. illepida survived immersion for 16 or 20 min. Late fourth and fifth instars were determined to be the most tolerant stage that occurs in harvested fruit. Late instars of Cryptophlebia ombrodelta (Lower) were more tolerant of hot-water immersion than those of C. illepida, but no C. ombrodelta late instars survived immersion for 16 or 20 min. The hot water immersion quarantine treatment for fruit flies should effectively disinfest lychees and longans of any Cryptophlebia.
Chakrabarti, Manohar; Liu, Xiaoxi; Wang, Yanping; Ramos, Alexis
2017-01-01
Increases in fruit weight of cultivated vegetables and fruits accompanied the domestication of these crops. Here we report on the positional cloning of a quantitative trait locus (QTL) controlling fruit weight in tomato. The derived allele of Cell Size Regulator (CSR-D) increases fruit weight predominantly through enlargement of the pericarp areas. The expanded pericarp tissues result from increased mesocarp cell size and not from increased number of cell layers. The effect of CSR on fruit weight and cell size is found across different genetic backgrounds implying a consistent impact of the locus on the trait. In fruits, CSR expression is undetectable early in development from floral meristems to the rapid cell proliferation stage after anthesis. Expression is low but detectable in growing fruit tissues and in or around vascular bundles coinciding with the cell enlargement stage of the fruit maturation process. CSR encodes an uncharacterized protein whose clade has expanded in the Solanaceae family. The mutant allele is predicted to encode a shorter protein due to a 1.4 kb deletion resulting in a 194 amino-acid truncation. Co-expression analyses and GO term enrichment analyses suggest association of CSR with cell differentiation in fruit tissues and vascular bundles. The derived allele arose in Solanum lycopersicum var cerasiforme and appears completely fixed in many cultivated tomato’s market classes. This finding suggests that the selection of this allele was critical to the full domestication of tomato from its intermediate ancestors. PMID:28817560
Pearson, Natalie; Griffiths, Paula; Biddle, Stuart J H; Johnston, Julie P; Haycraft, Emma
2017-05-01
This study aimed to examine individual, behavioural and home environmental factors associated with frequency of consumption of fruit, vegetables and energy-dense snacks among adolescents. Adolescents aged 11-12 years (n = 521, 48% boys) completed a paper-based questionnaire during class-time which included a Food Frequency Questionnaire assessing their consumption of fruit, vegetables, and energy-dense (ED) snacks, and items assessing habits, self-efficacy, eating at the television (TV), eating with parents, parenting practices, and home availability and accessibility of foods. Multiple linear regression analyses showed that eating fruit and vegetables while watching TV and home availability and accessibility of fruit and vegetables were positively associated with frequency of fruit consumption and vegetable consumption, while home accessibility of ED snack foods was negatively associated with frequency of fruit consumption. Habit for eating ED snack foods in front the TV, eating ED snack foods while watching TV, and home availability of ED snacks were positively associated with frequency of ED snack consumption. This study has highlighted the importance of a healthy home environment for promoting fruit and vegetable intake in early adolescents and also suggests that, if snacking while TV viewing occurs, this could be a good opportunity for promoting fruit and vegetable intake. These findings are likely to be useful for supporting the development of multi-faceted interventions and aid us in knowing what advice to give to parents to help them to help their young adolescents to develop and maintain healthy eating habits. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Vimolmangkang, Sornkanok; Zheng, Danman; Han, Yuepeng; Khan, M Awais; Soria-Guerra, Ruth Elena; Korban, Schuyler S
2014-01-15
Although the mechanism of light regulation of color pigmentation of apple fruit is not fully understood, it has been shown that light can regulate expression of genes in the anthocyanin biosynthesis pathway by inducing transcription factors (TFs). Moreover, expression of genes encoding enzymes involved in this pathway may be coordinately regulated by multiple TFs. In this study, fruits on trees of apple cv. Red Delicious were covered with paper bags during early stages of fruit development and then removed prior to maturation to analyze the transcriptome in the exocarp of apple fruit. Comparisons of gene expression profiles of fruit covered with paper bags (dark-grown treatment) and those subjected to 14 h light treatment, following removal of paper bags, were investigated using an apple microarray of 40,000 sequences. Expression profiles were investigated over three time points, at one week intervals, during fruit development. Overall, 736 genes with expression values greater than two-fold were found to be modulated by light treatment. Light-induced products were classified into 19 categories with highest scores in primary metabolism (17%) and transcription (12%). Based on the Arabidopsis gene ontology annotation, 18 genes were identified as TFs. To further confirm expression patterns of flavonoid-related genes, these were subjected to quantitative RT-PCR (qRT-PCR) using fruit of red-skinned apple cv. Red Delicious and yellow-skinned apple cv. Golden Delicious. Of these, two genes showed higher levels of expression in 'Red Delicious' than in 'Golden Delicious', and were likely involved in the regulation of fruit red color pigmentation. © 2013 Elsevier B.V. All rights reserved.
Yee, Wee L.
2014-01-01
Abstract Seasonal distributions of the western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in sweet cherry ( Prunus avium (L.) L.) (major host), black hawthorn (occasional developmental host) ( Crataegus douglasii Lindley), and other trees were determined in a ponderosa pine ecosystem in Washington state, USA. The hypothesis that most fly dispersal from cherry trees occurs after fruit senesce or drop was tested, with emphasis on movement to black hawthorn trees. Sweet cherry fruit developed earlier than black hawthorn, bitter cherry (common host), choke cherry, and apple fruit. Flies were usually captured first in sweet cherry trees but were caught in bitter cherry and other trees throughout the season. Peak fly capture periods in sweet cherry began around the same time or slightly earlier than in other trees. However, peak fly capture periods in black hawthorn and other nonsweet cherry trees continued after peak periods in sweet cherry ended, or relative fly numbers within sweet cherry declined more quickly than those within other trees. Larvae were reared from sweet and bitter cherry but not black hawthorn fruit. Results provide partial support for the hypothesis in that although R. indifferens commonly disperses from sweet cherry trees with fruit, it could disperse more, or more flies are retained in nonsweet cherry trees after than before sweet cherries drop. This could allow opportunities for the flies to use other fruit for larval development. Although R . indifferens infestation in black hawthorn was not detected, early season fly dispersal to this and other trees and fly presence in bitter cherry could make fly management in sweet cherry difficult. PMID:25527581
Yee, Wee L
2014-01-01
Seasonal distributions of the western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in sweet cherry (Prunus avium (L.) L.) (major host), black hawthorn (occasional developmental host) (Crataegus douglasii Lindley), and other trees were determined in a ponderosa pine ecosystem in Washington state, USA. The hypothesis that most fly dispersal from cherry trees occurs after fruit senesce or drop was tested, with emphasis on movement to black hawthorn trees. Sweet cherry fruit developed earlier than black hawthorn, bitter cherry (common host), choke cherry, and apple fruit. Flies were usually captured first in sweet cherry trees but were caught in bitter cherry and other trees throughout the season. Peak fly capture periods in sweet cherry began around the same time or slightly earlier than in other trees. However, peak fly capture periods in black hawthorn and other nonsweet cherry trees continued after peak periods in sweet cherry ended, or relative fly numbers within sweet cherry declined more quickly than those within other trees. Larvae were reared from sweet and bitter cherry but not black hawthorn fruit. Results provide partial support for the hypothesis in that although R. indifferens commonly disperses from sweet cherry trees with fruit, it could disperse more, or more flies are retained in nonsweet cherry trees after than before sweet cherries drop. This could allow opportunities for the flies to use other fruit for larval development. Although R. indifferens infestation in black hawthorn was not detected, early season fly dispersal to this and other trees and fly presence in bitter cherry could make fly management in sweet cherry difficult. Published by Oxford University Press on behalf of the Entomological Society of America 2014. This work is written by a US Government employee and is in the public domain in the US.
DeepFruits: A Fruit Detection System Using Deep Neural Networks
Sa, Inkyu; Ge, Zongyuan; Dayoub, Feras; Upcroft, Ben; Perez, Tristan; McCool, Chris
2016-01-01
This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0.807 to 0.838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit. PMID:27527168
DeepFruits: A Fruit Detection System Using Deep Neural Networks.
Sa, Inkyu; Ge, Zongyuan; Dayoub, Feras; Upcroft, Ben; Perez, Tristan; McCool, Chris
2016-08-03
This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0 . 807 to 0 . 838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit.
The Phenylalanine Ammonia-Lyase Gene Family in Raspberry. Structure, Expression, and Evolution1
Kumar, Amrita; Ellis, Brian E.
2001-01-01
In raspberry (Rubus idaeus), development of fruit color and flavor are critically dependent on products of the phenylpropanoid pathway. To determine how these metabolic functions are integrated with the fruit ripening program, we are examining the properties and expression of key genes in the pathway. Here, we report that l- phenylalanine ammonia-lyase (PAL) is encoded in raspberry by a family of two genes (RiPAL1 and RiPAL2). RiPAL1 shares 88% amino acid sequence similarity to RiPAL2, but phylogenetic analysis places RiPAL1 and RiPAL2 in different clusters within the plant PAL gene family. The spatial and temporal expression patterns of the two genes were investigated in various vegetative and floral tissues using the reverse transcriptase competitor polymerase chain reaction assay. Although expression of both genes was detected in all tissues examined, RiPAL1 was associated with early fruit ripening events, whereas expression of RiPAL2 correlated more with later stages of flower and fruit development. Determination of the absolute levels of the two transcripts in various tissues showed that RiPAL1 transcripts were 3- to 10-fold more abundant than those of RiPAL2 in leaves, shoots, roots, young fruits, and ripe fruits. The two RiPAL genes therefore appear to be controlled by different regulatory mechanisms. PMID:11553751
Skreden, Marianne; Bere, Elling; Sagedal, Linda R; Vistad, Ingvild; Øverby, Nina C
2017-04-04
A healthy diet is important for pregnancy outcome and the current and future health of woman and child. The aims of the study were to explore the changes from pre-pregnancy to early pregnancy in consumption of fruits and vegetables (FV), and to describe associations with maternal educational level, body mass index (BMI) and age. Healthy nulliparous women were included in the Norwegian Fit for Delivery (NFFD) trial from September 2009 to February 2013, recruited from eight antenatal clinics in southern Norway. At inclusion, in median gestational week 15 (range 9-20), 575 participants answered a food frequency questionnaire (FFQ) where they reported consumption of FV, both current intake and recollection of pre-pregnancy intake. Data were analysed using a linear mixed model. The percentage of women consuming FV daily or more frequently in the following categories increased from pre-pregnancy to early pregnancy: vegetables on sandwiches (13 vs. 17%, p <0.01), other vegetables (11 vs. 14%, p = 0.01), fruits (apples, pears, oranges or bananas) (24 vs. 41%, p < 0.01), other fruits and berries (8 vs. 15%, p < 0.01) and fruits and vegetables as snacks (14 vs. 28%, p < 0.01). The percentage of women who reported at least daily consumption of vegetables with dinner (22% at both time points) was stable. A higher proportion of older women increased their consumption of vegetables and fruits as snacks from pre-pregnancy to early pregnancy compared to younger women (p=0.04). We found an increase in the proportion of women consuming FV daily or more frequently from pre-pregnancy to early pregnancy. ClinicalTrials.gov database, NCT01001689 . https://clinicaltrials.gov/ct2/show/NCT01001689?term=NCT01001689&rank=1 .
Edible gardens in early childhood education settings in Aotearoa, New Zealand.
Dawson, A; Richards, R; Collins, C; Reeder, A I; Gray, A
2013-12-01
This paper aims to explore the presence and role of edible gardens in Aotearoa/New Zealand Early Childhood Education Services (ECES). Participant ECES providers were identified from the Ministry of Education database of Early Childhood Education Services (March 2009). These include Education and Care and Casual Education and Care, Kindergarten, Home-based Education and Care services, Playcentres, Te Kōhanga Reo. A structured, self-administered questionnaire was sent to the Principal or Head Teacher of the service. Of the 211 ECES that responded (55% response rate), 71% had edible gardens, incorporating vegetables, berry fruit, tree fruit, edible flowers and nut trees. Garden activities were linked with teaching across all strands of the New Zealand early childhood curriculum. In addition, 34% provided guidance on using garden produce and 30% linked the garden with messages on fruit and vegetable consumption. Most gardens were established recently (past 2 years) and relied on financial and non-financial support from parents, teachers and community organisations. Barriers included a lack of funding, space, time and staff support. Study findings suggest that gardens are already being used as a versatile teaching tool in many ECES settings. Most gardens are new, with a need to support the sustainability and workforce development among teachers and parents in order to be able to maintain these resources for future generations. SO WHAT?: Given the inherent links between gardening and healthy food and exercise, there seem to be extensive opportunities for health promotion aligned with the edible garden movement.
Harris, B Z; Kaiser, D; Singer, M
1998-04-01
Guanosine 3'-di-5'-(tri)di-phosphate nucleotides [(p)ppGpp], synthesized in response to amino acid limitation, induce early gene expression leading to multicellular fruiting body formation in Myxococcus xanthus. A mutant (DK527) that fails to accumulate (p)ppGpp in response to starvation was found to be blocked in development prior to aggregation. By use of a series of developmentally regulated Tn5lac transcriptional fusion reporters, the time of developmental arrest in DK527 was narrowed to within the few hours of development, the period of starvation recognition. The mutant is also defective in the production of A-factor, an early extracellular cell-density signal. The relA gene from Escherichia coli, which encodes a ribosome-dependent (p)ppGpp synthetase, rescues this mutant. We also demonstrate that inactivation of the M. xanthus relA homolog blocks development and the accumulation of (p)ppGpp. Moreover, the wild-type allele of Myxococcus relA rescues DK527. These observations support a model in which accumulation of (p)ppGpp, in response to starvation, initiates the program of fruiting body development, including the production of A-factor.
Development and growth of fruit bodies and crops of the button mushroom, Agaricus bisporus.
Straatsma, Gerben; Sonnenberg, Anton S M; van Griensven, Leo J L D
2013-10-01
We studied the appearance of fruit body primordia, the growth of individual fruit bodies and the development of the consecutive flushes of the crop. Relative growth, measured as cap expansion, was not constant. It started extremely rapidly, and slowed down to an exponential rate with diameter doubling of 1.7 d until fruit bodies showed maturation by veil breaking. Initially many outgrowing primordia were arrested, indicating nutritional competition. After reaching 10 mm diameter, no growth arrest occurred; all growing individuals, whether relatively large or small, showed an exponential increase of both cap diameter and biomass, until veil breaking. Biomass doubled in 0.8 d. Exponential growth indicates the absence of competition. Apparently there exist differential nutritional requirements for early growth and for later, continuing growth. Flushing was studied applying different picking sizes. An ordinary flushing pattern occurred at an immature picking size of 8 mm diameter (picking mushrooms once a day with a diameter above 8 mm). The smallest picking size yielded the highest number of mushrooms picked, confirming the competition and arrested growth of outgrowing primordia: competition seems less if outgrowing primordia are removed early. The flush duration (i.e. between the first and last picking moments) was not affected by picking size. At small picking size, the subsequent flushes were not fully separated in time but overlapped. Within 2 d after picking the first individuals of the first flush, primordia for the second flush started outgrowth. Our work supports the view that the acquisition of nutrients by the mycelium is demand rather than supply driven. For formation and early outgrowth of primordia, indications were found for an alternation of local and global control, at least in the casing layer. All these data combined, we postulate that flushing is the consequence of the depletion of some unknown specific nutrition required by outgrowing primordia. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Gibeaut, David M; Whiting, Matthew D; Einhorn, Todd
2017-02-01
The archetypical double sigmoid-shaped growth curve of the sweet cherry drupe (Prunus avium) does not address critical development from eco-dormancy to anthesis and has not been correlated to reproductive bud development. Accurate representation of the growth and development of post-anthesis ovaries is confounded by anthesis timing, fruiting-density and the presence of unfertilized and defective ovaries whose growth differs from those that persist to maturation. These factors were addressed to assess pre-anthesis and full-season growth and development of three sweet cherry cultivars, 'Chelan', 'Bing' and 'Sweetheart', differing primarily in seasonal duration and fruit size. Volume was calculated from photographic measurements of reproductive buds, ovaries and pits at all phases of development. A population of unfertilized ovaries was produced using bee-exclusion netting to enable a statistical comparison with an open pollinated population to detect differences in size and shape between successful and failing fruit growth. Anthesis timing and fruiting-density were manipulated by floral extinction at the spur and whole-tree scales. Developmental time indices were analysed using polynomial curve fitting of log-transformed data supported by Richards and logistic functions of asymptotic growth of the pit and maturing fruit, respectively. Pre-anthesis growth began at the completion of eco-dormancy. A slight decline in relative growth rate (RGR) was observed during bud scale separation approx. -16 d from anthesis (DFA) before resumption of exponential growth to a maximum about 14 DFA. After anthesis, reduced growth of unfertilized or defective ovaries was partly discriminated from successful fruit at 5 DFA and completely at 25 DFA. Time indices of RGR inflections were similar among cultivars when adjusted for anthesis date alone, until the end of pit growth. Asymptotic growth of the pit underpinned the declining growth rate of fruit at the end of the first exponential growth phase. Duration of the subsequent expansive growth phase accounted for genotypic differences in seasonal duration and final size. Pit size and final fruit size were inversely related to fruiting-density. Developmental differences among early, mid and late maturing cultivars were not detected until the final growth period. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gibeaut, David M.; Whiting, Matthew D.; Einhorn, Todd
2017-01-01
Background and Aims The archetypical double sigmoid-shaped growth curve of the sweet cherry drupe (Prunus avium) does not address critical development from eco-dormancy to anthesis and has not been correlated to reproductive bud development. Accurate representation of the growth and development of post-anthesis ovaries is confounded by anthesis timing, fruiting-density and the presence of unfertilized and defective ovaries whose growth differs from those that persist to maturation. These factors were addressed to assess pre-anthesis and full-season growth and development of three sweet cherry cultivars, ‘Chelan’, ‘Bing’ and ‘Sweetheart’, differing primarily in seasonal duration and fruit size. Methods Volume was calculated from photographic measurements of reproductive buds, ovaries and pits at all phases of development. A population of unfertilized ovaries was produced using bee-exclusion netting to enable a statistical comparison with an open pollinated population to detect differences in size and shape between successful and failing fruit growth. Anthesis timing and fruiting-density were manipulated by floral extinction at the spur and whole-tree scales. Developmental time indices were analysed using polynomial curve fitting of log-transformed data supported by Richards and logistic functions of asymptotic growth of the pit and maturing fruit, respectively. Key Results Pre-anthesis growth began at the completion of eco-dormancy. A slight decline in relative growth rate (RGR) was observed during bud scale separation approx. −16 d from anthesis (DFA) before resumption of exponential growth to a maximum about 14 DFA. After anthesis, reduced growth of unfertilized or defective ovaries was partly discriminated from successful fruit at 5 DFA and completely at 25 DFA. Time indices of RGR inflections were similar among cultivars when adjusted for anthesis date alone, until the end of pit growth. Asymptotic growth of the pit underpinned the declining growth rate of fruit at the end of the first exponential growth phase. Duration of the subsequent expansive growth phase accounted for genotypic differences in seasonal duration and final size. Pit size and final fruit size were inversely related to fruiting-density. Conclusions Developmental differences among early, mid and late maturing cultivars were not detected until the final growth period. PMID:28064193
Liu, Kaidong; Yuan, Changchun; Feng, Shaoxian; Zhong, Shuting; Li, Haili; Zhong, Jundi; Shen, Chenjia; Liu, Jinxiang
2017-05-05
Auxin/indole-3-acetic acid (Aux/IAA) family genes encode short-lived nuclear proteins that mediate the responses of auxin-related genes and are involved in several plant developmental and growth processes. However, how Aux/IAA genes function in the fruit development and ripening of papaya (Carica papaya L.) is largely unknown. In this study, a comprehensive identification and a distinctive expression analysis of 18 C. papaya Aux/IAA (CpIAA) genes were performed using newly updated papaya reference genome data. The Aux/IAA gene family in papaya is slightly smaller than that in Arabidopsis, but all of the phylogenetic subfamilies are represented. Most of the CpIAA genes are responsive to various phytohormones and expressed in a tissues-specific manner. To understand the putative biological functions of the CpIAA genes involved in fruit development and ripening, quantitative real-time PCR was used to test the expression profiling of CpIAA genes at different stages. Furthermore, an IAA treatment significantly delayed the ripening process in papaya fruit at the early stages. The expression changes of CpIAA genes in ACC and 1-MCP treatments suggested a crosstalk between auxin and ethylene during the fruit ripening process of papaya. Our study provided comprehensive information on the Aux/IAA family in papaya, including gene structures, phylogenetic relationships and expression profiles. The involvement of CpIAA gene expression changes in fruit development and ripening gives us an opportunity to understand the roles of auxin signaling in the maturation of papaya reproductive organs.
Wang, Meng; Zheng, Yusheng; Khuong, Toan; Lovatt, Carol J
2012-11-15
The effect of harvest date on nutritional compounds and antioxidant activity (AOC) in avocado (Persea americana Mill. cv Hass) fruit during storage was determined. The fruits were harvested at seven different dates and ripened at 25 °C following 21 or 35 days of cold storage. The results indicated that the phenolic and glutathione contents were increased and the ascorbic acid content was not significantly different in early harvested fruit (January to March), and the phenolic, ascorbic acid and glutathione contents were increased slightly and then decreased on late harvested fruit (April to June). Similar trends were observed in the changes of AOC. Furthermore, AOC in early harvested fruit after storage for 35 days was much higher than that in late harvested fruit after storage for 21 days. Therefore, avocado can be harvested earlier for economic benefits according to the market and can keep high nutritional value for human health benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.
Determinants of sensory acceptability in grapefruit
USDA-ARS?s Scientific Manuscript database
Early research reported that flavor in grapefruit was associated with the ratio of soluble solids (SSC) to titratable acidity (TA) and the juice content of the fruit. This led to the development of maturity standards based upon these parameters to define when grapefruit could be legally harvested i...
Transcriptomic signatures in seeds of apple (Malus domestica L. Borkh) during fruitlet abscission.
Ferrero, Sergio; Carretero-Paulet, Lorenzo; Mendes, Marta Adelina; Botton, Alessandro; Eccher, Giulia; Masiero, Simona; Colombo, Lucia
2015-01-01
Abscission is the regulated process of detachment of an organ from a plant. In apple the abscission of fruits occurs during their early development to control the fruit load depending on the nutritional state of the plant. In order to control production and obtain fruits with optimal market qualities, the horticultural procedure of thinning is performed to further reduce the number of fruitlets. In this study we have conducted a transcriptomic profiling of seeds from two different types of fruitlets, according to size and position in the fruit cluster. Transcriptomic profiles of central and lateral fruit seeds were obtained by RNAseq. Comparative analysis was performed by the functional categorization of differentially expressed genes by means of Gene Ontology (GO) annotation of the apple genome. Our results revealed the overexpression of genes involved in responses to stress, hormone biosynthesis and also the response and/or transport of auxin and ethylene. A smaller set of genes, mainly related to ion transport and homeostasis, were found to be down-regulated. The transcriptome characterization described in this manuscript contributes to unravelling the molecular mechanisms and pathways involved in the physiological abscission of apple fruits and suggests a role for seeds in this process.
Transcriptomic Signatures in Seeds of Apple (Malus domestica L. Borkh) during Fruitlet Abscission
Ferrero, Sergio; Carretero-Paulet, Lorenzo; Mendes, Marta Adelina; Botton, Alessandro; Eccher, Giulia; Masiero, Simona; Colombo, Lucia
2015-01-01
Abscission is the regulated process of detachment of an organ from a plant. In apple the abscission of fruits occurs during their early development to control the fruit load depending on the nutritional state of the plant. In order to control production and obtain fruits with optimal market qualities, the horticultural procedure of thinning is performed to further reduce the number of fruitlets. In this study we have conducted a transcriptomic profiling of seeds from two different types of fruitlets, according to size and position in the fruit cluster. Transcriptomic profiles of central and lateral fruit seeds were obtained by RNAseq. Comparative analysis was performed by the functional categorization of differentially expressed genes by means of Gene Ontology (GO) annotation of the apple genome. Our results revealed the overexpression of genes involved in responses to stress, hormone biosynthesis and also the response and/or transport of auxin and ethylene. A smaller set of genes, mainly related to ion transport and homeostasis, were found to be down-regulated. The transcriptome characterization described in this manuscript contributes to unravelling the molecular mechanisms and pathways involved in the physiological abscission of apple fruits and suggests a role for seeds in this process. PMID:25781174
Myxobacteria Fruiting Body Formation
NASA Astrophysics Data System (ADS)
Jiang, Yi
2006-03-01
Myxobacteria are social bacteria that swarm and glide on surfaces, and feed cooperatively. When starved, tens of thousands of cells change their movement pattern from outward spreading to inward concentration; they form aggregates that become fruiting bodies, inside which cells differentiate into nonmotile, environmentally resistant spores. Traditionally, cell aggregation has been considered to imply chemotaxis, a long-range cell interaction mediated by diffusing chemicals. However, myxobacteria aggregation is the consequence of direct cell-contact interactions. I will review our recent efforts in modeling the fruiting body formation of Myxobacteria, using lattice gas cellular automata models that are based on local cell-cell contact signaling. These models have reproduced the individual phases in Myxobacteria development such as the rippling, streaming, early aggregation and the final sporulation; the models can be unified to simulate the whole developmental process of Myxobacteria.
Gibberellin Regulation of Fruit Set and Growth in Tomato1[W
Serrani, Juan Carlos; Sanjuán, Rafael; Ruiz-Rivero, Omar; Fos, Mariano; García-Martínez, José Luis
2007-01-01
The role of gibberellins (GAs) in tomato (Solanum lycopersicum) fruit development was investigated. Two different inhibitors of GA biosynthesis (LAB 198999 and paclobutrazol) decreased fruit growth and fruit set, an effect reversed by GA3 application. LAB 198999 reduced GA1 and GA8 content, but increased that of their precursors GA53, GA44, GA19, and GA20 in pollinated fruits. This supports the hypothesis that GA1 is the active GA for tomato fruit growth. Unpollinated ovaries developed parthenocarpically in response to GA3 > GA1 = GA4 > GA20, but not to GA19, suggesting that GA 20-oxidase activity was limiting in unpollinated ovaries. This was confirmed by analyzing the effect of pollination on transcript levels of SlCPS, SlGA20ox1, -2, and -3, and SlGA3ox1 and -2, encoding enzymes of GA biosynthesis. Pollination increased transcript content of SlGA20ox1, -2, and -3, and SlCPS, but not of SlGA3ox1 and -2. To investigate whether pollination also altered GA inactivation, full-length cDNA clones of genes encoding enzymes catalyzing GA 2-oxidases (SlGA2ox1, -2, -3, -4, and -5) were isolated and characterized. Transcript levels of these genes did not decrease early after pollination (5-d-old fruits), but transcript content reduction of all of them, mainly of SlGA2ox2, was found later (from 10 d after anthesis). We conclude that pollination mediates fruit set by activating GA biosynthesis mainly through up-regulation of GA20ox. Finally, the phylogenetic reconstruction of the GA2ox family clearly showed the existence of three gene subfamilies, and the phylogenetic position of SlGA2ox1, -2, -3, -4, and -5 was established. PMID:17660355
ERIC Educational Resources Information Center
Bierema, Andrea; Schwartz, Renee
2016-01-01
The fruit fly ("Drosophila melanogaster") is an ideal subject for studying inheritance patterns, Mendel's laws, meiosis, Punnett squares, and other aspects of genetics. Much of what we know about genetics dates to evolutionary biologist Thomas Hunt Morgan's work with mutated fruit flies in the early 1900s. Many genetic laboratories…
Molecular Cloning and Characterization of Apricot Fruit Polyphenol Oxidase
Chevalier, Tony; de Rigal, David; Mbéguié-A-Mbéguié, Didier; Gauillard, Frédéric; Richard-Forget, Florence; Fils-Lycaon, Bernard R.
1999-01-01
A reverse transcriptase-polymerase chain reaction experiment was done to synthesize a homologous polyphenol oxidase (PPO) probe from apricot (Prunus armeniaca var Bergeron) fruit. This probe was further used to isolate a full-length PPO cDNA, PA-PPO (accession no. AF020786), from an immature-green fruit cDNA library. PA-PPO is 2070 bp long and contains a single open reading frame encoding a PPO precursor peptide of 597 amino acids with a calculated molecular mass of 67.1 kD and an isoelectric point of 6.84. The mature protein has a predicted molecular mass of 56.2 kD and an isoelectric point of 5.84. PA-PPO belongs to a multigene family. The gene is highly expressed in young, immature-green fruit and is turned off early in the ripening process. The ratio of PPO protein to total proteins per fruit apparently remains stable regardless of the stage of development, whereas PPO specific activity peaks at the breaker stage. These results suggest that, in addition to a transcriptional control of PPO expression, other regulation factors such as translational and posttranslational controls also occur. PMID:10198084
Gao, Zhifang; Maurousset, Laurence; Lemoine, Remi; Yoo, Sang-Dong; van Nocker, Steven; Loescher, Wayne
2003-01-01
The acyclic polyol sorbitol is a primary photosynthetic product and the principal photosynthetic transport substance in many economically important members of the family Rosaceace (e.g. almond [Prunus dulcis (P. Mill.) D.A. Webber], apple [Malus pumila P. Mill.], cherry [Prunus spp.], peach [Prunus persica L. Batsch], and pear [Pyrus communis]). To understand key steps in long-distance transport and particularly partitioning and accumulation of sorbitol in sink tissues, we have cloned two sorbitol transporter genes (PcSOT1 and PcSOT2) from sour cherry (Prunus cerasus) fruit tissues that accumulate large quantities of sorbitol. Sorbitol uptake activities and other characteristics were measured by heterologous expression of PcSOT1 and PcSOT2 in yeast (Saccharomyces cerevisiae). Both genes encode proton-dependent, sorbitol-specific transporters with similar affinities (Km sorbitol of 0.81 mm for PcSOT1 and 0.64 mm for PcSOT2). Analyses of gene expression of these transporters, however, suggest different roles during leaf and fruit development. PcSOT1 is expressed throughout fruit development, but especially when growth and sorbitol accumulation rates are highest. In leaves, PcSOT1 expression is highest in young, expanding tissues, but substantially less in mature leaves. In contrast, PcSOT2 is mainly expressed only early in fruit development and not in leaves. Compositional analyses suggest that transport mediated by PcSOT1 and PcSOT2 plays a major role in sorbitol and dry matter accumulation in sour cherry fruits. Presence of these transporters and the high fruit sorbitol concentrations suggest that there is an apoplastic step during phloem unloading and accumulation in these sink tissues. Expression of PcSOT1 in young leaves before completion of the transition from sink to source is further evidence for a role in determining sink activity. PMID:12692316
Rosalie, Rémy; Joas, Jacques; Deytieux-Belleau, Christelle; Vulcain, Emmanuelle; Payet, Bertrand; Dufossé, Laurent; Léchaudel, Mathieu
2015-07-20
The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H2O2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrigated trees. Under non-limiting water supply conditions, ripening induced oxidation as a result of the production of ROS and decreased ascorbate content. Antioxidant enzymatic systems were activated to protect fruit tissues and to regenerate the ascorbate pool. The carotenoid pool, mainly represented by β-carotene and esterified violaxanthine isomers, accumulated naturally during mango ripening. The suppression of irrigation decreased fruit size and induced accumulation of ABA and of its storage form, ABA-GE, in fruit pulp from the earliest harvest. It also increased oxidation, which was observable by the high levels of ascorbate measured at the early stages at harvest, and by the delay in the time it took to reach the pseudo constant carotene-to-xanthophyll ratio in ripe fruits. Nevertheless, differences between the irrigation treatments on the antioxidant system in ripe fruits were not significant, mainly because of the drastic changes in this system during ripening. Copyright © 2015 Elsevier GmbH. All rights reserved.
Austen, Emily J; Weis, Arthur E
2014-07-01
Adaptive explanations for variation in sex allocation centre on variation in resource status and variation in the mating environment. The latter can occur when dichogamy causes siring opportunity to vary across the flowering season. In this study, it is hypothesized that the widespread tendency towards declining fruit-set from first to last flowers on plants can similarly lead to a varying mating environment by causing a temporal shift in the quality (not quantity) of siring opportunities. A numerical model was developed to examine the effects of declining fruit-set on the expected male versus female reproductive success (functional gender) of first and last flowers on plants, and of early- and late-flowering plants. Within- and among-plant temporal variation in pollen production, ovule production and fruit-set in 70 Brassica rapa plants was then characterized to determine if trends in male and female investment mirror expected trends in functional gender. Under a wide range of model conditions, functional femaleness decreased sharply in the last flowers on plants, and increased from early- to late-flowering plants in the population. In B. rapa, pollen production decreased more rapidly than ovule production from first to last flowers, leading to a within-plant increase in phenotypic femaleness. Among plants, ovule production decreased from early- to late-flowering plants, causing a temporal decrease in phenotypic femaleness. The numerical model confirmed that declining fruit-set can drive temporal variation in functional gender, especially among plants. The discrepancy between observed trends in phenotypic gender in B. rapa and expected functional gender predicted by the numerical model does not rule out the possibility that male reproductive success decreases with later flowering onset. If so, plants may experience selection for early flowering through male fitness. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Araújo, Wagner L.; Tohge, Takayuki; Osorio, Sonia; Lohse, Marc; Balbo, Ilse; Krahnert, Ina; Sienkiewicz-Porzucek, Agata; Usadel, Björn; Nunes-Nesi, Adriano; Fernie, Alisdair R.
2012-01-01
Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the gene encoding the E1 subunit of the 2-oxoglutarate dehydrogenase complex in the antisense orientation and exhibiting substantial reductions in the activity of this enzyme exhibit a considerably reduced rate of respiration. They were, however, characterized by largely unaltered photosynthetic rates and fruit yields but restricted leaf, stem, and root growth. These lines displayed markedly altered metabolic profiles, including changes in tricarboxylic acid cycle intermediates and in the majority of the amino acids but unaltered pyridine nucleotide content both in leaves and during the progression of fruit ripening. Moreover, they displayed a generally accelerated development exhibiting early flowering, accelerated fruit ripening, and a markedly earlier onset of leaf senescence. In addition, transcript and selective hormone profiling of gibberellins and abscisic acid revealed changes only in the former coupled to changes in transcripts encoding enzymes of gibberellin biosynthesis. The data obtained are discussed in the context of the importance of this enzyme in both photosynthetic and respiratory metabolism as well as in programs of plant development connected to carbon–nitrogen interactions. PMID:22751214
Shi, J; Li, F F; Ma, H; Li, Z Y; Xu, J Z
2015-12-22
In this experiment, the test materials were 'Red Fuji' apple trees grafted onto three interstocks (No. 53, No. 111, and No. 236), which were chosen from SH40 seeding interstocks. The content of malic acid, the enzyme activities, and the expression of genes related to malic acid metabolism were determined during fruit development.The results showed that malic acid content in the ripe fruit on interstock No. 53 was higher than that in the interstock No. 111 fruit. The malate dehydrogenase (NAD-MDH) activity in apples on interstock No. 53 was highest on Day 30, Day 100, and Day 160 after bloom, and the malic enzyme (NADP-ME) activity in apples on interstock No. 111 was higher than in the interstock No. 53 fruit from Day 70 to Day 100 after bloom. The relative expression of NAD-MDH genes in interstock No. 53 fruit was higher than in No. 236 fruit on Day 100 after bloom, but the relative expression of NADP-ME in No. 236 interstock fruit was lower than in No. 53 fruit. The relative expression of NAD-MDH genes in No. 53 interstock fruit was highest on Day 160 after bloom. This might have been the main reason for the difference in the accumulation of malic acid in the ripe apples.There was a positive correlation between the relative expression of phosphoenolpyruvate carboxylase (PEPC) and the malic acid content of the fruit, and the content of malic acid in the apples was affected by the PEPC activity during the early developmental stage.
Ogaugwu, Christian E; Wimmer, Ernst A
2013-01-01
The gene nanos (nos) is a maternal-effect gene that plays an important role in posterior patterning and germ cell development in early stage embryos. nos is known from several diverse insect species, but has so far not been described for any Tephritid fruit fly. Here, we report the molecular cloning and expression pattern of the nos orthologous gene, Ccnos, in the Mediterranean fruit fly Ceratitis capitata, which is a destructive pest of high agricultural importance. CcNOS contains 398 amino acids and has a C-terminal region with two conserved CCHC zinc-binding motifs known to be essential for NOS function. Transcripts of Ccnos were confirmed by in situ hybridization to be maternally-derived and localized to the posterior pole of early stage embryos. Regulatory regions of nos have been employed in genetic engineering in some dipterans such as Drosophila and mosquitoes. Given the similarity in spatial and temporal expression between Ccnos and nos orthologs from other dipterans, its regulatory regions will be valuable to generate additional genetic tools that can be applied for engineering purposes to improve the fight against this devastating pest. Copyright © 2013 Elsevier B.V. All rights reserved.
2013-01-01
Background Litchi (Litchi chinensis Sonn.) is one of the most important fruit trees cultivated in tropical and subtropical areas. However, a lack of transcriptomic and genomic information hinders our understanding of the molecular mechanisms underlying fruit set and fruit development in litchi. Shading during early fruit development decreases fruit growth and induces fruit abscission. Here, high-throughput RNA sequencing (RNA-Seq) was employed for the de novo assembly and characterization of the fruit transcriptome in litchi, and differentially regulated genes, which are responsive to shading, were also investigated using digital transcript abundance(DTA)profiling. Results More than 53 million paired-end reads were generated and assembled into 57,050 unigenes with an average length of 601 bp. These unigenes were annotated by querying against various public databases, with 34,029 unigenes found to be homologous to genes in the NCBI GenBank database and 22,945 unigenes annotated based on known proteins in the Swiss-Prot database. In further orthologous analyses, 5,885 unigenes were assigned with one or more Gene Ontology terms, 10,234 hits were aligned to the 24 Clusters of Orthologous Groups classifications and 15,330 unigenes were classified into 266 Kyoto Encyclopedia of Genes and Genomes pathways. Based on the newly assembled transcriptome, the DTA profiling approach was applied to investigate the differentially expressed genes related to shading stress. A total of 3.6 million and 3.5 million high-quality tags were generated from shaded and non-shaded libraries, respectively. As many as 1,039 unigenes were shown to be significantly differentially regulated. Eleven of the 14 differentially regulated unigenes, which were randomly selected for more detailed expression comparison during the course of shading treatment, were identified as being likely to be involved in the process of fruitlet abscission in litchi. Conclusions The assembled transcriptome of litchi fruit provides a global description of expressed genes in litchi fruit development, and could serve as an ideal repository for future functional characterization of specific genes. The DTA analysis revealed that more than 1000 differentially regulated unigenes respond to the shading signal, some of which might be involved in the fruitlet abscission process in litchi, shedding new light on the molecular mechanisms underlying organ abscission. PMID:23941440
Early diagnosis of a Mexican variant of Papaya meleira virus (PMeV-Mx) by RT-PCR.
Zamudio-Moreno, E; Ramirez-Prado, J H; Moreno-Valenzuela, O A; Lopez-Ochoa, L A
2015-02-06
Papaya meleira disease was identified in Brazil in the 1980s. The disease is caused by a double-stranded RNA virus known as Papaya meleira virus (PMeV), which has also been recently reported in Mexico. However, previously reported PMeV primers failed to diagnose the Mexican form of the disease. A genomic approach was used to identify sequences of the Mexican virus isolate, referred here to as PMeV-Mx, to develop a diagnostic method. A mini cDNA library was generated using total RNA from the latex of fruits; this RNA was also sequenced using the Illumina platform. Sequences corresponding to the previously reported 669-base pair sequence for PMeV from Brazil (PMeV-Br) were identified within the PMeV-Mx genome, exhibiting 79-92% identity with PMeV-Br. In addition, a new sequence of 1154-base pairs encoding a putative RNA-dependent RNA polymerase was identified in PMeV-Mx. Primers designed against this sequence detected both virus isolates, 2 amplicons of 173 and 491 base pairs from PMeV-Br and PMeV-Mx, and shared 100 and 98% identity, respectively. PMeV-Mx was found in the latex of fruits, in seedlings, and in the leaves, flowers, petioles, and seeds of mature plants. PMeV-Mx was more abundant in the latex of fruits than in the leaves. The limit of detection of the CB38/CB39 primer pair was 1 fg and 1 pg using total RNA extracted from the latex of fruits and from seedlings, respectively. A sensitive and early diagnosis protocol was developed; this method will enable the certification of seeds and seedlings prior to transplantation to the field.
Kumar, Gulshan; Gupta, Khushboo; Pathania, Shivalika; Swarnkar, Mohit Kumar; Rattan, Usha Kumari; Singh, Gagandeep; Sharma, Ram Kumar; Singh, Anil Kumar
2017-01-01
The availability of sufficient chilling during bud dormancy plays an important role in the subsequent yield and quality of apple fruit, whereas, insufficient chilling availability negatively impacts the apple production. The transcriptome profiling during bud dormancy release and initial fruit set under low and high chill conditions was performed using RNA-seq. The comparative high number of differentially expressed genes during bud break and fruit set under high chill condition indicates that chilling availability was associated with transcriptional reorganization. The comparative analysis reveals the differential expression of genes involved in phytohormone metabolism, particularly for Abscisic acid, gibberellic acid, ethylene, auxin and cytokinin. The expression of Dormancy Associated MADS-box, Flowering Locus C-like, Flowering Locus T-like and Terminal Flower 1-like genes was found to be modulated under differential chilling. The co-expression network analysis indentified two high chill specific modules that were found to be enriched for “post-embryonic development” GO terms. The network analysis also identified hub genes including Early flowering 7, RAF10, ZEP4 and F-box, which may be involved in regulating chilling-mediated dormancy release and fruit set. The results of transcriptome and co-expression network analysis indicate that chilling availability majorly regulates phytohormone-related pathways and post-embryonic development during bud break. PMID:28198417
Meng, Jingbo; Peng, Wei; Shin, Soo Yun; Chung, Minwoong
2017-03-06
Web-based interventions with a self-tracking component have been found to be effective in promoting adults' fruit and vegetable consumption. However, these interventions primarily focus on individual- rather than group-based self-tracking. The rise of social media technologies enables sharing and comparing self-tracking records in a group context. Therefore, we developed an online group-based self-tracking program to promote fruit and vegetable consumption. This study aims to examine (1) the effectiveness of online group-based self-tracking on fruit and vegetable consumption and (2) characteristics of online self-tracking groups that make the group more effective in promoting fruit and vegetable consumption in early young adults. During a 4-week Web-based experiment, 111 college students self-tracked their fruit and vegetable consumption either individually (ie, the control group) or in an online group characterized by a 2 (demographic similarity: demographically similar vs demographically diverse) × 2 (social modeling: incremental change vs ideal change) experimental design. Each online group consisted of one focal participant and three confederates as group members or peers, who had their demographics and fruit and vegetable consumption manipulated to create the four intervention groups. Self-reported fruit and vegetable consumption were assessed using the Food Frequency Questionnaire at baseline and after the 4-week experiment. Participants who self-tracked their fruit and vegetable consumption collectively with other group members consumed more fruits and vegetables than participants who self-tracked individually (P=.01). The results did not show significant main effects of demographic similarity (P=.32) or types of social modeling (P=.48) in making self-tracking groups more effective in promoting fruit and vegetable consumption. However, additional analyses revealed the main effect of performance discrepancy (ie, difference in fruit and vegetable consumption between a focal participant and his/her group members during the experiment), such that participants who had a low performance discrepancy from other group members had greater fruit and vegetable consumption than participants who had a high performance discrepancy from other group members (P=.002). A mediation test showed that low performance discrepancy led to greater downward contrast (b=-0.78, 95% CI -2.44 to -0.15), which in turn led to greater fruit and vegetable consumption. Online self-tracking groups were more effective than self-tracking alone in promoting fruit and vegetable consumption for early young adults. Low performance discrepancy from other group members lead to downward contrast, which in turn increased participants' fruit and vegetable consumption over time. The study highlighted social comparison processes in online groups that allow for sharing personal health information. Lastly, given the small scale of this study, nonsignificant results with small effect sizes might be subject to bias. ©Jingbo Meng, Wei Peng, Soo Yun Shin, Minwoong Chung. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 06.03.2017.
Ozga, Jocelyn A; Kaur, Harleen; Savada, Raghavendra P; Reinecke, Dennis M
2017-04-01
Legume crops are grown throughout the world and provide an excellent food source of digestible protein and starch, as well as dietary fibre, vitamins, minerals, and flavonoids. Fruit and seeds from legumes are also an important source of vegetables for a well-balanced diet. A trend in elevated temperature as a result of climate change increases the risk of a heat stress-induced reduction in legume crop yield. High temperatures during the crop reproductive development phase are particularly detrimental to fruit/seed production because the growth and development of the reproductive tissues are sensitive to small changes in temperature. Hormones are signalling molecules that play important roles in a plant's ability to integrate different environmental inputs and modify their developmental processes to optimize growth, survival, and reproduction. This review focuses on the hormonal regulation of reproductive development and heat stress-induced alteration of this regulation during (i) pollination, (ii) early fruit set, and (iii) seed development that affects fruit/seed yield in legume and other model crops. Further understanding of hormone-regulated reproductive growth under non-stress and heat-stress conditions can aid in trait selection and the development of gene modification strategies and cultural practices to improve heat tolerance in legume crops contributing to improved food security. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
A cytochrome P450 regulates a domestication trait in cultivated tomato
Chakrabarti, Manohar; Zhang, Na; Sauvage, Christopher; Muños, Stéphane; Blanca, Jose; Cañizares, Joaquin; Diez, Maria Jose; Schneider, Rhiannon; Mazourek, Michael; McClead, Jammi; Causse, Mathilde; van der Knaap, Esther
2013-01-01
Domestication of crop plants had effects on human lifestyle and agriculture. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit appearance as a consequence of selection by early farmers. We report the fine mapping and cloning of a tomato (Solanum lycopersicum) fruit mass gene encoding the ortholog of KLUH, SlKLUH, a P450 enzyme of the CYP78A subfamily. The increase in fruit mass is predominantly the result of enlarged pericarp and septum tissues caused by increased cell number in the large fruited lines. SlKLUH also modulates plant architecture by regulating number and length of the side shoots, and ripening time, and these effects are particularly strong in plants that transgenically down-regulate SlKLUH expression carrying fruits of a dramatically reduced mass. Association mapping followed by segregation analyses revealed that a single nucleotide polymorphism in the promoter of the gene is highly associated with fruit mass. This single polymorphism may potentially underlie a regulatory mutation resulting in increased SlKLUH expression concomitant with increased fruit mass. Our findings suggest that the allele giving rise to large fruit arose in the early domesticates of tomato and becoming progressively more abundant upon further selections. We also detected association of fruit weight with CaKLUH in chile pepper (Capsicum annuum) suggesting that selection of the orthologous gene may have occurred independently in a separate domestication event. Altogether, our findings shed light on the molecular basis of fruit mass, a key domestication trait in tomato and other fruit and vegetable crops. PMID:24082112
Lin, Qiong; Wang, Chengyang; Dong, Wencheng; Jiang, Qing; Wang, Dengliang; Li, Shaojia; Chen, Ming; Liu, Chunrong; Sun, Chongde; Chen, Kunsong
2015-01-01
Ponkan (Citrus reticulata Blanco cv. Ponkan) is an important mandarin citrus in China. However, the low ratio of sugars to organic acids makes it less acceptable for consumers. In this work, three stages (S120, early development stage; S195, commercial harvest stage; S205, delayed harvest stage) of Ponkan fruit were selected for study. Among 28 primary metabolites analyzed in fruit, sugars increased while organic acids in general decreased. RNA-Seq analysis was carried out and 19,504 genes were matched to the Citrus clementina genome, with 85 up-regulated and 59 down-regulated genes identified during fruit maturation. A sucrose phosphate synthase (SPS) gene was included in the up-regulated group, and this was supported by the transcript ratio distribution. Expression of two asparagine transferases (AST), and a specific ATP-citrate lyase (ACL) and glutamate decarboxylase (GAD) members increased during fruit maturation. It is suggested that SPS, AST, ACL and GAD coordinately contribute to sugar accumulation and organic acid degradation during Ponkan fruit maturation. Both the glycolysis pathway and TCA cycle were accelerated during later maturation, indicating the flux change from sucrose metabolism to organic acid metabolism was enhanced, with citrate degradation occurring mainly through the gamma-aminobutyric acid (GABA) and acetyl-CoA pathways. Copyright © 2014 Elsevier B.V. All rights reserved.
Chaudhary, Priyanka R; Bang, Haejeen; Jayaprakasha, Guddadarangavvanahally K; Patil, Bhimanagouda S
2016-11-30
In the current study, the phytochemical contents and expression of genes involved in flavonoid biosynthesis in Rio Red grapefruit were studied at different developmental and maturity stages for the first time. Grapefruit were harvested in June, August, November, January, and April and analyzed for the levels of carotenoids, vitamin C, limonoids, flavonoids, and furocoumarins by HPLC. In addition, genes encoding for phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and 1,2-rhamnosyltransferase (2RT) were isolated, and their expression in grapefruit juice vesicles was studied. Fruit maturity had significant influence on the expression of the genes, with PAL, CHS, and CHI having higher expression in immature fruits (June), whereas 2RT expression was higher in mature fruits (November and January). The levels of flavonoids (except naringin and poncirin), vitamin C, and furocoumarins gradually decreased from June to April. Furthermore, limonin levels sharply decreased in January. Lycopene decreased whereas β-carotene gradually increased with fruit maturity. Naringin did not exactly follow the pattern of 2RT or of PAL, CHS, and CHI expression, indicating that the four genes may have complementary effects on the level of naringin. Nevertheless, of the marketable fruit stages, early-season grapefruits harvested in November contained more beneficial phytochemicals as compared to mid- and late-season fruits harvested in January and April, respectively.
Roongsattham, Peerapat; Morcillo, Fabienne; Fooyontphanich, Kim; Jantasuriyarat, Chatchawan; Tragoonrung, Somvong; Amblard, Philippe; Collin, Myriam; Mouille, Gregory; Verdeil, Jean-Luc; Tranbarger, Timothy J.
2016-01-01
The oil palm (Elaeis guineensis Jacq.) fruit primary abscission zone (AZ) is a multi-cell layered boundary region between the pedicel (P) and mesocarp (M) tissues. To examine the cellular processes that occur during the development and function of the AZ cell layers, we employed multiple histological and immunohistochemical methods combined with confocal, electron and Fourier-transform infrared (FT-IR) microspectroscopy approaches. During early fruit development and differentiation of the AZ, the orientation of cell divisions in the AZ was periclinal compared with anticlinal divisions in the P and M. AZ cell wall width increased earlier during development suggesting cell wall assembly occurred more rapidly in the AZ than the adjacent P and M tissues. The developing fruit AZ contain numerous intra-AZ cell layer plasmodesmata (PD), but very few inter-AZ cell layer PD. In the AZ of ripening fruit, PD were less frequent, wider, and mainly intra-AZ cell layer localized. Furthermore, DAPI staining revealed nuclei are located adjacent to PD and are remarkably aligned within AZ layer cells, and remain aligned and intact after cell separation. The polarized accumulation of ribosomes, rough endoplasmic reticulum, mitochondria, and vesicles suggested active secretion at the tip of AZ cells occurred during development which may contribute to the striated cell wall patterns in the AZ cell layers. AZ cells accumulated intracellular pectin during development, which appear to be released and/or degraded during cell separation. The signal for the JIM5 epitope, that recognizes low methylesterified and un-methylesterified homogalacturonan (HG), increased in the AZ layer cell walls prior to separation and dramatically increased on the separated AZ cell surfaces. Finally, FT-IR microspectroscopy analysis indicated a decrease in methylesterified HG occurred in AZ cell walls during separation, which may partially explain an increase in the JIM5 epitope signal. The results obtained through a multi-imaging approach allow an integrated view of the dynamic developmental processes that occur in a multi-layered boundary AZ and provide evidence for distinct regulatory mechanisms that underlie oil palm fruit AZ development and function. PMID:27200017
Using Family Backpacks as a Tool to Involve Families in Teaching Young Children about Healthy Eating
ERIC Educational Resources Information Center
Hong, Jisoo; Bales, Diane W.; Wallinga, Charlotte R.
2018-01-01
Children's obesity rates have increased substantially over the past several decades, due in part to unhealthy eating habits. About 75% of preschool-aged children consume fewer fruits and vegetables than recommended for health. Because children begin developing eating habits during early childhood, obesity prevention programs are increasingly…
Development of an efficient DNA test for genetic identity confirmation in blueberry
USDA-ARS?s Scientific Manuscript database
Cultivated highbush blueberries were first domesticated in the early 20th century. Since then they have become not only a major US fruit crop but one that is grown in North America, South America, Europe, China, Japan, Australia and New Zealand. The United States Department of Agriculture (USDA) Nat...
Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn; O'Connell, Mary A
2014-02-01
Accumulation of capsaicinoids in the placental tissue of ripening chile (Capsicum spp.) fruit follows the coordinated expression of multiple biosynthetic enzymes producing the substrates for capsaicin synthase. Transcription factors are likely agents to regulate expression of these biosynthetic genes. Placental RNAs from habanero fruit (Capsicum chinense) were screened for expression of candidate transcription factors; with two candidate genes identified, both in the ERF family of transcription factors. Characterization of these transcription factors, Erf and Jerf, in nine chile cultivars with distinct capsaicinoid contents demonstrated a correlation of expression with pungency. Amino acid variants were observed in both ERF and JERF from different chile cultivars; none of these changes involved the DNA binding domains. Little to no transcription of Erf was detected in non-pungent Capsium annuum or C. chinense mutants. This correlation was characterized at an individual fruit level in a set of jalapeño (C. annuum) lines again with distinct and variable capsaicinoid contents. Both Erf and Jerf are expressed early in fruit development, 16-20 days post-anthesis, at times prior to the accumulation of capsaicinoids in the placental tissues. These data support the hypothesis that these two members of the complex ERF family participate in regulation of the pungency phenotype in chile. Copyright © 2013. Published by Elsevier Ireland Ltd.
Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn; O’Connell, Mary A.
2013-01-01
Accumulation of capsaicinoids in the placental tissue of ripening chile (Capsicum spp.) fruit follows the coordinated expression of multiple biosynthetic enzymes producing the substrates for capsaicin synthase. Transcription factors are likely agents to regulate expression of these biosynthetic genes. Placental RNAs from habanero fruit (C. chinense) were screened for expression of candidate transcription factors; with two candidate genes identified, both in the ERF family of transcription factors. Characterization of these transcription factors, Erf and Jerf, in nine chile cultivars with distinct capsaicinoid contents demonstrated a correlation of expression with pungency. Amino acid variants were observed in both ERF and JERF from different chile cultivars; none of these changes involved the DNA binding domains. Little to no transcription of Erf was detected in non-pungent C. annuum or C. chinense mutants. This correlation was characterized at an individual fruit level in a set of jalapeño (C. annuum) lines again with distinct and variable capsaicinoid contents. Both Erf and Jerf are expressed early in fruit development, 16–20 days post-anthesis, at times prior to the accumulation of capsaicinoids in the placental tissues. These data support the hypothesis that these two members of the complex ERF family participate in regulation of the pungency phenotype in chile. PMID:24388515
Modelling the Effect of Fruit Growth on Surface Conductance to Water Vapour Diffusion
GIBERT, CAROLINE; LESCOURRET, FRANÇOISE; GÉNARD, MICHEL; VERCAMBRE, GILLES; PÉREZ PASTOR, ALEJANDRO
2005-01-01
• Background and Aims A model of fruit surface conductance to water vapour diffusion driven by fruit growth is proposed. It computes the total fruit conductance by integrating each of its components: stomata, cuticle and cracks. • Methods The stomatal conductance is computed from the stomatal density per fruit and the specific stomatal conductance. The cuticular component is equal to the proportion of cuticle per fruit multiplied by its specific conductance. Cracks are assumed to be generated when pulp expansion rate exceeds cuticle expansion rate. A constant percentage of cracks is assumed to heal each day. The proportion of cracks to total fruit surface area multiplied by the specific crack conductance accounts for the crack component. The model was applied to peach fruit (Prunus persica) and its parameters were estimated from field experiments with various crop load and irrigation regimes. • Key Results The predictions were in good agreement with the experimental measurements and for the different conditions (irrigation and crop load). Total fruit surface conductance decreased during early growth as stomatal density, and hence the contribution of the stomatal conductance, decreased from 80 to 20 % with fruit expansion. Cracks were generated for fruits exhibiting high growth rates during late growth and the crack component could account for up to 60 % of the total conductance during the rapid fruit growth. The cuticular contribution was slightly variable (around 20 %). Sensitivity analysis revealed that simulated conductance was highly affected by stomatal parameters during the early period of growth and by both crack and stomatal parameters during the late period. Large fruit growth rate leads to earlier and greater increase of conductance due to higher crack occurrence. Conversely, low fruit growth rate accounts for a delayed and lower increase of conductance. • Conclusions By predicting crack occurrence during fruit growth, this model could be helpful in managing cropping practices for integrated plant protection. PMID:15655107
Ikinci, Ali
2014-01-01
Winter and summer pruning are widely applied processes in all fruit trees, including in peach orchard management. This study was conducted to determine the effects of summer prunings (SP), as compared to winter pruning (WP), on shoot length, shoot diameter, trunk cross sectional area (TCSA) increment, fruit yield, fruit quality, and carbohydrate content of two early ripening peach cultivars (“Early Red” and “Maycrest”) of six years of age, grown in semiarid climate conditions, in 2008 to 2010. The trees were grafted on GF 677 rootstocks, trained with a central leader system, and spaced 5 × 5 m apart. The SP carried out after harvesting in July and August decreased the shoot length significantly; however, it increased its diameter. Compared to 2009, this effect was more marked in year 2010. In general, control and winter pruned trees of both cultivars had the highest TCSA increment and yield efficiency. The SP increased the average fruit weight and soluble solids contents (SSC) more than both control and WP. The titratable acidity showed no consistent response to pruning time. The carbohydrate accumulation in shoot was higher in WP and in control than in SP trees. SP significantly affected carbohydrate accumulation; postharvest pruning showed higher carbohydrate content than preharvest pruning. PMID:24737954
Lecourt, Julien; Bishop, Gerard
2018-01-01
Global food security for the increasing world population not only requires increased sustainable production of food but a significant reduction in pre- and post-harvest waste. The timing of when a fruit is harvested is critical for reducing waste along the supply chain and increasing fruit quality for consumers. The early in-field assessment of fruit ripeness and prediction of the harvest date and yield by non-destructive technologies have the potential to revolutionize farming practices and enable the consumer to eat the tastiest and freshest fruit possible. A variety of non-destructive techniques have been applied to estimate the ripeness or maturity but not all of them are applicable for in situ (field or glasshouse) assessment. This review focuses on the non-destructive methods which are promising for, or have already been applied to, the pre-harvest in-field measurements including colorimetry, visible imaging, spectroscopy and spectroscopic imaging. Machine learning and regression models used in assessing ripeness are also discussed. PMID:29320410
Maturation and Collection of Yellow-Poplar Seeds in the Midsouth
F. T. Bonner
1976-01-01
Yellow-poplar fruits are best collected in late October when their color changes from green to yellow-green or yellow. There were no other obvious physical or chemical changes indicating maturity. The seeds are physiologically mature as early as September 1, although high fruit moisture contents make special handling necessary if fruits are collected at this time....
