Sample records for early developmental exposure

  1. A developmental perspective on early-life exposure to neurotoxicants.

    PubMed

    Bellinger, David C; Matthews-Bellinger, Julia A; Kordas, Katarzyna

    2016-09-01

    Studies of early-life neurotoxicant exposure have not been designed, analyzed, or interpreted in the context of a fully developmental perspective. The goal of this paper is to describe the key principles of a developmental perspective and to use examples from the literature to illustrate the relevance of these principles to early-life neurotoxicant exposures. Four principles are discussed: 1) the effects of early-life neurotoxicant exposure depend on a child's developmental context; 2) deficits caused by early-life exposure initiate developmental cascades that can lead to pathologies that differ from those observed initially; 3) early-life neurotoxicant exposure has intra-familial and intergenerational impacts; 4) the impacts of early-life neurotoxicant exposure influence a child's ability to respond to future insults. The first principle is supported by considerable evidence, but the other three have received much less attention. Incorporating a developmental perspective in studies of early-life neurotoxicant exposures requires prospective collection of data on a larger array of covariates than usually considered, using analytical approaches that acknowledge the transactional processes between a child and the environment and the phenomenon of developmental cascades. Consideration of early-life neurotoxicant exposure within a developmental perspective reveals that many issues remain to be explicated if we are to achieve a deep understanding of the societal health burden associated with early-life neurotoxicant exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure.

    PubMed

    Tolins, Molly; Ruchirawat, Mathuros; Landrigan, Philip

    2014-01-01

    More than 200 million people worldwide are chronically exposed to arsenic. Arsenic is a known human carcinogen, and its carcinogenic and systemic toxicity have been extensively studied. By contrast, the developmental neurotoxicity of arsenic has been less well described. The aim of this review was to provide a comprehensive review of the developmental neurotoxicity of arsenic. We reviewed the published epidemiological and toxicological literature on the developmental neurotoxicity of arsenic. Arsenic is able to gain access to the developing brain and cause neurotoxic effects. Animal models link prenatal and early postnatal exposure to reduction in brain weight, reductions in numbers of glia and neurons, and alterations in neurotransmitter systems. Animal and in vitro studies both suggest that oxidative stress may be a mechanism of arsenic neurotoxicity. Fifteen epidemiological studies indicate that early life exposure is associated with deficits in intelligence and memory. These effects may occur at levels of exposure below current safety guidelines, and some neurocognitive consequences may become manifest only later in life. Sex, concomitant exposures, and timing of exposure appear to modify the developmental neurotoxicity of arsenic. Four epidemiological studies failed to show behavioral outcomes of arsenic exposure. The published literature indicates that arsenic is a human developmental neurotoxicant. Ongoing and future prospective birth cohort studies will allow more precise definition of the developmental consequences of arsenic exposure in early life. Copyright © 2014. Published by Elsevier Inc.

  3. Childhood developmental vulnerabilities associated with early life exposure to infectious and noninfectious diseases and maternal mental illness.

    PubMed

    Green, Melissa J; Kariuki, Maina; Dean, Kimberlie; Laurens, Kristin R; Tzoumakis, Stacy; Harris, Felicity; Carr, Vaughan J

    2017-12-26

    Fetal exposure to infectious and noninfectious diseases may influence early childhood developmental functioning, on the path to later mental illness. Here, we investigated the effects of in utero exposure to maternal infection and noninfectious diseases during pregnancy on offspring developmental vulnerabilities at age 5 years, in the context of estimated effects for early childhood exposures to infectious and noninfectious diseases and maternal mental illness. We used population data for 66,045 children from an intergenerational record linkage study (the New South Wales Child Development Study), for whom a cross-sectional assessment of five developmental competencies (physical, social, emotional, cognitive, and communication) was obtained at school entry, using the Australian Early Development Census (AEDC). Child and maternal exposures to infectious or noninfectious diseases were determined from the NSW Ministry of Health Admitted Patients Data Collection (APDC) and maternal mental illness exposure was derived from both APDC and Mental Health Ambulatory Data collections. Multinomial logistic regression analyses were used to examine unadjusted and adjusted associations between these physical and mental health exposures and child developmental vulnerabilities at age 5 years. Among the physical disease exposures, maternal infectious diseases during pregnancy and early childhood infection conferred the largest associations with developmental vulnerabilities at age 5 years; maternal noninfectious illness during pregnancy also retained small but significant associations with developmental vulnerabilities even when adjusted for other physical and mental illness exposures and covariates known to be associated with early childhood development (e.g., child's sex, socioeconomic disadvantage, young maternal age, prenatal smoking). Among all exposures examined, maternal mental illness first diagnosed prior to childbirth conferred the greatest odds of developmental

  4. Parsing the Effects Violence Exposure in Early Childhood: Modeling Developmental Pathways

    PubMed Central

    Carter, Alice S.; Ford, Julian D.

    2012-01-01

    Objective To prospectively examine pathways from early childhood violence exposure and trauma-related symptoms to school-age emotional health. Methods A longitudinal, birth cohort (N = 437) was assessed with parent reports of lifetime violence exposure and trauma-related symptoms at 3 years of age and later, internalizing and externalizing symptoms, and social competence at school age. Results Early family and neighborhood violence correlated significantly with early trauma-related symptoms and also significantly predicted school-age internalizing and externalizing symptoms and poorer competence, independent of sociodemographic risk and past-year violence exposure. Longitudinal pathways were significantly mediated by arousal and avoidance symptoms at 3 years of age, which increased risk for clinically significant emotional problems and lower competence at school age (adjusted odds ratios = 3.1–6.1, p < 0.01). Conclusions Trauma-related symptoms may mediate developmental pathways from early violence exposure to later emotional health. Interventions that prevent or reduce early trauma-related symptoms may ameliorate the long-term deleterious impact of violence exposure. PMID:21903730

  5. Prenatal exposure to disaster-related traumatic stress and developmental trajectories of temperament in early childhood: Superstorm Sandy pregnancy study.

    PubMed

    Zhang, Wei; Rajendran, Khushmand; Ham, Jacob; Finik, Jackie; Buthmann, Jessica; Davey, Kei; Pehme, Patricia M; Dana, Kathryn; Pritchett, Alexandra; Laws, Holly; Nomura, Yoko

    2018-07-01

    Little is known about the impact of prenatal maternal stress (PNMS) on the developmental trajectory of temperament and few studies have been able to incorporate a natural disaster as a quasi-experimental stressor. The current study investigated PNMS related to Superstorm Sandy ('Sandy'), a hurricane that struck the New York metropolitan area in October 2012, in terms of objective exposure during pregnancy, subjective stress reaction as assessed by maternal symptoms of post-traumatic stress, and their impact on the developmental changes in temperament during early childhood. A subsample of 318 mother-child dyads was drawn from the Stress in Pregnancy Study. Temperament was measured at 6, 12, 18, and 24 months of age. Objective exposure was associated with greater High-Intensity Pleasure, Approach, Perceptual Sensitivity and Fearfulness, but lower Cuddliness and Duration of Orientation at 6 months. Objective exposure and its interaction with subjective stress reaction predicted developmental changes in temperament. In particular, objective exposure was linked to greater increases in Activity Level but decreases in High-Intensity Pleasure, Approach, and Fearfulness. The combination of objective exposure and subjective stress reaction was also associated with greater increases in Activity Level. Temperament was measured solely via maternal report. Trimester-specific effects of Sandy on temperament were not examined. This is the first study to examine the effects of prenatal maternal exposure to a natural disaster on trajectories of early childhood temperament. Findings suggest that both objective stress exposure and subjective stress reaction in-utero predict developmental trajectories of temperament in early childhood. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Impact of early developmental fluoride exposure on the peripheral pain sensitivity in mice.

    PubMed

    Ma, Jing; Liu, Fei; Liu, Peng; Dong, Ying-Ying; Chu, Zheng; Hou, Tie-Zhou; Dang, Yong-Hui

    2015-12-01

    Consumption of high concentration of fluoride in the drinking water would cause the fluorosis and chronic pain. Similar pain syndrome appeared in the patients in fluoride therapy of osteoporotic. The aim of the current study was to examine whether exposing immature mice to fluoride would modify the peripheral pain sensitivity or even cause a pain syndrome. We gave developmental fluoride exposure to mice in different concentration (0mg/L, 50mg/L and 100mg/L) and evaluated their basal pain threshold. Von Frey hair test, hot plate test and formalin test were conducted to examine the mechanical, thermal nociceptive threshold and inflammatory pain, respectively. In addition, the expression of hippocampal brain-derived neurotrophic factor (BDNF) was also evaluated by Western blotting. Hyperalgesia in fluoride exposure mice was exhibited in the Von Frey hair test, hot plate test and formalin test. Meanwhile, the expression of BDNF was significantly higher than that of control group. The results suggest that early developmental fluoride exposure may lower the basal pain threshold and be associated with the increasing of BDNF expression in hippocampus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish.

    PubMed

    Crosby, Emily B; Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D

    2015-01-01

    Neonicotinoid insecticides are becoming more widely applied as organophosphate (OP) insecticides are decreasing in use. Because of their relative specificity to insect nicotinic receptors, they are thought to have reduced risk of neurotoxicity in vertebrates. However, there is scant published literature concerning the neurobehavioral effects of developmental exposure of vertebrates to neonicotinoids. Using zebrafish, we investigated the neurobehavioral effects of developmental exposure to imidacloprid, a prototypic neonicotinoid pesticide. Nicotine was also administered for comparison. Zebrafish were exposed via immersion in aqueous solutions containing 45 μM or 60 μM of imidacloprid or nicotine (or vehicle control) from 4h to 5d post fertilization. The functional effects of developmental exposure to both imidacloprid and nicotine were assessed in larvae using an activity assay and during adolescence and adulthood using a battery of neurobehavioral assays, including assessment of sensorimotor response and habituation in a tactile startle test, novel tank swimming, and shoaling behavior. In larvae, developmental imidacloprid exposure at both doses significantly decreased swimming activity. The 5D strains of zebrafish were more sensitive to both nicotine and imidacloprid than the AB* strain. In adolescent and adult fish, developmental exposure to imidacloprid significantly decreased novel tank exploration and increased sensorimotor response to startle stimuli. While nicotine did not affect novel tank swimming, it increased sensorimotor response to startle stimuli at the low dose. No effects of either compound were found on shoaling behavior or habituation to a startling stimulus. Early developmental exposure to imidacloprid has both early-life and persisting effects on neurobehavioral function in zebrafish. Its developmental neurotoxicity should be further investigated. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Neurobehavioral Impairments Caused by Developmental Imidacloprid Exposure in Zebrafish

    PubMed Central

    Crosby, Emily B.; Bailey, Jordan M.; Oliveri, Anthony N.; Levin, Edward D.

    2015-01-01

    BACKGROUND Neonicotinoid insecticides are becoming more widely applied as organophosphate (OP) insecticides are decreasing in use. Because of their relative specificity to insect nicotinic receptors, they are thought to have reduced risk of neurotoxicity in vertebrates. However, there is scant published literature concerning the neurobehavioral effects of developmental exposure of vertebrates to neonicotinoids. METHODS Using zebrafish, we investigated the neurobehavioral effects of developmental exposure to imidacloprid, a prototypic neonicotinoid pesticide. Nicotine was also administered for comparison. Zebrafish were exposed via immersion in aqueous solutions containing 45 μM or 60 μM of imidacloprid or nicotine (or vehicle control) from 4 h to 5 d post fertilization. The functional effects of developmental exposure to both imidacloprid and nicotine were assessed in larvae using an activity assay and during adolescence and adulthood using a battery of neurobehavioral assays, including assessment of sensorimotor response and habituation in a tactile startle test, novel tank swimming, and shoaling behavior. RESULTS In larvae, developmental imidacloprid exposure at both doses significantly decreased swimming activity. The 5D strain of zebrafish were more sensitive to both nicotine and imidacloprid than the AB* strain. In adolescent and adult fish, developmental exposure to imidacloprid significantly decreased novel tank exploration and increased sensorimotor response to startle stimuli. While nicotine did not affect novel tank swimming, it increased sensorimotor response to startle stimuli at the low dose. No effects of either compound were found on shoaling behavior or habituation to a startling stimulus. DISCUSSION Early developmental exposure to imidacloprid has both early-life and persisting effects on neurobehavioral function in zebrafish. Its developmental neurotoxicity should be further investigated. PMID:25944383

  9. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780

  10. The Positive Impact of Early Intervention for Children with Developmental Delays, Gestational Cocaine Exposure, and Co-Occurring Risk Factors

    ERIC Educational Resources Information Center

    Ullery, Mary Anne; Katz, Lynne

    2017-01-01

    This article examined transition rates of young children (n = 102) from an early intervention program at the Linda Ray Intervention Program (LRIP) who had documented developmental delays and co-occurring prenatal drug exposure often coupled with verified child maltreatment. Findings indicated that there was significant group improvement from…

  11. Developmental disruption of medial prefrontal cortical GABAergic function by non-contingent cocaine exposure during early adolescence

    PubMed Central

    Cass, Daryn K.; Thomases, Daniel R.; Caballero, Adriana; Tseng, Kuei Y.

    2013-01-01

    Background Drug experimentation during adolescence is associated with increased risk of drug addiction relative to any other age group. To further our understanding on the neurobiology underlying such liability, we investigate how early adolescent cocaine experience impacts the overall medial prefrontal cortex (mPFC) network function in adulthood. Methods A non-contingent administration paradigm was used to assess the impact of early adolescent cocaine treatment (rats; postnatal days -PD- 35-40) on the overall inhibitory regulation of mPFC activity in adulthood (PD65-75) by means of histochemical and in vivo electrophysiological measures combined with pharmacological manipulations. Results Cocaine exposure during early adolescence yields a distinctive hyper-metabolic PFC state that was not observed in adult (PD75-80)-treated rats. Local field potential recordings expand upon these findings by showing that early adolescent cocaine exposure is associated with an attenuation of mPFC GABAergic inhibition evoked by ventral hippocampal stimulation at beta and gamma frequencies that endures throughout adulthood. Such cocaine-induced mPFC disinhibition was not observed in adult-exposed animals. Furthermore, the normal developmental upregulation of parvalbumin immunoreactivity observed in the mPFC from PD35 to PD65 is lacking following early adolescent cocaine treatment. Conclusion Our data indicate that repeated cocaine exposure during early adolescence can elicit a state of mPFC disinhibition resulting from a functional impairment of the local prefrontal GABAergic network that endures through adulthood. A lack of acquisition of prefrontal GABAergic function during adolescence could trigger long-term deficits in the mPFC that may increase the susceptibility for the onset of substance abuse and related psychiatric disorders. PMID:23558299

  12. Developmental toxicity of prenatal exposure to toluene.

    PubMed

    Bowen, Scott E; Hannigan, John H

    2006-01-01

    Organic solvents have become ubiquitous in our environment and are essential for industry. Many women of reproductive age are increasingly exposed to solvents such as toluene in occupational settings (ie, long-term, low-concentration exposures) or through inhalant abuse (eg, episodic, binge exposures to high concentrations). The risk for teratogenic outcome is much less with low to moderate occupational solvent exposure compared with the greater potential for adverse pregnancy outcomes, developmental delays, and neurobehavioral problems in children born to women exposed to high concentrations of abused organic solvents such as toluene, 1,1,1-trichloroethane, xylenes, and nitrous oxide. Yet the teratogenic effects of abuse patterns of exposure to toluene and other inhalants remain understudied. We briefly review how animal models can aid substantially in clarifying the developmental risk of exposure to solvents for adverse biobehavioral outcomes following abuse patterns of use and in the absence of associated health problems and co-drug abuse (eg, alcohol). Our studies also begin to establish the importance of dose (concentration) and critical perinatal periods of exposure to specific outcomes. The present results with our clinically relevant animal model of repeated, brief, high-concentration binge prenatal toluene exposure demonstrate the dose-dependent effect of toluene on prenatal development, early postnatal maturation, spontaneous exploration, and amphetamine-induced locomotor activity. The results imply that abuse patterns of toluene exposure may be more deleterious than typical occupational exposure on fetal development and suggest that animal models are effective in studying the mechanisms and risk factors of organic solvent teratogenicity.

  13. Developmental variations in the impact of intimate partner violence exposure during childhood

    PubMed Central

    Howell, Kathryn H.; Barnes, Sarah E.; Miller, Laura E.; Graham-Bermann, Sandra A.

    2016-01-01

    Abstract: Background: Intimate partner violence (IPV) is a pervasive problem impacting individuals around the globe. The consequences of IPV extend beyond the adults in the relationship, as children witness a significant proportion of such violence. Exposure to IPV during childhood has devastating effects across multiple domains of functioning. Methods: This article reviews empirical studies of the effects of exposure to IPV by developmental stage. Results: The psychological, social, physical, and cognitive consequences of witnessing IPV are examined across development; from the impact of prenatal exposure to effects in infancy and toddlerhood, the preschool years, school-aged children, and adolescence. Conclusions: The review concludes by providing suggestions for future research based on the identified developmental variations, recommendations for developmentally-sensitive interventions for children who have witnessed IPV, and directions for policy to address the issue of violence exposure early in the lives of children. PMID:26804945

  14. MOLECULAR AND MORPHOLOGICAL CHANGES IN ZEBRAFISH FOLLOWING TRANSIENT ETHANOL EXPOSURE DURING DEFINED DEVELOPMENTAL STAGES

    PubMed Central

    Zhang, Chengjin; Frazier, Jared M.; Chen, Hao; Liu, Yao; Lee, Ju-Ahng; Cole, Gregory J.

    2014-01-01

    Alcohol is a teratogen that has diverse effects on brain and craniofacial development, leading to a constellation of developmental disorders referred to as fetal alcohol spectrum disorder (FASD). The molecular basis of ethanol insult remains poorly understood, as does the relationship between molecular and behavioral changes as a consequence of prenatal ethanol exposure. Zebrafish embryos were exposed to a range of ethanol concentrations (0.5–5.0%) during defined developmental stages, and examined for morphological phenotypes characteristic of FASD. Embryos were also analyzed by in situ hybridization for changes in expression of defined cell markers for neural cell types that are sonic hedgehog-dependent. We show that transient binge-like ethanol exposures during defined developmental stages, such as early gastrulation and early neurulation, result in a range of phenotypes and changes in expression of Shh-dependent genes. The severity of fetal alcohol syndrome (FAS) morphological phenotypes, such as microphthalmia, depends on the embryonic stage and concentration of alcohol exposure, as does diminution of retinal Pax6a or forebrain and hindbrain GAD1 gene expression. We also show that changes in eye and brain morphology correlate with changes in Pax6a and GAD1 gene expression. Our results therefore show that transient binge-like ethanol exposures in zebrafish embryos produce the stereotypical morphological phenotypes of FAS, with the severity of phenotypes depending on the developmental stage and alcohol concentration of exposure. PMID:24929233

  15. Effects of chronic crude oil exposure on early developmental stages of the Northern krill (Meganyctiphanes norvegica).

    PubMed

    Arnberg, Maj; Moodley, Leon; Dunaevskaya, Evgenia; Ramanand, Sreerekha; Ingvarsdóttir, Anna; Nilsen, Marianne; Ravagnan, Elisa; Westerlund, Stig; Sanni, Steinar; Tarling, Geraint A; Bechmann, Renée K

    2017-01-01

    Rising oil and gas activities in northern high latitudes have led to an increased risk of petroleum pollution in these ecosystems. Further, seasonal high UV radiation at high latitudes may elevate photo-enhanced toxicity of petroleum pollution to marine organisms. Zooplanktons are a key ecological component of northern ecosystems; therefore, it is important to assess their sensitivity to potential pollutants of oil and gas activity. As ontogenetic development may be particularly sensitive, the aim of this study was to examine the impact of chronic exposure to oil water dispersion (OWD) on development and feeding of early life stages of the Northern krill, Meganyctiphanes norvegica. In a range of experiments, embryonic, nonfeeding, and feeding larval stages were exposed to concentrations of between 0.01 and 0.1 mg/L of oil or photo-modified oil for 19 and 21 d. No significant effects on egg respiration, hatching success, development, length and larval survival were observed from these treatments. Similarly, evolution of fatty acid composition patterns during ontogenetic development was unaffected. The results indicates a high degree of resilience of these early developmental stages to such types and concentrations of pollutants. However, feeding and motility in later calyptopis-stage larvae were significantly impaired at exposure of 0.1 mg/L oil. Data indicate that feeding larval stage of krill was more sensitive to OWD than early nonfeeding life stages. This might be attributed to the narcotic effects of oil pollutants, their direct ingestion, or accumulated adverse effects over early development.

  16. Exposure Cessation During Adulthood Did Not Prevent Immunotoxicity Caused by Developmental Exposure to Low-Level Trichloroethylene in Drinking Water.

    PubMed

    Gilbert, Kathleen M; Bai, Shasha; Barnette, Dustyn; Blossom, Sarah J

    2017-06-01

    Exposure to the water pollutant trichloroethylene (TCE) can promote autoimmunity in both humans and rodents. Using a mouse model we have shown that chronic adult exposure to TCE at 500 μg/ml in drinking water generates autoimmune hepatitis in female MRL+/+ mice. There is increasing evidence that developmental exposure to certain chemicals can be more toxic than adult exposure. This study was designed to test whether exposure to a much lower level of TCE (0.05 μg/ml) during gestation, lactation, and early life generated autoimmunity similar to that found following adult exposure to higher concentrations of TCE. When female MRL+/+ mice were examined at postnatal day (PND) 259 we found that developmental/early life exposure [gestational day 0 to PND 154] to TCE at a concentration 10 000 fold lower than that shown to be effective for adult exposure triggered autoimmune hepatitis. This effect was observed despite exposure cessation at PND 154. In concordance with the liver pathology, female MRL+/+ exposed during development and early life to TCE (0.05 or 500 μg/ml) generated a range of antiliver antibodies detected by Western blotting. Expression of proinflammatory cytokines by CD4+ T cells was also similarly observed at PND 259 in the TCE-exposed mice regardless of concentration. Thus, exposure to TCE at approximately environmental levels from gestational day 0 to PND 154 generated tissue pathology and CD4+ T cell alterations that required higher concentrations if exposure was limited to adulthood. TCE exposure cessation at PND 154 did not prevent the immunotoxicity. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Effects of developmental lead exposure on the hippocampal methylome: Influences of sex and timing and level of exposure.

    PubMed

    Singh, G; Singh, V; Wang, Zi-Xuan; Voisin, G; Lefebvre, F; Navenot, J-M; Evans, B; Verma, M; Anderson, D W; Schneider, J S

    2018-06-15

    Developmental lead (Pb) exposure results in persistent cognitive/behavioral impairments as well as an elevated risk for developing a variety of diseases in later life. Environmental exposures during development can result in a variety of epigenetic changes, including alterations in DNA methylation, that can influence gene expression patterns and affect the function and development of the nervous system. The present promoter-based methylation microarray profiling study explored the extent to which developmental Pb exposure may modify the methylome of a brain region, hippocampus, known to be sensitive to the effects of Pb exposure. Male and female Long Evans rats were exposed to 0 ppm, 150 ppm, 375 ppm, or 750 ppm Pb through perinatal exposures (gestation through lactation), early postnatal exposures (birth through weaning), or long-term postnatal exposures (birth through postnatal day 55). Results showed a significant contribution of sex to the hippocampal methylome and effects of Pb exposure level, with non-linear dose response effects on methylation. Surprisingly, the developmental period of exposure contributed only a small amount of variance to the overall data and gene ontology (GO) analysis revealed the largest number of overrepresented GO terms in the groups with the lowest level of exposure. The highest number of significant differentially methylated regions was found in females exposed to Pb at the lowest exposure level. Our data reinforce the significant effect that low level Pb exposure may have on gene-specific DNA methylation patterns in brain and that this occurs in a sex-dependent manner. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Sex-Dependent Effects of Developmental Lead Exposure on the Brain.

    PubMed

    Singh, Garima; Singh, Vikrant; Sobolewski, Marissa; Cory-Slechta, Deborah A; Schneider, Jay S

    2018-01-01

    The role of sex as an effect modifier of developmental lead (Pb) exposure has until recently received little attention. Lead exposure in early life can affect brain development with persisting influences on cognitive and behavioral functioning, as well as, elevated risks for developing a variety of diseases and disorders in later life. Although both sexes are affected by Pb exposure, the incidence, manifestation, and severity of outcomes appears to differ in males and females. Results from epidemiologic and animal studies indicate significant effect modification by sex, however, the results are not consistent across studies. Unfortunately, only a limited number of human epidemiological studies have included both sexes in independent outcome analyses limiting our ability to draw definitive conclusions regarding sex-differentiated outcomes. Additionally, due to various methodological differences across studies, there is still not a good mechanistic understanding of the molecular effects of lead on the brain and the factors that influence differential responses to Pb based on sex. In this review, focused on prenatal and postnatal Pb exposures in humans and animal models, we discuss current literature supporting sex differences in outcomes in response to Pb exposure and explore some of the ideas regarding potential molecular mechanisms that may contribute to sex-related differences in outcomes from developmental Pb exposure. The sex-dependent variability in outcomes from developmental Pb exposure may arise from a combination of complex factors, including, but not limited to, intrinsic sex-specific molecular/genetic mechanisms and external risk factors including sex-specific responses to environmental stressors which may act through shared epigenetic pathways to influence the genome and behavioral output.

  19. Sex-Dependent Effects of Developmental Lead Exposure on the Brain

    PubMed Central

    Singh, Garima; Singh, Vikrant; Sobolewski, Marissa; Cory-Slechta, Deborah A.; Schneider, Jay S.

    2018-01-01

    The role of sex as an effect modifier of developmental lead (Pb) exposure has until recently received little attention. Lead exposure in early life can affect brain development with persisting influences on cognitive and behavioral functioning, as well as, elevated risks for developing a variety of diseases and disorders in later life. Although both sexes are affected by Pb exposure, the incidence, manifestation, and severity of outcomes appears to differ in males and females. Results from epidemiologic and animal studies indicate significant effect modification by sex, however, the results are not consistent across studies. Unfortunately, only a limited number of human epidemiological studies have included both sexes in independent outcome analyses limiting our ability to draw definitive conclusions regarding sex-differentiated outcomes. Additionally, due to various methodological differences across studies, there is still not a good mechanistic understanding of the molecular effects of lead on the brain and the factors that influence differential responses to Pb based on sex. In this review, focused on prenatal and postnatal Pb exposures in humans and animal models, we discuss current literature supporting sex differences in outcomes in response to Pb exposure and explore some of the ideas regarding potential molecular mechanisms that may contribute to sex-related differences in outcomes from developmental Pb exposure. The sex-dependent variability in outcomes from developmental Pb exposure may arise from a combination of complex factors, including, but not limited to, intrinsic sex-specific molecular/genetic mechanisms and external risk factors including sex-specific responses to environmental stressors which may act through shared epigenetic pathways to influence the genome and behavioral output. PMID:29662502

  20. Behavioral Effects of Developmental Methylmercury Drinking Water Exposure in Rodents

    PubMed Central

    Bisen-Hersh, Emily B.; Farina, Marcelo; Barbosa, Fernando; Rocha, Joao BT; Aschner, Michael

    2013-01-01

    Early methylmercury (MeHg) exposure can have long-lasting consequences likely arising from impaired developmental processes, the outcome of which has been exposed in several longitudinal studies of affected populations. Given the large number of newborns at an increased risk of learning disabilities associated with in utero MeHg exposure, it is important to study neurobehavioral alterations using ecologically valid and physiologically relevant models. This review highlights the benefits of using the MeHg drinking water exposure paradigm and outlines behavioral outcomes arising from this procedure in rodents. Combination treatments that exacerbate or ameliorate MeHg-induced effects, and possible molecular mechanisms underlying behavioral impairment are also discussed. PMID:24210169

  1. Pre-implantation alcohol exposure and developmental programming of FASD: an epigenetic perspective.

    PubMed

    Legault, Lisa-Marie; Bertrand-Lehouillier, Virginie; McGraw, Serge

    2018-04-01

    Exposure to alcohol during in-utero development can permanently change the developmental programming of physiological responses, thereby increasing the risk of neurological illnesses during childhood and later adverse health outcomes associated with fetal alcohol spectrum disorder (FASD). There is an increasing body of evidence indicating that exposure to alcohol during gestation triggers lasting epigenetic alterations in offspring, long after the initial insult; together, these studies support the role of epigenetics in FASD etiology. However, we still have little information about how ethanol interferes with the fundamental epigenetic reprogramming wave (e.g., erasure and re-establishment of DNA methylation marks) that characterizes pre-implantation embryo development. This review examines key epigenetic processes that occur during pre-implantation development and especially focus on the current knowledge regarding how prenatal exposure to alcohol during this period could affect the developmental programming of the early stage pre-implantation embryo. We will also outline the current limitations of studies examining the in-vivo and in-vitro effects of alcohol exposure on embryos and underline the next critical steps to be taken if we want to better understand the implicated mechanisms to strengthen the translational potential for epigenetic markers for non-invasive early detection, and the treatment of newborns that have higher risk of developing FASD.

  2. Life-Long Implications of Developmental Exposure to Environmental Stressors: New Perspectives.

    PubMed

    Grandjean, Philippe; Barouki, Robert; Bellinger, David C; Casteleyn, Ludwine; Chadwick, Lisa H; Cordier, Sylvaine; Etzel, Ruth A; Gray, Kimberly A; Ha, Eun-Hee; Junien, Claudine; Karagas, Margaret; Kawamoto, Toshihiro; Paige Lawrence, B; Perera, Frederica P; Prins, Gail S; Puga, Alvaro; Rosenfeld, Cheryl S; Sherr, David H; Sly, Peter D; Suk, William; Sun, Qi; Toppari, Jorma; van den Hazel, Peter; Walker, Cheryl L; Heindel, Jerrold J

    2015-10-01

    The Developmental Origins of Health and Disease (DOHaD) paradigm is one of the most rapidly expanding areas of biomedical research. Environmental stressors that can impact on DOHaD encompass a variety of environmental and occupational hazards as well as deficiency and oversupply of nutrients and energy. They can disrupt early developmental processes and lead to increased susceptibility to disease/dysfunctions later in life. Presentations at the fourth Conference on Prenatal Programming and Toxicity in Boston, in October 2014, provided important insights and led to new recommendations for research and public health action. The conference highlighted vulnerable exposure windows that can occur as early as the preconception period and epigenetics as a major mechanism than can lead to disadvantageous "reprogramming" of the genome, thereby potentially resulting in transgenerational effects. Stem cells can also be targets of environmental stressors, thus paving another way for effects that may last a lifetime. Current testing paradigms do not allow proper characterization of risk factors and their interactions. Thus, relevant exposure levels and combinations for testing must be identified from human exposure situations and outcome assessments. Testing of potential underpinning mechanisms and biomarker development require laboratory animal models and in vitro approaches. Only few large-scale birth cohorts exist, and collaboration between birth cohorts on a global scale should be facilitated. DOHaD-based research has a crucial role in establishing factors leading to detrimental outcomes and developing early preventative/remediation strategies to combat these risks.

  3. Effects of gamma radiation on the early developmental stages of Zebrafish (Danio rerio).

    PubMed

    Praveen Kumar, M K; Shyama, S K; Kashif, Shamim; Dubey, S K; Avelyno, D'costa; Sonaye, B H; Kadam Samit, B; Chaubey, R C

    2017-08-01

    The zebrafish is gaining importance as a popular vertebrate model organism and is widely employed in ecotoxicological studies, especially for the biomonitoring of pollution in water bodies. There is limited data on the genetic mechanisms governing the adverse health effects in regards to an early developmental exposure to gamma radiation. In the present study zebrafish (Danio rerio) embryos were exposed to 1, 2.5, 5, 7.5 and 10Gy of gamma radiation at 3h post fertilization (hpf). Different developmental toxicity endpoints were investigated. Further, expression of genes associated with the development and DNA damage i.e. (sox2 sox19a and p53) were evaluated using Quantitative PCR (qPCR). The significant changes in the expression of sox2 sox19a and p53 genes were observed. This data was supported the developmental defects observed in the zebrafish embryo exposed to gamma radiation such as i.e. increased DNA damage, decreased hatching rate, increase in median hatching time, decreased body length, increased mortality rate, increased morphological deformities. Further, study shows that the potential ecotoxicological threat of gamma radiation on the early developmental stages of zebrafish. Further, it revealed that the above parameters can be used as predictive biomarkers of gamma radiation exposure. Copyright © 2017. Published by Elsevier Inc.

  4. Developmental Subchronic Exposure to Diphenylarsinic Acid Induced Increased Exploratory Behavior, Impaired Learning Behavior, and Decreased Cerebellar Glutathione Concentration in Rats

    PubMed Central

    Negishi, Takayuki; Matsunaga, Yuki

    2013-01-01

    In Japan, people using water from the well contaminated with high-level arsenic developed neurological, mostly cerebellar, symptoms, where diphenylarsinic acid (DPAA) was a major compound. Here, we investigated the adverse effects of developmental exposure to 20mg/l DPAA in drinking water (early period [0–6 weeks of age] and/or late period [7–12]) on behavior and cerebellar development in male rats. In the open field test at 6 weeks of age, early exposure to DPAA significantly increased exploratory behaviors. At 12 weeks of age, late exposure to DPAA similarly increased exploratory behavior independent of the early exposure although a 6-week recovery from DPAA could reverse that change. In the passive avoidance test at 6 weeks of age, early exposure to DPAA significantly decreased the avoidance performance. Even at 12 weeks of age, early exposure to DPAA significantly decreased the test performance, which was independent of the late exposure to DPAA. These results suggest that the DPAA-induced increase in exploratory behavior is transient, whereas the DPAA-induced impairment of passive avoidance is long lasting. At 6 weeks of age, early exposure to DPAA significantly reduced the concentration of cerebellar total glutathione. At 12 weeks of age, late, but not early, exposure to DPAA also significantly reduced the concentration of cerebellar glutathione, which might be a primary cause of oxidative stress. Early exposure to DPAA induced late-onset suppressed expression of NMDAR1 and PSD95 protein at 12 weeks of age, indicating impaired glutamatergic system in the cerebellum of rats developmentally exposed to DPAA. PMID:24008832

  5. Developmental subchronic exposure to diphenylarsinic acid induced increased exploratory behavior, impaired learning behavior, and decreased cerebellar glutathione concentration in rats.

    PubMed

    Negishi, Takayuki; Matsunaga, Yuki; Kobayashi, Yayoi; Hirano, Seishiro; Tashiro, Tomoko

    2013-12-01

    In Japan, people using water from the well contaminated with high-level arsenic developed neurological, mostly cerebellar, symptoms, where diphenylarsinic acid (DPAA) was a major compound. Here, we investigated the adverse effects of developmental exposure to 20mg/l DPAA in drinking water (early period [0-6 weeks of age] and/or late period [7-12]) on behavior and cerebellar development in male rats. In the open field test at 6 weeks of age, early exposure to DPAA significantly increased exploratory behaviors. At 12 weeks of age, late exposure to DPAA similarly increased exploratory behavior independent of the early exposure although a 6-week recovery from DPAA could reverse that change. In the passive avoidance test at 6 weeks of age, early exposure to DPAA significantly decreased the avoidance performance. Even at 12 weeks of age, early exposure to DPAA significantly decreased the test performance, which was independent of the late exposure to DPAA. These results suggest that the DPAA-induced increase in exploratory behavior is transient, whereas the DPAA-induced impairment of passive avoidance is long lasting. At 6 weeks of age, early exposure to DPAA significantly reduced the concentration of cerebellar total glutathione. At 12 weeks of age, late, but not early, exposure to DPAA also significantly reduced the concentration of cerebellar glutathione, which might be a primary cause of oxidative stress. Early exposure to DPAA induced late-onset suppressed expression of NMDAR1 and PSD95 protein at 12 weeks of age, indicating impaired glutamatergic system in the cerebellum of rats developmentally exposed to DPAA.

  6. Examining the Developmental Process of Risk for Exposure to Community Violence among Urban Youth

    PubMed Central

    Lambert, Sharon F.; Bradshaw, Catherine P.; Cammack, Nicole L.; Ialongo, Nicholas S.

    2013-01-01

    Considerable research has documented the effects of community violence exposure on adolescents’ behavior and mental health functioning, yet there has been less research on the process by which early risks increase the likelihood that youth will be exposed to community violence. The current study used data from a community epidemiologically-defined sample of 623 urban youth followed from first grade through adolescence to examine the process by which early-onset aggressive behavior and poor academic readiness influenced risk for community violence exposure. Consistent with transactional developmental theories, early-onset aggressive and disruptive behavior was associated with poor academic readiness; these early risks contributed to later peer rejection, and subsequent conduct problems and greater affiliation with deviant peers, which in turn increased youths’ exposure to community violence. Having an enhanced understanding of the risk process directs attention to potential targets for preventive interventions for youth at risk for subsequent exposure to violence. PMID:21480029

  7. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases.

    PubMed

    Xu, Joella; Huang, Guannan; Guo, Tai L

    2016-09-26

    Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases.

  8. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases

    PubMed Central

    Xu, Joella; Huang, Guannan; Guo, Tai L.

    2016-01-01

    Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases. PMID:29051427

  9. Longitudinal effects of developmental bisphenol A and variable diet exposures on epigenetic drift in mice.

    PubMed

    Kochmanski, Joseph; Marchlewicz, Elizabeth H; Savidge, Matthew; Montrose, Luke; Faulk, Christopher; Dolinoy, Dana C

    2017-03-01

    Environmental factors, including exogenous exposures and nutritional status, can affect DNA methylation across the epigenome, but effects of exposures on age-dependent epigenetic drift remain unclear. Here, we tested the hypothesis that early-life exposure to bisphenol A (BPA) and/or variable diet results in altered epigenetic drift, as measured longitudinally via target loci methylation in paired mouse tail tissue (3 wks/10 mos old). Methylation was quantified at two repetitive elements (LINE-1, IAP), two imprinted genes (Igf2, H19), and one non-imprinted gene (Esr1) in isogenic mice developmentally exposed to Control, Control+BPA (50μg/kg diet), Mediterranean, Western, Mediterranean+BPA, or Western+BPA diets. Across age, methylation levels significantly (p<0.050) decreased at LINE-1, IAP, and H19, and increased at Esr1. Igf2 demonstrated Western-specific changes in early-life methylation (p=0.027), and IAP showed marginal negative modification of drift in Western (p=0.058) and Western+BPA (p=0.051). Thus, DNA methylation drifts across age, and developmental nutritional exposures can alter age-related methylation patterns. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Early-Life Exposure to Non-Nutritive Sweeteners and the Developmental Origins of Childhood Obesity: Global Evidence from Human and Rodent Studies.

    PubMed

    Archibald, Alyssa J; Dolinsky, Vernon W; Azad, Meghan B

    2018-02-10

    Non-nutritive sweeteners (NNS) are increasingly consumed by children and pregnant women around the world, yet their long-term health impact is unclear. Here, we review an emerging body of evidence suggesting that early-life exposure to NNS may adversely affect body composition and cardio-metabolic health. Some observational studies suggest that children consuming NNS are at increased risk for obesity-related outcomes; however, others find no association or provide evidence of confounding. Fewer studies have examined prenatal NNS exposure, with mixed results from different analytical approaches. There is a paucity of RCTs evaluating NNS in children, yielding inconsistent results that can be difficult to interpret due to study design limitations (e.g., choice of comparator, multifaceted interventions). The majority of this research has been conducted in high-income countries. Some rodent studies demonstrate adverse metabolic effects from NNS, but most have used extreme doses that are not relevant to humans, and few have distinguished prenatal from postnatal exposure. Most studies focus on synthetic NNS in beverages, with few examining plant-derived NNS or NNS in foods. Overall, there is limited and inconsistent evidence regarding the impact of early-life NNS exposure on the developmental programming of obesity and cardio-metabolic health. Further research and mechanistic studies are needed to elucidate these effects and inform dietary recommendations for expectant mothers and children worldwide.

  11. Phenotypic Dichotomy Following Developmental Exposure to ...

    EPA Pesticide Factsheets

    The synthetic surfactant, perfluorooctanoic acid (PFOA) is a proven developmental toxicant in mice, causing prenatal pregnancy loss, increased neonatal mortality, delayed eye opening, and abnormal mammary gland growth in animals exposed during fetal life. PFOA is found in the sera of wildlife and humans throughout the world, but is especially high in the sera of children. These studies in CD-1 mice aim to determine the latent health effects of PFOA following an in utero exposure, a developmental exposure followed by ovariectomy (ovx), or exposure as an adult. Mice were exposed to 0, 0.01, 0.1, 0.3, 1, 3, or 5 mg PFOA/kg BW for 17 days of pregnancy or as an adult. Body weight was reduced in the highest doses on postnatal day (PND) 1 and at weaning. However, the lowest exposures (0.01-0.3 mg/kg) induced excessive weight gain between 20-40 weeks, as well as a significant increase in serum leptin (0.01-0.1 mg/kg). Although body weight was significantly increased due to ovx, there was no longer a body weight effect of PFOA in ovx animals. Further, there was no effect of adult exposure to PFOA on body weight gain. At 18 months of age, the effects of PFOA on body weight were no longer detected. The white adipose tissue and spleen weights were decreased at high doses of PFOA in intact developmentally exposed mice, and spleen weight was reduced in ovx mice. But, brown adipose tissue weight was significantly increased in both ovx and intact mice at high doses. Liver weigh

  12. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats.

    PubMed

    Beaudin, Stephane A; Strupp, Barbara J; Strawderman, Myla; Smith, Donald R

    2017-02-01

    Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. To determine whether early postnatal oral Mn exposure causes lasting attentional and impulse control deficits in adulthood, and whether continued lifelong Mn exposure exacerbates these effects, using a rat model of environmental Mn exposure. Neonates were exposed orally to 0, 25 or 50 mg Mn/kg/day during early postnatal life (PND 1-21) or throughout life from PND 1 until the end of the study. In adulthood, the animals were tested on a series of learning and attention tasks using the five-choice serial reaction time task. Early postnatal Mn exposure caused lasting attentional dysfunction due to impairments in attentional preparedness, selective attention, and arousal regulation, whereas associative ability (learning) and impulse control were spared. The presence and severity of these deficits varied with the dose and duration of Mn exposure. This study is the first to show that developmental Mn exposure can cause lasting impairments in focused and selective attention and arousal regulation, and to identify the specific nature of the impairments. Given the importance of attention and arousal regulation in cognitive functioning, these findings substantiate concerns about the adverse effects of developmental Mn exposure in humans. Citation: Beaudin SA, Strupp BJ, Strawderman M, Smith DR. 2017. Early postnatal manganese exposure causes lasting impairment of selective and focused attention and arousal regulation in adult rats. Environ Health Perspect 125:230-237; http://dx.doi.org/10.1289/EHP258.

  13. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats

    PubMed Central

    Beaudin, Stephane A.; Strupp, Barbara J.; Strawderman, Myla; Smith, Donald R.

    2016-01-01

    Background: Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. Objectives: To determine whether early postnatal oral Mn exposure causes lasting attentional and impulse control deficits in adulthood, and whether continued lifelong Mn exposure exacerbates these effects, using a rat model of environmental Mn exposure. Methods: Neonates were exposed orally to 0, 25 or 50 mg Mn/kg/day during early postnatal life (PND 1–21) or throughout life from PND 1 until the end of the study. In adulthood, the animals were tested on a series of learning and attention tasks using the five-choice serial reaction time task. Results: Early postnatal Mn exposure caused lasting attentional dysfunction due to impairments in attentional preparedness, selective attention, and arousal regulation, whereas associative ability (learning) and impulse control were spared. The presence and severity of these deficits varied with the dose and duration of Mn exposure. Conclusions: This study is the first to show that developmental Mn exposure can cause lasting impairments in focused and selective attention and arousal regulation, and to identify the specific nature of the impairments. Given the importance of attention and arousal regulation in cognitive functioning, these findings substantiate concerns about the adverse effects of developmental Mn exposure in humans. Citation: Beaudin SA, Strupp BJ, Strawderman M, Smith DR. 2017. Early postnatal manganese exposure causes lasting impairment of selective and focused attention and arousal regulation in adult rats. Environ Health Perspect 125:230–237; http://dx.doi.org/10.1289/EHP258 PMID:27384154

  14. Prenatal corticosteroid exposure alters early developmental seizures and behavior

    PubMed Central

    Velíšek, Libor

    2011-01-01

    In humans, corticosteroids are often administered prenatally to improve lung development in preterm neonates. Studies in exposed children as well as in children, whose mothers experienced significant stress during pregnancy indicate behavioral problems and possible increased occurrence of epileptic spasms. This study investigated whether prenatal corticosteroid exposure alters early postnatal seizure susceptibility and behaviors. On gestational day 15, pregnant rats were injected i.p. with hydrocortisone (2× 10 mg/kg), betamethasone (2× 0.4 mg/kg) or vehicle. On postnatal day (P)15, seizures were induced by flurothyl or kainic acid (3.5 or 5.0 mg/kg). Horizontal bar holding was determined prior to seizures and again on P17. Performance in the elevated plus maze was assessed on P20-22. Prenatal exposure to betamethasone decreased postnatal susceptibility to flurothyl-induced clonic seizures but not to kainic acid-induced seizures. Prenatal hydrocortisone decreased postnatal weight but did not affect seizure susceptibility. Hydrocortisone alone did not affect performance in behavioral tests except for improving horizontal bar holding on P17. A combination of prenatal hydrocortisone and postnatal seizures resulted in increased anxiety. Prenatal exposure to mineralocorticoid receptor blocker canrenoic acid did not attenuate, but surprisingly amplified the effects of hydrocortisone on body weight and significantly worsened horizontal bar performance. Thus, prenatal exposure to excess corticosteroids alters postnatal seizure susceptibility and behaviors. Specific effects may depend on corticosteroid species. PMID:21429712

  15. The OBELIX project: early life exposure to endocrine disruptors and obesity.

    PubMed

    Legler, Juliette; Hamers, Timo; van Eck van der Sluijs-van de Bor, Margot; Schoeters, Greet; van der Ven, Leo; Eggesbo, Merete; Koppe, Janna; Feinberg, Max; Trnovec, Tomas

    2011-12-01

    The hypothesis of whether early life exposure (both pre- and early postnatal) to endocrine-disrupting chemicals (EDCs) may be a risk factor for obesity and related metabolic diseases later in life will be tested in the European research project OBELIX (OBesogenic Endocrine disrupting chemicals: LInking prenatal eXposure to the development of obesity later in life). OBELIX is a 4-y project that started in May 2009 and which has the following 5 main objectives: 1) to assess early life exposure in humans to major classes of EDCs identified as potential inducers of obesity (ie, dioxin-like compounds, non-dioxin-like polychlorinated biphenyls, organochlorine pesticides, brominated flame retardants, phthalates, and perfluorinated compounds) by using mother-child cohorts from 4 European regions with different food-contaminant exposure patterns; 2) to relate early life exposure to EDCs with clinical markers, novel biomarkers, and health-effect data related to obesity; 3) to perform hazard characterization of early life exposure to EDCs for the development of obesity later in life by using a mouse model; 4) to determine mechanisms of action of obesogenic EDCs on developmental programming with in vivo and in vitro genomics and epigenetic analyses; and 5) to perform risk assessments of prenatal exposure to obesogenic EDCs in food by integrating maternal exposure through food-contaminant exposure and health-effect data in children and hazard data in animal studies.

  16. DEVELOPMENTAL CHANGES IN SEROTONIN SIGNALING: IMPLICATIONS FOR EARLY BRAIN FUNCTION, BEHAVIOR AND ADAPTATION

    PubMed Central

    BRUMMELTE, S.; GLANAGHY, E. MC; BONNIN, A.; OBERLANDER, T. F.

    2017-01-01

    The neurotransmitter serotonin (5-HT) plays a central role in brain development, regulation of mood, stress reactivity and risk of psychiatric disorders, and thus alterations in 5-HT signaling early in life have critical implications for behavior and mental health across the life span. Drawing on preclinical and emerging human evidence this narrative review paper will examine three key aspects when considering the consequences of early life changes in 5-HT: (1) developmental origins of variations of 5-HT signaling; (2) influence of genetic and epigenetic factors; and (3) preclinical and clinical consequences of 5-HT-related changes associated with antidepressant exposure (SSRIs). The developmental consequences of altered prenatal 5-HT signaling varies greatly and outcomes depend on an ongoing interplay between biological (genetic/epigenetic variations) and environmental factors, both pre and postnatally. Emerging evidence suggests that variations in 5-HT signaling may increase sensitivity to risky home environments, but may also amplify a positive response to a nurturing environment. In this sense, factors that change central 5-HT levels may act as ‘plasticity’ rather than ‘risk’ factors associated with developmental vulnerability. Understanding the impact of early changes in 5-HT levels offers critical insights that might explain the variations in early typical brain development that underlies behavioral risk. PMID:26905950

  17. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-12-01

    Mercury (Hg) is a widespread environmental pollutant that can produce severe negative effects on fish even at very low concentrations. However, the mechanisms underlying inorganic Hg-induced oxidative stress and immunotoxicity in the early development stage of fish still need to be clarified. In the present study, zebrafish (Danio rerio) embryos were exposed to different concentrations of Hg 2+ (0, 1, 4 and 16μg/L; added as mercuric chloride, HgCl 2 ) from 2h post-fertilization (hpf) to 168hpf. Developmental parameters and total Hg accumulation were monitored during the exposure period, and antioxidant status and the mRNA expression of genes related to the innate immune system were examined at 168hpf. The results showed that increasing Hg 2+ concentration and time significantly increased total Hg accumulation in zebrafish embryos-larvae. Exposure to 16μg/L Hg 2+ caused developmental damage, including increased mortality and malformation, decreased body length, and delayed hatching period. Meanwhile, HgCl 2 exposure (especially in the 16μg/L Hg 2+ group) induced oxidative stress affecting antioxidant enzyme (CAT, GST and GPX) activities, endogenous GSH and MDA contents, as well as the mRNA levels of genes (cat1, sod1, gstr, gpx1a, nrf2, keap1, hsp70 and mt) encoding antioxidant proteins. Moreover, the transcription levels of several representative genes (il-1β, il-8, il-10, tnfα2, lyz and c3) involved in innate immunity were up-regulated by HgCl 2 exposure, suggesting that inorganic Hg had the potential to induce immunotoxicity. Taken together, the present study provides evidence that waterborne HgCl 2 exposure can induce developmental impairment, oxidative stress and immunotoxicity in the early development stage of fish, which brings insights into the toxicity mechanisms of inorganic Hg in fish. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Early Visual Language Exposure and Emergent Literacy in Preschool Deaf Children: Findings from a National Longitudinal Study

    ERIC Educational Resources Information Center

    Allen, Thomas E.; Letteri, Amy; Choi, Song Hoa; Dang, Daqian

    2014-01-01

    A brief review is provided of recent research on the impact of early visual language exposure on a variety of developmental outcomes, including literacy, cognition, and social adjustment. This body of work points to the great importance of giving young deaf children early exposure to a visual language as a critical precursor to the acquisition of…

  19. Developmental Exposure to an Environmental PCB Mixture ...

    EPA Pesticide Factsheets

    Developmental PCB exposure impairs hearing and induces brainstem audiogenic seizures in adult offspring. The degree to which this enhanced susceptibility to seizure is manifest in other brain regions has not been examined. Thus, electrical kindling of the amygdala was used to evaluate the effect of developmental exposure to an environmentally relevant PCB mixture on seizure susceptibility in the rat. Female Long-Evans rats were dosed orally with 0 or 6 mg/kg/day of the PCB mixture dissolved in corn oil vehicle during the perinatal period. On postnatal day (PND) 21, pups were weaned, and two males from each litter were randomly selected for the kindling study. As adults, the male rats were implanted bilaterally with electrodes in the basolateral amygdala. For each animal, afterdischarge (AD) thresholds in the amygdala were determined on the first day of testing followed by once daily stimulation at a standard 200 µA stimulus intensity until three stage 5 generalized seizures (GS) ensued. Developmental PCB exposure did not affect the AD threshold or total cumulative AD duration, but PCB exposure did increase the latency to behavioral manifestations of seizure propagation. PCB exposed animals required significantly more stimulations to reach stage 2 seizures compared to control animals, indicating an attenuated focal (amygdala) excitability. A delay in kindling progression from a focally stimulated limbic site stands in contrast to our previous finding of increase

  20. Early risk factors and developmental pathways to chronic high inhibition and social anxiety disorder in adolescence.

    PubMed

    Essex, Marilyn J; Klein, Marjorie H; Slattery, Marcia J; Goldsmith, H Hill; Kalin, Ned H

    2010-01-01

    Evidence suggests that chronic high levels of behavioral inhibition are a precursor of social anxiety disorder. The authors sought to identify early risk factors for, and developmental pathways to, chronic high inhibition among school-age children and the association of chronic high inhibition with social anxiety disorder by adolescence. A community sample of 238 children was followed from birth to grade 9. Mothers, teachers, and children reported on the children's behavioral inhibition from grades 1 to 9. Lifetime history of psychiatric disorders was available for the subset of 60 (25%) children who participated in an intensive laboratory assessment at grade 9. Four early risk factors were assessed: female gender; exposure to maternal stress during infancy and the preschool period; and at age 4.5 years, early manifestation of behavioral inhibition and elevated afternoon salivary cortisol levels. All four risk factors predicted greater and more chronic inhibition from grades 1 to 9, and together they defined two developmental pathways. The first pathway, in girls, was partially mediated by early evidence of behavioral inhibition and elevated cortisol levels at age 4.5 years. The second pathway began with exposure to early maternal stress and was also partially mediated by childhood cortisol levels. By grade 9, chronic high inhibition was associated with a lifetime history of social anxiety disorder. Chronic high levels of behavioral inhibition are associated with social anxiety disorder by adolescence. The identification of two developmental pathways suggests the potential importance of considering both sets of risk factors in developing preventive interventions for social anxiety disorder.

  1. Exposure to Parents' Negative Emotions as a Developmental Pathway to the Family Aggregation of Depression and Anxiety in the First Year of Life.

    PubMed

    Aktar, Evin; Bögels, Susan M

    2017-12-01

    Depression and anxiety load in families. In the present study, we focus on exposure to parental negative emotions in first postnatal year as a developmental pathway to early parent-to-child transmission of depression and anxiety. We provide an overview of the little research available on the links between infants' exposure to negative emotion and infants' emotional development in this developmentally sensitive period, and highlight priorities for future research. To address continuity between normative and maladaptive development, we discuss exposure to parental negative emotions in infants of parents with as well as without depression and/or anxiety diagnoses. We focus on infants' emotional expressions in everyday parent-infant interactions, and on infants' attention to negative facial expressions as early indices of emotional development. Available evidence suggests that infants' emotional expressions echo parents' expressions and reactions in everyday interactions. In turn, infants exposed more to negative emotions from the parent seem to attend less to negative emotions in others' facial expressions. The links between exposure to parental negative emotion and development hold similarly in infants of parents with and without depression and/or anxiety diagnoses. Given its potential links to infants' emotional development, and to later psychological outcomes in children of parents with depression and anxiety, we conclude that early exposure to parental negative emotions is an important developmental mechanism that awaits further research. Longitudinal designs that incorporate the study of early exposure to parents' negative emotion, socio-emotional development in infancy, and later psychological functioning while considering other genetic and biological vulnerabilities should be prioritized in future research.

  2. Developmental outcomes after early prefrontal cortex damage.

    PubMed

    Eslinger, Paul J; Flaherty-Craig, Claire V; Benton, Arthur L

    2004-06-01

    The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical profiles and real life developmental outcomes. Based on these cases, there is preliminary evidence to support distinctive developmental differences after: (1) dorsolateral, (2) mesial, and (3) orbital-polar prefrontal lesions, for more profound impairments after bilateral damage, and possibly for recovery differences after very early vs. later childhood lesion onset. Further case and group studies are needed to confirm reliable effects of specific lesion locations, the influence of age of lesion onset, and related experiential and treatment variables in determining adult outcomes. Rather than a single underlying deficit associated with early prefrontal cortex damage, we interpret the findings to suggest that it is the altered integration and interplay of cognitive, emotional, self-regulatory, and executive/metacognitive deficits that contribute to diverse developmental frontal lobe syndromes. The findings support the fundamental importance of prefrontal cortex maturation in protracted cognitive, social-emotional, and moral development.

  3. Sleep Problems and Early Developmental Delay: Implications for Early Intervention Programs

    ERIC Educational Resources Information Center

    Bonuck, Karen; Grant, Roy

    2012-01-01

    Sleep disorders negatively impact behavior, cognition, and growth--the same areas targeted by early intervention. Conversely, developmental delays and disabilities may themselves precipitate sleep disorders. Young children with developmental delays experience sleep disorders at a higher rate than do typically developing children; the most common…

  4. Does early paternal involvement predict offspring developmental diagnoses?

    PubMed

    Jackson, Dylan B; Newsome, Jamie; Beaver, Kevin M

    2016-12-01

    A long line of research has illustrated that fathers play an important role in the development of their children. Few studies, however, have examined the impact of paternal involvement at the earliest stages of life on developmental diagnoses in childhood. The present study extends this line of research by exploring the possibility that paternal involvement prenatally, postnatally, and at the time of birth may influence offspring risk for various diagnoses in childhood. A quasi-experimental, propensity score matching design was used to create treatment and control groups to assess the relationship between paternal involvement at each stage of development and developmental diagnoses. Approximately 6000 children, and a subsample of fathers, who participated in the Early Childhood Longitudinal Study, Birth Cohort (ECLS-B). Activity, attention and learning, speech or language, and other diagnoses in early childhood, and overall number of diagnoses at 4years of age. We find no consistent evidence that low paternal involvement prenatally or postnatally increases the risk of various developmental diagnoses by age 4. However, children whose fathers were absent at the time of their birth were at significantly greater risk of incurring various developmental diagnoses, as well as a significantly greater number of developmental diagnoses. The findings expand our understanding of exactly how early paternal influence begins and the specific dimensions of early father behaviors that are related to the risk of various developmental diagnoses. Ultimately, these results have important implications concerning father involvement during the earliest stages of the life course. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood.

    PubMed

    Parker, Matthew O; Evans, Alexandra M-D; Brock, Alistair J; Combe, Fraser J; Teh, Muy-Teck; Brennan, Caroline H

    2016-01-01

    Exposure to alcohol during early central nervous system development has been shown variously to affect aspects of physiological and behavioural development. In extreme cases, this can extend to craniofacial defects, severe developmental delay and mental retardation. At more moderate levels, subtle differences in brain morphology and behaviour have been observed. One clear effect of developmental alcohol exposure is an increase in the propensity to develop alcoholism and other addictions. The mechanisms by which this occurs, however, are not currently understood. In this study, we tested the hypothesis that adult zebrafish chronically exposed to moderate levels of ethanol during early brain ontogenesis would show an increase in conditioned place preference for alcohol and an increased propensity towards habit formation, a key component of drug addiction in humans. We found support for both of these hypotheses and found that the exposed fish had changes in mRNA expression patterns for dopamine receptor, nicotinic acetylcholine receptor and μ-opioid receptor encoding genes. Collectively, these data show an explicit link between the increased proclivity for addiction and addiction-related behaviour following exposure to ethanol during early brain development and alterations in the neural circuits underlying habit learning. © 2014 Society for the Study of Addiction.

  6. Transcriptomic Responses During Early Development Following Arsenic Exposure in Western Clawed Frogs, Silurana tropicalis.

    PubMed

    Zhang, Jing; Koch, Iris; Gibson, Laura A; Loughery, Jennifer R; Martyniuk, Christopher J; Button, Mark; Caumette, Guilhem; Reimer, Kenneth J; Cullen, William R; Langlois, Valerie S

    2015-12-01

    Arsenic compounds are widespread environmental contaminants and exposure elicits serious health issues, including early developmental anomalies. Depending on the oxidation state, the intermediates of arsenic metabolism interfere with a range of subcellular events, but the fundamental molecular events that lead to speciation-dependent arsenic toxicity are not fully elucidated. This study therefore assesses the impact of arsenic exposure on early development by measuring speciation and gene expression profiles in the developing Western clawed frog (Silurana tropicalis) larvae following the environmental relevant 0.5 and 1 ppm arsenate exposure. Using HPLC-ICP-MS, arsenate, dimethylarsenic acid, arsenobetaine, arsenocholine, and tetramethylarsonium ion were detected. Microarray and pathway analyses were utilized to characterize the comprehensive transcriptomic responses to arsenic exposure. Clustering analysis of expression data showed distinct gene expression patterns in arsenate treated groups when compared with the control. Pathway enrichment revealed common biological themes enriched in both treatments, including cell signal transduction, cell survival, and developmental pathways. Moreover, the 0.5 ppm exposure led to the enrichment of pathways and biological processes involved in arsenic intake or efflux, as well as histone remodeling. These compensatory responses are hypothesized to be responsible for maintaining an in-body arsenic level comparable to control animals. With no appreciable changes observed in malformation and mortality between control and exposed larvae, this is the first study to suggest that the underlying transcriptomic regulations related to signal transduction, cell survival, developmental pathways, and histone remodeling may contribute to maintaining ongoing development while coping with the potential arsenic toxicity in S. tropicalis during early development. © The Author 2015. Published by Oxford University Press on behalf of the

  7. Current Evidence for Developmental, Structural, and Functional Brain Defects following Prenatal Radiation Exposure

    PubMed Central

    Verreet, Tine; Quintens, Roel; Baatout, Sarah; Benotmane, Mohammed A.

    2016-01-01

    Ionizing radiation is omnipresent. We are continuously exposed to natural (e.g., radon and cosmic) and man-made radiation sources, including those from industry but especially from the medical sector. The increasing use of medical radiation modalities, in particular those employing low-dose radiation such as CT scans, raises concerns regarding the effects of cumulative exposure doses and the inappropriate utilization of these imaging techniques. One of the major goals in the radioprotection field is to better understand the potential health risk posed to the unborn child after radiation exposure to the pregnant mother, of which the first convincing evidence came from epidemiological studies on in utero exposed atomic bomb survivors. In the following years, animal models have proven to be an essential tool to further characterize brain developmental defects and consequent functional deficits. However, the identification of a possible dose threshold is far from complete and a sound link between early defects and persistent anomalies has not yet been established. This review provides an overview of the current knowledge on brain developmental and persistent defects resulting from in utero radiation exposure and addresses the many questions that still remain to be answered. PMID:27382490

  8. The impact of the developmental timing of trauma exposure on PTSD symptoms and psychosocial functioning among older adults.

    PubMed

    Ogle, Christin M; Rubin, David C; Siegler, Ilene C

    2013-11-01

    The present study examined the impact of the developmental timing of trauma exposure on posttraumatic stress disorder (PTSD) symptoms and psychosocial functioning in a large sample of community-dwelling older adults (N = 1,995). Specifically, we investigated whether the negative consequences of exposure to traumatic events were greater for traumas experienced during childhood, adolescence, young adulthood, midlife, or older adulthood. Each of these developmental periods is characterized by age-related changes in cognitive and social processes that may influence psychological adjustment following trauma exposure. Results revealed that older adults who experienced their currently most distressing traumatic event during childhood exhibited more severe symptoms of PTSD and lower subjective happiness compared with older adults who experienced their most distressing trauma after the transition to adulthood. Similar findings emerged for measures of social support and coping ability. The differential effects of childhood compared with later life traumas were not fully explained by differences in cumulative trauma exposure or by differences in the objective and subjective characteristics of the events. Our findings demonstrate the enduring nature of traumatic events encountered early in the life course and underscore the importance of examining the developmental context of trauma exposure in investigations of the long-term consequences of traumatic experiences.

  9. Developmental PCB Exposure Increases Audiogenic Seizures and Decreases Glutamic Acid Decarboxylase in the Inferior Colliculus

    PubMed Central

    Bandara, Suren B.; Eubig, Paul A.; Sadowski, Renee N.; Schantz, Susan L.

    2016-01-01

    Previously, we observed that developmental polychlorinated biphenyl (PCB) exposure resulted in an increase in audiogenic seizures (AGSs) in rats. However, the rats were exposed to loud noise in adulthood, and were not tested for AGS until after 1 year of age, either of which could have interacted with early PCB exposure to increase AGS susceptibility. This study assessed susceptibility to AGS in young adult rats following developmental PCB exposure alone (without loud noise exposure) and investigated whether there was a decrease in GABA inhibitory neurotransmission in the inferior colliculus (IC) that could potentially explain this effect. Female Long-Evans rats were dosed orally with 0 or 6 mg/kg/day of an environmentally relevant PCB mixture from 28 days prior to breeding until the pups were weaned at postnatal day 21. One male-female pair from each litter was retained for the AGS study whilst another was retained for Western blot analysis of glutamic acid decarboxylase (GAD) and GABAAα1 receptor in the IC, the site in the auditory midbrain where AGS are initiated. There was a significant increase in the number and severity of AGSs in the PCB groups, with females somewhat more affected than males. GAD65 was decreased but there was no change in GAD67 or GABAAα1 in the IC indicating decreased inhibitory regulation in the PCB group. These results confirm that developmental PCB exposure alone is sufficient to increase susceptibility to AGS, and provide the first evidence for a possible mechanism of action at the level of the IC. PMID:26543103

  10. Interactive effects of early and recent exposure to stressful contexts on cortisol reactivity in middle childhood.

    PubMed

    Jaffee, Sara R; McFarquhar, Tara; Stevens, Suzanne; Ouellet-Morin, Isabelle; Melhuish, Edward; Belsky, Jay

    2015-02-01

    Given mixed findings as to whether stressful experiences and relationships are associated with increases or decreases in children's cortisol reactivity, we tested whether a child's developmental history of risk exposure explained variation in cortisol reactivity to an experimentally induced task. We also tested whether the relationship between cortisol reactivity and children's internalizing and externalizing problems varied as a function of their developmental history of stressful experiences and relationships. Participants included 400 children (M = 9.99 years, SD = 0.74 years) from the Children's Experiences and Development Study. Early risk exposure was measured by children's experiences of harsh, nonresponsive parenting at 3 years. Recent risk exposure was measured by children's exposure to traumatic events in the past year. Children's cortisol reactivity was measured in response to a social provocation task and parents and teachers described children's internalizing and externalizing problems. The effect of recent exposure to traumatic events was partially dependent upon a child's early experiences of harsh, nonresponsive parenting: the more traumatic events children had recently experienced, the greater their cortisol reactivity if they had experienced lower (but not higher) levels of harsh, nonresponsive parenting at age 3. The lowest levels of cortisol reactivity were observed among children who had experienced the most traumatic events in the past year and higher (vs. lower) levels of harsh, nonresponsive parenting in early childhood. Among youth who experienced harsh, nonresponsive parent-child relationships in early childhood and later traumatic events, lower levels of cortisol reactivity were associated with higher levels of internalizing and externalizing problems. Hypothalamic-pituitary-adrenal (HPA) axis reactivity to psychological stressors and the relationship between HPA axis reactivity and children's internalizing and externalizing

  11. Early Childhood Household Smoke Exposure Predicts Less Task-Oriented Classroom Behavior at Age 10

    ERIC Educational Resources Information Center

    Pagani, Linda S.; Fitzpatrick, Caroline

    2016-01-01

    Secondhand tobacco smoke is considered a developmental neurotoxicant especially given underdeveloped vital systems in young children. An ecological test of its negative influence on brain development can be made by examining the prospective association between early childhood household smoke exposure and later classroom behavior. Using a…

  12. An examination of sex differences in the effects of early-life opiate and alcohol exposure

    PubMed Central

    Terasaki, Laurne S.; Gomez, Julie; Schwarz, Jaclyn M.

    2016-01-01

    Early-life exposure to drugs and alcohol is one of the most preventable causes of developmental, behavioural and learning disorders in children. Thus a significant amount of basic, animal and human research has focused on understanding the behavioural consequences and the associated neural effects of exposure to drugs and alcohol during early brain development. Despite this, much of the previous research that has been done on this topic has used predominantly male subjects or rodents. While many of the findings from these male-specific studies may ultimately apply to females, the purpose of this review is to highlight the research that has also examined sex as a factor and found striking differences between the sexes in their response to early-life opiate and alcohol exposure. Finally, we will also provide a framework for scientists interested in examining sex as a factor in future experiments that specifically examine the consequences of early-life drug and alcohol exposure. PMID:26833841

  13. Adult Neuropsychological Performance Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

  14. Child Maltreatment and Children's Developmental Trajectories in Early- to Middle-Childhood

    PubMed Central

    Font, Sarah A.; Berger, Lawrence M.

    2014-01-01

    Associations between experiencing child maltreatment and adverse developmental outcomes are widely studied, yet conclusions regarding the extent to which effects are bidirectional, and whether they are likely causal, remain elusive. This study uses the Fragile Families and Child Well-Being study, a birth cohort of 4,898 children followed from birth through age 9. Hierarchical linear modeling and structural equation modeling are employed to estimate associations of maltreatment with cognitive and social-emotional well-being. Results suggest that effects of early childhood maltreatment emerge immediately, though developmental outcomes are also affected by newly occurring maltreatment over time. Additionally, findings indicate that children's early developmental scores predict their subsequent probability of experiencing maltreatment, though to a lesser extent than early maltreatment predicts subsequent developmental outcomes. PMID:25521556

  15. Developmental Pathways from Prenatal Tobacco and Stress Exposure to Behavioral Disinhibition

    PubMed Central

    Clark, C.A.C.; Espy, K.A.; Wakschlag, L.

    2016-01-01

    Prenatal tobacco exposure (PTE) and prenatal stress exposure (PSE) each have been linked to externalizing behavior, although their effects generally have been considered in isolation. Here, we aimed to characterize the joint or interactive roles of PTE and PSE in early developmental pathways to behavioral disinhibition, a profile of cognitive and behavioral under-control that presages severe externalizing behavior. As part of a prospective, longitudinal study, 296 children were assessed at a mean age of 5 years. Exposures were assessed via repeated interviews across the prenatal period and bioassays of cotinine were obtained. Behavioral disinhibition was assessed using temperament measures in infancy, performance-based executive control tasks and measures of disruptive and inattentive behavior. PSE was associated with a higher probability of difficult temperament in infancy. Each exposure independently predicted poorer executive control at age 5 years. Difficult temperament and executive control difficulties in turn predicted elevated levels of disruptive behavior, although links from PTE and PSE to parent-reported attention problems were less robust. Children who experienced these prenatal exposures in conjunction with higher postnatal stress exposure showed the lowest executive control and highest levels of disruptive behavior. Findings highlight the compounding adverse impact of PTE and PSE on children’s behavioral trajectories. Given their high concordance, prenatal health campaigns should target these exposures in tandem. PMID:26628107

  16. Assessment of health risks resulting from early-life exposures: Are current chemical toxicity testing protocols and risk assessment methods adequate?

    PubMed

    Felter, Susan P; Daston, George P; Euling, Susan Y; Piersma, Aldert H; Tassinari, Melissa S

    2015-03-01

    Abstract Over the last couple of decades, the awareness of the potential health impacts associated with early-life exposures has increased. Global regulatory approaches to chemical risk assessment are intended to be protective for the diverse human population including all life stages. However, questions persist as to whether the current testing approaches and risk assessment methodologies are adequately protective for infants and children. Here, we review physiological and developmental differences that may result in differential sensitivity associated with early-life exposures. It is clear that sensitivity to chemical exposures during early-life can be similar, higher, or lower than that of adults, and can change quickly within a short developmental timeframe. Moreover, age-related exposure differences provide an important consideration for overall susceptibility. Differential sensitivity associated with a life stage can reflect the toxicokinetic handling of a xenobiotic exposure, the toxicodynamic response, or both. Each of these is illustrated with chemical-specific examples. The adequacy of current testing protocols, proposed new tools, and risk assessment methods for systemic noncancer endpoints are reviewed in light of the potential for differential risk to infants and young children.

  17. Early developmental trajectories of preterm infants.

    PubMed

    Yaari, Maya; Mankuta, David; Harel-Gadassi, Ayelet; Friedlander, Edwa; Bar-Oz, Benjamin; Eventov-Friedman, Smadar; Maniv, Nimrod; Zucker, David; Yirmiya, Nurit

    2017-11-04

    Preterm infants are at risk for neuro-developmental impairments and atypical developmental trajectories. The aims of this study were to delineate early developmental trajectories of preterm and full-term infants. The cognitive, language, and motor development of 149 infants - 19 extremely preterm (EPT), 34 very preterm (VPT), 57 moderately preterm (MPT), and 39 full-term (FT) - was evaluated using Mullen Scales at 1, 4, 8, 12, and 18 months. Mixed models were applied to examine group differences. Gender, maternal education, and neurobehavior were included as predictors of developmental trajectories. The EPT and VPT infants achieved significantly lower scores than the FT infants in all domains, with a significantly increasing gap over time. The MPT infants' trajectories were more favorable than those of the EPT and VPT infants yet lower than the FT infants on the Visual Reception, Gross, and Fine Motor subscales. Male gender and lower maternal education were associated with lower scores that declined over time. Abnormal neonatal neurobehavior was associated lower Mullen scores and with less stability in scores over time. The EPT and VPT infants were found to have disadvantages across all domains. The MPT infants revealed more favorable developmental trajectories yet displayed vulnerability compared to the FT infants. Gender, maternal education, and neonatal neurobehavior are important in predicting the developmental outcomes of preterm infants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Developmental PCB Exposure Increases Audiogenic Seizures and Decreases Glutamic Acid Decarboxylase in the Inferior Colliculus.

    PubMed

    Bandara, Suren B; Eubig, Paul A; Sadowski, Renee N; Schantz, Susan L

    2016-02-01

    Previously, we observed that developmental polychlorinated biphenyl (PCB) exposure resulted in an increase in audiogenic seizures (AGSs) in rats. However, the rats were exposed to loud noise in adulthood, and were not tested for AGS until after 1 year of age, either of which could have interacted with early PCB exposure to increase AGS susceptibility. This study assessed susceptibility to AGS in young adult rats following developmental PCB exposure alone (without loud noise exposure) and investigated whether there was a decrease in GABA inhibitory neurotransmission in the inferior colliculus (IC) that could potentially explain this effect. Female Long-Evans rats were dosed orally with 0 or 6 mg/kg/day of an environmentally relevant PCB mixture from 28 days prior to breeding until the pups were weaned at postnatal day 21. One male-female pair from each litter was retained for the AGS study whilst another was retained for Western blot analysis of glutamic acid decarboxylase (GAD) and GABAAα1 receptor in the IC, the site in the auditory midbrain where AGS are initiated. There was a significant increase in the number and severity of AGSs in the PCB groups, with females somewhat more affected than males. GAD65 was decreased but there was no change in GAD67 or GABAAα1 in the IC indicating decreased inhibitory regulation in the PCB group. These results confirm that developmental PCB exposure alone is sufficient to increase susceptibility to AGS, and provide the first evidence for a possible mechanism of action at the level of the IC. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Reproductive Consequences of Developmental Phytoestrogen Exposure

    PubMed Central

    Jefferson, Wendy N.; Patisaul, Heather B.; Williams, Carmen J.

    2012-01-01

    Phytoestrogens, estrogenic compounds derived from plants, are ubiquitous in human and animal diets. These chemicals are generally much less potent than estradiol but act via similar mechanisms. The most common source of phytoestrogen exposure to humans is soybean-derived foods that are rich in the isoflavones genistein and daidzein. These isoflavones are also found at relatively high levels in soy-based infant formulas. Phytoestrogens have been promoted as healthy alternatives to synthetic estrogens and are found in many dietary supplements. The aim of this review is to examine the evidence that phytoestrogen exposure, particularly in developmentally sensitive periods of life, has consequences for future reproductive health. PMID:22223686

  1. Is There a Critical Period for the Developmental Neurotoxicity of Low-Level Tobacco Smoke Exposure?

    PubMed

    Slotkin, Theodore A; Stadler, Ashley; Skavicus, Samantha; Card, Jennifer; Ruff, Jonathan; Levin, Edward D; Seidler, Frederic J

    2017-01-01

    Secondhand tobacco smoke exposure in pregnancy increases the risk of neurodevelopmental disorders. We evaluated in rats whether there is a critical period during which tobacco smoke extract (TSE) affects the development of acetylcholine and serotonin systems, prominent targets for adverse effects of nicotine and tobacco smoke. We simulated secondhand smoke exposure by administering TSE so as to produce nicotine concentrations one-tenth those in active smoking, with 3 distinct, 10-day windows: premating, early gestation or late gestation. We conducted longitudinal evaluations in multiple brain regions, starting in early adolescence (postnatal day 30) and continued to full adulthood (day 150). TSE exposure in any of the 3 windows impaired presynaptic cholinergic activity, exacerbated by a decrement in nicotinic cholinergic receptor concentrations. Although the adverse effects were seen for all 3 treatment windows, there was a distinct progression, with lowest sensitivity for premating exposure and higher sensitivity for gestational exposures. Serotonin receptors were also reduced by TSE exposure with the same profile: little effect with premating exposure, intermediate effect with early gestational exposure and large effect with late gestational exposure. As serotonergic circuits can offset the neurobehavioral impact of cholinergic deficits, these receptor changes were maladaptive. Thus, there is no single 'critical period' for effects of low-level tobacco smoke but there is differential sensitivity dependent upon the developmental stage at the time of exposure. Our findings reinforce the need to avoid secondhand smoke exposure not only during pregnancy, but also in the period prior to conception, or generally for women of childbearing age. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Developmentally Appropriate Practice in Early Elementary Grade Schools in Bangkok, Thailand

    ERIC Educational Resources Information Center

    Saifah, Yotsawee

    2012-01-01

    The purposes of this study were (a) to examine early elementary grade teachers' developmentally appropriate beliefs and their teaching practices in public schools in Bangkok, (b) to explore the functioning of developmentally appropriate practice in the two chosen early elementary schools, and (c) to determine the factors that influence the…

  3. Child maltreatment and children's developmental trajectories in early to middle childhood.

    PubMed

    Font, Sarah A; Berger, Lawrence M

    2015-01-01

    Associations between experiencing child maltreatment and adverse developmental outcomes are widely studied, yet conclusions regarding the extent to which effects are bidirectional, and whether they are likely causal, remain elusive. This study uses the Fragile Families and Child Wellbeing Study, a birth cohort of 4,898 children followed from birth through age 9. Hierarchical linear modeling and structural equation modeling are employed to estimate associations of maltreatment with cognitive and social-emotional well-being. Results suggest that effects of early childhood maltreatment emerge immediately, though developmental outcomes are also affected by newly occurring maltreatment over time. Additionally, findings indicate that children's early developmental scores predict their subsequent probability of experiencing maltreatment, though to a lesser extent than early maltreatment predicts subsequent developmental outcomes. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.