Berry, Tannis; Bewley, J. Derek
1992-01-01
During tomato seed development the endogenous abscisic acid (ABA) concentration peaks at about 50 d after pollination (DAP) and then declines at later stages (60-70 DAP) of maturation. The ABA concentration in the sheath tissue immediately surrounding the seed increases with time of development, whereas that of the locule declines. The water contents of the seed and fruit tissues are similar during early development (20-30 DAP), but decline in the seed tissues between 30 and 40 DAP. The water potential and the osmotic potential of the embryo are lower than that of the locular tissue after 35 DAP also. Seeds removed from the fruit at 30, 35, and 60 DAP and placed ex situ on 35 and 60 DAP sheath and locular tissue are prevented from germinating. Development of 30 DAP seeds is maintained or promoted by the ex situ fruit tissue with which they are in contact. Their germination is inhibited until subsequent transfer to water, and germination is normal, i.e. by radicle protrusion, and viable seedlings are produced, compared with 30 DAP seeds transferred directly to water; more of these seeds germinate, but by hypocotyl extension, and seedling viability is very poor. Isolated seeds at 35 and 60 DAP re-placed in contact with fruit tissues only germinate when transferred to water after 7 d. At 30 DAP, isolated seeds are insensitive to ABA at physiological concentrations in that they germinate as if on water, albeit by hypocotyl extension. At higher concentrations germination occurs by radicle protrusion. Osmoticum prevents germination, but there is some recovery upon subsequent transfer to water. Seeds at 35 DAP are very sensitive to ABA and exhibit little or no germination, even upon transfer to water. The response of the isolated seeds to osmoticum more closely approximates that to incubation on the ex situ fruit tissues than does their response to ABA. This is also the case for isolated 60 DAP seeds, whose germination is not prevented by ABA, but only by the osmoticum; these seeds are inhibited when in contact with ex situ fruit tissues also. It is proposed that the osmotic environment within the tissues of the tomato fruit plays a greater role than endogenous ABA in preventing precocious germination of the developing seeds. PMID:16653081
Chaneya, a New Genus of Winged Fruit from the Tertiary of North America and Eastern Asia.
Wang; Manchester
2000-01-01
A new genus is recognized on the basis of wind-dispersed fruits from the Eocene of western North America and Miocene of eastern Asia. The fruits consist of an accrescent hypogynous calyx of five obovate sepals and one or more globose fruit bodies. Although the fossils were formerly placed in the extant genera Porana (Convolvulaceae) and Astronium (Anacardiaceae), our investigation of numerous specimens from several floras in the western United States (e.g., Florissant, Green River, Clarno) and Canada (Whipsaw Creek, British Columbia) and the Yilan and Shanwang floras of China reveals unique characters that indicate that the fossils are a distinct genus, which we name Chaneya. Unlike Porana and Astronium, the fossil calyces have stomata that are longitudinally aligned, and early stages of fruit development show a gynoecium of five apocarpous carpels, of which only one or two usually enlarge at maturity. Precise systematic placement of the fossil genus is uncertain, but similarities to the extant Picrasma of the Simaroubaceae are suggestive of possible affinities. Two species are recognized: Chaneya tenuis (Lesq.) comb. nov., from the Eocene of western North America and northeastern China, and Chaneya kokangensis (Endo) comb. nov., from the Miocene of eastern Asia.
Different Preclimacteric Events in Apple Cultivars with Modified Ripening Physiology
Singh, Vikram; Weksler, Asya; Friedman, Haya
2017-01-01
“Anna” is an early season apple cultivar exhibiting a fast softening and juiciness loss during storage, in comparison to two mid-late season cultivars “Galaxy” and “GD.” The poor storage capacity of “Anna” was correlated with high lipid oxidation-related autoluminescence, high respiration and ethylene production rates, associated with high expression of MdACO1, 2, 4, 7, and MdACS1. All cultivars at harvest responded to exogenous ethylene by enhancing ethylene production, typical of system-II. The contribution of pre-climacteric events to the poor storage capacity of “Anna” was examined by comparing respiration and ethylene production rates, response to exogenous ethylene, expression of genes responsible for ethylene biosynthesis and response, and developmental regulators in the three cultivars throughout fruit development. In contrast to the “Galaxy” and “GD,” “Anna” showed higher ethylene production and respiration rates during fruit development, and exhibited auto-stimulatory (system II-like) effect in response to exogenous ethylene. The higher ethylene production rate in “Anna” was correlated with higher expression of ethylene biosynthesis genes, MdACS3a MdACO2, 4, and 7 during early fruit development. The expression of negative regulators of ripening (AP2/ERF) and ethylene response pathway, (MdETR1,2 and MdCTR1) was lower in “Anna” in comparison to the other two cultivars throughout development and ripening. Similar pattern of gene expression was found for SQUAMOSA promoter binding protein (SBP)-box genes, including MdCNR and for MdFUL. Taken together, this study provides new understanding on pre-climacteric events in “Anna” that might affect its ripening behavior and physiology following storage. PMID:28928755
Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus x domestica Borkh.).
Kotoda, Nobuhiro; Hayashi, Hidehiro; Suzuki, Motoko; Igarashi, Megumi; Hatsuyama, Yoshimichi; Kidou, Shin-Ichiro; Igasaki, Tomohiro; Nishiguchi, Mitsuru; Yano, Kanako; Shimizu, Tokurou; Takahashi, Sae; Iwanami, Hiroshi; Moriya, Shigeki; Abe, Kazuyuki
2010-04-01
The two FLOWERING LOCUS T (FT)-like genes of apple (Malus x domestica Borkh.), MdFT1 and MdFT2, have been isolated and characterized. MdFT1 and MdFT2 were mapped, respectively, on distinct linkage groups (LGs) with partial homoeology, LG 12 and LG 4. The expression pattern of MdFT1 and MdFT2 differed in that MdFT1 was expressed mainly in apical buds of fruit-bearing shoots in the adult phase, with little expression in the juvenile tissues, whereas MdFT2 was expressed mainly in reproductive organs, including flower buds and young fruit. On the other hand, both genes had the potential to induce early flowering since transgenic Arabidopsis, which ectopically expressed MdFT1 or MdFT2, flowered earlier than wild-type plants. Furthermore, overexpression of MdFT1 conferred precocious flowering in apple, with altered expression of other endogenous genes, such as MdMADS12. These results suggest that MdFT1 could function to promote flowering by altering the expression of those genes and that, at least, other genes may play an important role as well in the regulation of flowering in apple. The long juvenile period of fruit trees prevents early cropping and efficient breeding. Our findings will be useful information to unveil the molecular mechanism of flowering and to develop methods to shorten the juvenile period in various fruit trees, including apple.
Cytological analysis of ginseng carpel development.
Silva, Jeniffer; Kim, Yu-Jin; Xiao, Dexin; Sukweenadhi, Johan; Hu, Tingting; Kwon, Woo-Saeng; Hu, Jianping; Yang, Deok-Chun; Zhang, Dabing
2017-09-01
Panax ginseng Meyer, commonly known as ginseng, is considered one of the most important herbs with pharmaceutical values due to the presence of ginsenosides and is cultivated for its highly valued root for medicinal purposes. Recently, it has been recognized that ginseng fruit contains high contents of triterpene such as ginsenoside Re as pharmaceutical compounds. However, it is unclear how carpel, the female reproductive tissue of flowers, is formed during the three-year-old growth before fruit is formed in ginseng plants. Here, we report P. ginseng carpel development at the cytological level, starting from the initial stage of ovule development to seed development. The carpel of P. ginseng is composed of two free stigmas, two free styles, and one epigynous bilocular ovary containing one ovule in each locule. Based on our cytological study, we propose that the female reproductive development in P. ginseng can be classified into seven stages: early phase of ovule development, megasporogenesis, megagametogenesis, pre-fertilization, fertilization, post-fertilization, and seed development. We also describe the correlation of the female and male gametophyte development and compare morphological differences in carpel development between ginseng and other higher plants. One unique feature for ginseng seed development is that it takes 40 days for the embryo to develop to the early torpedo stage and that the embryo is small relative to the seed size, which could be a feature of taxonomic importance. This study will provide an integral tool for the study of the reproductive development and breeding of P. ginseng.
Dauelsberg, Patricia; Matus, José Tomás; Poupin, María Josefina; Leiva-Ampuero, Andrés; Godoy, Francisca; Vega, Andrea; Arce-Johnson, Patricio
2011-09-15
In the present work, the effect of assisted fertilization on anatomical, morphological and gene expression changes occurring in carpels and during early stages of berry development in Vitis vinifera were studied. Inflorescences were emasculated before capfall, immediately manually pollinated (EP) and fruit development was compared to emasculated but non-pollinated (ENP) and self-pollinated inflorescences (NESP). The diameter of berries derived from pollinated flowers (EP and NESP) was significantly higher than from non-pollinated flowers (ENP) at 21 days after emasculation/pollination (DAE), and a rapid increase in the size of the inner mesocarp, together with the presence of an embryo-like structure, were observed. The expression of gibberellin oxidases (GA20ox and GA2ox), anthranilate synthase (related to auxin synthesis) and cytokinin synthase coding genes was studied to assess the relationship between hormone synthesis and early berry development, while flower patterning genes were analyzed to describe floral transition. Significant expression changes were found for hormone-related genes, suggesting that their expression at early stages of berry development (13 DAE) is related to cell division and differentiation of mesocarp tissue at a later stage (21 DAE). Expression of hormone-related genes also correlates with the expression of VvHB13, a gene related to mesocarp expansion, and with an increased repression of floral patterning genes (PISTILLATA and TM6), which may contribute to prevent floral transition inhibiting fruit growth before fertilization takes place. Copyright © 2011 Elsevier GmbH. All rights reserved.
Hermsen, Elizabeth J
2017-01-01
Abstract Background and Aims Radially symmetrical, five-winged fossil fruits from the highly diverse early Eocene Laguna del Hunco flora of Chubut Province, Patagonia, Argentina, are named, described and illustrated. The main goals are to assess the affinities of the fossils and to place them in an evolutionary, palaeoecological and biogeographic context. Methods Specimens of fossil fruits were collected from the Tufolitas Laguna del Hunco. They were prepared, photographed and compared with similar extant and fossil fruits using published literature. Their structure was also evaluated by comparing them with that of modern Ceratopetalum (Cunoniaceae) fruits through examination of herbarium specimens. Key Results The Laguna del Hunco fossil fruits share the diagnostic features that characterize modern and fossil Ceratopetalum (symmetry, number of fruit wings, presence of a conspicuous floral nectary and overall venation pattern). The pattern of the minor wing (sepal) veins observed in the Patagonian fossil fruits is different from that of modern and previously described fossil Ceratopetalum fruits; therefore, a new fossil species is recognized. An apomorphy (absence of petals) suggests that the fossils belong within crown-group Ceratopetalum. Conclusions The Patagonian fossil fruits are the oldest known record for Ceratopetalum. Because the affinities, provenance and age of the fossils are so well established, this new Ceratopetalum fossil species is an excellent candidate for use as a calibration point in divergence dating studies of the family Cunoniaceae. It represents the only record of Ceratopetalum outside Australasia, and further corroborates the biogeographic connection between the Laguna del Hunco flora and ancient and modern floras of the Australasian region. PMID:28110267
Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo
2013-01-01
Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H’) was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests’ structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats. PMID:24147029
Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo
2013-01-01
Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H') was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests' structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.
Fildes, Alison; van Jaarsveld, Cornelia H M; Cooke, Lucy; Wardle, Jane; Llewellyn, Clare H
2016-04-01
Food fussiness (FF) is common in early childhood and is often associated with the rejection of nutrient-dense foods such as vegetables and fruit. FF and liking for vegetables and fruit are likely all heritable phenotypes; the genetic influence underlying FF may explain the observed genetic influence on liking for vegetables and fruit. Twin analyses make it possible to get a broad-based estimate of the extent of the shared genetic influence that underlies these traits. We quantified the extent of the shared genetic influence that underlies FF and liking for vegetables and fruit in early childhood with the use of a twin design. Data were from the Gemini cohort, which is a population-based sample of twins born in England and Wales in 2007. Parents of 3-y-old twins (n= 1330 pairs) completed questionnaire measures of their children's food preferences (liking for vegetables and fruit) and the FF scale from the Children's Eating Behavior Questionnaire. Multivariate quantitative genetic modeling was used to estimate common genetic influences that underlie FF and liking for vegetables and fruit. Genetic correlations were significant and moderate to large in size between FF and liking for both vegetables (-0.65) and fruit (-0.43), which indicated that a substantial proportion of the genes that influence FF also influence liking. Common genes that underlie FF and liking for vegetables and fruit largely explained the observed phenotypic correlations between them (68-70%). FF and liking for fruit and vegetables in young children share a large proportion of common genetic factors. The genetic influence on FF may determine why fussy children typically reject fruit and vegetables.
Rhodes, Elena M; Liburd, Oscar E; England, Gary K
2012-04-01
In Florida, southern highbush (SHB) blueberries (Vaccinium corymbosum L. x Vaccinium darrowi Camp) are grown for a highly profitable early season fresh market. Flower thrips are the key pest of SHB blueberries, and Frankliniella bispinosa (Morgan) is the most common species found. Flower thrips injure blueberry flowers by feeding and ovipositing in all developing tissues. These injuries can lead to scarring of developing fruit. The objectives of this study were to determine the relationship between thrips and yield in different SHB blueberry cultivars and to determine an action threshold. Experiments were conducted during early spring 2007 and 2008 on four farms; a research farm in Citra, FL; and three commercial farms, two in Hernando Co., FL., and one in Lake Co., FL. At the Citra farm, 'Emerald', 'Jewel', 'Millennia', and 'Star' blueberries were compared in 2007, and all but Star were compared in 2008. On the Hernando and Lake Co. farms, two treatment thresholds (100 and 200 thrips per trap) and an untreated control and four cultivars (Emerald, Jewel, Millennia, and 'Windsor') were compared. Emerald consistently had more thrips per trap and per flower than the other cultivars on all four farms. However, this did not always lead to an increase in fruit injury. Thrips numbers exceeded the threshold on only one farm in 2007, and there was a significantly lower proportion of injured and malformed fruit in the 100 thrips per trap threshold treatment compared with the control on this farm.
Li, Fang; Li, Jinjin; Qian, Ming; Han, Mingyu; Cao, Lijun; Liu, Hangkong; Zhang, Dong; Zhao, Caiping
2016-01-01
The NAP (NAC-like, activated by AP3/P1) transcription factor belongs to a subfamily of the NAC transcription factor family, and is believed to have an important role in regulating plant growth and development. However, there is very little information about this subfamily in Rosaceous plants. We identified seven NAP genes in the peach genome. PpNAP2 was categorized in the NAP I group, and contained a conserved transcription activation region. The other PpNAP genes belonged to the NAP II group. The expression patterns of the PpNAP genes differed in various organs and developmental stages. PpNAP1 and PpNAP2 were highly expressed in mature and senescing flowers, but not in leaves, fruits, and flower buds. PpNAP3 and PpNAP5 were only expressed in leaves. The PpNAP4 expression level was high in mature and senescing fruits, while PpNAP6 and PpNAP7 expression was up-regulated in mature and senescent leaves and flowers. During the fruit development period, the PpNAP4 and PpNAP6 expression levels rapidly increased during the S1 and S4 stages, which suggests these genes are involved in the first exponential growth phase and fruit ripening. During the fruit ripening and softening period, the PpNAP1, PpNAP4, and PpNAP6 expression levels were high during the early storage period, which was accompanied by a rapid increase in ethylene production. PpNAP1, PpNAP4, and PpNAP6 expression slowly increased during the middle or late storage periods, and peaked at the end of the storage period. Additionally, abscisic acid (ABA)-treated fruits were softer and produced more ethylene than the controls. Furthermore, the PpNAP1, PpNAP4, and PpNAP6 expression levels were higher in ABA-treated fruits. These results suggest that PpNAP1, PpNAP4, and PpNAP6 are responsive to ABA and may regulate peach fruit ripening. PMID:26909092
LEFPS1, a Tomato Farnesyl Pyrophosphate Gene Highly Expressed during Early Fruit Development1
Gaffe, Joel; Bru, Jean-Philippe; Causse, Mathilde; Vidal, Alain; Stamitti-Bert, Linda; Carde, Jean-Pierre; Gallusci, Philippe
2000-01-01
Farnesyl pyrophosphate synthase (FPS) catalyzes the synthesis of farnesyl pyrophosphate, a key intermediate in sterol and sesquiterpene biosynthesis. Using a polymerase chain reaction-based approach, we have characterized LeFPS1, a tomato (Lycoperscion esculentum cv Wva 106) fruit cDNA, which encodes a functional FPS. We demonstrate that tomato FPSs are encoded by a small multigenic family with genes located on chromosomes 10 and 12. Consistent with farnesyl pyrophosphate requirement in sterol biosynthesis, FPS genes are ubiquitously expressed in tomato plants. Using an LeFPS1 specific probe, we show that the corresponding gene can account for most of FPS mRNA in most plant organs, but not during young seedling development, indicating a differential regulation of FPS genes in tomato. FPS gene expression is also under strict developmental control: FPS mRNA was mainly abundant in young organs and decreased as organs matured with the exception of fruits that presented a biphasic accumulation pattern. In this latter case in situ hybridization studies have shown that FPS mRNA is similarly abundant in all tissues of young fruit. Taken together our results suggest that several FPS isoforms are involved in tomato farnesyl pyrophosphate metabolism and that FPS genes are mostly expressed in relation to cell division and enlargement. PMID:10938353
Sarwar, Zaara; Garza, Anthony G
2016-02-01
When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher
2015-09-16
Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.) have suggested that these hormones are implicated in the control of ripening-related processes. A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene families involved in cytokinin metabolism and signalling were identified and analysed for their expression in developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis, activation, perception and signalling genes together with a lack of expression of degradation-related genes during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed accumulation of iP in ripening grapes. The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other fruit. The pre- and post-veraison-specific expression of different members from each of five gene families suggests a highly complex and finely-tuned regulation of cytokinin concentrations and response to different cytokinin species at particular stages of fruit development. The same complexity and specialisation is also reflected in the distinct expression profiles of cytokinin-related genes in other grapevine organs.
Ethnography's Capacity to Contribute to the Cumulation of Theory: A Response to Hillyard
ERIC Educational Resources Information Center
Hammersley, Martyn
2011-01-01
Sam Hillyard's (2010) recent article has the value of highlighting the issue of theory development in interactionism, ethnography, and the sociology of education. It also reminds of a fruitful, and unique, research programme in educational research that stretched from the early 1960s into the 1990s. However, in the author's view Hillyard's…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... Environment Monitoring System for Food (GEMS/Food), Global Early Warning Systems for Animal Diseases Including... leafy vegetables and herbs also acknowledged the success of the FIVE KEYS to safe food as it reviewed..., working together with FDA, developed FIVE KEYS to Growing Safer Fruits and Vegetables: Promoting Health by...
Structure and function of the homeotic gene complex (HOM-C) in the beetle, Tribolium castaneum
NASA Technical Reports Server (NTRS)
Beeman, R. W.; Stuart, J. J.; Brown, S. J.; Denell, R. E.; Spooner, B. S. (Principal Investigator)
1993-01-01
The powerful combination of genetic, developmental and molecular approaches possible with the fruit fly, Drosophila melanogaster, has led to a profound understanding of the genetic control of early developmental events. However, Drosophila is a highly specialized long germ insect, and the mechanisms controlling its early development may not be typical of insects or Arthropods in general. The beetle, Tribolium castaneum, offers a similar opportunity to integrate high resolution genetic analysis with the developmental/molecular approaches currently used in other organisms. Early results document significant differences between insect orders in the functions of genes responsible for establishing developmental commitments.
Structure and function of the homeotic gene complex (HOM-C) in the beetle, Tribolium castaneum.
Beeman, R W; Stuart, J J; Brown, S J; Denell, R E
1993-07-01
The powerful combination of genetic, developmental and molecular approaches possible with the fruit fly, Drosophila melanogaster, has led to a profound understanding of the genetic control of early developmental events. However, Drosophila is a highly specialized long germ insect, and the mechanisms controlling its early development may not be typical of insects or Arthropods in general. The beetle, Tribolium castaneum, offers a similar opportunity to integrate high resolution genetic analysis with the developmental/molecular approaches currently used in other organisms. Early results document significant differences between insect orders in the functions of genes responsible for establishing developmental commitments.
Proteomic analysis of 'Zaosu' pear (Pyrus bretschneideri Rehd.) and its early-maturing bud sport.
Liu, Xueting; Zhai, Rui; Feng, Wenting; Zhang, Shiwei; Wang, Zhigang; Qiu, Zonghao; Zhang, Junke; Ma, Fengwang; Xu, Lingfei
2014-07-01
Maturation of fruits involves a series of physiological, biochemical, and organoleptic changes that eventually make fleshy fruits attractive, palatable, and nutritional. In order to understand the mature mechanism of the early-maturing bud sport of 'Zaosu' pear, we analyzed the differences of proteome expression between the both pears in different mature stages by the methods of a combination of two-dimensional electrophoresis (2-DE) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Seventy-five differential expressed protein spots (p<0.05) were obtained between 'Zaosu' pear and its early-maturing bud sport, but only sixty-eight were demonstratively identified in the database of NCBI and uniprot. The majority of proteins were linked to metabolism, energy, stress response/defense and cell structure. Additionally, our data confirmed an increase of proteins related to cell-wall modification, oxidative stress and pentose phosphate metabolism and a decrease of proteins related to photosynthesis and glycolysis during the development process of both pears, but all these proteins increased or decreased faster in the early-maturing bud sport. This comparative analysis between both pears showed that these proteins were closely associated with maturation and could provide more detailed characteristics of the maturation process of both pears. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Pua, Eng-Chong; Chandramouli, Sumana; Han, Ping; Liu, Pei
2003-01-01
Malate synthase (MS) is a key enzyme responsible for malic acid synthesis in the glyoxylate cycle, which functions to convert stored lipids to carbohydrates, by catalysing the glyoxylate condensation reaction with acetyl-CoA in the peroxisome. In this study, the cloning of an MS cDNA, designated MaMS-1, from the banana fruit is reported. MaMS-1 was 1801 bp in length encoding a single polypeptide of 556 amino acid residues. Sequence analysis revealed that MaMS-1 possessed the conserved catalytic domain and a putative peroxisomal targeting signal SK(I/L) at the carboxyl terminal. MaMS-1 also shared an extensive sequence homology (79-81.3%) with other plant MS homologues. Southern analysis indicated that MS might be present as multiple members in the banana genome. In Northern analysis, MaMS-1 was expressed specifically in ripening fruit tissue and transcripts were not detected in other organs such as roots, pseudostem, leaves, ovary, male flower, and in fruit at different stages of development. However, the transcript abundance in fruit was affected by stage of ripening, during which transcript was barely detectable at the early stage of ripening (FG and TY), but the level increased markedly in MG and in other fruits at advanced ripening stages. Furthermore, MaMS-1 expression in FG fruit could be stimulated by treatment with 1 microl l(-1) exogenous ethylene, but the stimulatory effect was abolished by the application of an ethylene inhibitor, norbornadiene. Results of this study clearly show that MS expression in banana fruit is temporally regulated during ripening and is ethylene-inducible.
Laser diagnostic technology for early detection of pathogen infestation in orange fruits
NASA Astrophysics Data System (ADS)
Giubileo, Gianfranco; Lai, Antonella; Piccinelli, Delinda; Puiu, Adriana
2010-11-01
Due to an increased expectation of food products that respect high quality and safety standards, there is a need for the growth of accurate, fast, objective and non-destructive technologies for quality determination of food and agricultural products. For this purpose, a diagnostic system based on laser photoacoustic spectroscopy (LPAS) was developed at ENEA Frascati Molecular Spectroscopy Laboratory (Italy). In the design of the photoacoustic detector, particular emphasis was placed in attaining a high sensitivity in detecting ethylene (ET) down to sub-parts per billion level (minimum detectable concentration 0.2 ppb). This was required due to the necessity to monitor and follow up ET production at a single fruit scale. ET is normally synthesised in very low amounts by healthy citrus fruits; however stress conditions such as pathogen attack may induce a substantial increase in the synthesised ET. In the present paper, the comparison between the ET emitted by healthy oranges ( Citrus sinensis L. Osbeck) cv Navel and by Phytophthora citrophthora infested Navel orange fruits are reported. The obtained results show a well evident increase in ET emission from the infested fruit with respect to the healthy one, even 24 h after the inoculation with the pathogen; at that time the tissue necrosis was not yet visible, and the fruit was also not yet damaged. The possibility to perform a real time non-destructive detection of ET traces makes the LPAS a powerful tool for monitoring the healthy state of the citrus fruits.
Gandolfo, María A; Hermsen, Elizabeth J
2017-03-01
Radially symmetrical, five-winged fossil fruits from the highly diverse early Eocene Laguna del Hunco flora of Chubut Province, Patagonia, Argentina, are named, described and illustrated. The main goals are to assess the affinities of the fossils and to place them in an evolutionary, palaeoecological and biogeographic context. Specimens of fossil fruits were collected from the Tufolitas Laguna del Hunco. They were prepared, photographed and compared with similar extant and fossil fruits using published literature. Their structure was also evaluated by comparing them with that of modern Ceratopetalum (Cunoniaceae) fruits through examination of herbarium specimens. The Laguna del Hunco fossil fruits share the diagnostic features that characterize modern and fossil Ceratopetalum (symmetry, number of fruit wings, presence of a conspicuous floral nectary and overall venation pattern). The pattern of the minor wing (sepal) veins observed in the Patagonian fossil fruits is different from that of modern and previously described fossil Ceratopetalum fruits; therefore, a new fossil species is recognized. An apomorphy (absence of petals) suggests that the fossils belong within crown-group Ceratopetalum . The Patagonian fossil fruits are the oldest known record for Ceratopetalum . Because the affinities, provenance and age of the fossils are so well established, this new Ceratopetalum fossil species is an excellent candidate for use as a calibration point in divergence dating studies of the family Cunoniaceae. It represents the only record of Ceratopetalum outside Australasia, and further corroborates the biogeographic connection between the Laguna del Hunco flora and ancient and modern floras of the Australasian region. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.
Economos, Christina D; Sacheck, Jennifer M; Kwan Ho Chui, Kenneth; Irizarry, Laura; Irizzary, Laura; Guillemont, Juliette; Collins, Jessica J; Hyatt, Raymond R
2008-04-01
Interventions aiming to modify the dietary and physical activity behaviors of young children require precise and accurate measurement tools. As part of a larger community-based project, three school-based questionnaires were developed to assess (a) fruit and vegetable intake, (b) physical activity and television (TV) viewing, and (c) perceived parental support for diet and physical activity. Test-retest reliability was performed on all questionnaires and validity was measured for fruit and vegetable intake, physical activity, and TV viewing. Eighty-four school children (8.3+/-1.1 years) were studied. Test-retest reliability was performed by administering questionnaires twice, 1 to 2 hours apart. Validity of the fruit and vegetable questionnaire was measured by direct observation, while the physical activity and TV questionnaire was validated by a parent phone interview. All three questionnaires yielded excellent test-retest reliability (P<0.001). The majority of fruit and vegetable questions and the questions regarding specific physical activities and TV viewing were valid. Low validity scores were found for questions on watching TV during breakfast or dinner. These questionnaires are reliable and valid tools to assess fruit and vegetable intake, physical activity, and TV viewing behaviors in early elementary school-aged children. Methods for assessment of children's TV viewing during meals should be further investigated because of parent-child discrepancies.
Frost monitoring of fruit tree with satellite data
NASA Astrophysics Data System (ADS)
Fan, Jinlong; Zhang, Mingwei; Cao, Guangzheng; Zhang, Xiaoyu; Liu, Chenchen; Niu, Xinzan; Xu, Wengbo
2012-09-01
The orchards are developing very fast in the northern China in recent years with the increasing demands on fruits in China. In most parts of the northern China, the risk of frost damage to fruit tree in early spring is potentially high under the background of global warming. The growing season comes earlier than it does in normal year due to the warm weather in earlier spring and the risk will be higher in this case. According to the reports, frost event in spring happens almost every year in Ningxia Region, China. In bad cases, late frosts in spring can be devastating all fruit. So lots of attention has been given to the study in monitoring, evaluating, preventing and mitigating frost. Two orchards in Ningxia, Taole and Jiaozishan orchards were selected as the study areas. MODIS data were used to monitor frost events in combination with minimum air temperature recorded at weather station. The paper presents the findings. The very good correlation was found between MODIS LST and minimum air temperature in Ningxia. Light, middle and severe frosts were captured in the study area by MODIS LST. The MODIS LST shows the spatial differences of temperature in the orchards. 10 frost events in April from 2000 to 2010 were captured by the satellite data. The monitoring information may be hours ahead circulated to the fruit farmers to prevent the damage and loss of fruit trees.
Caldwell, A R; Terhorst, L; Skidmore, E R; Bendixen, R M
2018-01-23
The present study aimed to examine the associations between frequency of family meals and low fruit and vegetable intake in preschool children. Promoting healthy nutrition early in life is recommended for combating childhood obesity. Frequency of family meals is associated with fruit and vegetable intake in school-age children and adolescents; the relationship in young children is less clear. We completed a secondary analysis using data from the Early Childhood Longitudinal Study-Birth Cohort. Participants included children, born in the year 2001, to mothers who were >15 years old (n = 8 950). Data were extracted from structured parent interviews during the year prior to kindergarten. We used hierarchical logistic regression to describe the relationships between frequency of family meals and low fruit and vegetable intake. Frequency of family meals was associated with low fruit and vegetable intake. The odds of low fruit and vegetable intake were greater for preschoolers who shared less than three evening family meals per week (odds ratio = 1.5, β = 0.376, P < 0.001) than preschoolers who shared the evening meal with family every night. Fruit and vegetable intake is related to frequency of family meals in preschool-age children. Educating parents about the potential benefits of frequent shared meals may lead to a higher fruit and vegetable consumption among preschoolers. Future studies should address other factors that likely contribute to eating patterns during the preschool years. © 2018 The British Dietetic Association Ltd.
Xie, Wu-Wei; Gao, Shun; Wang, Sheng-Hua; Zhu, Jin-Qiu; Xu, Ying; Tang, Lin; Chen, Fang
2010-01-01
A full-length cDNA of the carboxyltransferase (accA) gene of acetyl-coenzym A (acetyl-CoA) carboxylase from Jatropha curcas was cloned and sequenced. The gene with an open reading frame (ORF) of 1149 bp encodes a polypeptide of 383 amino acids, with a molecular mass of 41.9 kDa. Utilizing fluorogenic real-time polymerase chain reaction (RT-PCR), the expression levels of the accA gene in leaves and fruits at early, middle and late stages under pH 7.0/8.0 and light/darkness stress were investigated. The expression levels of the accA gene in leaves at early, middle and late stages increased significantly under pH 8.0 stress compared to pH 7.0. Similarly, the expression levels in fruits showed a significant increase under darkness condition compared to the control. Under light stress, the expression levels in the fruits at early, middle and late stages showed the largest fluctuations compared to those of the control. These findings suggested that the expression levels of the accA gene are closely related to the growth conditions and developmental stages in the leaves and fruits of Jatropha curcas.
Kong, Kai Ling; Gillman, Matthew W; Rifas-Shiman, Sheryl L; Wen, Xiaozhong
2016-10-01
Previous studies have shown that early liking, early consumption, and maternal consumption of fruits and vegetables (F&V) each predict children's F&V consumption, but no one has examined the independent contributions of these three correlated factors. We aim to examine the extent to which each of these 3 factors is associated with F&V consumption in mid-childhood after accounting for the other 2 in the analysis. We analyzed data from 901 mother-child dyads from Project Viva, a prospective pre-birth cohort study. Mothers reported their child's early liking and consumption of F&V at age 2 years and later consumption at mid-childhood (median age 7.7 years). They also reported their own consumption of F&V at 6 months postpartum. We used multivariable linear regression models to examine the independent associations of these 3 factors with mid-childhood consumption, adjusting for socio-demographic, pregnancy, and child confounders. At 2 years, 53% of the mothers strongly agreed that their child liked fruit and 25% strongly agreed that their child liked vegetables. F&V consumption was 2.5 (1.3) and 1.8 (1.1) times/d at age 2 y and 1.5 (1.1) and 1.3 (0.8) times/d in mid-childhood. Maternal F&V consumption was 1.4 (1.1) and 1.5 (1.0) times/d, respectively. Children's early consumption played the most predominant role. For every 1 time/d increment in children's early consumption of F&V, mid-childhood consumption was higher by 0.25 (95% confidence interval [CI]: 0.19, 0.30) times/d for fruits and 0.21 (95% CI: 0.16, 0.26) times/d for vegetables, adjusted for confounders plus the other 2 exposures. In conclusion, children's early F&V consumption has the most significant influence on children's later consumption. Published by Elsevier Ltd.
Eriksson, Ove
2016-02-01
The origins of interactions between angiosperms and fruit-eating seed dispersers have attracted much attention following a seminal paper on this topic by Tiffney (1984). This review synthesizes evidence pertaining to key events during the evolution of angiosperm-frugivore interactions and suggests some implications of this evidence for interpretations of angiosperm-frugivore coevolution. The most important conclusions are: (i) the diversification of angiosperm seed size and fleshy fruits commenced around 80 million years ago (Mya). The diversity of seed sizes, fruit sizes and fruit types peaked in the Eocene around 55 to 50 Mya. During this first phase of the interaction, angiosperms and animals evolving frugivory expanded into niche space not previously utilized by these groups, as frugivores and previously not existing fruit traits appeared. From the Eocene until the present, angiosperm-frugivore interactions have occurred within a broad frame of existing niche space, as defined by fruit traits and frugivory, motivating a separation of the angiosperm-frugivore interactions into two phases, before and after the peak in the early Eocene. (ii) The extinct multituberculates were probably the most important frugivores during the early radiation phase of angiosperm seeds and fleshy fruits. Primates and rodents are likely to have been important in the latter part of this first phase. (iii) Flying frugivores, birds and bats, evolved during the second phase, mainly during the Oligocene and Miocene, thus exploiting an existing diversity of fleshy fruits. (iv) A drastic climate shift around the Eocene-Oligocene boundary (around 34 Mya) resulted in more semi-open woodland vegetation, creating patchily occurring food resources for frugivores. This promoted evolution of a 'flying frugivore niche' exploited by birds and bats. In particular, passerines became a dominant frugivore group worldwide. (v) Fleshy fruits evolved at numerous occasions in many angiosperm families, and many of the originations of fleshy fruits occurred well after the peak in the early Eocene. (vi) During periods associated with environmental change altering coevolutionary networks and opening of niche space, reciprocal coevolution may result in strong directional selection formative for both fruit and frugivore evolution. Further evidence is needed to test this hypothesis. Based on the abundance of plant lineages with various forms of fleshy fruits, and the diversity of frugivores, it is suggested that periods of rapid coevolution in angiosperms and frugivores occurred numerous times during the 80 million years of angiosperm-frugivore evolution. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
CDC Vital Signs: Progress on Children Eating More Fruit, Not Vegetables
... of Fruits and Vegetables [PDF – 2.1 MB] Childhood Obesity Prevention Strategies and Solutions for My Community School ... Progress in Obesity Prevention Institute of Medicine. Early Childhood Obesity Prevention Policies Top of Page Get Email Updates ...
Baldwin, Elizabeth; Plotto, Anne; Bai, Jinhe; Manthey, John; Zhao, Wei; Raithore, Smita; Irey, Mike
2018-03-21
Orange trees affected by huanglongbing (HLB) exhibit excessive fruit drop, and fruit loosely attached to the tree may have inferior flavor. Fruit were collected from healthy and HLB-infected ( Candidatus liberibacter asiaticus) 'Hamlin' and 'Valencia' trees. Prior to harvest, the trees were shaken, fruit that dropped collected, tree-retained fruit harvested, and all fruit juiced. For chemical analyses, sugars and acids were generally lowest in HLB dropped (HLB-D) fruit juice compared to nonshaken healthy (H), healthy retained (H-R), and healthy dropped fruit (H-D) in early season (December) but not for the late season (January) 'Hamlin' or 'Valencia' except for sugar/acid ratio. The bitter limonoids, many flavonoids, and terpenoid volatiles were generally higher in HLB juice, especially HLB-D juice, compared to the other samples. The lower sugars, higher bitter limonoids, flavonoids, and terpenoid volatiles in HLB-D fruit, loosely attached to the tree, contributed to off-flavor, as was confirmed by sensory analyses.
Jaakola, Laura; Määttä, Kaisu; Pirttilä, Anna Maria; Törrönen, Riitta; Kärenlampi, Sirpa; Hohtola, Anja
2002-01-01
The production of anthocyanins in fruit tissues is highly controlled at the developmental level. We have studied the expression of flavonoid biosynthesis genes during the development of bilberry (Vaccinium myrtillus) fruit in relation to the accumulation of anthocyanins, proanthocyanidins, and flavonols in wild berries and in color mutants of bilberry. The cDNA fragments of five genes from the flavonoid pathway, phenylalanine ammonia-lyase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase, were isolated from bilberry using the polymerase chain reaction technique, sequenced, and labeled with a digoxigenin-dUTP label. These homologous probes were used for determining the expression of the flavonoid pathway genes in bilberries. The contents of anthocyanins, proanthocyanidins, and flavonols in ripening bilberries were analyzed with high-performance liquid chromatography-diode array detector and were identified using a mass spectrometry interface. Our results demonstrate a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of berries. At the early stages of berry development, procyanidins and quercetin were the major flavonoids, but the levels decreased dramatically during the progress of ripening. During the later stages of ripening, the content of anthocyanins increased strongly and they were the major flavonoids in the ripe berry. The expression of flavonoid pathway genes in the color mutants of bilberry was reduced. A connection between flavonol and anthocyanin synthesis in bilberry was detected in this study and also in previous data collected from flavonol and anthocyanin analyses from other fruits. In accordance with this, models for the connection between flavonol and anthocyanin syntheses in fruit tissues are presented. PMID:12376640
Quantifying the source-sink balance and carbohydrate content in three tomato cultivars.
Li, Tao; Heuvelink, Ep; Marcelis, Leo F M
2015-01-01
Supplementary lighting is frequently applied in the winter season for crop production in greenhouses. The effect of supplementary lighting on plant growth depends on the balance between assimilate production in source leaves and the overall capacity of the plants to use assimilates. This study aims at quantifying the source-sink balance and carbohydrate content of three tomato cultivars differing in fruit size, and to investigate to what extent the source/sink ratio correlates with the potential fruit size. Cultivars Komeet (large size), Capricia (medium size), and Sunstream (small size, cherry tomato) were grown from 16 August to 21 November, at similar crop management as in commercial practice. Supplementary lighting (High Pressure Sodium lamps, photosynthetic active radiation at 1 m below lamps was 162 μmol photons m(-2) s(-1); maximum 10 h per day depending on solar irradiance level) was applied from 19 September onward. Source strength was estimated from total plant growth rate using periodic destructive plant harvests in combination with the crop growth model TOMSIM. Sink strength was estimated from potential fruit growth rate which was determined from non-destructively measuring the fruit growth rate at non-limiting assimilate supply, growing only one fruit on each truss. Carbohydrate content in leaves and stems were periodically determined. During the early growth stage, 'Komeet' and 'Capricia' showed sink limitation and 'Sunstream' was close to sink limitation. During this stage reproductive organs had hardly formed or were still small and natural irradiance was high (early September) compared to winter months. Subsequently, during the fully fruiting stage all three cultivars were strongly source-limited as indicated by the low source/sink ratio (average source/sink ratio from 50 days after planting onward was 0.17, 0.22, and 0.33 for 'Komeet,' 'Capricia,' and 'Sunstream,' respectively). This was further confirmed by the fact that pruning half of the fruits hardly influenced net leaf photosynthesis rates. Carbohydrate content in leaves and stems increased linearly with the source/sink ratio. We conclude that during the early growth stage under high irradiance, tomato plants are sink-limited and that the level of sink limitation differs between cultivars but it is not correlated with their potential fruit size. During the fully fruiting stage tomato plants are source-limited and the extent of source limitation of a cultivar is positively correlated with its potential fruit size.
USDA-ARS?s Scientific Manuscript database
Life history theory predicts that individuals will allocate resources to different traits so as to maximize overall fitness. Because conditions experienced during early development can have strong downstream effects on adult phenotype and fitness, we investigated how four species of synovigenic, lar...
USDA-ARS?s Scientific Manuscript database
Texas A&M University and the USDA-ARS U.S. Vegetable Laboratory in Charleston, SC, have developed a new, F1 hybrid Habanero pepper cultivar. ‘Caro-Tex 312’ produces a large, orange-fruited Habanero pepper with typical shape and high pungency. It also possesses unique yield, early maturity and dise...
Seedless fruits and the disruption of a conserved genetic pathway in angiosperm ovule development
Lora, Jorge; Hormaza, José I.; Herrero, María; Gasser, Charles S.
2011-01-01
Although the biological function of fruiting is the production and dissemination of seeds, humans have developed seedless fruits in a number of plant species to facilitate consumption. Here we describe a unique spontaneous seedless mutant (Thai seedless; Ts) of Annona squamosa (sugar apple), a member of the early-divergent magnoliid angiosperm clade. Ovules (seed precursors) of the mutant lack the outer of two normal integuments, a phenocopy of the inner no outer (ino) mutant of Arabidopsis thaliana. Cloning of the INO ortholog from A. squamosa confirmed conservation of the outer integument-specific expression pattern of this gene between the two species. All regions of the gene were detectable in wild-type A. squamosa and in other members of this genus. However, no region of the INO gene could be detected in Ts plants, indicating apparent deletion of the INO locus. These results provide a case of a candidate gene approach revealing the apparent molecular basis of a useful agronomic trait (seedless fruit) in a crop species, and indicate conservation of the role of a critical regulator of ovule development between eudicots and more ancient lineages of angiosperms. The outer integument is one synapomorphy of angiosperms separating them from other extant seed plants, and the results suggest that the evolution of this structure was contemporaneous with the derivation of INO from ancestral YABBY genes. Thus, a unique lateral structure appears to have coevolved with a novel gene family member essential for the structure's formation. PMID:21402944
Surveys for Pathogens of Monoecious Hydrilla
2014-01-01
scab, which severely reduces the quality of infected fruit (Agrios 2005). Similar diseases affect pears (V. pyrina) and hawthorns (V. inaequalis...are leaf, stem, and fruit pathogens of a variety of plants (Farr et al. 1989). Venturia inaequalis, for example, causes a serious disease of apples...in areas where environmental conditions are cool and moist during the early growing season when trees are beginning to set fruit . The disease causes
Early Sprouts: Cultivating Healthy Food Choices in Young Children
ERIC Educational Resources Information Center
Kalich, Karrie; Bauer, Dottie; McPartlin, Deirdre
2009-01-01
Plant lifelong healthy eating concepts in young children and counteract the prevalence of childhood obesity with "Early Sprouts." A research-based early childhood curriculum, this "seed-to-table" approach gets children interested in and enjoying nutritious fruits and vegetables. The "Early Sprouts" model engages…
De novo transcriptomic analysis during Lentinula edodes fruiting body growth.
Wang, Yingzhu; Zeng, Xianlu; Liu, Wenguang
2018-01-30
The fruiting body of Lentinula edodes is a popular edible mushroom, and extracts from the mycelium and the fruiting body of this species have diverse therapeutic potential. To gain insights into the molecular mechanisms underlying the fruiting body growth of L. edodes from the early bud stage (EBS), through the intermediate developing stage (IDS), to the fully developed stage (FDS), we performed de novo transcriptomic analysis using high-throughput Illumina RNA-sequencing. First, we generated three cDNA libraries representative of the three respective stages. We then obtained 38,933,148, 44,594,472, and 37,905,646 high-quality reads from the respective libraries and assembled the reads into 25,104 transcriptional contigs, containing 15,199 unigenes. We found that only 9331 of the unigenes had been annotated in the NCBI non-redundant protein database, and we functionally annotated 4758 of them through Gene Ontology (GO) analysis and 2921 of them through Clusters of Orthologous Groups of proteins (COGs) analysis. We also assigned 3995 unigenes to metabolic pathways by using the Kyoto Encyclopedia of Genes and Genomes (KEGG). We further identified 399 differentially expressed genes (DEGs) between EBS and IDS, 1428 between IDS and FDS, and 1830 between EBS and FDS, uncovering 769 DEGs in multiple metabolic and signaling pathways. Interestingly, there were a limited number of DEGs whose expression was dramatically associated with FDS. Finally, genes, whose expression was either highly up-regulated in FDS or remained at a high level during fruiting body growth, were annotated specifically in the pathways of purine metabolism, unsaturated fatty acid metabolism and meiosis, suggesting that these key molecular events were actively occurring in the fruiting body. Our work is the first high-throughput transcriptome study on the growth of L. edodes fruiting bodies, and the results uncovered candidate genes for future gene identification and utilization of this commercially and medically important mushroom. Copyright © 2017 Elsevier B.V. All rights reserved.
Villagrán, M Elvira; Willink, Eduardo; Vera, M Teresa; Follett, Peter
2012-08-01
Argentina has to meet quarantine restrictions because of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), to export 'Hass' avocados, Persea americana Miller, to certain countries. Hass avocado at the hard, mature green stage is potentially a conditional nonhost for C. capitata and could open export markets without the need for a quarantine treatment. Trapping data from 1998 to 2006 showed that C. capitata was present in avocado orchards, particularly early in the harvest season. The host status of hard, mature green Hass avocado to C. capitata was evaluated using laboratory and field cage tests under no-choice conditions and by assessing natural levels of infestation in commercially harvested fruit from the main avocado production area. In total, 2,250 hard, mature green avocado fruit were exposed to 11,250 gravid females for 24 or 48 h after harvest in laboratory or field cages, and no infestations were found. During 11 seasons, 5,949 fruit in total were sampled from the trees and 992 fruit were collected from the ground, and in none of them were any live or dead fruit fly larvae found. Inspection of >198,000 commercial fruit at the packinghouse from 1998 to 2011 showed no symptoms of fruit fly infestation. These data exceed the published standards for determination of nonhost status, as well as the Probit 9 standard for development of quarantine treatments. Hass avocado harvested at the hard, mature green stage was not infested by C. capitata and seems to pose a negligible quarantine risk. As a consequence, no postharvest treatment or other quarantine actions should be required by importing countries.
Identification and characterization of LysM effectors in Penicillium expansum.
Levin, Elena; Ballester, Ana Rosa; Raphael, Ginat; Feigenberg, Oleg; Liu, Yongsheng; Norelli, John; Gonzalez-Candelas, Luis; Ma, Jing; Dardick, Christopher; Wisniewski, Michael; Droby, Samir
2017-01-01
P. expansum is regarded as one of the most important postharvest rots of apple fruit and is also of great concern to fruit processing industries. Elucidating the pathogenicity mechanism of this pathogen is of utmost importance for the development of effective and safe management strategies. Although, many studies on modification of the host environment by the pathogen were done, its interactions with fruit during the early stages of infection and the virulence factors that mediate pathogenicity have not been fully defined. Effectors carrying LysM domain have been identified in numerous pathogenic fungi and their role in the first stages of infection has been established. In this study, we identified 18 LysM genes in the P. expansum genome. Amino acid sequence analysis indicated that P. expansum LysM proteins belong to a clade of fungal-specific LysM. Eleven of the discovered LysM genes were found to have secretory pathway signal peptide, among them, 4 (PeLysM1 PeLysM2, PeLysM3 and PeLysM4) were found to be highly expressed during the infection and development of decay of apple fruit. Effect of targeted deletion of the four putative PeLysM effectors on the growth and pathogenicity was studied. Possible interactions of PeLysM with host proteins was investigated using the yeast-two-hybrid system.
Bacillus subtilis based-formulation for the control of postbloom fruit drop of citrus.
Klein, Mariana Nadjara; da Silva, Aline Caroline; Kupper, Katia Cristina
2016-12-01
Postbloom fruit drop (PFD) caused by Colletotrichum acutatum affects flowers and causes early fruit drop in all commercial varieties of citrus. Biological control with the isolate ACB-69 of Bacillus subtilis has been considered as a potential method for controlling this disease. This study aimed to develop and optimize a B. subtilis based-formulation with a potential for large-scale applications and evaluate its effect on C. acutatum in vitro and in vivo. Bacillus subtilis based-formulations were developed using different carrier materials, and their ability to control PFD was evaluated. The results of the assays led to the selection of the B. subtilis based-formulation with talc + urea (0.02 %) and talc + ammonium molybdate (1 mM), which inhibited mycelial growth and germination of C. acutatum. Studies with detached citrus flowers showed that the formulations were effective in controlling the pathogen. In field conditions, talc + urea (0.02 %) provided 73 % asymptomatic citrus flowers and 56 % of the average number of effective fruit (ANEF), equating with fungicide treatment. On the contrary, non-treated trees had 8.8 % of asymptomatic citrus flowers and 0.83 % ANEF. The results suggest that B. subtilis based-formulations with talc as the carrier supplemented with a nitrogen source had a high potential for PFD control.
Control of pome and stone fruit virus diseases.
Barba, Marina; Ilardi, Vincenza; Pasquini, Graziella
2015-01-01
Many different systemic pathogens, including viruses, affect pome and stone fruits causing diseases with adverse effects in orchards worldwide. The significance of diseases caused by these pathogens on tree health and fruit shape and quality has resulted in the imposition of control measures both nationally and internationally. Control measures depend on the identification of diseases and their etiological agents. Diagnosis is the most important aspect of controlling fruit plant viruses. Early detection of viruses in fruit trees or in the propagative material is a prerequisite for their control and to guarantee a sustainable agriculture. Many quarantine programs are in place to reduce spread of viruses among countries during international exchange of germplasm. All these phytosanitary measures are overseen by governments based on agreements produced by international organizations. Also certification schemes applied to fruit trees allow the production of planting material of known variety and plant health status for local growers by controlling the propagation of pathogen-tested mother plants. They ensure to obtain propagative material not only free of "quarantine" organisms under the national legislation but also of important "nonquarantine" pathogens. The control of insect vectors plays an important role in the systemic diseases management, but it must be used together with other control measures as eradication of infected plants and use of certified propagation material. Apart from the control of the virus vector and the use of virus-free material, the development of virus-resistant cultivars appears to be the most effective approach to achieve control of plant viruses, especially for perennial crops that are more exposed to infection during their long life span. The use of resistant or tolerant cultivars and/or rootstocks could be potentially the most important aspect of virus disease management, especially in areas in which virus infections are endemic. The conventional breeding for virus-tolerant or resistant fruit tree cultivars using available germplasm is a long-term strategy, and the development and production of these cultivars may take decades, if successful. Genetic engineering allows the introduction of specific DNA sequences offering the opportunity to obtain existing fruit tree cultivars improved for the desired resistance trait. Unfortunately, genetic transformation of pome and stone fruits is still limited to few commercial genotypes. Research carried out and the new emerging biotechnological approaches to obtain fruit tree plants resistant or tolerant to viruses are discussed. © 2015 Elsevier Inc. All rights reserved.
Hampton, Emily; Koski, Carissa; Barsoian, Olivia; Faubert, Heather; Cowles, Richard S; Alm, Steven R
2014-10-01
Use of early ripening highbush blueberry cultivars to avoid infestation and mass trapping were evaluated for managing spotted wing drosophila, Drosophila suzukii (Matsumura). Fourteen highbush blueberry cultivars were sampled for spotted wing drosophila infestation. Most 'Earliblue', 'Bluetta', and 'Collins' fruit were harvested before spotted wing drosophila oviposition commenced, and so escaped injury. Most fruit from 'Bluejay', 'Blueray', and 'Bluehaven' were also harvested before the first week of August, after which spotted wing drosophila activity led to high levels of blueberry infestation. In a separate experiment, damage to cultivars was related to the week in which fruit were harvested, with greater damage to fruit observed as the season progressed. Attractant traps placed within blueberry bushes increased nearby berry infestation by 5%, irrespective of cultivar and harvest date. The significant linear reduction in infestation with increasing distance from the attractant trap suggests that traps are influencing fly behavior to at least 5.5 m. Insecticides applied to the exterior of traps, compared with untreated traps, revealed that only 10-30% of flies visiting traps enter the traps and drown. Low trap efficiency may jeopardize surrounding fruits by increasing local spotted wing drosophila activity. To protect crops, traps for mass trapping should be placed in a perimeter outside fruit fields and insecticides need to be applied to the surface of traps or on nearby fruit to function as an attract-and-kill strategy. © 2014 Entomological Society of America.
Sabater, Agustín G; Ribot, Joan; Priego, Teresa; Vazquez, Itxaso; Frank, Sonja; Palou, Andreu; Buchwald-Werner, Sybille
2017-01-01
The aim of this study was to gain more insight into the beneficial effects of mango fruit powder on the early metabolic adverse effects of a high-fat diet. The progressive dose-response effects of mango fruit powder on body composition, circulating parameters, and the expression of genes related to fatty acid oxidation and insulin sensitivity in key tissues were studied in mice fed a moderate (45%) high-fat diet. Findings suggest that mango fruit powder exerts physiological protective effects in the initial steps of insulin resistance and hepatic lipid accumulation induced by a high-fat diet in mice. Moreover, AMPK and SIRT1 appear as key regulators of the observed improvement in fatty acid oxidation capacity, as well as of the improved insulin sensitivity and the increased glucose uptake and metabolism through the glycolytic pathway capacity in liver and skeletal muscle. In summary, this study provides evidence that the functional food ingredient (CarelessTM) from mango fruit prevents early metabolic alterations caused by a high-fat diet in the initial stages of the metabolic syndrome. © 2017 The Author(s). Published by S. Karger AG, Basel.
Dried fruits quality assessment by hyperspectral imaging
NASA Astrophysics Data System (ADS)
Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe
2012-05-01
Dried fruits products present different market values according to their quality. Such a quality is usually quantified in terms of freshness of the products, as well as presence of contaminants (pieces of shell, husk, and small stones), defects, mould and decays. The combination of these parameters, in terms of relative presence, represent a fundamental set of attributes conditioning dried fruits humans-senses-detectable-attributes (visual appearance, organolectic properties, etc.) and their overall quality in terms of marketable products. Sorting-selection strategies exist but sometimes they fail when a higher degree of detection is required especially if addressed to discriminate between dried fruits of relatively small dimensions and when aiming to perform an "early detection" of pathogen agents responsible of future moulds and decays development. Surface characteristics of dried fruits can be investigated by hyperspectral imaging (HSI). In this paper, specific and "ad hoc" applications addressed to propose quality detection logics, adopting a hyperspectral imaging (HSI) based approach, are described, compared and critically evaluated. Reflectance spectra of selected dried fruits (hazelnuts) of different quality and characterized by the presence of different contaminants and defects have been acquired by a laboratory device equipped with two HSI systems working in two different spectral ranges: visible-near infrared field (400-1000 nm) and near infrared field (1000-1700 nm). The spectra have been processed and results evaluated adopting both a simple and fast wavelength band ratio approach and a more sophisticated classification logic based on principal component (PCA) analysis.
Deficit irrigation strategies combined with controlled atmosphere preserve quality in early peaches.
Falagán, Natalia; Artés, Francisco; Gómez, Perla A; Artés-Hernández, Francisco; Conejero, Wenceslao; Aguayo, Encarna
2015-10-01
Due to the water scarcity in the Mediterranean countries, irrigation must be optimized while keeping fruit quality. The effect of deficit irrigation strategies on changes in quality parameters of the early "Flordastar" peaches was studied. The deficit irrigation was programmed according to signal intensity of the maximum daily trunk shrinkage; deficit irrigation plants were irrigated to maintain maximum daily trunk shrinkage signal intensity values close to 1.4 or 1.3 in the case of DI1 or DI2 plants, respectively. Results were compared to a control watered at 150% crop evapotranspiration. Fruits were stored up to 14 days at 0 ℃ and 95% Relative Humidity (RH) in air or in controlled atmosphere (controlled atmosphere; 3-4 kPa O2 and 12-14 kPa CO2), followed by a retail sale period of 4 days at 15 ℃ and 90-95% Relative Humidity in air. Weight losses were lower in controlled atmosphere stored peaches from deficit irrigation. Air-stored fruits developed a more intense red color due to a faster ripening, which was not affected by the type of watering. At harvest, deficit irrigation peaches showed higher soluble solids content, which provided a better sensory evaluation. The soluble phenolic content was initially higher (55.26 ± 0.18 mg gallic acid equivalents/100 g fresh weight) and more stable throughout postharvest life in DI1 fruits than in those from the other irrigation treatments. Concerning vitamin C, control fruits at harvest showed higher ascorbic acid than dehydroascorbic acid content (5.43 versus 2.43 mg/100 g fresh weight, respectively), while water stressed peaches showed the opposite results. The combination of DI2 and controlled atmosphere storage allowed saving a significant amount of water and provided peaches with good overall quality, maintaining the bioactive compounds analyzed. © The Author(s) 2014.
USDA-ARS?s Scientific Manuscript database
Dr. Hugh Daubeny had a productive career as a strawberry and red raspberry breeder with Agriculture and Agri-Food Canada. As part of that career, he could be considered the “patron saint” of the Rubus-Ribes symposia as he was instrumental in the early development, hosted two symposia, attended all o...
NASA Technical Reports Server (NTRS)
Graham, Thomas; Wheeler, Raymond
2017-01-01
Thigmomorphogenesis can be utilized to improve volume utilization efficiency in peppers (Capsicum annum cv. California Wonder), a candidate crop for fresh food production in space. The effect occurred primarily through a reduction in average plant height. Reductions in vegetative growth metrics during the juvenile growth phase (growth leading up to and including early anthesis) were not observed during the mature or fruiting phase, with the notable exception of reduced plant height. Early flower production and fruit set was reduced under MS; however, the total edible biomass was not reduced, with MS plants producing fewer but larger fruits. The overall reduction in plant height due to MS (Mechanical Stimulation) was sufficient to realize theoretical improvements in VUE (Volume Use Efficiency) for large vertical farming systems. The reduced heights observed could improve VUE in single tier spaceflight hardware (e.g., Veggie; Massa 2016 (this issue)) in that crops that would not normally fit in these spaceflight systems may be accommodated if MS can be applied. Although the potential for using MS to induce thigmomorphogenic phenotypes has long been appreciated, it is only recently that the growth systems themselves could take advantage of the modified crop architecture associated with MS. It is with this in mind that renewed attention should be given to developing procedures for environmentally modifying crops for spaceflight applications.
Josse, Eve-Marie; Simkin, Andrew J.; Gaffé, Joël; Labouré, Anne-Marie; Kuntz, Marcel; Carol, Pierre
2000-01-01
The Arabidopsis IMMUTANS gene encodes a plastid homolog of the mitochondrial alternative oxidase, which is associated with phytoene desaturation. Upon expression in Escherichia coli, this protein confers a detectable cyanide-resistant electron transport to isolated membranes. In this assay this activity is sensitive to n-propyl-gallate, an inhibitor of the alternative oxidase. This protein appears to be a plastid terminal oxidase (PTOX) that is functionally equivalent to a quinol:oxygen oxidoreductase. This protein was immunodetected in achlorophyllous pepper (Capsicum annuum) chromoplast membranes, and a corresponding cDNA was cloned from pepper and tomato (Lycopersicum esculentum) fruits. Genomic analysis suggests the presence of a single gene in these organisms, the expression of which parallels phytoene desaturase and ζ-carotene desaturase gene expression during fruit ripening. Furthermore, this PTOX gene is impaired in the tomato ghost mutant, which accumulates phytoene in leaves and fruits. These data show that PTOX also participates in carotenoid desaturation in chromoplasts in addition to its role during early chloroplast development. PMID:10938359
Cancino, Jorge; Ruíz, Lía; Viscarret, Mariana; Sivinski, John; Hendrichs, Jorge
2012-01-01
The use of irradiated hosts in mass rearing tephritid parasitoids represents an important technical advance in fruit fly augmentative biological control. Irradiation assures that fly emergence is avoided in non-parasitized hosts, while at the same time it has no appreciable effect on parasitoid quality, i.e., fecundity, longevity and flight capability. Parasitoids of fruit fly eggs, larvae and pupae have all been shown to successfully develop in irradiated hosts, allowing a broad range of species to be shipped and released without post-rearing delays waiting for fly emergence and costly procedures to separate flies and wasps. This facilitates the early, more effective and less damaging shipment of natural enemies within hosts and across quarantined borders. In addition, the survival and dispersal of released parasitoids can be monitored by placing irradiated sentinel-hosts in the field. The optimal radiation dosages for host-sterility and parasitoid-fitness differ among species, and considerable progress has been made in integrating radiation into a variety of rearing procedures. PMID:26466729
High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development.
Daccord, Nicolas; Celton, Jean-Marc; Linsmith, Gareth; Becker, Claude; Choisne, Nathalie; Schijlen, Elio; van de Geest, Henri; Bianco, Luca; Micheletti, Diego; Velasco, Riccardo; Di Pierro, Erica Adele; Gouzy, Jérôme; Rees, D Jasper G; Guérif, Philippe; Muranty, Hélène; Durel, Charles-Eric; Laurens, François; Lespinasse, Yves; Gaillard, Sylvain; Aubourg, Sébastien; Quesneville, Hadi; Weigel, Detlef; van de Weg, Eric; Troggio, Michela; Bucher, Etienne
2017-07-01
Using the latest sequencing and optical mapping technologies, we have produced a high-quality de novo assembly of the apple (Malus domestica Borkh.) genome. Repeat sequences, which represented over half of the assembly, provided an unprecedented opportunity to investigate the uncharacterized regions of a tree genome; we identified a new hyper-repetitive retrotransposon sequence that was over-represented in heterochromatic regions and estimated that a major burst of different transposable elements (TEs) occurred 21 million years ago. Notably, the timing of this TE burst coincided with the uplift of the Tian Shan mountains, which is thought to be the center of the location where the apple originated, suggesting that TEs and associated processes may have contributed to the diversification of the apple ancestor and possibly to its divergence from pear. Finally, genome-wide DNA methylation data suggest that epigenetic marks may contribute to agronomically relevant aspects, such as apple fruit development.
Susceptibility of blackberry flower parts to subfreezing temperatures
USDA-ARS?s Scientific Manuscript database
Injury of tight buds, open flowers and green fruit often occur in fruit crops in later winter to early spring frosts. In this study, freezing tolerance of ‘Triple Crown’ blackberry flowers at various maturity ranging from tight bud to green drupe stage was determined using two freezing methods. On...
Jones, F.A; Comita, L.S
2008-01-01
Tropical trees may show positive density dependence in fruit set and maturation due to pollen limitation in low-density populations. However, pollen from closely related individuals in the local neighbourhood might reduce fruit set or increase fruit abortion in self-incompatible tree species. We investigated the role of neighbourhood density and genetic relatedness on individual fruit set and abortion in the neotropical tree Jacaranda copaia in a large forest plot in central Panama. Using nested neighbourhood models, we found a strong positive effect of increased conspecific density on fruit set and maturation. However, high neighbourhood genetic relatedness interacted with density to reduce total fruit set and increase the proportion of aborted fruit. Our results imply a fitness advantage for individuals growing in high densities as measured by fruit set, but realized fruit set is lowered by increased neighbourhood relatedness. We hypothesize that the mechanism involved is increased visitation by density-dependent invertebrate pollinators in high-density populations, which increases pollen quantity and carry-over and increases fruit set and maturation, coupled with self-incompatibility at early and late stages due to biparental inbreeding that lowers fruit set and increases fruit abortion. Implications for the reproductive ecology and conservation of tropical tree communities in continuous and fragmented habitats are discussed. PMID:18713714
Flaishman, Moshe A; Peles, Yuval; Dahan, Yardena; Milo-Cochavi, Shira; Frieman, Aviad; Naor, Amos
2015-04-01
Temperature is one of the most significant factors affecting physiological and biochemical aspects of fruit development. Current and progressing global warming is expected to change climate in the traditional deciduous fruit tree cultivation regions. In this study, 'Golden Delicious' trees, grown in a controlled environment or commercial orchard, were exposed to different periods of heat treatment. Early fruitlet development was documented by evaluating cell number, cell size and fruit diameter for 5-70 days after full bloom. Normal activities of molecular developmental and growth processes in apple fruitlets were disrupted under daytime air temperatures of 29°C and higher as a result of significant temporary declines in cell-production and cell-expansion rates, respectively. Expression screening of selected cell cycle and cell expansion genes revealed the influence of high temperature on genetic regulation of apple fruitlet development. Several core cell-cycle and cell-expansion genes were differentially expressed under high temperatures. While expression levels of B-type cyclin-dependent kinases and A- and B-type cyclins declined moderately in response to elevated temperatures, expression of several cell-cycle inhibitors, such as Mdwee1, Mdrbr and Mdkrps was sharply enhanced as the temperature rose, blocking the cell-cycle cascade at the G1/S and G2/M transition points. Moreover, expression of several expansin genes was associated with high temperatures, making them potentially useful as molecular platforms to enhance cell-expansion processes under high-temperature regimes. Understanding the molecular mechanisms of heat tolerance associated with genes controlling cell cycle and cell expansion may lead to the development of novel strategies for improving apple fruit productivity under global warming. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Neves, Robério C. S.; Colares, Felipe; Torres, Jorge B.; Santos, Roberta L.; Bastos, Cristina S.
2014-01-01
Because boll weevil, Anthonomus grandis Boh. develops partially protected inside cotton fruiting structures, once they become established in a field, they are difficult to control, even with nearly continuous insecticide spray. During two cotton-growing seasons in the Semiárido region of Pernambuco State, Brazil, we tested the use of kaolin sprays to disrupt plant colonization through visual cue interference, combined with removal of fallen fruiting bodies to restrain boll weevil population growth after colonization. Kaolin spray under non-choice trials resulted in 2.2×, 4.4×, and 8.6× fewer weevils, oviposition and feeding punctures on kaolin-treated plants, respectively, despite demonstrating no statistical differences for colonization and population growth. Early season sprays in 2010 occurred during a period of rainfall, and hence, under our fixed spraying schedule no significant differences in boll weevil colonization were detected. In 2011, when kaolin sprays were not washed out by rain, delayed boll weevil colonization and reduction on attacked fruiting bodies were observed in eight out of 12 evaluations, and kaolin-treated plots had 2.7× fewer damaged fruiting bodies compared to untreated plots. Adoption of simple measures such as removal of fallen fruiting bodies and prompt reapplication of kaolin sprays after rainfall show promise in reducing boll weevil infestation. PMID:26462942
Neves, Robério C S; Colares, Felipe; Torres, Jorge B; Santos, Roberta L; Bastos, Cristina S
2014-10-31
Because boll weevil, Anthonomus grandis Boh. develops partially protected inside cotton fruiting structures, once they become established in a field, they are difficult to control, even with nearly continuous insecticide spray. During two cotton-growing seasons in the Semiárido region of Pernambuco State, Brazil, we tested the use of kaolin sprays to disrupt plant colonization through visual cue interference, combined with removal of fallen fruiting bodies to restrain boll weevil population growth after colonization. Kaolin spray under non-choice trials resulted in 2.2×, 4.4×, and 8.6× fewer weevils, oviposition and feeding punctures on kaolin-treated plants, respectively, despite demonstrating no statistical differences for colonization and population growth. Early season sprays in 2010 occurred during a period of rainfall, and hence, under our fixed spraying schedule no significant differences in boll weevil colonization were detected. In 2011, when kaolin sprays were not washed out by rain, delayed boll weevil colonization and reduction on attacked fruiting bodies were observed in eight out of 12 evaluations, and kaolin-treated plots had 2.7× fewer damaged fruiting bodies compared to untreated plots. Adoption of simple measures such as removal of fallen fruiting bodies and prompt reapplication of kaolin sprays after rainfall show promise in reducing boll weevil infestation.
The Forms and Sources of Cytokinins in Developing White Lupine Seeds and Fruits1
Emery, R.J. Neil; Ma, Qifu; Atkins, Craig A.
2000-01-01
A comprehensive range of cytokinins (CK) was identified and quantified by gas chromatography-mass spectrometry in tissues of and in xylem and phloem serving developing white lupine (Lupinus albus) fruits. Analyses were initiated at anthesis and included stages of podset, embryogenesis, and seed filling up to physiological maturation 77 d post anthesis (DPA). In the first 10 DPA, fertilized ovaries destined to set pods accumulated CK. The proportion of cis-CK:trans-CK isomers was initially 10:1 but declined to less than 1:1. In ovaries destined to abort, the ratio of cis-isomers to trans-isomers remained high. During early podset, accumulation of CK (30–40 pmol ovary−1) was accounted for by xylem and phloem translocation, both containing more than 90% cis-isomers. During embryogenesis and early seed filling (40–46 DPA), translocation accounted for 1% to 14% of the increases of CK in endosperm (20 nmol fruit−1) and seed coat (15 nmol fruit−1), indicating synthesis in situ. High CK concentrations in seeds (0.6 μmol g−1 fresh weight) were transient, declining rapidly to less than 1% of maximum levels by physiological maturity. These data pose new questions about the localization and timing of CK synthesis, the significance of translocation, and the role(s) of CK forms in reproductive development. PMID:10938375
DOE Office of Scientific and Technical Information (OSTI.GOV)
Facteau, T.J.; Rowe, K.E.
1976-06-01
Aqueous ammonium fluoride (NH/sub 4/F) sprays on Early Improved Elberta peaches (Prunus persica (L.) Batsch) resulted in increased O/sub 2/ consumption of suture tissue and inconsistent changes in O/sub 2/ consumption of dorsal tissue as the spray concentration was increased. Flesh firmness on the suture side of treated fruit was less than non-sprayed fruit and decreased as either the NH/sub 4/F spray concentration or number of sprays increased. The effect of spray on the dorsal side differed from year to year. Levels of fluoride (F) in the fruit tissue were associated with F concentration and number of F sprays appliedmore » only within the same year. 3 references, 1 table.« less
Ziv, Dafna; Zviran, Tali; Zezak, Oshrat; Samach, Alon; Irihimovitch, Vered
2014-01-01
In many perennials, heavy fruit load on a shoot decreases the ability of the plant to undergo floral induction in the following spring, resulting in a pattern of crop production known as alternate bearing. Here, we studied the effects of fruit load on floral determination in ‘Hass' avocado (Persea americana). De-fruiting experiments initially confirmed the negative effects of fruit load on return to flowering. Next, we isolated a FLOWERING LOCUS T-like gene, PaFT, hypothesized to act as a phloem-mobile florigen signal and examined its expression profile in shoot tissues of on (fully loaded) and off (fruit-lacking) trees. Expression analyses revealed a strong peak in PaFT transcript levels in leaves of off trees from the end of October through November, followed by a return to starting levels. Moreover and concomitant with inflorescence development, only off buds displayed up-regulation of the floral identity transcripts PaAP1 and PaLFY, with significant variation being detected from October and November, respectively. Furthermore, a parallel microscopic study of off apical buds revealed the presence of secondary inflorescence axis structures that only appeared towards the end of November. Finally, ectopic expression of PaFT in Arabidopsis resulted in early flowering transition. Together, our data suggests a link between increased PaFT expression observed during late autumn and avocado flower induction. Furthermore, our results also imply that, as in the case of other crop trees, fruit-load might affect flowering by repressing the expression of PaFT in the leaves. Possible mechanism(s) by which fruit crop might repress PaFT expression, are discussed. PMID:25330324
Ziv, Dafna; Zviran, Tali; Zezak, Oshrat; Samach, Alon; Irihimovitch, Vered
2014-01-01
In many perennials, heavy fruit load on a shoot decreases the ability of the plant to undergo floral induction in the following spring, resulting in a pattern of crop production known as alternate bearing. Here, we studied the effects of fruit load on floral determination in 'Hass' avocado (Persea americana). De-fruiting experiments initially confirmed the negative effects of fruit load on return to flowering. Next, we isolated a FLOWERING LOCUS T-like gene, PaFT, hypothesized to act as a phloem-mobile florigen signal and examined its expression profile in shoot tissues of on (fully loaded) and off (fruit-lacking) trees. Expression analyses revealed a strong peak in PaFT transcript levels in leaves of off trees from the end of October through November, followed by a return to starting levels. Moreover and concomitant with inflorescence development, only off buds displayed up-regulation of the floral identity transcripts PaAP1 and PaLFY, with significant variation being detected from October and November, respectively. Furthermore, a parallel microscopic study of off apical buds revealed the presence of secondary inflorescence axis structures that only appeared towards the end of November. Finally, ectopic expression of PaFT in Arabidopsis resulted in early flowering transition. Together, our data suggests a link between increased PaFT expression observed during late autumn and avocado flower induction. Furthermore, our results also imply that, as in the case of other crop trees, fruit-load might affect flowering by repressing the expression of PaFT in the leaves. Possible mechanism(s) by which fruit crop might repress PaFT expression, are discussed.
Wu, Zhencai; Burns, Jacqueline K
2004-07-01
beta-galactosidases have been detected in a wide range of plants and are characterized by their ability to hydrolyse terminal non-reducing beta-D-galactosyl residues from beta-D-galactosides. These enzymes have been detected in a wide range of plant organs and tissues. In a search for differentially expressed genes during the abscission process in citrus, sequences encoding beta-galactosidase were identified. Three cDNA fragments of a beta-galactosidase gene were isolated from a cDNA subtraction library constructed from mature fruit abscission zones 48 h after the application of a mature fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMN-pyrazole). Based on sequence information derived from these fragments, a full-length cDNA of 2847 nucleotides (GenBank accession number AY029198) encoding beta-galactosidase was isolated from mature fruit abscission zones by 5'- and 3'-RACE approaches. The beta-galactosidase cDNA encoded a protein of 737 amino acid residues with a calculated molecular weight of 82 kDa. The deduced protein was highly homologous to plant beta-galactosidases expressed in fruit ripening. Southern blot analysis demonstrated that at least two closely related beta-galactosidase genes were present in 'Valencia' orange. Temporal expression patterns in mature fruit abscission zones indicated beta-galactosidase mRNA was detected 48 h after treatment of CMN-pyrazole and ethephon in mature fruit abscission zones. beta-galactosidase transcripts were detected in leaf abscission zones only after ethephon application. The citrus beta-galactosidase was expressed in stamens and petals of fully opened flowers and young fruitlets. The results suggest that this beta-galactosidase may play a role during abscission as well as early growth and development processes in flowers and fruitlets.
Romo-Palafox, Maria Jose; Ranjit, Nalini; Sweitzer, Sara J; Roberts-Gray, Cindy; Byrd-Williams, Courtney E; Briley, Margaret E; Hoelscher, Deanna M
2018-02-16
Sweet drinks early in life could predispose to lifelong consumption, and the beverage industry does not clearly define fruit drinks as part of the sweet drink category. To ascertain the relationship between beverage selection and dietary quality of the lunches packed for preschool-aged children evaluated using the Healthy Eating Index-2010. Foods packed by parents (n=607) were observed at 30 early care and education centers on two nonconsecutive days. Three-level regression models were used to examine the dietary quality of lunches by beverage selection and the dietary quality of the lunch controlling for the nutrient composition of the beverage by removing it from the analysis. Fruit drinks were included in 25% of parent-packed lunches, followed by 100% fruit juice (14%), milk (14%), and flavored milk (3.7%). Lunches with plain milk had the highest Healthy Eating Index-2010 scores (59.3) followed by lunches with 100% fruit juice (56.9) and flavored milk (53.2). Lunches with fruit drinks had the lowest Healthy Eating Index-2010 scores at 48.6. After excluding the nutrient content of the beverage, the significant difference between lunches containing milk and flavored milk persisted (+5.5), whereas the difference between fruit drinks and 100% fruit juice did not. Dietary quality is associated with the type of beverage packed and these differences hold when the lunch is analyzed without the nutrient content of the beverage included. Copyright © 2018 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Nollen, Nicole L.; Hutcheson, Tresza; Carlson, Susan; Rapoff, Michael; Goggin, Kathy; Mayfield, Carlene; Ellerbeck, Edward
2013-01-01
Mobile technologies hold promise for improving diet and physical activity, but little attention is given to creating programs that adolescents like and will use. This study developed a personal digital assistant (PDA) program to promote increased intake of fruits and vegetables (FV) in predominately low-income, ethnic minority girls. This study used a three-phase community-engaged process, including (i) engagement of a Student Advisory Board (SAB) to determine comfort with PDAs; (ii) early testing of Prototype I and rapid re-design by the SAB and (iii) feasibility testing of Prototype II in a new sample of girls. Phase 1 results showed that girls were comfortable with the PDA. Testing of Prototype I in Phase 2 showed that acceptability was mixed, with girls responding to 47.3% of the prompts. Girls wanted more reminders, accountability in monitoring FV, help in meeting daily goals and free music downloads based on program use. The PDA was reprogrammed and testing of Prototype II in Phase 3 demonstrated marked improvement in use (78.3%), increases in FV intake (1.8 ± 2.6 daily servings) and good overall satisfaction. Findings suggest that mobile technology designed with the early input of youth is a promising way to improve adolescent health behaviors. PMID:22949499
The biospeckle method for early damage detection of fruits
NASA Astrophysics Data System (ADS)
Yan, Lei; Liu, Jiaxin; Men, Sen
2017-07-01
In the field of fruits damage assessment, biospeckle activity is considered relevant to quality properties of plants, such us damage, aging, or diseases. In this paper, biospeckle technique was applied to identify the early bruising of apples. Then a total of 50 undamaged apples were determined to be artificially bruised as samples. Three methods (Fujii, GD, and LSTCA) were used to extract effective information from these speckle images for measuring the intensity of biospeckle activity. The results showed that for all of three methods, the biospeckle activities of the undamaged areas in apple were similar; after the hit, the damaged area showed a lower biospeckle activity. It can be concluded that early bruising can be identified by biospeckle technique.
USDA-ARS?s Scientific Manuscript database
Chilling injury, as a physiological disorder in cucumbers, occurs after the fruit has been subjected to low temperatures. It is thus desirable to detect chilling injury at early stages and/or remove chilling injured cucumbers during sorting and grading. This research was aimed to apply hyperspectral...
Social-Cognitive Correlates of Fruit and Vegetable Consumption in Minority and Non-Minority Youth
ERIC Educational Resources Information Center
Franko, Debra L.; Cousineau, Tara M.; Rodgers, Rachel F.; Roehrig, James P.; Hoffman, Jessica A.
2013-01-01
Objective: Inadequate fruit and vegetable (FV) consumption signals a need for identifying predictors and correlates of intake, particularly in diverse adolescents. Design: Participants completed an on-line assessment in early 2010. Setting: Computer classrooms in 4 high schools. Participants: One hundred twenty-two Caucasian and 125 minority…
Formulating a natural colorant containing wax for a one-step color-add application for fresh citrus
USDA-ARS?s Scientific Manuscript database
In Florida, early season citrus fruits usually reach full maturity in terms of internal quality while their peel often does not turn orange in color after degreening due to insufficient buildup of carotenoids. For huanglongbing-affected orange trees, the fruit may never turn orange the entire harves...
The Fruit Group. The Food Guide Pyramid.
ERIC Educational Resources Information Center
Frost, Helen
This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of using the Food Guide Pyramid and eating plenty of servings of fruit. Colorful photographs support early readers in understanding the text. The repetition of words and…
Biochemistry and Cell Wall Changes Associated with Noni (Morinda citrifolia L.) Fruit Ripening.
Cárdenas-Coronel, Wendy G; Carrillo-López, Armando; Vélez de la Rocha, Rosabel; Labavitch, John M; Báez-Sañudo, Manuel A; Heredia, José B; Zazueta-Morales, José J; Vega-García, Misael O; Sañudo-Barajas, J Adriana
2016-01-13
Quality and compositional changes were determined in noni fruit harvested at five ripening stages, from dark-green to thaslucent-grayish. Fruit ripening was accompanied by acidity and soluble solids accumulation but pH diminution, whereas the softening profile presented three differential steps named early (no significant softening), intermediate (significant softening), and final (dramatic softening). At early step the extensive depolymerization of hydrosoluble pectins and the significantly increment of pectinase activities did not correlate with the slight reduction in firmness. The intermediate step showed an increment of pectinases and hemicellulases activities. The final step was accompanied by the most significant reduction in the yield of alcohol-insoluble solids as well as in the composition of uronic acids and neutral sugars; pectinases increased their activity and depolymerization of hemicellulosic fractions occurred. Noni ripening is a process conducted by the coordinated action of pectinases and hemicellulases that promote the differential dissasembly of cell wall polymers.
España, Laura; Heredia-Guerrero, José A; Segado, Patricia; Benítez, José J; Heredia, Antonio; Domínguez, Eva
2014-05-01
In this study, growth-dependent changes in the mechanical properties of the tomato (Solanum lycopersicum) cuticle during fruit development were investigated in two cultivars with different patterns of cuticle growth and accumulation. The mechanical properties were determined in uniaxial tensile tests using strips of isolated cuticles. Changes in the functional groups of the cuticle chemical components were analysed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The early stages of fruit growth are characterized by an elastic cuticle, and viscoelastic behaviour only appeared at the beginning of cell enlargement. Changes in the cutin:polysaccharide ratio during development affected the strength required to achieve viscoelastic deformation. The increase in stiffness and decrease in extensibility during ripening, related to flavonoid accumulation, were accompanied by an increase in cutin depolymerization as a result of a reduction in the overall number of ester bonds. Quantitative changes in cuticle components influence the elastic/viscoelastic behaviour of the cuticle. The cutin:polysaccharide ratio modulates the stress required to permanently deform the cuticle and allow cell enlargement. Flavonoids stiffen the elastic phase and reduce permanent viscoelastic deformation. Ripening is accompanied by a chemical cleavage of cutin ester bonds. An infrared (IR) band related to phenolic accumulation can be used to monitor changes in the cutin esterification index. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro
2015-01-01
Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene. PMID:25888617
Gnan, Sebastian; Marsh, Tom; Kover, Paula X
2017-01-01
Leaves are thought to be the primary carbon source for reproduction in plants, so a positive relationship between vegetative size and reproductive output is expected, establishing a trade-off between time to reproduction and reproductive output. A common response to higher temperatures due to climate changes is the induction of earlier transition into reproduction. Thus, in annual plants, earlier transition into flowering can potentially constrain plant size and reduce seed production. However, trade-offs between early reproduction and fitness are not always observed, suggesting mechanisms to escape the constraints of early flowering do exist. Here, we test whether inflorescence photosynthesis contribution to the reproductive output of Arabidopsis thaliana can offset the cost of early reproduction. We followed the development, growth rate and fitness of 15 accessions, and removed all rosette leaves at flowering (prior to the completion of inflorescence development or any fruit production) in half of the plants to determine the ability of inflorescences to maintain fitness in the absence of leaves. Although leaf removal significantly reduced fruit number, seed weight and plant height, even the most severely impacted accessions maintained 35% of their fitness with the inflorescence as the sole photosynthetic organ; and some accessions experienced no reduction in fitness. Differences between accessions in their ability to maintain fitness after leaf removal is best explained by earlier flowering time and the ability to maintain as many or more branches after leaf removal as in the control treatment. Although earlier flowering does constrain plant vegetative size, we found that inflorescence photosynthesis can significantly contribute to seed production, explaining why early flowering plants can maintain high fitness despite a reduction in vegetative size. Thus, plants can be released from the usually assumed trade-offs associated with earlier reproduction, and selection on inflorescence traits can mediate the impact of climate change on phenology.
Wang, Jiabao; Liu, Baohua; Xiao, Qian; Li, Huanling; Sun, Jinhua
2014-01-01
Polyphenol oxidase (PPO) plays a key role in the postharvest pericarp browning of litchi fruit, but its underlying mechanism remains unclear. In this study, we cloned the litchi PPO gene (LcPPO, JF926153), and described its expression patterns. The LcPPO cDNA sequence was 2120 bps in length with an open reading frame (ORF) of 1800 bps. The ORF encoded a polypeptide with 599 amino acid residues, sharing high similarities with other plant PPO. The DNA sequence of the ORF contained a 215-bp intron. After carrying out quantitative RT-PCR, we proved that the LcPPO expression was tissue-specific, exhibiting the highest level in the flower and leaf. In the pericarp of newly-harvested litchi fruits, the LcPPO expression level was relatively high compared with developing fruits. Regardless of the litchi cultivar and treatment conditions, the LcPPO expression level and the PPO activity in pericarp of postharvest fruits exhibited the similar variations. When the fruits were stored at room temperature without packaging, all the pericarp browning index, PPO activity and the LcPPO expression level of litchi pericarps were reaching the highest in Nandaowuhe (the most rapid browning cultivar), but the lowest in Ziniangxi (the slowest browning cultivar) within 2 d postharvest. Preserving the fruits of Feizixiao in 0.2-μm plastic bag at room temperature would decrease the rate of pericarp water loss, delay the pericarp browning, and also cause the reduction of the pericarp PPO activity and LcPPO expression level within 3 d postharvest. In addition, postharvest storage of Feizixiao fruit stored at 4°C delayed the pericarp browning while decreasing the pericarp PPO activity and LcPPO expression level within 2 d after harvest. Thus, we concluded that the up-regulation of LcPPO expression in pericarp at early stage of postharvest storage likely enhanced the PPO activity and further accelerated the postharvest pericarp browning of litchi fruit. PMID:24763257
USDA-ARS?s Scientific Manuscript database
Monilinia fructicola is a world-wide economically important pathogen of stone fruits causing brown rot before and after harvest. In early summer of 2016, signs of Monilinia spp. decay were observed on strawberry fruit, harvested from organically grown plants in a high tunnel located in the middle o...
USDA-ARS?s Scientific Manuscript database
A field study was conducted to examine the effects of nitrogen (N) rate and method of N fertilizer application on growth, yield, and fruit quality in highbush blueberry (Vaccinium corymbosum L.) during the first 4 years after planting in south-coastal BC. Nitrogen was applied at 0-150% of current pr...
Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel
2014-01-01
Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.
Early Observations on Possible Defenses by the Emerging Threat Agent Project
2011-01-01
approach would involve the following: • Seek to dissuade adversary development of new CB capabilities. Dissuasion seeks to affect the adversary’s... fruit , it would be unwise in the short term to divert much funding from the agent-specific approach to the second track. The track 2 mechanistic...agents to enhance their effectiveness – genetic manipulation of innocuous (and perhaps ubiquitous) bacteria, viruses, or fungi to make them dangerous
Fruit and Vegetable Intake During Infancy and Early Childhood
Kim, Sonia A.; Yaroch, Amy L.; Scanlon, Kelley S.
2014-01-01
OBJECTIVES: To examine the association of timing of introduction and frequency of fruit and vegetable intake during infancy with frequency of fruit and vegetable intake at age 6 years in a cohort of US children. METHODS: We analyzed data on fruit and vegetable intake during late infancy, age of fruit and vegetable introduction, and frequency of fruit and vegetable intake at 6 years from the Infant Feeding Practices Study II and the Year 6 Follow-Up (Y6FU) Study. We determined the percent of 6-year-old children consuming fruits and vegetables less than once per day and examined associations with infant fruit and vegetable intake using logistic regression modeling, controlling for multiple covariates (n = 1078). RESULTS: Based on maternal report, 31.9% of 6-year-old children consumed fruit less than once daily and 19.0% consumed vegetables less than once daily. In adjusted analyses, children who consumed fruits and vegetables less than once daily during late infancy had increased odds of eating fruits and vegetables less than once daily at age 6 years (fruit, adjusted odds ratio: 2.48; vegetables, adjusted odds ratio: 2.40). Age of introduction of fruits and vegetables was not associated with intake at age 6 years. CONCLUSIONS: Our study suggests that infrequent intake of fruits and vegetables during late infancy is associated with infrequent intake of these foods at 6 years of age. These findings highlight the importance of infant feeding guidance that encourages intake of fruits and vegetables and the need to examine barriers to fruit and vegetable intake during infancy. PMID:25183758
Fruit and vegetable intake during infancy and early childhood.
Grimm, Kirsten A; Kim, Sonia A; Yaroch, Amy L; Scanlon, Kelley S
2014-09-01
To examine the association of timing of introduction and frequency of fruit and vegetable intake during infancy with frequency of fruit and vegetable intake at age 6 years in a cohort of US children. We analyzed data on fruit and vegetable intake during late infancy, age of fruit and vegetable introduction, and frequency of fruit and vegetable intake at 6 years from the Infant Feeding Practices Study II and the Year 6 Follow-Up (Y6FU) Study. We determined the percent of 6-year-old children consuming fruits and vegetables less than once per day and examined associations with infant fruit and vegetable intake using logistic regression modeling, controlling for multiple covariates (n = 1078). Based on maternal report, 31.9% of 6-year-old children consumed fruit less than once daily and 19.0% consumed vegetables less than once daily. In adjusted analyses, children who consumed fruits and vegetables less than once daily during late infancy had increased odds of eating fruits and vegetables less than once daily at age 6 years (fruit, adjusted odds ratio: 2.48; vegetables, adjusted odds ratio: 2.40). Age of introduction of fruits and vegetables was not associated with intake at age 6 years. Our study suggests that infrequent intake of fruits and vegetables during late infancy is associated with infrequent intake of these foods at 6 years of age. These findings highlight the importance of infant feeding guidance that encourages intake of fruits and vegetables and the need to examine barriers to fruit and vegetable intake during infancy. Copyright © 2014 by the American Academy of Pediatrics.
Kähkönen, Kaisa; Rönkä, Anna; Hujo, Mika; Lyytikäinen, Arja; Nuutinen, Outi
2018-05-08
To investigate the association between sensory-based food education implemented in early childhood education and care (ECEC) centres and children's willingness to choose and eat vegetables, berries and fruit, and whether the mother's education level and children's food neophobia moderate the linkage. The cross-sectional study involved six ECEC centres that provide sensory-based food education and three reference centres. A snack buffet containing eleven different vegetables, berries and fruit was used to assess children's willingness to choose and eat the food items. The children's parents completed the Food Neophobia Scale questionnaire to assess their children's food neophobia. ECEC centres that provide sensory-based food education and reference ECEC centres in Finland. Children aged 3-5 years in ECEC (n 130) and their parents. Sensory-based food education was associated with children's willingness to choose and eat vegetables, berries and fruit. This association was stronger among the children of mothers with a low education level. A high average level of neophobia in the child group reduced the children's willingness to choose vegetables, berries and fruit. No similar tendency was observed in the group that had received sensory-based food education. Children's individual food neophobia had a negative association with their willingness to choose and eat the vegetables, berries and fruit. Child-oriented sensory-based food education seems to provide a promising method for promoting children's adoption of vegetables, berries and fruit in their diets. In future sensory food education research, more focus should be placed on the effects of the education at the group level.
Ramos-Solano, B; Garcia-Villaraco, A; Gutierrez-Mañero, F J; Lucas, J A; Bonilla, A; Garcia-Seco, D
2014-01-01
The aim of this study was two-fold: first, to characterize blackberry fruits from Rubus sp. var. Lochness along the year, and secondly, to evaluate the ability of a Pseudomonas strain (N21.4) to improve fruit yield and quality under field conditions in production greenhouses throughout the year. The strain was root or leaf inoculated to blackberry plants and fruits were harvested in each season. Nutritional parameters, antioxidant potential and bioactive contents were determined; total fruit yield was recorded. Blackberries grown under short day conditions (autumn and winter) showed significantly lower °Brix values than fruits grown under long day conditions. Interestingly, an increase in fruit °Brix, relevant for quality, was detected after bacterial challenge, together with significant and sustained increases in total phenolics and flavonoids. Improvements in inoculated fruits were more evident from October through early March, when environmental conditions are worse. In summary, N21.4 is an effective agent to increase fruit quality and production along the year in blackberry; this is an environmentally friendly approach to increase fruit quality. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Wang, Jinqiu; Sun, Li; Xie, Li; He, Yizhong; Luo, Tao; Sheng, Ling; Luo, Yi; Zeng, Yunliu; Xu, Juan; Deng, Xiuxin; Cheng, Yunjiang
2016-02-01
Fruit cuticle, which is composed of cutin and wax and biosynthesized during fruit development, plays important roles in the prevention of water loss and the resistance to pathogen infection during fruit development and postharvest storage. However, the key factors and mechanisms regarding the cuticle biosynthesis in citrus fruits are still unclear. Here, fruit cuticle of 'Newhall' navel orange (Citrus sinensis Osbeck) was studied from the stage of fruit expansion to postharvest storage from the perspectives of morphology, transcription and metabolism. The results demonstrated that cutin accumulation is synchronous with fruit expansion, while wax synthesis is synchronous with fruit maturation. Metabolic profile of fruits peel revealed that transition of metabolism of fruit peel occurred from 120 to 150 DAF and ABA was predicted to regulate citrus wax synthesis during the development of Newhall fruits. RNA-seq analysis of the peel from the above two stages manifested that the genes involved in photosynthesis were repressed, while the genes involved in the biosynthesis of wax, cutin and lignin were significantly induced at later stages. Further real-time PCR predicted that MYB transcription factor GL1-like regulates citrus fruits wax synthesis. These results are valuable for improving the fruit quality during development and storage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Fruit load governs transpiration of olive trees
Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon
2016-01-01
We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. PMID:26802540
Holb, I J; Scherm, H
2008-01-01
In a 4-year study, the incidence of various types of injuries (caused by insects, birds, growth cracks, mechanical wounding, and other, unidentified factors) was assessed in relation to brown rot development (caused by Monilinia fructigena) on fruit of three apple cultivars (Prima, Jonathan, and Mutsu) in integrated and organic blocks of two apple orchards in Hungary. In addition, populations of male codling moths (Cydia pomonella) were monitored with pheromone traps season-long in both management systems. On average, injury incidence on fruit at harvest was 6.1 and 19.2% in the integrated and organic treatments, respectively. Insect injury, which was caused primarily by C. pomonella, had the highest incidence among the five injury types, accounting for 79.4% of the total injury by harvest in the organic blocks and 36.6% in the integrated blocks. Levels of all other injury types remained close to zero during most of the season, but the incidence of bird injury and growth cracks increased markedly in the final 3 to 5 weeks before harvest in both production systems. Brown rot developed more slowly and reached a lower incidence in the integrated (6.4% final incidence on average) compared with the organic blocks (20.1% average incidence). In addition, the disease developed later but attained higher levels as the cultivar ripening season increased from early-maturing Prima to late-maturing Mutsu. Overall, 94.3 to 98.7% of all injured fruit were also infected by M. fructigena, whereas the incidence of brown-rotted fruit without visible injury was very low (0.8 to 1.6%). Correlation coefficients (on a per plot basis) and association indices (on a per-fruit basis) were calculated between brown rot and the various injury types for two selected assessment dates 4 weeks preharvest and at harvest. At both dates, the strongest significant (P < 0.05) relationships were observed between brown rot and insect injury and between brown rot and the cumulative number of trapped C. pomonella. At the harvest assessment, two additional significant correlations were between brown rot and bird injury and between brown rot and growth cracks. In every case, correlation coefficients were larger in organic than in integrated blocks. Although it is well established that brown rot in pome fruits is closely associated with fruit injuries, this is the first study to provide season-long progress data on different injury types and quantitative analyses of their relative importance at different times in the growing season and across two distinct management systems.
A review of pruning fruit trees
NASA Astrophysics Data System (ADS)
Zhang, L.; Koc, A. B.; Wang, X. N.; Jiang, Y. X.
2018-05-01
The focus of this review is to present the results of studies and articles about ways to prune fruit trees. Pruning should be done in late winter or early spring so that the infection risk can be significantly decreased. This review will also offer an overview of methods to prevent infections and speed up recovery on the trees. The following is an interpretation of why high-power ultrasonic assisted pruning in the fruits trees is needed and will elaborate on the efficiency, labor costs, and safety, as well as space, location, and some environmental issues.
Early detection of fungi damage in citrus using NIR spectroscopy
NASA Astrophysics Data System (ADS)
Blasco, Jose; Ortiz, Coral; Sabater, Maria D.; Molto, Enrique
2000-12-01
Early detection of defects and diseases in fruit helps to correctly classify them and make more adequate decisions about the destination of the product: internal market, export or industry. An early fungi infection detection is especially important because a few infected fruits can disseminate the infection to a whole batch, causing great economic losses and affecting to further exports. Ensure products with excellent quality and absolute absence of fungi infections is particularly important in those batches for long conservation or to be exported. The main objective of this work is to detect the fungi infections before they can be visible. Near Infrared spectroscopy has been employed in this work, because it is a non-destructive technique and can be easily implemented on line due to the high speed and simplicity of the process.
Diboun, Ilhame; Mathew, Sweety; Al-Rayyashi, Maryam; Elrayess, Mohamed; Torres, Maria; Halama, Anna; Méret, Michaël; Mohney, Robert P; Karoly, Edward D; Malek, Joel; Suhre, Karsten
2015-12-16
Dates are tropical fruits with appreciable nutritional value. Previous attempts at global metabolic characterization of the date metabolome were constrained by small sample size and limited geographical sampling. In this study, two independent large cohorts of mature dates exhibiting substantial diversity in origin, varieties and fruit processing conditions were measured by metabolomics techniques in order to identify major determinants of the fruit metabolome. Multivariate analysis revealed a first principal component (PC1) significantly associated with the dates' countries of production. The availability of a smaller dataset featuring immature dates from different development stages served to build a model of the ripening process in dates, which helped reveal a strong ripening signature in PC1. Analysis revealed enrichment in the dry type of dates amongst fruits with early ripening profiles at one end of PC1 as oppose to an overrepresentation of the soft type of dates with late ripening profiles at the other end of PC1. Dry dates are typical to the North African region whilst soft dates are more popular in the Gulf region, which partly explains the observed association between PC1 and geography. Analysis of the loading values, expressing metabolite correlation levels with PC1, revealed enrichment patterns of a comprehensive range of metabolite classes along PC1. Three distinct metabolic phases corresponding to known stages of date ripening were observed: An early phase enriched in regulatory hormones, amines and polyamines, energy production, tannins, sucrose and anti-oxidant activity, a second phase with on-going phenylpropanoid secondary metabolism, gene expression and phospholipid metabolism and a late phase with marked sugar dehydration activity and degradation reactions leading to increased volatile synthesis. These data indicate the importance of date ripening as a main driver of variation in the date metabolome responsible for their diverse nutritional and economical values. The biochemistry of the ripening process in dates is consistent with other fruits but natural dryness may prevent degenerative senescence in dates following ripening. Based on the finding that mature dates present varying extents of ripening, our survey of the date metabolome essentially revealed snapshots of interchanging metabolic states during ripening empowering an in-depth characterization of underlying biology.
Sexual regeneration traits linked to black cherry ( Prunus serotina Ehrh.) invasiveness
NASA Astrophysics Data System (ADS)
Pairon, Marie; Chabrerie, Olivier; Casado, Carolina Mainer; Jacquemart, Anne-Laure
2006-09-01
In order to better understand the invasive capacity of black cherry ( Prunus serotina Ehrh.), the regeneration dynamics of the species was studied during two consecutive years in a Belgian Pine plantation. Flower and fruit production, seed rain, dispersal and viability as well as the survival of seedlings of different ages were assessed. Despite the low fruit/flower ratio, fruit production was high (up to 8940 fruits per tree) as trees produced huge quantities of flowers. Both flower and fruit productions were highly variable between years and among individuals. The production variability between individuals was not correlated with plant size variables. Fruits were ripe in early September and a majority fell in the vicinity of the parent tree. A wide range of bird species dispersed 18% of the fruits at the end of October. Sixty-two percent of the fruits were viable and mean densities of 611 fruits m -2 were recorded on the forest floor. High mortality among young seedlings was observed and 95.3% of the fruits failed to give 4-year-old saplings. Nevertheless, the few saplings older than 4 years (1.32 m -2) presented a high survival rate (86%). All these regeneration traits are discussed in order to determine the main factors explaining the black cherry invasive success in Europe.
Huang, Jie; Tu, Dong-ping; Ma, Xiao-jun; Mo, Chang-ming; Pan, Li-mei; Bai, Long-hua; Feng, Shi-xin
2015-09-01
To explore the growth and development and analyze the quality of the parthenocarpy fruit induced by exogenous hormones of Siraitia grosvenorii. the horizontal and vertical diameter, volume of the fruit were respectively measured by morphological and the content of endogenous hormones were determined by ELISA. The size and seed and content of mogrosides of mature fruit were determined. The results showed that the fruit of parthenocarpy was seedless and its growth and development is similar to the diploid fruit by hand pollination and triploid fruit by hand pollination or hormones. But the absolute value of horizontal and vertical diameter, volume of parthenocarpy fruit was less than those of fruit by hand pollination, while triploid was opposite. The content of IAA, ABA and ratio of ABA/GA was obviously wavy. At 0-30 d the content of IAA and ABA of parthenocarpy fruit first reduced then increased, content of IAA and GA parthenocarpy fruit was higher than that of fruit by hand pollination. Mogrosides of parthenocarpy fruit was close to pollination fruit. Hormones can induce S. grosvenorii parthenocarpy to get seedless fruit and the fruit shape and size and quality is close to normal diploid fruit by hand pollination and better than triploid fruit by hormone or hand pollination.
Fruit development and ripening.
Seymour, Graham B; Østergaard, Lars; Chapman, Natalie H; Knapp, Sandra; Martin, Cathie
2013-01-01
Fruiting structures in the angiosperms range from completely dry to highly fleshy organs and provide many of our major crop products, including grains. In the model plant Arabidopsis, which has dry fruits, a high-level regulatory network of transcription factors controlling fruit development has been revealed. Studies on rare nonripening mutations in tomato, a model for fleshy fruits, have provided new insights into the networks responsible for the control of ripening. It is apparent that there are strong similarities between dry and fleshy fruits in the molecular circuits governing development and maturation. Translation of information from tomato to other fleshy-fruited species indicates that regulatory networks are conserved across a wide spectrum of angiosperm fruit morphologies. Fruits are an essential part of the human diet, and recent developments in the sequencing of angiosperm genomes have provided the foundation for a step change in crop improvement through the understanding and harnessing of genome-wide genetic and epigenetic variation.
Epidemiology of gastric cancer in Japan
Inoue, M; Tsugane, S
2005-01-01
Despite its decreasing trend in Japan, gastric cancer remains an important public health problem. Although the age standardised rates of gastric cancer have been declining for decades, the absolute numbers are increasing because of the rapid aging of the population. A large proportion of Japanese gastric cancers are detected at an early stage, with a better overall survival rate. As with Western developed countries, a change in the social environment such as reduced salt use and increased fresh vegetable and fruit intake as well as improvement of food storage may play an important part in the decline. Differences in Helicobacter pylori infection rates between generations presumably have contributed to the generation related variation in the declining trends. It is expected that most gastric cancers in Japan may be preventable by lifestyle modification such as salt reduction and increased fruit and vegetable intake, together with avoidance of smoking and countermeasures against H pylori infection so that the level now evident in Western developed countries can be reached. PMID:15998815
Pathak, Ashish K; Singh, Sudhir P; Gupta, Yogesh; Gurjar, Anoop K S; Mantri, Shrikant S; Tuli, Rakesh
2016-11-08
Litchi chinensis is a subtropical fruit crop, popular for its nutritional value and taste. Fruits with small seed size and thick aril are desirable in litchi. To gain molecular insight into gene expression that leads to the reduction in the size of seed in Litchi chinensis, transcriptomes of two genetically closely related genotypes, with contrasting seed size were compared in developing ovules. The cDNA library constructed from early developmental stages of ovules (0, 6, and 14 days after anthesis) of bold- and small-seeded litchi genotypes yielded 303,778,968 high quality paired-end reads. These were de-novo assembled into 1,19,939 transcripts with an average length of 865 bp. A total of 10,186 transcripts with contrast in expression were identified in developing ovules between the small- and large- seeded genotypes. A majority of these differences were present in ovules before anthesis, thus suggesting the role of maternal factors in seed development. A number of transcripts indicative of metabolic stress, expressed at higher level in the small seeded genotype. Several differentially expressed transcripts identified in such ovules showed homology with Arabidopsis genes associated with different stages of ovule development and embryogenesis.
Timing for a sustainable fertilisation of Glycine max by using HBED/Fe3+ and EDDHA/Fe3+ chelates.
Martín-Fernández, Clara; López-Rayo, Sandra; Hernández-Apaolaza, Lourdes; Lucena, Juan J
2017-07-01
Efficient use of Fe chelates is crucial to avoid environmental risks and reduce economic losses. HBED/Fe 3+ has been recently approved by the European Union for soil fertilisation, but studies delving into the best timing for its application are necessary. In this work, a batch incubation experiment and two biological experiments were developed to determine the optimal physiological stage for a sustainable application of HBED/Fe 3+ in soil fertilisation compared with EDDHA/Fe 3+ fertilisers using 57 Fe. HBED/Fe 3+ demonstrated a high durability in soils and soil materials, maintaining more than 80% of Fe chelated after 70 days, and its application at an early physiological stage resulted in a high Fe accumulation in soybean and soil after 36 days. In contrast, the stability of EDDHA/Fe 3+ decreased because of the retention of its lowest stable isomers. The best timing for chelates application was confirmed in a 52 day experiment. The application of HBED/Fe 3+ at the early stage increased the Fe translocation to fruits; while o,o-EDDHA/Fe 3+ accumulated more Fe in fruits when added at the fructification stage. The high HBED/Fe 3+ stability in calcareous soil requires a differentiate application timing, and its addition at early physiological stages leads into the most efficient fertilisation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Environmental effects on fruit ripening and average fruit weight for three peach cultivars
USDA-ARS?s Scientific Manuscript database
Three peach cultivars, ‘Crimson Lady’ (early), ‘Redhaven’ (mid-season) and ‘Cresthaven’ (late), were planted at twelve locations within the USA in 2009. All trees were grafted on ‘Lovell’ rootstock and came from the same nursery. Five trees of each cultivar were planted at a spacing of 6m by 5m at e...
USDA-ARS?s Scientific Manuscript database
Three citrus hybrids, containing 50-75% sweet orange (Citrus sinensis) genome in their pedigrees and similar to sweet orange in fruit size, color and taste, were tested for their potential to be classified as new “sweet orange” cultivars. 'Hamlin', ‘Midsweet’, and three other early to mid-season swe...
Xiao, Han; Radovich, Cheryll; Welty, Nicholas; Hsu, Jason; Li, Dongmei; Meulia, Tea; van der Knaap, Esther
2009-01-01
Background Universally accepted landmark stages are necessary to highlight key events in plant reproductive development and to facilitate comparisons among species. Domestication and selection of tomato resulted in many varieties that differ in fruit shape and size. This diversity is useful to unravel underlying molecular and developmental mechanisms that control organ morphology and patterning. The tomato fruit shape gene SUN controls fruit elongation. The most dramatic effect of SUN on fruit shape occurs after pollination and fertilization although a detailed investigation into the timing of the fruit shape change as well as gene expression profiles during critical developmental stages has not been conducted. Results We provide a description of floral and fruit development in a red-fruited closely related wild relative of tomato, Solanum pimpinellifolium accession LA1589. We use established and propose new floral and fruit landmarks to present a framework for tomato developmental studies. In addition, gene expression profiles of three key stages in floral and fruit development are presented, namely floral buds 10 days before anthesis (floral landmark 7), anthesis-stage flowers (floral landmark 10 and fruit landmark 1), and 5 days post anthesis fruit (fruit landmark 3). To demonstrate the utility of the landmarks, we characterize the tomato shape gene SUN in fruit development. SUN controls fruit shape predominantly after fertilization and its effect reaches a maximum at 8 days post-anthesis coinciding with fruit landmark 4 representing the globular embryo stage of seed development. The expression profiles of the NILs that differ at sun show that only 34 genes were differentially expressed and most of them at a less than 2-fold difference. Conclusion The landmarks for flower and fruit development in tomato were outlined and integrated with the effect of SUN on fruit shape. Although we did not identify many genes differentially expressed in the NILs that differ at the sun locus, higher or lower transcript levels for many genes involved in phytohormone biosynthesis or signaling as well as organ identity and patterning of tomato fruit were found between developmental time points. PMID:19422692
Peumans, Willy J.; Proost, Paul; Swennen, Rony L.; Van Damme, Els J.M.
2002-01-01
Analyses of the protein content and composition revealed dramatic changes in gene expression during in situ banana (Musa spp.) fruit formation/ripening. The total banana protein content rapidly increases during the first 60 to 70 d, but remains constant for the rest of fruit formation/ripening. During the phase of rapid protein accumulation, an inactive homolog of class III chitinases accounts for up to 40% (w/v) of the total protein. Concomitant with the arrest of net protein accumulation, the chitinase-related protein (CRP) progressively decreases and several novel proteins appear in the electropherograms. Hence, CRP behaves as a fruit-specific vegetative storage protein that accumulates during early fruit formation and serves as a source of amino acids for the synthesis of ripening-associated proteins. Analyses of individual proteins revealed that a thaumatin-like protein, a β-1,3-glucanase, a class I chitinase, and a mannose-binding lectin are the most abundant ripening-associated proteins. Because during the ripening of prematurely harvested bananas, similar changes take place as in the in situ ripening bananas, CRP present in immature fruits is a sufficient source of amino acids for a quasi-normal synthesis of ripening-associated proteins. However, it is evident that the conversion of CRP in ripening-associated proteins takes place at an accelerated rate, especially when climacteric ripening is induced by ethylene. The present report also includes a discussion of the accumulation of the major banana allergens and the identification of suitable promoters for the production of vaccines in transgenic bananas. PMID:12376669
Cirilli, Marco; Caruso, Giovanni; Gennai, Clizia; Urbani, Stefania; Frioni, Eleonora; Ruzzi, Maurizio; Servili, Maurizio; Gucci, Riccardo; Poerio, Elia; Muleo, Rosario
2017-01-01
Olive fruits and oils contain an array of compounds that contribute to their sensory and nutritional properties. Phenolic compounds in virgin oil and olive-derived products have been proven to be highly beneficial for human health, eliciting increasing attention from the food industry and consumers. Although phenolic compounds in olive fruit and oil have been extensively investigated, allowing the identification of the main classes of metabolites and their accumulation patterns, knowledge of the molecular and biochemical mechanisms regulating phenolic metabolism remains scarce. We focused on the role of polyphenoloxidase (PPO), peroxidase (PRX) and β-glucosidase (β-GLU) gene families and their enzyme activities in the accumulation of phenolic compounds during olive fruit development (35–146 days after full bloom), under either full irrigation (FI) or rain-fed (RF) conditions. The irrigation regime affected yield, maturation index, mesocarp oil content, fruit size, and pulp-to-pit ratio. Accumulation of fruit phenolics was higher in RF drupes than in FI ones. Members of each gene family were developmentally regulated, affected by water regime, and their transcript levels were correlated with the respective enzyme activities. During the early phase of drupe growth (35–43 days after full bloom), phenolic composition appeared to be linked to β-GLU and PRX activities, probably through their effects on oleuropein catabolism. Interestingly, a higher β-GLU activity was measured in immature RF drupes, as well as a higher content of the oleuropein derivate 3,4-DHPEA-EDA and verbascoside. Activity of PPO enzymes was slightly affected by the water status of trees during ripening (from 120 days after full bloom), but was not correlated with phenolics content. Overall, the main changes in phenolics content appeared soon after the supply of irrigation water and remained thereafter almost unchanged until maturity, despite fruit growth and the progressive decrease in pre-dawn leaf water potential. We suggest that enzymes involved in phenolic catabolism in the olive fruit have a differential sensitivity to soil water availability depending on fruit developmental stage. PMID:28536589
Water Use and Requirements of PtFT1 Plums for Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Wheeler, Raymond
2017-01-01
Early applications of bioregenerative life support technologies for space exploration will likely start with supplemental food production for the crew. This could include fresh, perishable foods that cannot be stored for long and but have a high impact on the diet acceptability bioavailable nutrients. Because of the limited working volume in spacecraft, these plants must be small in size. A combination of CIF (Center Innovation Fund) and NASA Post Doctoral funding was used in FY15 to develop horticultural approaches for propagation, production and fruiting of several dwarf plum lines and evaluate their suitability as candidates for long duration space missions. Collaborators at the USDA Agricultural Research Service transformed Prunus domestica with the FT1 (Flowering Locus T1) flowering gene from Populus trichocarpa (PtFTl), which resulted in early flowering, driving the plant out of its juvenile growth phase and into reproductive development years earlier than would normally occur. The result is a plum line that has potential as a component of food production system on long-duration space missions since it completes complete generation (seed-to-seed) within less than a year and maintains a dwarf-bush or vine-like growth habit. Further, there appears to be no obligatory requirement for a dormancy period, resulting in continuous fruit production on a given plant. This potential is described in Graham et al (2015, in press).
Fruit load governs transpiration of olive trees.
Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon
2016-03-01
We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pires, Camilla Valente; Freitas, Flávia Cristina de Paula; Cristino, Alexandre S.; Dearden, Peter K.; Simões, Zilá Luz Paulino
2016-01-01
In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development. PMID:26751956
Chi, Michael W.; Griffith, Leslie C.; Vecsey, Christopher G.
2014-01-01
Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis. PMID:25116571
Chi, Michael W; Griffith, Leslie C; Vecsey, Christopher G
2014-08-11
Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.
Kramer-Haimovich, H.; Servi, E.; Katan, T.; Rollins, J.; Okon, Y.; Prusky, D.
2006-01-01
The accumulation of ammonia and associated tissue alkalinization predispose avocado fruit to attack by Colletotrichum gloeosporioides. Secretion of ammonia by C. gloeosporioides in the presence of KNO3 was induced by decreasing the pH from 7.0 to 4.0. When the fungus was grown at pH 4.0 or 6.0 in the absence of a nitrogen source, ammonia did not accumulate, and neither pelB (encoding pectate lyase) transcription nor pectate lyase secretion was detected. Under these nitrogen starvation conditions, only transcriptional activation of areA, which encodes the global nitrogen regulator, was detected. pelB transcription and pectate lyase secretion were both detected when C. gloeosporioides was grown at pH 6.0 in the presence of ammonia accumulated from different nitrogen sources. The early accumulation of ammonia induced early pelB expression and pectate lyase secretion. As the external pH increased from 4.0 to 6.0, transcripts of pac1, the C. gloeosporioides pacC homolog, also could be detected. Nit mutants of C. gloeosporioides, which cannot utilize KNO3 as a nitrogen source, did not secrete ammonia, alkalinize the medium, or secrete pectate lyase. If Nit mutants were grown at pH 6.0 in the presence of glutamate, then pectate lyase secretion was induced. Infiltration of 0.1 M ammonium hydroxide at pH 10 into ripening avocado fruits enhanced the activation of quiescent infection and symptom development by C. gloeosporioides. These results suggest that ambient pH alkalinization resulting from ammonia accumulation and the availability of ammonia as a nitrogen source independently regulate pelB expression, pectate lyase secretion, and virulence of C. gloeosporioides. These data suggest that alkalinization during C. gloeosporioides infection is important for its transformation from the quiescent biotrophic stage to the necrotrophic stage of fungal colonization in the fruit host. PMID:16461646
Carbon allocation during fruiting in Rubus chamaemorus
Gauci, R.; Otrysko, B.; Catford, J.-G.; Lapointe, L.
2009-01-01
Background and Aims Rubus chamaemorus (cloudberry) is a herbaceous clonal peatland plant that produces an extensive underground rhizome system with distant ramets. Most of these ramets are non-floral. The main objectives of this study were to determine: (a) if plant growth was source limited in cloudberry; (b) if the non-floral ramets translocated carbon (C) to the fruit; and (c) if there was competition between fruit, leaves and rhizomes for C during fruit development. Methods Floral and non-floral ramet activities were monitored during the period of flower and fruit development using three approaches: gas exchange measurements, 14CO2 labelling and dry mass accumulation in the different organs. Source and sink activity were manipulated by eliminating leaves or flowers or by reducing rhizome length. Key Results Photosynthetic rates were lower in floral than in deflowered ramets. Autoradiographs and 14C labelling data clearly indicated that fruit is a very strong sink for the floral ramet, whereas non-floral ramets translocated C toward the rhizome but not toward floral ramets. Nevertheless, rhizomes received some C from the floral ramet throughout the fruiting period. Ramets with shorter rhizomes produced smaller leaves and smaller fruits, and defoliated ramets produced very small fruits. Conclusions Plant growth appears to be source-limited in cloudberry since a reduction in sink strength did not induce a reduction in photosynthetic activity. Non-floral ramets did not participate directly to fruit development. Developing leaves appear to compete with the developing fruit but the intensity of this competition could vary with the specific timing of the two organs. The rhizome appears to act both as a source but also potentially as a sink during fruit development. Further studies are needed to characterize better the complex role played by the rhizome in fruit C nutrition. PMID:19520701
Code of Federal Regulations, 2010 CFR
2010-01-01
... fly (fruit flies). The melon fruit fly, Mexican fruit fly, Mediterranean fruit fly, Oriental fruit fly..., Ceratitis capitata (Wiedemann), in any stage of development. Melon fruit fly. The insect known as the melon...
Code of Federal Regulations, 2011 CFR
2011-01-01
... fly (fruit flies). The melon fruit fly, Mexican fruit fly, Mediterranean fruit fly, Oriental fruit fly..., Ceratitis capitata (Wiedemann), in any stage of development. Melon fruit fly. The insect known as the melon...
Rodríguez-López, Carlos Eduardo; Hernández-Brenes, Carmen; Treviño, Víctor; Díaz de la Garza, Rocío I
2017-09-29
Avocado fruit contains aliphatic acetogenins (oft-acetylated, odd-chain fatty alcohols) with promising bioactivities for both medical and food industries. However, we have scarce knowledge about their metabolism. The present work aimed to study changes in acetogenin profiles from mesocarp, lipid-containing idioblasts, and seeds from 'Hass' cultivar during fruit development, germination, and three harvesting years. An untargeted LC-MS based lipidomic analysis was also conducted to profile the lipidome of avocado fruit in each tissue. The targeted analysis showed that acetogenin profiles and contents remained unchanged in avocado mesocarp during maturation and postharvest ripening, germination, and different harvesting years. However, a shift in the acetogenin profile distribution, accompanied with a sharp increase in concentration, was observed in seed during early maturation. Untargeted lipidomics showed that this shift was accompanied with remodeling of glycerolipids: TAGs and DAGs decreased during fruit growing in seed. Remarkably, the majority of the lipidome in mature seed was composed by acetogenins; we suggest that this tissue is able to synthesize them independently from mesocarp. On the other hand, lipid-containing idioblasts accumulated almost the entire acetogenin pool measured in the whole mesocarp, while only having 4% of the total fatty acids. The lipidome of this cell type changed the most when the fruit was ripening after harvesting, TAGs decreased while odd-chain DAGs increased. Notably, idioblast lipidome was more diverse than that from mesocarp. Evidence shown here suggests that idioblasts are the main site of acetogenin biosynthesis in avocado mesocarp. This work unveiled the prevalence of aliphatic acetogenins in the avocado fruit lipidome and evidenced TAGs as initial donors of the acetogenin backbones in its biosynthesis. It also sets evidence for acetogenins being included in future works aimed at characterizing the avocado seed, as they are a main component of their lipidome.