  4. Sucrose exposure in early life alters adult motivation and weight gain.

    PubMed

    Frazier, Cristianne R M; Mason, Peggy; Zhuang, Xiaoxi; Beeler, Jeff A

    2008-09-17

    The cause of the current increase in obesity in westernized nations is poorly understood but is frequently attributed to a 'thrifty genotype,' an evolutionary predisposition to store calories in times of plenty to protect against future scarcity. In modern, industrialized environments that provide a ready, uninterrupted supply of energy-rich foods at low cost, this genetic predisposition is hypothesized to lead to obesity. Children are also exposed to this 'obesogenic' environment; however, whether such early dietary experience has developmental effects and contributes to adult vulnerability to obesity is unknown. Using mice, we tested the hypothesis that dietary experience during childhood and adolescence affects adult obesity risk. We gave mice unlimited or no access to sucrose for a short period post-weaning and measured sucrose-seeking, food consumption, and weight gain in adulthood. Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it. When high-sugar/high-fat dietary options were made freely-available, however, the sucrose-exposed mice gained more weight than mice without early sucrose exposure. These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low. This study demonstrates that early post-weaning experience can modify the expression of a 'thrifty genotype' and alter an adult animal's response to its environment, a finding consistent with evidence of pre- and peri-natal programming of adult obesity risk by maternal nutritional status. Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity.

  5. Developmental Ethanol Exposure Leads to Dysregulation of Lipid Metabolism and Oxidative Stress in Drosophila

    PubMed Central

    Logan-Garbisch, Theresa; Bortolazzo, Anthony; Luu, Peter; Ford, Audrey; Do, David; Khodabakhshi, Payam; French, Rachael L.

    2014-01-01

    Ethanol exposure during development causes an array of developmental abnormalities, both physiological and behavioral. In mammals, these abnormalities are collectively known as fetal alcohol effects (FAE) or fetal alcohol spectrum disorder (FASD). We have established a Drosophila melanogaster model of FASD and have previously shown that developmental ethanol exposure in flies leads to reduced expression of insulin-like peptides (dILPs) and their receptor. In this work, we link that observation to dysregulation of fatty acid metabolism and lipid accumulation. Further, we show that developmental ethanol exposure in Drosophila causes oxidative stress, that this stress is a primary cause of the developmental lethality and delay associated with ethanol exposure, and, finally, that one of the mechanisms by which ethanol increases oxidative stress is through abnormal fatty acid metabolism. These data suggest a previously uncharacterized mechanism by which ethanol causes the symptoms associated with FASD. PMID:25387828

  6. Developmental profiles of progesterone receptor transcripts and molecular responses to gestagen exposure during Silurana tropicalis early development.

    PubMed

    Thomson, Paisley; Langlois, Valerie S

    2018-05-18

    Environmental gestagens are an emerging class of contaminants that have been recently measured in surface water and can interfere with reproduction in aquatic vertebrates. Gestagens include endogenous progestogens, such as progesterone (P4), which bind P4-receptors and have critically important roles in vertebrate physiology and reproduction. Gestagens also include synthetic progestins, which are components of human and veterinary drugs, such as melengestrol acetate (MGA). Endogenous progestogens are essential in the regulation of reproduction in mammalian species, but the role of P4 in amphibian larval development remains unclear. This project aims to understand the roles and the regulatory mechanisms of P4 in amphibians and to assess the consequences of exposures to environmental gestagens on the P4-receptor signaling pathways in frogs. Here, we established the developmental profiles of the P4 receptors: the intracellular progesterone receptor (ipgr), the membrane progesterone receptor β (mpgrβ), and the progesterone receptor membrane component 1 (pgrmc1) in Western clawed frog (Silurana tropicalis) embryos using real-time qPCR. P4-receptor mRNAs were detected throughout embryogenesis. Transcripts for ipgr and pgrmc1 were detected in embryos at Nieuwkoop and Faber (NF) stage 2 and 7, indicative of maternal transfer of mRNA. We also assessed the effects of P4 and MGA exposure in embryonic and early larval development. Endocrine responses were evaluated through transcript analysis of a suite of gene targets of interest, including: ipgr, mpgrβ, pgrmc1, androgen receptor (ar), estrogen receptor α (erα), follicle stimulating hormone β (fshβ), prolactin (prl), and the steroid 5-alpha reductase family (srd5α1, 2, and 3). Acute exposure (NF 12-46) to P4 caused a 2- to 5-fold change increase of ipgr, mpgrβ, pgrmc1, and ar mRNA levels at the environmentally relevant concentration of 195 ng/L P4. Acute exposure to MGA induced a 56% decrease of srd5α3 at 1140

  7. A Drosophila model for developmental nicotine exposure

    PubMed Central

    2017-01-01

    Despite the known health risks of tobacco smoking, many people including pregnant women continue smoking. The effects of developmental nicotine exposure are known, but the underlying mechanisms are not well understood. Drosophila melanogaster is a model organism that can be used for uncovering genetic and molecular mechanisms for drugs of abuse. Here I show that Drosophila can be a model to elucidate the mechanisms for nicotine’s effects on a developing organism. Drosophila reared on nicotine food display developmental and behavioral effects similar to those in mammals including decreased survival and weight, increased developmental time, and decreased sensitivity to acute nicotine and ethanol. The Drosophila nicotinic acetylcholine receptor subunit alpha 7 (Dα7) mediates some of these effects. A novel role for Dα7 on ethanol sedation in Drosophila is also shown. Future research taking advantage of the genetic and molecular tools for Drosophila will allow additional discovery of the mechanisms behind the effects of nicotine during development. PMID:28498868

  8. Mother-Child Interaction and Resilience in Children with Early Developmental Risk

    PubMed Central

    Fenning, Rachel M.; Baker, Jason K.

    2014-01-01

    Although prenatal and genetic factors make strong contributions to the emergence of intellectual disability (ID), children's early environment may have the potential to alter developmental trajectories and to foster resilience in children with early risk. The present study examined mother-child interaction and the promotion of competence in 50 children with early developmental delays. Three related but distinct aspects of mother-child interaction were considered: maternal technical scaffolding, maternal positive-sensitivity, and mother-child dyadic pleasure. Children were classified as exhibiting undifferentiated delays at age three based upon performance on developmental assessments and the absence of known genetic syndromes. Mother-child interaction was assessed at age four through observational ratings of structured laboratory tasks and through naturalistic home observations. ID was identified at age five using the dual criteria of clinically significant delays in cognitive functioning and adaptive behavior. Maternal technical scaffolding and dyadic pleasure each uniquely predicted reduced likelihood of later ID, beyond the contributions of children's early developmental level and behavioral functioning. Follow-up analyses suggested that mother-child interaction was primarily important to resilience in the area of adaptive behavior, with scaffolding and dyadic pleasure differentially associated with particular sub-domains. Implications for theories of intellectual disability and for family-based early intervention and prevention efforts are discussed. PMID:22662771

  9. The presence of MWCNTs reduces developmental toxicity of PFOS in early life stage of zebrafish.

    PubMed

    Wang, Shutao; Zhuang, Changlu; Du, Jia; Wu, Chuan; You, Hong

    2017-03-01

    Both carbon nanotubes (CNTs) and perfluorooctane sulfonate (PFOS) are used widely. There is considerable concern regarding their ecotoxicity. CNTs might interact with PFOS in water and result in different impacts compared with those after single exposures. To our knowledge, the developmental toxicity of PFOS in the presence of multi-walled carbon nanotubes (MWCNTs) in the early life stage of zebrafish (from 3 h post fertilization (hpf) to 96 hpf) was investigated for the first time in this study. The embryos and larvae were exposed to PFOS (0.2, 0.4, 0.8, and 1.6 mg/L), MWCNTs (50 mg/L), and a mixture of both. Compared with PFOS exposure, the adverse effects induced by PFOS on the hatching rate of zebrafish embryos and the heart rate and body length of zebrafish larvae were reduced in the presence of MWCNTs, and mortality and malformation were also alleviated. In addition, zebrafish larvae exposed to PFOS showed decreased activities of superoxide dismutase, catalase, and glutathione peroxidase, as well as decreased levels of reactive oxygen species and malondialdehyde, in the presence of MWCNTs, indicating that oxidative stress and lipid peroxidation was relieved. Thus, the presence of MWCNTs reduces the developmental toxicity of PFOS in the early life stage of zebrafish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Developmental estrogen exposures and disruptions to maternal behavior and brain: Effects of ethinyl estradiol, a common positive control.

    PubMed

    Catanese, Mary C; Vandenberg, Laura N

    2017-11-07

    Due of its structural similarity to the endogenous estrogen 17β-estradiol (E2), the synthetic estrogen 17α-ethinyl estradiol (EE2) is widely used to study the effects of estrogenic substances on sensitive organs at multiple stages of development. Here, we investigated the effects of EE2 on maternal behavior and the maternal brain in females exposed during gestation and the perinatal period. We assessed several components of maternal behavior including nesting behavior and pup retrieval; characterized the expression of estrogen receptor (ER)α in the medial preoptic area (MPOA), a brain region critical for the display of maternal behavior; and measured expression of tyrosine hydroxylase, a marker for dopaminergic cells, in the ventral tegmental area (VTA), a brain region important in maternal motivation. We found that developmental exposure to EE2 induces subtle effects on several aspects of maternal behavior including time building the nest and time spent engaged in self-care. Developmental exposure to EE2 also altered ERα expression in the central MPOA during both early and late lactation and led to significantly reduced tyrosine hydroxylase immunoreactivity in the VTA. Our results demonstrate both dose- and postpartum stage-related effects of developmental exposure to EE2 on behavior and brain that manifest later in adulthood, during the maternal period. These findings provide further evidence for effects of exposure to exogenous estrogenic compounds during the critical periods of fetal and perinatal development. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Developmental predictors of inattention-hyperactivity from pregnancy to early childhood.

    PubMed

    Foulon, Stéphanie; Pingault, Jean-Baptiste; Larroque, Béatrice; Melchior, Maria; Falissard, Bruno; Côté, Sylvana M

    2015-01-01

    The objective of the study was to characterize the developmental sequence of pre- and postnatal risk factors for inattention-hyperactivity symptoms in preschoolers. Longitudinal data came from a French population based birth cohort study (EDEN; N = 1311 mother-child pairs followed from the pregnancy onwards). Inattention-hyperactivity symptoms were assessed with the Strengths and Difficulties Questionnaire when participating children were 3 years of age. Potential risk factors were classified in four domains (fetal exposures and child somatic characteristics, child temperament, child neurodevelopmental status, psychosocial environment) and four periods (before pregnancy, prenatal/birth, infancy, toddlerhood). Their role as potential moderator or mediator was tested with path analysis to determine the developmental sequence. A low family socioeconomic status before pregnancy was the main environmental risk factor for inattention-hyperactivity symptoms at 3 years, and its effect occurred via two pathways. The first was a risk pathway, where lower SES was associated with higher maternal depression and anxiety during pregnancy; then to higher maternal and child distress and dysregulation in infancy; and in turn to higher levels of inattention-hyperactivity at 3 years. The second was a protective pathway, where higher SES was associated with longer duration of breastfeeding during infancy; then to better child neurodevelopmental status in toddlerhood; and in turn to lower levels of inattention-hyperactivity at 3 years. This study identified psychosocial factors at several developmental periods that represent potential targets for preventing the emergence of inattention-hyperactivity symptoms in early childhood.

  12. Exposure of children with developmental delay to social determinants of poor health: cross-sectional case record review study.

    PubMed

    Emerson, E; Brigham, P

    2015-03-01

    Research on child development in general has highlighted the importance that the family environment plays in mediating the pathway between exposure to low socio-economic position (SEP) and child well-being. While child developmental models in intellectual disability have highlighted the interplay between social context, family environment and child development, little empirical work has attempted to formally evaluate the evidence in support of specific mediating pathways between low SEP and child outcomes. Secondary analysis of cross-sectional confidentialized needs analysis data collected in three Primary Care Trusts in England covering a total population of 1.25 million people. Case record reviews were undertaken for 46 023 households, 2236 (4.9%) of which contained a child in the target age range with developmental delay. Children with developmental delay, when compared with their non-disabled peers, were at significantly increased risk of poorer health outcomes and of being exposed to a wide range of social determinants of poor health. Controlling for between-group differences in exposure to social determinants of poor health reduced the risk of developmental delay being associated with poorer health outcomes by 45% for behaviour problems and 89% for risk of significant harm. For children with developmental delay, parenting difficulties appears to play a particularly significant role in partially mediating the effects of low SEP. The findings of the present study point to the potential effectiveness of family-focused early intervention to prevent the emergence and escalation of behavioural difficulties and health problems in children with developmental delay. © 2014 John Wiley & Sons Ltd.

  13. Developmental exposure to a complex PAH mixture causes persistent behavioral effects in naive Fundulus heteroclitus (killifish) but not in a population of PAH-adapted killifish.

    PubMed

    Brown, D R; Bailey, J M; Oliveri, A N; Levin, E D; Di Giulio, R T

    2016-01-01

    Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in

  14. Practitioner Review: Early Adversity and Developmental Disorders

    ERIC Educational Resources Information Center

    Taylor, Eric; Rogers, Jody Warner

    2005-01-01

    Background: Knowledge of genetic influences, on developmental disorders such as autism spectrum, attention deficit/hyperactivity disorder and learning disabilities, has increased the opportunities for understanding the influences of the early environment. Methods: This paper provides a selective, narrative review for clinicians of the effects of…

  15. Developmental exposure to bisphenol A modulates innate but not adaptive immune responses to influenza A virus infection.

    PubMed

    Roy, Anirban; Bauer, Stephen M; Lawrence, B Paige

    2012-01-01

    Bisphenol A (BPA) is used in numerous products, such as plastic bottles and food containers, from which it frequently leaches out and is consumed by humans. There is a growing public concern that BPA exposure may pose a significant threat to human health. Moreover, due to the widespread and constant nature of BPA exposure, not only adults but fetuses and neonates are also exposed to BPA. There is mounting evidence that developmental exposures to chemicals from our environment, including BPA, contribute to diseases late in life; yet, studies of how early life exposures specifically alter the immune system are limited. Herein we report an examination of how maternal exposure to a low, environmentally relevant dose of BPA affects the immune response to infection with influenza A virus. We exposed female mice during pregnancy and through lactation to the oral reference dose for BPA listed by the US Environmental Protection Agency, and comprehensively examined immune parameters directly linked to disease outcomes in adult offspring following infection with influenza A virus. We found that developmental exposure to BPA did not compromise disease-specific adaptive immunity against virus infection, or reduce the host's ability to clear the virus from the infected lung. However, maternal exposure to BPA transiently reduced the extent of infection-associated pulmonary inflammation and anti-viral gene expression in lung tissue. From these observations, we conclude that maternal exposure to BPA slightly modulates innate immunity in adult offspring, but does not impair the anti-viral adaptive immune response, which is critical for virus clearance and survival following influenza virus infection.

  16. Parental dietary seleno-L-methionine exposure and resultant offspring developmental toxicity

    PubMed Central

    Chernick, Melissa; Ware, Megan; Albright, Elizabeth; Kwok, Kevin W.H.; Dong, Wu; Zheng, Na; Hinton, David E.

    2015-01-01

    Selenium (Se) leaches into water from agricultural soils and from storage sites for coal fly ash. Se toxicity causes population and community level effects in fishes and birds. We used the laboratory aquarium model fish, Japanese medaka (Oryzias latipes), an asynchronous breeder, to determine aspects of uptake in adults and resultant developmental toxicity in their offspring. The superior imaging properties of the model enabled detailed descriptions of phenotypic alterations not commonly reported in the existing Se literature. Adult males and females in treatment groups were exposed, separately and together, to a dry diet spiked with 0, 12.5, 25, or 50 µg/g (dry weight) seleno-L-methionine (SeMet) for 6 days, and their embryo progeny collected for 5 days, maintained under controlled conditions and observed daily for hatchability, mortality and/or developmental toxicity. Sites of alteration included: craniofacial, pericardium and abdomen (Pc/Ab), notochord, gall bladder, spleen, blood, and swim bladder. Next, adult tissue Se concentrations (liver, skeletal muscle, ovary and testis) were determined and compared in treatment groups of bred and unbred individuals. No significant difference was found across treatment groups at the various SeMet concentrations; and, subsequent analysis compared exposed vs. control in each of the treatment groups at 10 dpf. Increased embryo mortality was observed in all treatment groups, compared to controls, and embryos had a decreased hatching rate when both parents were exposed. Exposure resulted in significantly more total altered phenotypes than controls. When altered phenotypes following exposure of both parents were higher than maternal only exposure, a male role was suggested. The comparisons between treatment groups revealed that particular types of phenotypic change may be driven by the sex of the exposed parent. Additionally, breeding reduced Se concentrations in some adult tissues, specifically the liver of exposed females

  17. Developmental cigarette smoke exposure II: Hippocampus proteome and metabolome profiles in adult offspring.

    PubMed

    Neal, Rachel E; Jagadapillai, Rekha; Chen, Jing; Webb, Cindy; Stocke, Kendall; Greene, Robert M; Pisano, M Michele

    2016-10-01

    Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. Utilizing a murine experimental model of "active" inhalation exposure to cigarette smoke spanning the entirety of gestation and through human third trimester equivalent hippocampal development [gestation day 1 (GD1) through postnatal day 21 (PD21)], we examined hippocampus proteome and metabolome alterations present at a time during which developmental cigarette smoke exposure (CSE)-induced behavioral and cognitive impairments are evident in adult animals from this model system. At six month of age, carbohydrate metabolism and lipid content in the hippocampus of adult offspring remained impacted by prior exposure to cigarette smoke during the critical period of hippocampal ontogenesis indicating limited glycolysis. These findings indicate developmental CSE-induced systemic glucose availability may limit both organism growth and developmental trajectory, including the capacity for learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Research on Children's Play: Analysis of Developmental and Early Education Journals from 2005 to 2007

    ERIC Educational Resources Information Center

    Cheng, Mei-Fang; Johnson, James E.

    2010-01-01

    Our review examined four early childhood journals ("Early Child Development and Care," "Early Childhood Education Journal," "Journal of Research in Childhood Education," and "Early Childhood Research Quarterly") and four developmental science journals ("Child Development," "Developmental Psychology," "Journal of Applied Developmental…

  19. Developmental timing and continuity of exposure to interparental violence and externalizing behavior as prospective predictors of dating violence.

    PubMed

    Narayan, Angela J; Englund, Michelle M; Egeland, Byron

    2013-11-01

    This study investigated the prospective pathways of children's exposure to interparental violence (EIPV) in early and middle childhood and externalizing behavior in middle childhood and adolescence as developmental predictors of dating violence perpetration and victimization at ages 23 and 26 years. Participants (N = 168) were drawn from a longitudinal study of low-income families. Path analyses examined whether timing or continuity of EIPV predicted dating violence and whether timing or continuity of externalizing behavior mediated these pathways. Results indicated that EIPV in early childhood directly predicted perpetration and victimization at age 23. There were significant indirect effects from EIPV to dating violence through externalizing behavior in adolescence and life stress at age 23. Independent of EIPV, externalizing behavior in middle childhood also predicted dating violence through externalizing behavior in adolescence and life stress at age 23, but this pathway stemmed from maltreatment. These results highlight that the timing of EIPV and both the timing and the continuity of externalizing behavior are critical risks for the intergenerational transmission of dating violence. The findings support a developmental perspective that negative early experiences and children's externalizing behavior are powerful influences for dating violence in early adulthood.

  20. Developmental Timing and Continuity of Exposure to Interparental Violence and Externalizing Behavior as Prospective Predictors of Dating Violence

    PubMed Central

    Narayan, Angela J.; Englund, Michelle M.; Egeland, Byron

    2014-01-01

    This study investigated the prospective pathways of children's exposure to interparental violence (EIPV) in early and middle childhood and externalizing behavior in middle childhood and adolescence as developmental predictors of dating violence perpetration and victimization at ages 23 and 26 years. Participants (N = 168) were drawn from a longitudinal study of low-income families. Path analyses examined whether timing or continuity of EIPV predicted dating violence and whether timing or continuity of externalizing behavior mediated these pathways. Results indicated that EIPV in early childhood directly predicted perpetration and victimization at age 23. There were significant indirect effects from EIPV to dating violence through externalizing behavior in adolescence and life stress at age 23. Independent of EIPV, externalizing behavior in middle childhood also predicted dating violence through externalizing behavior in adolescence and life stress at age 23, but this pathway stemmed from maltreatment. These results highlight that the timing of EIPV and both the timing and continuity of externalizing behavior are critical risks for the intergenerational transmission of dating violence. Findings support a developmental perspective that negative early experiences and children's externalizing behavior are powerful influences for dating violence in early adulthood. PMID:24229543

  1. Developmental Outcomes after Early Prefrontal Cortex Damage

    ERIC Educational Resources Information Center

    Eslinger, Paul J.; Flaherty-Craig, Claire V.; Benton, Arthur L.

    2004-01-01

    The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical…

  2. Mechanisms Underlying Latent Disease Risk Associated with Early-Life Arsenic Exposure: Current Research Trends and Scientific Gaps

    PubMed Central

    Bailey, Kathryn A.; Smith, Allan H.; Tokar, Erik J.; Graziano, Joseph H.; Kim, Kyoung-Woong; Navasumrit, Panida; Ruchirawat, Mathuros; Thiantanawat, Apinya; Suk, William A.; Fry, Rebecca C.

    2015-01-01

    Background Millions of individuals worldwide, particularly those living in rural and developing areas, are exposed to harmful levels of inorganic arsenic (iAs) in their drinking water. Inorganic As exposure during key developmental periods is associated with a variety of adverse health effects, including those that are evident in adulthood. There is considerable interest in identifying the molecular mechanisms that relate early-life iAs exposure to the development of these latent diseases, particularly in relationship to cancer. Objectives This work summarizes research on the molecular mechanisms that underlie the increased risk of cancer development in adulthood that is associated with early-life iAs exposure. Discussion Epigenetic reprogramming that imparts functional changes in gene expression, the development of cancer stem cells, and immunomodulation are plausible underlying mechanisms by which early-life iAs exposure elicits latent carcinogenic effects. Conclusions Evidence is mounting that relates early-life iAs exposure and cancer development later in life. Future research should include animal studies that address mechanistic hypotheses and studies of human populations that integrate early-life exposure, molecular alterations, and latent disease outcomes. Citation Bailey KA, Smith AH, Tokar EJ, Graziano JH, Kim KW, Navasumrit P, Ruchirawat M, Thiantanawat A, Suk WA, Fry RC. 2016. Mechanisms underlying latent disease risk associated with early-life arsenic exposure: current research trends and scientific gaps. Environ Health Perspect 124:170–175; http://dx.doi.org/10.1289/ehp.1409360 PMID:26115410

  3. Developmental Exposure to Cocaine Dynamically Dysregulates Cortical Arc/Arg3.1 Modulation in Response to a Challenge.

    PubMed

    Caffino, Lucia; Giannotti, Giuseppe; Mottarlini, Francesca; Racagni, Giorgio; Fumagalli, Fabio

    2017-02-01

    During adolescence, the medial prefrontal cortex (mPFC) is still developing. We have previously shown that developmental cocaine exposure alters mPFC's ability to cope with challenging events. In this manuscript, we exposed rats developmentally treated with cocaine to a novelty task and analyzed the molecular changes of mPFC. Rats were exposed to cocaine from post-natal day (PND) 28 to PND 42 and sacrificed at PND 43, immediately after the novel object recognition (NOR) test. Cocaine-treated rats spent more time exploring the novel object than saline-treated counterparts, suggesting an increased response to novelty. The messenger RNA (mRNA) and protein levels of the immediate early gene Arc/Arg3.1 were reduced in both infralimbic (IL) and prelimbic (PL) cortices highlighting a baseline reduction of mPFC neuronal activity as a consequence of developmental exposure to cocaine. Intriguingly, significant molecular changes were observed in the IL, but not PL, cortex in response to the combination of cocaine exposure and test such as a marked upregulation of both Arc/Arg3.1 mRNA and protein levels only in cocaine-treated rats. As for proteins, such increase was observed only in the post-synaptic density and not in the whole homogenate, suggesting psychostimulant-induced changes in trafficking of Arc/Arg3.1 or an increased local translation. Notably, the same profile of Arc/Arg3.1 was observed for post-synaptic density (PSD)-95 leading to the possibility that Arc/Arg3.1 and PSD-95 bridge together to promote aberrant synaptic connectivity in IL cortex following repeated exposure to cocaine during brain development.

  4. Effects of developmental exposure to bisphenol A and ethinyl estradiol on spatial navigational learning and memory in painted turtles (Chrysemys picta).

    PubMed

    Manshack, Lindsey K; Conard, Caroline M; Johnson, Sarah A; Alex, Jorden M; Bryan, Sara J; Deem, Sharon L; Holliday, Dawn K; Ellersieck, Mark R; Rosenfeld, Cheryl S

    2016-09-01

    Developmental exposure of turtles and other reptiles to endocrine disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE2, estrogen present in birth control pills), can induce partial to full gonadal sex-reversal in males. No prior studies have considered whether in ovo exposure to EDCs disrupts normal brain sexual differentiation. Yet, rodent model studies indicate early exposure to these chemicals disturbs sexually selected behavioral traits, including spatial navigational learning and memory. Thus, we sought to determine whether developmental exposure of painted turtles (Chrysemys picta) to BPA and EE2 results in sex-dependent behavioral changes. At developmental stage 17, turtles incubated at 26⁰C (male-inducing temperature) were treated with 1) BPA High (100μg /mL), 2) BPA Low (0.01μg/mL), 3) EE2 (0.2μg/mL), or 4) vehicle or no vehicle control groups. Five months after hatching, turtles were tested with a spatial navigational test that included four food containers, only one of which was baited with food. Each turtle was randomly assigned one container that did not change over the trial period. Each individual was tested for 14 consecutive days. Results show developmental exposure to BPA High and EE2 improved spatial navigational learning and memory, as evidenced by increased number of times spent in the correct target zone and greater likelihood of solving the maze compared to control turtles. This study is the first to show that in addition to overriding temperature sex determination (TSD) of the male gonad, these EDCs may induce sex-dependent behavioral changes in turtles. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. DEVELOPMENTAL NEUROTOXICITY FOLLOWING NEONATAL EXPOSURE TO 3,3'-IMINODIPROPIONITRILE IN THE RAT

    EPA Science Inventory

    Adult exposure to the neurotoxicant 3,3'-iminodipropionitrile (IDPN) induces a hyperkinetic syndrome consisting of spontaneous head movements, abnormal circling, backwards locomotion, and sensory disruption. e report here the behavioral effects of developmental exposure to IDPN i...

  6. Developmental Predictors of Inattention-Hyperactivity from Pregnancy to Early Childhood

    PubMed Central

    Foulon, Stéphanie; Pingault, Jean-Baptiste; Melchior, Maria; Falissard, Bruno; Côté, Sylvana M.

    2015-01-01

    Objective The objective of the study was to characterize the developmental sequence of pre- and postnatal risk factors for inattention-hyperactivity symptoms in preschoolers. Materials and Methods Longitudinal data came from a French population based birth cohort study (EDEN; N = 1311 mother-child pairs followed from the pregnancy onwards). Inattention-hyperactivity symptoms were assessed with the Strengths and Difficulties Questionnaire when participating children were 3 years of age. Potential risk factors were classified in four domains (fetal exposures and child somatic characteristics, child temperament, child neurodevelopmental status, psychosocial environment) and four periods (before pregnancy, prenatal/birth, infancy, toddlerhood). Their role as potential moderator or mediator was tested with path analysis to determine the developmental sequence. Results A low family socioeconomic status before pregnancy was the main environmental risk factor for inattention-hyperactivity symptoms at 3 years, and its effect occurred via two pathways. The first was a risk pathway, where lower SES was associated with higher maternal depression and anxiety during pregnancy; then to higher maternal and child distress and dysregulation in infancy; and in turn to higher levels of inattention-hyperactivity at 3 years. The second was a protective pathway, where higher SES was associated with longer duration of breastfeeding during infancy; then to better child neurodevelopmental status in toddlerhood; and in turn to lower levels of inattention-hyperactivity at 3 years. Discussion This study identified psychosocial factors at several developmental periods that represent potential targets for preventing the emergence of inattention-hyperactivity symptoms in early childhood. PMID:25938453

  7. Depression and Anxiety Symptoms: Onset, Developmental Course and Risk Factors during Early Childhood

    ERIC Educational Resources Information Center

    Cote, Sylvana M.; Boivin, Michel; Liu, Xuecheng; Nagin, Daniel S.; Zoccolillo, Mark; Tremblay, Richard E.

    2009-01-01

    Background: Depressive and anxiety disorders are among the top ten leading causes of disabilities. We know little, however, about the onset, developmental course and early risk factors for depressive and anxiety symptoms (DAS). Objective: Model the developmental trajectories of DAS during early childhood and to identify risk factors for atypically…

  8. Polyfluoroalkyl Chemicals and Learning and Developmental Disorders: Epidemiology and Exposure Assessment

    ERIC Educational Resources Information Center

    Hoffman, Jennifer Kate

    2010-01-01

    This dissertation has two areas of focus: learning and developmental disorders (LDDs) and polyfluoroalkyl chemicals (PFCs). Epidemiological and exposure assessment methods are applied to each. The first paper used geographic location as a surrogate for exposure and broadly assesses the effect of the environment, both physical and social, on LDD…

  9. Early visual language exposure and emergent literacy in preschool deaf children: findings from a national longitudinal study.

    PubMed

    Allen, Thomas E; Letteri, Amy; Choi, Song Hoa; Dang, Daqian

    2014-01-01

    Brief review is provided of recent research on the impact of early visual language exposure on a variety of developmental outcomes, including literacy, cognition, and social adjustment. This body of work points to the great importance of giving young deaf children early exposure to a visual language as a critical precursor to the acquisition of literacy. Four analyses of data from the Visual Language and Visual Learning (VL2) Early Education Longitudinal Study are summarized. Each confirms findings from previously published laboratory findings and points to the positive effects of early sign language on, respectively, letter knowledge, social adaptability, sustained visual attention, and cognitive-behavioral milestones necessary for academic success. The article concludes with a consideration of the qualitative similarity hypothesis and a finding that the hypothesis is valid, but only if it can be presented as being modality independent.

  10. CHRONIC DEVELOPMENTAL LEAD EXPOSURE REDUCES NEUROGENESIS IN ADULT HIPPOCAMPUS.

    EPA Science Inventory

    CHRONIC DEVELOPMENTAL LEAD EXPOSURE REDUCES NEUROGENESIS IN ADULT HIPPOCAMPUS. ME Gilbert1, ME Kelly2, S. Salant3, T Shafer1, J Goodman3 1Neurotoxicology Div, US EPA, RTP, NC, 27711, 2Children's Hospital, Philadelphia, PA, 19104, 3Helen Hayes Hospital, Haverstraw, NY, 10993.
    ...

  11. Chains of risk for alcohol use disorder: Mediators of exposure to neighborhood deprivation in early and middle childhood.

    PubMed

    Karriker-Jaffe, Katherine J; Lönn, Sara L; Cook, Won K; Kendler, Kenneth S; Sundquist, Kristina

    2018-03-01

    Our goal was to test a cascade model to identify developmental pathways, or chains of risk, from neighborhood deprivation in childhood to alcohol use disorder (AUD) in young adulthood. Using Swedish general population data, we examined whether exposure to neighborhood deprivation during early and middle childhood was associated with indicators of social functioning in adolescence and emerging adulthood, and whether these were predictive of AUD. Structural equation models showed exposure to neighborhood deprivation was associated with lower school achievement during adolescence, poor social functioning during emerging adulthood, and the development of AUD for both males and females. Understanding longitudinal pathways from early exposure to adverse environments to later AUD can inform prevention and intervention efforts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Developmental Triclosan Exposure Decreases Maternal and Offspring Thyroxine in Rats*

    EPA Science Inventory

    Epidemiological and laboratory data have demonstrated that disruption of maternal thyroid hormones during fetal developmental may result in irreversible neurological consequences in offspring. In a short-term exposure paradigm, triclosan decreased systemic thyroxine (T4) concentr...

  13. Developmental plasticity of growth and digestive efficiency in dependence of early-life food availability

    PubMed Central

    Kotrschal, Alexander; Szidat, Sönke; Taborsky, Barbara

    2014-01-01

    Nutrition is a potent mediator of developmental plasticity. If food is scarce, developing organisms may invest into growth to outgrow size-dependent mortality (short-term benefit) and/or into an efficient digestion system (long-term benefit). We investigated this potential trade-off, by determining the influence of food availability on juvenile body and organ growth, and on adult digestive efficiency in the cichlid fish Simochromis pleurospilus. We reared two groups of fish at constant high or low food rations, and we switched four other groups between these two rations at an early and late juvenile period. We measured juvenile growth and organ sizes at different developmental stages and determined adult digestive efficiency. Fish kept at constant, high rations grew considerably faster than low-food fish. Nevertheless, S. pleurospilus partly buffered the negative effects of low food availability by developing heavier digestive organs, and they were therefore more efficient in digesting their food as adults. Results of fish exposed to a ration switch during either the early or late juvenile period suggest (i) that the ability to show compensatory growth after early exposure to low food availability persists during the juvenile period, (ii) that digestive efficiency is influenced by varying juvenile food availability during the late juvenile phase and (iii) that the efficiency of the adult digestive system is correlated with the growth rate during a narrow time window of juvenile period. PMID:25866430

  14. Growth, Development, and Behavior in Early Childhood Following Prenatal Cocaine Exposure

    PubMed Central

    Frank, Deborah A.; Augustyn, Marilyn; Knight, Wanda Grant; Pell, Tripler; Zuckerman, Barry

    2008-01-01

    Context Despite recent studies that failed to show catastrophic effects of prenatal cocaine exposure, popular attitudes and public policies still reflect the belief that cocaine is a uniquely dangerous teratogen. Objective To critically review outcomes in early childhood after prenatal cocaine exposure in 5 domains: physical growth; cognition; language skills; motor skills; and behavior, attention, affect, and neurophysiology. Data Sources Search of MEDLINE and Psychological Abstracts from 1984 to October 2000. Study Selection Studies selected for detailed review (1) were published in a peerreviewed English-language journal; (2) included a comparison group; (3) recruited samples prospectively in the perinatal period; (4) used masked assessment; and (5) did not include a substantial proportion of subjects exposed in utero to opiates, amphetamines, phencyclidine, or maternal human immunodeficiency virus infection. Data Extraction Thirty-six of 74 articles met criteria and were reviewed by 3 authors. Disagreements were resolved by consensus. Data Synthesis After controlling for confounders, there was no consistent negative association between prenatal cocaine exposure and physical growth, developmental test scores, or receptive or expressive language. Less optimal motor scores have been found up to age 7 months but not thereafter, and may reflect heavy tobacco exposure. No independent cocaine effects have been shown on standardized parent and teacher reports of child behavior scored by accepted criteria. Experimental paradigms and novel statistical manipulations of standard instruments suggest an association between prenatal cocaine exposure and decreased attentiveness and emotional expressivity, as well as differences on neurophysiologic and attentional/affective findings. Conclusions Among children aged 6 years or younger, there is no convincing evidence that prenatal cocaine exposure is associated with developmental toxic effects that are different in severity

  15. Benefits of Stimulus Exposure: Developmental Learning Independent of Task Performance

    PubMed Central

    Green, David B.; Ohlemacher, Jocelyn; Rosen, Merri J.

    2016-01-01

    Perceptual learning (training-induced performance improvement) can be elicited by task-irrelevant stimulus exposure in humans. In contrast, task-irrelevant stimulus exposure in animals typically disrupts perception in juveniles while causing little to no effect in adults. This may be due to the extent of exposure, which is brief in humans while chronic in animals. Here we assessed the effects of short bouts of passive stimulus exposure on learning during development in gerbils, compared with non-passive stimulus exposure (i.e., during testing). We used prepulse inhibition of the acoustic startle response, a method that can be applied at any age, to measure gap detection thresholds across four age groups, spanning development. First, we showed that both gap detection thresholds and gap detection learning across sessions displayed a long developmental trajectory, improving throughout the juvenile period. Additionally, we demonstrated larger within- and across-animal performance variability in younger animals. These results are generally consistent with results in humans, where there are extended developmental trajectories for both the perception of temporally-varying signals, and the effects of perceptual training, as well as increased variability and poorer performance consistency in children. We then chose an age (mid-juveniles) that displayed clear learning over sessions in order to assess effects of brief passive stimulus exposure on this learning. We compared learning in mid-juveniles exposed to either gap detection testing (gaps paired with startles) or equivalent gap exposure without testing (gaps alone) for three sessions. Learning was equivalent in both these groups and better than both naïve age-matched animals and controls receiving no gap exposure but only startle testing. Thus, short bouts of exposure to gaps independent of task performance is sufficient to induce learning at this age, and is as effective as gap detection testing. PMID:27378837

  16. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis.

    PubMed

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Leite, Carlos Eduardo; De Paula Cognato, Giana; Bonan, Carla Denise

    2015-01-01

    Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Developmental Origins of Chronic Kidney Disease: Should We Focus on Early Life?