Lust, Teresa A.; Paris, Harry S.
2016-01-01
Background and Aims Summer squash, the young fruits of Cucurbita pepo, are a common, high-value fruit vegetable. Of the summer squash, the zucchini, C. pepo subsp. pepo Zucchini Group, is by far the most cosmopolitan. The zucchini is easily distinguished from other summer squash by its uniformly cylindrical shape and intense colour. The zucchini is a relatively new cultivar-group of C. pepo, the earliest known evidence for its existence having been a description in a book on horticulture published in Milan in 1901. For this study, Italian-language books on agriculture and cookery dating from the 16th to 19th centuries have been collected and searched in an effort to follow the horticultural development and culinary use of young Cucurbita fruits in Italy. Findings The results indicate that Cucurbita fruits, both young and mature, entered Italian kitchens by the mid-16th century. A half-century later, round and elongate young fruits of C. pepo were addressed as separate cookery items and the latter had largely replaced the centuries-old culinary use of young, elongate bottle gourds, Lagenaria siceraria. Allusion to a particular, extant cultivar of the longest fruited C. pepo, the Cocozelle Group, dates to 1811 and derives from the environs of Naples. The Italian diminutive word zucchini arose by the beginning of the 19th century in Tuscany and referred to small, mature, desiccated bottle gourds used as containers to store tobacco. By the 1840s, the Tuscan word zucchini was appropriated to young, primarily elongate fruits of C. pepo. The Zucchini Group traces its origins to the environs of Milan, perhaps as early as 1850. The word zucchini and the horticultural product zucchini arose contemporaneously but independently. The results confirm that the Zucchini Group is the youngest of the four cultivar-groups of C. pepo subsp. pepo but it emerged approximately a half-century earlier than previously known. PMID:27343231
Pakrasi, Pranab Lal; Tiwari, Anjana
2007-09-01
Early embryonic development and implantation were studied in tropical short-nosed fruit bat Cyanopterus sphinx. We report preimplantation development and embryo implantation. Different stages of cleavage were observed in embryo by direct microscopic examination of fresh embryos after retrieving them either from the oviduct or the uterus at different days, up to the day of implantation. Generally, the embryos enter the uterus at the 8-cell stage. Embryonic development continued without any delay and blastocyst were formed showing attachment to the uterine epithelium at the mesometrial side of the uterus. A distinct blue band was formed in the uterus. The site of blastocyst attachment was visualized as a blue band following intravenous injection of pontamine blue. Implantation occurred 9+/-0.7 days after mating. This study reports that bat embryonic development can be studied like other laboratory animals and that this bat shows blue dye reaction, indicating the site and exact time of implantation. This blue dye reaction can be used to accurately find post-implantational delay. We prove conclusively that this species of tropical bat does not have any type of embryonic diapause.
Blissett, Jackie
2011-12-01
Despite substantial evidence suggesting that a diet high in fruit and vegetables (FV) is associated with reduced risk of cancer, only 21% of children in the UK consume the recommended 5 portions of fruit or vegetables a day. This review examines the role of parenting style, feeding style and feeding practices in FV consumption in early childhood. Whilst inconsistencies in concepts and terminology cloud this literature, overall the evidence suggests that the context of an authoritative parenting and feeding style is associated with better FV consumption in the childhood years. This context is typified by emotional warmth but high expectations for children's dietary adequacy and behaviour, accompanied by specific feeding practices such as modeling consumption of FV, making FV available within the home, covertly restricting unhealthy alternative snack foods, and encouraging children to try FV. Further longitudinal and intervention studies are required to determine the efficacy of modification of parenting style and feeding practice on children's FV intake. Copyright © 2011 Elsevier Ltd. All rights reserved.
Steingass, Christof Björn; Carle, Reinhold; Schmarr, Hans-Georg
2015-03-01
Qualitative ripening-dependent changes of pineapple volatiles were studied via headspace solid-phase microextraction and analyzed by comprehensive two-dimensional gas chromatography quadrupole mass spectrometry (HS-SPME-GC×GC-qMS). Early green-ripe stage, post-harvest ripened, and green-ripe fruits at the end of their commercial shelf-life were compared to air-freighted pineapples harvested at full maturity. In total, more than 290 volatiles could be identified by mass spectrometry and their linear retention indices. The majority of compounds comprise esters (methyl and ethyl esters of saturated and unsaturated fatty acids, acetates), terpenes, alcohols, aldehydes, 2-ketones, free fatty acids, and miscellaneous γ- and δ-lactones. The structured separation space obtained by GC×GC allowed revealing various homologous series of compound classes as well as clustering of sesquiterpenes. Post-harvest ripening increased the diversity of the volatile profile compared to both early green-ripe maturity stages and on-plant ripened fruits.
Promoting health equity to prevent crime.
Jackson, Dylan B; Vaughn, Michael G
2018-08-01
Traditionally, research activities aimed at diminishing health inequalities and preventing crime have been conducted in isolation, with relatively little cross-fertilization. We argue that moving forward, transdisciplinary collaborations that employ a life-course perspective constitute a productive approach to minimizing both health disparities and early delinquent involvement. Specifically, we propose a multidimensional framework that integrates findings on health disparities and crime across the early life-course and emphasizes the role of racial and socioeconomic disparities in health. Developing the empirical nexus between health disparities research and criminological research through this multidimensional framework could fruitfully direct and organize research that contributes to reductions in health inequalities and the prevention of crime during the early life course. We also propose that this unified approach can ultimately enhance public safety policies and attenuate the collateral consequences of incarceration. Copyright © 2018 Elsevier Inc. All rights reserved.
Fifty years of successful MCT research and production in France
NASA Astrophysics Data System (ADS)
Bensussan, Philippe; Tribolet, Philippe; Destéfanis, Gérard; Sirieix, Michel
2009-05-01
France has a long and fruitful history regarding Mercury Cadmium Telluride (MCT) research and production and is still one of the leading countries for the production of MCT IR detectors. To give a historical account of its development and progress, SAGEM Défense Sécurité will describe the early days of MCT developments in France. CEA-Leti (the French Atomic Energy Commission and a leading applied research center in electronics) will then present the research carried out on second- and third-generation MCT technologies, followed by Sofradir who will discuss the production of these new detector types.
Changes in ethylene signaling and MADS box gene expression are associated with banana finger drop.
Hubert, O; Piral, G; Galas, C; Baurens, F-C; Mbéguié-A-Mbéguié, D
2014-06-01
Banana finger drop was examined in ripening banana harvested at immature (iMG), early (eMG) and late mature green (lMG) stages, with contrasting ripening rates and ethylene sensitivities. Concomitantly, 11 ethylene signal transduction components (ESTC) and 6 MADS box gene expressions were comparatively studied in median (control zone, CZ) and pedicel rupture (drop zone DZ) areas in peel tissue. iMG fruit did not ripen or develop finger drop while eMG and lMG fruits displayed a similar finger drop pattern. Several ESTC and MADS box gene mRNAs were differentially induced in DZ and CZ and sequentially in eMG and lMG fruits. MaESR2, 3 and MaEIL1, MaMADS2 and MaMADS5 had a higher mRNA level in eMG and acted earlier, whereas MaERS1, MaCTR1, MaEIL3/AB266319, MaEIL4/AB266320 and MaEIL5/AB266321, MaMADS4 and to a lesser extent MaMADS2 and 5 acted later in lMG. In this fruit, MaERS1 and 3, MaCTR1, MaEIL3, 4 and MaEIL5/AB266321, and MaMADS4 were enhanced by finger drop, suggesting their specific involvement in this process. MaEIL1, MaMADS1 and 3, induced at comparable levels in DZ and CZ, are probably related to the overall fruit ripening process. These findings led us to consider that developmental cues are the predominant finger drop regulation factor. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Mena-Alí, Jorge I; Rocha, Oscar J
2005-02-01
It has been claimed that ovules linearly ordered within a fruit differ in their probabilities of reaching maturity. This was investigated by studying the effect the position of an ovule within the pod has on seed abortion and seed production in Bauhinia ungulata. Fruits collected during the dry seasons of 1999, 2000 and 2001 were opened, and the number, position and status of each ovule within the fruit were recorded. A GLM model was used to assess the effects of population, tree identity and ovule position within the pod on ovule fertilization, seed abortion, seed damage and seed maturation in two populations of B. ungulata. Nearly 30% of the ovules were not fertilized in 1999; this percentage dropped to 5% the following two years. Seed abortion (50%) and seed damage (15%) were the same every year during the study period. Only 15% of the initial ovules developed into mature seeds in 1999; this value increased to 35% in 2000 and 2001. However, seed survivorship was dependent on the position of the ovule within the pod; non-fertilized and early aborted ovules were found more often near the basal end of the ovary. The frequency of seed damage was not affected by position. Mature seeds were found mainly in the stylar half of fruits, where ovules are likely to be fertilized by fast pollen tubes. The pattern of seed production in B. ungulata is non-random but is dependent upon the position of the ovule within the pod. The results suggest that the seeds produced within a fruit might differ in their vigour.
Fermented beverages of pre- and proto-historic China.
McGovern, Patrick E; Zhang, Juzhong; Tang, Jigen; Zhang, Zhiqing; Hall, Gretchen R; Moreau, Robert A; Nuñez, Alberto; Butrym, Eric D; Richards, Michael P; Wang, Chen-Shan; Cheng, Guangsheng; Zhao, Zhijun; Wang, Changsui
2004-12-21
Chemical analyses of ancient organics absorbed into pottery jars from the early Neolithic village of Jiahu in Henan province in China have revealed that a mixed fermented beverage of rice, honey, and fruit (hawthorn fruit and/or grape) was being produced as early as the seventh millennium before Christ (B.C.). This prehistoric drink paved the way for unique cereal beverages of the proto-historic second millennium B.C., remarkably preserved as liquids inside sealed bronze vessels of the Shang and Western Zhou Dynasties. These findings provide direct evidence for fermented beverages in ancient Chinese culture, which were of considerable social, religious, and medical significance, and help elucidate their earliest descriptions in the Shang Dynasty oracle inscriptions.
Fermented beverages of pre- and proto-historic China
McGovern, Patrick E.; Zhang, Juzhong; Tang, Jigen; Zhang, Zhiqing; Hall, Gretchen R.; Moreau, Robert A.; Nuñez, Alberto; Butrym, Eric D.; Richards, Michael P.; Wang, Chen-shan; Cheng, Guangsheng; Zhao, Zhijun; Wang, Changsui
2004-01-01
Chemical analyses of ancient organics absorbed into pottery jars from the early Neolithic village of Jiahu in Henan province in China have revealed that a mixed fermented beverage of rice, honey, and fruit (hawthorn fruit and/or grape) was being produced as early as the seventh millennium before Christ (B.C.). This prehistoric drink paved the way for unique cereal beverages of the proto-historic second millennium B.C., remarkably preserved as liquids inside sealed bronze vessels of the Shang and Western Zhou Dynasties. These findings provide direct evidence for fermented beverages in ancient Chinese culture, which were of considerable social, religious, and medical significance, and help elucidate their earliest descriptions in the Shang Dynasty oracle inscriptions. PMID:15590771
Selected wild strains of Agaricus bisporus produce high yields of mushrooms at 25°C.
Navarro, Pilar; Savoie, Jean-Michel
2015-01-01
To cultivate the button mushroom Agaricus bisporus in warm countries or during summer in temperate countries, while saving energy, is a challenge that could be addressed by using the biological diversity of the species. The objective was to evaluate the yield potential of eight wild strains previously selected in small scale experiments for their ability to produce mature fruiting bodies at 25°C and above. Culture units of 8 kg of compost were used. The yield expressed as weight or number per surface unit and earliness of fruiting were recorded during cultivation in climatic rooms at 17, 25 or 30°C. Only strains of A. bisporus var. burnettii were able to fruit at 30°C. At 25°C they produced the highest yields (27 kg m(-2)) and had best earliness. The yields at 25°C for the strains of A. bisporus var. bisporus ranged from 12 to 16 kg m(-2). The yield ratios 25°C/17°C ranged from 0.8 to 1.2. The variety burnettii originated in the Sonoran Desert in California showed adaptation for quickly producing fruiting bodies at high temperature when humidity conditions were favorable. Strains of the variety bisporus showed interesting potentials for their ability to produce mature fruiting bodies at higher temperature than present cultivars and might be used in breeding programs. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains
NASA Astrophysics Data System (ADS)
Božena, ŠERÁ; Michal, ŠERÝ
2018-04-01
Non-thermal plasma (NTP) technology offers wide potential use in the food technology, the same as in the unconventional agriculture. Some seeds, dry fruits, grains and their sprouts gain popularity in the culinary industry as ‘raw seeds’. This review paper draws the current research and trends in NTP pre-treatment of selected seeds/fruits that are useable as ‘raw seeds’. The main applications are connected with activation of seed germination, early growth of seedlings, microbial inactivation of seed/fruit surface, and possibility of increasing quantity of biological active compounds in sprouting seeds. The paper presents a list of plant species that are able to be used as ‘raw seed’ including current information about main type of NTP treatment implemented.
2012-01-01
Background Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. Results Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven SR/CAMTAs, designated as SlSRs, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All SlSRs were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of SlSR2 was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and SlSR3L and SlSR4 were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven SlSRs were dramatically altered in ripening mutant rin compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant nor and Nr fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all SlSRs within one to two hours. Conclusions This study indicates that SlSR expression is influenced by both the Rin-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions. PMID:22330838
A co-expression gene network associated with developmental regulation of apple fruit acidity.
Bai, Yang; Dougherty, Laura; Cheng, Lailiang; Xu, Kenong
2015-08-01
Apple fruit acidity, which affects the fruit's overall taste and flavor to a large extent, is primarily determined by the concentration of malic acid. Previous studies demonstrated that the major QTL malic acid (Ma) on chromosome 16 is largely responsible for fruit acidity variations in apple. Recent advances suggested that a natural mutation that gives rise to a premature stop codon in one of the two aluminum-activated malate transporter (ALMT)-like genes (called Ma1) is the genetic causal element underlying Ma. However, the natural mutation does not explain the developmental changes of fruit malate levels in a given genotype. Using RNA-seq data from the fruit of 'Golden Delicious' taken at 14 developmental stages from 1 week after full-bloom (WAF01) to harvest (WAF20), we characterized their transcriptomes in groups of high (12.2 ± 1.6 mg/g fw, WAF03-WAF08), mid (7.4 ± 0.5 mg/g fw, WAF01-WAF02 and WAF10-WAF14) and low (5.4 ± 0.4 mg/g fw, WAF16-WAF20) malate concentrations. Detailed analyses showed that a set of 3,066 genes (including Ma1) were expressed not only differentially (P FDR < 0.05) between the high and low malate groups (or between the early and late developmental stages) but also in significant (P < 0.05) correlation with malate concentrations. The 3,066 genes fell in 648 MapMan (sub-) bins or functional classes, and 19 of them were significantly (P FDR < 0.05) co-enriched or co-suppressed in a malate dependent manner. Network inferring using the 363 genes encompassed in the 19 (sub-) bins, identified a major co-expression network of 239 genes. Since the 239 genes were also differentially expressed between the early (WAF03-WAF08) and late (WAF16-WAF20) developmental stages, the major network was considered to be associated with developmental regulation of apple fruit acidity in 'Golden Delicious'.
Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate
Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.
2012-01-01
Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop. PMID:22860093
Wyatt, Lindsay E; Strickler, Susan R; Mueller, Lukas A; Mazourek, Michael
2016-01-01
Both the fruit mesocarp and the seeds of winter squash can be used for consumption, although the focus of breeding efforts varies by cultivar. Cultivars bred for fruit consumption are selected for fruit mesocarp quality traits such as carotenoid content, percent dry matter, and percent soluble solids, while these traits are essentially ignored in oilseed pumpkins. To compare fruit development in these two types of squash, we sequenced the fruit transcriptome of two cultivars bred for different purposes: an acorn squash, ‘Sweet REBA’, and an oilseed pumpkin, ‘Lady Godiva’. Putative metabolic pathways were developed for carotenoid, starch, and sucrose synthesis in winter squash fruit and squash homologs were identified for each of the structural genes in the pathways. Gene expression, especially of known rate-limiting and branch point genes, corresponded with metabolite accumulation both across development and between the two cultivars. Thus, developmental regulation of metabolite genes is an important factor in winter squash fruit quality. PMID:27688889
Llorente, Briardo; D’Andrea, Lucio; Rodríguez-Concepción, Manuel
2016-01-01
Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes (PHYs) and PHY-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs. PMID:27014289
Llorente, Briardo; D'Andrea, Lucio; Rodríguez-Concepción, Manuel
2016-01-01
Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes (PHYs) and PHY-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs.
Naegele, R P; Ashrafi, H; Hill, T A; Chin-Wo, S Reyes; Van Deynze, A E; Hausbeck, M K
2014-05-01
Phytophthora capsici is an important pepper (Capsicum annuum) pathogen causing fruit and root rot, and foliar blight in field and greenhouse production. Previously, an F6 recombinant inbred line population was evaluated for fruit rot susceptibility. Continuous variation among lines and partial and isolate-specific resistance were found. In this study, Phytophthora fruit rot resistance was mapped in the same F6 population between Criollo del Morelos 334 (CM334), a landrace from Mexico, and 'Early Jalapeno' using a high-density genetic map. Isolate-specific resistance was mapped independently in 63 of the lines evaluated and the two parents. Heritability of the resistance for each isolate at 3 and 5 days postinoculation (dpi) was high (h(2) = 0.63 to 0.68 and 0.74 to 0.83, respectively). Significant additive and epistatic quantitative trait loci (QTL) were identified for resistance to isolates OP97 and 13709 (3 and 5 dpi) and 12889 (3 dpi only). Mapping of fruit traits showed potential linkage with few disease resistance QTL. The partial fruit rot resistance from CM334 suggests that this may not be an ideal source for fruit rot resistance in pepper.
Walters, Maaike E; Dijkstra, Arie; de Winter, Andrea F; Reijneveld, Sijmen A
2015-07-09
Lifestyle is an important aspect in maintaining good health in older adults, and home health care (HHC) workers can play an important role in promoting a healthy lifestyle. However, there is limited evidence in the literature regarding how to develop an effective training programme to improve the physical activity level and fruit and vegetable consumption of older adults within a HHC setting. The aim of this paper is to describe how Intervention Mapping (IM) was used to develop a training programme to promote preventive activities of HHC workers relating to the physical activity and fruit and vegetable intake of older adults living at home. IM, a systematic theory and evidence-based approach was used to develop, implement and evaluate the training programme. This entailed a literature search, a survey, semi-structured interviews and consultation with HHC workers and various field experts, and a pilot training session. The determinants associated with the provision of preventive activities were identified, and an overview was created of those objectives, matching methods and practical applications that could influence these determinants. The performance objectives for the HHC workers were early detection and monitoring, promoting a healthy lifestyle, informing colleagues, continuing allocated preventive activities and referring to other experts and facilities. Findings were translated into a comprehensive training programme for HHC workers focused on motivating older adults to adopt and maintain a healthier lifestyle. IM was a useful tool in the development of a theory-based training programme to promote preventive activities by HHC workers relating to fruit and vegetable intake and physical activity of older adults.
Expression profiling of various genes during the fruit development and ripening of mango.
Pandit, Sagar S; Kulkarni, Ram S; Giri, Ashok P; Köllner, Tobias G; Degenhardt, Jörg; Gershenzon, Jonathan; Gupta, Vidya S
2010-06-01
Mango (Mangifera indica L. cv. Alphonso) development and ripening are the programmed processes; conventional indices and volatile markers help to determine agronomically important stages of fruit life (fruit-setting, harvesting maturity and ripening climacteric). However, more and precise markers are required to understand this programming; apparently, fruit's transcriptome can be a good source of such markers. Therefore, we isolated 18 genes related to the physiology and biochemistry of the fruit and profiled their expression in developing and ripening fruits, flowers and leaves of mango using relative quantitation PCR. In most of the tissues, genes related to primary metabolism, abiotic stress, ethylene response and protein turnover showed high expression as compared to that of the genes related to flavor production. Metallothionin and/or ethylene-response transcription factor showed highest level of transcript abundance in all the tissues. Expressions of mono- and sesquiterpene synthases and 14-3-3 lowered during ripening; whereas, that of lipoxygenase, ethylene-response factor and ubiquitin-protein ligase increased during ripening. Based on these expression profiles, flower showed better positive correlation with developing and ripening fruits than leaf. Most of the genes showed their least expression on the second day of harvest, suggesting that harvesting signals significantly affect the fruit metabolism. Important stages in the fruit life were clearly indicated by the significant changes in the expression levels of various genes. These indications complemented those from the previous analyses of fruit development, ripening and volatile emission, revealing the harmony between physiological, biochemical and molecular activities of the fruit.
Ebrahimi, Aziz; Zarei, Abdolkarim; Zamani Fardadonbeh, Mojtaba; Lawson, Shaneka
2017-01-01
Limiting the juvenile phase and reducing tree size are the two main challenges for breeders to improve most fruit crops. Early maturation and dwarf cultivars have been reported for many fruit species. "Early mature" and low vigor walnut genotypes were found among seedlings of Persian walnut. Nine microsatellite markers were used to evaluate genetic diversity among "Early Mature" Persian walnut accessions and provide a comparison with "normal growth" accessions. Six maturation related characteristics were also measured in "Early Mature" samples. Phenotypic traits and diversity indices showed relatively high levels of genetic diversity in "Early Mature" seedlings and indicated high differentiation between individuals. Seedling height, the most diverse phenotypic trait, has an important role in the clustering of "Early Mature" accessions. The "Early Mature" type had higher number of alleles, number of effective allele, and Shannon index compared to the "Normal Growth" group. The two types of studied walnuts had different alleles, with more than half of produced alleles specific to a specific group. "Early Mature" and "Normal Growth" walnuts had 27 and 17 private alleles, respectively. Grouping with different methods separated "Early Mature" and "Normal Growth" samples entirely. The presence of moderate to high genetic diversity in "Early Mature" walnuts and high genetic differentiation with "Normal Growth" walnuts, indicated that "Early Mature" walnuts were more diverse and distinct from "Normal Growth" samples. Moreover, our results showed SSR markers were useful for differentiating between "Early Mature" and "Normal Growth" walnuts. A number of identified loci have potential in breeding programs for identification of "Early Mature" walnuts at the germination phase.
Brewer, Michael J; Anderson, Darwin J; Armstrong, J Scott
2013-10-01
Verde plant bugs, Creontiades signatus Distant (Hemiptera: Miridae), were released onto caged cotton, Cossypium hirsutum L., for a 1-wk period to characterize the effects of insect density and bloom period of infestation on cotton injury and yield in 2011 and 2012, Corpus Christi, TX. When plants were infested during early bloom (10-11 nodes above first white flower), a linear decline in fruit retention and boll load and a linear increase in boll injury were detected as verde plant bug infestation levels increased from an average of 0.5 to 4 bugs per plant. Lint and seed yield per plant showed a corresponding decline. Fruit retention, boll load, and yield were not affected on plants infested 1 wk later at peak bloom (8-9 nodes above first white flower), even though boll injury increased as infestation levels increased. Second-year testing verified boll injury but not yield loss, when infestations occurred at peak bloom. Incidence of cotton boll rot, known to be associated with verde plant bug feeding, was low to modest (< 1% [2012] to 12% [2011] of bolls with disease symptoms), and drought stress persisted throughout the study. Caging effect was minimal: a 10% fruit retention decline was associated with caging, and the effect was not detectable in the other measurements. Overall, reduced fruit retention and boll load caused by verde plant bug were important contributors to yield decline, damage potential was greatest during the early bloom period of infestation, and a simple linear response best described the yield response-insect density relationship at early bloom. Confirmation that cotton after peak bloom was less prone to verde plant bug injury and an early bloom-specific economic injury level were key findings that can improve integrated pest management decision-making for dryland cotton, at least under low-rainfall growing conditions.
Relationship of shoot dieback in pecan to fungi and fruiting stress
USDA-ARS?s Scientific Manuscript database
Two shoot dieback maladies (SDM) of pecan [Carya illinoinensis (Wangenh.) C. Koch] are of unknown cause and can adversely affect tree canopy health. They occur during either early spring (SpSDM) or early summer (SuSDM). Field studies found that both maladies predominately occur on shoots retaining...
Bisognin, M; Nava, D E; Diez-Rodríguez, G I; Valgas, R A; Garcia, M S; Krolow, A C R; Antunes, L E C
2015-02-01
Anastrepha fraterculus (Wiedemann, 1830) is the main pest of temperate climate orcharding. The study investigated the development of A. fraterculus related to phenological stage of blueberry, blackberry, strawberry guava, and Surinam cherry trees. The phenological stages I (green fruits), II (intermediate ripening stage of fruits), and III (fruits close to harvesting) were determined, and they are from 8th, 10th, and 11th week; 6th, 8th, and 9th week; 8th, 13th, and 16th week; and 5th, 6th, and 7th week after the first flowering of blueberry, blackberry, strawberry guava, and Surinam cherry trees, respectively. We collected fruits from orchards to determine the infestation index using the formula: number of pupa/fruit weight. To investigate the development of A. fraterculus, we determined the following biological parameters: egg-to-adult period, weight of pupae, oviposition period, fecundity, number of pupae, and number of infested fruits. The infestation index for the fruits collected in the field was greater in strawberry guava and Surinam cherry fruits. In the laboratory, the development of A. fraterculus occurred in stage III of blueberry. In blackberry, besides stage III, we also observed the development in stage II, however, at lower infestation. In strawberry guava, the development of A. fraterulus occurred in stages II and III, and the development in both stages was similar. For Surinam cherry, the development occurred in the three phenological stages with similar values for biological parameters. Overall, of the four hosts studied, the strawberry guava and Surinam cherry fruits allowed a better biological development of A. fraterculus, corroborating its preference for fruits native to Brazil. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
In a botanical sense, fruits are the developed part of the seed-containing ovary. Evolutionarily speaking, plants have developed fruit with the goal of attracting insects, birds, reptiles and mammals to spread the seeds. Fruit can be dry such as the pod of a pea, or fleshy such as a peach. As humans...
Newbery, David M; Chuyong, George B; Zimmermann, Lukas
2006-01-01
Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995-2000. The series was extended to 1988-2004 with less detailed data. Individual transitions in phenology were analysed. Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An 'alternative bearing' system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.
A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases.
Dominguez-Puigjaner, E; LLop, I; Vendrell, M; Prat, S
1997-07-01
A cDNA clone (Ban17), encoding a protein homologous to pectate lyase, has been isolated from a cDNA library from climacteric banana fruit by means of differential screening. Northern analysis showed that Ban17 mRNA is first detected in early climacteric fruit, reaches a steady-state maximum at the climacteric peak, and declines thereafter in overripe fruit. Accumulation of the Ban17 transcript can be induced in green banana fruit by exogenous application of ethylene. The demonstrates that expression of this gene is under hormonal control, its induction being regulated by the rapid increase in ethylene production at the onset of ripening. The deduced amino acid sequence derived from the Ban17 cDNA shares significant identity with pectate lyases from pollen and plant pathogenic bacteria of the genus Erwinia. Similarity to bacterial pectate lyases that were proven to break down the pectic substances of the plant cell wall suggest that Ban17 might play a role in the loss of mesocarp firmness during fruit ripening.
Dietary changes and food intake in the first year after breast cancer treatment.
Vance, Vivienne; Campbell, Sharon; McCargar, Linda; Mourtzakis, Marina; Hanning, Rhona
2014-06-01
Understanding dietary habits of women after breast cancer is a critical first step in developing nutrition guidelines that will support weight management and optimal health in survivorship; however, limited data are available. The objective of this study was to describe changes in diet among breast cancer survivors in the first year after treatment, and to evaluate these changes in the context of current dietary intake. Changes in diet were assessed in 28 early stage breast cancer survivors, using a self-reported survey in which women identified changes in food intake since their diagnosis. Current dietary intake was estimated from 3-day food records and described relative to current recommendations. The majority of women reported changes in diet after diagnosis, most common being an increase in vegetables/fruit and fish, lower intake of red meat, and reduced alcohol. Many women reported that these changes were initiated during active treatment. Dietary changes were largely consistent with current recommendations for cancer prevention; however, some women were still above the guidelines for total and saturated fat, and many were below recommendations for vegetables/fruit, milk/alternatives, calcium, and vitamin D. Evidence that some women are willing and able to initiate positive changes in diet early in the treatment trajectory suggests that early intervention may be effective in promoting dietary habits that will assist with weight management and overall health. Data on current dietary intake highlights several possible targets for dietary intervention in this population.
Parisi, Francesca; Rousian, Melek; Steegers-Theunissen, Régine P M; Koning, Anton H J; Willemsen, Sten P; de Vries, Jeanne H M; Cetin, Irene; Steegers, Eric A P
2018-04-20
Maternal dietary patterns were associated with embryonic growth and congenital anomalies. We aim to evaluate associations between early first trimester maternal dietary patterns and embryonic morphological development among pregnancies with non-malformed outcome. A total of 228 strictly dated, singleton pregnancies without congenital malformations were enrolled in a periconceptional hospital-based cohort. Principal component analysis was performed to extract early first trimester maternal dietary patterns from food frequency questionnaires. Serial transvaginal three-dimensional ultrasound (3D US) scans were performed between 6 +0 and 10 +2 gestational weeks and internal and external morphological criteria were used to define Carnegie stages in a virtual reality system. Associations between dietary patterns and Carnegie stages were investigated using linear mixed models. A total of 726 3D US scans were included (median: three scans per pregnancy). The 'high fish and olive oil and low meat' dietary pattern was associated with accelerated embryonic development in the study population (β = 0.12 (95%CI: 0.00; 0.24), p < 0.05). Weak adherence to this dietary pattern delayed embryonic development by 2.1 days (95%CI: 1.6; 2.6) compared to strong adherence. The 'high vegetables, fruit and grain' dietary pattern accelerated embryonic development in the strictly dated spontaneous pregnancy subgroup without adjustment for energy intake. Early first trimester maternal dietary patterns impacts human embryonic morphological development among pregnancies without congenital malformations. The clinical meaning of delayed embryonic development needs further investigation.
Ng, Jovyn K T; Schröder, Roswitha; Brummell, David A; Sutherland, Paul W; Hallett, Ian C; Smith, Bronwen G; Melton, Laurence D; Johnston, Jason W
2015-03-15
Substantial differences in softening behaviour can exist between fruit even within the same species. Apple cultivars 'Royal Gala' and 'Scifresh' soften at different rates despite having a similar genetic background and producing similar amounts of ethylene during ripening. An examination of cell wall metabolism from the fruitlet to the ripe stages showed that in both cultivars pectin solubilisation increased during cell expansion, declined at the mature stage and then increased again during ripening. This process was much less pronounced in the slower softening 'Scifresh' than in 'Royal Gala' at every developmental stage examined, consistent with less cell separation and softening in this cultivar. Both cultivars also exhibited a progressive loss of pectic galactan and arabinan side chains during development. The cell wall content of arabinose residues was similar in both cultivars, but the galactose residue content in 'Scifresh' remained higher than that of 'Royal Gala' at every developmental stage. The higher content of cell wall galactose residue in 'Scifresh' cell walls correlated with a lower β-galactosidase activity and more intense immunolabelling of RG-I galactan side chains in both microscopy sections and glycan microarrays. A high cell wall galactan content has been associated with reduced cell wall porosity, which may restrict access of cell wall-modifying enzymes and thus maintain better structural integrity later in development. The data suggest that the composition and structure of the cell wall at very early development stages may influence subsequent cell wall loosening, and may even predispose the wall's ensuing properties. Copyright © 2014 Elsevier GmbH. All rights reserved.
Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram
2017-01-01
Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other cultivars revealed similarities to Concord grape and indicates the strong effect of genetic background on metabolic partitioning in primary and secondary metabolism.
Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram
2017-01-01
Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other cultivars revealed similarities to Concord grape and indicates the strong effect of genetic background on metabolic partitioning in primary and secondary metabolism. PMID:28713396
Li, Qian; Li, Ping; Sun, Liang; Wang, Yanping; Ji, Kai; Sun, Yufei; Dai, Shengjie; Chen, Pei; Duan, Chaorui; Leng, Ping
2012-01-01
The aim of this study was to obtain new insights into the mechanisms that regulate endogenous abscisic acid (ABA) levels by β-glucosidase genes during the development of watermelons (Citrullus lanatus) and under drought stress conditions. In total, five cDNAs from watermelons were cloned by using reverse transcription-PCR (RT-PCR). They included three cDNAs (ClBG1, ClBG2 and ClBG3) homologous to those that encode β-glucosidase l that hydrolyzes the ABA glucose ester (ABA-GE) to release active ABA, ClNCED4, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, and ClCYP707A1, encoding ABA 8'-hydroxylase. A BLAST homology search revealed that the sequences of cDNAs and the deduced amino acids of these genes showed a high degree of homology to comparable molecules of other plant species. During fruit development and ripening, the expressions of ClBG1, ClNCED4 and ClCYP707A1 were relatively low at an early stage, increased rapidly along with fruit ripening, and reached the highest levels at 27 days after full bloom (DAFB) at the harvest stage. This trend was consistent with the accumulation of ABA. The ClBG2 gene on the other hand was highly expressed at 5 DAFB, and then decreased gradually with fruit development. Unlike ClBG1 and ClBG2, the expression of ClBG3 was low at an early stage; its expression peak occurred at 15 DAFB and then declined to the lowest point. When watermelon seedlings were subjected to drought stress, expressions of ClBG1 and ClCYP707A1 were significantly down-regulated, while expressions of ClBG2 and ClNCED4 were up-regulated in the roots, stems and leaves. The expression of ClBG3 was down-regulated in root tissue, but was up-regulated in stems and leaves. In conclusion, endogenous ABA content was modulated by a dynamic balance between biosynthesis and catabolism regulated by ClNCED4, ClCYP707A1 and ClBGs during development and under drought stress condition. It seems likely that β-glucosidase genes are important for this regulation process. Copyright © 2011 Elsevier GmbH. All rights reserved.
Ismail, Amin
2016-01-01
Hundreds of fruit-bearing trees are native to Southeast Asia, but many of them are considered as indigenous or underutilized. These species can be categorized as indigenous tropical fruits with potential for commercial development and those possible for commercial development. Many of these fruits are considered as underutilized unless the commercialization is being realized despite the fact that they have the developmental potential. This review discusses seven indigenous tropical fruits from 15 species that have been identified, in which their fruits are having potential for commercial development. As they are not as popular as the commercially available fruits, limited information is found. This paper is the first initiative to provide information on the phytochemicals and potential medicinal uses of these fruits. Phytochemicals detected in these fruits are mainly the phenolic compounds, carotenoids, and other terpenoids. Most of these phytochemicals are potent antioxidants and have corresponded to the free radical scavenging activities and other biological activities of the fruits. The scientific research that covered a broad range of in vitro to in vivo studies on the medicinal potentials of these fruits is also discussed in detail. The current review is an update for researchers to have a better understanding of the species, which simultaneously can provide awareness to enhance their commercial value and promote their utilization for better biodiversity conservation. PMID:27340420
Dang, Ruihong; Li, Jinxi; Jiang, Jinzhu; Zhang, Ning; Jia, Meiru; Wei, Lingzhi; Li, Ziqiang; Li, Bingbing; Jia, Wensuo
2015-01-01
Whereas the regulatory mechanisms that direct fruit ripening have been studied extensively, little is known about the signaling mechanisms underlying this process, especially for nonclimacteric fruits. In this study, we demonstrated that a SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2, designated as FaSnRK2.6, is a negative regulator of fruit development and ripening in the nonclimacteric fruit strawberry (Fragaria × ananassa) and can also mediate temperature-modulated strawberry fruit ripening. FaSnRK2.6 was identified as an ortholog of OPEN STOMATA1. Levels of FaSnRK2.6 transcript rapidly decreased during strawberry fruit development and ripening. FaSnRK2.6 was found to be capable of physically interacting with strawberry ABSCISIC ACID INSENSITIVE1, a negative regulator in strawberry fruit ripening. RNA interference-induced silencing of FaSnRK2.6 significantly promoted fruit ripening. By contrast, overexpression of FaSnRK2.6 arrested fruit ripening. Strawberry fruit ripening is highly sensitive to temperature, with high temperatures promoting ripening and low temperatures delaying it. As the temperature increased, the level of FaSnRK2.6 expression declined. Furthermore, manipulating the level of FaSnRK2.6 expression altered the expression of a variety of temperature-responsive genes. Taken together, this study demonstrates that FaSnRK2.6 is a negative regulator of strawberry fruit development and ripening and, furthermore, that FaSnRK2.6 mediates temperature-modulated strawberry fruit ripening. PMID:25609556
Inositol-phosphate signaling as mediator for growth and sexual reproduction in Podospora anserina.
Xie, Ning; Ruprich-Robert, Gwenaël; Chapeland-Leclerc, Florence; Coppin, Evelyne; Lalucque, Hervé; Brun, Sylvain; Debuchy, Robert; Silar, Philippe
2017-09-01
The molecular pathways involved in the development of multicellular fruiting bodies in fungi are still not well known. Especially, the interplay between the mycelium, the female tissues and the zygotic tissues of the fruiting bodies is poorly documented. Here, we describe PM154, a new strain of the model ascomycetes Podospora anserina able to mate with itself and that enabled the easy recovery of new mutants affected in fruiting body development. By complete genome sequencing of spod1, one of the new mutants, we identified an inositol phosphate polykinase gene as essential, especially for fruiting body development. A factor present in the wild type and diffusible in mutant hyphae was able to induce the development of the maternal tissues of the fruiting body in spod1, but failed to promote complete development of the zygotic ones. Addition of myo-inositol in the growth medium was able to increase the number of developing fruiting bodies in the wild type, but not in spod1. Overall, the data indicated that inositol and inositol polyphosphates were involved in promoting fruiting body maturation, but also in regulating the number of fruiting bodies that developed after fertilization. The same effect of inositol was seen in two other fungi, Sordaria macrospora and Chaetomium globosum. Key role of the inositol polyphosphate pathway during fruiting body maturation appears thus conserved during the evolution of Sordariales fungi. Copyright © 2017 Elsevier Inc. All rights reserved.
Tzortzakis, Nikos G
2010-08-15
Anthracnose rot (Colletotrichum coccodes) development in vitro or in tomato (Lycopersicon esculentum L.) fruit was evaluated after treatment with absolute ethyl alcohol (AEA), vinegar (VIN), chlorine (CHL) or origanum oil (ORI) and storage at 12 degrees C and 95% relative humidity during or following exposure to the volatiles. Fruit treated with vapours reduced fungal spore germination/production, but in the case of AEA- and VIN-treated fruits, fungal mycelium development was accelerated. Fruit lesion development was suppressed after fruit exposure to pure (100% v/v) AEA or ORI vapours which were accompanied by increased fruit cracking. Exposure to pure VIN-, CHL- and ORI vapours reduced (up to 92%) spore germination in vitro, but no differences were observed in the AEA treatment. The benefits associated with volatiles-enrichment were maintained in fruit pre-exposed to vapours, resulting in suppression in spore germination and spore production. However, studies performed on fungi grown on Potato Dextrose Agar revealed fewer direct effects of volatiles on fungal colony development and spore germination per se, implying that suppression of pathogen development was due in a large part to the impact of volatiles on fruit-pathogen interactions and/or 'memory' effects on fruit tissue. Work is currently focussing on the mechanisms underlying the impacts of volatiles on fruit quality related attributes. The results of this study indicate that volatiles may be considered as an alternative to the traditional postharvest sanitizing techniques. Each commodity needs to be individually assessed, and the volatile concentration and sanitising technique optimised, before the volatile treatment is used commercially. Copyright 2010 Elsevier B.V. All rights reserved.
Metabolomic Characterization of Hot Pepper (Capsicum annuum "CM334") during Fruit Development.
Jang, Yu Kyung; Jung, Eun Sung; Lee, Hyun-Ah; Choi, Doil; Lee, Choong Hwan
2015-11-04
Non-targeted metabolomic analysis of hot pepper (Capsicum annuum "CM334") was performed at six development stages [16, 25, 36, 38, 43, and 48 days post-anthesis (DPA)] to analyze biochemical changes. Distinct distribution patterns were observed in the changes of metabolites, gene expressions, and antioxidant activities by early (16-25 DPA), breaker (36-38 DPA), and later (43-48 DPA) stages. In the early stages, glycosides of luteolin, apigenin, and quercetin, shikimic acid, γ-aminobutyric acid (GABA), and putrescine were highly distributed but gradually decreased over the breaker stage. At later stages, leucine, isoleucine, proline, phenylalanine, capsaicin, dihydrocapsaicin, and kaempferol glycosides were significantly increased. Pathway analysis revealed metabolite-gene interactions in the biosynthesis of amino acids, capsaicinoids, fatty acid chains, and flavonoids. The changes in antioxidant activity were highly reflective of alterations in metabolites. The present study could provide useful information about nutrient content at each stage of pepper cultivation.
Vertical stratification of the nutritional value of fruit: macronutrients and condensed tannins.
Houle, Alain; Conklin-Brittain, Nancy L; Wrangham, Richard W
2014-12-01
Competing successfully for the best feeding sites is an important behavioral strategy but little is known about how feeding sites vary nutritionally within a fruit tree. To answer this question we tested how the nutritional value of a fruit is influenced by its ripeness and its height within the tree crown. A complementary objective was to assess the nutritional value of the midripe fruit, a food item rarely mentioned in the literature despite being exploited on a daily basis by many frugivores. We measured how the dry weight of pulp, water content, and concentration of macronutrients and condensed tannins varied within the tree crowns of 15 fruit species. Collections occurred early in the fruiting cycle, so as to assess the amount of food in the tree before its exploitation by primates. We found that (1) the upper crown produced fruit densities 4.2 times higher, and a fruit crop 4.8 times larger, than the lower crown of the same tree; (2) considering only midripe and ripe stages, upper-crown fruits contained 28.6% more dry pulp, 21.1% more water, and 13.5% more sugars per dry matter than lower-crown fruits of the same tree; (3) midripe fruits contained 80% of the concentrations of sugars of ripe fruits, making them a sweeter food item than one would expect from the intermediate color of their epidermis; (4) cellulose, hemicellulose, proteins, and ash proportionally decreased in concentration while dry pulp and sugars increased during ripening; and (5) ripe fruits were usually rare in the tree (<0.5% of all fruit available) compared to midripe fruits (3-8%). Overall, upper-crown feeding sites produced a higher density and quality of food than lower-crown sites of the same tree. Our data therefore provide a clear nutritional explanation for why tree-feeding frugivores compete for the highest feeding sites. © 2014 Wiley Periodicals, Inc.
Efficacy of irradiation vs thermal methods as quarantine treatments for tropical fruits
NASA Astrophysics Data System (ADS)
Moy, James H.
1993-07-01
Ionizing radiation can be effectively applied to fruits and vegetables for several purposes. The most feasible and potentially useful application is probably for disinfestation as a quarantine treatment. All stages of a fruit fly will become sterile upon being irradiated at a minimum dose of 0.15 kGy, the dose level approved by the USDA in January 1989 for treating Hawaiian papayas as a quarantine procedure. This is also well below the dose level approved in April, 1986 by the U.S. Food and Drug Administration for irradiating fresh foods for disinfestation and delaying maturation. Research on irradiation of several tropical fruits such as papayas, mangoes, lychees showed that the chemical, sensory and nutrient qualities of these fruits were well retained at 1.0 kGy, and the fruits would ripen normally or slightly delayed. Since September, 1984, thermal methods used by the papaya industry after ethylene dibromide was banned require treatment time of up to 7 hrs and have caused quality problems. Some of the fruits treated by the hot air or the double-dip hot water method lack flavor and had lumpy texture. The vapor heat method as now used is quite expensive. Irradiation studies have proved the efficacy of the process to disinfest tropical fruits of fruit files. Market test of irradiated Hawaiian papayas in 1987 showed that consumers preferred irradiated papayas over hot water treated papayas by 11 to 1. Thus the only hurdle to overcome in using irradiation for tropical fruits is to convince the consumers that irradiated fruits are wholesome and safe for human consumption, which has been amply proven with scientific data obtained during the past three decades, and further proven with the marketing of irradiated fruits in the U.S.A. since early 1992.
Miao, Hongxia; Sun, Peiguang; Liu, Qing; Jia, Caihong; Liu, Juhua; Hu, Wei; Jin, Zhiqiang; Xu, Biyu
2017-01-01
Soluble starch synthase (SS) is one of the key enzymes involved in amylopectin biosynthesis in plants. However, no information is currently available about this gene family in the important fruit crop banana. Herein, we characterized the function of MaSSIII-1 in amylopectin metabolism of banana fruit and described the putative role of the other MaSS family members. Firstly, starch granules, starch and amylopectin content were found to increase during banana fruit development, but decline during storage. The SS activity started to increase later than amylopectin and starch content. Secondly, four putative SS genes were cloned and characterized from banana fruit. Among them, MaSSIII-1 showed the highest expression in banana pulp during fruit development at transcriptional levels. Further Western blot analysis suggested that the protein was gradually increased during banana fruit development, but drastically reduced during storage. This expression pattern was highly consistent with changes in starch granules, amylopectin content, and SS activity at the late phase of banana fruit development. Lastly, overexpression of MaSSIII-1 in tomato plants distinctly changed the morphology of starch granules and significantly increased the total starch accumulation, amylopectin content, and SS activity at mature-green stage in comparison to wild-type. The findings demonstrated that MaSSIII-1 is a key gene expressed in banana fruit and responsible for the active amylopectin biosynthesis, this is the first report in a fresh fruit species. Such a finding may enable the development of molecular markers for banana breeding and genetic improvement of nutritional value and functional properties of banana fruit. PMID:28424724
Anomaly of the calyx end of Golden Delicious apple fruits associated with fluoride exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeley, E.J.
1979-04-01
Abnormal development of the calyx end of Golden Delicious apples (Malus domestica Borkh.) results in roundish-oblate fruit with rudimentary calyx lobes in a flattened basin. Persistent symptoms were caused by holding fruits at -1 to -2/sup 0/C for 15 min, 21 days after full bloom or by dipping fruit in aqueous NaF solutions. Dipping fruit in 2,4-dichlorophenoxyacetic acid (2,4-D) or fumigating with HF produced typical foliage symptoms but did not affect fruit development. 10 references, 2 figures.
Pierce, John P.; Natarajan, Loki; Caan, Bette J.; Parker, Barbara A.; Greenberg, E. Robert; Flatt, Shirley W.; Rock, Cheryl L.; Kealey, Sheila; Al-Delaimy, Wael K.; Bardwell, Wayne A.; Carlson, Robert W.; Emond, Jennifer A.; Faerber, Susan; Gold, Ellen B.; Hajek, Richard A.; Hollenbach, Kathryn; Jones, Lovell A.; Karanja, Njeri; Madlensky, Lisa; Marshall, James; Newman, Vicky A.; Ritenbaugh, Cheryl; Thomson, Cynthia A.; Wasserman, Linda; Stefanick, Marcia L.
2007-01-01
Context Evidence is lacking that a dietary pattern high in vegetables, fruit, and fiber and low in total fat can influence breast cancer recurrence or survival. Objective To assess whether a major increase in vegetable, fruit, and fiber intake and a decrease in dietary fat intake reduces the risk of recurrent and new primary breast cancer and all-cause mortality among women with previously treated early stage breast cancer. Design, Setting, and Participants Multi-institutional randomized controlled trial of dietary change in 3088 women previously treated for early stage breast cancer who were 18 to 70 years old at diagnosis. Women were enrolled between 1995 and 2000 and followed up through June 1, 2006. Intervention The intervention group (n=1537) was randomly assigned to receive a telephone counseling program supplemented with cooking classes and newsletters that promoted daily targets of 5 vegetable servings plus 16 oz of vegetable juice; 3 fruit servings; 30 g of fiber; and 15% to 20% of energy intake from fat. The comparison group (n=1551) was provided with print materials describing the "5-A-Day" dietary guidelines. Main Outcome Measures Invasive breast cancer event (recurrence or new primary) or death from any cause. Results From comparable dietary patterns at baseline, a conservative imputation analysis showed that the intervention group achieved and maintained the following statistically significant differences vs the comparison group through 4 years: servings of vegetables, +65%; fruit, +25%; fiber, +30%, and energy intake from fat, −13%. Plasma carotenoid concentrations validated changes in fruit and vegetable intake. Throughout the study, women in both groups received similar clinical care. Over the mean 7.3-year follow-up, 256 women in the intervention group (16.7%) vs 262 in the comparison group (16.9%) experienced an invasive breast cancer event (adjusted hazard ratio, 0.96; 95% confidence interval, 0.80–1.14; P=.63), and 155 intervention group women (10.1%) vs 160 comparison group women (10.3%) died (adjusted hazard ratio, 0.91; 95% confidence interval, 0.72–1.15; P=.43). No significant interactions were observed between diet group and baseline demographics, characteristics of the original tumor, baseline dietary pattern, or breast cancer treatment. Conclusion Among survivors of early stage breast cancer, adoption of a diet that was very high in vegetables, fruit, and fiber and low in fat did not reduce additional breast cancer events or mortality during a 7.3-year follow-up period. Trial Registration clinicaltrials.gov Identifier: NCT00003787 PMID:17635889
Commentary: The Development of Creativity--Ability, Motivation, and Potential.
Silvia, Paul J; Christensen, Alexander P; Cotter, Katherine N
2016-01-01
A major question for research on the development of creativity is whether it is interested in creative potential (a prospective approach that uses measures early in life to predict adult creativity) or in children's creativity for its own sake. We suggest that a focus on potential for future creativity diminishes the fascinating creative world of childhood. The contributions to this issue can be organized in light of an ability × motivation framework, which offers a fruitful way for thinking about the many factors that foster and impede creativity. The contributions reflect a renewed interest in the development of creativity and highlight how this area can illuminate broader problems in creativity studies. © 2016 Wiley Periodicals, Inc.
Fos, Mariano; Proaño, Karina; Nuez, Fernando; García-Martínez, José L.
2001-04-01
The role of gibberellins (GAs) in the induction of parthenocarpic fruit-set and growth by the pat-3/pat-4 genetic system in tomato (Lycopersicon esculentum Mill.) was investigated using wild type (WT; Cuarenteno) and a near-isogenic line derived from the German line RP75/59 (the source of pat-3/pat-4 parthenocarpy). Unpollinated WT ovaries degenerated but GA3 application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of pat-3/pat-4 fruits, which occurs in the absence of pollination and hormone treatment, was not affected by applied GA3. Unpollinated pat-3/pat-4 fruit growth was negated by paclobutrazol, an inhibitor of ent-kaurene oxidase, and this inhibitory effect was negated by GA3. The quantification of the main GAs of the early 13-hydroxylation pathway (GA1, GA8, GA19, GA20, GA29 and GA44) in unpollinated ovaries at 3 developmental stages (flower bud, FB; pre-anthesis, PR; and anthesis, AN), by gas chromatography-selected ion monitoring, showed that the concentration of most of them was higher in pat-3/pat-4 than in WT ovaries at PR and AN stages. The concentration of GA1, suggested previously to be the active GA in tomate, was 2-4 times higher. Unpollinated pat-3/pat-4 ovaries at FB, PR and AN stages also contained relatively high amounts (5-12 ng g-1) of GA3, a GA found at less than 0.5 ng g-1 in WT ovaries. It is concluded that the mutations pat-3/pat-4 may induce natural facultative parthenocarpy capacity in tomato by increasing the concentration of GA1 and GA3 in the ovaries before pollination.
Eid, Noura; Enani, Sumia; Walton, Gemma; Corona, Giulia; Costabile, Adele; Gibson, Glenn; Rowland, Ian; Spencer, Jeremy P E
2014-01-01
The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.
MENA-ALÍ, JORGE I.; ROCHA, OSCAR J.
2004-01-01
• Background and Aims It has been claimed that ovules linearly ordered within a fruit differ in their probabilities of reaching maturity. This was investigated by studying the effect the position of an ovule within the pod has on seed abortion and seed production in Bauhinia ungulata. • Methods Fruits collected during the dry seasons of 1999, 2000 and 2001 were opened, and the number, position and status of each ovule within the fruit were recorded. A GLM model was used to assess the effects of population, tree identity and ovule position within the pod on ovule fertilization, seed abortion, seed damage and seed maturation in two populations of B. ungulata. • Key Results Nearly 30 % of the ovules were not fertilized in 1999; this percentage dropped to 5 % the following two years. Seed abortion (50 %) and seed damage (15 %) were the same every year during the study period. Only 15 % of the initial ovules developed into mature seeds in 1999; this value increased to 35 % in 2000 and 2001. However, seed survivorship was dependent on the position of the ovule within the pod; non-fertilized and early aborted ovules were found more often near the basal end of the ovary. The frequency of seed damage was not affected by position. Mature seeds were found mainly in the stylar half of fruits, where ovules are likely to be fertilized by fast pollen tubes. • Conclusions The pattern of seed production in B. ungulata is non-random but is dependent upon the position of the ovule within the pod. The results suggest that the seeds produced within a fruit might differ in their vigour. PMID:15596452
The science behind the proposed maturity standard change
USDA-ARS?s Scientific Manuscript database
The current maturity standard for navel oranges in California has been in place for nearly 100 years yet does not always do a good job of ensuring that consumers obtain good-tasting fruit during the early season. Early work that was performed which supported adoption of the standard may have been ad...
ERIC Educational Resources Information Center
Reddy, Aravind; Braun, Charles L.
2010-01-01
Lead poisoning has been a problem since early history and continues into modern times. An appealing characteristic of lead is that many lead salts are sweet. In the absence of cane and beet sugars, early Romans used "sugar of lead" (lead acetate) to sweeten desserts, fruits, and sour wine. People most at risk would have been those who…
Maturation of Black Cherry Fruits in Central Mississippi
F.T. Bonner
1975-01-01
Black cherry (Prunus serotina Ehrh.) in central Mississippi grew in size and weight from early May until maturity in late June. In early June, crude fat, protein-nitrogen, and calcium concentrations increased; moisture content decreased; endocarps hardened; and embryo tissues became firm. From mid-June to maturity mesocarp growth was prominent as...
CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit.
Brand, Arnon; Borovsky, Yelena; Hill, Theresa; Rahman, Khalis Afnan Abdul; Bellalou, Aharon; Van Deynze, Allen; Paran, Ilan
2014-10-01
We provide multiple evidences that CaGLK2 underlies a quantitative trait locus controlling natural variation in chlorophyll content and immature fruit color of pepper via modulating chloroplast compartment size. Pepper fruit quality is attributed to a variety of traits, affecting visual appearance, flavor, chemical composition and nutritional value. Among the quality traits, fruit color is of primary importance because the pigments that confer color are associated with nutrition, health and flavor. Although gene models have been proposed for qualitative aspects of fruit color, large natural variation in quantitative pigment content and fruit color exists in pepper. However, its genetic basis is largely unknown which hampers its utilization for plant improvement. We studied the role of GLK2, a GOLDEN2-like transcription factor that regulates chloroplast development in controlling natural variation for chlorophyll content and immature fruit color of pepper. The role of GLK2 in regulating fruit development has been studied previously in tomato using ectopic expression and the uniform ripening mutant analyses. However, pepper provides a unique opportunity to further study the function of this gene because of the wide natural variation of fruit colors in this species. Segregation, sequencing and expression analyses indicated that pepper GLK2 (CaGLK2) corresponds to the recently reported pc10 QTL that controls chloroplast development and chlorophyll content in pepper. CaGLK2 exerts its effect on chloroplast compartment size predominantly during immature fruit development. We show that the genetic background, sequence variation and expression pattern confer a complex and multi-level regulation of CaGLK2 and fruit color in Capsicum. The positive effect on fruit quality predominantly at the green stage conferred by CaGLK2 can be utilized to breed green pepper varieties with improved nutritional values and taste.
Sharma, Sunil; Pareek, Sunil; Sagar, Narashans Alok; Valero, Daniel; Serrano, Maria
2017-08-17
Polyamines (PAs) are natural compounds involved in many growth and developmental processes in plants, and, specifically in fruits, play a vital role regulating its development, ripening and senescence processes. Putrescine (PUT), spermine (SPE), and spermidine (SPD) are prominent PAs applied exogenously to extend shelf life of fruits. They also originate endogenously during developmental phases of horticultural crops and simultaneously affect the quality attributes and shelf life. Their anti-ethylene nature is being exploited to enhance the shelf life when exogenously applied on fruits. In growth and development of fruits, PA levels generally fall, which marks the beginning of senescence at postharvest phase. PUT, SPE and SPD treatments are being applied during postharvest phase to prolong the shelf life. They enhance the shelf life of fruits by reducing respiration rate, ethylene release and enhance firmness and quality attributes in fruits. PAs have a mitigating impact on biotic and abiotic stresses including chilling injury (CI) in tropical and sub-tropical fruits. PAs are environment friendly in nature and are biodegradable without showing any negative effect on environment. Biotechnological interventions by using chimeric gene constructs of PA encoding genes has boosted the research to develop transgenic fruits and vegetables which would possess inherent or in situ mechanism of enhanced biosynthesis of PAs at different stages of development and thereby will enhance the shelf life and quality in fruits. Internal and external quality attributes of fruits are improved by modulation of antioxidant system and by strengthening biophysical morphology of fruits by electrostatic interaction between PAs and phospholipids in the cell wall.
Sharma, Sunil; Sagar, Narashans Alok; Valero, Daniel; Serrano, Maria
2017-01-01
Polyamines (PAs) are natural compounds involved in many growth and developmental processes in plants, and, specifically in fruits, play a vital role regulating its development, ripening and senescence processes. Putrescine (PUT), spermine (SPE), and spermidine (SPD) are prominent PAs applied exogenously to extend shelf life of fruits. They also originate endogenously during developmental phases of horticultural crops and simultaneously affect the quality attributes and shelf life. Their anti-ethylene nature is being exploited to enhance the shelf life when exogenously applied on fruits. In growth and development of fruits, PA levels generally fall, which marks the beginning of senescence at postharvest phase. PUT, SPE and SPD treatments are being applied during postharvest phase to prolong the shelf life. They enhance the shelf life of fruits by reducing respiration rate, ethylene release and enhance firmness and quality attributes in fruits. PAs have a mitigating impact on biotic and abiotic stresses including chilling injury (CI) in tropical and sub-tropical fruits. PAs are environment friendly in nature and are biodegradable without showing any negative effect on environment. Biotechnological interventions by using chimeric gene constructs of PA encoding genes has boosted the research to develop transgenic fruits and vegetables which would possess inherent or in situ mechanism of enhanced biosynthesis of PAs at different stages of development and thereby will enhance the shelf life and quality in fruits. Internal and external quality attributes of fruits are improved by modulation of antioxidant system and by strengthening biophysical morphology of fruits by electrostatic interaction between PAs and phospholipids in the cell wall. PMID:28817100
Liu, Guang; Yang, Xingping; Xu, Jinhua; Zhang, Man; Hou, Qian; Zhu, Lingli; Huang, Ying; Xiong, Aisheng
2017-03-01
Watermelon is an important and economical horticultural crop in China, where ~20% of the plants are grafted. The development of grafted watermelon fruit involves a diverse range of gene interactions that results in dynamic changes in fruit. However, the molecular mechanisms underlying grafting-induced fruit quality change are unclear. In the present study, we measured the lycopene content by high-performance liquid chromatography and used RNA-Seq (quantification) to perform a genome-wide transcript analysis of fruits from watermelon grafted onto pumpkin rootstock (pumpkin-grafted watermelon, PGW), self-grafted watermelon (SGW), and non-grafted watermelon (NGW). The results showed variation in the lycopene content in the flesh of PGW fruits, first increasing and then decreasing in the four stages, which was different from the trend in the flesh of NGW and SGW fruits. The transcriptome profiling data provided new information on the grafting-induced gene regulation of lycopene biosynthesis during fruit growth and development. The expression levels of 33 genes from 8 gene families (GGPS, PSY, PDS, ZDS, CRTISO, LCYb, LCYe, and CHY) related to lycopene biosynthesis, which play critical roles in fruit coloration and contribute significantly to fruit phytonutrient values, were monitored during the four periods of fruit development in watermelon. Compared with those of NGW and SGW, 14 genes were differentially expressed in PGW during fruit development, suggesting that these genes possibly help to mediate lycopene biosynthesis in grafted watermelon fruit. Our work provides some novel insights into grafting-responsive carotenoid metabolism and its potential roles during PGW fruit development and ripening. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bellaire, Anke; Ischebeck, Till; Staedler, Yannick; Weinhaeuser, Isabell; Mair, Andrea; Parameswaran, Sriram; Ito, Toshiro; Schönenberger, Jürg; Weckwerth, Wolfram
2014-01-01
The interrelationship of morphogenesis and metabolism is a poorly studied phenomenon. The main paradigm is that development is controlled by gene expression. The aim of the present study was to correlate metabolism to early and late stages of flower and fruit development in order to provide the basis for the identification of metabolic adjustment and limitations. A highly detailed picture of morphogenesis is achieved using nondestructive micro computed tomography. This technique was used to quantify morphometric parameters of early and late flower development in an Arabidopsis thaliana mutant with synchronized flower initiation. The synchronized flower phenotype made it possible to sample enough early floral tissue otherwise not accessible for metabolomic analysis. The integration of metabolomic and morphometric data enabled the correlation of metabolic signatures with the process of flower morphogenesis. These signatures changed significantly during development, indicating a pronounced metabolic reprogramming in the tissue. Distinct sets of metabolites involved in these processes were identified and were linked to the findings of previous gene expression studies of flower development. High correlations with basic leucine zipper (bZIP) transcription factors and nitrogen metabolism genes involved in the control of metabolic carbon : nitrogen partitioning were revealed. Based on these observations a model for metabolic adjustment during flower development is proposed. PMID:24350948
Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong
2015-11-01
Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Li, Shaojie; Wang, Zhuang; Ding, Fan; Sun, Da; Ma, Zhaocheng; Cheng, Yunjiang; Xu, Juan
2014-02-15
The main bitter compounds (nomilin, limonin and naringin) in the fruit tissues of 'Guoqing No.1' Satsuma mandarin (Citrus unshiu Marc.) were determined throughout the fruit development of 3 consecutive growing seasons. Although fluctuating largely at the corresponding developing stages of the 3 years, the contents of these compounds in fruit tissues mostly displayed a declining trend, which implied that the rhythm of the metabolism of these bitter compounds was not consistent among years and was largely growing season dependent. Regarding their distribution, fruit flavedo might be a weak sink that contained the lowest level of naringin, while the segment membrane accumulated large amount of limonin and nomilin, which indicated a possible tissue bias pattern for biosynthesis or accumulation of those compounds. Partial correlation coefficient analysis revealed a synergistic accumulation of naringin and the two limonoid aglycones in fruit tissues during fruit development, indicating an integrated metabolism of flavonoids and limonoids. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kholibrina, C. R.; Aswandi; Susilowati, A.
2018-02-01
The observation on flowering, fruiting phenology and germination of Kemenyan toba (Styrax sumatrana) has not been widely reported. It isrequired to support the breeding activities for this tree improvement, the most Non-Timber Forest Product commodity in Lake Toba Catchment Area, North Sumatra. The objectives of the research were to identify the development of flowering, fruiting andto calculate the number of fruits that germinate for S. sumatrana in certain cycle period. The flowering and fruiting observation were conducted on ten sample trees in Aek Nauli forest from July 2012 to February 2013. The seeds viability was observed from January to November 2014 in the greenhouse. The study showed that the flowering development occurred for 30 to 152 days, began from the growing of generative buds, the flower’s shoots and bursts were developed, and young fruits were matured. All of processes proceeded for 30 to 152 days. The average percentage of flowering is 53.5%, and 72.8% for flowering to fruiting, and 47.3% for young to mature fruit. The percentage of mature fruit to germinate was 89.3%.
Nguyen, Cuong V.; Vrebalov, Julia T.; Gapper, Nigel E.; Zheng, Yi; Zhong, Silin; Fei, Zhangjun; Giovannoni, James J.
2014-01-01
Fruit ripening is the summation of changes rendering fleshy fruit tissues attractive and palatable to seed dispersing organisms. For example, sugar content is influenced by plastid numbers and photosynthetic activity in unripe fruit and later by starch and sugar catabolism during ripening. Tomato fruit are sinks of photosynthate, yet unripe green fruit contribute significantly to the sugars that ultimately accumulate in the ripe fruit. Plastid numbers and chlorophyll content are influenced by numerous environmental and genetic factors and are positively correlated with photosynthesis and photosynthate accumulation. GOLDEN2-LIKE (GLK) transcription factors regulate plastid and chlorophyll levels. Tomato (Solanum lycopersicum), like most plants, contains two GLKs (i.e., GLK1 and GLK2/UNIFORM). Mutant and transgene analysis demonstrated that these genes encode functionally similar peptides, though differential expression renders GLK1 more important in leaves, while GLK2 is predominant in fruit. A latitudinal gradient of GLK2 expression influences the typical uneven coloration of green and ripe wild-type fruit. Transcriptome profiling revealed a broader fruit gene expression gradient throughout development. The gradient influenced general ripening activities beyond plastid development and was consistent with the easily observed yet poorly studied ripening gradient present in tomato and many fleshy fruits. PMID:24510723
USDA-ARS?s Scientific Manuscript database
Temperate fruit flies in the genus Rhagoletis (Diptera: Tephritidae) have narrow host ranges relative to those of tropical fruit flies, suggesting they will not attack or are incapable of developing in most novel fruit. Here we tested the hypothesis that apple maggot fly, Rhagoletis pomonella (Wals...
Predicting successful introduction of novel fruit to preschool children.
Blissett, Jacqueline; Bennett, Carmel; Donohoe, Jessica; Rogers, Samantha; Higgs, Suzanne
2012-12-01
Few children eat sufficient fruits and vegetables despite their established health benefits. The feeding practices used by parents when introducing novel foods to their children, and their efficacy, require further investigation. We aimed to establish which feeding strategies parents commonly use when introducing a novel fruit to their preschool-aged children and assess the effectiveness of these feeding strategies on children's willingness to try a novel fruit. Correlational design. Twenty-five parents and their children aged 2 to 4 years attended our laboratory and consumed a standardized lunch, including a novel fruit. Interactions between parent and child were recorded and coded. Pearson's correlations and multiple linear regression analyses. The frequency with which children swallowed and enjoyed the novel fruit, and the frequency of taste exposures to the novel fruit during the meal, were positively correlated with parental use of physical prompting and rewarding/bargaining. Earlier introduction of solids was related to higher frequency of child acceptance behaviors. The child's age at introduction of solids and the number of physical prompts displayed by parents significantly predicted the frequency of swallowing and enjoying the novel fruit. Age of introduction to solids and parental use of rewards/bargaining significantly predicted the frequency of taste exposures. Prompting a child to eat and using rewards or bargains during a positive mealtime interaction can help to overcome barriers to novel fruit consumption. Early introduction of solids is also associated with greater willingness to consume a novel fruit. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life.
Matas, Antonio J; Gapper, Nigel E; Chung, Mi-Young; Giovannoni, James J; Rose, Jocelyn K C
2009-04-01
Commercial regulation of ripening is currently achieved through early harvest, by controlling the postharvest storage atmosphere and genetic selection for slow or late ripening varieties. Although these approaches are often effective, they are not universally applicable and often result in acceptable, but poor quality, products. With increased understanding of the molecular biology underlying ripening and the advent of genetic engineering technologies, researchers have pursued new strategies to address problems in fruit shelf-life and quality. These have been guided by recent insights into mechanisms by which ethylene and a complex network of transcription factors regulate ripening, and by an increased appreciation of factors that contribute to shelf-life, such as the fruit cuticle.
Manchester, Steven R.; Herrera, Fabiany; Fourtainer, Elisabeth; Barron, John A.; Martinez, Jean-Noël
2012-01-01
The Belén flora, in north coastal Peru, is the most diverse fruit and seed assemblage known from the Paleogene of South America. Almost no original paleobotanical work has been done on this assemblage since the pioneering treatments published by E.W. Berry, in the 1920’s and the precise age has not been settled. Nevertheless, the flora has been regarded as an important focal point in understanding the vegetational, orogenic and climatic history of northern South America, and in recent literature has been assumed to be early Eocene. In order to tighten the age assignment, which has varied from early Eocene to early Oligocene in the opinions of different authors, we revisited the Belén site, measured the stratigraphic section, and processed the fruit and seed-containing sediment for age-diagnostic microfossils. Although pollen and foraminifera were not recovered, the sediment is rich in diatoms. The diatom assemblage includes Lisitzinia ornata and Rocella vigilans among others, indicating a latest early Oligocene age (~30-28.5 Ma) for these deeper marine sediments that we infer to have been subsequently reworked into the Belén environment . This association leads us to consider the Belén flora, to be late Oligocene in age as is also consistent with its placement in the Mancora Formation. We also reevaluate the botanical identifications, based on the original museum specimens supplemented by more recently collected specimens. The Belén flora provides a window to extinct forests in South America before the rising of the Andes in western Peru.
Hypersensitive Ethylene Signaling and ZMdPG1 Expression Lead to Fruit Softening and Dehiscence
Li, Min; Zhang, Yanmin; Zhang, Zongying; Ji, Xiaohao; Zhang, Rui; Liu, Daliang; Gao, Liping; Zhang, Jing; Wang, Biao; Wu, Yusen; Wu, Shujing; Chen, Xiaoliu; Feng, Shouqian; Chen, Xuesen
2013-01-01
‘Taishanzaoxia’ fruit rapid softening and dehiscence during ripening stage and this process is very sensitive to endogenous ethylene. In this study, we cloned five ethylene signal transcription factors (ZMdEIL1, ZMdEIL2, ZMdEIL3, ZMdERF1 and ZMdERF2) and one functional gene, ZMdPG1, encoding polygalacturonase that could loose the cell connection which associated with fruit firmness decrease and fruit dehiscence to illustrate the reasons for this specific fruit phenotypic and physiological changes. Expression analysis showed that ZMdERF1 and ZMdEIL2 transcription were more abundant in ‘Taishanzaoxia’ softening fruit and dehiscent fruit and their expression was inhibited by an ethylene inhibitor 1-methylcyclopropene. Therefore, ZMdERF1 and ZMdEIL2 expression were responses to endogenous ethylene and associated with fruit softening and dehiscence. ZMdPG1 expression was induced when fruit softening and dehiscence but this induction can be blocked by 1-MCP, indicating that ZMdPG1 was essential for fruit softening and dehiscence and its expression was mediated by the endogenously occurred ethylene. ZMdPG1 overexpression in Arabidopsis led to silique early dehiscence while suppressing ZMdPG1 expression by antisense ZMdPG1 prevented silique naturally opening. The result also suggested that ZMdPG1 related with the connection between cells that contributed to fruit softening and dehiscence. ZMdERF1 was more closely related with ethylene signaling but it was not directly regulated the ZMdPG1, which might be regulated by the synergic pattern of ethylene transcription factors because of both the ZMdERF1 and ZMdERF2 could interact with ZMdEIL2. PMID:23527016
Pollen–pistil interactions and early fruiting in parthenocarpic citrus
Distefano, G.; Gentile, A.; Herrero, M.
2011-01-01
Background and Aims An intense pollen–pistil interaction precedes fertilization. This interaction is of particular relevance in agronomically important species where seeds or fruits are the edible part. Over time some agronomically species have been selected for the ability to produce fruit without seeds. While this phenomenon is critical for commercial production in some species, very little is known about the events behind the production of seedless fruit. In this work, the relationship between pollen–pistil interaction and the onset of fruiting was investigated in citrus mandarin. Methods Pistils were sequentially examined in hand-pollinated flowers paying attention to pollen-tube behaviour, and to cytochemical changes along the pollen-tube pathway. To evaluate which of these changes were induced by pollination/fertilization and which were developmentally regulated, pollinated and unpollinated pistils were compared. Also the onset of fruiting was timed and changes in the ovary examined. Key Results Conspicuous changes occurred in the pistil along the pollen-tube pathway, which took place in a basipetal way encompassing the timing of pollen-tube growth. However, these changes appear to be developmentally regulated as they happened in the same way and at the same time in unpollinated flowers. Moreover, the onset of fruiting occurred prior to fertilization and the very same changes could be observed in unpollinated flowers. Conclusions Pollen–pistil interaction in citrus showed similarities with unrelated species and families belonging to other taxa. The uncoupling of the reproductive and fruiting processes accounts for the parthenocarpic ability of unpollinated flowers to produce fruit in citrus. However, the maintenance of a functional reproductive process reflects the potential to produce seeded fruits, providing a basis for the understanding of the production of seeded or unseeded fruits and further understanding of the process of parthenocarpy in other species. PMID:21795277
Estimating cadmium concentration in the edible part of Capsicum annuum using hyperspectral models.
Wang, Ting; Wei, Hong; Zhou, Cui; Gu, Yanwen; Li, Rui; Chen, Hongchun; Ma, Wenchao
2017-10-09
Hyperspectral remote sensing can be applied to the rapid and nondestructive monitoring of heavy-metal pollution in crops. To realize the rapid and real-time detection of cadmium in the edible part (fruit) of Capsicum annuum, the leaf spectral reflectance of plants exposed to different levels of cadmium stress was measured using hyperspectral remote sensing during four growth stages. The spectral indices or bands sensitive to cadmium stress were determined by correlation analysis, and hyperspectral estimation models for predicting the cadmium content in the fruit of C. annuum during the mature growth stage were established. The models were cross validated by taking the sensitive spectral indices in the bud stage and the sensitive spectral bands in the flowering stage as the input variables. The results indicated that cadmium accumulated in the leaves and fruit of C. annuum and leaf cadmium content in the three early growth stages were correlated with the cadmium content of the pepper in the mature stage. Leaf spectral reflectance was sensitive to cadmium stress, and the first derivative of the original spectral reflectance was strongly correlated with leaf cadmium content during all growth stages. Among the established models, the multiple regression model based on the sensitive spectral bands in the flowering stage was optimal for predicting fruit cadmium content of the pepper. This model provides a promising method to ensure food safety during the early growth stage of the plant.
Kunihisa, Miyuki; Moriya, Shigeki; Abe, Kazuyuki; Okada, Kazuma; Haji, Takashi; Hayashi, Takeshi; Kim, Hoytaek; Nishitani, Chikako; Terakami, Shingo; Yamamoto, Toshiya
2014-01-01
Many important apple (Malus × domestica Borkh.) fruit quality traits are regulated by multiple genes, and more information about quantitative trait loci (QTLs) for these traits is required for marker-assisted selection. In this study, we constructed genetic linkage maps of the Japanese apple cultivars ‘Orin’ and ‘Akane’ using F1 seedlings derived from a cross between these cultivars. The ‘Orin’ map consisted of 251 loci covering 17 linkage groups (LGs; total length 1095.3 cM), and the ‘Akane’ map consisted of 291 loci covering 18 LGs (total length 1098.2 cM). We performed QTL analysis for 16 important traits, and found that four QTLs related to harvest time explained about 70% of genetic variation, and these will be useful for marker-assisted selection. The QTL for early harvest time in LG15 was located very close to the QTL for preharvest fruit drop. The QTL for skin color depth was located around the position of MYB1 in LG9, which suggested that alleles harbored by ‘Akane’ are regulating red color depth with different degrees of effect. We also analyzed soluble solids and sugar component contents, and found that a QTL for soluble solids content in LG16 could be explained by the amount of sorbitol and fructose. PMID:25320559
Cho, Jeong-Yong; Lee, Sang-Hyun; Kim, Eun Hee; Yun, Hae Rim; Jeong, Hang Yeon; Lee, Yu Geon; Kim, Wol-Soo; Moon, Jae-Hak
2015-01-01
Changes in chemical constituent contents and DPPH radical-scavenging activity in fruits of pear (Pyrus pyrifolia) cultivars during the development were investigated. The fruits of seven cultivars (cv. Niitaka, Chuhwangbae, Wonhwang, Hwangkeumbae, Hwasan, Manpungbae, and Imamuraaki) were collected at 15-day intervals after day 20 of florescence. Vitamins (ascorbic acid and α-tocopherol), arbutin, chlorogenic acid, malaxinic acid, total caffeic acid, total flavonoids, and total phenolics were the highest in immature pear fruit on day 20 after florescence among samples at different growth stages. All of these compounds decreased gradually in the fruit during the development. Immature pear fruit on day 35 or 50 after florescence exhibited higher free radical-scavenging activity than that at other times, although activities were slightly different among cultivars. The chemical constituent contents and free radical-scavenging activity were largely different among immature fruits of the pear cultivars, but small differences were observed when they matured.
Wang, Jian-Hui; Liu, Jian-Jun; Chen, Ke-Ling; Li, Hong-Wen; He, Jian; Guan, Bin; He, Li
2017-12-21
Transcriptome and proteome analyses on fruit pulp from the blood orange 'Zaohong' and the navel orange 'twenty-first century' were performed to study Citrus sinensis quality-related molecular changes during consecutive developmental periods, including young fruit, fruit-coloring onset and fruit delayed-harvest for two months, during which fruit remained on the trees. The time-course analysis for the fruit developmental periods indicated a complex, dynamic gene expression pattern, with the numbers of differentially expressed genes (DEGs) between the two cultivars being 119, 426 and 904 at the three continuous stages tested during fruit development and ripening. The continuous increase in total soluble solids over the course of fruit development was correlated with up-regulated sucrose phosphate synthase (SPS) transcription levels in both cultivars. Eleven differentially expressed genes between the two cultivars involved in the flavonoid pathway were significantly enriched at the onset of the fruit-coloring stage when anthocyanins were detected in blood orange alone. Among 5185 proteins, 65 up-regulated and 29 down-regulated proteins were co-expressed with their cognate mRNAs with significant transcription and protein expression levels when the fruits from the two cultivars were compared at the fruit delayed-harvest stage. Additionally, important genes participating in the γ-aminobutyric acid (GABA) shunt were activated in blood orange at two significant expression levels in the fruit delayed-harvest stage. Thus, organic acids in fruit continuously decreased during this stage. This research was the first to provide a more comprehensive understanding of the differentially expressed genes involved in anthocyanin, sucrose and citrate metabolism at the transcriptome and proteome levels in C. sinensis, especially during the fruit delayed-harvest stage.
BEL1-LIKE HOMEODOMAIN 11 regulated chloroplast development and chlorophyll synthesis in tomato fruit
USDA-ARS?s Scientific Manuscript database
Chloroplast development and chlorophyll content and metabolism in unripe tomato contribute to the growth and development of the fruit, and also the ripe fruit quality, but the mechanism is poorly understood. In this work, seven homeobox-containing transcription factors (TFs) with specific ripening-a...
Assessment of calcium and zinc accumulation in cultivated and wild apples.
Liao, Liao; Fang, Ting; Ma, Baiquan; Deng, Xianbao; Zhao, Li; Han, Yuepeng
2017-09-01
Apple is one of the staple fruits worldwide which are a good source of mineral nutrients. However, little is known about genetic variation for mineral nutrition in apple germplasm. In this study, the calcium and zinc contents in mature fruits of 378 apple cultivars and 39 wild relatives were assessed. Mineral concentrations were quantified using flame atomic absorption spectroscopy (FAAS). Both calcium and zinc accumulation showed great variation among accessions tested. Overall, wild fruits were significantly richer in zinc than cultivated fruits, while the average concentration of calcium was similar between cultivated and wild fruits. The difference in zinc concentration between wild and cultivated fruits may be an indirect result of artificial selection on fruit characteristics during apple domestication. Moreover, calcium concentration in fruit showed a decreasing trend throughout fruit development of apple, while zinc concentration in fruit displayed a complex variation pattern in the late stages of fruit development. The finding of a wild genetic variation for fruit calcium and zinc accumulation in apple germplasm could be helpful for future research on genetic dissection and improvement of calcium and zinc accumulation in apple fruit. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
El-Sharkawy, I; Sherif, S; El Kayal, W; Jones, B; Li, Z; Sullivan, A J; Jayasankar, Subramanian
2016-02-29
TIR1-like proteins are F-box auxin receptors. Auxin binding to the F-box receptor proteins promotes the formation of SCF(TIR1) ubiquitin ligase complex that targets the auxin repressors, Aux/IAAs, for degradation via the ubiquitin/26S proteasome pathway. The release of auxin response factors (ARFs) from their Aux/IAA partners allows ARFs to mediate auxin-responsive changes in downstream gene transcription. In an attempt to understand the potential role of auxin during fruit development, a plum auxin receptor, PslTIR1, has previously been characterized at the cellular, biochemical and molecular levels, but the biological significance of this protein is still lacking. In the present study, tomato (Solanum lycopersicum) was used as a model to investigate the phenotypic and molecular changes associated with the overexpression of PslTIR1. The findings of the present study highlighted the critical role of PslTIR1 as positive regulator of auxin-signalling in coordinating the development of leaves and fruits. This was manifested by the entire leaf morphology of transgenic tomato plants compared to the wild-type compound leaf patterning. Moreover, transgenic plants produced parthenocarpic fruits, a characteristic property of auxin hypersensitivity. The autocatalytic ethylene production associated with the ripening of climacteric fruits was not significantly altered in transgenic tomato fruits. Nevertheless, the fruit shelf-life characteristics were affected by transgene presence, mainly through enhancing fruit softening rate. The short shelf-life of transgenic tomatoes was associated with dramatic upregulation of several genes encoding proteins involved in cell-wall degradation, which determine fruit softening and subsequent fruit shelf-life. The present study sheds light into the involvement of PslTIR1 in regulating leaf morphology, fruit development and fruit softening-associated ripening, but not autocatalytic ethylene production. The results demonstrate that auxin accelerates fruit softening independently of ethylene action and this is probably mediated through the upregulation of many cell-wall metabolism genes.
Lust, Teresa A; Paris, Harry S
2016-07-01
Summer squash, the young fruits of Cucurbita pepo, are a common, high-value fruit vegetable. Of the summer squash, the zucchini, C. pepo subsp. pepo Zucchini Group, is by far the most cosmopolitan. The zucchini is easily distinguished from other summer squash by its uniformly cylindrical shape and intense colour. The zucchini is a relatively new cultivar-group of C. pepo, the earliest known evidence for its existence having been a description in a book on horticulture published in Milan in 1901. For this study, Italian-language books on agriculture and cookery dating from the 16th to 19th centuries have been collected and searched in an effort to follow the horticultural development and culinary use of young Cucurbita fruits in Italy. The results indicate that Cucurbita fruits, both young and mature, entered Italian kitchens by the mid-16th century. A half-century later, round and elongate young fruits of C. pepo were addressed as separate cookery items and the latter had largely replaced the centuries-old culinary use of young, elongate bottle gourds, Lagenaria siceraria Allusion to a particular, extant cultivar of the longest fruited C. pepo, the Cocozelle Group, dates to 1811 and derives from the environs of Naples. The Italian diminutive word zucchini arose by the beginning of the 19th century in Tuscany and referred to small, mature, desiccated bottle gourds used as containers to store tobacco. By the 1840s, the Tuscan word zucchini was appropriated to young, primarily elongate fruits of C. pepo The Zucchini Group traces its origins to the environs of Milan, perhaps as early as 1850. The word zucchini and the horticultural product zucchini arose contemporaneously but independently. The results confirm that the Zucchini Group is the youngest of the four cultivar-groups of C. pepo subsp. pepo but it emerged approximately a half-century earlier than previously known. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lin, Zixin; An, Jiyong; Wang, Jia; Niu, Jun; Ma, Chao; Wang, Libing; Yuan, Guanshen; Shi, Lingling; Liu, Lili; Zhang, Jinsong; Zhang, Zhixiang; Qi, Ji; Lin, Shanzhi
2017-01-01
Lindera glauca fruit with high quality and quantity of oil has emerged as a novel potential source of biodiesel in China, but the molecular regulatory mechanism of carbon flux and energy source for oil biosynthesis in developing fruits is still unknown. To better develop fruit oils of L. glauca as woody biodiesel, a combination of two different sequencing platforms (454 and Illumina) and qRT-PCR analysis was used to define a minimal reference transcriptome of developing L. glauca fruits, and to construct carbon and energy metabolic model for regulation of carbon partitioning and energy supply for FA biosynthesis and oil accumulation. We first analyzed the dynamic patterns of growth tendency, oil content, FA compositions, biodiesel properties, and the contents of ATP and pyridine nucleotide of L. glauca fruits from seven different developing stages. Comprehensive characterization of transcriptome of the developing L. glauca fruit was performed using a combination of two different next-generation sequencing platforms, of which three representative fruit samples (50, 125, and 150 DAF) and one mixed sample from seven developing stages were selected for Illumina and 454 sequencing, respectively. The unigenes separately obtained from long and short reads (201, and 259, respectively, in total) were reconciled using TGICL software, resulting in a total of 60,031 unigenes (mean length = 1061.95 bp) to describe a transcriptome for developing L. glauca fruits. Notably, 198 genes were annotated for photosynthesis, sucrose cleavage, carbon allocation, metabolite transport, acetyl-CoA formation, oil synthesis, and energy metabolism, among which some specific transporters, transcription factors, and enzymes were identified to be implicated in carbon partitioning and energy source for oil synthesis by an integrated analysis of transcriptomic sequencing and qRT-PCR. Importantly, the carbon and energy metabolic model was well established for oil biosynthesis of developing L. glauca fruits, which could help to reveal the molecular regulatory mechanism of the increased oil production in developing fruits. This study presents for the first time the application of an integrated two different sequencing analyses (Illumina and 454) and qRT-PCR detection to define a minimal reference transcriptome for developing L. glauca fruits, and to elucidate the molecular regulatory mechanism of carbon flux control and energy provision for oil synthesis. Our results will provide a valuable resource for future fundamental and applied research on the woody biodiesel plants.
Effects of fruit collection date on Phillyrea latifolia L. seed germination.
Yücedağ, Cengiz; Gültekin, H Cemal
2011-08-01
This study was conducted to determine the effects of date of fruit collection on the germination of Phillyrea latifolia L. Fruits were collected between September and December of 2007, in Egirdir, Turkey. It was found that the one thousand seed weight for the species seeds was 400 g, with significant differences among dates of fruit collection. The highest germination percentage of 58% was obtained from the seeds collected on the ground from previous years on the 1st of September 2007. The seeds from crown on the 1st of September 2007 had a germination percentage of 42%. Moreover, seeds from crown on the 1st of November and December 2007 and 15th of October and November 2007 did not germinate. In conclusion, P. latifolia seeds collected on the ground from previous years could be sown in early autumn to obtain a high germination rate.
Brown, Adam O; McNeil, Jeremy N
2006-06-01
In the cultivated cranberry (Vaccinium macrocarpon), reproductive stems produce 1-3 fruit even though they usually have 5-7 flowers in the spring. We undertook experiments to test the hypothesis that this was an adaptive life history strategy associated with reproductive effort rather than simply the result of insufficient pollination. We compared fruit production on naturally pollinated plants with those that were either manually pollinated or that were caged to exclude insects. Clearly, insects are necessary for the effective pollination of cranberry plants, but hand pollination of all flowers did not result in an increase in fruit number. Most of the upper flowers, which had significantly fewer ovules than did the lower flowers, aborted naturally soon after pollination. However, when the lower flower buds were removed, the upper flowers produced fruit. This suggests that the upper flowers may serve as a backup if the earlier blooming lower ones are lost early in the season. Furthermore, the late-blooming flowers may still contribute to the plant's reproductive success as visiting pollinators remove the pollen, which could serve to sire fruit on other plants. These results are discussed in the context of their possible evolutionary and proximate causes.
Li, Xiaoying; Korir, Nicholas Kibet; Liu, Lili; Shangguan, Lingfei; Wang, Yuzhu; Han, Jian; Chen, Ming; Fang, Jinggui
2012-11-15
Microarray analysis is a technique that can be employed to provide expression profiles of single genes and new insights to elucidate the biological mechanisms responsible for fruit development. To evaluate expression of genes mostly engaged in fruit development between Prunus mume and Prunus armeniaca, we first identified differentially expressed transcripts along the entire fruit life cycle by using microarrays spotted with 10,641 ESTs collected from P. mume and other Prunus EST sequences. A total of 1418 ESTs were selected after quality control of microarray spots and analysis for differential gene expression patterns during fruit development of P. mume and P. Armeniaca. From these, 707 up-regulated and 711 down-regulated genes showing more than two-fold differences in expression level were annotated by GO based on biological processes, molecular functions and cellular components. These differentially expressed genes were found to be involved in several important pathways of carbohydrate, galactose, and starch and sucrose metabolism as well as in biosynthesis of other secondary metabolites via KEGG. This could provide detailed information on the fruit quality differences during development and ripening of these two species. With the results obtained, we provide a practical database for comprehensive understanding of molecular events during fruit development and also lay a theoretical foundation for the cloning of genes regulating in a series of important rate-limiting enzymes involved in vital metabolic pathways during fruit development. Copyright © 2012 Elsevier GmbH. All rights reserved.
Hanya, Goro; Tsuji, Yamato; Grueter, Cyril C
2013-04-01
In order to understand the ecological adaptations of primates to survive in temperate forests, we need to know the general patterns of plant phenology in temperate and tropical forests. Comparative analyses have been employed to investigate general trends in the seasonality and abundance of fruit and young leaves in tropical and temperate forests. Previous studies have shown that (1) fruit fall biomass in temperate forest is lower than in tropical forest, (2) non-fleshy species, in particular acorns, comprise the majority of the fruit biomass in temperate forest, (3) the duration of the fruiting season is shorter in temperate forest, and (4) the fruiting peak occurs in autumn in most temperate forests. Through our comparative analyses of the fruiting and flushing phenology between Asian temperate and tropical forests, we revealed that (1) fruiting is more annually periodic (the pattern in one year is similar to that seen in the next year) in temperate forest in terms of the number of fruiting species or trees, (2) there is no consistent difference in interannual variations in fruiting between temperate and tropical forests, although some oak-dominated temperate forests exhibit extremely large interannual variations in fruiting, (3) the timing of the flushing peak is predictable (in spring and early summer), and (4) the duration of the flushing season is shorter. The flushing season in temperate forests (17-28 % of that in tropical forests) was quite limited, even compared to the fruiting season (68 %). These results imply that temperate primates need to survive a long period of scarcity of young leaves and fruits, but the timing is predictable. Therefore, a dependence on low-quality foods, such as mature leaves, buds, bark, and lichens, would be indispensable for temperate primates. Due to the high predictability of the timing of fruiting and flushing in temperate forests, fat accumulation during the fruit-abundant period and fat metabolization during the subsequent fruit-scarce period can be an effective strategy to survive the lean period (winter).
Microarray analysis of gene expression profiles in ripening pineapple fruits.
Koia, Jonni H; Moyle, Richard L; Botella, Jose R
2012-12-18
Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general.
Microarray analysis of gene expression profiles in ripening pineapple fruits
2012-01-01
Background Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general. PMID:23245313
Beckman, Noelle G.
2013-01-01
Secondary compounds in fruit mediate interactions with natural enemies and seed dispersers, influencing plant survival and species distributions. The functions of secondary metabolites in plant defenses have been well-studied in green tissues, but not in reproductive structures of plants. In this study, the distribution of toxicity within plants was quantified and its influence on seed survival was determined in Central Panama. To investigate patterns of allocation to chemical defenses and shifts in allocation with fruit development, I quantified variation in toxicity between immature and mature fruit and between the seed and pericarp for eleven species. Toxicity of seed and pericarp was compared to leaf toxicity for five species. Toxicity was measured as reduced hyphal growth of two fungal pathogens, Phoma sp. and Fusarium sp., and reduced survivorship of brine shrimp, Artemia franciscana, across a range of concentrations of crude extract. I used these measures of potential toxicity against generalist natural enemies to examine the effect of fruit toxicity on reductions of fruit development and seed survival by vertebrates, invertebrates, and pathogens measured for seven species in a natural enemy removal experiment. The seed or pericarp of all vertebrate- and wind-dispersed species reduced Artemia survivorship and hyphal growth of Fusarium during the immature and mature stages. Only mature fruit of two vertebrate-dispersed species reduced hyphal growth of Phoma. Predispersal seed survival increased with toxicity of immature fruit to Artemia during germination and decreased with toxicity to fungi during fruit development. This study suggests that fruit toxicity against generalist natural enemies may be common in Central Panama. These results support the hypothesis that secondary metabolites in fruit have adaptive value and are important in the evolution of fruit-frugivore interactions. PMID:23843965
Proteome regulation during Olea europaea fruit development.
Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano
2013-01-01
Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.
Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development
Guo, Shaogui; Sun, Honghe; Zhang, Haiying; Liu, Jingan; Ren, Yi; Gong, Guoyi; Jiao, Chen; Zheng, Yi; Yang, Wencai; Fei, Zhangjun; Xu, Yong
2015-01-01
Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an important vegetable crop world-wide. Watermelon fruit quality is a complex trait determined by various factors such as sugar content, flesh color and flesh texture. Fruit quality and developmental process of cultivated and wild watermelon are highly different. To systematically understand the molecular basis of these differences, we compared transcriptome profiles of fruit tissues of cultivated watermelon 97103 and wild watermelon PI296341-FR. We identified 2,452, 826 and 322 differentially expressed genes in cultivated flesh, cultivated mesocarp and wild flesh, respectively, during fruit development. Gene ontology enrichment analysis of these genes indicated that biological processes and metabolic pathways related to fruit quality such as sweetness and flavor were significantly changed only in the flesh of 97103 during fruit development, while those related to abiotic stress response were changed mainly in the flesh of PI296341-FR. Our comparative transcriptome profiling analysis identified critical genes potentially involved in controlling fruit quality traits including α-galactosidase, invertase, UDP-galactose/glucose pyrophosphorylase and sugar transporter genes involved in the determination of fruit sugar content, phytoene synthase, β-carotene hydroxylase, 9-cis-epoxycarotenoid dioxygenase and carotenoid cleavage dioxygenase genes involved in carotenoid metabolism, and 4-coumarate:coenzyme A ligase, cellulose synthase, pectinesterase, pectinesterase inhibitor, polygalacturonase inhibitor and α-mannosidase genes involved in the regulation of flesh texture. In addition, we found that genes in the ethylene biosynthesis and signaling pathway including ACC oxidase, ethylene receptor and ethylene responsive factor showed highly ripening-associated expression patterns, indicating a possible role of ethylene in fruit development and ripening of watermelon, a non-climacteric fruit. Our analysis provides novel insights into watermelon fruit quality and ripening biology. Furthermore, the comparative expression profile data we developed provides a valuable resource to accelerate functional studies in watermelon and facilitate watermelon crop improvement. PMID:26079257
Tonetto de Freitas, Sergio; McElrone, Andrew J; Shackel, Kenneth A; Mitcham, Elizabeth J
2014-01-01
The mechanisms regulating Ca(2+) partitioning and allocation in plants and fruit remain poorly understood. The objectives of this study were to determine Ca(2+) partitioning and allocation in tomato plants and fruit in response to whole-plant and fruit-specific abscisic acid (ABA) treatments, as well as to analyse the effect of changes in Ca(2+) partitioning and allocation on fruit susceptibility to the Ca(2+) deficiency disorder blossom-end rot (BER) under water stress conditions. Tomato plants of the cultivar Ace 55 (Vf) were grown in a greenhouse and exposed to low Ca(2+) conditions during fruit growth and development. Starting 1 day after pollination (DAP), the following treatments were initiated: (i) whole plants were sprayed weekly with deionized water (control) or (ii) with 500mg l(-1) ABA; or fruit on each plant were dipped weekly (iii) in deionized water (control) or (iv) in 500mg l(-1) ABA. At 15 DAP, BER was completely prevented by whole-plant or fruit-specific ABA treatments, whereas plants or fruit treated with water had 16-19% BER incidence. At 30 DAP, BER was prevented by the whole-plant ABA treatment, whereas fruit dipped in ABA had a 16% and water-treated plants or fruit had a 36-40% incidence of BER. The results showed that spraying the whole plant with ABA increases xylem sap flow and Ca(2+) movement into the fruit, resulting in higher fruit tissue and water-soluble apoplastic Ca(2+) concentrations that prevent BER development. Although fruit-specific ABA treatment had no effect on xylem sap flow rates or Ca(2+) movement into the fruit, it increased fruit tissue water-soluble apoplastic Ca(2+) concentrations and reduced fruit susceptibility to BER to a lesser extent.
Tonetto de Freitas, Sergio
2014-01-01
The mechanisms regulating Ca2+ partitioning and allocation in plants and fruit remain poorly understood. The objectives of this study were to determine Ca2+ partitioning and allocation in tomato plants and fruit in response to whole-plant and fruit-specific abscisic acid (ABA) treatments, as well as to analyse the effect of changes in Ca2+ partitioning and allocation on fruit susceptibility to the Ca2+ deficiency disorder blossom-end rot (BER) under water stress conditions. Tomato plants of the cultivar Ace 55 (Vf) were grown in a greenhouse and exposed to low Ca2+ conditions during fruit growth and development. Starting 1 day after pollination (DAP), the following treatments were initiated: (i) whole plants were sprayed weekly with deionized water (control) or (ii) with 500mg l−1 ABA; or fruit on each plant were dipped weekly (iii) in deionized water (control) or (iv) in 500mg l−1 ABA. At 15 DAP, BER was completely prevented by whole-plant or fruit-specific ABA treatments, whereas plants or fruit treated with water had 16–19% BER incidence. At 30 DAP, BER was prevented by the whole-plant ABA treatment, whereas fruit dipped in ABA had a 16% and water-treated plants or fruit had a 36–40% incidence of BER. The results showed that spraying the whole plant with ABA increases xylem sap flow and Ca2+ movement into the fruit, resulting in higher fruit tissue and water-soluble apoplastic Ca2+ concentrations that prevent BER development. Although fruit-specific ABA treatment had no effect on xylem sap flow rates or Ca2+ movement into the fruit, it increased fruit tissue water-soluble apoplastic Ca2+ concentrations and reduced fruit susceptibility to BER to a lesser extent. PMID:24220654
Ogata, Tatsushi; Yamanaka, Shinsuke; Shoda, Moriyuki; Urasaki, Naoya; Yamamoto, Toshiya
2016-01-01
Tropical fruit crops are predominantly produced in tropical and subtropical developing countries, but some are now grown in southern Japan. Pineapple (Ananas comosus), mango (Mangifera indica) and papaya (Carica papaya) are major tropical fruits cultivated in Japan. Modern, well-organized breeding systems have not yet been developed for most tropical fruit species. Most parts of Japan are in the temperate climate zone, but some southern areas such as the Ryukyu Islands, which stretch from Kyushu to Taiwan, are at the northern limits for tropical fruit production without artificial heating. In this review, we describe the current status of tropical fruit breeding, genetics, genomics, and biotechnology of three main tropical fruits (pineapple, mango, and papaya) that are cultivated and consumed in Japan. More than ten new elite cultivars of pineapple have been released with improved fruit quality and suitability for consumption as fresh fruit. New challenges and perspectives for obtaining high fruit quality are discussed in the context of breeding programs for pineapple. PMID:27069392
Fruit photosynthesis in Satsuma mandarin.
Hiratsuka, Shin; Suzuki, Mayu; Nishimura, Hiroshi; Nada, Kazuyoshi
2015-12-01
To clarify detailed characteristics of fruit photosynthesis, possible gas exchange pathway and photosynthetic response to different environments were investigated in Satsuma mandarin (Citrus unshiu). About 300 mm(-2) stomata were present on fruit surface during young stages (∼10-30 mm diameter fruit) and each stoma increased in size until approximately 88 days after full bloom (DAFB), while the stomata collapsed steadily thereafter; more than 50% stomata deformed at 153 DAFB. The transpiration rate of the fruit appeared to match with stoma development and its intactness rather than the density. Gross photosynthetic rate of the rind increased gradually with increasing CO2 up to 500 ppm but decreased at higher concentrations, which may resemble C4 photosynthesis. In contrast, leaf photosynthesis increased constantly with CO2 increment. Although both fruit and leaf photosynthesis were accelerated by rising photosynthetic photon flux density (PPFD), fruit photosynthesis was greater under considerably lower PPFD from 13.5 to 68 μmolm(-2)s(-1). Thus, Satsuma mandarin fruit appears to incorporate CO2 through fully developed and non-collapsed stomata, and subject it to fruit photosynthesis, which may be characterized as intermediate status among C3, C4 and shade plant photosynthesis. The device of fruit photosynthesis may develop differently from its leaf to capture CO2 efficiently. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
On plant detection of intact tomato fruits using image analysis and machine learning methods.
Yamamoto, Kyosuke; Guo, Wei; Yoshioka, Yosuke; Ninomiya, Seishi
2014-07-09
Fully automated yield estimation of intact fruits prior to harvesting provides various benefits to farmers. Until now, several studies have been conducted to estimate fruit yield using image-processing technologies. However, most of these techniques require thresholds for features such as color, shape and size. In addition, their performance strongly depends on the thresholds used, although optimal thresholds tend to vary with images. Furthermore, most of these techniques have attempted to detect only mature and immature fruits, although the number of young fruits is more important for the prediction of long-term fluctuations in yield. In this study, we aimed to develop a method to accurately detect individual intact tomato fruits including mature, immature and young fruits on a plant using a conventional RGB digital camera in conjunction with machine learning approaches. The developed method did not require an adjustment of threshold values for fruit detection from each image because image segmentation was conducted based on classification models generated in accordance with the color, shape, texture and size of the images. The results of fruit detection in the test images showed that the developed method achieved a recall of 0.80, while the precision was 0.88. The recall values of mature, immature and young fruits were 1.00, 0.80 and 0.78, respectively.
Factors Associated with School Lunch Consumption: Reverse Recess and School "Brunch".
Chapman, Leah Elizabeth; Cohen, Juliana; Canterberry, Melanie; Carton, Thomas W
2017-09-01
While school foods have become healthier under the Healthy, Hunger Free Kids Act, research suggests there is still substantial food waste in cafeterias. It is therefore necessary to study factors that can impact food consumption, including holding recess before lunch ("reverse recess") and starting lunch periods very early or very late. This study examined the association between the timing of recess (pre-lunch vs post-lunch recess), the timing of the lunch period, and food consumed by students at lunch. We conducted a secondary data analysis from a repeated cross-sectional design. An 8-week plate waste study examining 20,183 trays of food was conducted in New Orleans, LA, in 2014. The study involved 1,036 fourth- and fifth-grade students from eight public schools. We measured percent of entrées, fruit, vegetables, and milk consumed by students at lunch. We used mixed-model analyses, controlling for student sex, grade, and the timing of the lunch period, and examined the association between reverse recess and student lunch consumption. Mixed-model analyses controlling for student sex, grade, and recess status examined whether the timing of the lunch period was associated with student lunch consumption. On average, students with reverse recess consumed 5.1% more of their fruit than students with post-lunch recess (P=0.009), but there were no significant differences in entrées, vegetables, or milk intake. Compared to students with "midday" lunch periods, on average students with "early" lunch periods consumed 5.8% less of their entrées (P<0.001) and 4.5% less of their milk (P=0.047). Students with "late" lunch periods consumed 13.8% less of their entrées (P<0.001) and 15.9% less of their fruit (P<0.001). Reverse recess was associated with increased fruit consumption. "Early" lunch periods were associated with decreased entrée and milk consumption, and "late" lunch periods were associated with decreased entrée and fruit consumption. Additional research is recommended to determine whether these associations are causal. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Montoya, Sebastián Giraldo; Motoike, Sérgio Yoshimitsu; Kuki, Kacilda Naomi; Couto, Adriano Donato
2016-10-01
Main conclusion Macauba palm fruiting is supra-annual, and the fruit growth follows a double sigmoidal trend. The prevailing compound in the mesocarp differs as the fruit ages, oil being the major storage compound. Acrocomia aculeata, macauba palm, is a conspicuous species in the tropical Americas. Because the species is highly productive in oil-rich fruits, it is the subject of domestication as an alternative vegetable oil crop, especially as a bioenergy feedstock. This detailed study first presents the macauba fruit growth and development patterns, morphological changes and accumulation of organic compounds. Fruits were monitored weekly in a natural population. The fruiting was supra-annual, and the fruit growth curve followed a double sigmoidal trend with four stages (S): SI-slow growth and negligible differentiation of the fruit inner parts; SII-first growth spurt and visible, but not complete, differentiation of the inner parts; SIII-growth slowed down and all structures attained differentiation; and SIV-second growth spurt and fruit maturation. In SII, the exocarp and endocarp were the main contributors to fruit growth, whereas the mesocarp and endosperm were responsible for most of the weight gain during SIV. In comparison with starch and oil, soluble sugars did not accumulate in the mesocarp. However, starch was transitory and fueled the oil synthesis. The protective layers, the exocarp and endocarp, fulfilling their ecological roles, were the first to reach maturity, followed by the storage tissues, the mesocarp, and endosperm. The amount and nature of organic compounds in the mesocarp varied with the fruit development and growth stages, and oil was the main and final storage material. The description of macauba fruit's transformations and their temporal order may be of importance for future ecological and agronomical references.
Bjelland, Mona; Brantsæter, Anne Lise; Haugen, Margaretha; Meltzer, Helle Margrete; Nystad, Wenche; Andersen, Lene Frost
2013-08-30
A few studies have investigated tracking of dietary patterns or nutrient intake in pre-school children, but no studies have been identified examining tracking of sugar-sweetened beverages (SSB), fruit and vegetable intakes in early childhood (1-7 year olds). The purpose of this study was to investigate changes and tracking of intakes of fruit, vegetables and SSB, and association between maternal education and dietary tracking, from 18 months to 7 years of age. Longitudinal data from the nation-wide Norwegian Mother and Child Cohort Study, conducted by the Norwegian Institute of Public Health were used, including 9025 children participating at three time points (18 months, 36 months and 7 years). Frequencies of fruit, vegetables and SSB were assessed by questionnaire. Slightly different questions were used at each time point to collect information about intake. Maternal education was categorized into ≤ 12 years, 13-16 years, ≥ 17 years. Cross-tabulation, Spearman's rho and multinomial logistic regression were used for assessing change, tracking and differences by maternal education. Analyses by gender indicated largest changes for intake of fruit and SSB from age 18 months to 7 years. Fair to moderate tracking coefficients (Spearman's rho = 0.23-0.46) for intake of fruit, vegetables and SSB were found and children assigned to low, medium and high frequency of consumption at 18 months continued to be in the same group at age 36 months and 7 years. Children of mothers with low education consumed fruit and vegetables less often and SSB more often compared to children of mothers with high education at 18 months of age. Children with higher educated mothers had lower odds for increasing fruit intake or decreasing SSB intake, compared to children with lower educated mothers showing a stable intake. The tracking coefficients for intakes were fair to moderate and differences in intakes according to maternal education were found already at age 18 months. This suggests that promotion of healthy dietary behaviours at an early age is important to prevent unfavourable dietary behaviours later in childhood. Moreover, it seems important to target mothers in nutrition interventions for improving dietary habits among children.
Pimentel, Paula; Salvatierra, Ariel; Moya-León, María Alejandra; Herrera, Raúl
2010-09-15
Fragaria chiloensis, the native Chilean strawberry, is noted for its good fruit quality characters. However, it is a highly perishable fruit due to its rapid softening. With the aim to screen for genes differentially expressed during development and ripening of strawberry fruit, the subtractive suppressive hybridization (SSH) methodology was employed. Six libraries were generated contrasting transcripts from four different developmental stages. A set of 1807 genes was isolated and characterized. In our EST collection, approximately 90% of partial cDNAs showed significant similarity to proteins with known or unknown function registered in databases. Among them, proteins related to protein fate were identified in a large green fruit library and protein related with cellular transport, cell wall-related proteins, and transcription regulators were identified in a ripe fruit library. Thirteen genes were analyzed by qRT-PCR during development and ripening of the Chilean strawberry fruit. The information generated in this study provides new clues to aid the understanding of the ripening process in F. chiloensis fruit. Copyright 2010 Elsevier GmbH. All rights reserved.
Influence of shade on the growth and nitrogen assimilation of developing fruits on bell pepper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achhireddy, N.R.; Fletcher, J.S.; Beevers, L.
Accumulation of dry mass, total N, protein N, and soluble amino acid N in the developing fruit and seeds of bell pepper (Capsicum annuum L.) was determined at selected intervals following anthesis. The importance of photosynthesis to the growth and nitrogen (N) assimilation in the developing fruit wall plus placenta (FWP) and seeds was evaluated by comparing the growth and accumulation of reduced N in nonphotosynthetic and photosynthetic fruits (covered vs. uncovered). The growth rate of the FWP and seeds was similar under both conditions. After 65 days of growth, the fruits kept in the dark weighed about 15% lessmore » than those receiving illumination; seed weight was the same for both treatments. Total N content of the FWP or seed continued to increase up to 55 days after anthesis. The FWP accumulated over 90% of fruit's total N, and there were no significant differences between covered and uncovered fruits. Protein N accounted for about 50% of the total N present in both covered and uncovered fruits. 15 references, 2 figures, 2 tables.« less
Paleoenvironmental basis of cognitive evolution in great apes.
Potts, Richard
2004-03-01
A bias favoring tree-dominated habitats and ripe-fruit frugivory has persisted in great ape evolution since the early Miocene. This bias is indicated by fossil ape paleoenvironments, molar morphology, dental microwear, the geographic pattern of extinctions, and extant apes' reliance on wooded settings. The ephemeral aspect of high-quality fruit has placed a premium on cognitive and social means of finding and defending food sources, and appears related to great apes' affinity since the Miocene for wooded, fruit-rich environments. These habitats have, however, undergone a severe withdrawal toward the low latitudes of Africa and Southeast Asia since the late Miocene, corresponding to a decline in the diversity of great apes beginning 9.5 million years ago. Plio-Pleistocene records imply that wooded settings of Africa and SE Asia were prone to substantial fragmentation and coalescence. Once apes were confined to equatorial settings, therefore, habitat instability heightened the spatial/temporal uncertainty of ripe-fruit sources. Prolonged learning, the assignment of attributes to distant places, mental representation, and reliance on fallback foods were all favored in this dynamic environmental context. These abilities helped sustain forest frugivory in most lineages. Fluid social grouping afforded the animals opportunities to locate ephemeral foods in continuous and fragmented forests. Fission-fusion grouping also magnified the problems of object impermanence (of individuals) and dispersion manifested by food sources in the ecological realm. Thus the spatial and temporal dynamics of fruit and wooded habitats since the Miocene are reflected in important components of great ape cognition, foraging, and sociality. In contrast to great apes, cercopithecoid monkeys have increased their plant dietary options and diversified in seasonal environments since the late Miocene. Early hominins eventually severed the habitat bias that characterized the evolution of great apes, and later expanded into diverse environments. Copyright 2004 Wiley-Liss, Inc.
Ikegami, Hidetoshi; Nogata, Hitoshi; Inoue, Yoshiaki; Himeno, Shuichi; Yakushiji, Hiroshi; Hirata, Chiharu; Hirashima, Keita; Mori, Masashi; Awamura, Mitsuo; Nakahara, Takao
2013-12-16
Because the floral induction occurs in many plants when specific environmental conditions are satisfied, most plants bloom and bear fruit during the same season each year. In fig, by contrast, the time interval during which inflorescence (flower bud, fruit) differentiation occurs corresponds to the shoot elongation period. Fig trees thus differ from many species in their reproductive growth characteristics. To date, however, the molecular mechanisms underlying this unorthodox physiology of floral induction and fruit setting in fig trees have not been elucidated. We isolated a FLOWERING LOCUS T (FT)-like gene from fig and examined its function, characteristics, and expression patterns. The isolated gene, F. carica FT (FcFT1), is single copy in fig and shows the highest similarity at the amino acid level (93.1%) to apple MdFT2. We sequenced its upstream region (1,644 bp) and identified many light-responsive elements. FcFT1 was mainly expressed in leaves and induced early flowering in transgenic tobacco, suggesting that FcFT1 is a fig FT ortholog. Real-time reverse-transcription PCR analysis revealed that FcFT1 mRNA expression occurred only in leaves at the lower nodes, the early fruit setting positions. mRNA levels remained a constant for approximately 5 months from spring to autumn, corresponding almost exactly to the inflorescence differentiation season. Diurnal variation analysis revealed that FcFT1 mRNA expression increased under relative long-day and short-day conditions, but not under continuous darkness. These results suggest that FcFT1 activation is regulated by light conditions and may contribute to fig's unique fruit-setting characteristics.
Xu, Jiayu; Zhao, Yuhui; Zhang, Xiao; Zhang, Lijie; Hou, Yali; Dong, Wenxuan
2016-01-01
Softening, a common phenomenon in many fruits, is a well coordinated and genetically determined process. However, the process of flesh softening during ripening has rarely been described in hawthorn. In this study, we found that ‘Ruanrou Shanlihong 3 Hao’ fruits became softer during ripening, whereas ‘Qiu JinXing’ fruits remained hard. At late developmental stages, the firmness of ‘Ruanrou Shanlihong 3 Hao’ fruits rapidly declined, and that of ‘Qiu JinXing’ fruits remained essentially unchanged. According to transmission electron microscopy, the middle lamella of ‘Qiu JinXing’ and ‘Ruanrou Shanlihong 3 Hao’ fruit flesh was largely degraded as the fruits matured. Microfilaments in ‘Qiu JinXing’ flesh were arranged close together and were deep in color, whereas those in ‘Ruanrou Shanlihong 3 Hao’ fruit flesh were arranged loosely, partially degraded and light in color. RNA-Seq analysis yielded approximately 46.72 Gb of clean data and 72,837 unigenes. Galactose metabolism and pentose and glucuronate interconversions are involved in cell wall metabolism, play an important role in hawthorn texture. We identified 85 unigenes related to the cell wall between hard- and soft-fleshed hawthorn fruits. Based on data analysis and real-time PCR, we suggest that β-GAL and PE4 have important functions in early fruit softening. The genes Ffase, Gns,α-GAL, PE63, XTH, and CWP, which are involved in cell wall degradation, are responsible for the different textures of hawthorn fruits. Thus, we hypothesize that the different textures of ‘Qiu JinXing’ and ‘Ruanrou Shanlihong 3 Hao’ fruits at maturity mainly result from cellulose/hemicelluloses degradation rather than from lamella degradation. Overall, we propose that different types of hydrolytic enzymes in cells interact to degrade the cell wall, resulting in ultramicroscopic Structure changes in the cell wall and, consequently, fruit softening. These results provide fundamental insight regarding the mechanisms by which hawthorn fruits acquire different textures and also lay a solid foundation for further research. PMID:27790234
Martínez Vega, Mabel V; Sharifzadeh, Sara; Wulfsohn, Dvoralai; Skov, Thomas; Clemmensen, Line Harder; Toldam-Andersen, Torben B
2013-12-01
Visible-near infrared spectroscopy remains a method of increasing interest as a fast alternative for the evaluation of fruit quality. The success of the method is assumed to be achieved by using large sets of samples to produce robust calibration models. In this study we used representative samples of an early and a late season apple cultivar to evaluate model robustness (in terms of prediction ability and error) on the soluble solids content (SSC) and acidity prediction, in the wavelength range 400-1100 nm. A total of 196 middle-early season and 219 late season apples (Malus domestica Borkh.) cvs 'Aroma' and 'Holsteiner Cox' samples were used to construct spectral models for SSC and acidity. Partial least squares (PLS), ridge regression (RR) and elastic net (EN) models were used to build prediction models. Furthermore, we compared three sub-sample arrangements for forming training and test sets ('smooth fractionator', by date of measurement after harvest and random). Using the 'smooth fractionator' sampling method, fewer spectral bands (26) and elastic net resulted in improved performance for SSC models of 'Aroma' apples, with a coefficient of variation CVSSC = 13%. The model showed consistently low errors and bias (PLS/EN: R(2) cal = 0.60/0.60; SEC = 0.88/0.88°Brix; Biascal = 0.00/0.00; R(2) val = 0.33/0.44; SEP = 1.14/1.03; Biasval = 0.04/0.03). However, the prediction acidity and for SSC (CV = 5%) of the late cultivar 'Holsteiner Cox' produced inferior results as compared with 'Aroma'. It was possible to construct local SSC and acidity calibration models for early season apple cultivars with CVs of SSC and acidity around 10%. The overall model performance of these data sets also depend on the proper selection of training and test sets. The 'smooth fractionator' protocol provided an objective method for obtaining training and test sets that capture the existing variability of the fruit samples for construction of visible-NIR prediction models. The implication is that by using such 'efficient' sampling methods for obtaining an initial sample of fruit that represents the variability of the population and for sub-sampling to form training and test sets it should be possible to use relatively small sample sizes to develop spectral predictions of fruit quality. Using feature selection and elastic net appears to improve the SSC model performance in terms of R(2), RMSECV and RMSEP for 'Aroma' apples. © 2013 Society of Chemical Industry.
Gene expression and metabolism preceding soft scald, a chilling injury of 'Honeycrisp' apple fruit.
Leisso, Rachel S; Gapper, Nigel E; Mattheis, James P; Sullivan, Nathanael L; Watkins, Christopher B; Giovannoni, James J; Schaffer, Robert J; Johnston, Jason W; Hanrahan, Ines; Hertog, Maarten L A T M; Nicolaï, Bart M; Rudell, David R
2016-10-12
'Honeycrisp' is an apple cultivar that is susceptible to soft scald, a chilling injury expressed as necrotic patches on the peel. Improved understanding of metabolism associated with the disorder would improve our understanding of soft scald and contribute to developing more effective management strategies for apple storage. It was expected that specific gene expression and specific metabolite levels in the peel would be linked with soft scald risk at harvest and/or specific time points during cold storage. Fruit from nine 'Honeycrisp' apple orchards that would eventually develop different incidences of soft scald between 4 and 8 weeks of cold air storage were used to contrast and determine differential transcriptomic and metabolomic changes during storage. Untargeted metabolic profiling revealed changes in a number of distinct pathways preceding and concurrent with soft scald symptom development, including elevated γ-aminobutryic acid (GABA), 1-hexanol, acylated steryl glycosides, and free p-coumaryl acyl esters. At harvest, levels of sesquiterpenoid and triterpenoid acyl esters were relatively higher in peel of fruit that did not later develop the disorder. RNA-seq driven gene expression profiling highlighted possible involvement of genes and associated metabolic processes with soft scald development. These included elevated expression of genes involved in lipid peroxidation and phenolic metabolism in fruit with soft scald, and isoprenoid/brassinosteroid metabolism in fruit that did not develop soft scald. Expression of other stress-related genes in fruit that developed soft scald included chlorophyll catabolism, cell wall loosening, and lipid transport while superoxide dismutases were up-regulated in fruit that did not develop the disorder. This study delineates the sequential transcriptomic and metabolomic changes preceding soft scald symptom development. Changes were differential depending on susceptibility of fruit to the disorder and could be attributed to key stress related and mediating pathways.