    PubMed Central

    Tain, You-Lin; Hsu, Chien-Ning

    2017-01-01

    Chronic kidney disease (CKD) is becoming a global burden, despite recent advances in management. CKD can begin in early life by so-called “developmental programming” or “developmental origins of health and disease” (DOHaD). Early-life insults cause structural and functional changes in the developing kidney, which is called renal programming. Epidemiological and experimental evidence supports the proposition that early-life adverse events lead to renal programming and make subjects vulnerable to developing CKD and its comorbidities in later life. In addition to low nephron endowment, several mechanisms have been proposed for renal programming. The DOHaD concept opens a new window to offset the programming process in early life to prevent the development of adult kidney disease, namely reprogramming. Here, we review the key themes on the developmental origins of CKD. We have particularly focused on the following areas: evidence from human studies support fetal programming of kidney disease; insight from animal models of renal programming; hypothetical mechanisms of renal programming; alterations of renal transcriptome in response to early-life insults; and the application of reprogramming interventions to prevent the programming of kidney disease. PMID:28208659

  18. BEHAVIORAL AND NEUROCHEMICAL CONSEQUENCES OF DEVELOPMENTAL ORGANOTIN EXPOSURE IN RATS.

    EPA Science Inventory

    Behavioral and Neurochemical Consequences of Developmental Organotin Exposure in Rats.
    Ehman, K.,1 Jenkins, S.,2 Barone Jr., S.2 and Moser, V.2 1Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, 2Neurotoxicology Division, U.S. Environmental Protection ...

  19. A REVIEW OF HUMAN STUDIES ON THE REPRODUCTIVE AND DEVELOPMENTAL EFFECTS OF PESTICIDE EXPOSURE

    EPA Science Inventory

    Many pesticides cxause reproductive or developmental toxicity at high doses in animal models, but effects in humans at environmental exposure levels are difficult to assess. Human data on reproductive and developmental outcomes for currently used pesticides may help to define ris...

  20. Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging?

    PubMed

    Shalev, Idan; Belsky, Jay

    2016-05-01

    Two seemingly independent bodies of research suggest a two-hit model of accelerated aging, one highlighting early-life stress and the other reproduction. The first, informed by developmental models of early-life stress, highlights reduced longevity effects of early adversity on telomere erosion, whereas the second, informed by evolutionary theories of aging, highlights such effects with regard to reproductive cost (in females). The fact that both early-life adversity and reproductive effort are associated with shorter telomeres and increased oxidative stress raises the prospect, consistent with life-history theory, that these two theoretical frameworks currently informing much research are tapping into the same evolutionary-developmental process of increased senescence and reduced longevity. Here we propose a mechanistic view of a two-hit model of accelerated aging in human females through (a) early-life adversity and (b) early reproduction, via a process of telomere erosion, while highlighting mediating biological embedding mechanisms that might link these two developmental aging processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Genetic Diversity Influences the Response of the Brain to Developmental Lead Exposure

    PubMed Central

    Schneider, Jay S.; Talsania, Keyur; Mettil, William; Anderson, David W.

    2014-01-01

    Although extrinsic factors, such as nutritional status, and some intrinsic genetic factors may modify susceptibility to developmental lead (Pb) poisoning, no studies have specifically examined the influence of genetic background on outcomes from Pb exposure. In this study, we used gene microarray profiling to identify Pb-responsive genes in rats of different genetic backgrounds, including inbred (Fischer 344 (F344)) and outbred (Long Evans (LE), Sprague Dawley (SD)) strains, to investigate the role that genetic variation may play in influencing outcomes from developmental Pb exposure. Male and female animals received either perinatal (gestation through lactation) or postnatal (birth through weaning) exposure to Pb in food (0, 250, or 750 ppm). RNA was extracted from the hippocampus at day 55 and hybridized to Affymetrix Rat Gene 1.0 ST Arrays. There were significant strain-specific effects of Pb on the hippocampal transcriptome with 978 transcripts differentially expressed in LE rats across all experimental groups, 269 transcripts differentially expressed in F344 rats, and only 179 transcripts differentially expressed in SD rats. These results were not due to strain-related differences in brain accumulation of Pb. Further, no genes were consistently differentially regulated in all experimental conditions. There was no set of “Pb toxicity” genes that are a molecular signature for Pb neurotoxicity that transcended sex, exposure condition, and strain. These results demonstrate the influence that strain and genetic background play in modifying the brain's response to developmental Pb exposure and may have relevance for better understanding the molecular underpinnings of the lack of a neurobehavioral signature in childhood Pb poisoning. PMID:24913800

  2. Reproduction Symposium: developmental programming of reproductive and metabolic health.

    PubMed

    Padmanabhan, V; Veiga-Lopez, A

    2014-08-01

    Inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (approximately 5 mo gestation and approximately 7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and/or reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of noninvasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting thereby keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level, all 3 feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive and metabolic diseases, insulin resistance, hypertension, and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of

  3. Developmental programming of reproductive and metabolic health1,2

    PubMed Central

    Padmanabhan, V.; Veiga-Lopez, A.

    2014-01-01

    The inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (~5 mo gestation and ~7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and (or) reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of non-invasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level all three feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles, as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive/metabolic diseases, insulin resistance, hypertension and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of concept for the

  4. Early postnatal ozone exposure alters rat nodose and jugular sensory neuron development

    PubMed Central

    Zellner, Leor C.; Brundage, Kathleen M.; Hunter, Dawn D.; Dey, Richard D.

    2011-01-01

    Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O3). Airway neurons can mediate airway inflammation through the release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O3 exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O3 exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O3 (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O3-exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O3 exposure significantly alters sensory neuron development. PMID:22140294

  5. Early Life Exposure to Endocrine Disrupting Chemicals and Childhood Obesity and Neurodevelopment

    PubMed Central

    Braun, Joseph M.

    2017-01-01

    Endocrine disrupting chemicals (EDCs) may increase the risk of childhood diseases by disrupting hormonally mediated processes critical for growth and development during gestation, infancy, or childhood. The fetus, infant, and child may have enhanced sensitivity to environmental stressors like EDCs due to rapid development and greater exposure to some EDCs that results from their developmentally appropriate behavior, anatomy, and physiology. This review summarizes epidemiological studies examining the relations of early-life exposure to bisphenol A (BPA), phthalates, triclosan, and perfluoroalkyl substance (PFAS) with childhood neurobehavioral disorders and obesity. The available epidemiological evidence suggests that prenatal exposure to several of these ubiquitous EDCs is associated with adverse neurobehavior (BPA and phthalates) and excess adiposity or increased risk of obesity/overweight (PFAS). Quantifying the effects of EDC mixtures, improving EDC exposure assessment, reducing bias from confounding, identifying periods of heightened vulnerability, and elucidating the presence and nature of sexually dimorphic EDC effects would result in stronger inferences from epidemiological studies. Ultimately, better estimates of the causal effects of EDC exposures on child health could help identify susceptible sub-populations and lead to public health interventions to reduce these exposures. PMID:27857130

  6. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest.

    PubMed

    Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph

    2015-01-01

    Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting.

  7. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest

    PubMed Central

    Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph

    2015-01-01

    Background Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. Materials and Methods This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Results Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Conclusion Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting. PMID:26644858

  8. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aluru, Neelakanteswar, E-mail: naluru@whoi.edu; Kuo, Elaine; Stanford University, 450 Serra Mall, Stanford, CA 94305

    2015-04-15

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNAmore » methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression

  9. Developmental Changes in the Early Child Lexicon in Mandarin Chinese

    ERIC Educational Resources Information Center

    Hao, Meiling; Liu, Youyi; Shu, Hua; Xing, Ailing; Jiang, Ying; Li, Ping

    2015-01-01

    In this paper we report a large-scale developmental study of early productive vocabulary acquisition by 928 Chinese-speaking children aged between 1;0 and 2;6, using the Early Vocabulary Inventory for Mandarin Chinese (Hao, Shu, Xing & Li, 2008). The results show that: (i) social words, especially words for people, are the predominant type of…

  10. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish

    PubMed Central

    Kung, Tiffany S.; Richardson, Jason R.; Cooper, Keith R.; White, Lori A.

    2015-01-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25–0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3–72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. PMID:25912032

  11. The Role of Epigenetics in the Latent Effects of Early Life Exposure to Obesogenic Endocrine Disrupting Chemicals

    PubMed Central

    Stel, Jente

    2015-01-01

    Recent research supports a role for exposure to endocrine-disrupting chemicals (EDCs) in the global obesity epidemic. Obesogenic EDCs have the potential to inappropriately stimulate adipogenesis and fat storage, influence metabolism and energy balance and increase susceptibility to obesity. Developmental exposure to obesogenic EDCs is proposed to interfere with epigenetic programming of gene regulation, partly by activation of nuclear receptors, thereby influencing the risk of obesity later in life. The goal of this minireview is to briefly describe the epigenetic mechanisms underlying developmental plasticity and to evaluate the evidence of a mechanistic link between altered epigenetic gene regulation by early life EDC exposure and latent onset of obesity. We summarize the results of recent in vitro, in vivo, and transgenerational studies, which clearly show that the obesogenic effects of EDCs such as tributyltin, brominated diphenyl ether 47, and polycyclic aromatic hydrocarbons are mediated by the activation and associated altered methylation of peroxisome proliferator-activated receptor-γ, the master regulator of adipogenesis, or its target genes. Importantly, studies are emerging that assess the effects of EDCs on the interplay between DNA methylation and histone modifications in altered chromatin structure. These types of studies coupled with genome-wide rather than gene-specific analyses are needed to improve mechanistic understanding of epigenetic changes by EDC exposure. Current advances in the field of epigenomics have led to the first potential epigenetic markers for obesity that can be detected at birth, providing an important basis to determine the effects of developmental exposure to obesogenic EDCs in humans. PMID:26241072

  12. The Role of Epigenetics in the Latent Effects of Early Life Exposure to Obesogenic Endocrine Disrupting Chemicals.

    PubMed

    Stel, Jente; Legler, Juliette

    2015-10-01

    Recent research supports a role for exposure to endocrine-disrupting chemicals (EDCs) in the global obesity epidemic. Obesogenic EDCs have the potential to inappropriately stimulate adipogenesis and fat storage, influence metabolism and energy balance and increase susceptibility to obesity. Developmental exposure to obesogenic EDCs is proposed to interfere with epigenetic programming of gene regulation, partly by activation of nuclear receptors, thereby influencing the risk of obesity later in life. The goal of this minireview is to briefly describe the epigenetic mechanisms underlying developmental plasticity and to evaluate the evidence of a mechanistic link between altered epigenetic gene regulation by early life EDC exposure and latent onset of obesity. We summarize the results of recent in vitro, in vivo, and transgenerational studies, which clearly show that the obesogenic effects of EDCs such as tributyltin, brominated diphenyl ether 47, and polycyclic aromatic hydrocarbons are mediated by the activation and associated altered methylation of peroxisome proliferator-activated receptor-γ, the master regulator of adipogenesis, or its target genes. Importantly, studies are emerging that assess the effects of EDCs on the interplay between DNA methylation and histone modifications in altered chromatin structure. These types of studies coupled with genome-wide rather than gene-specific analyses are needed to improve mechanistic understanding of epigenetic changes by EDC exposure. Current advances in the field of epigenomics have led to the first potential epigenetic markers for obesity that can be detected at birth, providing an important basis to determine the effects of developmental exposure to obesogenic EDCs in humans.

  13. A cohort study of developmental polychlorinated biphenyl (PCB) exposure in relation to post-vaccination antibody response at 6-months of age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jusko, Todd A., E-mail: juskota@niehs.nih.gov; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA; De Roos, Anneclaire J.

    2010-05-15

    Background: Extensive experimental data in animals indicate that exposure to polychlorinated biphenyls (PCBs) during pregnancy leads to changes in offspring immune function during the postnatal period. Whether developmental PCB exposure influences immunologic development in humans has received little study. Methods: The study population was 384 mother-infant pairs recruited from two districts of eastern Slovakia for whom prospectively collected maternal, cord, and 6-month infant blood specimens were available. Several PCB congeners were measured in maternal, cord, and 6-month infant sera by high-resolution gas chromatography with electron capture detection. Concentrations of IgG-specific anti-haemophilus influenzae type b, tetanus toxoid, and diphtheria toxoid weremore » assayed in 6-month infant sera using ELISA methods. Multiple linear regression was used to estimate the relation between maternal, cord, and 6-month infant PCB concentrations and the antibody concentrations evaluated at 6-months of age. Results: Overall, there was little evidence of an association between infant antibody concentrations and PCB measures during the pre- and early postnatal period. In addition, our results did not show specificity in terms of associations limited to a particular developmental period (e.g. pre- vs. postnatal), a particular antibody, or a particular PCB congener. Conclusions: At the PCB concentrations measured in this cohort, which are high relative to most human populations today, we did not detect an association between maternal or early postnatal PCB exposure and specific antibody responses at 6-months of age.« less

  14. Developmental Origins of Health and Disease: Environmental Exposures

    PubMed Central

    Swanson, James M.; Entringer, Sonja; Buss, Claudia; Wadhwa, Pathik D.

    2010-01-01

    The developmental origins of health and disease (DOHaD) approach has evolved over the past 20 years, and the current hypothesis proposes that fetal adaptations to intrauterine and maternal conditions during development shape structure and function of organs. Here we present a review of some environmental exposures that may trigger fetal maladaptations in these processes, including three examples: exposures to tobacco smoke, antidepressant medication, and folic acid deficits in the food supply. We provide a selected review of current research on the effects of each of these exposures on fetal development and birth outcomes, and use the DOHaD approach to suggest how these exposures may alter long-term outcomes. In the interpretation of this literature, we review the evidence of gene–environment interactions based on evaluation of biological pathways and evidence that some exposures to the fetus may be moderated by maternal and fetal genotypes. Finally, we use the design of the National Children’s Study (now in progress) to propose how the DOHaD approach could be used to address questions that have emerged in this area that are relevant to reproductive medicine and subsequent health outcomes. PMID:19711249

  15. Maternal exposure to the holocaust and health complaints in offspring.

    PubMed

    Flory, Janine D; Bierer, Linda M; Yehuda, Rachel

    2011-01-01

    Although the link between chronic stress and the development of cardiovascular and metabolic diseases of adulthood has been known for some time, there is growing recognition that early environmental influences may result in developmental programming via epigenetic mechanisms, thereby affecting the developmental trajectory of disease progression. Previous studies support the idea that offspring of Holocaust survivors may have been subjected to early developmental programming. We evaluated the relationship between parental exposure to the Holocaust and self-reported health ratings and disorders made by their adult offspring (i.e., second generation Holocaust survivors). A total of 137 subjects were evaluated. Regression analyses demonstrated that maternal but not paternal exposure to the Holocaust was related to poorer subjective impressions of emotional and physical health. This relationship was diminished when the offspring's own level of trait anxiety was considered. Offspring with maternal, but not paternal, Holocaust exposure also reported greater use of psychotropic and other medications, including medications for the treatment of hypertension and lipid disorders. The mechanism linking these health outcomes and maternal exposure deserves further investigation, including the possibility that fetal or early developmental programming is involved.

  16. Maternal Exposure to the Holocaust and Health Complaints in Offspring

    PubMed Central

    Flory, Janine D.; Bierer, Linda M.; Yehuda, Rachel

    2011-01-01

    Although the link between chronic stress and the development of cardiovascular and metabolic diseases of adulthood has been known for some time, there is growing recognition that early environmental influences may result in developmental programming via epigenetic mechanisms, thereby affecting the developmental trajectory of disease progression. Previous studies support the idea that offspring of Holocaust survivors may have been subjected to early developmental programming. We evaluated the relationship between parental exposure to the Holocaust and self-reported health ratings and disorders made by their adult offspring (i.e., second generation Holocaust survivors). A total of 137 subjects were evaluated. Regression analyses demonstrated that maternal but not paternal exposure to the Holocaust was related to poorer subjective impressions of emotional and physical health. This relationship was diminished when the offspring’s own level of trait anxiety was considered. Offspring with maternal, but not paternal, Holocaust exposure also reported greater use of psychotropic and other medications, including medications for the treatment of hypertension and lipid disorders. The mechanism linking these health outcomes and maternal exposure deserves further investigation, including the possibility that fetal or early developmental programming is involved. PMID:21508517

  17. Early Identification of Developmental Delays through Surveillance, Screening, and Diagnostic Evaluation

    ERIC Educational Resources Information Center

    Pizur-Barnekow, Kris; Erickson, Stephanie; Johnston, Mark; Bass, Tamicah; Lucinski, Loraine; Bleuel, Dan

    2010-01-01

    Developmental and behavioral problems in young children are prevalent in the United States. While young children experience an increased prevalence of such problems, a lack of early identification services continues to exist. Not only are early identification services required under American law, such as the Individual with Disabilities Education…

  18. Neurobehavioral impairments produced by developmental lead exposure persisted for generations in zebrafish (Danio rerio).

    PubMed

    Xu, Xiaojuan; Weber, Daniel; Burge, Rebekah; VanAmberg, Kelsey

    2016-01-01

    The zebrafish has become a useful animal model for studying the effects of environmental contaminants on neurobehavioral development due to its ease of breeding, high number of eggs per female, short generation times, and a well-established avoidance conditioning paradigm. Using avoidance conditioning as the behavioral paradigm, the present study investigated the effects of embryonic exposure to lead (Pb) on learning in adult zebrafish and the third (F3) generation of those fish. In Experiment 1, adult zebrafish that were developmentally exposed to 0.0, 0.1, 1.0 or 10.0μM Pb (2-24h post fertilization) as embryos were trained and tested for avoidance responses. The results showed that adult zebrafish hatched from embryos exposed to 0.0 or 0.1μM Pb learned avoidance responses during training and displayed significantly increased avoidance responses during testing, while those hatched from embryos exposed to 1.0 or 10.0μM Pb displayed no significant increases in avoidance responses from training to testing. In Experiment 2, the F3 generation of zebrafish that were developmentally exposed to an identical exposure regimen as in Experiment 1 were trained and tested for avoidance responses. The results showed that the F3 generation of zebrafish developmentally exposed as embryos to 0.0 or 0.1μM Pb learned avoidance responses during training and displayed significantly increased avoidance responses during testing, while the F3 generation of zebrafish developmentally exposed as embryos to 1.0 or 10.0μM Pb displayed no significant changes in avoidance responses from training to testing. Thus, developmental Pb exposure produced learning impairments that persisted for at least three generations, demonstrating trans-generational effects of embryonic exposure to Pb. Copyright © 2015. Published by Elsevier B.V.

  19. Children's early helping in action: Piagetian developmental theory and early prosocial behavior.

    PubMed

    Hammond, Stuart I

    2014-01-01

    After a brief overview of recent research on early helping, outlining some central problems, and issues, this paper examines children's early helping through the lens of Piagetian moral and developmental theory, drawing on Piaget's "Moral Judgment of the Child" (Piaget, 1932/1997), "Play, Dreams, and Imitation in Childhood" (Piaget, 1945/1951), and the "Grasp of Consciousness" (Piaget, 1976). Piaget refers to a level of moral development in action that precedes heteronomous and autonomous moral reasoning. This action level allows children to begin to interact with people and objects. In his later work, Piaget explores the gradual construction of understanding from this activity level. Taken together, these elements of Piagetian theory provide a promising conceptual framework for understanding the development of early helping.

  20. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish.

    PubMed

    Kung, Tiffany S; Richardson, Jason R; Cooper, Keith R; White, Lori A

    2015-08-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25-0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3-72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Developmental cigarette smoke exposure II: Hepatic proteome profiles in 6 month old adult offspring.

    PubMed

    Neal, Rachel E; Chen, Jing; Webb, Cindy; Stocke, Kendall; Gambrell, Caitlin; Greene, Robert M; Pisano, M Michele

    2016-10-01

    Utilizing a mouse model of 'active' developmental cigarette smoke exposure (CSE) [gestational day (GD) 1 through postnatal day (PD) 21] characterized by offspring low birth weight, the impact of developmental CSE on liver proteome profiles of adult offspring at 6 months of age was determined. Liver tissue was collected from Sham- and CSE-offspring for 2D-SDS-PAGE based proteome analysis with Partial Least Squares-Discriminant Analysis (PLS-DA). A similar study conducted at the cessation of exposure to cigarette smoke documented decreased gluconeogenesis coupled to oxidative stress in weanling offspring. In the current study, exposure throughout development to cigarette smoke resulted in impaired hepatic carbohydrate metabolism, decreased serum glucose levels, and increased gluconeogenic regulatory enzyme abundances during the fed-state coupled to decreased expression of SIRT1 as well as increased PEPCK and PGC1α expression. Together these findings indicate inappropriately timed gluconeogenesis that may reflect impaired insulin signaling in mature offspring exposed to 'active' developmental CSE. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. DEVELOPMENTAL CONSEQUENCES OF EXPOSURE TO DISINFECTION BY-PRODUCTS IN ANIMAL MODELS

    EPA Science Inventory

    Developmental consequences of exposure to disinfection by-products in animal models
    Sid Hunter, Michael Narotsky, James Andrews
    Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, 27711

    Disinfection by-products (DBPs) are formed by the reaction of disinf...

  3. Predictors of Developmental Outcomes of High-Risk and Developmentally Delayed Infants and Children Enrolled in a State Early Childhood Intervention Program

    ERIC Educational Resources Information Center

    Giannoni, Peggy P.; Kass, Philip H.

    2012-01-01

    A retrospective cohort study was conducted to identify child, maternal, family, and community factors associated with rate of developmental disability among children enrolled in the California Early Start Program. The cohort included 8,987 children considered at high risk for developmental disability due to medical risks and/or developmental…

  4. Developmental Ethanol Exposure Causes Reduced Feeding and Reveals a Critical Role for Neuropeptide F in Survival

    PubMed Central

    Guevara, Amanda; Gates, Hillary; Urbina, Brianna; French, Rachael

    2018-01-01

    Food intake is necessary for survival, and natural reward circuitry has evolved to help ensure that animals ingest sufficient food to maintain development, growth, and survival. Drugs of abuse, including alcohol, co-opt the natural reward circuitry in the brain, and this is a major factor in the reinforcement of drug behaviors leading to addiction. At the junction of these two aspects of reward are alterations in feeding behavior due to alcohol consumption. In particular, developmental alcohol exposure (DAE) results in a collection of physical and neurobehavioral disorders collectively referred to as Fetal Alcohol Spectrum Disorder (FASD). The deleterious effects of DAE include intellectual disabilities and other neurobehavioral changes, including altered feeding behaviors. Here we use Drosophila melanogaster as a genetic model organism to study the effects of DAE on feeding behavior and the expression and function of Neuropeptide F. We show that addition of a defined concentration of ethanol to food leads to reduced feeding at all stages of development. Further, genetic conditions that reduce or eliminate NPF signaling combine with ethanol exposure to further reduce feeding, and the distribution of NPF is altered in the brains of ethanol-supplemented larvae. Most strikingly, we find that the vast majority of flies with a null mutation in the NPF receptor die early in larval development when reared in ethanol, and provide evidence that this lethality is due to voluntary starvation. Collectively, we find a critical role for NPF signaling in protecting against altered feeding behavior induced by developmental ethanol exposure. PMID:29623043

  5. Early Life Exposures and Cancer

    Cancer.gov

    Early-life events and exposures have important consequences for cancer development later in life, however, epidemiological studies of early-life factors and cancer development later in life have had significant methodological challenges.

  6. Diversity & Developmentally Appropriate Practices: Challenges for Early Childhood Education.

    ERIC Educational Resources Information Center

    Mallory, Bruce L., Ed.; New, Rebecca S., Ed.

    The current conceptualization of what is appropriate in early childhood education is overly narrow in its interpretation of the role of the teacher, and with respect to variations in cultural and developmental diversity. Based on this observation, this book discusses various issues surrounding diversity, inclusion, and appropriate early…

  7. Trajectories of Early Childhood Developmental Skills and Early Adolescent Psychotic Experiences: Findings from the ALSPAC UK Birth Cohort.

    PubMed

    Hameed, Mohajer A; Lingam, Raghu; Zammit, Stanley; Salvi, Giovanni; Sullivan, Sarah; Lewis, Andrew J

    2017-01-01

    Objective: The aim of this study was to use prospective data from the Avon Longitudinal Study of Parents and Children (ALSPAC) to examine association between trajectories of early childhood developmental skills and psychotic experiences (PEs) in early adolescence. Method: This study examined data from n = 6790 children from the ALSPAC cohort who participated in a semi-structured interview to assess PEs at age 12. Child development was measured using parental report at 6, 18, 30, and 42 months of age using a questionnaire of items adapted from the Denver Developmental Screening Test - II. Latent class growth analysis was used to generate trajectories over time for measures of fine and gross motor development, social, and communication skills. Logistic regression was used to investigate associations between developmental trajectories in each of these early developmental domains and PEs at age 12. Results: The results provided evidence that decline rather than enduringly poor social (adjusted OR = 1.28, 95% CI = 1.10-1.92, p = 0.044) and communication skills (adjusted OR 1.12, 95% CI = 1.03-1.22, p = 0.010) is predictive of suspected or definite PEs in early adolescence, than those with stable and/or improving skills. Motor skills did not display the same pattern of association; although gender specific effects provided evidence that only declining pattern of fine motor skills was associated with suspected and definite PEs in males compared to females (interaction OR = 1.47, 95% CI = 1.09-1.97, p = 0.012). Conclusion: Findings suggest that decline rather than persistent impairment in social and communication skills were most predictive of PEs in early adolescence. Findings are discussed in terms of study's strengths, limitations, and clinical implications.

  8. Trajectories of Early Childhood Developmental Skills and Early Adolescent Psychotic Experiences: Findings from the ALSPAC UK Birth Cohort

    PubMed Central

    Hameed, Mohajer A.; Lingam, Raghu; Zammit, Stanley; Salvi, Giovanni; Sullivan, Sarah; Lewis, Andrew J.

    2018-01-01

    Objective: The aim of this study was to use prospective data from the Avon Longitudinal Study of Parents and Children (ALSPAC) to examine association between trajectories of early childhood developmental skills and psychotic experiences (PEs) in early adolescence. Method: This study examined data from n = 6790 children from the ALSPAC cohort who participated in a semi-structured interview to assess PEs at age 12. Child development was measured using parental report at 6, 18, 30, and 42 months of age using a questionnaire of items adapted from the Denver Developmental Screening Test – II. Latent class growth analysis was used to generate trajectories over time for measures of fine and gross motor development, social, and communication skills. Logistic regression was used to investigate associations between developmental trajectories in each of these early developmental domains and PEs at age 12. Results: The results provided evidence that decline rather than enduringly poor social (adjusted OR = 1.28, 95% CI = 1.10–1.92, p = 0.044) and communication skills (adjusted OR 1.12, 95% CI = 1.03–1.22, p = 0.010) is predictive of suspected or definite PEs in early adolescence, than those with stable and/or improving skills. Motor skills did not display the same pattern of association; although gender specific effects provided evidence that only declining pattern of fine motor skills was associated with suspected and definite PEs in males compared to females (interaction OR = 1.47, 95% CI = 1.09–1.97, p = 0.012). Conclusion: Findings suggest that decline rather than persistent impairment in social and communication skills were most predictive of PEs in early adolescence. Findings are discussed in terms of study’s strengths, limitations, and clinical implications. PMID:29375433

  9. Early Childhood Intervention and Early Childhood Special Education in Turkey within the Scope of the Developmental System Approach

    ERIC Educational Resources Information Center

    Diken, Ibrahim H.; Bayhan, Pinar; Turan, Figen; Sipal, R. Firat; Sucuoglu, Bulbin; Ceber-Bakkaloglu, Hatice; Gunel, Mintaze Kerem; Kara, Ozgun Kaya

    2012-01-01

    The purpose of this article was to provide an overview of early childhood intervention and early childhood special education (ECI/ECSE) services and practices in Turkey by using the Developmental System Approach (M. J. Guralnick, 2001). After pointing out the history of early childhood and ECI/ECSE services and current legislations with regard to…

  10. Maternal Obesity: Risks for Developmental Delays in Early Childhood.

    PubMed

    Duffany, Kathleen O'Connor; McVeigh, Katharine H; Kershaw, Trace S; Lipkind, Heather S; Ickovics, Jeannette R

    2016-02-01

    To assess the risk for neurodevelopmental delays for children of mothers who were obese (≥200 pounds) prior to pregnancy, and to characterize delays associated with maternal obesity among children referred to and found eligible to receive Early Intervention Program services. We conducted a retrospective cohort study (N = 541,816) using a population-based New York City data warehouse with linked birth and Early Intervention data. Risks for children suspected of a delay and 'significantly delayed', with two moderate or one severe delay, were calculated. Among the group of children eligible by delay for Early Intervention, analyses assessed risk for being identified with a moderate-to-severe delay across each of five functional domains as well as risks for multiple delays. Children of mothers who were obese were more likely to be suspected of a delay (adjusted RR 1.19 [CI 1.15-1.22]) and borderline association for 'significantly delayed' (adjusted RR 1.01 [CI 1.00-1.02). Among children eligible by delay, children of mothers who were obese evidenced an increased risk for moderate-to-severe cognitive (adjusted RR 1.04 [CI 1.02-1.07]) and physical (adjusted RR 1.04 [CI 1.01-1.08]) delays and for global developmental delay (adjusted RR 1.05 [CI 1.01-1.08]). Maternal obesity is associated with increased risk of developmental delay in offspring. Among children with moderate or severe delays, maternal obesity is associated with increased risk of cognitive and physical delays as well as with increased risk for global developmental delay. While causation remains uncertain, this adds to the growing body of research reporting an association between maternal obesity and neurodevelopmental delays in offspring.

  11. Defining the developmental parameters of temper loss in early childhood: implications for developmental psychopathology

    PubMed Central

    Wakschlag, Lauren S.; Choi, Seung W.; Carter, Alice S.; Hullsiek, Heide; Burns, James; McCarthy, Kimberly; Leibenluft, Ellen; Briggs-Gowan, Margaret J.

    2013-01-01

    Background Temper modulation problems are both a hallmark of early childhood and a common mental health concern. Thus, characterizing specific behavioral manifestations of temper loss along a dimension from normative misbehaviors to clinically significant problems is an important step toward identifying clinical thresholds. Methods Parent-reported patterns of temper loss were delineated in a diverse community sample of preschoolers (n = 1,490). A developmentally sensitive questionnaire, the Multidimensional Assessment of Preschool Disruptive Behavior (MAP-DB), was used to assess temper loss in terms of tantrum features and anger regulation. Specific aims were: (a) document the normative distribution of temper loss in preschoolers from normative misbehaviors to clinically concerning temper loss behaviors, and test for sociodemographic differences; (b) use Item Response Theory (IRT) to model a Temper Loss dimension; and (c) examine associations of temper loss and concurrent emotional and behavioral problems. Results Across sociodemographic subgroups, a unidimensional Temper Loss model fit the data well. Nearly all (83.7%) preschoolers had tantrums sometimes but only 8.6% had daily tantrums. Normative misbehaviors occurred more frequently than clinically concerning temper loss behaviors. Milder behaviors tended to reflect frustration in expectable contexts, whereas clinically concerning problem indicators were unpredictable, prolonged, and/or destructive. In multivariate models, Temper Loss was associated with emotional and behavioral problems. Conclusions Parent reports on a developmentally informed questionnaire, administered to a large and diverse sample, distinguished normative and problematic manifestations of preschool temper loss. A developmental, dimensional approach shows promise for elucidating the boundaries between normative early childhood temper loss and emergent psychopathology. PMID:22928674

  12. Applying a Developmental Framework to the Self-Regulatory Difficulties of Young Children with Prenatal Alcohol Exposure: A Review.

    PubMed

    Reid, Natasha; Petrenko, Christie L M

    2018-06-01

    Prenatal alcohol exposure (PAE) can be associated with significant difficulties in self-regulatory abilities. As such, interventions have been developed that focus on improving varying aspects of self-regulation for this population. The application of a multilevel theoretical framework that describes the development of self-regulation during early childhood could further advance the field. First, this framework could assist in elucidating mechanisms in the trajectories of early adjustment problems in this population and, second, informing the development of more precise assessment and interventions for those affected by PAE. The aims of the current review were to provide an overview of the self-regulatory framework proposed by Calkins and colleagues (e.g., Calkins, 2007; Calkins and Fox, 2002); examine the self-regulatory difficulties that are commonly experienced during infancy (i.e., 0 to 2 years) and early childhood (i.e., 3 to 8 years) in children with PAE in the context of the developmental framework; and describe how the framework can inform the development of future assessment and intervention provision for young children with PAE. The application of a developmental framework, such as proposed by Calkins and colleagues, allows for a systematic and theoretically driven approach to assessment and intervention programs for young children with PAE. Copyright © 2018 by the Research Society on Alcoholism.

  13. Developmental patterns of spatial ability: an early sex difference.

    PubMed

    Johnson, E S; Meade, A C

    1987-06-01

    Over 1,800 public school students (grades K-12, ages 6-18) took a battery of 7 spatial tests tailored to their respective developmental levels. Analyses of resulting data indicate that it is feasible to measure spatial ability throughout this developmental range with modified versions of adult paper-and-pencil tests, that a male advantage in spatial performance appears reliably by age 10, and that the magnitude of the advantage remains constant through age 18. Analysis of covariance suggests that an early female precocity in language skills may mask a male advantage in spatial ability during the primary school years. There is no indication of a sex difference in kindergarten children.

  14. A Mobile Early Stimulation Program to Support Children with Developmental Delays in Brazil.

    PubMed

    Dias, Raquel da Luz; Silva, Kátia Cristina Correa Guimarães; Lima, Marcela Raquel de Oliveira; Alves, João Guilherme Bezerra; Abidi, Syed Sibte Raza

    2018-01-01

    Developmental delay is a deviation development from the normative milestones during the childhood and it may be caused by neurological disorders. Early stimulation is a standardized and simple technique to treat developmental delays in children (aged 0-3 years), allowing them to reach the best development possible and to mitigate neuropsychomotor sequelae. However, the outcomes of the treatment depending on the involvement of the family, to continue the activities at home on a daily basis. To empower and educate parents of children with neurodevelopmental delays to administer standardized early stimulation programs at home, we developed a mobile early stimulation program that provides timely and evidence-based clinical decision support to health professionals and a personalized guidance to parents about how to administer early stimulation to their child at home.

  15. Laminarin improves developmental competence of porcine early stage embryos by inhibiting oxidative stress.

    PubMed

    Jiang, Hao; Liang, Shuang; Yao, Xue-Rui; Jin, Yong-Xun; Shen, Xing-Hui; Yuan, Bao; Zhang, Jia-Bao; Kim, Nam-Hyung

    2018-04-23

    Laminarin (LMA), a β-glucan mixture with good biocompatibility, improves the growth performance and immune response when used as food additives and nutraceuticals. The aim of the present research was to explore the effects of LMA on porcine early stage embryo development, as well as the underlying mechanisms. The results showed that the developmental competence of porcine early stage embryos was dramatically improved after LMA supplementation during the in vitro culture period. The presence of 20 μg/mL LMA during the in vitro culture period significantly improved cleavage rate, blastocyst formation rates, hatching rate, and total cell number in the blastocyst compared to that in the control group. Notably, LMA attenuated the intracellular reactive oxygen species generation induced by H 2 O 2 . Furthermore, LMA not only increased intracellular glutathione levels, but also ameliorated mitochondrial membrane potential. In addition, the expression of a zygotic genome activation related gene (YAP1), pluripotency-related genes (OCT4, NANOG, and SOX2), and hatching-related genes (COX2, GATA4, and ITGA5) were up-regulated following LMA supplementation during porcine early stage embryo development. These results demonstrate that LMA has beneficial effects on the development of porcine early stage embryos via regulation of oxidative stress. This evidence provides a novel method for embryo development improvement associated with exposure to LMA. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Epigenetics as a mechanism linking developmental exposures to long-term toxicity.

    PubMed

    Barouki, R; Melén, E; Herceg, Z; Beckers, J; Chen, J; Karagas, M; Puga, A; Xia, Y; Chadwick, L; Yan, W; Audouze, K; Slama, R; Heindel, J; Grandjean, P; Kawamoto, T; Nohara, K

    2018-05-01

    A variety of experimental and epidemiological studies lend support to the Developmental Origin of Health and Disease (DOHaD) concept. Yet, the actual mechanisms accounting for mid- and long-term effects of early-life exposures remain unclear. Epigenetic alterations such as changes in DNA methylation, histone modifications and the expression of certain RNAs have been suggested as possible mediators of long-term health effects of environmental stressors. This report captures discussions and conclusions debated during the last Prenatal Programming and Toxicity meeting held in Japan. Its first aim is to propose a number of criteria that are critical to support the primary contribution of epigenetics in DOHaD and intergenerational transmission of environmental stressors effects. The main criteria are the full characterization of the stressors, the actual window of exposure, the target tissue and function, the specificity of the epigenetic changes and the biological plausibility of the linkage between those changes and health outcomes. The second aim is to discuss long-term effects of a number of stressors such as smoking, air pollution and endocrine disruptors in order to identify the arguments supporting the involvement of an epigenetic mechanism. Based on the developed criteria, missing evidence and suggestions for future research will be identified. The third aim is to critically analyze the evidence supporting the involvement of epigenetic mechanisms in intergenerational and transgenerational effects of environmental exposure and to particularly discuss the role of placenta and sperm. While the article is not a systematic review and is not meant to be exhaustive, it critically assesses the contribution of epigenetics in the long-term effects of environmental exposures as well as provides insight for future research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster.

    PubMed

    Morris, Melanie; Shaw, Ariel; Lambert, Madison; Perry, Haley Halperin; Lowenstein, Eve; Valenzuela, David; Velazquez-Ulloa, Norma Andrea

    2018-06-14

    Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila

  18. Hydrocephalus and arthrogryposis in an immunocompetent mouse model of ZIKA teratogeny: A developmental study

    PubMed Central

    Xavier-Neto, Jose; Carvalho, Murilo; Pascoalino, Bruno dos Santos; Cardoso, Alisson Campos; Costa, Ângela Maria Sousa; Pereira, Ana Helena Macedo; Santos, Luana Nunes; Saito, Ângela; Marques, Rafael Elias; Smetana, Juliana Helena Costa; Consonni, Silvio Roberto; Bandeira, Carla; Costa, Vivian Vasconcelos; Bajgelman, Marcio Chaim; de Oliveira, Paulo Sérgio Lopes; Cordeiro, Marli Tenorio; Gonzales Gil, Laura Helena Vega; Pauletti, Bianca Alves; Granato, Daniela Campos; Paes Leme, Adriana Franco; Freitas-Junior, Lucio; Holanda de Freitas, Carolina Borsoi Moraes; Teixeira, Mauro Martins; Bevilacqua, Estela; Franchini, Kleber

    2017-01-01

    The teratogenic mechanisms triggered by ZIKV are still obscure due to the lack of a suitable animal model. Here we present a mouse model of developmental disruption induced by ZIKV hematogenic infection. The model utilizes immunocompetent animals from wild-type FVB/NJ and C57BL/6J strains, providing a better analogy to the human condition than approaches involving immunodeficient, genetically modified animals, or direct ZIKV injection into the brain. When injected via the jugular vein into the blood of pregnant females harboring conceptuses from early gastrulation to organogenesis stages, akin to the human second and fifth week of pregnancy, ZIKV infects maternal tissues, placentas and embryos/fetuses. Early exposure to ZIKV at developmental day 5 (second week in humans) produced complex manifestations of anterior and posterior dysraphia and hydrocephalus, as well as severe malformations and delayed development in 10.5 days post-coitum (dpc) embryos. Exposure to the virus at 7.5–9.5 dpc induces intra-amniotic hemorrhage, widespread edema, and vascular rarefaction, often prominent in the cephalic region. At these stages, most affected embryos/fetuses displayed gross malformations and/or intrauterine growth restriction (IUGR), rather than isolated microcephaly. Disrupted conceptuses failed to achieve normal developmental landmarks and died in utero. Importantly, this is the only model so far to display dysraphia and hydrocephalus, the harbinger of microcephaly in humans, as well as arthrogryposis, a set of abnormal joint postures observed in the human setting. Late exposure to ZIKV at 12.5 dpc failed to produce noticeable malformations. We have thus characterized a developmental window of opportunity for ZIKV-induced teratogenesis encompassing early gastrulation, neurulation and early organogenesis stages. This should not, however, be interpreted as evidence for any safe developmental windows for ZIKV exposure. Late developmental abnormalities correlated with

  19. Efficient embryonic culture method for the Japanese striped snake, Elaphe quadrivirgata, and its early developmental stages.

    PubMed

    Matsubara, Yoshiyuki; Sakai, Atsushi; Kuroiwa, Atsushi; Suzuki, Takayuki

    2014-10-01

    The morphogenesis of snake embryos is an elusive yet fascinating research target for developmental biologists. However, few data exist on development of early snake embryo due to limited availability of pregnant snakes, and the need to harvest early stage embryos directly from pregnant snakes before oviposition without knowing the date of fertilization. We established an ex vivo culture method for early snake embryos using the Japanese striped snake, Elaphe quadrivirgata. This method, which we named "sausage-style (SS) culture", allows us to harvest snake embryos at specific stages for each experiment. Using this SS culture system, we calculated somite formation rate at early stages before oviposition. The average somite formation rate between 6/7 and 12/13 somite stages was 145.9 min, between 60/70 and 80/91 somite stages 42.4 min, and between 113-115 and 126/127 somite stages 71 min. Thus, somite formation rate that we observed during early snake embryogenesis was changed over time. We also describe a developmental staging series for E. quadrivirgata. This is the first report of a developmental series of early snake embryogenesis prior to oviposition by full-color images with high-resolution. We propose that the SS culture system is an easy method for treating early snake embryos ex vivo. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.

  20. New features of triacylglycerol biosynthetic pathways of peanut seeds in early developmental stages.

    PubMed

    Yu, Mingli; Liu, Fengzhen; Zhu, Weiwei; Sun, Meihong; Liu, Jiang; Li, Xinzheng

    2015-11-01

    The peanut (Arachis hypogaea L.) is one of the three most important oil crops in the world due to its high average oil content (50 %). To reveal the biosynthetic pathways of seed oil in the early developmental stages of peanut pods with the goal of improving the oil quality, we presented a method combining deep sequencing analysis of the peanut pod transcriptome and quantitative real-time PCR (RT-PCR) verification of seed oil-related genes. From the sequencing data, approximately 1500 lipid metabolism-associated Unigenes were identified. The RT-PCR results quantified the different expression patterns of these triacylglycerol (TAG) synthesis-related genes in the early developmental stages of peanut pods. Based on these results and analysis, we proposed a novel construct of the metabolic pathways involved in the biosynthesis of TAG, including the Kennedy pathway, acyl-CoA-independent pathway and proposed monoacylglycerol pathway. It showed that the biosynthetic pathways of TAG in the early developmental stages of peanut pods were much more complicated than a simple, unidirectional, linear pathway.

  1. Gene expression profiles in the cerebellum and hippocampus following exposure to a neurotoxicant, Aroclor 1254: Developmental effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royland, Joyce E.; Wu, Jinfang; Zawia, Nasser H.

    2008-09-01

    The developmental consequences of exposure to the polychlorinated biphenyls (PCBs) have been widely studied, making PCBs a unique model to understand issues related to environmental mixture of persistent chemicals. PCB exposure in humans adversely affects neurocognitive development, causes psychomotor difficulties, and contributes to attention deficits in children, all of which seem to be associated with altered patterns of neuronal connectivity. In the present study, we examined gene expression profiles in the rat nervous system following PCB developmental exposure. Pregnant rats (Long-Evans) were dosed perinatally with 0 or 6 mg/kg/day of Aroclor 1254 from gestation day 6 through postnatal day (PND)more » 21. Gene expression in cerebellum and hippocampus from PND7 and PND14 animals was analyzed with an emphasis on developmental aspects. Changes in gene expression ({>=} 1.5 fold) in control animals identified normal developmental changes. These basal levels of expression were compared to data from Aroclor 1254-treated animals to determine the impact of gestational PCB exposure on developmental parameters. The results indicate that the expression of a number of developmental genes related to cell cycle, synaptic function, cell maintenance, and neurogenesis is significantly altered from PND7 to PND14. Aroclor 1254 treatment appears to dampen the overall growth-related gene expression levels in both regions with the effect being more pronounced in the cerebellum. Functional analysis suggests that Aroclor 1254 delays maturation of the developing nervous system, with the consequences dependent on the ontological state of the brain area and the functional role of the individual gene. Such changes may underlie learning and memory deficits observed in PCB exposed animals and humans.« less

  2. Effects of developmental alcohol and valproic acid exposure on play behavior of ferrets

    PubMed Central

    Krahe, Thomas E.; Filgueiras, Claudio C.; Medina, Alexandre E.

    2017-01-01

    Exposure to alcohol and valproic acid (VPA) during pregnancy can lead to fetal alcohol spectrum disorders and fetal valproate syndrome, respectively. Altered social behavior is a hallmark of both these conditions and there is ample evidence showing that developmental exposure to alcohol and VPA affect social behavior in rodents. However, results from rodent models are somewhat difficult to translate to humans owing to the substantial differences in brain development, morphology, and connectivity. Since the cortex folding pattern is closely related to its specialization and that social behavior is strongly influenced by cortical structures, here we studied the effects of developmental alcohol and VPA exposure on the play behavior of the ferret, a gyrencephalic animal known for its playful nature. Animals were injected with alcohol (3.5 g/kg, i.p.), VPA (200 mg/kg, i.p.) or saline (i.p) every other day during the brain growth spurt period, between postnatal days 10 and 30. The play behavior of pairs of the same experimental group was evaluated 3 weeks later. Both treatments induced significant behavioral differences compared to controls. Alcohol and VPA exposed ferrets played less than saline treated ones, but while animals from the alcohol group displayed a delay in start playing with each other, VPA treated ones spent most of the time close to one another without playing. These findings not only extend previous results on the effects of developmental exposure to alcohol and VPA on social behavior, but make the ferret a great model to study the underlying mechanisms of social interaction. PMID:27208641

  3. [Developmental amnesia and early brain damage: neuropsychology and neuroimaging].

    PubMed

    Crespo-Eguilaz, N; Dominguez, P D; Vaquero, M; Narbona, J

    2018-03-01

    To contribute to neuropsychological profiling of developmental amnesia subsequent to bilateral damage to both hippocampi in early age. The total sample of 24 schoolchildren from both sexes is distributed in three groups: perinatal hypoxic-ischaemic encephalopathy and everyday complaints of memory in school age (n = 8); perinatal hypoxic-ischaemic encephalopathy without memory complaints (n = 7); and a group of typically developing (n = 9). All participants in every groups did have normal general intelligence and attention. Both clinical groups had, as another clinical consequence, spastic cerebral palsy (diplegia). Neuropsychological exam consisted on tests of general intelligence, attentional abilities, declarative memory and semantic knowledge. All participants had a brain magnetic resonance image and spectroscopy of hippocampi. Scheltens criteria were used for visual estimation of hippocampal atrophy. Parametric and non-parametric statistical contrasts were made. Despite preservation of semantic and procedural learning, declarative-episodic memory is impaired in the first group versus the other two groups. A significant proportion of bilateral hippocampal atrophy is only present in the first group versus the other two non-amnesic groups using Scheltens estimation on MRI. Two cases without evident atrophy did have diminished NAA/(Cho + Cr) index in both hippocampi. Taken together, these results contribute to delineate developmental amnesia as an specific impairment due to early partial bihippocampal damage, in agreement with previous studies. After diagnosis of developmental amnesia, a specific psychoeducational intervention must be made; also this impairment could be candidate for pharmacological trials in the future.

  4. Autism in Early Childhood: An Unusual Developmental Course—Three Case Reports

    PubMed Central

    Cohen-Ophir, Michal; Castel-Deutsh, Tsophia; Tirosh, Emanuel

    2012-01-01

    Autistic spectrum disorder (ASD) is typically characterized by either an emerging and gradual course or developmental regression in early childhood. The versatile clinical course is progressively acknowledged in recent years. Children with developmental disorders in general are referred to the Child Development Center for a multidisciplinary assessment, investigation, treatment and followup. We report three infants with an initial diagnosis of developmental delays, recovery of normal development following intervention in a multidisciplinary center, and subsequent regression into classic autism following their discharge from the program. An extensive medical workup was noncontributory. This unusual presentation, to our knowledge not reported previously, should be recognized by professionals involved in child development and psychiatry. PMID:22937419

  5. Developmental lead exposure attenuates methamphetamine dose-effect self-administration performance and progressive ratio responding in the male rat.

    PubMed

    Rocha, Angelica; Valles, Rodrigo; Hart, Nigel; Bratton, Gerald R; Nation, Jack R

    2008-06-01

    Perinatal (gestation/lactation) lead exposure modifies the reinforcement efficacy of various psychoactive drugs (e.g., cocaine, opiates) across the phases of initial selection, use, and abuse [Nation J.R., Cardon A.L., Heard H.M., Valles R., Bratton G.R. Perinatal lead exposure and relapse to drug-seeking behavior in the rat: a cocaine reinstatement study. Psychopharmacol 2003;168: 236-243.; Nation J.R., Smith K.R., Bratton G.R. Early developmental lead exposure increases sensitivity to cocaine in a self-administration paradigm. Pharmacol Biochem Behave 2004; 77: 127-13; Rocha A., Valles R., Cardon A.L., Bratton G.R., Nation J.R. Enhanced acquisition of cocaine self-administration in rats developmentally exposed to lead. Neuropsychopharmacol 2005; 30: 2058-2064.]. However, changes in sensitivity to methamphetamine across the phases of drug abuse have not been examined in animals perinatally exposed to lead. Because the mainstream popularity of methamphetamine in the United States is increasing and lead exposure continues to be widespread, an examination of this drug and how it may be modified by perinatal exposure to lead is warranted. The studies reported here examined the effects of perinatal lead exposure on adult self-administration of intravenous (i.v.) methamphetamine across the maintenance phase of drug addiction. Experiment 1 examined dose-effect patterns in control and lead-exposed animals. Experiment 2 evaluated control and lead-exposed animals in a progressive ratio task. Female rats were administered a 16-mg lead or a control solution for 30 days prior to breeding with non-exposed males. Exposure continued through pregnancy and lactation and was discontinued at weaning (postnatal day [PND] 21). Animals born to control or lead-exposed dams received indwelling jugular catheters as adults (PND 70) and subsequently were randomly assigned to one of the two studies, using only one male rat per litter for each study. The data showed a general attenuation of

  6. Developmental Toxicology##

    EPA Science Inventory

    Developmental toxicology encompasses the study of developmental exposures, pharmacokinetics, mechanisms, pathogenesis, and outcomes potentially leading to adverse health effects. Manifestations of developmental toxicity include structural malformations, growth retardation, functi...

  7. Children’s early helping in action: Piagetian developmental theory and early prosocial behavior

    PubMed Central

    Hammond, Stuart I.

    2014-01-01

    After a brief overview of recent research on early helping, outlining some central problems, and issues, this paper examines children’s early helping through the lens of Piagetian moral and developmental theory, drawing on Piaget’s “Moral Judgment of the Child” (Piaget, 1932/1997), “Play, Dreams, and Imitation in Childhood” (Piaget, 1945/1951), and the “Grasp of Consciousness” (Piaget, 1976). Piaget refers to a level of moral development in action that precedes heteronomous and autonomous moral reasoning. This action level allows children to begin to interact with people and objects. In his later work, Piaget explores the gradual construction of understanding from this activity level. Taken together, these elements of Piagetian theory provide a promising conceptual framework for understanding the development of early helping. PMID:25101027

  8. Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: effects on neurospecific proteins indicate changing vulnerabilities.

    PubMed

    Garcia, Stephanie J; Seidler, Frederic J; Slotkin, Theodore A

    2003-03-01

    The developmental neurotoxicity of the organophosphate pesticide chlorpyrifos (CPF) is thought to involve both neurons and glia, thus producing a prolonged window of vulnerability. To characterize the cell types and brain regions involved in these effects, we administered CPF to developing rats and examined neuroprotein markers for oligodendrocytes (myelin basic protein, MBP), for neuronal cell bodies (neurofilament 68 kDa, NF68), and for developing axons (neurofilament 200 kDa, NF200). Prenatal CPF administration on gestational days (GDs) 17-20 elicited an immediate (GD21) enhancement of MBP and NF68; by postnatal day (PN) 30, however, there were deficits in all three biomarkers, with the effect restricted to females. Exposure in the early postnatal period, PN1-4, did not evoke significant short-term or long-term changes in the neuroproteins. However, with treatment on PN11-14, we found reductions in MBP in the immediate posttreatment period (PN15, PN20) throughout the brain, and deficiencies across all three proteins emerged by PN30. With this regimen, males were targeted preferentially. The sex-selective effects seen here for the GD17-20 and PN11-14 regimens match those reported earlier for subsequent behavioral performance. These results indicate a shift in the populations of neural cells targeted by CPF, dependent upon the period of exposure. Similarly, developmental differences in the sex selectivity of the biochemical mechanisms underlying neurotoxicant actions are likely to contribute to discrete behavioral outcomes.

  9. Growth, development, and behavior in early childhood following prenatal cocaine exposure: a systematic review.

    PubMed

    Frank, D A; Augustyn, M; Knight, W G; Pell, T; Zuckerman, B

    2001-03-28

    Despite recent studies that failed to show catastrophic effects of prenatal cocaine exposure, popular attitudes and public policies still reflect the belief that cocaine is a uniquely dangerous teratogen. To critically review outcomes in early childhood after prenatal cocaine exposure in 5 domains: physical growth; cognition; language skills; motor skills; and behavior, attention, affect, and neurophysiology. Search of MEDLINE and Psychological Abstracts from 1984 to October 2000. Studies selected for detailed review (1) were published in a peer-reviewed English-language journal; (2) included a comparison group; (3) recruited samples prospectively in the perinatal period; (4) used masked assessment; and (5) did not include a substantial proportion of subjects exposed in utero to opiates, amphetamines, phencyclidine, or maternal human immunodeficiency virus infection. Thirty-six of 74 articles met criteria and were reviewed by 3 authors. Disagreements were resolved by consensus. After controlling for confounders, there was no consistent negative association between prenatal cocaine exposure and physical growth, developmental test scores, or receptive or expressive language. Less optimal motor scores have been found up to age 7 months but not thereafter, and may reflect heavy tobacco exposure. No independent cocaine effects have been shown on standardized parent and teacher reports of child behavior scored by accepted criteria. Experimental paradigms and novel statistical manipulations of standard instruments suggest an association between prenatal cocaine exposure and decreased attentiveness and emotional expressivity, as well as differences on neurophysiologic and attentional/affective findings. Among children aged 6 years or younger, there is no convincing evidence that prenatal cocaine exposure is associated with developmental toxic effects that are different in severity, scope, or kind from the sequelae of multiple other risk factors. Many findings once thought

  10. Gestational and Early Postnatal Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants: General Toxicity and Skeletal Variations.

    PubMed

    Tung, Emily W Y; Yan, Han; Lefèvre, Pavine L C; Berger, Robert G; Rawn, Dorothea F K; Gaertner, Dean W; Kawata, Alice; Rigden, Marc; Robaire, Bernard; Hales, Barbara F; Wade, Michael G

    2016-06-01

    Brominated flame retardants (BFRs) are stable environmental contaminants known to exert endocrine-disrupting effects. Developmental exposure to polybrominated diphenyl ethers (PBDEs) is correlated with impaired thyroid hormone signaling, as well as estrogenic and anti-androgenic effects. As previous studies have focused on a single congener or technical mixture, the purpose of the current study was to examine the effects of gestational and early postnatal exposure to an environmentally relevant mixture of BFRs designed to reflect house dust levels of PBDEs and hexabromocyclododecane on postnatal developmental outcomes. Pregnant Sprague-Dawley rats were exposed to the PBDE mixture from preconception to weaning (PND 21) through the diet containing 0, 0.75, 250, and 750 mg mixture/kg diet. BFR exposure induced transient reductions in body weight at PND 35 in male and from PND 30-45 in female offspring (250 and 750 mg/kg). Liver weights (PND 21) and xenobiotic metabolizing enzyme activities (PND 21 and 46) were increased in both male and female offspring exposed to 250 and 750 mg/kg diets. Furthermore, serum T4 levels were reduced at PND 21 in both,male and female offspring (250 and 750 mg/kg). At PND 21, Serum alkaline phosphatase (ALP) was decreased in males exposed to 750 mg/kg dietat, and females exposed to 250 and 750 mg/kg diets. At PND 46 ALP was significantly elevated in males (250 and 750 mg/kg). Variations in the cervical vertebrae and phalanges were observed in pups at PND 4 (250 and 750 mg/kg). Therefore, BFR exposure during gestation through to weaning alters developmental programming in the offspring. The persistence of BFRs in the environment remains a cause for concern with regards to developmental toxicity. © 2016 Wiley Periodicals, Inc.

  11. [The Battelle developmental inventory screening test for early detection of developmental disorders in cerebral palsy].

    PubMed

    Moraleda-Barreno, E; Romero-López, M; Cayetano-Menéndez, M J

    2011-12-01

    Cerebral palsy is usually associated with motor, cognitive, and language deficits, and with other disorders that cause disability in daily living skills, personal independence, social interaction and academic activities. Early detection of these deficits in the clinical setting is essential to anticipate and provide the child with the necessary support for adapting to the environment in all possible areas. The main objective of this study is to demonstrate that these deficits can be detected at an early age and comprehensively through the use of a brief development scale. We studied 100 children between 4 and 70 months old, half of them with cerebral palsy and the other half without any disorder. All subjects were evaluated using the Battelle Developmental Inventory screening test. We compared the developmental quotients in both groups and between the subjects with different motor impairments, using a simple prospective ex post facto design. The test detected statistically significant differences between the clinical group and the control group at all age levels. Statistically significant differences were also found between tetraplegia and other motor disorders. There were no differences by gender. The deficit in development associated with cerebral palsy can be quantified at early ages through the use of a brief development scale, thus we propose that the systematic implementation of protocols with this screening tool would be helpful for treatment and early intervention. This would also help in anticipating and establishing the means for the multidisciplinary actions required, and could provide guidance to other health professionals, to provide adequate school, social, and family support,. Copyright © 2011 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  12. Developmental exposure to an environmental PCB mixture delays the propagation of electrical kindling from the amygdala.

    PubMed

    Bandara, Suren B; Sadowski, Renee N; Schantz, Susan L; Gilbert, Mary E

    2017-01-01

    Developmental PCB exposure impairs hearing and induces brainstem audiogenic seizures in adult offspring. The degree to which this enhanced susceptibility to seizure is manifest in other brain regions has not been examined. Thus, electrical kindling of the amygdala was used to evaluate the effect of developmental exposure to an environmentally relevant PCB mixture on seizure susceptibility in the rat. Female Long-Evans rats were dosed orally with 0 or 6mg/kg/day of the PCB mixture dissolved in corn oil vehicle 4 weeks prior to mating and continued through gestation and up until postnatal day (PND) 21. On PND 21, pups were weaned, and two males from each litter were randomly selected for the kindling study. As adults, the male rats were implanted bilaterally with electrodes in the basolateral amygdala. For each animal, afterdischarge (AD) thresholds in the amygdala were determined on the first day of testing followed by once daily stimulation at a standard 200μA stimulus intensity until three stage 5 generalized seizures (GS) ensued. Developmental PCB exposure did not affect the AD threshold or total cumulative AD duration, but PCB exposure did increase the latency to behavioral manifestations of seizure propagation. PCB exposed animals required significantly more stimulations to reach stage 2 seizures compared to control animals, indicating attenuated focal (amygdala) excitability. A delay in kindling progression in the amygdala stands in contrast to our previous finding of increased susceptibility to brainstem-mediated audiogenic seizures in PCB-exposed animals in response to a an intense auditory stimulus. These seemingly divergent results are not unexpected given the distinct source, type, and mechanistic underpinnings of these different seizure models. A delay in epileptogenesis following focal amygdala stimulation may reflect a decrease in neuroplasticity following developmental PCB exposure consistent with reductions in use-dependent synaptic plasticity that

  13. Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology?

    PubMed Central

    Hanson, M. A.; Gluckman, P. D.

    2014-01-01

    Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention. PMID:25287859

  14. Assessing Susceptibility from Early-Life Exposure to Carcinogens

    PubMed Central

    Barton, Hugh A.; Cogliano, V. James; Flowers, Lynn; Valcovic, Larry; Setzer, R. Woodrow; Woodruff, Tracey J.

    2005-01-01

    Cancer risk assessment methods currently assume that children and adults are equally susceptible to exposure to chemicals. We reviewed available scientific literature to determine whether this was scientifically supported. We identified more than 50 chemicals causing cancer after perinatal exposure. Human data are extremely limited, with radiation exposures showing increased early susceptibility at some tumor sites. Twenty-seven rodent studies for 18 chemicals had sufficient data after postnatal and adult exposures to quantitatively estimate potential increased susceptibility from early-life exposure, calculated as the ratio of juvenile to adult cancer potencies for three study types: acute dosing, repeated dosing, and lifetime dosing. Twelve of the chemicals act through a mutagenic mode of action. For these, the geometric mean ratio was 11 for lifetime exposures and 8.7 for repeat exposures, with a ratio of 10 for these studies combined. The geometric mean ratio for acute studies is 1.5, which was influenced by tissue-specific results [geometric mean ratios for kidney, leukemia, liver, lymph, mammary, nerve, reticular tissue, thymic lymphoma, and uterus/vagina > 1 (range, 1.6–8.1); forestomach, harderian gland, ovaries, and thyroid < 1 (range, 0.033–0.45)]. Chemicals causing cancer through other modes of action indicate some increased susceptibility from postnatal exposure (geometric mean ratio is 3.4 for lifetime exposure, 2.2 for repeat exposure). Early exposures to compounds with endocrine activity sometimes produce different tumors after exposures at different ages. These analyses suggest increased susceptibility to cancer from early-life exposure, particularly for chemicals acting through a mutagenic mode of action. PMID:16140616

  15. The effect of exposure to hypergravity on pregnant rat dams, pregnancy outcome and early neonatal development

    NASA Astrophysics Data System (ADS)

    Ladd, B.; Nguon, K.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that hypergravity exposure affects food intake and mass gain during pregnancy. In the present study, we explored the hypothesis that changes in maternal body mass in hypergravity-exposed pregnant rat dams affect pregnancy outcome and early offspring development. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravity and by exposure during critical developmental periods. To test this hypothesis, we compared maternal body mass gain, food consumption, birth outcome and early offspring development between Sprague Dawley rat dams exposed to graded (1.5 1.75G) chronic hypergravity (HG) or rotation (rotational control, RC) on a 24-ft centrifuge for 22.5 h starting on gestational day (G) 10 with dams housed under identical conditions but not exposed to hypergravity (SC). We also compared maternal body mass, food consumption, birth outcome and early offspring development between rat dams exposed to 1.65G during different stages of pregnancy and nursing. Exposure to hypergravity resulted in transient loss in body mass and prolonged decrease in food consumption in HG dams, but the changes observed at 1.5G were not magnified at 1.65G or 1.75G. On the other hand RC dams gained more mass and consumed more food than SC dams. Exposure to hypergravity also affected pregnancy outcome as evidenced by decreased litter size, lowered neonatal mass at birth, and higher neonatal mortality; pregnancy outcome was not affected in RC dams. Neonatal changes evidenced by impaired righting response observed at 1.5G was magnified at higher gravity and was dependent on the period of hypergravity exposure. On the other hand, righting response was improved in RC neonates. Hypergravity exposure during early postpartum affected the food consumption of nursing mothers and affected early survival of their offspring. The changes observed in dams and neonates appear to be due to hypergravity exposure since animals exposed to the rotation

  16. Effects of a commonly used glyphosate-based herbicide formulation on early developmental stages of two anuran species.

    PubMed

    Wagner, Norman; Müller, Hendrik; Viertel, Bruno

    2017-01-01

    Environmental contamination, especially due to the increasing use of pesticides, is suggested to be one out of six main reasons for the global amphibian decline. Adverse effects of glyphosate-based herbicides on amphibians have been already discussed in several studies with different conclusions, especially regarding sublethal effects at environmentally relevant concentrations. Therefore, we studied the acute toxic effects (mortality, growth, and morphological changes) of the commonly used glyphosate-based herbicide formulation Roundup® UltraMax on early aquatic developmental stages of two anuran species with different larval types (obligate vs. facultative filtrating suspension feeders), the African clawed frog (Xenopus laevis) and the Mediterranean painted frog (Discoglossus pictus). While X. laevis is an established anuran model organism in amphibian toxicological studies, we aim to establish D. pictus as another model for species with facultative filtrating larvae. A special focus of the present study lies on malformations in X. laevis embryos, which were investigated using histological preparations. In general, embryos and larvae of X. laevis reacted more sensitive concerning lethal effects compared to early developmental stages of D. pictus. It was suggested, that especially the different morphology of their filter apparatus and the higher volume of water pumped through the buccopharynx of X. laevis larvae lead to higher exposure to the formulation. The test substance induced similar lethal effects in D. pictus larvae as it does in the teleost standard test organism used in pesticide approval, the rainbow trout (Oncorhynchus mykiss), whereas embryos of both species are apparently more tolerant and, conversely, X. laevis larvae about two times more sensitive. In both species, early larvae always reacted significantly more sensitive than embryos. Exposure to the test substance increased malformation rates in embryos of both species in a concentration

  17. Early developmental characteristics and features of major depressive disorder among child psychiatric patients in Hungary.

    PubMed

    Kapornai, Krisztina; Gentzler, Amy L; Tepper, Ping; Kiss, Eniko; Mayer, László; Tamás, Zsuzsanna; Kovacs, Maria; Vetró, Agnes

    2007-06-01

    We investigate the relations of early atypical characteristics (perinatal problems, developmental delay, and difficult temperament) and onset-age (as well as severity of) first major depressive disorder (MDD) and first internalizing disorder in a clinical sample of depressed children in Hungary. Participants were 371 children (ages 7-14) with MDD, and their biological mothers, recruited through multiple clinical sites. Diagnoses (via DSM-IV criteria) and onset dates of disorders were finalized "best estimate" psychiatrists, and based on multiple information sources. Mothers provided developmental data in a structured interview. Difficult temperament predicted earlier onset of MDD and first internalizing disorder, but its effect was ameliorated if the family was intact during early childhood. Further, the importance of difficult temperament decreased as a function of time. Perinatal problems and developmental delay did not impact onset ages of disorders, and none of the early childhood characteristics associated with MDD episode severity. Children with MDD may have added disadvantage of earlier onset if they had a difficult temperament in infancy. Because early temperament mirrors physiological reactivity and regulatory capacity, it can affect various areas of functioning related to psychopathology. Early caregiver stability may attenuate some adverse effects of difficult infant temperament.

  18. Medical students' attitudes towards early clinical exposure in Iran.

    PubMed

    Khabaz Mafinejad, Mahboobeh; Mirzazadeh, Azim; Peiman, Soheil; Khajavirad, Nasim; Mirabdolhagh Hazaveh, Mojgan; Edalatifard, Maryam; Allameh, Seyed-Farshad; Naderi, Neda; Foroumandi, Morteza; Afshari, Ali; Asghari, Fariba

    2016-06-19

    This study was carried out to investigate the medical students' attitudes towards early clinical exposure at Tehran University of Medical Sciences. A cross-sectional study was conducted during 2012-2015. A convenience sample of 298 first- and second-year students, enrolled in the undergraduate medical curriculum, participated in an early clinical exposure program. To collect data from medical students, a questionnaire consisting of open-ended questions and structured questions, rated on a five-point Likert scale, was used to investigate students' attitudes toward early clinical exposure. Of the 298 medical students, 216 (72%) completed the questionnaires. The results demonstrated that medical students had a positive attitude toward early clinical exposure. Most students (80.1%) stated that early clinical exposure could familiarize them with the role of basic sciences knowledge in medicine and how to apply this knowledge in clinical settings. Moreover, 84.5% of them believed that early clinical exposure increased their interest in medicine and encouraged them to read more. Furthermore, content analysis of the students' responses uncovered three main themes of early clinical exposure, were considered helpful to improve learning: "integration of theory and practice", "interaction with others and professional development" and "desire and motivation for learning medicine". Medical students found their first experience with clinical setting valuable. Providing clinical exposure in the initial years of medical curricula and teaching the application of basic sciences knowledge in clinical practice can enhance students' understanding of the role they will play in the future as a physician.

  19. ONTOGENETIC ALTERATIONS IN MOLECULAR AND STRUCTURAL CORRELATES OF DENDRITIC GROWTH FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYLS.

    EPA Science Inventory

    This is the first report showing both molecular and structural changes in brain following developmental exposure to a neurotoxicant. It is known that perinatal exposure to a neurotoxicant, polychlorinated biphenyls (PCBs), is associated with decreased IQ scores, impaired learnin...

  20. The utility of early developmental assessments on understanding later nonverbal IQ in children who are deaf or hard of hearing.

    PubMed

    Meinzen-Derr, Jareen; Wiley, Susan; Phillips, Jannel; Altaye, Mekibib; Choo, Daniel I

    2017-01-01

    In children who are deaf or hard of hearing (DHH), it is helpful to have meaningful early measures of development in order to provide effective interventions and offer benchmarks that help recognize varied developmental trajectories. The main objective of this study was to compare results of an early developmental assessment prior to 3 years of age to later nonverbal IQ assessed between 3 and 6 years of age in children who are DHH. This study included children 3-6 years of age with bilateral permanent hearing who were enrolled in a prospective cohort study on developmental outcomes. As part of the study, children received the Leiter International Performance Scale-Revised, which provided a nonverbal Brief IQ, as well as standardized language assessment and behavioral checklists. Children were included in this analysis if they had received an early developmental assessment with the Gesell Developmental Schedules-Revised as part of a clinical visit with a developmental pediatrician. Correlation coefficients and multiple regression analysis were used to associate the scores on the Gesell (using a developmental quotient) with scores on the Leiter-R Brief IQ. Forty-five participants who enrolled in the observational study had available evaluation results from the Gesell and complete Brief IQ results from the Leiter-R. The adaptive domain of the Gesell had good correlation (r = 0.61, p < 0.0001) with the Brief IQ on the Leiter-R. Children who had stable developmental or intelligence classifications based on scores (<70, 70 to <85, 85 to <100, ≥100) over time were older (>24 months) at the early Gesell assessment. Degree of hearing loss or maternal education did not appear to confound the relationship between the Gesell and the Leiter-R. The adaptive domain of the Gesell Developmental Schedules - Revised administered in early childhood (under 3 years of age) has good correlation with the nonverbal Brief IQ on the Leiter International Performance Scale-R. Because

  1. The Relation of Emotional Maltreatment to Early Adolescent Competence: Developmental Processes in a Prospective Study

    ERIC Educational Resources Information Center

    Shaffer, Anne; Yates, Tuppett M.; Egeland, Byron R.

    2009-01-01

    Objectives: This investigation examined developmental pathways between childhood emotional maltreatment and adaptational outcomes in early adolescence. This study utilized a developmental psychopathology perspective in adopting a multidimensional approach to the assessment of different forms of emotional maltreatment and later adjustment outcomes.…

  2. Prenatal Cocaine Disrupts Serotonin Signaling-Dependent Behaviors: Implications for Sex Differences, Early Stress and Prenatal SSRI Exposure

    PubMed Central

    Williams, Sarah K; Lauder, Jean M; Johns, Josephine M

    2011-01-01

    Prenatal cocaine (PC) exposure negatively impacts the developing nervous system, including numerous changes in serotonergic signaling. Cocaine, a competitive antagonist of the serotonin transporter, similar to selective serotonin reuptake inhibitors (SSRIs), also blocks dopamine and norepinephrine transporters, leaving the direct mechanism through which cocaine disrupts the developing serotonin system unclear. In order to understand the role of the serotonin transporter in cocaine’s effect on the serotonergic system, we compare reports concerning PC and prenatal antidepressant exposure and conclude that PC exposure affects many facets of serotonergic signaling (serotonin levels, receptors, transporters) and that these effects differ significantly from what is observed following prenatal SSRI exposure. Alterations in serotonergic signaling are dependent on timing of exposure, test regimens, and sex. Following PC exposure, behavioral disturbances are observed in attention, emotional behavior and stress response, aggression, social behavior, communication, and like changes in serotonergic signaling, these effects depend on sex, age and developmental exposure. Vulnerability to the effects of PC exposure can be mediated by several factors, including allelic variance in serotonergic signaling genes, being male (although fewer studies have investigated female offspring), and experiencing the adverse early environments that are commonly coincident with maternal drug use. Early environmental stress results in disruptions in serotonergic signaling analogous to those observed with PC exposure and these may interact to produce greater behavioral effects observed in children of drug-abusing mothers. We conclude that based on past evidence, future studies should put a greater emphasis on including females and monitoring environmental factors when studying the impact of PC exposure. PMID:22379462

  3. Berberine exposure triggers developmental effects on planarian regeneration

    PubMed Central

    Balestrini, Linda; Isolani, Maria Emilia; Pietra, Daniele; Borghini, Alice; Bianucci, Anna Maria; Deri, Paolo; Batistoni, Renata

    2014-01-01

    The mechanisms of action underlying the pharmacological properties of the natural alkaloid berberine still need investigation. Planarian regeneration is instrumental in deciphering developmental responses following drug exposure. Here we report the effects of berberine on regeneration in the planarian Dugesia japonica. Our findings demonstrate that this compound perturbs the regenerative pattern. By real-time PCR screening for the effects of berberine exposure on gene expression, we identified alterations in the transcriptional profile of genes representative of different tissues, as well as of genes involved in extracellular matrix (ECM) remodeling. Although berberine does not influence cell proliferation/apoptosis, our experiments prove that this compound causes abnormal regeneration of the planarian visual system. Potential berberine-induced cytotoxic effects were noticed in the intestine. Although we were unable to detect abnormalities in other structures, our findings, sustained by RNAi-based investigations, support the possibility that berberine effects are critically linked to anomalous ECM remodeling in treated planarians. PMID:24810466

  4. Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: a dynamic and kinetic evaluation of a putative mode-of-action.

    PubMed

    Paul, Katie B; Hedge, Joan M; Bansal, Ruby; Zoeller, R Thomas; Peter, Robert; DeVito, Michael J; Crofton, Kevin M

    2012-10-09

    This work tests the mode-of-action (MOA) hypothesis that maternal and developmental triclosan (TCS) exposure decreases circulating thyroxine (T4) concentrations via up-regulation of hepatic catabolism and elimination of T4. Time-pregnant Long-Evans rats received TCS po (0-300mg/kg/day) from gestational day (GD) 6 through postnatal day (PND) 21. Serum and liver were collected from dams (GD20, PND22) and offspring (GD20, PND4, PND14, PND21). Serum T4, triiodothyronine (T3), and thyroid-stimulating hormone (TSH) concentrations were measured by radioimmunoassay. Ethoxy-O-deethylase (EROD), pentoxyresorufin-O-depentylase (PROD) and uridine diphosphate glucuronyltransferase (UGT) enzyme activities were measured in liver microsomes. Custom Taqman(®) qPCR arrays were employed to measure hepatic mRNA expression of select cytochrome P450s, UGTs, sulfotransferases, transporters, and thyroid hormone-responsive genes. TCS was quantified by LC/MS/MS in serum and liver. Serum T4 decreased approximately 30% in GD20 dams and fetuses, PND4 pups and PND22 dams (300mg/kg/day). Hepatic PROD activity increased 2-3 fold in PND4 pups and PND22 dams, and UGT activity was 1.5 fold higher in PND22 dams only (300mg/kg/day). Minor up-regulation of Cyp2b and Cyp3a expression in dams was consistent with hypothesized activation of the constitutive androstane and/or pregnane X receptor. T4 reductions of 30% for dams and GD20 and PND4 offspring with concomitant increases in PROD (PND4 neonates and PND22 dams) and UGT activity (PND22 dams) suggest that up-regulated hepatic catabolism may contribute to TCS-induced hypothyroxinemia during development. Serum and liver TCS concentrations demonstrated greater fetal than postnatal internal exposure, consistent with the lack of T4 changes in PND14 and PND21 offspring. These data support the MOA hypothesis that TCS exposure leads to hypothyroxinemia via increased hepatic catabolism; however, the minor effects on thyroid hormone metabolism may reflect the

  5. Medical students’ attitudes towards early clinical exposure in Iran

    PubMed Central

    Khabaz Mafinejad, Mahboobeh; Peiman, Soheil; Khajavirad, Nasim; Mirabdolhagh Hazaveh, Mojgan; Edalatifard, Maryam; Allameh, Seyed-Farshad; Naderi, Neda; Foroumandi, Morteza; Afshari, Ali; Asghari, Fariba

    2016-01-01

    Objectives This study was carried out to investigate the medical students’ attitudes towards early clinical exposure at Tehran University of Medical Sciences. Methods A cross-sectional study was conducted during 2012-2015. A convenience sample of 298 first- and second-year students, enrolled in the undergraduate medical curriculum, participated in an early clinical exposure program. To collect data from medical students, a questionnaire consisting of open-ended questions and structured questions, rated on a five-point Likert scale, was used to investigate students’ attitudes toward early clinical exposure. Results Of the 298 medical students, 216 (72%) completed the questionnaires. The results demonstrated that medical students had a positive attitude toward early clinical exposure. Most students (80.1%) stated that early clinical exposure could familiarize them with the role of basic sciences knowledge in medicine and how to apply this knowledge in clinical settings. Moreover, 84.5% of them believed that early clinical exposure increased their interest in medicine and encouraged them to read more. Furthermore, content analysis of the students’ responses uncovered three main themes of early clinical exposure, were considered helpful to improve learning: “integration of theory and practice”, “interaction with others and professional development” and “desire and motivation for learning medicine”. Conclusions Medical students found their first experience with clinical setting valuable. Providing clinical exposure in the initial years of medical curricula and teaching the application of basic sciences knowledge in clinical practice can enhance students’ understanding of the role they will play in the future as a physician. PMID:27318794

  6. Fish egg injection as an alternative exposure route for early life stage toxicity studies: Description of two unique methods: Chapter 4

    USGS Publications Warehouse

    Walker, Mary K.; Zabel, Erik W.; Akerman, Gun; Balk, Lennart; Wright, Peggy J.; Tillitt, Donald E.