Olive phenolic compounds: metabolic and transcriptional profiling during fruit development
2012-01-01
Background Olive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. Results The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. Conclusions Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data represent the first step towards the functional characterisation of important genes for the determination of olive fruit quality. PMID:22963618
Moggia, Claudia; Graell, Jordi; Lara, Isabel; González, Guillermina; Lobos, Gustavo A.
2017-01-01
Fresh blueberries are very susceptible to mechanical damage, which limits postharvest life and firmness. Softening and susceptibility of cultivars “Duke” and “Brigitta” to developing internal browning (IB) after mechanical impact and subsequent storage was evaluated during a 2-year study (2011/2012, 2012/2013). On each season fruit were carefully hand-picked, segregated into soft (<1.60 N), medium (1.61–1.80 N), and firm (1.81–2.00 N) categories, and then either were dropped (32 cm) onto a hard plastic surface or remained non-dropped. All fruit were kept under refrigerated storage (0°C and 85–88% relative humidity) to assess firmness loss and IB after 7, 14, 21, 28, and 35 days. In general, regardless of cultivar or season, high variability in fruit firmness was observed within each commercial harvest, and significant differences in IB and softening rates were found. “Duke” exhibited high softening rates, as well as high and significant r2 between firmness and IB, but little differences for dropped vs. non-dropped fruit. “Brigitta,” having lesser firmness rates, exhibited almost no relationships between firmness and IB (especially for non-dropped fruit), but marked differences between dropping treatments. Firmness loss and IB development were related to firmness at harvest, soft and firm fruit being the most and least damaged, respectively. Soft fruit were characterized by greater IB development during storage along with high soluble solids/acid ratio, which could be used together with firmness to estimate harvest date and storage potential of fruit. Results of this work suggest that the differences in fruit quality traits at harvest could be related to the time that fruit stay on the plant after turning blue, soft fruit being more advanced in maturity. Finally, the observed differences between segregated categories reinforce the importance of analyzing fruit condition for each sorted group separately. PMID:28443123
Moggia, Claudia; Graell, Jordi; Lara, Isabel; González, Guillermina; Lobos, Gustavo A
2017-01-01
Fresh blueberries are very susceptible to mechanical damage, which limits postharvest life and firmness. Softening and susceptibility of cultivars "Duke" and "Brigitta" to developing internal browning (IB) after mechanical impact and subsequent storage was evaluated during a 2-year study (2011/2012, 2012/2013). On each season fruit were carefully hand-picked, segregated into soft (<1.60 N), medium (1.61-1.80 N), and firm (1.81-2.00 N) categories, and then either were dropped (32 cm) onto a hard plastic surface or remained non-dropped. All fruit were kept under refrigerated storage (0°C and 85-88% relative humidity) to assess firmness loss and IB after 7, 14, 21, 28, and 35 days. In general, regardless of cultivar or season, high variability in fruit firmness was observed within each commercial harvest, and significant differences in IB and softening rates were found. "Duke" exhibited high softening rates, as well as high and significant r 2 between firmness and IB, but little differences for dropped vs. non-dropped fruit. "Brigitta," having lesser firmness rates, exhibited almost no relationships between firmness and IB (especially for non-dropped fruit), but marked differences between dropping treatments. Firmness loss and IB development were related to firmness at harvest, soft and firm fruit being the most and least damaged, respectively. Soft fruit were characterized by greater IB development during storage along with high soluble solids/acid ratio, which could be used together with firmness to estimate harvest date and storage potential of fruit. Results of this work suggest that the differences in fruit quality traits at harvest could be related to the time that fruit stay on the plant after turning blue, soft fruit being more advanced in maturity. Finally, the observed differences between segregated categories reinforce the importance of analyzing fruit condition for each sorted group separately.
dos Santos, Tiago Benedito; de Oliveira, Fernanda Freitas; Pot, David; Leroy, Thierry; Vieira, Luiz Gonzaga Esteves; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante Guimarães
2017-01-01
Coffea arabica L. is an important crop in several developing countries. Despite its economic importance, minimal transcriptome data are available for fruit tissues, especially during fruit development where several compounds related to coffee quality are produced. To understand the molecular aspects related to coffee fruit and grain development, we report a large-scale transcriptome analysis of leaf, flower and perisperm fruit tissue development. Illumina sequencing yielded 41,881,572 high-quality filtered reads. De novo assembly generated 65,364 unigenes with an average length of 1,264 bp. A total of 24,548 unigenes were annotated as protein coding genes, including 12,560 full-length sequences. In the annotation process, we identified nine candidate genes related to the biosynthesis of raffinose family oligossacarides (RFOs). These sugars confer osmoprotection and are accumulated during initial fruit development. Four genes from this pathway had their transcriptional pattern validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, we identified ~24,000 putative target sites for microRNAs (miRNAs) and 134 putative transcriptionally active transposable elements (TE) sequences in our dataset. This C. arabica transcriptomic atlas provides an important step for identifying candidate genes related to several coffee metabolic pathways, especially those related to fruit chemical composition and therefore beverage quality. Our results are the starting point for enhancing our knowledge about the coffee genes that are transcribed during the flowering and initial fruit development stages. PMID:28068432
Ivamoto, Suzana Tiemi; Reis, Osvaldo; Domingues, Douglas Silva; Dos Santos, Tiago Benedito; de Oliveira, Fernanda Freitas; Pot, David; Leroy, Thierry; Vieira, Luiz Gonzaga Esteves; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante Guimarães; Pereira, Luiz Filipe Protasio
2017-01-01
Coffea arabica L. is an important crop in several developing countries. Despite its economic importance, minimal transcriptome data are available for fruit tissues, especially during fruit development where several compounds related to coffee quality are produced. To understand the molecular aspects related to coffee fruit and grain development, we report a large-scale transcriptome analysis of leaf, flower and perisperm fruit tissue development. Illumina sequencing yielded 41,881,572 high-quality filtered reads. De novo assembly generated 65,364 unigenes with an average length of 1,264 bp. A total of 24,548 unigenes were annotated as protein coding genes, including 12,560 full-length sequences. In the annotation process, we identified nine candidate genes related to the biosynthesis of raffinose family oligossacarides (RFOs). These sugars confer osmoprotection and are accumulated during initial fruit development. Four genes from this pathway had their transcriptional pattern validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, we identified ~24,000 putative target sites for microRNAs (miRNAs) and 134 putative transcriptionally active transposable elements (TE) sequences in our dataset. This C. arabica transcriptomic atlas provides an important step for identifying candidate genes related to several coffee metabolic pathways, especially those related to fruit chemical composition and therefore beverage quality. Our results are the starting point for enhancing our knowledge about the coffee genes that are transcribed during the flowering and initial fruit development stages.
Sklensky, Diane E.; Davies, Peter J.
2011-01-01
Male plants of spinach (Spinacea oleracea L.) senesce following flowering. It has been suggested that nutrient drain by male flowers is insufficient to trigger senescence. The partitioning of radiolabelled photosynthate between vegetative and reproductive tissue was compared in male (staminate) versus female (pistillate) plants. After the start of flowering staminate plants senesce 3 weeks earlier than pistillate plants. Soon after the start of flowering, staminate plants allocated several times as much photosynthate to flowering structures as did pistillate plants. The buds of staminate flowers with developing pollen had the greatest draw of photosynthate. When the staminate plants begin to show senescence 68% of fixed C was allocated to the staminate reproductive structures. In the pistillate plants, export to the developing fruits and young flowers remained near 10% until mid-reproductive development, when it increased to 40%, declining to 27% as the plants started to senesce. These differences were also present on a sink-mass corrected basis. Flowers on staminate spinach plants develop faster than pistillate flowers and have a greater draw of photosynthate than do pistillate flowers and fruits, although for a shorter period. Pistillate plants also produce more leaf area within the inflorescence to sustain the developing fruits. The 14C in the staminate flowers declined due to respiration, especially during pollen maturation; no such loss occurred in pistillate reproductive structures. The partitioning to the reproductive structures correlates with the greater production of floral versus vegetative tissue in staminate plants and their more rapid senescence. As at senescence the leaves still had adequate carbohydrate, the resources are clearly phloem-transported compounds other than carbohydrates. The extent of the resource redistribution to reproductive structures and away from the development of new vegetative sinks, starting very early in the reproductive phase, is sufficient to account for the triggering of senescence in the rest of the plant. PMID:21565983
Neotropical fish-fruit interactions: eco-evolutionary dynamics and conservation.
Correa, Sandra Bibiana; Costa-Pereira, Raul; Fleming, Theodore; Goulding, Michael; Anderson, Jill T
2015-11-01
Frugivorous fish play a prominent role in seed dispersal and reproductive dynamics of plant communities in riparian and floodplain habitats of tropical regions worldwide. In Neotropical wetlands, many plant species have fleshy fruits and synchronize their fruiting with the flood season, when fruit-eating fish forage in forest and savannahs for periods of up to 7 months. We conducted a comprehensive analysis to examine the evolutionary origin of fish-fruit interactions, describe fruit traits associated with seed dispersal and seed predation, and assess the influence of fish size on the effectiveness of seed dispersal by fish (ichthyochory). To date, 62 studies have documented 566 species of fruits and seeds from 82 plant families in the diets of 69 Neotropical fish species. Fish interactions with flowering plants are likely to be as old as 70 million years in the Neotropics, pre-dating most modern bird-fruit and mammal-fruit interactions, and contributing to long-distance seed dispersal and possibly the radiation of early angiosperms. Ichthyochory occurs across the angiosperm phylogeny, and is more frequent among advanced eudicots. Numerous fish species are capable of dispersing small seeds, but only a limited number of species can disperse large seeds. The size of dispersed seeds and the probability of seed dispersal both increase with fish size. Large-bodied species are the most effective seed dispersal agents and remain the primary target of fishing activities in the Neotropics. Thus, conservation efforts should focus on these species to ensure continuity of plant recruitment dynamics and maintenance of plant diversity in riparian and floodplain ecosystems. © 2015 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Cullings, K. C.; Lauzon, C.; Marinkovich, N.; Truong, T.
2014-12-01
Endosymbioses have given rise to some of the most important innovations in Earth's history. Indeed, ecological facilitation has been pivotal to the creation of higher order complexity, and in driving evolutionary transitions at every level of organization from cellular organelles to multicellularity. In this study we address a newly discovered endosymbiosis between prokaryotes and a eukaryote growing with no apparent external energy source in soils associated with acid-sulfate hydrothermal springs. Hydrothermal sites are relevant to origin of life because they provide a chemical and energetic environment that may have provided energy for pre-biotic synthesis in the absence of photosynthesis through chemoautotrophy. Pisolithus (genus, picture 1 below) is a terrestrial fungal extremophile that can grow in thermally altered soils of acid-thermal hot springs at extreme low pH and elevated temperature, thriving in conditions that are beyond the threshold of survivability for most other organisms. Fruiting bodies of this fungus accumulate elemental sulfur into the spore producing tissues (gleba) of the fruiting body. The gleba is encased in a thick peridium, or shell. Further, Pisolithus is capable of enzymatic conversion of elemental S to sulfate. The fruiting bodies are rich in hydrocarbons, contain water through much of their development and are also likely to contain CO2 from fungal cellular respiration. Further, our data indicate the presence of anaerobic zones within. Thus, the internal environment of Pisolithus contains many conditions relevant to early Earth environments in which life is thought to have originated. We used 16S rDNA sequences to test the hypothesis that Pisolithus individuals contain novel and/or ancient microbial lineages. Our data reveal lineages comprised of novel relatives of known aerobic and anaerobic chemoautrophic Bacteria (85-90% BLAST search matches), several deeply divergent and novel Bacterial lineages, and a newly discovered lineage that branches at the base of the Archaeal clade indicating the presence of, at the very least, a new Phylum/Division within this group. Thus, the data provide a model for furthering our understanding of the diversification of life, in a novel modern analog to an early Earth environment.
Monti, Laura L; Bustamante, Claudia A; Osorio, Sonia; Gabilondo, Julieta; Borsani, Julia; Lauxmann, Martin A; Maulión, Evangelina; Valentini, Gabriel; Budde, Claudio O; Fernie, Alisdair R; Lara, María V; Drincovich, María F
2016-01-01
Peach (Prunus persica) fruits from different varieties display differential organoleptic and nutritional properties, characteristics related to their chemical composition. Here, chemical biodiversity of peach fruits from fifteen varieties, at harvest and after post-harvest ripening, was explored by gas chromatography-mass spectrometry. Metabolic profiling revealed that metabolites involved in organoleptic properties (sugars, organic and amino acids), stress tolerance (raffinose, galactinol, maltitol), and with nutritional properties (amino, caffeoylquinic and dehydroascorbic acids) displayed variety-dependent levels. Peach varieties clustered into four groups: two groups of early-harvest varieties with higher amino acid levels; two groups of mid- and late-harvest varieties with higher maltose levels. Further separation was mostly dependent on organic acids/raffinose levels. Variety-dependent and independent metabolic changes associated with ripening were detected; which contribute to chemical diversity or can be used as ripening markers, respectively. The great variety-dependent diversity in the content of metabolites that define fruit quality reinforces metabolomics usage as a tool to assist fruit quality improvement in peach. Copyright © 2015 Elsevier Ltd. All rights reserved.
Qiu, Zhengkun; Li, Ren; Zhang, Shuaibin; Wang, Ketao; Xu, Meng; Li, Jiayang; Du, Yongchen; Yu, Hong; Cui, Xia
2016-08-01
Development and ripening of tomato fruit are precisely controlled by transcriptional regulation, which depends on the orchestrated accessibility of regulatory proteins to promoters and other cis-regulatory DNA elements. This accessibility and its effect on gene expression play a major role in defining the developmental process. To understand the regulatory mechanism and functional elements modulating morphological and anatomical changes during fruit development, we generated genome-wide high-resolution maps of DNase I hypersensitive sites (DHSs) from the fruit tissues of the tomato cultivar "Moneymaker" at 20 days post anthesis as well as break stage. By exploring variation of DHSs across fruit development stages, we pinpointed the most likely hypersensitive sites related to development-specific genes. By detecting binding motifs on DHSs of these development-specific genes or genes in the ascorbic acid biosynthetic pathway, we revealed the common regulatory elements contributing to coordinating gene transcription of plant ripening and specialized metabolic pathways. Our results contribute to a better understanding of the regulatory dynamics of genes involved in tomato fruit development and ripening. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Rosaceae Fruit Development, Ripening and Post-harvest: An Epigenetic Perspective
Farinati, Silvia; Rasori, Angela; Varotto, Serena; Bonghi, Claudio
2017-01-01
Rosaceae is a family with an extraordinary spectrum of fruit types, including fleshy peach, apple, and strawberry that provide unique contributions to a healthy diet for consumers, and represent an excellent model for studying fruit patterning and development. In recent years, many efforts have been made to unravel regulatory mechanism underlying the hormonal, transcriptomic, proteomic and metabolomic changes occurring during Rosaceae fruit development. More recently, several studies on fleshy (tomato) and dry (Arabidopsis) fruit model have contributed to a better understanding of epigenetic mechanisms underlying important heritable crop traits, such as ripening and stress response. In this context and summing up the results obtained so far, this review aims to collect the available information on epigenetic mechanisms that may provide an additional level in gene transcription regulation, thus influencing and driving the entire Rosaceae fruit developmental process. The whole body of information suggests that Rosaceae fruit could become also a model for studying the epigenetic basis of economically important phenotypes, allowing for their more efficient exploitation in plant breeding. PMID:28769956
Yu, Zeyuan; Liu, Lu; Xu, Yaqin; Wang, Libo; Teng, Xin; Li, Xingguo; Dai, Jing
2015-11-05
A water-soluble polysaccharide namely RCP-II from raspberry fruits was obtained by complex enzyme method followed by successive purification using macroporous resin D4020 and Sephadex G-100 columns. RCP-II was an acidic heteropolysaccharide and the characteristic structure of polysaccharide was determined. The carbohydrate of RCP-II was composed with galacturonic acid, rhamnose, arabinose, xylose, glucose and galactose in a molar ratio of 1.00:0.55:1.19:0.52:0.44:1.90 and the average molecular weight was estimated to be 4013 Da, based on dextran standards. RCP-II presented high scavenging activity toward DPPH•, HO•, O2(•-) in a concentration-dependent manner. The determination of the inhibitory activity on protein glycation showed that in 14 days of incubation the inhibitory ability of RCP-II was more effective on the development of non-enzymatic glycation reaction at early phase than that at the following two phases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dopamine drives Drosophila sechellia adaptation to its toxic host
Lavista-Llanos, Sofía; Svatoš, Aleš; Kai, Marco; Riemensperger, Thomas; Birman, Serge; Stensmyr, Marcus C; Hansson, Bill S
2014-01-01
Many insect species are host-obligate specialists. The evolutionary mechanism driving the adaptation of a species to a toxic host is, however, intriguing. We analyzed the tight association of Drosophila sechellia to its sole host, the fruit of Morinda citrifolia, which is toxic to other members of the melanogaster species group. Molecular polymorphisms in the dopamine regulatory protein Catsup cause infertility in D. sechellia due to maternal arrest of oogenesis. In its natural host, the fruit compensates for the impaired maternal dopamine metabolism with the precursor l-DOPA, resuming oogenesis and stimulating egg production. l-DOPA present in morinda additionally increases the size of D. sechellia eggs, what in turn enhances early fitness. We argue that the need of l-DOPA for successful reproduction has driven D. sechellia to become an M. citrifolia obligate specialist. This study illustrates how an insect's dopaminergic system can sustain ecological adaptations by modulating ontogenesis and development. DOI: http://dx.doi.org/10.7554/eLife.03785.001 PMID:25487989
Mata, Gerardo; Salmones, Dulce; Pérez-Merlo, Rosalía
Hydrolytic enzyme production (cellulases, laminarinases and xylanases) was studied in cultures of Lentinula edodes on sterilized coffee pulp. Samples of substrate colonized by mycelia were taken after 7, 14, 21, 28 and 35 days of incubation at 25°C (W1 to W5) and during the fruiting period at different stages: formation of primordia (PF), first harvest (H) and one week after the first harvest (PH). The enzymatic activity was lower during the early mycelial growth and showed higher levels during the formation and development of fruiting bodies. During the reproductive stage of the fungus, the samples were subjected to a soaking treatment; however, it was not possible to relate this soaking treatment to the increase in enzyme production. The levels of enzymatic activity suggest that secretion of the studied enzymes does not influence the adaptability of the strains to the substrate. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Decrease in fruit moisture content heralds and might launch the onset of ripening processes.
Frenkel, Chaim; Hartman, Thomas G
2012-10-01
It is known that fruit ripening is a genetically programmed event but it is not entirely clear what metabolic cue(s) stimulate the onset of ripening, ethylene action notwithstanding. Here, we examined the conjecture that fruit ripening might be evoked by an autonomously induced decrease in tissue water status. We found decline in water content occurring at the onset of ripening in climacteric and nonclimacteric fruit, suggesting that this phenomenon might be universal. This decline in water content persisted throughout the ripening process in some fruit, whereas in others it reversed during the progression of the ripening process. Applied ethylene also induced a decrease in water content in potato (Solanum tuberosum) tubers. In ethylene-mutant tomato (Solanum lycopersicum) fruit (antisense to1-aminocyclopropane carboxylate synthase), cold-induced decline in water content stimulated onset of ripening processes apparently independently of ethylene action, suggesting cause-and-effect relationship between decreasing water content and onset of ripening. The decline in tissue water content, occurring naturally or induced by ethylene, was strongly correlated with a decrease in hydration (swelling) efficacy of cell wall preparations suggesting that hydration dynamics of cell walls might account for changes in tissue moisture content. Extent of cell wall swelling was, in turn, related to the degree of oxidative cross-linking of wall-bound phenolic acids, suggesting that oxidant-induced wall restructuring might mediate cell wall and, thus, fruit tissue hydration status. We propose that oxidant-induced cell wall remodeling and consequent wall dehydration might evoke stress signaling for the onset of ripening processes. This study suggests that decline in fruit water content is an early event in fruit ripening. This information may be used to gauge fruit maturity for appropriate harvest date and for processing. Control of fruit hydration state might be used to regulate the onset of fruit ripening. © 2012 Institute of Food Technologists®
Proteome Regulation during Olea europaea Fruit Development
Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano
2013-01-01
Background Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. Methodology/Principal Findings In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. Conclusions/Significance This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process. PMID:23349718
Sphingolipid Distribution, Content and Gene Expression during Olive-Fruit Development and Ripening
Inês, Carla; Parra-Lobato, Maria C.; Paredes, Miguel A.; Labrador, Juana; Gallardo, Mercedes; Saucedo-García, Mariana; Gavilanes-Ruiz, Marina; Gomez-Jimenez, Maria C.
2018-01-01
Plant sphingolipids are involved in the building of the matrix of cell membranes and in signaling pathways of physiological processes and environmental responses. However, information regarding their role in fruit development and ripening, a plant-specific process, is unknown. The present study seeks to determine whether and, if so, how sphingolipids are involved in fleshy-fruit development and ripening in an oil-crop species such as olive (Olea europaea L. cv. Picual). Here, in the plasma-membranes of live protoplasts, we used fluorescence to examine various specific lipophilic stains in sphingolipid-enriched regions and investigated the composition of the sphingolipid long-chain bases (LCBs) as well as the expression patterns of sphingolipid-related genes, OeSPT, OeSPHK, OeACER, and OeGlcCerase, during olive-fruit development and ripening. The results demonstrate increased sphingolipid content and vesicle trafficking in olive-fruit protoplasts at the onset of ripening. Moreover, the concentration of LCB [t18:1(8Z), t18:1 (8E), t18:0, d18:2 (4E/8Z), d18:2 (4E/8E), d18:1(4E), and 1,4-anhydro-t18:1(8E)] increases during fruit development to reach a maximum at the onset of ripening, although these molecular species decreased during fruit ripening. On the other hand, OeSPT, OeSPHK, and OeGlcCerase were expressed differentially during fruit development and ripening, whereas OeACER gene expression was detected only at the fully ripe stage. The results provide novel data about sphingolipid distribution, content, and biosynthesis/turnover gene transcripts during fleshy-fruit ripening, indicating that all are highly regulated in a developmental manner. PMID:29434611
Zhang, Sisi; Lu, Shunjiao; Yi, Shuangshuang; Han, Hongji; Liu, Lei; Zhang, Jiaqi; Bao, Manzhu; Liu, Guofeng
2017-02-01
Five SEP -like genes were cloned and identified from Platanus acerifolia through the analysis of expression profiles, protein-protein interaction patterns, and transgenic phenotypes, which suggested that they play conservative and diverse functions in floral initiation and development, fruit development, bud growth, and dormancy. SEPALLATA (SEP) genes have been well characterized in core eudicots and some monocots, and they play important and diverse roles in plant development, including flower meristem initiation, floral organ identity, and fruit development and ripening. However, the knowledge on the function and evolution of SEP-like genes in basal eudicot species is very limited. Here, we cloned and identified five SEP-like genes from London plane (Platanus acerifolia), a basal eudicot tree that is widely used for landscaping in cities. Sequence alignment and phylogenetic analysis indicated that three genes (PlacSEP1.1, PlacSEP1.2, and PlacSEP1.3) belong to the SEP1/2/4 clade, while the other two genes (PlacSEP3.1 and PlacSEP3.2) are grouped into the SEP3 clade. Quantitative real-time PCR (qRT-PCR) analysis showed that all PlacSEPs, except PlacSEP1.1 and PlacSEP1.2, were expressed during the male and female inflorescence initiation, and throughout the flower and fruit development process. PlacSEP1.2 gene expression was only detected clearly in female inflorescence at April. PlacSEP1.3 and PlacSEP3.1 were also expressed, although relatively weak, in vegetative buds of adult trees. No evident PlacSEPs transcripts were detected in various organs of juvenile trees. Overexpression of PlacSEPs in Arabidopsis and tobacco plants resulted in different phenotypic alterations. 35S:PlacSEP1.1, 35S:PlacSEP1.3, and 35S:PlacSEP3.2 transgenic Arabidopsis plants showed evident early flowering, with less rosette leaves but more cauline leaves, while 35S:PlacSEP1.2 and PlacSEP3.1 transgenic plants showed no visible phenotypic changes. 35S:PlacSEP1.1 and 35S:PlacSEP3.2 transgenic Arabidopsis plants also produced smaller and curled leaves. Overexpression of PlacSEP1.1 and PlacSEP3.1 in tobacco resulted in the early flowering and producing more lateral branches. Yeast two-hybrid analysis indicated that PlacSEPs proteins can form homo- or hetero-dimers with the Platanus APETALA1 (AP1)/FRUITFULL (FUL), B-, C-, and D-class MADS-box proteins in different interacting patterns and intensities. Our results suggest that the five PlacSEP genes may play important and divergent roles during floral initiation and development, as well as fruit development, by collaborating with FUL, B-, C-, and D-class MADS-box genes in London plane; PlacSEP1.3 and PlacSEP3.1 genes might also involve in vegetative bud growth and dormancy. The results provide valuable data for us to understand the functional evolution of SEP-like genes in basal eudicot species.
Rasweiler IV, John J.; Badwaik, Nilima K.; Mechineni, Kiranmayi V.
2010-01-01
To characterize periovulatory events, reproductive tracts were collected at 12 hr intervals from captive-bred, short-tailed fruit bats, Carollia perspicillata, on days 1-3 post coitum and examined histologically. Most bats bred readily. Graafian follicles developed large antra and exhibited preovulatory expansion of the cumulus oophorus. Ovulation had occurred in some on the morning, and in most by the evening, of day 1. The single ovum was released as a secondary oocyte and fertilized in the oviductal ampulla. Ovulated secondary oocytes were loosely associated with their cumulus cells, which were lost around the initiation of fertilization. Supernumerary spermatozoa were occasionally noted attached to the zonae pellucidae of oviductal ova, but never within the perivitelline space. By day 2, most ova had reached the pronuclear stage and by day 3, early cleavage stages. Several lines of evidence indicate that C. perspicillata is a spontaneous ovulator with a functional luteal phase. Most newly-mated females had recently-formed, but regressing corpora lutea, and thickened (albeit menstrual) uteri despite having been housed with males only for brief periods (< 23 days). Menstruation is usually periovulatory in this species. Furthermore, the interval between successive estrus periods in most mated females that failed to establish ongoing pregnancies at the first was 21 – 27 days. Menstruation involved substantial endometrial desquamation, plus associated bleeding, and generally extended to the evening of day 3, the last time point studied. In nearly all females with a recent corpus luteum (n=24/25; 96%), the preovulatory or newly-ruptured follicle was in the opposite ovary. PMID:21337714
Cao, Dongyan; Wang, Jiao; Ju, Zheng; Liu, Qingqing; Li, Shan; Tian, Huiqin; Fu, Daqi; Zhu, Hongliang; Luo, Yunbo; Zhu, Benzhong
2016-06-01
Despite many studies about functions of miR396 were concentrated on cotyledon and leaf growth and development, only few researches were focused on flower and fruit, especially for fleshy fruit, for example, tomato fruit. Here, the roles of miR396 throughout the growth and development of tomato plant were explored with combining bioinformatics and transgene-mediated methods. In tomato, miR396 had two mature types (miR396a and miR396b), and miR396a expressed significantly higher than miR396b in cotyledon, flower, sepal and fruit. Generally, plant growth and development were regulated by miR396 via growth-regulating factors (GRFs). In tomato, all 13 SlGRFs were analyzed comprehensively, including phylogeny, domain and expression patterns. To investigate the roles of miR396 further, STTM396a/396a-88 was over-expressed in tomato, which induced miR396a and miR396b both dramatical down-regulation, and the target GRFs general up-regulation. As a result, the flowers, sepals and fruits all obviously became bigger. Most significantly, the sepal length of transgenic lines #3 and #4 at 39 days post-anthesis was separately increased 75% and 81%, and the fruit weight was added 45% and 39%, respectively. Overall, these results revealed novel roles of miR396 in regulating flower and fruit development, and provided a new potential way for improving tomato fruit yield. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The fruit of Bursera: structure, maturation and parthenocarpy
Ramos-Ordoñez, María F.; Arizmendi, M. del Coro; Márquez-Guzmán, Judith
2012-01-01
Background and aims The deterioration of seasonally tropical dry forests will stop with the implementation of management plans for this ecosystem. To develop these plans, we require information regarding aspects such as germination and the presence of ‘empty seeds’ of representative species—like, for example, Bursera, a genus with a high number of endemic species of the Mesoamerican Hotspot—that would enable us to propagate its species. The main purpose of this study is to describe the phenological and structural characteristics of fruits of 12 Bursera species and provide useful data for future studies on germination and seed dispersal, and to acquire new and useful information to understand the phylogenetic relationships of the Burseraceae family. Methodology We described the phenology of fruit ripening in 12 species of Bursera. Fruits were collected from the study sites in three different stages of development. The histochemical and anatomical characteristics of fruits of all species were described with the use of inclusion techniques and scanning microscopy. Principal results There is a time gap between the development of the ovary and the development of the ovule in the 12 studied species. The exposed pseudoaril during the dispersion stage is an indicator of the seed's maturity and the fruit's viability. The Bursera fruit shows the same structural pattern as that of Commiphora, as well as many similarities with species of the Anacardiaceae family. All species develop parthenocarpic fruits that retain the structural characteristics of the immature fruits: soft tissues rich in nitrogen compounds and few chemical and physical defences. Insects were found mainly inside the parthenocarpic fruits in eight species of Bursera. Conclusions The dispersion unit in Bursera consists of a seed, a lignified endocarp that protects the seed, and a pseudoaril that helps attract seed dispersers. The production of parthenocarpic fruits is energy saving; however, it is necessary to evaluate the potential benefits of this phenomenon. PMID:23115709
NASA Astrophysics Data System (ADS)
Shariff, Safiah; Yaakop, Salmah; Zain, Badrul Munir Md.
2013-11-01
Members of the Opiinae subfamily (Hymenoptera: Braconidae) are well known as important parasitoids of fruit fly larvae (Diptera: Tephritidae). They are widely used as biological control agents of fruit flies, especially the Bactrocera Macquart species that infest fruits. In this study, the larvae of fruit flies were collected from infested crops including star fruit, guava, wax apple and ridge gourd. The parasitized larvae were then reared under laboratory conditions until emergence of the adult parasitoids. Additionally, Malaise trap also was used to collect parasitoid species. The general concept of the multiplex PCR has been performed is to amplify two mitochondrial DNA markers, namely cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b) simultaneously. Therefore, the lengthy process of reaction will be reduced. The status of the fruit fly species has also been confirmed by using COI marker on the early stage of the larvae. Maximum parsimony (MP) and Bayesian Inference (BI) were implemented to help and support the identification of Opiinae species. The result obtained from this study showed three parasitoid genera of the Opiinae viz. Fopius Wharton, Psyttalia Walker and Diachasmimorpha Viereck. Each genus has been determined by clustering together in a similar clade according to their infested crops. Therefore, accurate determination of parasitoids and the fruit fries species was highly useful and necessary for successful biological control of Bactrocera species.
Intensity compensation for on-line detection of defects on fruit
NASA Astrophysics Data System (ADS)
Wen, Zhiqing; Tao, Yang
1997-10-01
A machine-vision sorting system was developed that utilizes the difference in light reflectance of fruit surfaces to distinguish the defective and good apples. To accommodate to the spherical reflectance characteristics of fruit with curved surface like apple, a spherical transform algorithm was developed that converts the original image to a non-radiant image without losing defective segments on the fruit. To prevent high-quality dark-colored fruit form being classified into the defective class and increase the defect detection rate for light-colored fruit, an intensity compensation method using maximum propagation was used. Experimental results demonstrated the effectiveness of the method based on maximum propagation and spherical transform for on-line detection of defects on apples.
Roy, Tapas Kumar; Shivashankara, Kodthalu Seetharamaiah; Verghese, Abraham
2015-01-01
The Oriental fruit fly, Bactrocera dorsalis (Hendel) is an important quarantine pest around the globe. Although measures for its control are implemented worldwide through IPM and male annihilation, there is little effect on their population. Hence, there is a need for new strategies to control this minacious pest. A strategy that has received negligible attention is the induction of ‘natural plant defenses’ by phytohormones. In this study, we investigated the effect of salicylic acid (SA) treatment of mango fruit (cv. Totapuri) on oviposition and larval development of B. dorsalis. In oviposition choice assays, gravid females laid significantly less eggs in SA treated compared to untreated fruit. Headspace volatiles collected from SA treated fruit were less attractive to gravid females compared to volatiles from untreated fruit. GC-MS analysis of the headspace volatiles from SA treated and untreated fruit showed noticeable changes in their chemical compositions. Cis-ocimene and 3-carene (attractants to B. dorsalis) were reduced in the headspace volatiles of treated fruit. Further, reduced pupae formation and adult emergence was observed in treated fruit compared to control. Increased phenol and flavonoid content was recorded in treated fruit. We also observed differential expression of anti-oxidative enzymes namely catalase (CAT), polyphenoloxidase (PPO) and peroxidase (POD). In summary, the results indicate that SA treatment reduced oviposition, larval development and adult emergence of B. dorsalis and suggest a role of SA in enhancing mango tolerance to B. dorsalis. PMID:26422203
Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit.
Grassi, Stefania; Piro, Gabriella; Lee, Je Min; Zheng, Yi; Fei, Zhangjun; Dalessandro, Giuseppe; Giovannoni, James J; Lenucci, Marcello S
2013-11-12
Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Total carotenoids progressively increased during fruit ripening up to ~55 μg g(-1) fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening.
Dynamic changes in the date palm fruit proteome during development and ripening
Marondedze, Claudius; Gehring, Christoph; Thomas, Ludivine
2014-01-01
Date palm (Phoenix dactylifera) is an economically important fruit tree in the Middle East and North Africa and is characterized by large cultivar diversity, making it a good model for studies on fruit development and other important traits. Here in gel comparative proteomics combined with tandem mass spectrometry were used to study date fruit development and ripening. Total proteins were extracted using a phenol-based protocol. A total of 189 protein spots were differentially regulated (p≤0.05). The identified proteins were classified into 14 functional categories. The categories with the most proteins were ‘disease and defense’ (16.5%) and ‘metabolism’ (15.4%). Twenty-nine proteins have not previously been identified in other fleshy fruits and 64 showed contrasting expression patterns in other fruits. Abundance of most proteins with a role in abiotic stress responses increased during ripening with the exception of heat shock proteins. Proteins with a role in anthocyanin biosynthesis, glycolysis, tricarboxylic acid cycle and cell wall degradation were upregulated particularly from the onset of ripening and during ripening. In contrast, expression of pentose phosphate- and photosynthesis-related proteins decreased during fruit maturation. Although date palm is considered a climacteric species, the analysis revealed downregulation of two enzymes involved in ethylene biosynthesis, suggesting an ethylene-independent ripening of ‘Barhi’ fruits. In summary, this proteomics study provides insights into physiological processes during date fruit development and ripening at the systems level and offers a reference proteome for the study of regulatory mechanisms that can inform molecular and biotechnological approaches to further improvements of horticultural traits including fruit quality and yield. PMID:26504545
Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit
2013-01-01
Background Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Results Total carotenoids progressively increased during fruit ripening up to ~55 μg g-1 fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Conclusions Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening. PMID:24219562
... and trans fats (such as meats, full-fat dairy products, and processed foods). Fruits and vegetables are healthy snack foods . Children should be taught healthy eating habits early, so they may continue them throughout life.
Genetic Engineering: A Possible Strategy for Protein-Energy Malnutrition Regulation.
Guleria, Praveen; Kumar, Vineet; Guleria, Shiwani
2017-12-01
Protein-energy malnutrition (PEM) has adversely affected the generations of developing countries. It is a syndrome that in severity causes death. PEM generally affects infants of 1-5 age group. This manifestation is maintained till adulthood in the form of poor brain and body development. The developing nations are continuously making an effort to curb PEM. However, it is still a prime concern as it was in its early years of occurrence. Transgenic crops with high protein and enhanced nutrient content have been successfully developed. Present article reviews the studies documenting genetic engineering-mediated improvement in the pulses, cereals, legumes, fruits and other crop plants in terms of nutritional value, stress tolerance, longevity and productivity. Such genetically engineered crops can be used as a possible remedial tool to eradicate PEM.
Grafting influences on early acorn production in swamp white oak (Quercus bicolor Wild.)
Mark V. Coggeshall; J.W. Van Sambeek; H.E. Garrett
2008-01-01
Early fruiting of swamp white oak planting stock has been observed. The potential to exploit this trait for wildlife enhancement purposes was evaluated in a grafting study. Scions from both precocious and non-precocious ortets were grafted onto a series of related seedling rootstock sources. Acorn production was recorded through age 4 years. Acorn productivity of the...
Bernhards, Yasmine; Pöggeler, Stefanie
2011-04-01
Members of the striatin family and their highly conserved interacting protein phocein/Mob3 are key components in the regulation of cell differentiation in multicellular eukaryotes. The striatin homologue PRO11 of the filamentous ascomycete Sordaria macrospora has a crucial role in fruiting body development. Here, we functionally characterized the phocein/Mob3 orthologue SmMOB3 of S. macrospora. We isolated the gene and showed that both, pro11 and Smmob3 are expressed during early and late developmental stages. Deletion of Smmob3 resulted in a sexually sterile strain, similar to the previously characterized pro11 mutant. Fusion assays revealed that ∆Smmob3 was unable to undergo self-fusion and fusion with the pro11 strain. The essential function of the SmMOB3 N-terminus containing the conserved mob domain was demonstrated by complementation analysis of the sterile S. macrospora ∆Smmob3 strain. Downregulation of either pro11 in ∆Smmob3, or Smmob3 in pro11 mutants by means of RNA interference (RNAi) resulted in synthetic sexual defects, demonstrating for the first time the importance of a putative PRO11/SmMOB3 complex in fruiting body development.
NASA Astrophysics Data System (ADS)
Eyarkai Nambi, Vijayaram; Thangavel, Kuladaisamy; Manickavasagan, Annamalai; Shahir, Sultan
2017-01-01
Prediction of ripeness level in climacteric fruits is essential for post-harvest handling. An index capable of predicting ripening level with minimum inputs would be highly beneficial to the handlers, processors and researchers in fruit industry. A study was conducted with Indian mango cultivars to develop a ripeness index and associated model. Changes in physicochemical, colour and textural properties were measured throughout the ripening period and the period was classified into five stages (unripe, early ripe, partially ripe, ripe and over ripe). Multivariate regression techniques like partial least square regression, principal component regression and multi linear regression were compared and evaluated for its prediction. Multi linear regression model with 12 parameters was found more suitable in ripening prediction. Scientific variable reduction method was adopted to simplify the developed model. Better prediction was achieved with either 2 or 3 variables (total soluble solids, colour and acidity). Cross validation was done to increase the robustness and it was found that proposed ripening index was more effective in prediction of ripening stages. Three-variable model would be suitable for commercial applications where reasonable accuracies are sufficient. However, 12-variable model can be used to obtain more precise results in research and development applications.
Nakagawa, Toshinori; Zhu, Qinchang; Tamrakar, Sonam; Amen, Yhiya; Mori, Yasuhiro; Suhara, Hiroto; Kaneko, Shuhei; Kawashima, Hiroko; Okuzono, Kotaro; Inoue, Yoshiyuki; Ohnuki, Koichiro; Shimizu, Kuniyoshi
2018-06-01
Ganoderma lingzhi is a traditional medicinal mushroom, and its extract contains many bioactive compounds. Triterpenoids and polysaccharides are the primary bioactive components that contribute to its medicinal properties. In this study, we quantified 18 triterpenoids, total triterpenoid content and total polysaccharide content in the ethanol and water extracts of G. lingzhi at different growth stages. Triterpenoids were quantified by liquid chromatograph-tandem mass spectrometry in the multiple-reaction-monitoring mode. Total triterpenoid and total polysaccharide content were determined by colorimetric analysis. The results indicated that the fruit bodies at an early growth stage had a higher content of ganoderic acid A, C2, I and LM2, as well as of ganoderenic acid C and D, than those at a later growth stage. In contrast, ganoderic acid K, TN and T-Q contents were higher in mature fruit bodies (maturation stage). The highest total triterpenoid and total polysaccharide contents were found in fruit bodies before maturity (stipe elongation stage or early stage of pileus formation). Our results provide information which will contribute to the establishment of an efficient cultivation system for G. lingzhi with a higher content of triterpenoids.
Song, Huwei; Zhao, Xiangxiang; Hu, Weicheng; Wang, Xinfeng; Shen, Ting; Yang, Liming
2016-11-04
Loquat ( Eriobotrya japonica Lindl.) is an important non-climacteric fruit and rich in essential nutrients such as minerals and carotenoids. During fruit development and ripening, thousands of the differentially expressed genes (DEGs) from various metabolic pathways cause a series of physiological and biochemical changes. To better understand the underlying mechanism of fruit development, the Solexa/Illumina RNA-seq high-throughput sequencing was used to evaluate the global changes of gene transcription levels. More than 51,610,234 high quality reads from ten runs of fruit development were sequenced and assembled into 48,838 unigenes. Among 3256 DEGs, 2304 unigenes could be annotated to the Gene Ontology database. These DEGs were distributed into 119 pathways described in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A large number of DEGs were involved in carbohydrate metabolism, hormone signaling, and cell-wall degradation. The real-time reverse transcription (qRT)-PCR analyses revealed that several genes related to cell expansion, auxin signaling and ethylene response were differentially expressed during fruit development. Other members of transcription factor families were also identified. There were 952 DEGs considered as novel genes with no annotation in any databases. These unigenes will serve as an invaluable genetic resource for loquat molecular breeding and postharvest storage.
The Role of Avocados in Maternal Diets during the Periconceptional Period, Pregnancy, and Lactation.
Comerford, Kevin B; Ayoob, Keith T; Murray, Robert D; Atkinson, Stephanie A
2016-05-21
Maternal nutrition plays a crucial role in influencing fertility, fetal development, birth outcomes, and breast milk composition. During the critical window of time from conception through the initiation of complementary feeding, the nutrition of the mother is the nutrition of the offspring-and a mother's dietary choices can affect both the early health status and lifelong disease risk of the offspring. Most health expert recommendations and government-sponsored dietary guidelines agree that a healthy diet for children and adults (including those who are pregnant and/or lactating) should include an abundance of nutrient-rich foods such as fruits and vegetables. These foods should contain a variety of essential nutrients as well as other compounds that are associated with lower disease risk such as fiber and bioactives. However, the number and amounts of nutrients varies considerably among fruits and vegetables, and not all fruit and vegetable options are considered "nutrient-rich". Avocados are unique among fruits and vegetables in that, by weight, they contain much higher amounts of the key nutrients folate and potassium, which are normally under-consumed in maternal diets. Avocados also contain higher amounts of several non-essential compounds, such as fiber, monounsaturated fats, and lipid-soluble antioxidants, which have all been linked to improvements in maternal health, birth outcomes and/or breast milk quality. The objective of this report is to review the evidence that avocados may be a unique nutrition source for pregnant and lactating women and, thus, should be considered for inclusion in future dietary recommendations for expecting and new mothers.
The Role of Avocados in Maternal Diets during the Periconceptional Period, Pregnancy, and Lactation
Comerford, Kevin B.; Ayoob, Keith T.; Murray, Robert D.; Atkinson, Stephanie A.
2016-01-01
Maternal nutrition plays a crucial role in influencing fertility, fetal development, birth outcomes, and breast milk composition. During the critical window of time from conception through the initiation of complementary feeding, the nutrition of the mother is the nutrition of the offspring—and a mother’s dietary choices can affect both the early health status and lifelong disease risk of the offspring. Most health expert recommendations and government-sponsored dietary guidelines agree that a healthy diet for children and adults (including those who are pregnant and/or lactating) should include an abundance of nutrient-rich foods such as fruits and vegetables. These foods should contain a variety of essential nutrients as well as other compounds that are associated with lower disease risk such as fiber and bioactives. However, the number and amounts of nutrients varies considerably among fruits and vegetables, and not all fruit and vegetable options are considered “nutrient-rich”. Avocados are unique among fruits and vegetables in that, by weight, they contain much higher amounts of the key nutrients folate and potassium, which are normally under-consumed in maternal diets. Avocados also contain higher amounts of several non-essential compounds, such as fiber, monounsaturated fats, and lipid-soluble antioxidants, which have all been linked to improvements in maternal health, birth outcomes and/or breast milk quality. The objective of this report is to review the evidence that avocados may be a unique nutrition source for pregnant and lactating women and, thus, should be considered for inclusion in future dietary recommendations for expecting and new mothers. PMID:27213449
Ethylene signal transduction elements involved in chilling injury in non-climacteric loquat fruit
Wang, Ping; Zhang, Bo; Li, Xian; Xu, Changjie; Yin, Xueren; Shan, Lanlan; Ferguson, Ian; Chen, Kunsong
2010-01-01
Loquat (Eriobotrya japonica Lindl.) is a subtropical fruit, with some cultivars such as ‘Luoyangqing’ (LYQ) susceptible to chilling injury (CI), while others such as ‘Baisha’ (BS) are resistant. Although loquats are non-climacteric, modulation of ethylene has an effect on ripening-related post-harvest CI. Therefore the role of ethylene signalling in the development of CI was investigated in fruit of both the LYQ and BS cultivars. Three ethylene receptor genes, one CTR1-like gene, and one EIN3-like gene were isolated and characterized in ripening fruit. All of these genes were expressed differentially within and between fruit of the two cultivars. Transcripts either declined over fruit development (EjERS1a in both cultivars and EjEIL1 in LYQ) or showed an increase in the middle stages of fruit development before declining (EjETR1, EjERS1b, and EjCTR1 in both cultivars and EjEIL1 in BS). The main cultivar differences were in levels rather than in patterns of expression during post-harvest storage. EjETR1, EjCTR1, and EjEIL1 genes showed increased expression in response to low temperature and this was particularly notable for EjETR1, and EjEIL1 during CI development in LYQ fruit. The genes were also differentially responsive to ethylene treatment, 1-methycyclopropene (1-MCP) and low temperature conditioning, confirming a role for ethylene in regulation of CI in loquat fruit. PMID:19884229
Alkio, Merianne; Jonas, Uwe; Declercq, Myriam; Van Nocker, Steven; Knoche, Moritz
2014-01-01
The exocarp, or skin, of fleshy fruit is a specialized tissue that protects the fruit, attracts seed dispersing fruit eaters, and has large economical relevance for fruit quality. Development of the exocarp involves regulated activities of many genes. This research analyzed global gene expression in the exocarp of developing sweet cherry (Prunus avium L., ‘Regina’), a fruit crop species with little public genomic resources. A catalog of transcript models (contigs) representing expressed genes was constructed from de novo assembled short complementary DNA (cDNA) sequences generated from developing fruit between flowering and maturity at 14 time points. Expression levels in each sample were estimated for 34 695 contigs from numbers of reads mapping to each contig. Contigs were annotated functionally based on BLAST, gene ontology and InterProScan analyses. Coregulated genes were detected using partitional clustering of expression patterns. The results are discussed with emphasis on genes putatively involved in cuticle deposition, cell wall metabolism and sugar transport. The high temporal resolution of the expression patterns presented here reveals finely tuned developmental specialization of individual members of gene families. Moreover, the de novo assembled sweet cherry fruit transcriptome with 7760 full-length protein coding sequences and over 20 000 other, annotated cDNA sequences together with their developmental expression patterns is expected to accelerate molecular research on this important tree fruit crop. PMID:26504533
Guerin-Laguette, Alexis; Cummings, Nicholas; Butler, Ruth Catherine; Willows, Anna; Hesom-Williams, Nina; Li, Shuhong; Wang, Yun
2014-10-01
The cultivation of Lactarius deliciosus (saffron milk cap) in New Zealand began in 2002 when fruiting bodies were produced in an Otago plantation of Pinus radiata seedlings artificially mycorrhized by L. deliciosus. In 2007, 42 P. radiata seedlings mycorrhized by L. deliciosus under controlled conditions were planted in a grass field at Plant and Food Research (Lincoln, Canterbury). The effects of pine bark mulch application and initial degree of mycorrhization of seedlings were examined to determine their influence on tree growth, development of mycorrhizae (i.e. their multiplication on the root system and their degree of branching) and fruiting body production. Mulch application increased tree growth significantly over 4 years. High initial mycorrhization slightly stimulated tree growth over 2 years. The initial degree of mycorrhization was positively, but not strongly, related to the persistence and development of L. deliciosus mycorrhizae and rhizomorphs based on root sample analyses 2 years after planting. However, mulching strongly reduced the proportion of highly branched L. deliciosus mycorrhizae compared with poorly ramified ones. A positive correlation was observed between the fruiting of L. deliciosus and the development of mycorrhizae. Mulching delayed the onset of fruiting body production. In 2010, fruiting bodies were produced only from non-mulched trees with eight of these (38 %) producing a total of 12 fruiting bodies. In 2011, 19 non-mulched trees (90 %) and 9 mulched trees (45 %) produced 143 and 47 fruiting bodies, respectively, totalling 190 fruiting bodies. By 2012, 19 non-mulched trees (90 %) and 13 mulched trees (65 %) produced 333 and 236 fruiting bodies, respectively, totalling 569 fruiting bodies (c. 30 kg). This study presents new information on factors influencing the onset of fruiting and the development of yields in a plantation of P. radiata mycorrhized by L. deliciosus. Projected yields as high as c. 300 kg/ha from the third year of production reiterate the feasibility of farming saffron milk cap in P. radiata plantations in New Zealand. Continued monitoring of this site and development of similar trials will provide important knowledge for the optimisation of yields in commercial saffron milk cap orchards.
Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H.; Dandekar, Abhaya M.; Granell, Antonio
2014-01-01
Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury. PMID:24598973
Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H; Dandekar, Abhaya M; Granell, Antonio
2014-01-01
Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury.
Devoghalaere, Fanny; Doucen, Thomas; Guitton, Baptiste; Keeling, Jeannette; Payne, Wendy; Ling, Toby John; Ross, John James; Hallett, Ian Charles; Gunaseelan, Kularajathevan; Dayatilake, G A; Diak, Robert; Breen, Ken C; Tustin, D Stuart; Costes, Evelyne; Chagné, David; Schaffer, Robert James; David, Karine Myriam
2012-01-13
Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs) were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106). This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3) removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point.
2012-01-01
Background Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. Results High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs) were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106). This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. Conclusions The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3) removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point. PMID:22243694
Symbiotic bacteria enable olive fly larvae to overcome host defences
Ben-Yosef, Michael; Pasternak, Zohar; Jurkevitch, Edouard; Yuval, Boaz
2015-01-01
Ripe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives. Unlike other frugivorous tephritids, the larvae maintain bacteria confined within their midgut caeca. We examined the interaction between larvae, their associated bacteria, and fruit chemical defence, hypothesizing that bacterial contribution to larval development is contingent on the phenology of fruit defensive chemistry. We demonstrate that larvae require their natural complement of bacteria (Candidatus Erwinia dacicola: Enterobacteriaceae) in order to develop in unripe olives. Conversely, when feeding on ripe fruit, larval development proceeds independently of these bacteria. Our experiments suggest that bacteria counteract the inhibitory effect of oleuropein—the principal phenolic glycoside in unripe olives. In light of these results, we suggest that the unique symbiosis in olive flies, compared with other frugivorous tephritids, is understood by considering the relationship between the fly, bacteria and fruit chemistry. When applied in an evolutionary context, this approach may also point out the forces which shaped symbioses across the Tephritidae. PMID:26587275
Jochems, Sylvia H J; van Osch, Frits H M; Reulen, Raoul C; van Hensbergen, Mitch; Nekeman, Duncan; Pirrie, Sarah; Wesselius, Anke; van Schooten, Frederik-Jan; James, Nicholas D; Wallace, D Michael A; Bryan, Richard T; Cheng, K K; Zeegers, Maurice P
2018-06-01
There is some evidence that greater consumption of fruit and vegetables decreases the risk of bladder cancer. The role of fruit and vegetables in bladder cancer recurrence is still unknown. The role of total fruit and vegetable intake in relation to the risk of developing bladder cancer recurrence in a prospective cohort study. 728 patients with non-muscle invasive bladder cancer (NMIBC), who completed self-administrated questionnaires on fruit and vegetable intake at time of diagnosis (over the year before diagnosis) and 1 year after diagnosis, were included. Hazard ratios and 95% confidence intervals were calculated by multivariable Cox regression for developing recurrent bladder cancer in relation to fruit and vegetable intake. During 2,051 person-years of follow-up [mean (SD) follow-up 3.7 (1.5) years], 241 (33.1%) of the included 728 NMIBC patients developed a recurrence of bladder cancer. The sum of total fruit and vegetables before diagnosis was not related to a first bladder cancer recurrence (HR 1.07; 95% CI 0.78-1.47, p = 0.66). No association was found between greater consumption of fruit and vegetables over the year before diagnosis and the risk of developing multiple recurrences of bladder cancer (HR 1.02; 95% CI 0.90-1.15, p = 0.78). Among the remaining 389 NMIBC patients who reported on fruit and vegetable intake 1 year after diagnosis, no association was found between greater consumption of fruit and vegetables and a first recurrence of bladder cancer (HR 0.65; 95% CI 0.42-1.01, p = 0.06) nor with multiple recurrences of bladder cancer (HR 1.00, 95% CI 0.85-1.18, p = 1.00). Similar results were obtained when investigating the association between total intakes of fruit and vegetables separately and bladder cancer recurrence. Results from this study did not indicate a protective role for total fruit and vegetables in the development of a recurrence of NMIBC.
Giulia, Eccher; Alessandro, Botton; Mariano, Dimauro; Andrea, Boschetti; Benedetto, Ruperti; Angelo, Ramina
2013-01-01
Apple (Malus domestica) fruitlet abscission represents an interesting model system to study the early phases of the shedding process, during which major transcriptomic changes and metabolic rearrangements occur within the fruit. In apple, the drop of fruits at different positions within the cluster can be selectively magnified through chemical thinners, such as benzyladenine and metamitron, acting as abscission enhancers. In this study, different abscission potentials were obtained within the apple fruitlet population by means of the above-cited thinners. A metabolomic study was conducted on the volatile organic compounds emitted by abscising fruitlets, allowing for identification of isoprene as an early marker of abscission induction. A strong correlation was also observed between isoprene production and abscisic acid (ABA) levels in the fruit cortex, which were shown to increase in abscising fruitlets with respect to nonabscising ones. Transcriptomic evidence indicated that abscission-related ABA is biologically active, and its increased biosynthesis is associated with the induction of a specific ABA-responsive 9-cis-epoxycarotenoid dioxygenase gene. According to a hypothetical model, ABA may transiently cooperate with other hormones and secondary messengers in the generation of an intrafruit signal leading to the downstream activation of the abscission zone. The shedding process therefore appears to be triggered by multiple interdependent pathways, whose fine regulation, exerted within a very short temporal window by both endogenous and exogenous factors, determines the final destiny of the fruitlets. PMID:23444344
Manzano, Susana; Megías, Zoraida; Martínez, Cecilia; García, Alicia; Aguado, Encarnación; Chileh, Tarik; López-Alonso, Diego; García-Maroto, Federico; Kejnovský, Eduard; Široký, Jiří; Kubát, Zdeněk; Králová, Tereza; Vyskot, Boris; Jamilena, Manuel
2017-01-01
Sex determination in Rumex acetosa, a dioecious plant with a complex XY 1 Y 2 sex chromosome system (females are XX and males are XY 1 Y 2 ), is not controlled by an active Y chromosome but depends on the ratio between the number of X chromosomes and autosomes. To gain insight into the molecular mechanisms of sex determination, we generated a subtracted cDNA library enriched in genes specifically or predominantly expressed in female floral buds in early stages of development, when sex determination mechanisms come into play. In the present paper, we report the molecular and functional characterization of FEM32, a gene encoding a protein that shares a common architecture with proteins in different plants, animals, bacteria and fungi of the aerolysin superfamily; many of these function as β pore-forming toxins. The expression analysis, assessed by northern blot, RT-PCR and in situ hybridization, demonstrates that this gene is specifically expressed in flowers in both early and late stages of development, although its transcripts accumulate much more in female flowers than in male flowers. The ectopic expression of FEM32 under both the constitutive promoter 35S and the flower-specific promoter AP3 in transgenic tobacco showed no obvious alteration in vegetative development but was able to alter floral organ growth and pollen fertility. The 35S::FEM32 and AP3::FEM32 transgenic lines showed a reduction in stamen development and pollen viability, as well as a diminution in fruit set, fruit development and seed production. Compared with other floral organs, pistil development was, however, enhanced in plants overexpressing FEM32. According to these effects, it is likely that FEM32 functions in Rumex by arresting stamen and pollen development during female flower development. The aerolysin-like pore-forming proteins of eukaryotes are mainly involved in defence mechanisms against bacteria, fungi and insects and are also involved in apoptosis and programmed cell death (PCD), a mechanism that could explain the role of FEM32 in Rumex sex determination. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
The role of the embryo and ethylene in avocado fruit mesocarp discoloration
Hershkovitz, Vera; Friedman, Haya; Goldschmidt, Eliezer E.; Pesis, Edna
2009-01-01
Chilling injury (CI) symptoms in avocado (Persea americana Mill.) fruit, expressed as mesocarp discoloration, were found to be associated with embryo growth and ethylene production during cold storage. In cvs Ettinger and Arad most mesocarp discoloration was located close to the base of the seed and was induced by ethylene treatment in seeded avocado fruit. However, ethylene did not increase mesocarp discoloration in seedless fruit stored at 5 °C. Application of ethylene to whole fruit induced embryo development inside the seed. It also induced seedling elongation when seeds were imbibed separately. Persea americana ethylene receptor (PaETR) gene expression and polyphenol oxidase activity were highest close to the base of the seed and decreased gradually toward the blossom end. By contrast, expressions of PaETR transcript and polyphenol oxidase activity in seedless avocado fruit were similar throughout the pulp at the base of the fruit. Application of the ethylene inhibitor, 1-methylcyclopropene, decreased mesocarp browning, embryo development, seedling growth, and ion leakage, and down-regulated polyphenol oxidase activity. The results demonstrate that ethylene-mediated embryo growth in whole fruit is involved in the mesocarp response to ethylene perception and the development of CI disorders. PMID:19196750
The role of the embryo and ethylene in avocado fruit mesocarp discoloration.
Hershkovitz, Vera; Friedman, Haya; Goldschmidt, Eliezer E; Pesis, Edna
2009-01-01
Chilling injury (CI) symptoms in avocado (Persea americana Mill.) fruit, expressed as mesocarp discoloration, were found to be associated with embryo growth and ethylene production during cold storage. In cvs Ettinger and Arad most mesocarp discoloration was located close to the base of the seed and was induced by ethylene treatment in seeded avocado fruit. However, ethylene did not increase mesocarp discoloration in seedless fruit stored at 5 degrees C. Application of ethylene to whole fruit induced embryo development inside the seed. It also induced seedling elongation when seeds were imbibed separately. Persea americana ethylene receptor (PaETR) gene expression and polyphenol oxidase activity were highest close to the base of the seed and decreased gradually toward the blossom end. By contrast, expressions of PaETR transcript and polyphenol oxidase activity in seedless avocado fruit were similar throughout the pulp at the base of the fruit. Application of the ethylene inhibitor, 1-methylcyclopropene, decreased mesocarp browning, embryo development, seedling growth, and ion leakage, and down-regulated polyphenol oxidase activity. The results demonstrate that ethylene-mediated embryo growth in whole fruit is involved in the mesocarp response to ethylene perception and the development of CI disorders.