    1996-01-01

    developing embryo without the need to chronically expose adult fish with subsequent natural deposition of hydrophobic chemicals into the oocytes. Fish egg injection provides this exposure route. Embryos are exposed directly after fertilization with known doses of contaminants, the dose is delivered prior to critical developmental events, and extrapolation of the dose received by the embryo is not needed.We have developed two unique fish egg injection methods as alternative routes of exposure for fish early life stage toxicity studies of lipophilic environmental contaminants. With either method, individual fish eggs are injected with a known dose of chemical. The first approach, a microinjection method, originally developed to assess the developmental toxicity of HAH congeners to early life stages of salmonids, utilizes micro-syringes, 30- gauge stainless steel injection needles, and micro- to nanoliter injection volume. The second approach, a nano-injection method, utilizes glass capillary micropipettes with 2 to 10 µm tips as injection needles, and nano- to picoliter injection volume, allowing injection of nearly any size of fish egg.Both of these egg injection methods allow an investigator to assess the toxicity of lipophilic environmental contaminants to early life stages of fish in a manner that realistically reflects environmental exposure and allows accurate quantitation of the dose to the developing embryo. These injection techniques, however, are not limited to use with only lipophilic chemicals. Since the developmental toxicity of many environmental contaminants ultimately depends on the dose received by the embryo, these egg injection methods could serve as a realistic exposure route in many fish early life stage toxicity studies.

  7. Early IGF-1 primes visual cortex maturation and accelerates developmental switch between NKCC1 and KCC2 chloride transporters in enriched animals.

    PubMed

    Baroncelli, Laura; Cenni, Maria Cristina; Melani, Riccardo; Deidda, Gabriele; Landi, Silvia; Narducci, Roberta; Cancedda, Laura; Maffei, Lamberto; Berardi, Nicoletta

    2017-02-01

    Environmental enrichment (EE) has a remarkable impact on brain development. Continuous exposure to EE from birth determines a significant acceleration of visual system maturation both at retinal and cortical levels. A pre-weaning enriched experience is sufficient to trigger the accelerated maturation of the visual system, suggesting that factors affected by EE during the first days of life might prime visual circuits towards a faster development. The search for such factors is crucial not only to gain a better understanding of the molecular hierarchy of brain development but also to identify molecular pathways amenable to be targeted to correct atypical brain developmental trajectories. Here, we showed that IGF-1 levels are increased in the visual cortex of EE rats as early as P6 and this is a crucial event for setting in motion the developmental program induced by EE. Early intracerebroventricular (i.c.v.) infusion of IGF-1 in standard rats was sufficient to mimic the action of EE on visual acuity development, whereas blocking IGF-1 signaling by i.c.v. injections of the IGF-1 receptor antagonist JB1 prevented the deployment of EE effects. Early IGF-1 decreased the ratio between the expression of NKCC1 and KCC2 cation/chloride transporters, and the reversal potential for GABA A R-driven Cl - currents (E Cl ) was shifted toward more negative potentials, indicating that IGF-1 is a crucial factor in accelerating the maturation of GABAergic neurotransmission and promoting the developmental switch of GABA polarity from excitation to inhibition. In addition, early IGF-1 promoted a later occurring increase in its own expression, suggesting a priming effect of early IGF-1 in driving post-weaning cortical maturation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Parental tobacco smoke exposure: Epigenetics and the developmental origins of health and disease

    EPA Science Inventory

    Epigenetic programming is an important mechanism underlying the Developmental Origins of Health and Disease (DOHaD). Much of the research in this area has focused on maternal nutrition. Parental smoking has emerged as a prime example of how exposure to environmental toxicants dur...

  9. Early Exposure to Haloperidol or Olanzapine Induces Long-Term Alterations of Dendritic Form

    PubMed Central

    Frost, Douglas O.; Page, Stephanie Cerceo; Carroll, Cathy; Kolb, Bryan

    2009-01-01

    Exposure of the developing brain to a wide variety of drugs of abuse (eg., stimulants, opioids, ethanol, etc.) can induce life-long changes in behavior and neural circuitry. However, the long-term effects of exposure to therapeutic, psychotropic drugs have only recently begun to be appreciated. Antipsychotic drugs are little studied in this regard. Here we quantitatively analyzed dendritic architecture in adult mice treated with paradigmatic typical- (haloperidol) or atypical (olanzapine) antipsychotic drugs at developmental stages corresponding to fetal or fetal plus early childhood stages in humans. In layer 3 pyramidal cells of the medial and orbital prefrontal cortices and the parietal cortex and in spiny neurons of the core of the nucleus accumbens, both drugs induced significant changes (predominantly reductions) in the amount and complexity of dendritic arbor and the density of dendritic spines. The drug-induced plasticity of dendritic architecture suggests changes in patterns of neuronal connectivity in multiple brain regions that are likely to be functionally significant. PMID:19862684

  10. Developmental exposure to a commercial PBDE mixture, DE-71: neurobehavioral, hormonal, and reproductive effects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavanti, Prasada; Coburn, Cary; Moser, Virginia

    2010-06-01

    Developmental effects of polybrominated diphenyl ethers (PBDEs) have been suspected due to their structural similarities to polychlorinated biphenyls (PCBs). This study evaluated neurobehavioral, hormonal, and reproductive effects in rat offspring perinatally exposed to a widely used pentabrominated commercial mixture, DE-71. Pregnant Long-Evans rats were exposed to 0, 1.7, 10.2, or 30.6 mg/kg/day DE-71 in corn oil by oral gavage from gestational day 6 to weaning. DE-71 did not alter maternal or male offspring body weights. However, female offspring were smaller compared with controls from postnatal days (PNDs) 35-60. Although several neurobehavioral endpoints were assessed, the only statistically significant behavioral findingmore » was a dose-by-age interaction in the number of rears in an open-field test. Developmental exposure to DE-71 caused severe hypothyroxinemia in the dams and early postnatal offspring. DE-71 also affected anogenital distance and preputial separation in male pups. Body weight gain over time, reproductive tissue weights, and serum testosterone concentrations at PND 60 were not altered. Mammary gland development of female offspring was significantly affected at PND 21. Congener-specific analysis of PBDEs indicated accumulation in all tissues examined. Highest PBDE concentrations were found in fat including milk, whereas blood had the lowest concentrations on a wet weight basis. PBDE concentrations were comparable among various brain regions. Thus, perinatal exposure to DE-71 leads to accumulation of PBDE congeners in various tissues crossing blood-placenta and blood-brain barriers, causing subtle changes in some parameters of neurobehavior and dramatic changes in circulating thyroid hormone levels, as well as changes in both male and female reproductive endpoints. Some of these effects are similar to those seen with PCBs, and the persistence of these changes requires further investigation.« less

  11. Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6J mice.

    PubMed

    Sanchez Vega, Michelle C; Chong, Suyinn; Burne, Thomas H J

    2013-09-01

    Alcohol consumption during pregnancy has deleterious effects on the developing foetus ranging from subtle physical deficits to severe behavioural abnormalities and is encompassed under a broad umbrella term, foetal alcohol spectrum disorders (FASD). High levels of exposure show distinct effects, whereas the consequences of moderate exposures have been less well studied. The aim of this study was to examine the effects of a moderate dose ethanol exposure using an ad libitum drinking procedure during the first eight days of gestation in mice on the behavioural phenotype of adult offspring. Adult female C57Bl/6J mice were mated and exposed to either 10% (v/v) ethanol or water for the first 8 days of gestation (GD 0-8), and then offered water for the rest of gestation. Early developmental milestone achievement was assessed in offspring at postnatal days (P) 7, 14 and 21. Adult offspring underwent a comprehensive battery of behavioural tests to examine a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception, as well as spatial memory in a water maze. Ethanol-exposed mice had similar postnatal developmental trajectories to water-exposed mice. However, the ethanol-exposed mice showed increased hyperlocomotion at P 14, 21 and 70 (p<0.05). Increased exploration and heightened motivation were also observed in adult mice. Furthermore, ethanol-exposed mice showed a significant improvement in memory in the water maze. The main findings were that mice had persistent and long lasting alterations in behaviour, including hyperactivity and enhanced spatial memory. These data suggest that even moderate dose ethanol exposure in early gestation has long term consequences on brain function and behaviour in mice. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. Precursors of Adolescent Substance Use from Early Childhood and Early Adolescence: Testing a Developmental Cascade Model

    PubMed Central

    Sitnick, Stephanie; Shaw, Daniel S.; Hyde, Luke

    2013-01-01

    This study examined developmentally-salient risk and protective factors of adolescent substance use assessed during early childhood and early adolescence using a sample of 310 low-income boys. Child problem behavior and proximal family risk and protective factors (i.e., parenting, maternal depression) during early childhood, as well as child and family factors and peer deviant behavior during adolescence were explored as potential precursors to later substance use during adolescence using structural equation modeling. Results revealed that early childhood risk and protective factors (i.e., child externalizing problems, mothers’ depressive symptomatology, and nurturant parenting) were indirectly related to substance use at the age of 17 via risk and protective factors during early and middle adolescence (i.e., parental knowledge and externalizing problems). The implications of these findings for early prevention and intervention are discussed. PMID:24029248

  13. Morphological abnormalities of embryonic cranial nerves after in utero exposure to valproic acid: implications for the pathogenesis of autism with multiple developmental anomalies.

    PubMed

    Tashiro, Yasura; Oyabu, Akiko; Imura, Yoshio; Uchida, Atsuko; Narita, Naoko; Narita, Masaaki

    2011-06-01

    Autism is often associated with multiple developmental anomalies including asymmetric facial palsy. In order to establish the etiology of autism with facial palsy, research into developmental abnormalities of the peripheral facial nerves is necessary. In the present study, to investigate the development of peripheral cranial nerves for use in an animal model of autism, rat embryos were treated with valproic acid (VPA) in utero and their cranial nerves were visualized by immunostaining. Treatment with VPA after embryonic day 9 had a significant effect on the peripheral fibers of several cranial nerves. Following VPA treatment, immunoreactivity within the trigeminal, facial, glossopharyngeal and vagus nerves was significantly reduced. Additionally, abnormal axonal pathways were observed in the peripheral facial nerves. Thus, the morphology of several cranial nerves, including the facial nerve, can be affected by prenatal VPA exposure as early as E13. Our findings indicate that disruption of early facial nerve development is involved in the etiology of asymmetric facial palsy, and may suggest a link to the etiology of autism. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  14. Gene expression profiles in the cerebellum and hippocampus following exposure to a neurotoxicant, Aroclor 1254: Developmental effects.

    EPA Science Inventory

    The developmental consequences of exposure to the polychlorinated biphenyls (PCBs) have been widely studied, making PCBs a unique model to understand issues related to environmental mixture of persistent chemicals. PCB exposure in humans adversely affects neurocognitive developm...

  15. Effect of chronic copper and pentachlorophenol exposure to early life stages of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, D.J.; Stover, E.L.

    1995-12-31

    An evaluation of the effects of low-level copper and pentachlorophenol exposure on various early life stages of the South African clawed frog, Xenopus laevis was performed using stage-specific and long-term continuous exposures. Stage-specific exposure experiments were conducted such that separate subsets of embryos and larvae from the same clutch were exposed to two toxicants, copper and pentachlorophenol, from 0 d to 4 d (standard Frog Embryo Teratagenesis Assay Xenopus [FETAX]), 4 d to 8 d, 8 d to 12 d, and 12 d to 16 d. Results from two separate concentration-response experiments indicated that sensitivity to either toxicant increased inmore » each successive time period. Continuous exposure studies conducted for 60 to 75 days indicated that copper, but not pentachlorophenol induced reduction deficiency malformations of the hind limb at concentrations as low as 0.05 mg/L. Pentachlorophenol concentrations as low as 0.5/{micro}g/L inhibited tail resorption. However, copper did not adversely affect the process of tail resorption. These results indicated that studies evaluating longer-term developmental processes are important in ecological hazard evaluation.« less

  16. Analysis of the Developmental Functioning of Early Intervention and Early Childhood Special Education Populations in Oregon. Issues & Answers. REL 2009-078

    ERIC Educational Resources Information Center

    Nave, Gary; Nishioka, Vicki; Burke, Arthur

    2009-01-01

    This study reports on the developmental functioning levels of children from birth through age 2 in early intervention services and children ages 3-5 in early childhood special education services at the time of entry into services, using data from the Oregon Early Childhood Assessment System. The assessment system contains data on the assessed…

  17. Safeguarding Our Children at Home: Reducing Exposures to Toxic Chemicals and Heavy Metals

    ERIC Educational Resources Information Center

    Miller, Elise; Snow, Nancy

    2005-01-01

    Emerging research suggests that exposure to environmental pollutants, prenatally and in early childhood, may contribute significantly to diseases and disabilities. For example, exposures to mercury or lead early in life can impact the nervous system and brain, potentially contributing to learning, behavioral, and developmental disabilities. The…

  18. Developmental Exposure to a Dopaminergic Toxicant Produces Altered Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...

  19. Developmental rate and behavior of early life stages of bighead carp and silver carp

    USGS Publications Warehouse

    Chapman, Duane C.; George, Amy E.

    2011-01-01

    The early life stages of Asian carp are well described by Yi and others (1988), but since these descriptions are represented by line drawings based only on live individuals and lacked temperature controls, further information on developmental time and stages is of use to expand understanding of early life stages of these species. Bighead carp and silver carp were cultured under two different temperature treatments to the one-chamber gas bladder stage, and a photographic guide is provided for bighead carp and silver carp embryonic and larval development, including notes about egg morphology and larval swimming behavior. Preliminary information on developmental time and hourly thermal units for each stage is also provided. Both carp species developed faster under warmer conditions. Developmental stages and behaviors are generally consistent with earlier works with the exception that strong vertical swimming immediately after hatching was documented in this report.

  20. Persistence of Early Emerging Aberrant Behavior in Children with Developmental Disabilities

    ERIC Educational Resources Information Center

    Green, Vanessa A.; O'Reilly, Mark; Itchon, Jonathan; Sigafoos, Jeff

    2005-01-01

    This study examined the persistence of early emerging aberrant behavior in 13 preschool children with developmental disabilities. The severity of aberrant behavior was assessed every 6 months over a 3-year period. Teachers completed the assessments using the Aberrant Behavior Checklist [Aman, M. G., & Singh, N. N. (1986). "Aberrant…

  1. Prevention and early intervention for behaviour problems in children with developmental disabilities.

    PubMed

    Einfeld, Stewart L; Tonge, Bruce J; Clarke, Kristina S

    2013-05-01

    To review the recent evidence regarding early intervention and prevention studies for children with developmental disabilities and behaviour problems from 2011 to 2013. Recent advances in the field are discussed and important areas for future research are highlighted. Recent reviews and studies highlight the utility of antecedent interventions and skills training interventions for reducing behaviour problems. There is preliminary evidence for the effectiveness of parent training interventions when delivered in minimally sufficient formats or in clinical settings. Two recent studies have demonstrated the utility of behavioural interventions for children with genetic causes of disability. Various forms of behavioural and parent training interventions are effective at reducing the behaviour problems in children with developmental disabilities. However, research on prevention and early intervention continues to be relatively scarce. Further large-scale dissemination studies and effectiveness studies in clinical or applied settings are needed.

  2. Early-developmental stress, repeatability, and canalization in a suite of physiological and behavioral traits in female zebra finches.

    PubMed

    Careau, Vincent; Buttemer, William A; Buchanan, Katherine L

    2014-10-01

    Adaptive developmental plasticity allows individuals experiencing poor environmental conditions in early life to adjust their life-history strategy in order to prioritize short-term fitness benefits and maximize reproductive output in challenging environments. Much research has been conducted to test whether such adoption of a "faster" life-history strategy is accompanied by concordant changes in behavior and physiology, with mixed results. As research in this field has focused on comparison of mean-level responses of treatment groups, few studies include repeated measures of response variables and the effect that developmental stress may have on repeatability per se. We investigated how early-developmental stress affects the mean expression of (and repeatability in) a variety of behavioral and physiological traits in female zebra finches. We predicted that: (1) individuals subjected to nutritional restriction in the nestling phase would have higher feeding and activity rates, with associated increases in hematocrit and basal metabolic rates (BMRs), (2) nutritional restriction in early life would alter adults' stress-induced corticosterone level, and (3) developmental stress would, respectively, influence the amount of among-individual and within-individual variation in behavioral and physiological traits, hence affecting the repeatability of these traits. In comparison to control females, stressed females did not differ in activity rate or stress-induced corticosterone level, but they did have higher levels of feeding, hematocrit, and BMR. Among-individual variance and repeatability were generally higher in stressed females than in controls. Finally, we found that developmental dietary restriction significantly reduced the amount of within-individual variance both in activity rate in the novel environment and in stress-induced corticosterone level. Our results not only confirm previous findings on the effect of early-developmental stress on BMR, but also extend

  3. Developmental cascades: Externalizing, internalizing, and academic competence from middle childhood to early adolescence

    PubMed Central

    Moilanen, Kristin L.; Shaw, Daniel S.; Maxwell, Kari L.

    2011-01-01

    The current study was initiated to increase understanding of developmental cascades in childhood in a sample of at-risk boys (N = 291; 52% White). Mothers, teachers, and boys reported on boys’ externalizing problems, internalizing difficulties, and academic competence. Consistent with hypotheses regarding school-related transitions, high levels of externalizing problems were associated with both low levels of academic competence and high levels of internalizing problems during the early school-age period, and with elevations in internalizing problems during the transition to adolescence. Low levels of academic competence were associated with high levels of internalizing problems in middle childhood, and with high levels of externalizing problems during the transition from elementary school to middle school. Shared risk factors played a minimal role in these developmental cascades. Results suggest that there are cascading effects of externalizing problems and academic competence in childhood and early adolescence, and that some cascading effects are more likely to occur during periods of school-related transitions. Implications of developmental cascade effects for research and intervention are discussed. PMID:20576184

  4. Developmental Neurotoxicology: History and Outline of ...

    EPA Pesticide Factsheets

    The present work provides a brief review of basic concepts in developmental neurotoxicology, as well as current representative testing guidelines for evaluating developmental neurotoxicity (DNT) of xenobiotics. Historically, DNT was initially recognized as a “functional” teratogenicity: the main concern was that prenatal and/or early postnatal exposures to chemicals during critical periods of central nervous system (CNS) development would cause later functional abnormalities of the brain. Current internationally harmonized DNT study guidelines are thus intended to predict adverse effects of test compounds on the developing CNS by observing such postnatal parameters as motor activity, startle response, and learning and memory, as well as neropathological alterations. The reliability of current DNT study guidelines and sensitivity of testing methodologies recommended in these guidelines have been confirmed by retrospective evaluations of the many international and domestic collaborative validation studies in developed nations including Japan. Invited review with brief review of basic concepts in developmental neurotoxicology, as well as current representative testing guidelines for evaluating developmental neurotoxicity (DNT) of xenobiotics.

  5. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrenhoerster, Lori S.; Tate, Everett R.; Lakatos, Peter A.

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to completemore » lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3 μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life.« less

  6. Gestational lead exposure induces developmental abnormalities and up-regulates apoptosis of fetal cerebellar cells in rats.

    PubMed

    Mousa, Alyaa M; Al-Fadhli, Ameera S; Rao, Muddanna S; Kilarkaje, Narayana

    2015-01-01

    Lead (Pb), a known environmental toxicant, adversely affects almost all organ systems. In this study, we investigated the effects of maternal lead exposure on fetal rat cerebellum. Female Sprague-Dawley rats were given lead nitrate in drinking water (0, 0.5, and 1%) for two weeks before conception, and during pregnancy. Fetuses were collected by caesarian section on gestational day 21 and observed for developmental abnormalities. The fetal cerebellar sections from control and 1% lead group were stained with cresyl violet. Immunohistochemical expressions of p53, Bax, Bcl-2, and caspase 3 were quantified by AnalySIS image analyzer (Life Science, Germany). Lead exposure induced developmental abnormalities of eyes, ear, limbs, neck and ventral abdominal wall; however, these abnormalities were commonly seen in the 1% lead-treated group. In addition, lead also caused fetal mortality and reduced body growth in both dose groups and reduced brain weight in the 1% lead-treated group. The fetal cerebella from the 1% lead-treated group showed unorganized cerebellar cortical layers, and degenerative changes in granule and Purkinje cells such as the formation of clumps of Nissl granules. An increase in Bax and caspase 3, and a decrease in Bcl-2 (p < 0.05), but not in p53, showed apoptosis of the neurons. In conclusion, gestational lead exposure in rats induces fetal toxicity and developmental abnormalities. The lead exposure also impairs development of cerebellar layers, induces structural changes, and apoptosis in the fetal cerebellar cortex. These results suggest that lead exposure during gestation is extremely toxic to developing cerebellum in rats.

  7. HIGH-CONTENT ANALYSIS OF PRIMARY RAT NEURAL CORTICALCULTURES FOR DEVELOPMENTAL NEUROTOXICITY SCREENING

    EPA Science Inventory

    Development of the vertebrate nervous system proceeds through a number of critical processes, ultimately concluding with the extension of neurites and establishment of synaptic networks. Early-life exposure to toxicants that perturb these critical developmental processes can po...

  8. DEVELOPMENTAL ATRAZINE EXPOSURE SUPPRESSES IMMUNE FUNCTION IN MALE, BUT NOT FEMALE SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    Developmental Atrazine Exposure Suppresses Immune Function in Male, but not Female Sprague-Dawley Rats

    Andrew A. Rooney,*,1 Raymond A. Matulka,? and Robert Luebke?

    *College of Veterinary Medicine, Anatomy, Physiological Sciences and Radiology, NCSU, Raleigh, North...

  9. Body composition during early infancy and developmental progression from 1 to 5 years of age: the Infant Anthropometry and Body Composition (iABC) cohort study among Ethiopian children.

    PubMed

    Abera, Mubarek; Tesfaye, Markos; Admassu, Bitiya; Hanlon, Charlotte; Ritz, Christian; Wibaek, Rasmus; Michaelsen, Kim F; Friis, Henrik; Wells, Jonathan C; Andersen, Gregers S; Girma, Tsinuel; Kæstel, Pernille

    2018-06-01

    Early nutrition and growth have been found to be important early exposures for later development. Studies of crude growth in terms of weight and length/height, however, cannot elucidate how body composition (BC) might mediate associations between nutrition and later development. In this study, we aimed to examine the relation between fat mass (FM) or fat-free mass (FFM) tissues at birth and their accretion during early infancy, and later developmental progression. In a birth cohort from Ethiopia, 455 children who have BC measurement at birth and 416 who have standardised rate of BC growth during infancy were followed up for outcome variable, and were included in the statistical analysis. The study sample was restricted to mothers living in Jimma town who gave birth to a term baby with a birth weight ≥1500 g and no evident congenital anomalies. The relationship between the exposure and outcome variables was examined using linear-mixed regression model. The finding revealed that FFM at birth was positively associated with global developmental progression from 1 to 5 years (β=1·75; 95 % CI 0·11, 3·39) and from 4 to 5 years (β=1·34; 95 % CI 0·23, 2·44) in the adjusted model. Furthermore, the rate of postnatal FFM tissue accretion was positively associated with development at 1 year of age (β=0·50; 95 % CI 0·01, 0·99). Neither fetal nor postnatal FM showed a significant association. In conclusion, fetal, rather than postnatal, FFM tissue accretion was associated with developmental progression. Intervention studies are needed to assess whether nutrition interventions increasing FFM also increase cognitive development.

  10. Developmental Rainbow: Early Childhood Development Profile.

    ERIC Educational Resources Information Center

    Mahoney, Gerald; Mahoney, Frida

    One of the most important skills of professionals who work with young children is the ability to assess developmental functioning through informal observation. This skill serves as the foundation for screening or identifying children in need of developmental services, conducting play-based developmental assessments, and helping parents to…

  11. Prenatal and early-life diesel exhaust exposure causes autism-like behavioral changes in mice.

    PubMed

    Chang, Yu-Chi; Cole, Toby B; Costa, Lucio G

    2018-04-20

    Escalating prevalence of autism spectrum disorders (ASD) in recent decades has triggered increasing efforts in understanding roles played by environmental risk factors as a way to address this widespread public health concern. Several epidemiological studies show associations between developmental exposure to traffic-related air pollution and increased ASD risk. In rodent models, a limited number of studies have shown that developmental exposure to ambient ultrafine particulates or diesel exhaust (DE) can result in behavioral phenotypes consistent with mild ASD. We performed a series of experiments to determine whether developmental DE exposure induces ASD-related behaviors in mice. C57Bl/6J mice were exposed from embryonic day 0 to postnatal day 21 to 250-300 μg/m 3 DE or filtered air (FA) as control. Mice exposed developmentally to DE exhibited deficits in all three of the hallmark categories of ASD behavior: reduced social interaction in the reciprocal interaction and social preference tests, increased repetitive behavior in the T-maze and marble-burying test, and reduced or altered communication as assessed by measuring isolation-induced ultrasonic vocalizations and responses to social odors. These findings demonstrate that exposure to traffic-related air pollution, in particular that associated with diesel-fuel combustion, can cause ASD-related behavioral changes in mice, and raise concern about air pollution as a contributor to the onset of ASD in humans.

  12. Infancy to Early Childhood: Genetic and Environmental Influences on Developmental Change.

    ERIC Educational Resources Information Center

    Emde, Robert N., Ed.; Hewitt, John K., Ed.

    This book analyzes the MacArthur Longitudinal Twin Study, a collaborative study by leading developmental scientists and behavioral geneticists on the transition from infancy to early childhood. Part 1 of the book describes the twin method and procedures used and introduces the analytic strategies. Parts 2 through 4 present results related to…

  13. Executive Function in Early Childhood: Longitudinal Measurement Invariance and Developmental Change

    ERIC Educational Resources Information Center

    Willoughby, Michael T.; Wirth, R. J.; Blair, Clancy B.

    2012-01-01

    This study tested the longitudinal measurement invariance and developmental changes of a newly developed battery of executive function (EF) tasks for use in early childhood. The battery was administered in the Family Life Project--a prospective longitudinal study (N = 1,292) of families who were oversampled from low-income and African American…

  14. Small Steps: An Early Intervention Program for Children with Developmental Delays.

    ERIC Educational Resources Information Center

    Pieterse, Moira; And Others

    This boxed set includes eight booklets of home activities for early intervention for young children with developmental delays. The first book provides an introduction to the program and its implementation, lists 23 resources, describes a videotape which supplements the booklets, and includes a glossary. Book 2 covers how to select goals for the…

  15. Revisiting a Progressive Pedagogy. The Developmental-Interaction Approach. SUNY Series, Early Childhood Education: Inquiries and Insights.

    ERIC Educational Resources Information Center

    Nager, Nancy, Ed.; Shapiro, Edna K., Ed.

    This book reviews the history of the developmental-interactive approach, a formulation rooted in developmental psychology and educational practice, progressively informing educational thinking since the early 20th century. The book describes and analyzes key assumptions and assesses the compatibility of new theoretical approaches, focuses on…

  16. Developmental origins of type 2 diabetes: a perspective from China.

    PubMed

    Ma, R C W; Tsoi, K Y; Tam, W H; Wong, C K C

    2017-07-01

    There has been a marked increase in the prevalence of diabetes in Asia, including China, over the last few decades. While the increased prevalence of diabetes has often been attributed to the nutritional transition associated with recent economic development, emerging data suggest that early-life exposures also play a major role in shaping developmental trajectories, and contributes to alter an individual's susceptibility to diabetes and other non-communicable diseases (NCDs). Early-life exposures such as in utero exposure to undernutrition has been consistently linked with later risk of diabetes and obesity. Furthermore, in utero exposure to maternal hyperglycemia, maternal obesity and excess gestational weight gain are all linked with increased childhood obesity and later risk of diabetes. Emerging data have also highlighted the potential link between early-feeding practices, the role of one-carbon metabolism in metabolic programming and endocrine disrupting chemicals (EDCs) with later risk of diabetes. These different developmental exposures may all be highly relevant to the current epidemic of diabetes in China. For example, the prevalence of gestational diabetes has increased markedly over the last two decades, and may contribute to the diabetes epidemic by driving macrosomia, childhood obesity and later risk of diabetes. In order to address the current burden of diabetes, a lifecourse perspective, incorporating multisectoral efforts from public health policy down to the individuals, will be needed. Several major initiatives have been launched in China as part of its national plans for NCD prevention and treatment, and the experience from these efforts would be invaluable.

  17. Latent profiles of early developmental vulnerabilities in a New South Wales child population at age 5 years.

    PubMed

    Green, Melissa J; Tzoumakis, Stacy; Laurens, Kristin R; Dean, Kimberlie; Kariuki, Maina; Harris, Felicity; O'Reilly, Nicole; Chilvers, Marilyn; Brinkman, Sally A; Carr, Vaughan J

    2018-06-01

    Detecting the early emergence of childhood risk for adult mental disorders may lead to interventions for reducing subsequent burden of these disorders. We set out to determine classes of children who may be at risk for later mental disorder on the basis of early patterns of development in a population cohort, and associated exposures gleaned from linked administrative records obtained within the New South Wales Child Development Study. Intergenerational records from government departments of health, education, justice and child protection were linked with the Australian Early Development Census for a state population cohort of 67,353 children approximately 5 years of age. We used binary data from 16 subdomains of the Australian Early Development Census to determine classes of children with shared patterns of Australian Early Development Census-defined vulnerability using latent class analysis. Covariates, which included demographic features (sex, socioeconomic status) and exposure to child maltreatment, parental mental illness, parental criminal offending and perinatal adversities (i.e. birth complications, smoking during pregnancy, low birth weight), were examined hierarchically within latent class analysis models. Four classes were identified, reflecting putative risk states for mental disorders: (1) disrespectful and aggressive/hyperactive behaviour, labelled 'misconduct risk' ( N = 4368; 6.5%); (2) 'pervasive risk' ( N = 2668; 4.0%); (3) 'mild generalised risk' ( N = 7822; 11.6%); and (4) 'no risk' ( N = 52,495; 77.9%). The odds of membership in putative risk groups (relative to the no risk group) were greater among children from backgrounds of child maltreatment, parental history of mental illness, parental history of criminal offending, socioeconomic disadvantage and perinatal adversities, with distinguishable patterns of association for some covariates. Patterns of early childhood developmental vulnerabilities may provide useful indicators

  18. Priorities for Developmental Areas in Early Childhood Education: A Comparison of Parents' and Teachers' Priorities

    ERIC Educational Resources Information Center

    Sackes, Mesut

    2013-01-01

    The purpose of this study was to examine parents' and early childhood teachers' perceptions of the priorities for developmental areas targeted in the Turkish Early Childhood Education Curriculum for children aged 36-72 months. The sample of this study consisted of 1600 parents and 158 early childhood teachers. The study utilized a survey research…

  19. Trans-Agency Early-Life Exposures and Cancer Working Group

    Cancer.gov

    The Trans-Agency Early-Life Exposures and Cancer Working Group promotes integration of early-life events and exposures into public health cancer research, control, prevention, and policy strategies to reduce the cancer burden in the United States and globally.

  20. Developmental PBDE Exposure and IQ/ADHD in Childhood: A Systematic Review and Meta-analysis

    PubMed Central

    Lanphear, Bruce P.; Bellinger, David; Axelrad, Daniel A.; McPartland, Jennifer; Sutton, Patrice; Davidson, Lisette; Daniels, Natalyn; Sen, Saunak; Woodruff, Tracey J.

    2017-01-01

    Background: In the United States, one in six children are affected by neurodevelopmental disorders, and polybrominated diphenyl ethers (PBDEs) in flame-retardant chemicals are measured ubiquitously in children. Objective: We conducted a systematic a systematic review regarding developmental exposure to PBDEs and intelligence or Attention Deficit/Hyperactivity Disorder (ADHD) and attention-related behavioral conditions in humans. Methods: We searched articles published up to 26 September 2016, and included original studies that quantified exposures to PBDEs incurred any time in proximity to conception or during in utero, perinatal, or childhood time periods. We evaluated the risk of bias of individual studies and the overall quality and strength of the evidence according to the Navigation Guide systematic review methodology. We established criteria in advance to identify studies that could be combined using random effects meta-analyses (DerSimonian-Laird method). Results: Fifteen studies met the inclusion criteria; 10 studies met the criteria for intelligence and nine for attention-related problems. We rated studies generally with “low” to “probably low” risk of bias and rated the overall body of evidence as “moderate” quality with “sufficient” evidence for an association between Intelligence Quotient (IQ) and PBDEs. Our meta-analysis of four studies estimated a 10-fold increase (in other words, times 10) in PBDE exposure associated with a decrement of 3.70 IQ points (95% confidence interval: 0.83, 6.56). We concluded the body of evidence was of “moderate” quality for ADHD with “limited” evidence for an association with PBDEs, based on the heterogeneity of association estimates reported by a small number of studies and the fact that chance, bias, and confounding could not be ruled out with reasonable confidence. Conclusion: We concluded there was sufficient evidence supporting an association between developmental PBDE exposure and reduced IQ

  1. Transactional relations between caregiving stress, executive functioning, and problem behavior from early childhood to early adolescence

    PubMed Central

    LaGasse, Linda L.; Conradt, Elisabeth; Karalunas, Sarah L.; Dansereau, Lynne M.; Butner, Jonathan E.; Shankaran, Seetha; Bada, Henrietta; Bauer, Charles R.; Whitaker, Toni M.; Lester, Barry M.

    2016-01-01

    Developmental psychopathologists face the difficult task of identifying the environmental conditions that may contribute to early childhood behavior problems. Highly stressed caregivers can exacerbate behavior problems, while children with behavior problems may make parenting more difficult and increase caregiver stress. Unknown is: (1) how these transactions originate, (2) whether they persist over time to contribute to the development of problem behavior and (3) what role resilience factors, such as child executive functioning, may play in mitigating the development of problem behavior. In the present study, transactional relations between caregiving stress, executive functioning, and behavior problems were examined in a sample of 1,388 children with prenatal drug exposures at three developmental time points: early childhood (birth-age 5), middle childhood (ages 6 to 9), and early adolescence (ages 10 to 13). Transactional relations differed between caregiving stress and internalizing versus externalizing behavior. Targeting executive functioning in evidence-based interventions for children with prenatal substance exposure who present with internalizing problems and treating caregiving psychopathology, depression, and parenting stress in early childhood may be particularly important for children presenting with internalizing behavior. PMID:27427803

  2. ALTERATIONS IN BRAIN PROTEIN KINASE C ISOFORMS FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYL MIXTURE.

    EPA Science Inventory

    PCBs have been shown to alter several neurochemical end-points and are implicated in the etiology of some neurological diseases. Recent in vivo studies from our laboratory indicated that developmental exposure to a commercial PCB mixture, Aroclor 1254, caused perturbations in cal...

  3. Cord blood gene expression supports that prenatal exposure to perfluoroalkyl substances causes depressed immune functionality in early childhood.

    PubMed

    Pennings, Jeroen L A; Jennen, Danyel G J; Nygaard, Unni C; Namork, Ellen; Haug, Line S; van Loveren, Henk; Granum, Berit

    2016-01-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds that have widespread use in consumer and industrial applications. PFAS are considered environmental pollutants that have various toxic properties, including effects on the immune system. Recent human studies indicate that prenatal exposure to PFAS leads to suppressed immune responses in early childhood. In this study, data from the Norwegian BraMat cohort was used to investigate transcriptomics profiles in neonatal cord blood and their association with maternal PFAS exposure, anti-rubella antibody levels at 3 years of age and the number of common cold episodes until 3 years. Genes associated with PFAS exposure showed enrichment for immunological and developmental functions. The analyses identified a toxicogenomics profile of 52 PFAS exposure-associated genes that were in common with genes associated with rubella titers and/or common cold episodes. This gene set contains several immunomodulatory genes (CYTL1, IL27) as well as other immune-associated genes (e.g. EMR4P, SHC4, ADORA2A). In addition, this study identified PPARD as a PFAS toxicogenomics marker. These markers can serve as the basis for further mechanistic or epidemiological studies. This study provides a transcriptomics connection between prenatal PFAS exposure and impaired immune function in early childhood and supports current views on PPAR- and NF-κB-mediated modes of action. The findings add to the available evidence that PFAS exposure is immunotoxic in humans and support regulatory policies to phase out these substances.

  4. Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure

    PubMed Central

    van Bodegom, Miranda; Homberg, Judith R.; Henckens, Marloes J. A. G.

    2017-01-01

    Exposure to stress during critical periods in development can have severe long-term consequences, increasing overall risk on psychopathology. One of the key stress response systems mediating these long-term effects of stress is the hypothalamic-pituitary-adrenal (HPA) axis; a cascade of central and peripheral events resulting in the release of corticosteroids from the adrenal glands. Activation of the HPA-axis affects brain functioning to ensure a proper behavioral response to the stressor, but stress-induced (mal)adaptation of the HPA-axis' functional maturation may provide a mechanistic basis for the altered stress susceptibility later in life. Development of the HPA-axis and the brain regions involved in its regulation starts prenatally and continues after birth, and is protected by several mechanisms preventing corticosteroid over-exposure to the maturing brain. Nevertheless, early life stress (ELS) exposure has been reported to have numerous consequences on HPA-axis function in adulthood, affecting both its basal and stress-induced activity. According to the match/mismatch theory, encountering ELS prepares an organism for similar (“matching”) adversities during adulthood, while a mismatching environment results in an increased susceptibility to psychopathology, indicating that ELS can exert either beneficial or disadvantageous effects depending on the environmental context. Here, we review studies investigating the mechanistic underpinnings of the ELS-induced alterations in the structural and functional development of the HPA-axis and its key external regulators (amygdala, hippocampus, and prefrontal cortex). The effects of ELS appear highly dependent on the developmental time window affected, the sex of the offspring, and the developmental stage at which effects are assessed. Albeit by distinct mechanisms, ELS induced by prenatal stressors, maternal separation, or the limited nesting model inducing fragmented maternal care, typically results in HPA

  5. Developmental commentary: individual and contextual influences on student-teacher relationships and children's early problem behaviors.

    PubMed

    Myers, Sonya S; Pianta, Robert C

    2008-07-01

    Understanding factors associated with children's early behavioral difficulties is of vital importance to children's school success, and to the prevention of future behavior problems. Although biological factors can influence the expression of certain behaviors, the probability of children exhibiting classroom behavior problems is intensified when they are exposed to multiple risk factors, particularly negative student-teacher interactions. Children who exhibit behavior problems during early childhood and the transition to kindergarten, without intervention, can be placed on a developmental trajectory for serious behavior problems in later grades. Using a developmental systems model, this commentary provides a conceptual framework for understanding the contributions of individual and contextual factors to the development of early student-teacher relationships. Parent, teacher, and student characteristics are discussed as they are related to shaping student-teacher interactions and children's adjustment to school.

  6. DEVELOPMENTAL EXPOSURE TO A THYROID DISRUPTING CHEMICAL STIMULATES PHAGOCYTOSIS IN JUVENILE SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    Developmental Exposure to a Thyroid Disrupting Chemical Stimulates Phagocytosis in Juvenile Sprague-Dawley Rats.
    AA Rooney1, R Matulka2, and R Luebke3. 1NCSU/US EPA CVM, Department of Anatomy, Physiological Sciences and Radiology, Raleigh, NC;2UNC Department of Toxicology, Cha...

  7. Developmental exposure to trichloroethylene promotes CD4{sup +} T cell differentiation and hyperactivity in association with oxidative stress and neurobehavioral deficits in MRL+/+ mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossom, Sarah J.; Doss, Jason C.; Hennings, Leah J.

    2008-09-15

    The non adult immune system is particularly sensitive to perinatal and early life exposures to environmental toxicants. The common environmental toxicant, trichloroethylene (TCE), was shown to increase CD4+ T cell production of the proinflammatory cytokine IFN-{gamma} following a period of prenatal and lifetime exposure in autoimmune-prone MRL+/+ mice. In the current study, MRL+/+ mice were used to further examine the impact of TCE on the immune system in the thymus and periphery. Since there is considerable cross-talk between the immune system and the brain during development, the potential relationship between TCE and neurobehavioral endpoints were also examined. MRL+/+ mice weremore » exposed to 0.1 mg/ml TCE ({approx} 31 mg/kg/day) via maternal drinking water or direct exposure via the drinking water from gestation day 1 until postnatal day (PD) 42. TCE exposure did not impact gross motor skills but instead significantly altered social behaviors and promoted aggression associated with indicators of oxidative stress in brain tissues in male mice. The immunoregulatory effects of TCE involved a redox-associated promotion of T cell differentiation in the thymus that preceded the production of proinflammatory cytokines, IL-2, TNF-{alpha}, and IFN-{gamma} by mature CD4+ T cells. The results demonstrated that developmental and early life TCE exposure modulated immune function and may have important implications for neurodevelopmental disorders.« less

  8. Peer, parent and media influences on adolescent smoking by developmental stage.

    PubMed

    Villanti, Andrea; Boulay, Marc; Juon, Hee-Soon

    2011-01-01

    Previous studies of social influences on adolescent smoking have focused on peers and parents, using data collected prior the 1998 Master Settlement Agreement. This study used the 2004 wave of the National Youth Tobacco Survey to examine associations between peer smoking, smoking at home, tobacco-related media exposure, and smoking behavior during early and middle adolescence. Findings indicate that peer smoking and smoking at home remain strongly associated with current smoking among early and middle adolescents, controlling for gender, race/ethnicity and exposure to tobacco industry and anti-tobacco media. The magnitude of the association between peer smoking and current smoking decreases from early adolescence to middle adolescence while the association between smoking at home and current smoking is static across developmental stage. Exposure to tobacco-related media is associated with increased current and former smoking in both early and middle adolescence. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Associations between prenatal and childhood PBDE exposure and early adolescent visual, verbal and working memory.

    PubMed

    Cowell, Whitney J; Margolis, Amy; Rauh, Virginia A; Sjödin, Andreas; Jones, Richard; Wang, Ya; Garcia, Wanda; Perera, Frederica; Wang, Shuang; Herbstman, Julie B

    2018-05-19

    Prenatal and childhood exposure to polybrominated diphenyl ether (PBDE) flame retardants has been inversely associated with cognitive performance, however, few studies have measured PBDE concentrations in samples collected during both prenatal and postnatal periods. We examined prenatal (cord) and childhood (ages 2, 3, 5, 7 and 9 years) plasma PBDE concentrations in relation to memory outcomes assessed between the ages of 9 and 14 years. The study sample includes a subset (n = 212) of the African American and Dominican children enrolled in the Columbia Center for Children's Environmental Health Mothers and Newborns birth cohort. We used multivariable linear regression to examine associations between continuous log 10 -transformed PBDE concentrations and performance on tests of visual, verbal and working memory in age-stratified models. We additionally used latent class growth analysis to estimate trajectories of exposure across early life, which we analyzed as a categorical variable in relation to memory outcomes. We examined interactions between PBDE exposure and sex using cross-product terms. Associations between prenatal exposure and working memory significantly varied by sex (p-interaction = 0.02), with inverse relations observed only among girls (i.e. β BDE-47  = -7.55, 95% CI: -13.84, -1.24). Children with sustained high concentrations of BDEs-47, 99 or 100 across childhood scored approximately 5-8 standard score points lower on tests of visual memory. Children with PBDE plasma concentrations that peaked during toddler years performed better on verbal domains, however, these associations were not statistically significant. Exposure to PBDEs during both prenatal and postnatal periods may disrupt memory domains in early adolescence. These findings contribute to a substantial body of evidence supporting the developmental neurotoxicity of PBDEs and underscore the need to reduce exposure among pregnant women and children. Copyright © 2018

  10. Early Developmental Processes and the Continuity of Risk for Underage Drinking and Problem Drinking

    PubMed Central

    Donovan, John E.; Masten, Ann S.; Mattson, Margaret E.; Moss, Howard B.

    2008-01-01

    Developmental pathways to underage drinking emerge before the second decade of life. Nonetheless, many scientists, as well as the general public, continue to focus on proximal influences surrounding the initiation of drinking in adolescence, such as the social, behavioral, and genetic variables relating to availability and ease of acquisition of the drug, social reinforcement for its use, and individual differences in drug response. Over the past 20 years, a considerable body of evidence has accumulated on the early predictors and pathways of youthful alcohol use and abuse, often much earlier than the time of first drink. These early developmental influences involve numerous risk, vulnerability, promotive and protective processes. Some of these factors are not directly related to alcohol use per se, while others involve learning and expectancies about later drug use that are shaped by social experience. The salience of these factors-- identifiable in early childhood-- for understanding the course and development of adult alcohol and other drug use disorders is evident from the large and growing body of findings on their ability to predict these adult clinical outcomes. This review summarizes the evidence on early pathways toward and away from underage drinking, with a particular focus on the risk and protective factors, mediators and moderators of risk for underage drinking that become evident during the preschool and early school years. It is guided by a developmental perspective on the aggregation of risk and protection, and examines the contributions of biological, psychological, and social processes within the context of normal development. Implications of this evidence for policy, intervention, and future research are discussed. PMID:18381493

  11. PERSPECTIVES ON THE CONCERN FOR AND MANAGEMENT OF PRENATAL CHEMICAL EXPOSURE AND POSTNATAL EFFECTS

    EPA Science Inventory

    This paper was presented as the introduction to a session on the history and epidemiology of prenatal chemical exposure. lthough teratology and developmental toxicology had its experimental beginnings in the early part of this century, the potential for human developmental toxici...

  12. Developmental Toxicity

    EPA Science Inventory

    This chapter provides an overview the developmental toxicity resulting from exposure to perfluorinated alkyl acids (PFAAs). The majority of studies of PFAA-induced developmental toxicity have examined effects of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) a...

  13. Developmental origins of non-communicable disease: Implications for research and public health

    PubMed Central

    2012-01-01

    This White Paper highlights the developmental period as a plastic phase, which allows the organism to adapt to changes in the environment to maintain or improve reproductive capability in part through sustained health. Plasticity is more prominent prenatally and during early postnatal life, i.e., during the time of cell differentiation and specific tissue formation. These developmental periods are highly sensitive to environmental factors, such as nutrients, environmental chemicals, drugs, infections and other stressors. Nutrient and toxicant effects share many of the same characteristics and reflect two sides of the same coin. In both cases, alterations in physiological functions can be induced and may lead to the development of non-communicable conditions. Many of the major diseases – and dysfunctions – that have increased substantially in prevalence over the last 40 years seem to be related in part to developmental factors associated with either nutritional imbalance or exposures to environmental chemicals. The Developmental Origins of Health and Disease (DOHaD) concept provides significant insight into new strategies for research and disease prevention and is sufficiently robust and repeatable across species, including humans, to require a policy and public health response. This White Paper therefore concludes that, as early development (in utero and during the first years of postnatal life) is particularly sensitive to developmental disruption by nutritional factors or environmental chemical exposures, with potentially adverse consequences for health later in life, both research and disease prevention strategies should focus more on these vulnerable life stages. PMID:22715989

  14. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hegui; He, Zheng; Zhu, Chunyan

    Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4 g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observedmore » in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a “two-programming” mechanism for PEE-induced adrenal developmental toxicity: “the first programming” is a lower functional programming of adrenal steroidogenesis, and “the second programming” is GC-metabolic activation system-related GC-IGF1 axis programming. - Highlights: • Prenatal ethanol exposure induces adrenal developmental abnormality in offspring rats. • Prenatal ethanol exposure induces intrauterine programming of adrenal steroidogenesis. • Intrauterine GC-IGF1 axis programming might mediate adrenal developmental abnormality.« less

  15. Correlations between Developmental Kindergarten Screenings and Early Reading Indicators One Year Later

    ERIC Educational Resources Information Center

    Coughlan-Mainard, Kelly A.

    2012-01-01

    School districts in the U.S. are mandated to identify young children with disabilities. Developmental screeners are typically used to screen for such skill deficits. Academic tests are used in older students. A significant challenge is identifying children with potential learning disabilities early in their school career. This study identifies a…

  16. Effect of low-level copper and pentachlorophenol exposure on various early life stages of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, D.J.; Stover, E.L.

    1996-12-31

    An evaluation of the effects of low-level copper and pentachlorophenol exposure on various early life stages of the South African clawed frog, Xenopus laevis, was performed using stage-specific and long-term continuous exposures. Stage-specific exposure experiments were conducted such that separate subsets of embryos and larvae from the same clutch were exposed to two toxicants, copper and pentachlorphenol, from 0 d to 4 d (standard Frog Embryo Teratogenesis Assay--Xenopus [FETAX]), 4 d to 8 d, 8 d to 12 d, and 12 d to 16 d. Results from two separate concentration-response experiments indicated that sensitivity to either toxicant increased in eachmore » successive time period. Longer-term exposure studies conducted for 60 to 75 days indicated that copper, but not pentachlorophenol induced reduction deficiency malformations of the hind limb at concentrations as low as 0.05 mg/L. Pentachlorophenol concentrations as low as 0.5 {micro}g/L inhibited tail resorption. However, copper did not adversely affect the process of tail resorption. These results indicated that studies evaluating longer-term developmental processes are important in ecological hazard evaluation.« less

  17. Neurodevelopmental Low-dose Bisphenol A Exposure Leads to Early Life-stage Hyperactivity and Learning Deficits in Adult Zebrafish

    PubMed Central

    Saili, Katerine S.; Corvi, Margaret M.; Weber, Daniel N.; Patel, Ami U.; Das, Siba R.; Przybyla, Jennifer; Anderson, Kim A.; Tanguay, Robert L.

    2011-01-01

    Developmental bisphenol A (BPA) exposure has been implicated in adverse behavior and learning deficits. The mode of action underlying these effects is unclear. The zebrafish model was employed to investigate the neurobehavioral effects of developmental bisphenol A (BPA) exposure. The objectives of this study were to identify whether low-dose, developmental BPA exposure affects larval zebrafish locomotor behavior and whether learning deficits occur in adults exposed during development. Two control compounds, 17β-estradiol (an estrogen receptor ligand) and GSK4716 (a synthetic estrogen related receptor gamma ligand), were included. Larval toxicity assays were used to determine appropriate BPA, 17β-estradiol, and GSK4716 concentrations for behavior testing. BPA tissue uptake was analyzed using HPLC and lower doses were extrapolated using a linear regression analysis. Larval behavior tests were conducted using a ViewPoint Zebrabox. Adult learning tests were conducted using a custom-built T-maze. BPA exposure to ≤30 μM was nonteratogenic in zebrafish. Neurodevelopmental BPA exposure to 0.01, 0.1, or 1 μM led to larval hyperactivity or learning deficits in adult zebrafish. Exposure to 0.1 μM 17β-estradiol or GSK4716 also led to larval hyperactivity. This study demonstrates the efficacy of using the larval zebrafish model for studying the neurobehavioral effects of low-dose developmental BPA exposure. PMID:22108044

  18. Early life stage trimethyltin exposure induces ADP-ribosylation factor expression and perturbs the vascular system in zebrafish.

    PubMed

    Chen, Jiangfei; Huang, Changjiang; Truong, Lisa; La Du, Jane; Tilton, Susan C; Waters, Katrina M; Lin, Kuanfei; Tanguay, Robert L; Dong, Qiaoxiang

    2012-12-16

    Trimethyltin chloride (TMT) is an organotin contaminant, widely detected in aqueous environments, posing potential human and environmental risks. In this study, we utilized the zebrafish model to investigate the impact of transient TMT exposure on developmental progression, angiogenesis, and cardiovascular development. Embryos were waterborne exposed to a wide TMT concentration range from 8 to 96 h post fertilization (hpf). The TMT concentration that led to mortality in 50% of the embryos (LC(50)) at 96 hpf was 8.2 μM; malformations in 50% of the embryos (EC(50)) was 2.8 μM. The predominant response observed in surviving embryos was pericardial edema. Additionally, using the Tg (fli1a: EGFP) y1 transgenic zebrafish line to non-invasively monitor vascular development, TMT exposure led to distinct disarrangements in the vascular system. The most susceptible developmental stage to TMT exposure was between 48 and 72 hpf. High density whole genome microarrays were used to identify the early transcriptional changes following TMT exposure from 48 to 60 hpf or 72 hpf. In total, 459 transcripts were differentially expressed at least 2-fold (P<0.05) by TMT compared to control. Using Ingenuity Pathway Analysis (IPA) tools, it was revealed that the transcripts misregulated by TMT exposure were clustered in numerous categories including metabolic and cardiovascular disease, cellular function, cell death, molecular transport, and physiological development. In situ localization of highly elevated transcripts revealed intense staining of ADP-ribosylation factors arf3 and arf5 in the head, trunk, and tail regions. When arf5 expression was blocked by morpholinos, the zebrafish did not display the prototypical TMT-induced vascular deficits, indicating that the induction of arf5 was necessary for TMT-induced vascular toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Early-life exposure to caffeine affects the construction and activity of cortical networks in mice.

    PubMed

    Fazeli, Walid; Zappettini, Stefania; Marguet, Stephan Lawrence; Grendel, Jasper; Esclapez, Monique; Bernard, Christophe; Isbrandt, Dirk

    2017-09-01

    The consumption of psychoactive drugs during pregnancy can have deleterious effects on newborns. It remains unclear whether early-life exposure to caffeine, the most widely consumed psychoactive substance, alters brain development. We hypothesized that maternal caffeine ingestion during pregnancy and the early postnatal period in mice affects the construction and activity of cortical networks in offspring. To test this hypothesis, we focused on primary visual cortex (V1) as a model neocortical region. In a study design mimicking the daily consumption of approximately three cups of coffee during pregnancy in humans, caffeine was added to the drinking water of female mice and their offspring were compared to control offspring. Caffeine altered the construction of GABAergic neuronal networks in V1, as reflected by a reduced number of somatostatin-containing GABA neurons at postnatal days 6-7, with the remaining ones showing poorly developed dendritic arbors. These findings were accompanied by increased synaptic activity in vitro and elevated network activity in vivo in V1. Similarly, in vivo hippocampal network activity was altered from the neonatal period until adulthood. Finally, caffeine-exposed offspring showed increased seizure susceptibility in a hyperthermia-induced seizure model. In summary, our results indicate detrimental effects of developmental caffeine exposure on mouse brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Developmental Exposure to an Environmental PCB Mixture Delays the Propagation of Kindling in the Amygdala

    EPA Science Inventory

    Developmental PCB exposure impairs hearing and induces brainstem audiogenic seizures in adult offspring. The degree to which this enhanced susceptibility to seizure is manifest in other brain regions has not been examined. Thus, electrical kindling of the amygdala was used to eva...

  1. Parental Divorce and Offspring Depressive Symptoms: Dutch Developmental Trends during Early Adolescence

    ERIC Educational Resources Information Center

    Oldehinkel, Albertine J.; Ormel, Johan; Veenstra, Rene; De Winter, Andrea F.; Verhulst, Frank C.

    2008-01-01

    In this study, we investigated if the association between parental divorce and depressive symptoms changes during early adolescence and if developmental patterns are similar for boys and girls. Data were collected in a prospective population cohort of Dutch adolescents (N = 2,149), aged 10 - 15 years. Outcome variables were self-reported and…

  2. Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure.

    PubMed

    Balaraman, Sridevi; Idrus, Nirelia M; Miranda, Rajesh C; Thomas, Jennifer D

    2017-05-01

    Prenatal alcohol exposure can result in a range of physical, neuropathological, and behavioral alterations, collectively termed fetal alcohol spectrum disorders (FASD). We have shown that supplementation with the nutrient choline reduces the severity of developmental alcohol-associated deficits in hippocampal-dependent behaviors and normalizes some aspects of hippocampal cholinergic development and DNA methylation patterns. Alcohol's developmental effects may also be mediated, in part, by altering microRNAs (miRNAs) that serve as negative regulators of gene translation. To determine whether choline supplementation alters ethanol's long-lasting effects on miRNAs, Sprague-Dawley rats were exposed to 5.25 g/kg/day ethanol from postnatal days (PD) 4-9 via intubation; controls received sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline vehicle subcutaneously (s.c.) from PD 4-21. On PD 22, subjects were sacrificed, and RNA was isolated from the hippocampus. MiRNA expression was assessed with TaqMan Human MicroRNA Panel Low-Density Arrays. Ethanol significantly increased miRNA expression variance, an effect that was attenuated with choline supplementation. Cluster analysis of stably expressed miRNAs that exceeded an ANOVA p < 0.05 criterion indicated that for both male and female offspring, control and ethanol-exposed groups were most dissimilar from each other, with choline-supplemented groups in between. MiRNAs that expressed an average 2-fold change due to ethanol exposure were further analyzed to identify which ethanol-sensitive miRNAs were protected by choline supplementation. We found that at a false discovery rate (FDR)-adjusted criterion of p < 0.05, miR-200c was induced by ethanol exposure and that choline prevented this effect. Collectively, our data show that choline supplementation can normalize disturbances in miRNA expression following developmental alcohol exposure and can protect specific miRNAs from induction by

  3. Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure

    PubMed Central

    Balaraman, Sridevi; Idrus, Nirelia M.; Miranda, Rajesh C.; Thomas, Jennifer D.

    2017-01-01

    Prenatal alcohol exposure can result in a range of physical, neuropathological, and behavioral alterations, collectively termed fetal alcohol spectrum disorders (FASD). We have shown that supplementation with the nutrient choline reduces the severity of developmental alcohol-associated deficits in hippocampal-dependent behaviors and normalizes some aspects of hippocampal cholinergic development and DNA methylation patterns. Alcohol’s developmental effects may also be mediated, in part, by altering microRNAs (miRNAs) that serve as negative regulators of gene translation. To determine whether choline supplementation alters ethanol’s long-lasting effects on miRNAs, Sprague-Dawley rats were exposed to 5.25 g/kg/day ethanol from postnatal days (PD) 4–9 via intubation; controls received sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline vehicle subcutaneously (s.c.) from PD 4–21. On PD 22, subjects were sacrificed, and RNA isolated from the hippocampus. MiRNA expression was assessed with TaqMan Human MicroRNA Panel Low-Density Arrays. Ethanol significantly increased miRNA expression variance, an effect that was normalized with choline supplementation. Cluster analysis of stably expressed miRNAs that exceeded an ANOVA p<0.05 criterion indicated that for both male and female offspring, control and ethanol-exposed groups were most dissimilar from each other, with choline-supplemented groups in between. MiRNAs that expressed an average 2-fold change due to ethanol exposure were further analyzed to identify which ethanol-sensitive miRNAs were protected by choline supplementation. We found that at a false discovery rate (FDR)-adjusted criterion of p<0.05, miR-200c was induced by ethanol exposure and that choline prevented this effect. Collectively, our data show that choline supplementation can normalize disturbances in miRNA expression following developmental alcohol exposure and can protect specific miRNAs from induction by

  4. The Role of Maternal Depression in Accessing Early Intervention Services for Children with Developmental Delay

    ERIC Educational Resources Information Center

    Colgan, Siobhan Eileen

    2012-01-01

    This study investigated the relationship between maternal depression and children's access to early intervention services among a sample of children with developmental delay at age two who were determined to be eligible for early intervention services, were full term and of normal birth weight, and were not previously identified with any special…

  5. Alteration of gene expression by alcohol exposure at early neurulation.

    PubMed

    Zhou, Feng C; Zhao, Qianqian; Liu, Yunlong; Goodlett, Charles R; Liang, Tiebing; McClintick, Jeanette N; Edenberg, Howard J; Li, Lang

    2011-02-21

    We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables. Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545), adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA) informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5, Bhlhe22), neural growth factor genes [Igf1, Efemp1, Klf10 (Tieg), and Edil3], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (Rbp1), and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1). Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin) were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO) and a closed neural tube (ALC-NTC). Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos. This study revealed a set of genes vulnerable to alcohol exposure and genes that were associated with neural tube

  6. A Population-based Study Evaluating the Association between Surgery in Early Life and Child Development at Primary School Entry.

    PubMed

    O'Leary, James D; Janus, Magdalena; Duku, Eric; Wijeysundera, Duminda N; To, Teresa; Li, Ping; Maynes, Jason T; Crawford, Mark W

    2016-08-01

    It is unclear whether exposure to surgery in early life has long-term adverse effects on child development. The authors aimed to investigate whether surgery in early childhood is associated with adverse effects on child development measured at primary school entry. The authors conducted a population-based cohort study in Ontario, Canada, by linking provincial health administrative databases to children's developmental outcomes measured by the Early Development Instrument (EDI). From a cohort of 188,557 children, 28,366 children who underwent surgery before EDI completion (age 5 to 6 yr) were matched to 55,910 unexposed children. The primary outcome was early developmental vulnerability, defined as any domain of the EDI in the lowest tenth percentile of the population. Subgroup analyses were performed based on age at first surgery (less than 2 and greater than or equal to 2 yr) and frequency of surgery. Early developmental vulnerability was increased in the exposed group (7,259/28,366; 25.6%) compared with the unexposed group (13,957/55,910; 25.0%), adjusted odds ratio, 1.05; 95% CI, 1.01 to 1.08. Children aged greater than or equal to 2 yr at the time of first surgery had increased odds of early developmental vulnerability compared with unexposed children (odds ratio, 1.05; 95% CI, 1.01 to 1.10), but children aged less than 2 yr at the time of first exposure were not at increased risk (odds ratio, 1.04; 95% CI, 0.98 to 1.10). There was no increase in odds of early developmental vulnerability with increasing frequency of exposure. Children who undergo surgery before primary school age are at increased risk of early developmental vulnerability, but the magnitude of the difference between exposed and unexposed children is small.

  7. Hypermethylation of Homeobox A10 by in Utero Diethylstilbestrol Exposure: An Epigenetic Mechanism for Altered Developmental Programming

    PubMed Central

    Bromer, Jason G.; Wu, Jie; Zhou, Yuping; Taylor, Hugh S.

    2009-01-01

    Diethylstilbestrol (DES) is a nonsteroidal estrogen that induces developmental anomalies of the female reproductive tract. The homeobox gene HOXA10 controls uterine organogenesis, and its expression is altered after in utero DES exposure. We hypothesized that an epigenetic mechanism underlies DES-mediated alterations in HOXA10 expression. We analyzed the expression pattern and methylation profile of HOXA10 after DES exposure. Expression of HOXA10 is increased in human endometrial cells after DES exposure, whereas Hoxa10 expression is repressed and shifted caudally from its normal location in mice exposed in utero. Cytosine guanine dinucleotide methylation frequency in the Hoxa10 intron was higher in DES-exposed offspring compared with controls (P = 0.017). The methylation level of Hoxa10 was also higher in the caudal portion of the uterus after DES exposure at the promoter and intron (P < 0.01). These changes were accompanied by increased expression of DNA methyltransferases 1 and 3b. No changes in methylation were observed after in vitro or adult DES exposure. DES has a dual mechanism of action as an endocrine disruptor; DES functions as a classical estrogen and directly stimulates HOXA10 expression with short-term exposure, however, in utero exposure results in hypermethylation of the HOXA10 gene and long-term altered HOXA10 expression. We identify hypermethylation as a novel mechanism of DES-induced altered developmental programming. PMID:19299448

  8. Transgenerational developmental programming.

    PubMed

    Aiken, Catherine E; Ozanne, Susan E

    2014-01-01

    The concept of developmental programming suggests that the early life environment influences offspring characteristics in later life, including the propensity to develop diseases such as the metabolic syndrome. There is now growing evidence that the effects of developmental programming may also manifest in further generations without further suboptimal exposure. This review considers the evidence, primarily from rodent models, for effects persisting to subsequent generations, and evaluates the mechanisms by which developmental programming may be transmitted to further generations. In particular, we focus on the potential role of the intrauterine environment in contributing to a developmentally programmed phenotype in subsequent generations. The literature was systematically searched at http://pubmed.org and http://scholar.google.com to identify published findings regarding transgenerational (F2 and beyond) developmental programming effects in human populations and animal models. Transmission of programming effects is often viewed as a form of epigenetic inheritance, either via the maternal or paternal line. Evidence exists for both germline and somatic inheritance of epigenetic modifications which may be responsible for phenotypic changes in further generations. However, there is increasing evidence for the role of both extra-genomic components of the zygote and the interaction of the developing conceptus with the intrauterine environment in propagating programming effects. The contribution of a suboptimal reproductive tract environment or maternal adaptations to pregnancy may be critical to inheritance of programming effects via the maternal line. As the effects of age exacerbate the programmed metabolic phenotype, advancing maternal age may increase the likelihood of developmental programming effects being transmitted to further generations. We suggest that developmental programming effects could be propagated through the maternal line de novo in generations

  9. Adolescent Conflict as a Developmental Process in the Prospective Pathway from Exposure to Interparental Violence to Dating Violence

    PubMed Central

    Narayan, Angela J.; Englund, Michelle M.; Carlson, Elizabeth A.; Egeland, Byron

    2013-01-01

    Within a developmental psychopathology framework, the current study examined adolescent conflict (age 16) with families, best friends, and dating partners as mediators in the prospective pathway from exposure to interparental violence (EIPV) in early childhood (0–64 months) to dating violence perpetration and victimization in early adulthood (age 23). Adolescent conflict was predicted to partially mediate EIPV and dating violence with significant direct paths from EIPV to dating violence, given the extant literature on the salience of early childhood EIPV for later maladjustment. Participants (N = 182; 99 males, 83 females; 67% Caucasian, 11% African-American, 18% other, 4% unreported) were drawn from a larger prospective study of high-risk mothers (aged 12–34 years) that followed their children from birth through adulthood. EIPV and adolescent conflict were rated from interviews with mothers and participants, and dating violence (physical perpetration and victimization) was assessed with the Conflict Tactics Scale. Path analyses showed that EIPV in early childhood (a) directly predicted dating violence perpetration in early adulthood and (b) predicted conflict with best friends, which in turn predicted dating violence perpetration. Although mediation of best friend conflict was not evident, indirect effects of EIPV to dating violence were found through externalizing behaviors in adolescence and life stress in early adulthood. Findings highlight that conflict with best friends is affected by EIPV and predicts dating violence, suggesting that it may be a promising target for relationship-based interventions for youth with EIPV histories. Furthermore, deleterious early experiences and contemporaneous risk factors are salient predictors of dating violence. PMID:23979004

  10. REPRODUCTIVE AND DEVELOPMENTAL EFFECTS IN MAMMALIAN AND AVIAN SPECIES FROM EXPOSURE TO ELF (EXTREMELY LOW FREQUENCY) FIELDS

    EPA Science Inventory

    This paper critically reviews the Extremely Low Frequency (ELF) Electromagnetic Fields literature from 1978 to the present in regard to research dealing with the reproductive and developmental effects of exposure.

  11. Temporal variations in early developmental decisions: an engine of forebrain evolution.

    PubMed

    Bielen, H; Pal, S; Tole, S; Houart, C

    2017-02-01

    Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Introduction to Special Section: Biomedicine and Developmental Psychology: New Areas of Common Ground.

    ERIC Educational Resources Information Center

    Leavitt, Lewis A.; Goldson, Edward

    1996-01-01

    Introduces a special section of five articles that highlight new collaborative research opportunities for developmental psychologists and other biomedical researchers. Such research has focused on the transition from fetus to newborn, evaluation of early toxin exposure, and the behavioral phenotype associated with genetic syndromes. (MDM)

  13. Trajectories of Physical Discipline: Early Childhood Antecedents and Developmental Outcomes

    PubMed Central

    Lansford, Jennifer E.; Criss, Michael M.; Dodge, Kenneth A.; Shaw, Daniel S.; Pettit, Gregory S.; Bates, John E.

    2009-01-01

    This study examined childhood antecedents and developmental outcomes associated with trajectories of mild and harsh parental physical discipline. Interview, questionnaire, and observational data were available from 499 children followed from age 5 to 16 and from 258 children in an independent sample followed from age 5 to 15. Analyses indicated distinct physical discipline trajectory groups that varied in frequency of physical discipline and rate of change. In both samples, family ecological disadvantage differentiated the trajectory groups; in the first sample, early child externalizing also differentiated the groups. Controlling for early childhood externalizing, the minimal/ceasing trajectory groups were associated with the lowest levels of subsequent adolescent antisocial behavior in both samples and with parent-adolescent positive relationship quality in the second sample. PMID:19765007

  14. Trajectories of physical discipline: early childhood antecedents and developmental outcomes.

    PubMed

    Lansford, Jennifer E; Criss, Michael M; Dodge, Kenneth A; Shaw, Daniel S; Pettit, Gregory S; Bates, John E

    2009-01-01

    This study examined childhood antecedents and developmental outcomes associated with trajectories of mild and harsh parental physical discipline. Interview, questionnaire, and observational data were available from 499 children followed from ages 5 to 16 and from 258 children in an independent sample followed from ages 5 to 15. Analyses indicated distinct physical discipline trajectory groups that varied in frequency of physical discipline and rate of change. In both samples, family ecological disadvantage differentiated the trajectory groups; in the first sample, early child externalizing also differentiated the groups. Controlling for early childhood externalizing, the minimal/ceasing trajectory groups were associated with the lowest levels of subsequent adolescent antisocial behavior in both samples and with parent-adolescent positive relationship quality in the second sample.

  15. The Impact of the Developmental Timing of Trauma Exposure on PTSD Symptoms and Psychosocial Functioning among Older Adults

    ERIC Educational Resources Information Center

    Ogle, Christin M.; Rubin, David C.; Siegler, Ilene C.

    2013-01-01

    The present study examined the impact of the developmental timing of trauma exposure on posttraumatic stress disorder (PTSD) symptoms and psychosocial functioning in a large sample of community-dwelling older adults (N = 1,995). Specifically, we investigated whether the negative consequences of exposure to traumatic events were greater for traumas…

  16. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio).

    PubMed

    Ghobadian, Mehdi; Nabiuni, Mohammad; Parivar, Kazem; Fathi, Mojtaba; Pazooki, Jamileh

    2015-12-01

    Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Providing Quality Early Care and Education to Young Children Who Experience Maltreatment: A Review of the Literature

    ERIC Educational Resources Information Center

    Dinehart, Laura H.; Katz, Lynne F.; Manfra, Louis; Ullery, Mary Anne

    2013-01-01

    The current paper highlights the few studies that examine the role of early care and education on the developmental and early academic outcomes of children who experience maltreatment. First, we argue that children who experience maltreatment are at significant risk for poor developmental outcomes as a result of the chronic exposure to stress that…

  18. Early-Life Toxic Insults and Onset of Sporadic Neurodegenerative Diseases-an Overview of Experimental Studies.

    PubMed

    Tartaglione, Anna Maria; Venerosi, Aldina; Calamandrei, Gemma

    2016-01-01

    The developmental origin of health and disease hypothesis states that adverse fetal and early childhood exposures can predispose to obesity, cardiovascular, and neurodegenerative diseases (NDDs) in adult life. Early exposure to environmental chemicals interferes with developmental programming and induces subclinical alterations that may hesitate in pathophysiology and behavioral deficits at a later life stage. The mechanisms by which perinatal insults lead to altered programming and to disease later in life are still undefined. The long latency between exposure and onset of disease, the difficulty of reconstructing early exposures, and the wealth of factors which the individual is exposed to during the life course make extremely difficult to prove the developmental origin of NDDs in clinical and epidemiological studies. An overview of animal studies assessing the long-term effects of perinatal exposure to different chemicals (heavy metals and pesticides) supports the link between exposure and hallmarks of neurodegeneration at the adult stage. Furthermore, models of maternal immune activation show that brain inflammation in early life may enhance adult vulnerability to environmental toxins, thus supporting the multiple hit hypothesis for NDDs' etiology. The study of prospective animal cohorts may help to unraveling the complex pathophysiology of sporadic NDDs. In vivo models could be a powerful tool to clarify the mechanisms through which different kinds of insults predispose to cell loss in the adult age, to establish a cause-effect relationship between "omic" signatures and disease/dysfunction later in life, and to identify peripheral biomarkers of exposure, effects, and susceptibility, for translation to prospective epidemiological studies.

  19. Developmental Origins of Adult Diseases and Neurotoxicity: Epidemiological and Experimental Studies

    PubMed Central

    Fox, Donald A.; Grandjean, Philippe; de Groot, Didima; Paule, Merle

    2013-01-01

    To date, only a small number of commercial chemicals have been tested and documented as developmental neurotoxicants. Moreover, an increasing number of epidemiological, clinical and experimental studies suggest an association between toxicant or drug exposure during the perinatal period and the development of metabolic-related diseases and neurotoxicity later in life. The four speakers in this symposium presented their research results on different neurotoxic chemicals as they relate to the developmental origins of health and adult disease (DOHaD). Philippe Grandjean presented epidemiological data on children exposed to methylmercury and discussed the behavioral outcome measures as they relate to age and stage of brain development. Donald A. Fox presented data that low-to-moderate dose human equivalent gestational lead exposure produced late-onset obesity, and motor and coordination dysfunction only in male mice. Didima de Groot discussed the role of caloric restriction and/or high fat diets during gestation and/or postnatal development in mediating the metabolic and neurotoxic effects of developmental methylmercury exposure in rats. Merle G. Paule addressed the long-term changes in learning, motivation and short-term memory in aged Rhesus monkeys following 24 hour exposure to ketamine during early development. Overall, these presentations addressed fundamental issues in the emerging areas of lifetime neurotoxicity testing, differential vulnerable periods of exposure, nonmonotonic dose-response effects and neurotoxic risk assessment. PMID:22245043

  20. Skeletal Morphogenesis of Microbrachis and Hyloplesion (Tetrapoda: Lepospondyli), and Implications for the Developmental Patterns of Extinct, Early Tetrapods

    PubMed Central

    Olori, Jennifer C.

    2015-01-01

    The ontogeny of extant amphibians often is used as a model for that of extinct early tetrapods, despite evidence for a spectrum of developmental modes in temnospondyls and a paucity of ontogenetic data for lepospondyls. I describe the skeletal morphogenesis of the extinct lepospondyls Microbrachis pelikani and Hyloplesion longicostatum using the largest samples examined for either taxon. Nearly all known specimens were re-examined, allowing for substantial anatomical revisions that affect the scoring of characters commonly used in phylogenetic analyses of early tetrapods. The palate of H. longicostatum is re-interpreted and suggested to be more similar to that of M. pelikani, especially in the nature of the contact between the pterygoids. Both taxa possess lateral lines, and M. pelikani additionally exhibits branchial plates. However, early and rapid ossification of the postcranial skeleton, including a well-developed pubis and ossified epipodials, suggests that neither taxon metamorphosed nor were they neotenic in the sense of branchiosaurids and salamanders. Morphogenetic patterns in the foot suggest that digit 5 was developmentally delayed and the final digit to ossify in M. pelikani and H. longicostatum. Overall patterns of postcranial ossification may indicate postaxial dominance in limb and digit formation, but also more developmental variation in early tetrapods than has been appreciated. The phylogenetic position and developmental patterns of M. pelikani and H. longicostatum are congruent with the hypothesis that early tetrapods lacked metamorphosis ancestrally and that stem-amniotes exhibited derived features of development, such as rapid and complete ossification of the skeleton, potentially prior to the evolution of the amniotic egg. PMID:26083733

  1. Social Problem-Solving in Early Childhood: Developmental Change and the Influence of Shyness

    PubMed Central

    Walker, Olga L.; Degnan, Kathryn A.; Fox, Nathan A.; Henderson, Heather A.