Evidence for Apoplasmic Phloem Unloading in Developing Apple Fruit1
Zhang, Ling-Yun; Peng, Yi-Ben; Pelleschi-Travier, Sandrine; Fan, Ying; Lu, Yan-Fen; Lu, Ying-Min; Gao, Xiu-Ping; Shen, Yuan-Yue; Delrot, Serge; Zhang, Da-Peng
2004-01-01
The phloem unloading pathway remains unclear in fleshy fruits accumulating a high level of soluble sugars. A structural investigation in apple fruit (Malus domestica Borkh. cv Golden Delicious) showed that the sieve element-companion cell complex of the sepal bundles feeding the fruit flesh is symplasmically isolated over fruit development. 14C-autoradiography indicated that the phloem of the sepal bundles was functional for unloading. Confocal laser scanning microscopy imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the sepal bundles from the basal to the apical region of the fruit. A 52-kD putative monosaccharide transporter was immunolocalized predominantly in the plasma membrane of both the sieve elements and parenchyma cells and its amount increased during fruit development. A 90-kD plasma membrane H+-ATPase was also localized in the plasma membrane of the sieve element-companion cell complex. Studies of [14C]sorbitol unloading suggested that an energy-driven monosaccharide transporter may be functional in phloem unloading. These data provide clear evidence for an apoplasmic phloem unloading pathway in apple fruit and give information on the structural and molecular features involved in this process. PMID:15122035
DOE Office of Scientific and Technical Information (OSTI.GOV)
K.L. Borgmann; S.F. Pearson; D.J. Levey
2004-01-01
Borgmann, K.L., S.F. Pearson, D.J. Levey, and C.H. Greenberg. 2004. Wintering yellow-rumped warblers (Dendroica coronata) track manipulated abundance of Myrica cerifera fruits. The Auk 121(1):74-87. Abstract: Food availability during winter may determine habitat use and limit populations of overwintering birds, yet its importance is difficult to judge because few studies have experimentally tested the response of nonbreeding birds to changes in resource abundance. We experimentally examined the link between fruit availability and habitat use by manipulating winter abundance of Myrica cerifera L. (Myricaceae) fruits in managed longleaf (Pinus palustris) and loblolly (P. taeda) pine stands in South Carolina. Myrica ceriferamore » is a common understory shrub in the southeastern United States and provides lipid-rich fruit in late winter (February and March), when insects and other fruits are scarce. On treatment plots, we covered fruiting M. cerifera shrubs with netting in early winter to prevent birds from eating their fruits. In late February, when M. cerifera fruit crops were largely depleted elsewhere on our study site, we uncovered the shrubs and documented the response of the bird community to those patches of high fruit availability. Relative to control plots, total bird abundance (excluding the most common species, Yellow-rumped Warbler [Dendroica coronata]) and species richness did not change after net removal. Yellow-rumped Warblers, however, became significantly more abundant on treatment plots after net removal, which suggests that they track M. cerifera fruit abundance. We suggest that M. cerifera plays a role in determining the local distribution of wintering Yellow-rumped Warblers at our study site. To put these results into a management context, we also examined the effect of prescribed fire frequencies on M. cerifera fruit production. Across pine stands with different fire regimes, M. cerifera fruit abundance increased with the number of years since burning. It takes 4-6 years for individuals to recover sufficiently from a burn to produce large quantities of fruit. Thus, shorter intervals between burns will reduce winter fruit availability. Taken together, these results suggest that within those pine plantations, the local winter distribution of at least one common migratory bird is closely tied to fruit abundance, which in turn is tied to the frequency of prescribed fires.« less
USDA-ARS?s Scientific Manuscript database
Culturable fungal population diversity and succession were investigated in developing cranberry ovaries of fruit rot-resistant and rot-susceptible cranberry selections, from flower through mature fruit. Fungi were recovered in culture from 1185 of 1338 ovary tissues collected from June to September,...
Genomics of Tropical Fruit Tree Crops
USDA-ARS?s Scientific Manuscript database
The genetic improvement of tropical fruit trees is limited when compared to progress achieved in temperate fruit trees and annual crops. Tropical fruit tree breeding programs require significant resources to develop new cultivars that are adapted to modern shipping and storage requirements. The use...
Tapanelli, Sofia; Chianese, Giuseppina; Lucantoni, Leonardo; Yerbanga, Rakiswendé Serge; Habluetzel, Annette; Taglialatela-Scafati, Orazio
2016-10-01
Azadirachta indica, known as neem tree and traditionally called "nature's drug store" makes part of several African pharmacopeias and is widely used for the preparation of homemade remedies and commercial preparations against various illnesses, including malaria. Employing a bio-guided fractionation approach, molecules obtained from A. indica ripe and green fruit kernels were tested for activity against early sporogonic stages of Plasmodium berghei, the parasite stages that develop in the mosquito mid gut after an infective blood meal. The limonoid deacetylnimbin (3) was identified as one the most active compounds of the extract, with a considerably higher activity compared to that of the close analogue nimbin (2). Pure deacetylnimbin (3) appeared to interfere with transmissible Plasmodium stages at a similar potency as azadirachtin A. Considering its higher thermal and chemical stability, deacetylnimbin could represent a suitable alternative to azadirachtin A for the preparation of transmission blocking antimalarials. Copyright © 2016 Elsevier B.V. All rights reserved.
The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits
Bastías, Adriana; Osorio, Sonia; Casaretto, José A.
2014-01-01
Tomato fruit development is regulated both by the action of plant hormones and by tight genetic control. Recent studies suggest that abscisic acid (ABA) signalling may affect different aspects of fruit maturation. Previously, it was shown that SlAREB1, an ABA-regulated transcription factor involved in stress-induced responses, is expressed in seeds and in fruit tissues in tomato. Here, the role of SlAREB1 in regulating the expression of genes relevant for primary metabolic pathways and affecting the metabolic profile of the fruit was investigated using transgenic tomato lines. Metabolite profiling using gas chromatography–time of flight mass spectrometry (GC-TOF-MS) and non-targeted liquid chromatography–mass spectrometry (LC-MS) was performed on pericarp tissue from fruits harvested at three stages of fruit development. Principal component analysis of the data could distinguish the metabolite profiles of non-transgenic fruits from those that overexpress and down-regulate SlAREB1. Overexpression of SlAREB1 resulted in increased content of organic acids, hexoses, hexose-phosphates, and amino acids in immature green, mature green, and red ripe fruits, and these modifications correlated with the up-regulation of enzyme-encoding genes involved in primary carbohydrate and amino acid metabolism. A non-targeted LC-MS analysis indicated that the composition of secondary metabolites is also affected in transgenic lines. In addition, gene expression data revealed that some genes associated with fruit ripening are also up-regulated in SlAREB1-overexpressing lines compared with wild-type and antisense lines. Taken together, the results suggest that SlAREB1 participates in the regulation of the metabolic programming that takes place during fruit ripening and that may explain part of the role of ABA in fruit development in tomato. PMID:24659489
FRUIT AND VEGETABLE CONSUMPTION BY ECOLOGICAL ZONE AND SOCIOECONOMIC STATUS IN GHANA.
Amo-Adjei, Joshua; Kumi-Kyereme, Akwasi
2015-09-01
The disease burden in both developed and developing countries is moving towards higher proportions of chronic diseases, and diseases such as cancers are now considered to be of public health concern. In sub-Saharan Africa, healthy behaviours such as fruit and vegetable consumption are recommended to reduce the chances of onset of chronic diseases. This paper examines the determinants of fruit and vegetable consumption in Ghana with particular emphasis on consumption by ecological zone. Data were from the 2008 Ghana Demographic and Health Survey (n=4916 females; n=4568 males). Univariate and multivariate analyses were performed using basic descriptive and Poisson regression. The main independent variable was ecological zone and the dependent variables were levels of fruit and vegetable consumption. The mean number of fruits and vegetables consumed in a week was higher among females (fruits: 7.5, 95% CI=7.3-7.7; vegetables: 8.1, 95% CI=7.8-8.3) than males (fruits: 6.2, 95% CI=6.0-6.4; vegetables: 7.9, 95% CI=7.7-8.2). There were significant differences in consumption by ecological zone. Respondents in the Savannah zone consumed less fruit than those in the Coastal and Forest zones, but the differences in fruit and vegetable consumption between the Coastal and Savannah zones were not consistent, especially for vegetable consumption. The findings suggest that one of the key interventions to improve fruit and vegetable consumption could lie in improving distribution systems since their consumption is significantly higher in the Forest zone, where the production of fruit and vegetables is more developed than in the Savannah and Coastal zones. The findings relating to household wealth challenge conventional knowledge on fruit and vegetable consumption, and rather argue for equal consideration of spatial differences in critical health outcomes.
Fuentes, Lida; Valdenegro, Mónika; Gómez, María-Graciela; Ayala-Raso, Aníbal; Quiroga, Evelyn; Martínez, Juan-Pablo; Vinet, Raúl; Caballero, Eduardo; Figueroa, Carlos R
2016-04-01
The arrayan berry (Luma apiculata) is a native fruit from South America that belongs to the Myrtaceae family. To elucidate and characterize the developmental process and the potential health benefits of this edible fruit, quality and physiological parameters, along with antioxidant capacity, were evaluated during four clearly defined developmental stages of the fruit in two seasons. Fruit firmness slowly decreases during fruit development, whereas the solid soluble content/titratable acidity ratio (SSC/TA) increases significantly in the final stages of development. The measurement of low respiration rates and low ethylene production during growth and ripening suggested that the arrayan berry should be classified as a non-climacteric fruit. Arrayan berries show a significant increase in their antioxidant capacity from small green to black ripe fruit. FRAP and TEAC assays showed high correlations with total polyphenolic content (TPC) during ripening and high antioxidant capacity at all fruit stages, showing greater values in ripe fruit (FRAP: 24 ± 2 and 28 ± 3 μM FeSO4/gFW; TEAC: 18 ± 2 and 20 ± 1 Eq. Trolox/gFW for each season, respectively) than those observed in the blueberry (FRAP: 10 ± 2 and 19 ± 3 μM FeSO4/gFW; TEAC: 10 ± 2 and 17 ± 3). In addition, bioactive assays using ripe fruit extracts show presence of flavonol and anthocyanins, a high ORAC value (62,500 ± 7000 μmol/gDW) and a concentration-dependent vascular protection under high glucose conditions. The results obtained show that these endemic berry fruits have a promising potential as functional food. Copyright © 2015 Elsevier Ltd. All rights reserved.
Genomic resources in fruit plants: an assessment of current status.
Rai, Manoj K; Shekhawat, N S
2015-01-01
The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants.
Xu, Jidi; Xu, Haidan; Liu, Yuanlong; Wang, Xia; Xu, Qiang; Deng, Xiuxin
2015-01-01
In eukaryotes, histone acetylation and methylation have been known to be involved in regulating diverse developmental processes and plant defense. These histone modification events are controlled by a series of histone modification gene families. To date, there is no study regarding genome-wide characterization of histone modification related genes in citrus species. Based on the two recent sequenced sweet orange genome databases, a total of 136 CsHMs (Citrus sinensis histone modification genes), including 47 CsHMTs (histone methyltransferase genes), 23 CsHDMs (histone demethylase genes), 50 CsHATs (histone acetyltransferase genes), and 16 CsHDACs (histone deacetylase genes) were identified. These genes were categorized to 11 gene families. A comprehensive analysis of these 11 gene families was performed with chromosome locations, phylogenetic comparison, gene structures, and conserved domain compositions of proteins. In order to gain an insight into the potential roles of these genes in citrus fruit development, 42 CsHMs with high mRNA abundance in fruit tissues were selected to further analyze their expression profiles at six stages of fruit development. Interestingly, a numbers of genes were expressed highly in flesh of ripening fruit and some of them showed the increasing expression levels along with the fruit development. Furthermore, we analyzed the expression patterns of all 136 CsHMs response to the infection of blue mold (Penicillium digitatum), which is the most devastating pathogen in citrus post-harvest process. The results indicated that 20 of them showed the strong alterations of their expression levels during the fruit-pathogen infection. In conclusion, this study presents a comprehensive analysis of the histone modification gene families in sweet orange and further elucidates their behaviors during the fruit development and the blue mold infection responses.
1985-03-14
development of pasteurized milk, yogurt and milk drinks.. We must combine this with the production of all kinds of milk powder (especially that...products, with emphasis on developing beancurd and fermented bean products. We must also develop soybean flour and beanflour products. Fruit and vegetable...Beverage industry: We should develop drinks like fruit juice, vegetable juice, fruit sodapop, soybean milk, fermented soybean milk, mineral water
Improvement of the Raman detection system for pesticide residues on/in fruits and vegetables
NASA Astrophysics Data System (ADS)
Li, Yan; Peng, Yankun; Zhai, Chen; Chao, Kuanglin; Qin, Jianwei
2017-05-01
Pesticide residue is one of the major challenges to fruits safety, while the traditional detection methods of pesticide residue on fruits and vegetables can't afford the demand of rapid detection in actual production because of timeconsuming. Thus rapid identification and detection methods for pesticide residue are urgently needed at present. While most Raman detection systems in the market are spot detection systems, which limits the range of application. In the study, our lab develops a Raman detection system to achieve area-scan thorough the self-developed spot detection Raman system with a control software and two devices. In the system, the scanning area is composed of many scanning spots, which means every spot needs to be detected and more time will be taken than area-scan Raman system. But lower detection limit will be achieved in this method. And some detection device is needed towards fruits and vegetables in different shape. Two detection devices are developed to detect spherical fruits and leaf vegetables. During the detection, the device will make spherical fruit rotate along its axis of symmetry, and leaf vegetables will be pressed in the test surface smoothly. The detection probe will be set to keep a proper distance to the surface of fruits and vegetables. It should make sure the laser shins on the surface of spherical fruit vertically. And two software are used to detect spherical fruits and leaf vegetables will be integrated to one, which make the operator easier to switch. Accordingly two detection devices for spherical fruits and leaf vegetables will also be portable devices to make it easier to change. In the study, a new way is developed to achieve area-scan result by spot-scan Raman detection system.
Huang, Ming; Xu, Qiang; Deng, Xiu-Xin
2014-09-01
Chestnut rose (Rosa roxburghii Tratt) is a fruit crop that contains unusually high levels of l-ascorbic acid (AsA; ∼1300 mg 100g(-1) FW). To explore the mechanisms underlying AsA metabolism, we investigated the distribution and abundance of AsA during fruit development. We also analyzed gene expression patterns, enzyme activities, and content of metabolites related to AsA biosynthesis and recycling. AsA first accumulated during late fruit development and continued to accumulate during ripening, with the highest accumulation rate near fruit maturity. The redox state of AsA in fruit was also enhanced during late fruit development, while leaf and other tissues had much lower levels of AsA and the redox state of AsA was lower. In mature fruit, AsA was mainly distributed in the cytoplasm of the mesocarp. Correlation analysis suggested that the gene expression patterns, enzyme activities, and related metabolite concentrations involved in the l-galactose pathway showed relatively high correlations with the accumulation rate of AsA. The gene expression pattern and activity of dehydroascorbate reductase (DHAR, EC 1.8.5.1) correlated strongly with AsA concentration, possibly indicating the crucial role of DHAR in the accumulation of high levels of AsA in chestnut rose fruit. Over expression of DHAR in Arabidopsis significantly increased the reduced AsA content and redox state. This was more effective than over expression of the l-galactose pathway gene GDP-d-mannose-3,5-epimerase (EC 5.1.3.18). These findings will enhance understanding of the molecular mechanisms regulating accumulation of AsA in chestnut rose. Copyright © 2014 Elsevier GmbH. All rights reserved.
Aketarawong, Nidchaya; Chinvinijkul, Suksom; Orankanok, Watchreeporn; Guglielmino, Carmela Rosalba; Franz, Gerald; Malacrida, Anna Rodolfa; Thanaphum, Sujinda
2011-01-01
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects' planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m < 0.100) across the buffer zones between the flies in the control areas and flies captured outside. In addition, no genetic admixture was revealed from the mass-reared colony flies from the flies within the control area, which supports the effectiveness of SIT. The control pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.
Development of diet-induced insulin resistance in adult Drosophila melanogaster
Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N.; Bauer, Johannes H.
2013-01-01
The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson’s Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. PMID:22542511
Limonoids from Melia azedarach Fruits as Inhibitors of Flaviviruses and Mycobacterium tubercolosis.
Sanna, Giuseppina; Madeddu, Silvia; Giliberti, Gabriele; Ntalli, Nikoletta G; Cottiglia, Filippo; De Logu, Alessandro; Agus, Emanuela; Caboni, Pierluigi
2015-01-01
The biological diversity of nature is the source of a wide range of bioactive molecules. The natural products, either as pure compounds or as standardized plant extracts, have been a successful source of inspiration for the development of new drugs. The present work was carried out to investigate the cytotoxicity, antiviral and antimycobacterial activity of the methanol extract and of four identified limonoids from the fruits of Melia azedarach (Meliaceae). The extract and purified limonoids were tested in cell-based assays for antiviral activity against representatives of ssRNA, dsRNA and dsDNA viruses and against Mycobacterium tuberculosis. Very interestingly, 3-α-tigloyl-melianol and melianone showed a potent antiviral activity (EC50 in the range of 3-11μM) against three important human pathogens, belonging to Flaviviridae family, West Nile virus, Dengue virus and Yellow Fever virus. Mode of action studies demonstrated that title compounds were inhibitors of West Nile virus only when added during the infection, acting as inhibitors of the entry or of a very early event of life cycle. Furthermore, 3-α-tigloyl-melianol and methyl kulonate showed interesting antimycobacterial activity (with MIC values of 29 and 70 μM respectively). The limonoids are typically lipophilic compounds present in the fruits of Melia azeradach. They are known as cytotoxic compounds against different cancer cell lines, while their potential as antiviral and antibacterial was poorly investigated. Our studies show that they may serve as a good starting point for the development of novel drugs for the treatment of infections by Flaviviruses and Mycobacterium tuberculosis, for which there is a continued need.
Fos, Mariano; Nuez, Fernando; García-Martínez, José L.
2000-01-01
We investigated the role of gibberellins (GAs) in the effect of pat-2, a recessive mutation that induces facultative parthenocarpic fruit development in tomato (Lycopersicon esculentum Mill.) using near-isogenic lines with two different genetic backgrounds. Unpollinated wild-type Madrigal (MA/wt) and Cuarenteno (CU/wt) ovaries degenerated, but GA3 application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of MA/pat-2 and CU/pat-2 fruits, which occurs in the absence of pollination and hormone application, was not affected by GA3. Pollinated MA/wt and parthenocarpic MA/pat-2 ovary development was negated by paclobutrazol, and this inhibitory effect was counteracted by GA3. The main GAs of the early-13-hydroxylation pathway (GA1, GA3, GA8, GA19, GA20, GA29, GA44, GA53, and, tentatively, GA81) and two GAs of the non-13-hydroxylation pathway (GA9 and GA34) were identified in MA/wt ovaries by gas chromatography-selected ion monitoring. GAs were quantified in unpollinated ovaries at flower bud, pre-anthesis, and anthesis. In unpollinated MA/pat-2 and CU/pat-2 ovaries, the GA20 content was much higher (up to 160 times higher) and the GA19 content was lower than in the corresponding non-parthenocarpic ovaries. The application of an inhibitor of 2-oxoglutarate-dependent dioxygenases suggested that GA20 is not active per se. The pat-2 mutation may increase GA 20-oxidase activity in unpollinated ovaries, leading to a higher synthesis of GA20, the precursor of an active GA. PMID:10677440
Apple cuticle: the perfect interface
NASA Astrophysics Data System (ADS)
Curry, Eric; Arey, Bruce
2010-06-01
The domestic apple might well be called an 'extreme' fruit. In the arid Northwest United States, the fruit often tolerates surface temperatures ranging from -2 °C in the early spring to 50 °C in the heat of summer, and again to -2 °C during controlled postharvest storage for up to 12 months. During its 18-month existence, the apple maintains a cuticle that is dynamic and environmentally responsive to protect against 1) cellular water loss during desiccation stress and 2) excessive uptake of standing surface moisture. Physiological disorders of the peel such as russeting, cracking, splitting, flecking and lenticel marking, develop as epidermal cells respond to rapid changes in ambient conditions at specific developmental stages during the growing season. Resultant market losses underlie research investigating the nature of apple cuticle growth and development. Ultrastructural analysis of the pro-cuticle using scanning electron microscopy indicates an overlapping network of lipid-based distally-elongating microtubules--produced by and connected to epidermal cells--which co-polymerize to form an organic solvent-insoluble semi-permeable cutin matrix. Microtubule elongation, aggregation, and polymerization function together as long as the fruit continues to enlarge. The nature of lipid transport from the epidermal cells through the cell wall to become part of the cuticular matrix was explored using an FEI Helios NanoLabTM DualBeamTM focused ion beam/scanning electron microscope on chemically- and cryo-fixed peel tissue from mature or freshly harvested apples. Based on microtubule dimensions, regular projections found at the cell/cuticle interface suggest an array of microtubule-like structures associated with the epidermal cell.
Chaban, Inna; Khaliluev, Marat; Baranova, Ekaterina; Kononenko, Neonila; Dolgov, Sergey; Smirnova, Elena
2018-04-21
Parthenocarpy and fruit malformations are common among independent transgenic tomato lines, expressing genes encoding different pathogenesis-related (PR) protein and antimicrobal peptides. Abnormal phenotype developed independently of the expression and type of target genes, but distinctive features during flower and fruit development were detected in each transgenic line. We analyzed the morphology, anatomy, and cytoembryology of abnormal flowers and fruits from these transgenic tomato lines and compared them with flowers and fruits of wild tomatoes, line YaLF used for transformation, and transgenic plants with normal phenotype. We confirmed that the main cause of abnormal flower and fruit development was the alterations of determinate growth of generative meristem. These alterations triggered different types of anomalous growth, affecting the number of growing ectopic shoots and formation of new flowers. Investigation of the ovule ontogenesis did not show anomalies in embryo sac development, but fertilization did not occur and embryo sac degenerated. Nevertheless, the ovule continued to differentiate due to proliferation of endothelium cells. The latter substituted embryo sac and formed pseudoembryonic tissue. This process imitated embryogenesis and stimulated ovary growth, leading to the development of parthenocarpic fruit. We demonstrated that failed fertilization occurred due to defective male gametophyte formation, which was manifested in blocked division of the nucleus in the microspore and arrest of vegetative and generative cell formation. Maturing pollen grains were overgrown microspores, not competent for fertilization but capable to induce proliferation of endothelium and development of parthenocarpic ovary. Thus, our study provided new data on the structural transformations of reproductive organs during development of parthenocarpic fruits in transgenic tomato.
Hou, Yanming; Zhai, Lulu; Li, Xuyan; Xue, Yu; Wang, Jingjing; Yang, Pengjie; Cao, Chunmei; Li, Hongxue; Cui, Yuhai; Bian, Shaomin
2017-01-01
MicroRNAs (miRNAs) play vital roles in the regulation of fruit development and ripening. Blueberry is an important small berry fruit crop with economical and nutritional value. However, nothing is known about the miRNAs and their targets involved in blueberry fruit ripening. In this study, using high-throughput sequencing of small RNAs, 84 known miRNAs belonging to 28 families and 16 novel miRNAs were identified in white fruit (WF) and blue fruit (BF) libraries, which represent fruit ripening onset and in progress, respectively. Among them, 41 miRNAs were shown to be differentially expressed during fruit maturation, and 16 miRNAs representing 16 families were further chosen to validate the sRNA sequencing data by stem-loop qRT-PCR. Meanwhile, 178 targets were identified for 41 known and 7 novel miRNAs in WF and BF libraries using degradome sequencing, and targets of miR160 were validated using RLM-RACE (RNA Ligase-Mediated (RLM)-Rapid Amplification of cDNA Ends) approach. Moreover, the expression patterns of 6 miRNAs and their targets were examined during fruit development and ripening. Finally, integrative analysis of miRNAs and their targets revealed a complex miRNA-mRNA regulatory network involving a wide variety of biological processes. The findings will facilitate future investigations of the miRNA-mediated mechanisms that regulate fruit development and ripening in blueberry. PMID:29257112
Sharing Malaysian experience with the development of biotechnology-derived food crops.
Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat
2005-12-01
Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers.
Sandoval-Oliveros, R; Guevara-Olvera, L; Beltrán, J P; Gómez-Mena, C; Acosta-García, G
2017-09-01
Pepper (Capsicum annuum L.) is an important horticultural crop in many regions of the world. The final shape and size of the fruit are known to be determined at a very early step of flower development. During flower development hormonal treatments using gibberellins seem to promote growth resulting in higher yield and fruit quality. However, the morphological changes that occur in the pepper flowers after these treatments are largely unknown. In the present study, we provide a description of floral development landmarks of jalapeño chili pepper (cultivar Huichol), divided in nine representative stages from its initiation until the opening of the bud. We established a correlation among external flower development and the time and pattern of reproductive organogenesis. Male and female gametogenesis progression was used to define specific landmarks during flower maturation. The pattern of expression of key genes involved in gibberellin metabolism and response was also evaluated in the nine flower stages. The proposed development framework was used to analyze the effect of gibberellin treatments in the development of the flower. We observed both an effect of the treatment in the histology of the ovary tissue and an increase in the level of expression of CaGA2ox1 and CaGID1b genes. The developmental stages we defined for this species are very useful to analyze the molecular and morphological changes after hormonal treatments.
Saladié, Montserrat; Cañizares, Joaquin; Phillips, Michael A; Rodriguez-Concepcion, Manuel; Larrigaudière, Christian; Gibon, Yves; Stitt, Mark; Lunn, John Edward; Garcia-Mas, Jordi
2015-06-09
In climacteric fruit-bearing species, the onset of fruit ripening is marked by a transient rise in respiration rate and autocatalytic ethylene production, followed by rapid deterioration in fruit quality. In non-climacteric species, there is no increase in respiration or ethylene production at the beginning or during fruit ripening. Melon is unusual in having climacteric and non-climacteric varieties, providing an interesting model system to compare both ripening types. Transcriptomic analysis of developing melon fruits from Védrantais and Dulce (climacteric) and Piel de sapo and PI 161375 (non-climacteric) varieties was performed to understand the molecular mechanisms that differentiate the two fruit ripening types. Fruits were harvested at 15, 25, 35 days after pollination and at fruit maturity. Transcript profiling was performed using an oligo-based microarray with 75 K probes. Genes linked to characteristic traits of fruit ripening were differentially expressed between climacteric and non-climacteric types, as well as several transcription factor genes and genes encoding enzymes involved in sucrose catabolism. The expression patterns of some genes in PI 161375 fruits were either intermediate between. Piel de sapo and the climacteric varieties, or more similar to the latter. PI 161375 fruits also accumulated some carotenoids, a characteristic trait of climacteric varieties. Simultaneous changes in transcript abundance indicate that there is coordinated reprogramming of gene expression during fruit development and at the onset of ripening in both climacteric and non-climacteric fruits. The expression patterns of genes related to ethylene metabolism, carotenoid accumulation, cell wall integrity and transcriptional regulation varied between genotypes and was consistent with the differences in their fruit ripening characteristics. There were differences between climacteric and non-climacteric varieties in the expression of genes related to sugar metabolism suggesting that they may be potential determinants of sucrose content and post-harvest stability of sucrose levels in fruit. Several transcription factor genes were also identified that were differentially expressed in both types, implicating them in regulation of ripening behaviour. The intermediate nature of PI 161375 suggested that classification of melon fruit ripening behaviour into just two distinct types is an over-simplification, and that in reality there is a continuous spectrum of fruit ripening behaviour.
Population Modeling Approach to Optimize Crop Harvest Strategy. The Case of Field Tomato.
Tran, Dinh T; Hertog, Maarten L A T M; Tran, Thi L H; Quyen, Nguyen T; Van de Poel, Bram; Mata, Clara I; Nicolaï, Bart M
2017-01-01
In this study, the aim is to develop a population model based approach to optimize fruit harvesting strategies with regard to fruit quality and its derived economic value. This approach was applied to the case of tomato fruit harvesting under Vietnamese conditions. Fruit growth and development of tomato (cv. "Savior") was monitored in terms of fruit size and color during both the Vietnamese winter and summer growing seasons. A kinetic tomato fruit growth model was applied to quantify biological fruit-to-fruit variation in terms of their physiological maturation. This model was successfully calibrated. Finally, the model was extended to translate the fruit-to-fruit variation at harvest into the economic value of the harvested crop. It can be concluded that a model based approach to the optimization of harvest date and harvest frequency with regard to economic value of the crop as such is feasible. This approach allows growers to optimize their harvesting strategy by harvesting the crop at more uniform maturity stages meeting the stringent retail demands for homogeneous high quality product. The total farm profit would still depend on the impact a change in harvesting strategy might have on related expenditures. This model based harvest optimisation approach can be easily transferred to other fruit and vegetable crops improving homogeneity of the postharvest product streams.
Selective seed abortion affects the performance of the offspring in Bauhinia ungulata.
Mena-Alí, Jorge I; Rocha, Oscar J
2005-05-01
Under the microgametophytic competition hypothesis, a non-random pattern of seed abortion is expected, in which only the most vigorous seeds reach maturity. In a previous study, it was found that Bauhinia ungulata (Fabaceae) exhibits a pattern of seed abortion dependent on the position of the ovule within the ovary; ovules located in the stylar half of the fruit, close to the point of entry of pollen tubes to the ovary, have a low probability of seed abortion, whereas ovules in the basal half of the fruit are aborted with a high probability. A series of experimental fruits was generated, in which ovules from either the stylar (treatments 1 and 2) or the basal (treatments 3 and 4) half of fruits were destroyed, to evaluate whether these patterns of selective seed abortion have an effect on the vigour of the offspring in B. ungulata. Only 53 % of the seed from control fruits germinated. Seed set in fruits from treatments 1 and 2 showed a significantly lower (33-43 %) percentage of germination; the germination of seeds from fruits in treatments 3 and 4 (49-51 %) did not differ from control seeds. In addition, it was found that the differences in vigour of the offspring are not random with respect to the position of the ovule in the pod. The overall performance of the seeds correlated with their likelihood of maturation. Seeds located at the basal half of the treatment fruits showed lower values of vigour than seeds located on the stylar half. The differences were more marked for early measures of fitness.
Bioactivities and Health Benefits of Wild Fruits
Li, Ya; Zhang, Jiao-Jiao; Xu, Dong-Ping; Zhou, Tong; Zhou, Yue; Li, Sha; Li, Hua-Bin
2016-01-01
Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits. PMID:27527154
Genetic, metabolite and developmental determinism of fruit friction discolouration in pear.
Saeed, Munazza; Brewer, Lester; Johnston, Jason; McGhie, Tony K; Gardiner, Susan E; Heyes, Julian A; Chagné, David
2014-09-16
The unattractive appearance of the surface of pear fruit caused by the postharvest disorder friction discolouration (FD) is responsible for significant consumer dissatisfaction in markets, leading to lower returns to growers. Developing an understanding of the genetic control of FD is essential to enable the full application of genomics-informed breeding for the development of new pear cultivars. Biochemical constituents [phenolic compounds and ascorbic acid (AsA)], polyphenol oxidase (PPO) activity, as well as skin anatomy, have been proposed to play important roles in FD susceptibility in studies on a limited number of cultivars. However, to date there has been no investigation on the biochemical and genetic control of FD, employing segregating populations. In this study, we used 250 seedlings from two segregating populations (POP369 and POP356) derived from interspecific crosses between Asian (Pyrus pyrifolia Nakai and P. bretschneideri Rehd.) and European (P. communis) pears to identify genetic factors associated with susceptibility to FD. Single nucleotide polymorphism (SNP)-based linkage maps suitable for QTL analysis were developed for the parents of both populations. The maps for population POP369 comprised 174 and 265 SNP markers for the male and female parent, respectively, while POP356 maps comprised 353 and 398 SNP markers for the male and female parent, respectively. Phenotypic data for 22 variables were measured over two successive years (2011 and 2012) for POP369 and one year (2011) only for POP356. A total of 221 QTLs were identified that were linked to 22 phenotyped variables, including QTLs associated with FD for both populations that were stable over the successive years. In addition, clear evidence of the influence of developmental factors (fruit maturity) on FD and other variables was also recorded. The QTLs associated with fruit firmness, PPO activity, AsA concentration and concentration of polyphenol compounds as well as FD are the first reported for pear. We conclude that the postharvest disorder FD is controlled by multiple small effect QTLs and that it will be very challenging to apply marker-assisted selection based on these QTLs. However, genomic selection could be employed to select elite genotypes with lower or no susceptibility to FD early in the breeding cycle.
Historical oak woodland detected through Armillaria mellea damage in fruit orchards
Alan K. Brown
2002-01-01
The wholesale destruction of oak woodland by North American settlers in the Santa Clara Valley is attested in early county histories and other sources. Early plats and field notes by government and private surveyors, which are the most useful kind of sources as to the distribution and extent of the lost oak groves, still leave serious gaps in our knowledge. A further...
Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis).
Yu, Keqin; Xu, Qiang; Da, Xinlei; Guo, Fei; Ding, Yuduan; Deng, Xiuxin
2012-01-10
The transcriptome of the fruit pulp of the sweet orange variety Anliu (WT) and that of its red fleshed mutant Hong Anliu (MT) were compared to understand the dynamics and differential expression of genes expressed during fruit development and ripening. The transcriptomes of WT and MT were sampled at four developmental stages using an Illumina sequencing platform. A total of 19,440 and 18,829 genes were detected in MT and WT, respectively. Hierarchical clustering analysis revealed 24 expression patterns for the set of all genes detected, of which 20 were in common between MT and WT. Over 89% of the genes showed differential expression during fruit development and ripening in the WT. Functional categorization of the differentially expressed genes revealed that cell wall biosynthesis, carbohydrate and citric acid metabolism, carotenoid metabolism, and the response to stress were the most differentially regulated processes occurring during fruit development and ripening. A description of the transcriptomic changes occurring during fruit development and ripening was obtained in sweet orange, along with a dynamic view of the gene expression differences between the wild type and a red fleshed mutant. © 2012 Yu et al; licensee BioMed Central Ltd.
Czerednik, Anna; Busscher, Marco; Bielen, Bram A.M.; Wolters-Arts, Mieke; de Maagd, Ruud A.; Angenent, Gerco C.
2012-01-01
Growth of tomato fruits is determined by cell division and cell expansion, which are tightly controlled by factors that drive the core cell cycle. The cyclin-dependent kinases (CDKs) and their interacting partners, the cyclins, play a key role in the progression of the cell cycle. In this study the role of CDKA1, CDKB1, and CDKB2 in fruit development was characterized by fruit-specific overexpression and down-regulation. CDKA1 is expressed in the pericarp throughout development, but is strongly up-regulated in the outer pericarp cell layers at the end of the growth period, when CDKB gene expression has ceased. Overexpression of the CDKB genes at later stages of development and the down-regulation of CDKA1 result in a very similar fruit phenotype, showing a reduction in the number of cell layers in the pericarp and alterations in the desiccation of the fruits. Expression studies revealed that CDKA1 is down-regulated by the expression of CDKB1/2 in CDKB1 and CDKB2 overexpression mutants, suggesting opposite roles for these types of CDK proteins in tomato pericarp development. PMID:22282536
Hyodo, Hiromi; Terao, Azusa; Furukawa, Jun; Sakamoto, Naoya; Yurimoto, Hisayoshi; Satoh, Shinobu; Iwai, Hiroaki
2013-01-01
Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca²⁺) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue-tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.
Hyodo, Hiromi; Terao, Azusa; Furukawa, Jun; Sakamoto, Naoya; Yurimoto, Hisayoshi; Satoh, Shinobu; Iwai, Hiroaki
2013-01-01
Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue. PMID:24236073
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Je Min, E-mail: jemin@knu.ac.kr; Department of Horticultural Science, Kyungpook National University, Daegu; Lee, Sang-Jik
Highlights: • Yeast secretion trap (YST) is a valuable tool for mining secretome. • A total of 80 secreted proteins are newly identified via YST in pepper fruits. • The secreted proteins are differentially regulated during pepper development and ripening. • Transient GFP-fusion assay and in planta secretion trap can effectively validate the secretion of proteins. - Abstract: Plant cells secrete diverse sets of constitutively- and conditionally-expressed proteins under various environmental and developmental states. Secreted protein populations, or secretomes have multiple functions, including defense responses, signaling, metabolic processes, and developmental regulation. To identify genes encoding secreted proteins that function inmore » fruit development and ripening, a yeast secretion trap (YST) screen was employed using pepper (Capsicum annuum) fruit cDNAs. The YST screen revealed 80 pepper fruit-related genes (CaPFRs) encoding secreted proteins including cell wall proteins, several of which have not been previously described. Transient GFP-fusion assay and an in planta secretion trap were used to validate the secretion of proteins encoded by selected YST clones. In addition, RNA gel blot analyses provided further insights into their expression and regulation during fruit development and ripening. Integrating our data, we conclude that the YST provides a valuable functional genomics tool for the identification of substantial numbers of novel secreted plant proteins that are associated with biological processes, including fruit development and ripening.« less
Cejudo-Bastante, María Jesús; Rodríguez Dodero, M Carmen; Durán Guerrero, Enrique; Castro Mejías, Remedios; Natera Marín, Ramón; García Barroso, Carmelo
2013-03-15
Despite the long history of sherry wine vinegar, new alternatives of consumption are being developed, with the aim of diversifying its market. Several new acetic-based fruit juices have been developed by optimising the amount of sherry wine vinegar added to different fruit juices: apple, peach, orange and pineapple. Once the concentrations of wine vinegar were optimised by an expert panel, the aforementioned new acetic fruit juices were tasted by 86 consumers. Three different aspects were taken into account: habits of consumption of vinegar and fruit juices, gender and age. Based on the sensory analysis, 50 g kg(-1) of wine vinegar was the optimal and preferred amount of wine vinegar added to the apple, orange and peach juices, whereas 10 g kg(-1) was the favourite for the pineapple fruit. Based on the olfactory and gustatory impression, and 'purchase intent', the acetic beverages made from peach and pineapple juices were the most appreciated, followed by apple juice, while those obtained from orange juice were the least preferred by consumers. New opportunities for diversification of the oenological market could be possible as a result of the development of this type of new product which can be easily developed by any vinegar or fruit juice maker company. © 2012 Society of Chemical Industry.
Teichert, Ines; Lutomski, Miriam; Märker, Ramona; Nowrousian, Minou; Kück, Ulrich
2017-02-01
During the sexual life cycle of filamentous fungi, multicellular fruiting bodies are generated for the dispersal of spores. The filamentous ascomycete Sordaria macrospora has a long history as a model system for studying fruiting body formation, and two collections of sterile mutants have been generated. However, for most of these mutants, the underlying genetic defect remains unknown. Here, we investigated the mutant spadix (spd) that was generated by X-ray mutagenesis in the 1950s and terminates sexual development after the formation of pre-fruiting bodies (protoperithecia). We sequenced the spd genome and found a 22 kb deletion affecting four genes, which we termed spd1-4. Generation of deletion strains revealed that only spd4 is required for fruiting body formation. Although sterility in S. macrospora is often coupled with a vegetative hyphal fusion defect, Δspd4 was still capable of fusion. This feature distinguishes SPD4 from many other regulators of sexual development. Remarkably, GFP-tagged SPD4 accumulated in the nuclei of vegetative hyphae and fruiting body initials, the ascogonial coils, but not in sterile tissue from the developing protoperithecium. Our results point to SPD4 as a specific determinant of fruiting body formation. Research on SPD4 will, therefore, contribute to understanding cellular reprogramming during initiation of sexual development in fungi.
Biochemical crypsis in the avoidance of natural enemies by an insect herbivore
De Moraes, Consuelo M.; Mescher, Mark C.
2004-01-01
Plant-herbivore interactions provide well studied examples of coevolution, but little is known about how such interactions are influenced by the third trophic level. Here we show that larvae of the specialized lepidopteran herbivore Heliothis subflexa reduce their vulnerability to natural enemies through adaptation to a remarkable and previously unknown feature of their host plant, Physalis angulata: The fruits of this plant lack linolenic acid (LA), which is required for the development of most insects. By overcoming this nutritional deficiency, H. subflexa larvae achieve numerous advantages. First, they gain near-exclusive access to a food resource: we demonstrate that closely related Heliothis virescens larvae cannot develop on P. angulata fruit unless the fruit are treated with LA. Second, they reduce their vulnerability to enemies: LA is a key component of volicitin, an elicitor of plant-volatile-signaling defenses. We demonstrate that volicitin is absent in the oral secretions of fruit-feeding caterpillars, that the volatile profiles of plants induced by fruit feeding differ from those induced by leaf feeding or by feeding on LA-treated fruit, and that the former are far less attractive to female Cardiochiles nigriceps parasitoids. Finally, they render themselves nutritionally unsuitable as hosts for enemies that require LA for their own development: we show that C. nigriceps larvae fail to develop within the bodies of fruit-feeding caterpillars but do develop in caterpillars feeding on LA-treated fruit. Thus, H. subflexa larvae not only overcome a serious dietary deficiency but also reduce their vulnerability to natural enemies through a form of “biochemical crypsis.” PMID:15184664
Biochemical crypsis in the avoidance of natural enemies by an insect herbivore.
De Moraes, Consuelo M; Mescher, Mark C
2004-06-15
Plant-herbivore interactions provide well studied examples of coevolution, but little is known about how such interactions are influenced by the third trophic level. Here we show that larvae of the specialized lepidopteran herbivore Heliothis subflexa reduce their vulnerability to natural enemies through adaptation to a remarkable and previously unknown feature of their host plant, Physalis angulata: The fruits of this plant lack linolenic acid (LA), which is required for the development of most insects. By overcoming this nutritional deficiency, H. subflexa larvae achieve numerous advantages. First, they gain near-exclusive access to a food resource: we demonstrate that closely related Heliothis virescens larvae cannot develop on P. angulata fruit unless the fruit are treated with LA. Second, they reduce their vulnerability to enemies: LA is a key component of volicitin, an elicitor of plant-volatile-signaling defenses. We demonstrate that volicitin is absent in the oral secretions of fruit-feeding caterpillars, that the volatile profiles of plants induced by fruit feeding differ from those induced by leaf feeding or by feeding on LA-treated fruit, and that the former are far less attractive to female Cardiochiles nigriceps parasitoids. Finally, they render themselves nutritionally unsuitable as hosts for enemies that require LA for their own development: we show that C. nigriceps larvae fail to develop within the bodies of fruit-feeding caterpillars but do develop in caterpillars feeding on LA-treated fruit. Thus, H. subflexa larvae not only overcome a serious dietary deficiency but also reduce their vulnerability to natural enemies through a form of "biochemical crypsis."
Murphy, Mary M; Stettler, Nicolas; Smith, Kimberly M; Reiss, Richard
2014-01-01
Maternal nutrition is recognized as one of the determinants of fetal growth. Consumption of fruits and vegetables is promoted as part of a healthful diet; however, intakes are typically lower than recommended levels. The purpose of this study was to systematically review results from studies examining the relationship between maternal consumption of fruits and vegetables during pregnancy with infant birth weight or risk for delivering a small for gestational age baby. A comprehensive search of PubMed and EMBASE was conducted and abstracts were screened using predefined criteria. Eleven relevant studies were identified and systematically reviewed, including six prospective cohort studies, three retrospective cohort studies, and two case–control studies. Seven studies were conducted in cohorts from highly developed countries. One prospective study from a highly developed area reported increased risk for small for gestational age birth by women with low vegetable intakes (odds ratio 3.1; 95% confidence interval 1.4–6.9; P=0.01); another large prospective study reported a 10.4 g increase in birth weight per quintile increase in fruit intake (95% confidence interval 6.9–3.9; P<0.0001) and increases of 8.4 or 7.7 g per quintile intake of fruits and vegetables (combined) or fruits, vegetables, and juice (combined), respectively. One retrospective study reported an association between low fruit intake and birth weight. In less developed countries, increased vegetable or fruit intake was associated with increased birth weight in two prospective studies. Overall, limited inconclusive evidence of a protective effect of increased consumption of vegetables and risk for small for gestational age birth, and increased consumption of fruits and vegetables and increased birth weight among women from highly developed countries was identified. Among women in less developed countries, limited inconclusive evidence suggests that increased consumption of vegetables or fruits may be associated with higher infant birth weight. The available evidence supports maternal consumption of a variety of fruits and vegetables as part of a balanced diet throughout pregnancy. PMID:25349482
Sakhale, B K; Gaikwad, S S; Chavan, R F
2018-02-01
The present investigation was carried out to study the effect of gaseous application of 1-methylcyclopropene (1-MCP) on quality and shelf life of mango fruits of Cv. Kesar. The freshly harvested matured mango fruits were washed, cleaned and treated with fungicide at 500 ppm concentration for 10 min. The fruits were then subjected to 1-MCP treatment at different concentrations (500, 1000, 1500, 2000 ppb) and exposed for 18 and 24 h at 20 °C temperature in an air tight chamber along with control sample. The results indicated that the ripening in the early stages of mango was delayed by 1-MCP and shelf life of the fruits was increased with increase in the concentration of 1-MCP, also the physico-chemical changes such as percent physiological loss in weight of fruit, total soluble solids and colour was slowly increased and ascorbic acid content was effectively reduced. 1-MCP treatment of 2000 ppb for 24 h exposure time gave the best results for percent physiological loss in weight of fruit from 6.1 to 13% and ascorbic acid content from 80.28 to 22.34 mg/100 g, total soluble solids increased from 7.3 to 16.23 °Brix and the colour was improved from 50.9 to 68.6 h with shelf life of 20 days.
PaCYP78A9, a Cytochrome P450, Regulates Fruit Size in Sweet Cherry (Prunus avium L.)
Qi, Xiliang; Liu, Congli; Song, Lulu; Li, Yuhong; Li, Ming
2017-01-01
Sweet cherry (Prunus avium L.) is an important fruit crop in which fruit size is strongly associated with commercial value; few genes associated with fruit size have, however, been identified in sweet cherry. Members of the CYP78A subfamily, a group of important cytochrome P450s, have been found to be involved in controlling seed size and development in Arabidopsis thaliana, rice, soybean, and tomato. However, the influence of CYP78A members in controlling organ size and the underlying molecular mechanisms in sweet cherry and other fruit trees remains unclear. Here, we characterized a P. avium CYP78A gene PaCYP78A9 that is thought to be involved in the regulation of fruit size and organ development using overexpression and silencing approaches. PaCYP78A9 was significantly expressed in the flowers and fruit of sweet cherry. RNAi silencing of PaCYP78A9 produced small cherry fruits and PaCYP78A9 was found to affect fruit size by mediating mesocarp cell proliferation and expansion during fruit growth and development. Overexpression of PaCYP78A9 in Arabidopsis resulted in increased silique and seed size and PaCYP78A9 was found to be highly expressed in the inflorescences and siliques of transgenic plants. Genes related to cell cycling and proliferation were downregulated in fruit from sweet cherry TRV::PaCYP78A9-silencing lines, suggesting that PaCYP78A9 is likely to be an important upstream regulator of cell cycle processes. Together, our findings indicate that PaCYP78A9 plays an essential role in the regulation of cherry fruit size and provide insights into the molecular basis of the mechanisms regulating traits such as fruit size in P. avium. PMID:29259616
Seasonal Reproductive Biology of Drosophila suzukii (Diptera: Drosophilidae) in Temperate Climates.
Grassi, Alberto; Gottardello, Angela; Dalton, Daniel T; Tait, Gabriella; Rendon, Dalila; Ioriatti, Claudio; Gibeaut, David; Rossi Stacconi, M Valerio; Walton, Vaughn M
2018-02-08
Drosophila suzukii (Matsumura; Diptera: Drosophilidae) is a key pest of sweet cherry and small fruits worldwide. The present studies were designed to describe the reproductive physiology in both sexes, through dissections of their reproductive organs. We extensively dissected female D. suzukii throughout the season from 2013 to 2016 and classified the reproductive status flies based on five recognizable ovarian maturation stages: 1) no ovaries; 2) unripe ovaries 3) ripening eggs in ovarioles; 4) mature eggs in ovarioles; and 5) mature eggs in the abdomen. Development was examined as a function of calendar days as well as degree-days (DD). Results obtained from winter collections revealed that females collected from November to March contained a lower percentage of mature eggs than females collected from April to September. These data suggest that environmental conditions during the dormant period induce reproductive diapause. Oogenesis likely increased with an increase in mean monthly temperatures and DD. The first overwintered females with mature eggs were dissected as early as 21 February 2014 in Trento (7 DD). Additionally, we found that a low proportion of males (less than 50%) had sperm in their testes between January and March, yet during the same period females already have sperm stored in their spermathecal. Ivy berries was an alternative but unfavorable non-crop host during the late dormant period, as evidenced by emergence of smaller adults when compared to individuals emerging from cherry fruits. This study showed that D. suzukii females have great potential for oviposition early in the season, posing a risk to early season maturing crop hosts. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genome-wide identification of Hami melon miRNAs with putative roles during fruit development
Wang, Guangzhi; Ma, Xinli; Li, Meihua; Wu, Haibo; Fu, Qiushi; Zhang, Yi; Yi, Hongping
2017-01-01
MicroRNAs represent a family of small endogenous, non-coding RNAs that play critical regulatory roles in plant growth, development, and environmental stress responses. Hami melon is famous for its attractive flavor and excellent nutritional value, however, the mechanisms underlying the fruit development and ripening remains largely unknown. Here, we performed small RNA sequencing to investigate the roles of miRNAs during Hami melon fruit development. Two batches of flesh samples were collected at four fruit development stages. Small RNA sequencing yielded a total of 54,553,424 raw reads from eight libraries. 113 conserved miRNAs belonging to 30 miRNA families and nine novel miRNAs comprising nine miRNA families were identified. The expression of 42 conserved miRNAs and three Hami melon-specific miRNAs significantly changed during fruit development. Furthermore, 484 and 124 melon genes were predicted as putative targets of 29 conserved and nine Hami melon-specific miRNA families, respectively. GO enrichment analysis were performed on target genes, “transcription, DNA-dependent”, “rRNA processing”, “oxidation reduction”, “signal transduction”, “regulation of transcription, DNA-dependent”, and “metabolic process” were the over-represented biological process terms. Cleavage sites of six target genes were validated using 5’ RACE. Our results present a comprehensive set of identification and characterization of Hami melon fruit miRNAs and their potential targets, which provide valuable basis towards understanding the regulatory mechanisms in programmed process of normal Hami fruit development and ripening. Specific miRNAs could be selected for further research and applications in breeding practices. PMID:28742088
USDA-ARS?s Scientific Manuscript database
Tomato (Solanum lycopersicum L.) is an excellent plant model for unraveling physiological processes, fruit quality and fruit shelf determinants, stress responsive signaling, pathogenicity, and ripening development in climacteric fruits. Tomato is a popular vegetable, and along with potato, it is cla...
Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening
USDA-ARS?s Scientific Manuscript database
Chlorophyll degradation naturally occurs during plant senescence. However, in fruit such as citrus, it is a positive characteristic, as degreening is an important colour development contributing to fruit quality. In the present work, Citrus sinensis Osbeck, cv. Newhall fruit was used as a model for ...
Avanesian, Agnesa; Semnani, Sahar; Jafari, Mahtab
2009-08-01
Once a molecule is identified as a potential drug, the detection of adverse drug reactions is one of the key components of its development and the FDA approval process. We propose using Drosophila melanogaster to screen for reproductive adverse drug reactions in the early stages of drug development. Compared with other non-mammalian models, D. melanogaster has many similarities to the mammalian reproductive system, including putative sex hormones and conserved proteins involved in genitourinary development. Furthermore, the D. melanogaster model would present significant advantages in time efficiency and cost-effectiveness compared with mammalian models. We present data on methotrexate (MTX) reproductive adverse events in multiple animal models, including fruit flies, as proof-of-concept for the use of the D. melanogaster model.
Dietary Quality of Preschoolers’ Sack Lunches as Measured by the Healthy Eating Index
Romo-Palafox, Maria Jose; Ranjit, Nalini; Sweitzer, Sara J.; Roberts-Gray, Cindy; Hoelscher, Deanna M.; Byrd-Williams, Courtney E.; Briley, Margaret E.
2015-01-01
Background Eating habits are developed during the preschool years and track into adulthood, but few studies have quantified dietary quality of meals packed by parents for preschool children enrolled in early care and education centers. Objective Our aim was to evaluate the dietary quality of preschoolers’ sack lunches using the Healthy Eating Index (HEI) 2010 to provide parents of preschool children with guidance to increase the healthfulness of their child’s lunch. Design This study is a cross-sectional analysis of baseline dietary data from the Lunch Is in the Bag trial. Participants A total of 607 parent–child dyads from 30 early care and education centers in Central and South Texas were included. Main outcome measures Total and component scores of the HEI were computed using data obtained from direct observations of packed lunches and of children’s consumption. Statistical analysis Three-level regression models with random intercepts at the early care and education center and child level were used; all models were adjusted for child sex, age, and body mass index (calculated as kg/m2). Results Mean HEI-2010 total scores were 58 for lunches packed and 52 for lunches consumed, out of 100 possible points. Mean HEI component scores for packed and consumed lunches were lowest for greens and beans (6% and 8% of possible points), total vegetables (33% and 28%), seafood and plant proteins (33% and 29%), and whole grains (38% and 34%); and highest for empty calories (85% and 68% of possible points), total fruit (80% and 70%), whole fruit (79% and 64%), and total protein foods (76% and 69%). Conclusions Parents of preschool children pack lunches with low dietary quality that lack vegetables, plant proteins, and whole grains, as measured by the HEI. Education of parents and care providers in early care and education centers is vital to ensure that preschoolers receive high dietary-quality meals that promote their preference for and knowledge of a healthy diet. PMID:26190228
Dietary Quality of Preschoolers' Sack Lunches as Measured by the Healthy Eating Index.
Romo-Palafox, Maria Jose; Ranjit, Nalini; Sweitzer, Sara J; Roberts-Gray, Cindy; Hoelscher, Deanna M; Byrd-Williams, Courtney E; Briley, Margaret E
2015-11-01
Eating habits are developed during the preschool years and track into adulthood, but few studies have quantified dietary quality of meals packed by parents for preschool children enrolled in early care and education centers. Our aim was to evaluate the dietary quality of preschoolers' sack lunches using the Healthy Eating Index (HEI) 2010 to provide parents of preschool children with guidance to increase the healthfulness of their child's lunch. This study is a cross-sectional analysis of baseline dietary data from the Lunch Is in the Bag trial. A total of 607 parent-child dyads from 30 early care and education centers in Central and South Texas were included. Total and component scores of the HEI were computed using data obtained from direct observations of packed lunches and of children's consumption. Three-level regression models with random intercepts at the early care and education center and child level were used; all models were adjusted for child sex, age, and body mass index (calculated as kg/m(2)). Mean HEI-2010 total scores were 58 for lunches packed and 52 for lunches consumed, out of 100 possible points. Mean HEI component scores for packed and consumed lunches were lowest for greens and beans (6% and 8% of possible points), total vegetables (33% and 28%), seafood and plant proteins (33% and 29%), and whole grains (38% and 34%); and highest for empty calories (85% and 68% of possible points), total fruit (80% and 70%), whole fruit (79% and 64%), and total protein foods (76% and 69%). Parents of preschool children pack lunches with low dietary quality that lack vegetables, plant proteins, and whole grains, as measured by the HEI. Education of parents and care providers in early care and education centers is vital to ensure that preschoolers receive high dietary-quality meals that promote their preference for and knowledge of a healthy diet. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui
2016-10-01
Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Lai, Xiaoting; Khanal, Bishnu Prasad; Knoche, Moritz
2016-11-01
The continuous deposition of cutin and wax during leaf and fruit growth is crucial to alleviate elastic strain of the cuticle, minimize the risk of failure and maintain its barrier functions. The cuticular membrane (CM) is a lipoidal biopolymer that covers primary surfaces of terrestrial plants. CMs have barrier functions in water and solute transfer and pathogen invasion. These require intact CMs throughout growth. This is a challenge particularly for fruit, because they increase in area from initiation through to maturity. Our paper investigates the effects of cutin and wax deposition on strain buildup in the CM. We use developing fruits and leaves of apple (Malus × domestica) and sweet cherry (Prunus avium) as models. The hypothesis was that the continuous deposition of the CM prevents the buildup of excessive elastic strain in fruit and leaves. Strains were quantified from decreases in surface area of CMs after isolation from epidermal discs, after wax extraction and from increases in surface area during development. Cuticle mass per unit area increased throughout development in apple fruit, and leaves of apple and sweet cherry. In sweet cherry fruit, however, CM mass increased only initially, but thereafter decreased as the surface expanded rapidly. The release of strain on CM isolation was low in apple fruit and leaves and sweet cherry leaves, but high in sweet cherry fruit. Conversely, strains fixed by the deposition of wax and cutin were high in apple fruit and leaves and sweet cherry leaves, but low in sweet cherry fruit. Our results indicate that in expanding organs, deposition of cutin and wax in the CM allows conversion of elastic to plastic strain. Hence, any lack of such deposition allows buildup of high, potentially catastrophic, elastic strain.
Ashwell, Margaret; Stone, Elaine; Mathers, John; Barnes, Stephen; Compston, Juliet; Francis, Roger M.; Key, Tim; Cashman, Kevin D.; Cooper, Cyrus; Khaw, Kay Tee; Lanham-New, Susan; Macdonald, Helen; Prentice, Ann; Shearer, Martin; Stephen, Alison
2009-01-01
The UK Food Standards Agency convened an international group of expert scientists to review the Agency-funded projects on diet and bone health in the context of developments in the field as a whole. The potential benefits of fruit and vegetables, vitamin K, early-life nutrition and vitamin D on bone health were presented and reviewed. The workshop reached two conclusions which have public health implications. First, that promoting a diet rich in fruit and vegetable intakes might be beneficial to bone health and would be very unlikely to produce adverse consequences on bone health. The mechanism(s) for any effect of fruit and vegetables remains unknown, but the results from these projects did not support the postulated acid–base balance hypothesis. Secondly, increased dietary consumption of vitamin K may contribute to bone health, possibly through its ability to increase the γ-carboxylation status of bone proteins such as osteocalcin. A supplementation trial comparing vitamin K supplementation with Ca and vitamin D showed an additional effect of vitamin K against baseline levels of bone mineral density, but the benefit was only seen at one bone site. The major research gap identified was the need to investigate vitamin D status to define deficiency, insufficiency and depletion across age and ethnic groups in relation to bone health. PMID:18086331
Krupp, Danika; Remer, Thomas; Penczynski, Katharina J; Bolzenius, Katja; Wudy, Stefan A; Buyken, Anette E
2016-02-14
The growth hormone (GH) insulin-like growth factor (IGF) axis has been linked to insulin metabolism and cancer risk. Experimental evidence indicates that the GH-IGF axis itself can be influenced by dietary flavonoids. As fruit and vegetable (FV) intake is a major source of flavonoid consumption, FV's beneficial health effects may be explained via flavonoids' influence on the GH-IGF axis, but observational evidence is currently rare. We used data from Dortmund Nutritional and Anthropometric Longitudinally Designed Study participants to analyse prospective associations between FV, fruit intake and flavonoid intake from FV (FlavFV) with IGF-1 and its binding proteins IGFBP-2 and IGFBP-3. Subjects needed to provide a fasting blood sample in adulthood (18-39 years) and at least two 3-d weighed dietary records in early life (0·5-2 years, n 191), mid-childhood (3-7 years, n 265) or adolescence (girls: 9-15 years, boys: 10-16 years, n 261). Additional analyses were conducted among those providing at least three 24-h urine samples in adolescence (n 236) to address the predictor urinary hippuric acid (HA), a biomarker of polyphenol intake. Higher fruit intake in mid-childhood and adolescence was related to higher IGFBP-2 in adulthood (P=0·03 and P=0·045). Comparable trends (P=0·045-0·09) were discernable for FV intake (but not FlavFV) in all three time windows. Similarly, higher adolescent HA excretion tended to be related (P=0·06) to higher adult IGFBP-2 levels. Regarding IGFBP-3, a marginal (P=0·08) positive association was observed with FlavFV in mid-childhood only. None of the investigated dietary factors was related to IGF-1. In conclusion, higher fruit and FV intakes during growth may be relevant for adult IGFBP-2, but probably not for IGFBP-3 or IGF-1.
Tsuchiya, Mutsumi; Satoh, Shinobu; Iwai, Hiroaki
2015-01-01
After fruit development is triggered by pollination, the abscission zone (AZ) in the fruit pedicel strengthens its adhesion to keep the fruit attached. We previously reported that xyloglucan and arabinan accumulation in the AZ accompanies the shedding of unpollinated flowers. After the fruit has developed and is fully ripened, shedding occurs easily in the AZ due to lignin accumulation. Regulation of cell wall metabolism may play an important role in these processes, but it is not well understood. In the present report, we used immunohistochemistry to visualize changes in the distributions of xyloglucan and arabinan metabolism-related enzymes in the AZs of pollinated and unpollinated flowers, and in ripened fruits. During floral abscission, we observed a gradual increase in polyclonal antibody labeling of expansin in the AZ. The intensities of LM6 and LM15 labeling of arabinan and xyloglucan, respectively, also increased. However, during floral abscission, we observed a large 1 day post anthesis (DPA) peak in the polyclonal antibody labeling of XTH in the AZ, which then decreased. These results suggest that expansin and XTH play important, but different roles in the floral abscission process. During fruit abscission, unlike during floral abscission, no AZ-specific expansin and XTH were observed. Although lignification was seen in the AZ of over-ripe fruit pedicels, secondary cell wall-specific cellulose synthase signals were not observed. This suggests that cellulose metabolism-related enzymes do not play important roles in the AZ prior to fruit abscission. PMID:26029225
Trappe, James M; Nicholls, A O; Claridge, Andrew W; Cork, Steven J
2006-11-01
Fruit bodies of hypogeous fungi are an important food source for many small mammals and are consumed by larger mammals as well. A controversial hypothesis that prescribed burning increases fruiting of certain hypogeous fungi based on observations in Tasmania was tested in the Australian Capital Territory to determine if it applied in a quite different habitat. Ten pairs of plots, burnt and nonburnt, were established at each of two sites prescribe-burnt in May 1999. When sampled in early July, after autumn rains had initiated the fungal fruiting season, species richness and numbers of fruit bodies on the burnt plots were extremely low: most plots produced none at all. Both species richness and fruit body numbers were simultaneously high on nonburnt plots. One of the sites was resampled a year after the initial sampling. At that time species richness and fruit body abundance were still significantly less on burnt plots than on nonburnt, but a strong trend towards fungal recovery on the burnt plots was evident. This was particularly so when numbers of fruit bodies of one species, the hypogeous agaric Dermocybe globuliformis, were removed from the analysis. This species strongly dominated the nonburnt plots but was absent from burnt plots in both years. The trend towards recovery of fruit body abundance in the burnt plots one year after the burn was much more pronounced with exclusion of the Dermocybe data. The Tasmanian-based hypothesis was based mostly on the fruiting of two fire-adapted species in the Mesophelliaceae. Neither species occurred on our plots. Accordingly, the results and conclusions of the Tasmanian study cannot be extrapolated to other habitats without extensive additional study. Implications for management of habitat for fungi and the animals that rely on the fungi as a food source are discussed.
Manzano, Susana; Martínez, Cecilia; García, Juan Manuel; Megías, Zoraida; Jamilena, Manuel
2014-12-01
Although it is known that ethylene has a masculinizing effect on watermelon, the specific role of this hormone in sex expression and flower development has not been analyzed in depth. By using different approaches the present work demonstrates that ethylene regulates differentially two sex-related developmental processes: sexual expression, i.e. the earliness and the number of female flowers per plant, and the development of individual floral buds. Ethylene production in the shoot apex as well as in male, female and bisexual flowers demonstrated that the female flower requires much more ethylene than the male one to develop, and that bisexual flowers result from a decrease in ethylene production in the female floral bud. The occurrence of bisexual flowers was found to be associated with elevated temperatures in the greenhouse, concomitantly with a reduction of ethylene production in the shoot apex. External treatments with ethephon and AVG, and the use of Cucurbita rootstocks with different ethylene production and sensitivity, confirmed that, as occurs in other cucurbit species, ethylene is required to arrest the development of stamens in the female flower. Nevertheless, in watermelon ethylene inhibits the transition from male to female flowering and reduces the number of pistillate flowers per plant, which runs contrary to findings in other cucurbit species. The use of Cucurbita rootstocks with elevated ethylene production delayed the production of female flowers but reduced the number of bisexual flowers, which is associated with a reduced fruit set and altered fruit shape.
The monoterpene limonene in orange peels attracts pests and microorganisms
Rodríguez, Ana; Andrés, Victoria San; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Shimada, Takehiko; Gadea, José; Rodrigo, María; Zacarías, Lorenzo; Palou, Lluís; López, María M.; Castañera, Pedro; Peña, Leandro
2011-01-01
Plant volatiles include terpenoids, which are generally involved in plant defense, repelling pests and pathogens and attracting insects for herbivore control, pollination and seed dispersal. Orange fruits accumulate the monoterpene limonene at high levels in the oil glands of their fruit peels. When limonene production was downregulated in orange fruits by the transgenic expression of a limonene synthase (CitMTSE1) in the antisense configuration, these fruits were resistant to the fungus Penicillium digitatum (Pers.) Sacc. and the bacterium Xanthomonas citri subsp. citri and were less attractive to the medfly pest Ceratitis capitata. These responses were reversed when the antisense transgenic orange fruits were treated with limonene. To gain more insight into the role of the limonene concentration in fruit responses to pests and pathogens, we attempted to overexpress CitMTSE1 in the sense configuration in transgenic orange fruits. Only slight increases in the amount of limonene were found in sense transgenic fruits, maybe due to the detrimental effect that excessive limonene accumulation would have on plant development. Collectively, these results suggest that when limonene reaches peak levels as the fruit develops, it becomes a signal for pest and pathogen attraction, which facilitate access to the fruit for pulp consumers and seed dispersers. PMID:22212123
Host status of Vaccinium reticulatum (Ericaceae) to invasive tephritid fruit flies in Hawaii.
Follett, Peter A; Zee, Francis T
2011-04-01
Ohelo (Vaccicinium reticulatum Small) (Ericaceae) is a native Hawaiian plant that has commercial potential in Hawaii as a nursery crop to be transplanted for berry production or for sale as a potted ornamental. No-choice infestation studies were conducted to determine whether ohelo fruit are hosts for four invasive tephritid fruit fly species. Ohelo berries were exposed to gravid female flies ofBactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), Bactrocera cucurbitae Coquillet (melon fly),or Bactrocera latifrons (Hendel) in screen cages outdoors for 24 h and then held on sand in the laboratory for 2 wk for pupal development and adult emergence. Only B. dorsalis successfully attacked and developed in ohelo berries. In total, 1570 berries produced 10 puparia, all of which emerged as adults, for a fruit infestation rate of 0.0064% and an average of 0.0053 puparia per gram of fruit. By comparison, papaya fruit used as controls produced an average of 1.44 B. dorsalis puparia per g of fruit. Ohelo berry is a marginal host for B. dorsalis and apparently a nonhost for C. capitata, B. cucurbitae, and B. latifrons. Commercial plantings of ohelo will rarely be attacked by fruit flies in Hawaii.
Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang
2015-01-01
Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055
Xanthopoulou, Aliki; Ganopoulos, Ioannis; Psomopoulos, Fotis; Manioudaki, Maria; Moysiadis, Theodoros; Kapazoglou, Aliki; Osathanunkul, Maslin; Michailidou, Sofia; Kalivas, Apostolos; Tsaftaris, Athanasios; Nianiou-Obeidat, Irini; Madesis, Panagiotis
2017-07-30
The genetic basis of fruit size and shape was investigated for the first time in Cucurbita species and genetic loci associated with fruit morphology have been identified. Although extensive genomic resources are available at present for tomato (Solanum lycopersicum), cucumber (Cucumis sativus), melon (Cucumis melo) and watermelon (Citrullus lanatus), genomic databases for Cucurbita species are limited. Recently, our group reported the generation of pumpkin (Cucurbita pepo) transcriptome databases from two contrasting cultivars with extreme fruit sizes. In the current study we used these databases to perform comparative transcriptome analysis in order to identify genes with potential roles in fruit morphology and fruit size. Differential Gene Expression (DGE) analysis between cv. 'Munchkin' (small-fruit) and cv. 'Big Moose' (large-fruit) revealed a variety of candidate genes associated with fruit morphology with significant differences in gene expression between the two cultivars. In addition, we have set the framework for generating EST-SSR markers, which discriminate different C. pepo cultivars and show transferability to related Cucurbitaceae species. The results of the present study will contribute to both further understanding the molecular mechanisms regulating fruit morphology and furthermore identifying the factors that determine fruit size. Moreover, they may lead to the development of molecular marker tools for selecting genotypes with desired morphological traits. Copyright © 2017. Published by Elsevier B.V.
Oliveira, Aurelice B.; Moura, Carlos F. H.; Gomes-Filho, Enéas; Marco, Claudia A.; Urban, Laurent; Miranda, Maria Raquel A.
2013-01-01
This study was conducted with the objective of testing the hypothesis that tomato fruits from organic farming accumulate more nutritional compounds, such as phenolics and vitamin C as a consequence of the stressing conditions associated with farming system. Growth was reduced in fruits from organic farming while titratable acidity, the soluble solids content and the concentrations in vitamin C were respectively +29%, +57% and +55% higher at the stage of commercial maturity. At that time, the total phenolic content was +139% higher than in the fruits from conventional farming which seems consistent with the more than two times higher activity of phenylalanine ammonia lyase (PAL) we observed throughout fruit development in fruits from organic farming. Cell membrane lipid peroxidation (LPO) degree was 60% higher in organic tomatoes. SOD activity was also dramatically higher in the fruits from organic farming. Taken together, our observations suggest that tomato fruits from organic farming experienced stressing conditions that resulted in oxidative stress and the accumulation of higher concentrations of soluble solids as sugars and other compounds contributing to fruit nutritional quality such as vitamin C and phenolic compounds. PMID:23437115
Agricultural exposure and asthma risk in the AGRICAN French cohort.
Baldi, Isabelle; Robert, Céline; Piantoni, Florence; Tual, Séverine; Bouvier, Ghislaine; Lebailly, Pierre; Raherison, Chantal
2014-01-01
Epidemiological studies have reported an increased risk of respiratory diseases in agricultural population, but a protective "farm-effect" has also been reported for asthma. In the AGRICAN cohort, self-reported doctor-diagnosed asthma was analyzed according to allergy, in relation with history of life-time exposure to 13 crops and 5 livestock, pesticide exposure and early life on a farm, taking into account sex, age, education and body mass index. Among the 1246 asthmatics (8.0%), 505 were allergic (3.3%) and 719 non-allergic (4.6%). In multivariate analysis, a significant excess was observed, only for allergic asthma, in vine-growing (OR=1.43, p=0.002), fruit-growing (OR=1.58, p=0.001), greenhouses (OR=1.66, p=0.02), grasslands (OR=1.35, p=0.009), beets (OR=1.52, p=0.003) and horses (OR=1.35, p=0.04). Pesticide use and history of pesticide poisoning were significantly associated with allergic asthma in grassland, vineyards and fruit-growing and with non-allergic asthma in beets. Living on a farm in the first year of life tended to be protective for childhood allergic asthma in farms with livestock (OR=0.72, p=0.07) but deleterious in farms with vineyards, fruit or vegetables (OR=1.44, p=0.07). In AGRICAN, an increased risk of allergic asthma was observed with crop exposure, pesticide use and early life on a farm, especially in vine-growing, grassland, beets, fruit and vegetable-growing. Copyright © 2013 Elsevier GmbH. All rights reserved.
Furukawa, Saori; Kawakita, Atsushi
2017-08-01
Mutualisms are interactions from which both partners benefit but may collapse if mutualists' costs and benefits are not aligned. Host sanctions are one mechanism whereby hosts selectively allocate resources to the more cooperative partners and thereby reduce the fitness of overexploiters; however, many mutualisms lack apparent means of host sanctions. In mutualisms between plants and pollinating seed parasites, such as those between leafflowers and leafflower moths, pollinators consume subsets of the seeds as larval food in return for their pollination service. Plants may select against overexploiters by selectively aborting flowers with a heavy egg load, but in many leafflower species, seeds are fully eaten in some fruits, suggesting that such a mechanism is not present in all species. Instead, the fruits of Breynia vitis-idaea have stalk-like structures (gynophore) through which early-instar moth larvae must bore to reach seeds. Examination of moth mortality in fruits with different gynophore lengths suggested that fruits with longer gynophore had higher moth mortality and, therefore, less seed damage. Most moth mortality occurred at the egg stage or as early larval instar before moths reached the seeds, consistent with the view that gynophore functions to prevent moth access to seeds. Gynophore length was unaffected by plant size, extent of moth oviposition, or geography; thus, it is most likely genetically controlled. Because gynophores do not elongate in related species whose pollinators oviposit directly into the ovary, the gynophore in B. vitis-idaea may have evolved as a defense to limit the cost of the mutualism.
Alkan, Noam; Fortes, Ana M.
2015-01-01
Due to post-harvest losses more than 30% of harvested fruits will not reach the consumers’ plate. Fungal pathogens play a key role in those losses, as they cause most of the fruit rots and the customer complaints. Many of the fungal pathogens are already present in the unripe fruit but remain quiescent during fruit growth until a particular phase of fruit ripening and senescence. The pathogens sense the developmental change and switch into the devastating necrotrophic life style that causes fruit rotting. Colonization of unripe fruit by the fungus initiates defensive responses that limit fungal growth and development. However, during fruit ripening several physiological processes occur that correlate with increased fruit susceptibility. In contrast to plant defenses in unripe fruit, the defense posture of ripe fruit entails a different subset of defense responses that will end with fruit rotting and losses. This review will focus on several aspects of molecular and metabolic events associated with fleshy fruit responses induced by post-harvest fungal pathogens during fruit ripening. PMID:26539204
ERIC Educational Resources Information Center
Sargent, Steven A.
2005-01-01
A fruit is alive, and for it to ripen normally, many biochemical reactions must occur in a proper order. After pollination, proper nutrition, growing conditions, and certain plant hormones cause the fruit to develop and grow to proper size. During this time, fruits store energy in the form of starch and sugars, called photosynthates because they…
Oldest record of Metrosideros (Myrtaceae): Fossil flowers, fruits, and leaves from Australia.
Tarran, Myall; Wilson, Peter G; Hill, Robert S
2016-04-01
Myrtaceous fossil capsular fruits and flowers from the northwest of Tasmania, in the Early Oligocene-aged Little Rapid River (LRR) deposit, are described. The reproductive organs are found in association with Myrtaceous leaves previously thought to belong to a fleshy-fruited genus, Xanthomyrtus at both LRR, and an Eocene Tasmanian site at Hasties, which are reassessed with fresh morphological evidence. Standard Light Microscopy (LM) and Scanning Electron Microscopy (SEM) were used to investigate cuticular characters and an auto-montage camera system was used to take high-resolution images of fossil and extant fruits. Fossils are identified using a nearest living relative (NLR) approach. The fossil fruits and flowers share a number of characters with genera of capsular-fruited Myrtaceae, in particular sharing several synapomorphies with species of Metrosideros subg. Metrosideros (tribe: Metrosidereae). The fossil is here described, and named Metrosideros leunigii, sp. nov. This research establishes the presence of Metrosideros (aff. subg. Metrosideros) in the Eocene-Oligocene (∼40-30 mya) of Tasmania, Australia. This is the first fossil record of Metrosideros in Australia, as well as the oldest conclusive fossil record, and may provide evidence for an Australian origin of the genus. It is also yet another example of extinction in the Tertiary of a group of plants on the Australian mainland that is only found today on nearby Pacific landmasses. © 2016 Botanical Society of America.
Paleoactaea gen. nov. (Ranunculaceae) fruits from the Paleogene of North Dakota and the London Clay.
Pigg, Kathleen B; Devore, Melanie L
2005-10-01
Paleoactea nagelii Pigg & DeVore gen. et sp. nov. is described for a small, ovoid ranunculaceous fossil fruit from the Late Paleocene Almont and Beicegel Creek floras of North Dakota, USA. Fruits are 5-7 mm wide, 4.5-6 mm high, 10-13 mm long, and bilaterally symmetrical, containing 10-17 seeds attached on the upper margin in 2-3 rows. A distinctive honeycomb pattern is formed where adjacent seeds with prominent palisade outer cell layers abut. Seeds are flattened, ovoid, and triangular. To the inside of the palisade cells, the seed coat has a region of isodiametric cells that become more tangentially elongate toward the center. The embryo cavity is replaced by an opaline cast. This fruit bears a striking resemblance to extant Actaea, the baneberry (Ranunculaceae), an herbaceous spring wildflower of North Temperate regions. A second species, Paleoactaea bowerbanki (Reid & Chandler) Pigg & DeVore nov. comb., is recognized from the Early Eocene London Clay flora, based on a single fruit. This fruit shares most of the organization and structure of P. nagelii but is larger and has a thicker pericarp. This study documents a rare Paleocene occurrence of a member of the buttercup family, a family that is today primarily herbaceous, and demonstrates a North Atlantic connection for an Actaea-like genus in the Paleogene.
Early flowering and seed production in a yellow birch progeny test
Knud E. Clausen
1976-01-01
Trees in a yellow birch progeny test began to bear seed when 7 years old and the proportion of fruiting trees increased in the following 2 years. Male catkins were produced at age 8 and the number of trees with males increased greatly the following years. Although there is much variation between and within families in earliness of flowering and in number of flowers and...
FCDD: A Database for Fruit Crops Diseases.
Chauhan, Rupal; Jasrai, Yogesh; Pandya, Himanshu; Chaudhari, Suman; Samota, Chand Mal
2014-01-01
Fruit Crops Diseases Database (FCDD) requires a number of biotechnology and bioinformatics tools. The FCDD is a unique bioinformatics resource that compiles information about 162 details on fruit crops diseases, diseases type, its causal organism, images, symptoms and their control. The FCDD contains 171 phytochemicals from 25 fruits, their 2D images and their 20 possible sequences. This information has been manually extracted and manually verified from numerous sources, including other electronic databases, textbooks and scientific journals. FCDD is fully searchable and supports extensive text search. The main focus of the FCDD is on providing possible information of fruit crops diseases, which will help in discovery of potential drugs from one of the common bioresource-fruits. The database was developed using MySQL. The database interface is developed in PHP, HTML and JAVA. FCDD is freely available. http://www.fruitcropsdd.com/
Four years of problem-based learning: a student's perspective.
von Doebeln, G.
1996-01-01
After four years as a student in a medical school using problem-based learning I still find it an excellent way to learn. Group work has developed my personal skills and abilities. Learning how to obtain knowledge on my own has given me independence and confidence. Motivation to study has been encouraged by early clinical experience. Training in critical thinking has been further enhanced by in-depth studies. Medical education at the University of Linkoping has developed over the years and a contributing factor has been students' involvement in designing the medical training. There are benefits and disadvantages with problem-based learning, but on the whole it is an enjoyable and fruitful experience. Images p98-a PMID:8871459
[Star fruit (Averrhoa carambola) toxic encephalopathy].
Signaté, A; Olindo, S; Chausson, N; Cassinoto, C; Edimo Nana, M; Saint Vil, M; Cabre, P; Smadja, D
2009-03-01
Ingestion of star fruit (Averrhoa carambola) can induce severe intoxication in subjects with chronic renal failure. Oxalate plays a key role in the neurotoxicity of star fruit. We report the cases of two patients with unknown chronic renal insufficiency who developed severe encephalopathy after ingestion of star fruit. The two patients developed intractable hiccups, vomiting, impaired consciousness and status epilepticus. Diffusion-weighted MR imaging showed cortical and thalamic hyperintense lesions related to epileptic status. They improved after being submitted to continuous hemofiltration which constitutes the most effective treatment during the acute phase.
Development of molecular tests for the detection of ILAR and latent viruses in fruit trees.
Roussel, S; Kummert, J; Dutrecq, O; Lepoivre, P; Jijakli, M H
2004-01-01
The detection throughout the year of latent and ILAR viruses in fruit tress by classical serological tests appear to be unreliable. We have developed RT-PCR tests for a reliable detection of latent and ILAR viruses in fruit trees. These assays were then simplified to allow the direct use of crude plant extracts instead of total RNA preparations, and the analyses of pooled samples. In this way, such RT-PCR protocols are suitable for a routine diagnosis of latent and ILAR viruses in fruit tree certification.
Genomic selection for fruit quality traits in apple (Malus×domestica Borkh.).
Kumar, Satish; Chagné, David; Bink, Marco C A M; Volz, Richard K; Whitworth, Claire; Carlisle, Charmaine
2012-01-01
The genome sequence of apple (Malus×domestica Borkh.) was published more than a year ago, which helped develop an 8K SNP chip to assist in implementing genomic selection (GS). In apple breeding programmes, GS can be used to obtain genomic breeding values (GEBV) for choosing next-generation parents or selections for further testing as potential commercial cultivars at a very early stage. Thus GS has the potential to accelerate breeding efficiency significantly because of decreased generation interval or increased selection intensity. We evaluated the accuracy of GS in a population of 1120 seedlings generated from a factorial mating design of four females and two male parents. All seedlings were genotyped using an Illumina Infinium chip comprising 8,000 single nucleotide polymorphisms (SNPs), and were phenotyped for various fruit quality traits. Random-regression best liner unbiased prediction (RR-BLUP) and the Bayesian LASSO method were used to obtain GEBV, and compared using a cross-validation approach for their accuracy to predict unobserved BLUP-BV. Accuracies were very similar for both methods, varying from 0.70 to 0.90 for various fruit quality traits. The selection response per unit time using GS compared with the traditional BLUP-based selection were very high (>100%) especially for low-heritability traits. Genome-wide average estimated linkage disequilibrium (LD) between adjacent SNPs was 0.32, with a relatively slow decay of LD in the long range (r(2) = 0.33 and 0.19 at 100 kb and 1,000 kb respectively), contributing to the higher accuracy of GS. Distribution of estimated SNP effects revealed involvement of large effect genes with likely pleiotropic effects. These results demonstrated that genomic selection is a credible alternative to conventional selection for fruit quality traits.
PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance.
Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping
2015-07-01
Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1-4) encoding 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance
Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping
2015-01-01
Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1–4) encoding 8′-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. PMID:25956880
Temporal Sequence of Cell Wall Disassembly in Rapidly Ripening Melon Fruit1
Rose, Jocelyn K.C.; Hadfield, Kristen A.; Labavitch, John M.; Bennett, Alan B.
1998-01-01
The Charentais variety of melon (Cucumis melo cv Reticulatus F1 Alpha) was observed to undergo very rapid ripening, with the transition from the preripe to overripe stage occurring within 24 to 48 h. During this time, the flesh first softened and then exhibited substantial disintegration, suggesting that Charentais may represent a useful model system to examine the temporal sequence of changes in cell wall composition that typically take place in softening fruit. The total amount of pectin in the cell wall showed little reduction during ripening but its solubility changed substantially. Initial changes in pectin solubility coincided with a loss of galactose from tightly bound pectins, but preceded the expression of polygalacturonase (PG) mRNAs, suggesting early, PG-independent modification of pectin structure. Depolymerization of polyuronides occurred predominantly in the later ripening stages, and after the appearance of PG mRNAs, suggesting the existence of PG-dependent pectin degradation in later stages. Depolymerization of hemicelluloses was observed throughout ripening, and degradation of a tightly bound xyloglucan fraction was detected at the early onset of softening. Thus, metabolism of xyloglucan that may be closely associated with cellulose microfibrils may contribute to the initial stages of fruit softening. A model is presented of the temporal sequence of cell wall changes during cell wall disassembly in ripening Charentais melon. PMID:9625688
Carpenter, Jessica L; Caruso, Frank L; Tata, Anuradha; Vorsa, Nicholi; Neto, Catherine C
2014-10-01
Cranberry fruit (Vaccinium macrocarpon) is rich in polyphenols, particularly oligomeric proanthocyanidins (PACs) possessing antimicrobial and antioxidant properties. PACs may play a role in resistance to fruit rot. Although many cranberry cultivars are grown for use in foods, beverages and nutraceuticals, data on PAC content among cultivars is limited. Eight cultivars were sampled from four growing regions during the 2010 season and analyzed for PAC content and composition. MALDI-TOF MS showed that isolated PACs had similar oligomer profiles among cultivars. The major constituents were A-type (epi)catechin oligomers of two to eight degrees of polymerization. Total PAC content ranged between 18 and 92 g PAC kg⁻¹ dried fruit, quantified as procyanidin A2 by the dimethylaminocinnamaldehyde method. Among the cultivars sampled, Howes had the highest total PACs (76-92 g kg⁻¹), followed by Mullica Queen and Early Black (48-82 g kg⁻¹). Ben Lear, a disease-susceptible variety, was significantly lower in PACs than the other cultivars (P < 0.001). Several traditional and newer cultivars of cranberry from various growing regions in North America are excellent sources of PACs, particularly the Howes, Mullica Queen and Early Black cultivars. PAC content may play a role in keeping quality. © 2014 Society of Chemical Industry.
Early Childhood: Fall Harvest and Science.
ERIC Educational Resources Information Center
Science and Children, 1982
1982-01-01
Provides instructional strategies for using fall fruits/vegetables in science lessons, including activities related to melons, pumpkins, grapes, pears, squash, and yams. Suggests extending the activities over a month or more to allow children time to explore and investigate. (JN)
Dautt-Castro, Mitzuko; Ochoa-Leyva, Adrian; Contreras-Vergara, Carmen A.; Pacheco-Sanchez, Magda A.; Casas-Flores, Sergio; Sanchez-Flores, Alejandro; Kuhn, David N.; Islas-Osuna, Maria A.
2015-01-01
Fruit ripening is a physiological and biochemical process genetically programmed to regulate fruit quality parameters like firmness, flavor, odor and color, as well as production of ethylene in climacteric fruit. In this study, a transcriptomic analysis of mango (Mangifera indica L.) mesocarp cv. “Kent” was done to identify key genes associated with fruit ripening. Using the Illumina sequencing platform, 67,682,269 clean reads were obtained and a transcriptome of 4.8 Gb. A total of 33,142 coding sequences were predicted and after functional annotation, 25,154 protein sequences were assigned with a product according to Swiss-Prot database and 32,560 according to non-redundant database. Differential expression analysis identified 2,306 genes with significant differences in expression between mature-green and ripe mango [1,178 up-regulated and 1,128 down-regulated (FDR ≤ 0.05)]. The expression of 10 genes evaluated by both qRT-PCR and RNA-seq data was highly correlated (R = 0.97), validating the differential expression data from RNA-seq alone. Gene Ontology enrichment analysis, showed significantly represented terms associated to fruit ripening like “cell wall,” “carbohydrate catabolic process” and “starch and sucrose metabolic process” among others. Mango genes were assigned to 327 metabolic pathways according to Kyoto Encyclopedia of Genes and Genomes database, among them those involved in fruit ripening such as plant hormone signal transduction, starch and sucrose metabolism, galactose metabolism, terpenoid backbone, and carotenoid biosynthesis. This study provides a mango transcriptome that will be very helpful to identify genes for expression studies in early and late flowering mangos during fruit ripening. PMID:25741352
Dautt-Castro, Mitzuko; Ochoa-Leyva, Adrian; Contreras-Vergara, Carmen A; Pacheco-Sanchez, Magda A; Casas-Flores, Sergio; Sanchez-Flores, Alejandro; Kuhn, David N; Islas-Osuna, Maria A
2015-01-01
Fruit ripening is a physiological and biochemical process genetically programmed to regulate fruit quality parameters like firmness, flavor, odor and color, as well as production of ethylene in climacteric fruit. In this study, a transcriptomic analysis of mango (Mangifera indica L.) mesocarp cv. "Kent" was done to identify key genes associated with fruit ripening. Using the Illumina sequencing platform, 67,682,269 clean reads were obtained and a transcriptome of 4.8 Gb. A total of 33,142 coding sequences were predicted and after functional annotation, 25,154 protein sequences were assigned with a product according to Swiss-Prot database and 32,560 according to non-redundant database. Differential expression analysis identified 2,306 genes with significant differences in expression between mature-green and ripe mango [1,178 up-regulated and 1,128 down-regulated (FDR ≤ 0.05)]. The expression of 10 genes evaluated by both qRT-PCR and RNA-seq data was highly correlated (R = 0.97), validating the differential expression data from RNA-seq alone. Gene Ontology enrichment analysis, showed significantly represented terms associated to fruit ripening like "cell wall," "carbohydrate catabolic process" and "starch and sucrose metabolic process" among others. Mango genes were assigned to 327 metabolic pathways according to Kyoto Encyclopedia of Genes and Genomes database, among them those involved in fruit ripening such as plant hormone signal transduction, starch and sucrose metabolism, galactose metabolism, terpenoid backbone, and carotenoid biosynthesis. This study provides a mango transcriptome that will be very helpful to identify genes for expression studies in early and late flowering mangos during fruit ripening.
Selective Seed Abortion Affects the Performance of the Offspring in Bauhinia ungulata
MENA-ALÍ, JORGE I.; ROCHA, OSCAR J.
2005-01-01
• Background and Aims Under the microgametophytic competition hypothesis, a non-random pattern of seed abortion is expected, in which only the most vigorous seeds reach maturity. In a previous study, it was found that Bauhinia ungulata (Fabaceae) exhibits a pattern of seed abortion dependent on the position of the ovule within the ovary; ovules located in the stylar half of the fruit, close to the point of entry of pollen tubes to the ovary, have a low probability of seed abortion, whereas ovules in the basal half of the fruit are aborted with a high probability. • Methods A series of experimental fruits was generated, in which ovules from either the stylar (treatments 1 and 2) or the basal (treatments 3 and 4) half of fruits were destroyed, to evaluate whether these patterns of selective seed abortion have an effect on the vigour of the offspring in B. ungulata. • Key Results Only 53 % of the seed from control fruits germinated. Seed set in fruits from treatments 1 and 2 showed a significantly lower (33–43 %) percentage of germination; the germination of seeds from fruits in treatments 3 and 4 (49–51 %) did not differ from control seeds. In addition, it was found that the differences in vigour of the offspring are not random with respect to the position of the ovule in the pod. • Conclusions The overall performance of the seeds correlated with their likelihood of maturation. Seeds located at the basal half of the treatment fruits showed lower values of vigour than seeds located on the stylar half. The differences were more marked for early measures of fitness. PMID:15749749
Dietary Patterns and Body Mass Index in Children with Autism and Typically Developing Children
Evans, E. Whitney; Must, Aviva; Anderson, Sarah E.; Curtin, Carol; Scampini, Renee; Maslin, Melissa; Bandini, Linda
2012-01-01
To determine whether dietary patterns (juice and sweetened non-dairy beverages, fruits, vegetables, fruits & vegetables, snack foods, and kid’s meals) and associations between dietary patterns and body mass index (BMI) differed between 53 children with autism spectrum disorders (ASD) and 58 typically developing children, ages 3 to 11, multivariate regression models including interaction terms were used. Children with ASD were found to consume significantly more daily servings of sweetened beverages (2.6 versus 1.7, p=0.03) and snack foods (4.0 versus 3.0, p=0.01) and significantly fewer daily servings of fruits and vegetables (3.1 versus 4.4, p=0.006) than typically developing children. There was no evidence of statistical interaction between any of the dietary patterns and BMI z-score with autism status. Among all children, fruits and vegetables (p=0.004) and fruits alone (p=0.005) were positively associated with BMI z-score in our multivariate models. Children with ASD consume more energy-dense foods than typically developing children; however, in our sample, only fruits and vegetables were positively associated with BMI z-score. PMID:22936951
Crecelius, Anna C; Hölscher, Dirk; Hoffmann, Thomas; Schneider, Bernd; Fischer, Thilo C; Hanke, Magda-Viola; Flachowsky, Henryk; Schwab, Wilfried; Schubert, Ulrich S
2017-05-03
Flavonoids are important metabolites in strawberries (Fragaria × ananassa) because they accomplish an extensive collection of physiological functions and are valuable for human health. However, their localization within the fruit tissue has not been extensively explored. Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to shed light on the spatial distribution of flavonoids during fruit development. One wild-type (WT) and two transgenic lines were compared, wherein the transgenic enzymes anthocyanidin reductase (ANRi) and flavonol synthase (FLSi), respectively, were down-regulated using an RNAi-based silencing approach. In most cases, fruit development led to a reduction of the investigated flavonoids in the fruit tissue; as a consequence, they were exclusively present in the skin of mature red fruits. In the case of (epi)catechin dimer, both the ANRi and the WT phenotypes revealed low levels in mature red fruits, whereas the ANRi line bore the lowest relative concentration, as analyzed by liquid chromatography-electrospray ionization multiple-step mass spectrometry (LC-ESI-MS n ).
Ethylene Control Technologies in Extending Postharvest Shelf Life of Climacteric Fruit.
Zhang, Junhua; Cheng, Dong; Wang, Baobin; Khan, Iqbal; Ni, Yonghao
2017-08-30
Fresh fruit is important for a healthy diet. However, because of their seasonal production, regional specific cultivation, and perishable nature, it is essential to develop preservation technologies to extend the postharvest shelf life of fresh fruits. Climacteric fruit adopt spoilage because of ethylene, a key hormone associated with the ripening process. Therefore, controlling ethylene activity by following safe and effective approaches is a key to extend the postharvest shelf life of fruit. In this review, ethylene control technologies will be discussed aiming for the need of developing more innovative and effective approaches. The biosynthesis pathway will be given first. Then, the technologies determining the postharvest shelf life of climacteric fruit will be described with special attention to the latest and significant published works in this field. Special attention is given to 1-methylcyclopropene (1-MCP), which is effective in fruit preservation technologies. Finally, the encapsulation technology to improve the stability of 1-MCP will be proposed, using a potential encapsulation agent of 1-MCP, calixarene.
Species-level phylogeny, fruit evolution and diversification history of Geranium (Geraniaceae).
Marcussen, Thomas; Meseguer, Andrea S
2017-05-01
The cosmopolitan genus Geranium L. (Geraniaceae) consists of c. 350 species distributed in temperate habitats worldwide, with most of its diversity concentrated in the Mediterranean region. Unlike other genera in Geraniaceae, the species of Geranium present contrasting seed discharge syndromes, i.e. the 'Erodium-type' (ET), the 'carpel-projection type' (CP), the 'seed-ejection type' (SE), and the 'inoperative type' (IT), which have been used to delimit major groups within the genus. However, phylogenetic relationships within Geranium are unknown and so is the evolution of the different seed discharge mechanisms. Here, we used a calibrated multispecies coalescent approach to infer the species-level phylogeny and divergence times of the genus based on chloroplast (rbcL, trnL-trnF) and nuclear (ITS) DNA sequences. Our sampling represents most of the morphological variation described in the genus. We reconstruct the evolution of the seed discharge mechanism using ancestral state reconstruction (ASR) techniques on the multispecies coalescent tree, and assess the association between fruit type evolution and species diversification using stochastic birth-death and trait-dependent diversification models. Finally, we reconstruct the early biogeographic history of the genus using discrete and continuous biogeographic analyses of species distribution centroids, including fossil evidence and tip dates. Our results show that fruit type is homoplasious and that the classification based on fruit type in Geranium is artificial. The taxonomy and putative apomorphic characters for Geranium are discussed. ASR of the fruit characters suggests that ET may represent the ancestral state in Geranium and from which CP originated twice, IT presumably once, and SE twice. The independent appearance of the SE syndrome is in both cases associated with increases in diversification rates in the genus. The biogeographic analysis centers the origin and early 10Ma diversification of Geranium on the Mediterranean region. The evolution of seed discharge mechanism about 5Ma might have allowed the species of Geranium to increase in geographic range and to ultimately, diversify. Copyright © 2017 Elsevier Inc. All rights reserved.
Xu, Jidi; Xu, Haidan; Liu, Yuanlong; Wang, Xia; Xu, Qiang; Deng, Xiuxin
2015-01-01
In eukaryotes, histone acetylation and methylation have been known to be involved in regulating diverse developmental processes and plant defense. These histone modification events are controlled by a series of histone modification gene families. To date, there is no study regarding genome-wide characterization of histone modification related genes in citrus species. Based on the two recent sequenced sweet orange genome databases, a total of 136 CsHMs (Citrus sinensis histone modification genes), including 47 CsHMTs (histone methyltransferase genes), 23 CsHDMs (histone demethylase genes), 50 CsHATs (histone acetyltransferase genes), and 16 CsHDACs (histone deacetylase genes) were identified. These genes were categorized to 11 gene families. A comprehensive analysis of these 11 gene families was performed with chromosome locations, phylogenetic comparison, gene structures, and conserved domain compositions of proteins. In order to gain an insight into the potential roles of these genes in citrus fruit development, 42 CsHMs with high mRNA abundance in fruit tissues were selected to further analyze their expression profiles at six stages of fruit development. Interestingly, a numbers of genes were expressed highly in flesh of ripening fruit and some of them showed the increasing expression levels along with the fruit development. Furthermore, we analyzed the expression patterns of all 136 CsHMs response to the infection of blue mold (Penicillium digitatum), which is the most devastating pathogen in citrus post-harvest process. The results indicated that 20 of them showed the strong alterations of their expression levels during the fruit-pathogen infection. In conclusion, this study presents a comprehensive analysis of the histone modification gene families in sweet orange and further elucidates their behaviors during the fruit development and the blue mold infection responses. PMID:26300904
Romero, Paco; Rodrigo, María J; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T
2012-04-01
Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.
Romero, Paco; Rodrigo, María J.; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T.
2012-01-01
Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage. PMID:22315241
Desnoues, Elsa; Baldazzi, Valentina; Génard, Michel; Mauroux, Jehan-Baptiste; Lambert, Patrick; Confolent, Carole; Quilot-Turion, Bénédicte
2016-05-01
Knowledge of the genetic control of sugar metabolism is essential to enhance fruit quality and promote fruit consumption. The sugar content and composition of fruits varies with species, cultivar and stage of development, and is controlled by multiple enzymes. A QTL (quantitative trait locus) study was performed on peach fruit [Prunus persica (L.) Batsch], the model species for Prunus Progeny derived from an interspecific cross between P. persica cultivars and P. davidiana was used. Dynamic QTLs for fresh weight, sugars, acids, and enzyme activities related to sugar metabolism were detected at different stages during fruit development. Changing effects of alleles during fruit growth were observed, including inversions close to maturity. This QTL analysis was supplemented by the identification of genes annotated on the peach genome as enzymes linked to sugar metabolism or sugar transporters. Several cases of co-locations between annotated genes, QTLs for enzyme activities and QTLs controlling metabolite concentrations were observed and discussed. These co-locations raise hypotheses regarding the functional regulation of sugar metabolism and pave the way for further analyses to enable the identification of the underlying genes. In conclusion, we identified the potential impact on fruit breeding of the modification of QTL effect close to maturity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Origanum dictamnus oil vapour suppresses the development of grey mould in eggplant fruit in vitro.
Stavropoulou, Andriana; Loulakakis, Kostas; Magan, Naresh; Tzortzakis, Nikos
2014-01-01
Grey mould rot (Botrytis cinerea) development in vitro or in eggplant (Solanum melongena L.) fruit was evaluated after treatment with dittany (Origanum dictamnus L.) oil (DIT) and storage at 12°C and 95% relative humidity during or following exposure to the volatiles. DIT volatiles used in different concentration (0-50-100-250 μL/L) and times of exposure (up to 120 h) examined the effects on pathogen development as well as fruit quality parameters. In vitro, fungal colony growth was inhibited with the application of DIT oil (during or after exposure) and/or time of application. Continuous exposure to oils reduced conidial germination and production with fungistatic effects observed in 250 μL/L. In vivo, fungal lesion growth and conidial production reduced in DIT-treated fruits. Interesting, in fruits preexposed to volatiles before fungal inoculation, DIT application induced fruit resistance against the pathogen, by reduced lesion growth and conidial production. Conidial viability reduced in >100 μL/L DIT oil. Fruits exposed to essential oil did not affect fruit quality related attributes in general, while skin lightness (L value) increased in 50 and 100 μL/L DIT oil. The results of the current study indicated that dittany volatiles may be considered as an alternative food preservative, eliminating disease spread in the storage/transit atmospheres.
Origanum dictamnus Oil Vapour Suppresses the Development of Grey Mould in Eggplant Fruit In Vitro
Loulakakis, Kostas; Magan, Naresh; Tzortzakis, Nikos
2014-01-01
Grey mould rot (Botrytis cinerea) development in vitro or in eggplant (Solanum melongena L.) fruit was evaluated after treatment with dittany (Origanum dictamnus L.) oil (DIT) and storage at 12°C and 95% relative humidity during or following exposure to the volatiles. DIT volatiles used in different concentration (0-50-100-250 μL/L) and times of exposure (up to 120 h) examined the effects on pathogen development as well as fruit quality parameters. In vitro, fungal colony growth was inhibited with the application of DIT oil (during or after exposure) and/or time of application. Continuous exposure to oils reduced conidial germination and production with fungistatic effects observed in 250 μL/L. In vivo, fungal lesion growth and conidial production reduced in DIT-treated fruits. Interesting, in fruits preexposed to volatiles before fungal inoculation, DIT application induced fruit resistance against the pathogen, by reduced lesion growth and conidial production. Conidial viability reduced in >100 μL/L DIT oil. Fruits exposed to essential oil did not affect fruit quality related attributes in general, while skin lightness (L value) increased in 50 and 100 μL/L DIT oil. The results of the current study indicated that dittany volatiles may be considered as an alternative food preservative, eliminating disease spread in the storage/transit atmospheres. PMID:25254209
Development of passion fruit juice beverage
NASA Astrophysics Data System (ADS)
Zhu, Xiang-hao; Duan, Zhen-hua; Yang, Yu-xia; Huang, Xin-hui; Xu, Cheng-ling; Huang, Zhi-zhuo
2017-12-01
In this experiment, the whole fruit of passion fruit was used as raw material. The effects of the ratio of material to liquid (RML), the amount of sucrose addition and the pH on the quality of passion fruit juice beverage were investigated by single factor test. And the optimum process conditions of passion fruit juice beverage were determined by orthogonal test. The results show that the optimum process paramenters were as follow: RML was 1:3, pH was 4.0 and sucrose addition was 8%. Under such optimal conditions, the color of passion fruit juice beverage was red, the flavor of passion fruit was rich and it tasted pleasant.
Photosynthate partitioning during flowering in relation to senescence of spinach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sklensky, D.; Davies, P.J.
1990-05-01
Male spinach plants are frequently cited as a counter-example to the nutrient drain hypothesis. Photosynthate partitioning in both male and female plants was examined. Leaves just below the inflorescences in plants at various stages of flowering were labelled with {sup 14}CO{sub 2} and the photosynthate allowed to partition for three hours. The leaves, flowers and stems of the inflorescence, and the other above ground vegetative tissue were harvested. These parts were combusted in a sample oxidizer for the collection of the {sup 14}CO{sub 2}. Allocation to the male and female flowers at very early stages are similar. As the flowersmore » develop further, male flowers receive more photosynthate than do female flowers in early fruit production. Thus it is possible that nutrient drain to the flowers in male spinach plants is sufficient to account for senescence.« less
Study of nanoscale structural biology using advanced particle beam microscopy
NASA Astrophysics Data System (ADS)
Boseman, Adam J.
This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.
Starch and the Control of Kernel Number in Maize at Low Water Potentials1
Zinselmeier, Christopher; Jeong, Byeong-Ryong; Boyer, John S.
1999-01-01
After reproduction is initiated in plants, subsequent reproductive development is sometimes interrupted, which decreases the final number of seeds and fruits. We subjected maize (Zea mays L.) to low water potentials (ψw) that frequently cause this kind of failure. We observed metabolite pools and enzyme activities in the developing ovaries while we manipulated the sugar stream by feeding sucrose (Suc) to the stems. Low ψw imposed for 5 d around pollination allowed embryos to form, but abortion occurred and kernel number decreased markedly. The ovary contained starch that nearly disappeared during this abortion. Analyses showed that all of the intermediates in starch synthesis were depleted. However, when labeled Suc was fed to the stems, label arrived at the ovaries. Solute accumulated and caused osmotic adjustment. Suc accumulated, but other intermediates did not, showing that a partial block in starch synthesis occurred at the first step in Suc utilization. This step was mediated by invertase, which had low activity. Because of the block, Suc feeding only partially prevented starch disappearance and abortion. These results indicate that young embryos abort when the sugar stream is interrupted sufficiently to deplete starch during early ovary development, and this abortion results in a loss of mature seeds and fruits. At low ψw, maintaining the sugar stream partially prevented the abortion, but invertase regulated the synthesis of ovary starch and partially prevented full recovery. PMID:10482657
Quantifying Aggregation Dynamics during Myxococcus xanthus Development▿†
Zhang, Haiyang; Angus, Stuart; Tran, Michael; Xie, Chunyan; Igoshin, Oleg A.; Welch, Roy D.
2011-01-01
Under starvation conditions, a swarm of Myxococcus xanthus cells will undergo development, a multicellular process culminating in the formation of many aggregates called fruiting bodies, each of which contains up to 100,000 spores. The mechanics of symmetry breaking and the self-organization of cells into fruiting bodies is an active area of research. Here we use microcinematography and automated image processing to quantify several transient features of developmental dynamics. An analysis of experimental data indicates that aggregation reaches its steady state in a highly nonmonotonic fashion. The number of aggregates rapidly peaks at a value 2- to 3-fold higher than the final value and then decreases before reaching a steady state. The time dependence of aggregate size is also nonmonotonic, but to a lesser extent: average aggregate size increases from the onset of aggregation to between 10 and 15 h and then gradually decreases thereafter. During this process, the distribution of aggregates transitions from a nearly random state early in development to a more ordered state later in development. A comparison of experimental results to a mathematical model based on the traffic jam hypothesis indicates that the model fails to reproduce these dynamic features of aggregation, even though it accurately describes its final outcome. The dynamic features of M. xanthus aggregation uncovered in this study impose severe constraints on its underlying mechanisms. PMID:21784940
Tannous, Joanna; Atoui, Ali; El Khoury, André; Kantar, Sally; Chdid, Nader; Oswald, Isabelle P; Puel, Olivier; Lteif, Roger
2015-09-01
Due to the occurrence and spread of the fungal contaminants in food and the difficulties to remove their resulting mycotoxins, rapid and accurate methods are needed for early detection of these mycotoxigenic fungi. The polymerase chain reaction and the real time PCR have been widely used for this purpose. Apples are suitable substrates for fungal colonization mostly caused by Penicillium expansum, which produces the mycotoxin patulin during fruit infection. This study describes the development of a real-time PCR assay incorporating an internal amplification control (IAC) to specifically detect and quantify P. expansum. A specific primer pair was designed from the patF gene, involved in patulin biosynthesis. The selected primer set showed a high specificity for P. expansum and was successfully employed in a standardized real-time PCR for the direct quantification of this fungus in apples. Using the developed system, twenty eight apples were analyzed for their DNA content. Apples were also analyzed for patulin content by HPLC. Interestingly, a positive correlation (R(2) = 0.701) was found between P. expansum DNA content and patulin concentration. This work offers an alternative to conventional methods of patulin quantification and mycological detection of P. expansum and could be very useful for the screening of patulin in fruits through the application of industrial quality control. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
This study describes the nucleotide sequence and genome organization of a new DNA virus isolated from ‘Bluecrop’ blueberry plants named Blueberry fruit drop associated virus (BFDaV). Infected bushes lose nearly 100% of their fruit prior to harvest, and in springtime young leaves and flowers develop ...
Liu, Tian-Jia; Li, Yong-Ping; Zhou, Jing-Jing; Hu, Chun-Gen; Zhang, Jin-Zhi
2018-03-01
The comprehensive genetic variation of two citrus species were analyzed at genome and transcriptome level. A total of 1090 differentially expressed genes were found during fruit development by RNA-sequencing. Fruit size (fruit equatorial diameter) and weight (fresh weight) are the two most important components determining yield and consumer acceptability for many horticultural crops. However, little is known about the genetic control of these traits. Here, we performed whole-genome resequencing to reveal the comprehensive genetic variation of the fruit development between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina). In total, 5,865,235 single-nucleotide polymorphisms (SNPs) and 414,447 insertions/deletions (InDels) were identified in the two citrus species. Based on integrative analysis of genome and transcriptome of fruit, 640,801 SNPs and 20,733 InDels were identified. The features, genomic distribution, functional effect, and other characteristics of these genetic variations were explored. RNA-sequencing identified 1090 differentially expressed genes (DEGs) during fruit development of kumquat and Clementine mandarin. Gene Ontology revealed that these genes were involved in various molecular functional and biological processes. In addition, the genetic variation of 939 DEGs and 74 multiple fruit development pathway genes from previous reports were also identified. A global survey identified 24,237 specific alternative splicing events in the two citrus species and showed that intron retention is the most prevalent pattern of alternative splicing. These genome variation data provide a foundation for further exploration of citrus diversity and gene-phenotype relationships and for future research on molecular breeding to improve kumquat, Clementine mandarin and related species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kappes, E.M.
1986-01-01
Carbohydrate production, export and use were studied for different organs of sour cherry (Prunus cerasus L. Montmorency). Gross carbohydrate (/sup 14/CO/sub 2/) export started between 27.2 and 77.6% of full leaf expansion. The 10th leaf developing started export later than the 7th leaf, suggesting that higher carbohydrate availability during leaf expansion delays export initiation. In support of this, gross export started earlier (44.4-52.4% full expansion) after source leaf removal, than in the control (77.6%). Translocation was primarily vertical (following orthostichies). Most leaves of fruiting shoots exported bidirectionally to the apex and fruits, only leaves closest to fruits exported exclusively tomore » fruits during rapid cell division (Stage I) and rapid cell expansion (Stage III). Net export, determined from carbohydrate balance models started at 17 and 51% expansion for the 7th and terminal leaf, and at 26.5% of shoot elongation. Cumulative carbohydrate production of the 7th and terminal leaves during the first 9 and 11 days after emergence, exceeded carbohydrate accumulated at final size, 464.2 and 148.9 mg. A fruit carbohydrate balance was developed to determine contributions by fruit photosynthesis and fruit respiration, and to identify periods of greatest carbohydrate import. Fruit photosynthesis during development was characterized under different environmental conditions. Gross photosynthesis and chlorophyll content per fruit increased to a maximum during stage II and decreased thereafter. Gross photosynthesis approached a maximum at 40/sub 0/C. Since dark respiration increased exponentially over the same temperature range, net photosynthesis reached a maximum at 18/sup 0/C. Photorespiration was not detected.« less
Lovisetto, Alessandro; Baldan, Barbara; Pavanello, Anna; Casadoro, Giorgio
2015-07-16
The involvement of MADS-box genes of the AGAMOUS lineage in the formation of both flowers and fruits has been studied in detail in Angiosperms. AGAMOUS genes are expressed also in the reproductive structures of Gymnosperms, yet the demonstration of their role has been problematic because Gymnosperms are woody plants difficult to manipulate for physiological and genetic studies. Recently, it was shown that in the gymnosperm Ginkgo biloba an AGAMOUS gene was expressed throughout development and ripening of the fleshy fruit-like structures produced by this species around its seeds. Such fleshy structures are evolutionarily very important because they favor the dispersal of seeds through endozoochory. In this work a characterization of the Ginkgo gene was carried out by over-expressing it in tomato. In tomato plants ectopically expressing the Ginkgo AGAMOUS gene a macroscopic anomaly was observed only in the flower sepals. While the wild type sepals had a leaf-like appearance, the transgenic ones appeared connately adjoined at their proximal extremity and, concomitant with the development and ripening of the fruit, they became thicker and acquired a yellowish-orange color, thus indicating that they had undergone a homeotic transformation into carpel-like structures. Molecular analyses of several genes associated with either the control of ripening or the ripening syndrome in tomato fruits confirmed that the transgenic sepals behaved like ectopic fruits that could undergo some ripening, although the red color typical of the ripe tomato fruit was never achieved. The ectopic expression of the Ginkgo AGAMOUS gene in tomato caused the homeotic transformation of the transgenic sepals into carpel-like structures, and this showed that the gymnosperm gene has a genuine C function. In parallel with the ripening of fruits the related transgenic sepals became fleshy fruit-like structures that also underwent some ripening and such a result indicates that this C function gene might be involved, together with other gens, also in the development of the Ginkgo fruit-like structures. It seems thus strengthened the hypothesis that AGAMOUS MADS-box genes were recruited already in Gymnosperms for the development of the fleshy fruit habit which is evolutionarily so important for the dispersal of seeds.
2011-01-01
Background Naphthaleneacetic acid (NAA), a synthetic auxin analogue, is widely used as an effective thinner in apple orchards. When applied shortly after fruit set, some fruit abscise leading to improved fruit size and quality. However, the thinning results of NAA are inconsistent and difficult to predict, sometimes leading to excess fruit drop or insufficient thinning which are costly to growers. This unpredictability reflects our incomplete understanding of the mode of action of NAA in promoting fruit abscission. Results Here we compared NAA-induced fruit drop with that caused by shading via gene expression profiling performed on the fruit abscission zone (FAZ), sampled 1, 3, and 5 d after treatment. More than 700 genes with significant changes in transcript abundance were identified from NAA-treated FAZ. Combining results from both treatments, we found that genes associated with photosynthesis, cell cycle and membrane/cellular trafficking were downregulated. On the other hand, there was up-regulation of genes related to ABA, ethylene biosynthesis and signaling, cell wall degradation and programmed cell death. While the differentially expressed gene sets for NAA and shading treatments shared only 25% identity, NAA and shading showed substantial similarity with respect to the classes of genes identified. Specifically, photosynthesis, carbon utilization, ABA and ethylene pathways were affected in both NAA- and shading-induced young fruit abscission. Moreover, we found that NAA, similar to shading, directly interfered with leaf photosynthesis by repressing photosystem II (PSII) efficiency within 10 minutes of treatment, suggesting that NAA and shading induced some of the same early responses due to reduced photosynthesis, which concurred with changes in hormone signaling pathways and triggered fruit abscission. Conclusions This study provides an extensive transcriptome study and a good platform for further investigation of possible regulatory genes involved in the induction of young fruit abscission in apple, which will enable us to better understand the mechanism of fruit thinning and facilitate the selection of potential chemicals for the thinning programs in apple. PMID:22003957
Zhu, Hong; Dardick, Chris D; Beers, Eric P; Callanhan, Ann M; Xia, Rui; Yuan, Rongcai
2011-10-17
Naphthaleneacetic acid (NAA), a synthetic auxin analogue, is widely used as an effective thinner in apple orchards. When applied shortly after fruit set, some fruit abscise leading to improved fruit size and quality. However, the thinning results of NAA are inconsistent and difficult to predict, sometimes leading to excess fruit drop or insufficient thinning which are costly to growers. This unpredictability reflects our incomplete understanding of the mode of action of NAA in promoting fruit abscission. Here we compared NAA-induced fruit drop with that caused by shading via gene expression profiling performed on the fruit abscission zone (FAZ), sampled 1, 3, and 5 d after treatment. More than 700 genes with significant changes in transcript abundance were identified from NAA-treated FAZ. Combining results from both treatments, we found that genes associated with photosynthesis, cell cycle and membrane/cellular trafficking were downregulated. On the other hand, there was up-regulation of genes related to ABA, ethylene biosynthesis and signaling, cell wall degradation and programmed cell death. While the differentially expressed gene sets for NAA and shading treatments shared only 25% identity, NAA and shading showed substantial similarity with respect to the classes of genes identified. Specifically, photosynthesis, carbon utilization, ABA and ethylene pathways were affected in both NAA- and shading-induced young fruit abscission. Moreover, we found that NAA, similar to shading, directly interfered with leaf photosynthesis by repressing photosystem II (PSII) efficiency within 10 minutes of treatment, suggesting that NAA and shading induced some of the same early responses due to reduced photosynthesis, which concurred with changes in hormone signaling pathways and triggered fruit abscission. This study provides an extensive transcriptome study and a good platform for further investigation of possible regulatory genes involved in the induction of young fruit abscission in apple, which will enable us to better understand the mechanism of fruit thinning and facilitate the selection of potential chemicals for the thinning programs in apple.
Applewhite, P B; K-Sawhney, R; Galston, A W
1997-01-01
Excised preanthesis flower buds of young Pixie Hybrid tomato plants develop into red ripe fruits in aseptic culture on a modified Murashige-Skoog medium with 3% sucrose at pH 5.8. The addition of certain synthetic auxins (IAA, NAA, IBA), auxin precursors (ISA), or cytokinins (KIN, IPA, ZEA, BAP) to the medium improved the percentage of buds developing into fruits, the weight of the ripe fruits, or both. The best results were obtained by an auxin-cytokinin combination of 10 microM IBA with 1 microM BAP. Storage of the excised buds at low temperature (6 degrees C) for up to 4 weeks before transfer to 27 degrees C caused only minimal deterioration in size and number of the fruit crop. Extension of low-temperature storage to 8 weeks produced smaller fruits that took longer to develop. This system could produce fresh, ripe small tomatoes on a sustained basis for up to 2 months for an isolated environment such as a space vehicle or submarine.
Liu, Weixin; Xu, Biyu; Jin, Zhiqiang
2014-01-01
Granule-bound starch synthase (GBSS) is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage. PMID:24505384
Rearing two fruit flies pests on artificial diet with variable pH.
Dias, N P; Nava, D E; Smaniotto, G; Garcia, M S; Valgas, R A
2018-04-23
Fruit flies (Diptera: Tephritidae) are considered the main fruit pests worldwide. In Brazil, two species are predominant: the South American fruit fly, Anastrepha fraterculus and the Mediterranean fruit fly, Ceratitis capitata. In this study, we evaluated the effect of artificial diets with variable pH in their larval development and adult performance. The experiments were carried out in the laboratory at 25 ± 2 °C, 70 ± 10% RH and 12:12h (L:D) photoperiod. Semisolid diets with pH values of 6.0, 5.0, 4.0, 3.0, 2.0, 1.5, and 1.0, adjusted by adding hydrochloric acid were tested. Results indicated that the diet with pH 6.0 did not support larval development of both species of fruit fly. Diets with greater acidic pH values did not allow egg, larvae or pupae development and adult reproduction of A. fraterculus. For C. capitata , the pH of artificial diet exerts greater influence compared to A. fraterculus on the duration and viability of the larval stage, number of pupae, sex ratio and longevity of males.