    2013-01-01

    The purpose of this study was to examine developmental change and the influence of shyness on social problem-solving (SPS). At 24, 36, and 48 months, children (N=570) were observed while interacting with an unfamiliar peer during an SPS task and at 24 months, maternal report of shyness was collected. Results showed that across the full sample, children displayed low but stable levels of withdrawn SPS and increasing levels of SPS competence over development. In addition, results showed that 24-month shyness was associated with high-increasing and high-decreasing withdrawn SPS trajectories compared to the low-increasing withdrawn SPS trajectory. Shyness was also associated with the low-increasing compared to the high-increasing SPS competence trajectory. Findings demonstrate the development of SPS competence over early childhood, as well as the influence of early shyness on this developmental course, with some shy children showing improvement in SPS skills and others continuing to show SPS difficulties over time. PMID:24039325

  2. Cumulative pain-related stress and developmental outcomes among low-risk preterm infants at one year corrected age.

    PubMed

    Morag, Iris; Rotem, Ifat; Frisch, Mor; Hendler, Israel; Simchen, Michal J; Leibovitz, Leah; Maayan-Metzger, Ayala; Strauss, Tzipora

    2017-06-01

    Extensive exposure of preterm infants to pain-related stress (PRS) at a time of physiological immaturity and rapid brain development may contribute to altered neurodevelopment. To examine the relationship between early PRS and neurodevelopmental outcomes among low-risk very preterm infants at the age of one year corrected age (CA). Participants included 107 infants born <32weeks gestational age (GA) and monitored prospectively at 12.5months CA. Excluded were infants with severe neonatal morbidities associated with impaired neurodevelopment. PRS documentation was performed via the number of skin-breaking procedures (SBP) and by the use of the neonatal infant stressor scale (NISS). Adjustment was made for early neonatal morbidities. Developmental outcomes among the study infants were within the norm (mean 100±11.03). Infants who underwent invasive mechanical ventilation (IMV) (n=31) were exposed to significantly more PRS than non-IMV infants (n=76) (p<0.000). Developmental outcomes were similar in both groups (99.7±11.1 vs. 100.8±11 p=0.63). Among IMV infants, increased exposure to PRS was associated with lower developmental scores independent of GA, gender or other sociodemographic factors. Increased exposure to PRS among low-risk preterm infants who underwent IMV is associated with lower developmental scores at 12.5month CA. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The International Society for Developmental Psychobiology Annual Meeting Symposium: Impact of Early Life Experiences on Brain and Behavioral Development

    PubMed Central

    Sullivan, Regina; Wilson, Donald A.; Feldon, Joram; Yee, Benjamin K.; Meyer, Urs; Richter-Levin, Gal; Avi, Avital; Michael, Tsoory; Gruss, Michael; Bock, Jörg; Helmeke, Carina; Braun, Katharina

    2007-01-01

    Decades of research in the area of developmental psychobiology have shown that early life experience alters behavioral and brain development, which canalizes development to suit different environments. Recent methodological advances have begun to identify the mechanisms by which early life experiences cause these diverse adult outcomes. Here we present four different research programs that demonstrate the intricacies of early environmental influences on behavioral and brain development in both pathological and normal development. First, an animal model of schizophrenia is presented that suggests prenatal immune stimulation influences the postpubertal emergence of psychosis-related behavior in mice. Second, we describe a research program on infant rats that demonstrates how early odor learning has unique characteristics due to the unique functioning of the infant limbic system. Third, we present work on the rodent Octodon degus, which shows that early paternal and/or maternal deprivation alters development of limbic system synaptic density that corresponds to heightened emotionality. Fourth, ajuvenile model of stress is presented that suggests this developmental period is important in determining adulthood emotional well being. The approach of each research program is strikingly different, yet all succeed in delineating a specific aspect of early development and its effects on infant and adult outcome that expands our understanding of the developmental impact of infant experiences on emotional and limbic system development. Together, these research programs suggest that the developing organism’s developmental trajectory is influenced by environmental factors beginning in the fetus and extending through adolescence, although the specific timing and nature of the environmental influence has unique impact on adult mental health. PMID:17016842

  4. Developmental exposure to perchlorate alters synaptic transmission in hippocampus of the adult rat: in vivo studies.

    EPA Science Inventory

    Perchlorate, a contaminant found in food and water supplies throughout the USA, blocks iodine uptake into the thyroid gland to reduce circulating levels of thyroid hormone. Neurological function accompanying developmental exposure to perchlorate was evaluated in the present study...

  5. Developmental manganese exposure in combination with developmental stress and iron deficiency: Effects on behavior and monoamines.

    PubMed

    Amos-Kroohs, Robyn M; Davenport, Laurie L; Gutierrez, Arnold; Hufgard, Jillian R; Vorhees, Charles V; Williams, Michael T

    2016-01-01

    Manganese (Mn) is an essential element but neurotoxic at higher exposures, however, Mn exposure seldom occurs in isolation. It often co-occurs in populations with inadequate dietary iron (Fe) and limited resources that result in stress. Subclinical FeD affects up to 15% of U.S. children and exacerbates Mn toxicity by increasing Mn bioavailability. Therefore, we investigated Mn overexposure (MnOE) in rats in combination with Fe deficiency (FeD) and developmental stress, for which we used barren cage rearing. For barren cage rearing (BAR), rats were housed in cages with a wire grid floor or standard bedding material (STD) from embryonic day (E)7 through postnatal day (P)28. For FeD, dams were fed a 90% Fe-deficient NIH-07 diet from E15 through P28. Within each litter, different offspring were treated with 100mg/kg Mn (MnOE) or vehicle (VEH) by gavage every other day from P4-28. Behavior was assessed at two ages and consisted of: open-field, anxiety tests, acoustic startle response (ASR) with prepulse inhibition (PPI), sociability, sucrose preference, tapered beam crossing, and the Porsolt's forced swim test. MnOE had main effects of decreasing activity, ASR, social preference, and social novelty. BAR and FeD transiently modified MnOE effects. BAR groups weighed less and showed decreased anxiety in the elevated zero maze, had increased ASR and decreased PPI, and exhibited reduced sucrose preference compared with the STD groups. FeD animals also weighed less and had increased slips on the tapered beam. Most of the monoamine effects were dopaminergic and occurred in the MnOE groups. The results showed that Mn is a pervasive developmental neurotoxin, the effects of which are modulated by FeD and/or BAR cage rearing. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Long-term Reductions in the Population of GABAergic Interneurons in the Mouse Hippocampus following Developmental Ethanol Exposure.

    PubMed

    Bird, Clark W; Taylor, Devin H; Pinkowski, Natalie J; Chavez, G Jill; Valenzuela, C Fernando

    2018-07-15

    Developmental exposure to ethanol leads to a constellation of cognitive and behavioral abnormalities known as Fetal Alcohol Spectrum Disorders (FASDs). Many cell types throughout the central nervous system are negatively impacted by gestational alcohol exposure, including inhibitory, GABAergic interneurons. Little evidence exists, however, describing the long-term impact of fetal alcohol exposure on survival of interneurons within the hippocampal formation, which is critical for learning and memory processes that are impaired in individuals with FASDs. Mice expressing Venus yellow fluorescent protein in inhibitory interneurons were exposed to vaporized ethanol during the third trimester equivalent of human gestation (postnatal days 2-9), and the long-term effects on interneuron numbers were measured using unbiased stereology at P90. In adulthood, interneuron populations were reduced in every hippocampal region examined. Moreover, we found that a single exposure to ethanol at P7 caused robust activation of apoptotic neurodegeneration of interneurons in the hilus, granule cell layer, CA1 and CA3 regions of the hippocampus. These studies demonstrate that developmental ethanol exposure has a long-term impact on hippocampal interneuron survivability, and may provide a mechanism partially explaining deficits in hippocampal function and hippocampus-dependent behaviors in those afflicted with FASDs. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Developmental origins of cardiovascular disease: Impact of early life stress in humans and rodents.

    PubMed

    Murphy, M O; Cohn, D M; Loria, A S

    2017-03-01

    The Developmental Origins of Health and Disease (DOHaD) hypothesizes that environmental insults during childhood programs the individual to develop chronic disease in adulthood. Emerging epidemiological data strongly supports that early life stress (ELS) given by the exposure to adverse childhood experiences is regarded as an independent risk factor capable of predicting future risk of cardiovascular disease. Experimental animal models utilizing chronic behavioral stress during postnatal life, specifically maternal separation (MatSep) provides a suitable tool to elucidate molecular mechanisms by which ELS increases the risk to develop cardiovascular disease, including hypertension. The purpose of this review is to highlight current epidemiological studies linking ELS to the development of cardiovascular disease and to discuss the potential molecular mechanisms identified from animal studies. Overall, this review reveals the need for future investigations to further clarify the molecular mechanisms of ELS in order to develop more personalized therapeutics to mitigate the long-term consequences of chronic behavioral stress including cardiovascular and heart disease in adulthood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Early Developmental Regression in Autism Spectrum Disorder: Evidence from an International Multiplex Sample

    ERIC Educational Resources Information Center

    Parr, Jeremy R.; Le Couteur, Ann; Baird, Gillian; Rutter, Michael; Pickles, Andrew; Fombonne, Eric; Bailey, Anthony J.

    2011-01-01

    The characteristics of early developmental regression (EDR) were investigated in individuals with ASD from affected relative pairs recruited to the International Molecular Genetic Study of Autism Consortium (IMGSAC). Four hundred and fifty-eight individuals with ASD were recruited from 226 IMGSAC families. Regression before age 36 months occurred…

  9. The effect of noise exposure during the developmental period on the function of the auditory system.

    PubMed

    Bureš, Zbyněk; Popelář, Jiří; Syka, Josef

    2017-09-01

    Recently, there has been growing evidence that development and maturation of the auditory system depends substantially on the afferent activity supplying inputs to the developing centers. In cases when this activity is altered during early ontogeny as a consequence of, e.g., an unnatural acoustic environment or acoustic trauma, the structure and function of the auditory system may be severely affected. Pathological alterations may be found in populations of ribbon synapses of the inner hair cells, in the structure and function of neuronal circuits, or in auditory driven behavioral and psychophysical performance. Three characteristics of the developmental impairment are of key importance: first, they often persist to adulthood, permanently influencing the quality of life of the subject; second, their manifestations are different and sometimes even contradictory to the impairments induced by noise trauma in adulthood; third, they may be 'hidden' and difficult to diagnose by standard audiometric procedures used in clinical practice. This paper reviews the effects of early interventions to the auditory system, in particular, of sound exposure during ontogeny. We summarize the results of recent morphological, electrophysiological, and behavioral experiments, discuss the putative mechanisms and hypotheses, and draw possible consequences for human neonatal medicine and noise health. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions.

    PubMed

    Hammond, LaTisha M; Hofmann, Gretchen E

    2012-07-15

    Ocean acidification, or the increased uptake of CO(2) by the ocean due to elevated atmospheric CO(2) concentrations, may variably impact marine early life history stages, as they may be especially susceptible to changes in ocean chemistry. Investigating the regulatory mechanisms of early development in an environmental context, or ecological development, will contribute to increased understanding of potential organismal responses to such rapid, large-scale environmental changes. We examined transcript-level responses to elevated seawater CO(2) during gastrulation and the initiation of spiculogenesis, two crucial developmental processes in the purple sea urchin, Strongylocentrotus purpuratus. Embryos were reared at the current, accepted oceanic CO(2) concentration of 380 microatmospheres (μatm), and at the elevated levels of 1000 and 1350 μatm, simulating predictions for oceans and upwelling regions, respectively. The seven genes of interest comprised a subset of pathways in the primary mesenchyme cell gene regulatory network (PMC GRN) shown to be necessary for the regulation and execution of gastrulation and spiculogenesis. Of the seven genes, qPCR analysis indicated that elevated CO(2) concentrations only had a significant but subtle effect on two genes, one important for early embryo patterning, Wnt8, and the other an integral component in spiculogenesis and biomineralization, SM30b. Protein levels of another spicule matrix component, SM50, demonstrated significant variable responses to elevated CO(2). These data link the regulation of crucial early developmental processes with the environment that these embryos would be developing within, situating the study of organismal responses to ocean acidification in a developmental context.

  11. Male-mediated developmental toxicity.

    PubMed

    Anderson, Diana; Schmid, Thomas E; Baumgartner, Adolf

    2014-01-01

    Male-mediated developmental toxicity has been of concern for many years. The public became aware of male-mediated developmental toxicity in the early 1990s when it was reported that men working at Sellafield might be causing leukemia in their children. Human and animal studies have contributed to our current understanding of male-mediated effects. Animal studies in the 1980s and 1990s suggested that genetic damage after radiation and chemical exposure might be transmitted to offspring. With the increasing understanding that there is histone retention and modification, protamine incorporation into the chromatin and DNA methylation in mature sperm and that spermatozoal RNA transcripts can play important roles in the epigenetic state of sperm, heritable studies began to be viewed differently. Recent reports using molecular approaches have demonstrated that DNA damage can be transmitted to babies from smoking fathers, and expanded simple tandem repeats minisatellite mutations were found in the germline of fathers who were exposed to radiation from the Chernobyl nuclear power plant disaster. In epidemiological studies, it is possible to clarify whether damage is transmitted to the sons after exposure of the fathers. Paternally transmitted damage to the offspring is now recognized as a complex issue with genetic as well as epigenetic components.

  12. Developmental ethanol exposure alters the morphology of mouse prefrontal neurons in a layer-specific manner.

    PubMed

    Louth, Emma L; Luctkar, Hanna D; Heney, Kayla A; Bailey, Craig D C

    2018-01-01

    Chronic developmental exposure to ethanol can lead to a wide variety of teratogenic effects, which in humans are known as fetal alcohol spectrum disorders (FASD). Individuals affected by FASD may exhibit persistent impairments to cognitive functions such as learning, memory, and attention, which are highly dependent on medial prefrontal cortex (mPFC) circuitry. The objective of this study was to determine long-term effects of chronic developmental ethanol exposure on mPFC neuron morphology, in order to better-understand potential neuronal mechanisms underlying cognitive impairments associated with FASD. C57BL/6-strain mice were exposed to ethanol or an isocaloric/isovolumetric amount of sucrose (control) via oral gavage, administered both to the dam from gestational day 10-18 and directly to pups from postnatal day 4-14. Brains from male mice were collected at postnatal day 90 and neurons were stained using a modified Golgi-Cox method. Pyramidal neurons within layers II/III, V and VI of the mPFC were imaged, traced in three dimensions, and assessed using Sholl and branch structure analyses. Developmental ethanol exposure differentially impacted adult pyramidal neuron morphology depending on mPFC cortical layer. Neurons in layer II/III exhibited increased size and diameter of dendrite trees, whereas neurons in layer V were not affected. Layer VI neurons with long apical dendrites had trees with decreased diameter that extended farther from the soma, and layer VI neurons with short apical dendrite trees exhibited decreased tree size overall. These layer-specific alterations to mPFC neuron morphology may form a novel morphological mechanism underlying long-term mPFC dysfunction and resulting cognitive impairments in FASD. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Similar Developmental Trajectories in Autism and Asperger Syndrome: From Early Childhood to Adolescence

    ERIC Educational Resources Information Center

    Szatmari, Peter; Bryson, Susan; Duku, Eric; Vaccarella, Liezanne; Zwaigenbaum, Lonnie; Bennett, Teresa; Boyle, Michael H.

    2009-01-01

    Objective: The objective of this study was to chart the developmental trajectories of high-functioning children with autism spectrum disorders (ASD) from early childhood to adolescence using the presence and absence of structural language impairment (StrLI) as a way of differentiating autism from Asperger syndrome (AS). Method: Sixty-four…

  14. Developmentally Appropriate Technology in Early Childhood (DATEC) in Botswana: In-Service Teachers' Perspectives

    ERIC Educational Resources Information Center

    Bose, Kabita

    2009-01-01

    Developmentally Appropriate Technology in Early Childhood (DATEC) aims to identify the most appropriate applications of Information and Communication Technology to support the development of children under eight years of age. Botswana has a unique spread of population density and deep-rooted socio-cultural values. There is a need to address the…

  15. Context Matters: The Interrelatedness of Early Literacy Skills, Developmental Health, and Community Demographics

    ERIC Educational Resources Information Center

    Lesaux, Nonie K.; Vukovic, Rose K.; Hertzman, Clyde; Siegel, Linda S.

    2007-01-01

    Whereas the great majority of literacy research has been focused at the child level, this study examined the relationship between early literacy rates, developmental health of the population, and demographics in 23 school communities. The results showed that school-level literacy scores were related to the physical, social, and emotional maturity…

  16. Early Detection and Prevention of Mental Health Problems: Developmental Epidemiology and Systems of Support.

    PubMed

    Costello, E Jane

    2016-01-01

    This article reviews the role of developmental epidemiology in the prevention of child and adolescent mental disorders and the implications for systems of support. The article distinguishes between universal or primary prevention, which operates at the level of the whole community to limit risk exposure before the onset of symptoms, and secondary or targeted prevention, which operates by identifying those at high risk of developing a disorder. It discusses different aspects of time as it relates to risk for onset of disease, such as age at first exposure, duration of exposure, age at onset of first symptoms, and time until treatment. The study compares universal and targeted prevention, describing the systems needed to support each, and their unintended consequences.

  17. Developmental and behavioral consequences of prenatal methamphetamine exposure: a review of the Infant Development, Environment, and Lifestyle (IDEAL) Study

    PubMed Central

    Smith, Lynne M.; Diaz, Sabrina; LaGasse, Linda L.; Wouldes, Trecia; Derauf, Chris; Newman, Elana; Arria, Amelia; Huestis, Marilyn A.; Haning, William; Strauss, Arthur; Grotta, Sheri Della; Dansereau, Lynne M.; Neal, Charles; Lester, Barry M.

    2015-01-01

    This study reviews the findings from the Infant Development, Environment, and Lifestyle Study (IDEAL), a multisite, longitudinal, prospective study designed to determine maternal outcome and child growth and developmental findings following prenatal methamphetamine exposure from birth up to age 7.5 years. These findings are presented in the context of the home environment and caregiver characteristics to determine how the drug and the environment interact to affect the outcome of these children. No neonatal abstinence syndrome requiring pharmacologic intervention was observed but heavy drug exposure was associated with increased stress responses in the neonatal period. Poorer inhibitory control was also observed in heavy methamphetamine exposed children placing them at high risk for impaired executive function. Independent of methamphetamine exposure, children with more responsive home environments to developmental and emotional needs demonstrated lower risks for internalizing and externalizing behavior. PMID:26212684

  18. Developmental Immunotoxicity

    EPA Science Inventory

    Animal models suggest that the immature immune system is more susceptible to xenobiotics than the fully mature system, and sequelae of developmental immunotoxicant exposure may be persistent well into adulthood. Immune maturation may be delayed by xenobiotic exposure and recover...

  19. Inhalation developmental toxicology studies: Teratology study of n-hexane in mice: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mast, T.J.; Decker, J.R.; Stoney, K.H.

    Gestational exposure to n-hexane resulted in an increase in the number of resorbed fetuses for exposure groups relative to the control group; however, the increases were not directly correlated to exposure concentration. The differences were statistically significant for the 200-ppM with respect to total intrauterine death (early plus late resorptions), and with respect to late resorptions for the 5000-ppM group. A small, but statistically significant, reduction in female (but not male) fetal body weight relative to the control group was observed at the 5000-ppM exposure level. There were no exposure-related increases in any individual fetal malformation or variation, nor wasmore » there any increase in the incidence of combined malformations or variations. Gestational exposure of CD-1 mice to n-hexane vapors appeared to cause a degree of concentration-related developmental toxicity in the absence of overt maternal toxicity, but the test material was not found to be teratogenic. This developmental toxicity was manifested as an increase in the number of resorptions per litter for all exposure levels, and as a decrease in the uterine: extra-gestational weight gain ratio at the 5000-ppM exposure level. Because of the significant increase in the number of resorptions at the 200-ppM exposure level, a no observable effect level (NOEL) for developmental toxicity was not established for exposure of mice to 200, 1000 or 5000-ppM n-hexane vapors. 21 refs., 3 figs., 9 tabs.« less

  20. The developmental disruptions of serotonin signaling may involved in autism during early brain development.

    PubMed

    Yang, C-J; Tan, H-P; Du, Y-J

    2014-05-16

    Autism is a developmental disorder defined by the presence of a triad of communication, social and stereo typical behavioral characteristics with onset before 3years of age. In spite of the fact that there are potential environmental factors for autistic behavior, the dysfunction of serotonin during early development of the brain could be playing a role in this prevalence rise. Serotonin can modulate a number of developmental events, including cell division, neuronal migration, cell differentiation and synaptogenesis. Hyperserotonemia during fetal development results in the loss of serotonin terminals through negative feedback. The increased serotonin causes a decrease of oxytocin in the paraventricular nucleus of the hypothalamus and an increase in calcitonin gene-related peptide (CGRP) in the central nucleus of the amygdale, which are associated with social interactions and vital in autism. However, hyposerotonemia may be also relevant to the development of sensory as well as motor and cognitive faculties. And the paucity of placenta-derived serotonin should have potential importance when the pathogenesis of autism is considered. This review briefly summarized the developmental disruptions of serotonin signaling involved in the pathogenesis of autism during early development of the brain. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. RNA-sequencing of the sturgeon Acipenser baeri provides insights into expression dynamics of morphogenic differentiation and developmental regulatory genes in early versus late developmental stages.

    PubMed

    Song, Wei; Jiang, Keji; Zhang, Fengying; Lin, Yu; Ma, Lingbo

    2016-08-08

    Acipenser baeri, one of the critically endangered animals on the verge of extinction, is a key species for evolutionary, developmental, physiology and conservation studies and a standout amongst the most important food products worldwide. Though the transcriptome of the early development of A. baeri has been published recently, the transcriptome changes occurring in the transition from embryonic to late stages are still unknown. The aim of this work was to analyze the transcriptomes of embryonic and post-embryonic stages of A. baeri and identify differentially expressed genes (DEGs) and their expression patterns using mRNA collected from specimens at big yolk plug, wide neural plate and 64 day old sturgeon developmental stages for RNA-Seq. The paired-end sequencing of the transcriptome of samples of A. baeri collected at two early (big yolk plug (T1, 32 h after fertilization) and wide neural plate formation (T2, 45 h after fertilization)) and one late (T22, 64 day old sturgeon) developmental stages using Illumina Hiseq2000 platform generated 64039846, 64635214 and 75293762 clean paired-end reads for T1, T2 and T22, respectively. After quality control, the sequencing reads were de novo assembled to generate a set of 149,265 unigenes with N50 value of 1277 bp. Functional annotation indicated that a substantial number of these unigenes had significant similarity with proteins in public databases. Differential expression profiling allowed the identification of 2789, 12,819 and 10,824 DEGs from the respective T1 vs. T2, T1 vs. T22 and T2 vs. T22 comparisons. High correlation of DEGs' features was recorded among early stages while significant divergences were observed when comparing the late stage with early stages. GO and KEGG enrichment analyses revealed the biological processes, cellular component, molecular functions and metabolic pathways associated with identified DEGs. The qRT-PCR performed for candidate genes in specimens confirmed the validity of the RNA

  2. Dose-rate effects of ethylene oxide exposure on developmental toxicity.

    PubMed

    Weller, E; Long, N; Smith, A; Williams, P; Ravi, S; Gill, J; Henessey, R; Skornik, W; Brain, J; Kimmel, C; Kimmel, G; Holmes, L; Ryan, L

    1999-08-01

    In risk assessment, evaluating a health effect at a duration of exposure that is untested involves assuming that equivalent multiples of concentration (C) and duration (T) of exposure have the same effect. The limitations of this approach (attributed to F. Haber, Zur Geschichte des Gaskrieges [On the history of gas warfare], in Funf Vortrage aus den Jahren 1920-1923 [Five lectures from the years 1920-1923], 1924, Springer, Berlin, pp. 76-92), have been noted in several studies. The study presented in this paper was designed to specifically look at dose-rate (C x T) effects, and it forms an ideal case study to implement statistical models and to examine the statistical issues in risk assessment. Pregnant female C57BL/6J mice were exposed, on gestational day 7, to ethylene oxide (EtO) via inhalation for 1.5, 3, or 6 h at exposures that result in C x T multiples of 2100 or 2700 ppm-h. EtO was selected because of its short half-life, documented developmental toxicity, and relevance to exposures that occur in occupational settings. Concurrent experiments were run with animals exposed to air for similar periods. Statistical analysis using models developed to assess dose-rate effects revealed significant effects with respect to fetal death and resorptions, malformations, crown-to-rump length, and fetal weight. Animals exposed to short, high exposures of EtO on day 7 of gestation were found to have more adverse effects than animals exposed to the same C x T multiple but at longer, lower exposures. The implication for risk assessment is that applying Haber's Law could potentially lead to an underestimation of risk at a shorter duration of exposure and an overestimation of risk at a longer duration of exposure. Further research, toxicological and statistical, are required to understand the mechanism of the dose-rate effects, and how to incorporate the mechanistic information into the risk assessment decision process.

  3. HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA: VI. DEVELOPMENTAL EFFECTS.

    EPA Science Inventory

    HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA:
    VI. DEVELOPMENTAL EFFECTS

    Richard K. Kwok, M.S.P.H., Judy L. Mumford, Ph.D., Pauline Mendola, Ph.D. Epidemiology and Biomarkers Branch, NHEERL, US Environmental Protection Agency; Yajua...

  4. The die is cast - Arsenic exposure in early life and disease susceptibility

    EPA Science Inventory

    Abstract Early life exposure to arsenic in humans and mice produces similar patterns of disease in later life. Given the long interval between exposure and effect, epigenetic effects of early life exposure to arsenic may account for development and progression of disease in bo...

  5. Larval Red Drum (Sciaenops ocellatus) Sublethal Exposure to Weathered Deepwater Horizon Crude Oil: Developmental and Transcriptomic Consequences.

    PubMed

    Xu, Elvis Genbo; Khursigara, Alex J; Magnuson, Jason; Hazard, E Starr; Hardiman, Gary; Esbaugh, Andrew J; Roberts, Aaron P; Schlenk, Daniel

    2017-09-05

    The Deepwater Horizon (DWH) incident resulted in extensive oiling of the pelagic zone and shoreline habitats of many commercially important fish species. Exposure to the water-accommodated fraction (WAF) of oil from the spill causes developmental toxicity through cardiac defects in pelagic fish species. However, few studies have evaluated the effects of the oil on near-shore estuarine fish species such as red drum (Sciaenops ocellatus). Following exposure to a certified weathered slick oil (4.74 μg/L ∑PAH 50 ) from the DWH event, significant sublethal impacts were observed ranging from impaired nervous system development [average 17 and 22% reductions in brain and eye area at 48 h postfertilization (hpf), respectively] to abnormal cardiac morphology (100% incidence at 24, 48, and 72 hpf) in red drum larvae. Consistent with the phenotypic responses, significantly differentially expressed transcripts, enriched gene ontology, and altered functions and canonical pathways predicted adverse outcomes in nervous and cardiovascular systems, with more pronounced changes at later larval stages. Our study demonstrated that the WAF of weathered slick oil of DWH caused morphological abnormalities predicted by a suite of advanced bioinformatic tools in early developing red drum and also provided the basis for a better understanding of molecular mechanisms of crude oil toxicity in fish.

  6. Developmental Programming and Endocrine Disruptor Effects on Reproductive Neuroendocrine Systems

    PubMed Central

    Gore, Andrea C.

    2009-01-01

    The ability of a species to reproduce successfully requires the careful orchestration of developmental processes during critical time points, particularly the late embryonic and early postnatal periods. This article begins with a brief presentation of the evidence for how gonadal steroid hormones exert these imprinting effects upon the morphology of sexually differentiated hypothalamic brain regions, the mechanisms underlying these effects, and their implications in adulthood. Then, I review the evidence that aberrant exposure to hormonally-active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood. The field of endocrine disruption has shed new light on the discipline of basic reproductive neuroendocrinology through studies on how early life exposures to EDCs may alter gene expression via non-genomic, epigenetic mechanisms, including DNA methylation and histone acetylation. Importantly, these effects may be transmitted to future generations if the germline is affected via transgenerational, epigenetic actions. By understanding the mechanisms by which natural hormones and xenobiotics affect reproductive neuroendocrine systems, we will gain a better understanding of normal developmental processes, as well as to develop the potential ability to intervene when development is disrupted. PMID:18394690

  7. Developmental exposure to acetaminophen does not induce hyperactivity in zebrafish larvae.

    PubMed

    Reuter, Isabel; Knaup, Sabine; Romanos, Marcel; Lesch, Klaus-Peter; Drepper, Carsten; Lillesaar, Christina

    2016-08-01

    First line pain relief medication during pregnancy relies nearly entirely on the over-the-counter analgesic acetaminophen, which is generally considered safe to use during gestation. However, recent epidemiological studies suggest a risk of developing attention-deficit/hyperactivity disorder (ADHD)-like symptoms in children if mothers use acetaminophen during pregnancy. Currently, there are no experimental proofs that prenatal acetaminophen exposure causes developmental brain alterations of progeny. Exposure to high acetaminophen concentrations causes liver toxicity, which is well investigated in different model organisms. However, sub-liver-toxic concentrations have not been experimentally investigated with respect to ADHD endophenotypes such as hyperactivity. We used zebrafish to investigate the potential impact of acetaminophen exposure on locomotor activity levels, and compared it to the established zebrafish Latrophilin 3 (Lphn3) ADHD-model. We determined the sub-liver-toxic concentration of acetaminophen in zebrafish larvae and treated wild-type and lphn3.1 knockdown larvae with increasing concentrations of acetaminophen. We were able to confirm that lphn3.1 knockdown alone causes hyperactivity, strengthening the implication of Lphn3 dysfunction as an ADHD risk factor. Neither acute nor chronic exposure to acetaminophen at sub-liver-toxic concentrations in wild-type or lphn3.1 knock-downs increases locomotor activity levels. Together our findings show that embryonic to larval exposure to acetaminophen does not cause hyperactivity in zebrafish larvae. Furthermore, there are no additive and/or synergistic effects of acetaminophen exposure in a susceptible background induced by knock-down of lphn3.1. Our experimental study suggests that there is, at least in zebrafish larvae, no direct link between embryonic acetaminophen exposure and hyperactivity. Further work is necessary to clarify this issue in humans.

  8. Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system functions after developmental exposure to ethanol vapors.

    PubMed

    Boyes, William K; Degn, Laura L; Martin, Sheppard A; Lyke, Danielle F; Hamm, Charles W; Herr, David W

    2014-01-01

    Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, and may result in increased inhalation of ethanol vapors in combination with other volatile gasoline constituents. It is important to understand potential risks of inhalation of ethanol vapors by themselves, and also as a baseline for evaluating the risks of ethanol combined with a complex mixture of hydrocarbon vapors. Because sensory dysfunction has been reported after developmental exposure to ethanol, we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Pregnant Long-Evans rats were exposed to target concentrations 0, 5000, 10,000, or 21,000 ppm ethanol vapors for 6.5h/day over GD9-GD20. Sensory evaluations of male offspring began between PND106 and PND128. Peripheral nerve function (compound action potentials, nerve conduction velocity (NCV)), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEPs), VEP contrast sensitivity, and electroretinograms recorded from dark-adapted (scotopic), light-adapted (photopic) flashes, and UV flicker and green flicker. No consistent concentration-related changes were observed for any of the physiological measures. The results show that gestational exposure to ethanol vapor did not result in detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults. Published by Elsevier Inc.

  9. The Role of Developmental Screening Practices in Early Diagnosis of Autism Spectrum Disorders: An Analysis of All-Payer Claims Data in New Hampshire

    ERIC Educational Resources Information Center

    Humphreys, Betsy P.

    2013-01-01

    Universal developmental screening during pediatric well child care detects early delays in development and is a critical gateway to early intervention for young children at risk for Autism Spectrum Disorders (ASD). Developmental screening practices are highly variable, and few studies have examined screening utilization for children at risk for…

  10. Early Sign Language Exposure and Cochlear Implantation Benefits.

    PubMed

    Geers, Ann E; Mitchell, Christine M; Warner-Czyz, Andrea; Wang, Nae-Yuh; Eisenberg, Laurie S

    2017-07-01

    Most children with hearing loss who receive cochlear implants (CI) learn spoken language, and parents must choose early on whether to use sign language to accompany speech at home. We address whether parents' use of sign language before and after CI positively influences auditory-only speech recognition, speech intelligibility, spoken language, and reading outcomes. Three groups of children with CIs from a nationwide database who differed in the duration of early sign language exposure provided in their homes were compared in their progress through elementary grades. The groups did not differ in demographic, auditory, or linguistic characteristics before implantation. Children without early sign language exposure achieved better speech recognition skills over the first 3 years postimplant and exhibited a statistically significant advantage in spoken language and reading near the end of elementary grades over children exposed to sign language. Over 70% of children without sign language exposure achieved age-appropriate spoken language compared with only 39% of those exposed for 3 or more years. Early speech perception predicted speech intelligibility in middle elementary grades. Children without sign language exposure produced speech that was more intelligible (mean = 70%) than those exposed to sign language (mean = 51%). This study provides the most compelling support yet available in CI literature for the benefits of spoken language input for promoting verbal development in children implanted by 3 years of age. Contrary to earlier published assertions, there was no advantage to parents' use of sign language either before or after CI. Copyright © 2017 by the American Academy of Pediatrics.

  11. Interdisciplinary Early Intervention for Developmentally Delayed Infants and Young Children: A Family-Oriented Approach.

    ERIC Educational Resources Information Center

    Russell, Fay F.; And Others

    Intended to help developers of early intervention programs for children with developmental disabilities, the book provides philosophy, methods, and procedures based on experiences of the Child Development Center of the University of Tennessee Center for Health Sciences. The first section presents a program description including information on…

  12. The SIX1 Oncoprotein Mediates Aberrant Endometrial Basal Cell Development Following Neonatal Exposure to Diethylstilbestrol

    EPA Science Inventory

    Early-life exposures can disrupt cellular differentiation and contribute to increased cancer risk later in life. In a model of developmental estrogen exposure, female mice exposed on postnatal day (PND) 1-5 to diethylstilbestrol (DES) develop a high incidence of endometrial adeno...

  13. Effects of early developmental conditions on innate immunity are only evident under favourable adult conditions in zebra finches

    NASA Astrophysics Data System (ADS)

    de Coster, Greet; Verhulst, Simon; Koetsier, Egbert; de Neve, Liesbeth; Briga, Michael; Lens, Luc

    2011-12-01

    Long-term effects of unfavourable conditions during development can be expected to depend on the quality of the environment experienced by the same individuals during adulthood. Yet, in the majority of studies, long-term effects of early developmental conditions have been assessed under favourable adult conditions only. The immune system might be particularly vulnerable to early environmental conditions as its development, maintenance and use are thought to be energetically costly. Here, we studied the interactive effects of favourable and unfavourable conditions during nestling and adult stages on innate immunity (lysis and agglutination scores) of captive male and female zebra finches ( Taeniopygia guttata). Nestling environmental conditions were manipulated by a brood size experiment, while a foraging cost treatment was imposed on the same individuals during adulthood. This combined treatment showed that innate immunity of adult zebra finches is affected by their early developmental conditions and varies between both sexes. Lysis scores, but not agglutination scores, were higher in individuals raised in small broods and in males. However, these effects were only present in birds that experienced low foraging costs. This study shows that the quality of the adult environment may shape the long-term consequences of early developmental conditions on innate immunity, as long-term effects of nestling environment were only evident under favourable adult conditions.

  14. Swimming speed alteration in the early developmental stages of Paracentrotus lividus sea urchin as ecotoxicological endpoint.

    PubMed

    Morgana, Silvia; Gambardella, Chiara; Falugi, Carla; Pronzato, Roberto; Garaventa, Francesca; Faimali, Marco

    2016-04-01

    Behavioral endpoints have been used for decades to assess chemical impacts at concentrations unlikely to cause mortality. With recently developed techniques, it is possible to investigate the swimming behavior of several organisms under laboratory conditions. The aims of this study were: i) assessing for the first time the feasibility of swimming speed analysis of the early developmental stage sea urchin Paracentrotus lividus by an automatic recording system ii) investigating any Swimming Speed Alteration (SSA) on P. lividus early stages exposed to a chemical reference; iii) identifying the most suitable stage for SSA test. Results show that the swimming speed of all the developmental stages was easily recorded. The swimming speed was inhibited as a function of toxicant concentration. Pluteus were the most appropriate stage for evaluating SSA in P. lividus as ecotoxicological endpoint. Finally, swimming of sea urchin early stages represents a sensitive endpoint to be considered in ecotoxicological investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Genetic identification of female Cannabis sativa plants at early developmental stage.

    PubMed

    Techen, Natascha; Chandra, Suman; Lata, Hemant; Elsohly, Mahmoud A; Khan, Ikhlas A

    2010-11-01

    Sequence-characterized amplified region (SCAR) markers were used to identify female plants at an early developmental stage in four different varieties of Cannabis sativa. Using the cetyl trimethylammonium bromide (CTAB) method, DNA was isolated from two-week-old plants of three drug-type varieties (Terbag W1, Terbag K2, and Terbag MX) and one fiber-type variety (Terbag Fedora A7) of C. sativa grown under controlled environmental conditions through seeds. Attempts to use MADC2 (male-associated DNA from Cannabis sativa) primers as a marker to identify the sex of Cannabis sativa plants were successful. Amplification of genomic DNA using MADC2-F and MADC2-R primers produced two distinct fragments, one with a size of approximately 450 bp for female plants and one for male plants with a size of approximately 300 bp. After harvesting the tissues for DNA extraction, plants were subjected to a flowering photoperiod (i.e., 12-h light cycle), and the appearance of flowers was compared with the DNA analysis. The results of the molecular analysis were found to be concordant with the appearance of male or female flowers. The results of this study represent a quick and reliable technique for the identification of sex in Cannabis plants using SCAR markers at a very early developmental stage. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Subacute developmental exposure of zebrafish to the organophosphate pesticide metabolite, chlorpyrifos-oxon, results in defects in Rohon-Beard sensory neuron development

    PubMed Central

    Jacobson, Saskia M.; Birkholz, Denise A.; McNamara, Marcy L.; Bharate, Sandip B.; George, Kathleen M.

    2010-01-01

    Organophosphate pesticides (OPs) are environmental toxicants known to inhibit the catalytic activity of acetylcholinesterase (AChE) resulting in hypercholinergic toxicity symptoms. In developing embryos, OPs have been hypothesized to affect both cholinergic and non-cholinergic pathways. In order to understand the neurological pathways affected by OP exposure during embryogenesis, we developed a subacute model of OP developmental exposure in zebrafish by exposing embryos to a dose of the OP metabolite chlorpyrifos oxon (CPO) that is non-lethal and significantly inhibited AChE enzymatic activity compared to control embryos (43% at 1 day post-fertilization (dpf) and 11% at 2 dpf). Phenotypic analysis of CPO-exposed embryos demonstrated that embryonic growth, as analyzed by gross morphology, was normal in 85% of treated embryos. Muscle fiber formation was similar to control embryos as analyzed by birefringence, and nicotinic acetylcholine receptor (nAChR) cluster formation was quantitatively similar to control embryos as analyzed by α-bungarotoxin staining. These results indicate that partial AChE activity during the early days of zebrafish development is sufficient for general development, muscle fiber, and nAChR development. Rohon-Beard (RB) sensory neurons exhibited aberrant peripheral axon extension and gene expression profiling suggests that several genes responsible for RB neurogenesis are down-regulated. Stability of CPO in egg water at 28.5 °C was determined by HPLC-UV-MS analysis which revealed that the CPO concentration used in our studies hydrolyzes in egg water with a half-life of one day. The result that developmental CPO exposure affected RB neurogenesis without affecting muscle fiber or nAChR cluster formation demonstrates that zebrafish are a strong model system for characterizing subtle neurological pathologies resulting from environmental toxicants. PMID:20701988

  17. Early life exposures and the risk of adult glioma.

    PubMed

    Anic, Gabriella M; Madden, Melissa H; Sincich, Kelly; Thompson, Reid C; Nabors, L Burton; Olson, Jeffrey J; LaRocca, Renato V; Browning, James E; Pan, Edward; Egan, Kathleen M

    2013-09-01

    Exposure to common infections in early life may stimulate immune development and reduce the risk for developing cancer. Birth order and family size are proxies for the timing of exposure to childhood infections with several studies showing a reduced risk of glioma associated with a higher order of birth (and presumed younger age at infection). The aim of this study was to examine whether birth order, family size, and other early life exposures are associated with the risk of glioma in adults using data collected in a large clinic-based US case-control study including 889 glioma cases and 903 community controls. A structured interviewer-administered questionnaire was used to collect information on family structure, childhood exposures and other potential risk factors. Logistic regression was used to calculate odds ratios (OR) and corresponding 95% confidence intervals (CI) for the association between early life factors and glioma risk. Persons having any siblings were at significantly lower risk for glioma when compared to those reporting no siblings (OR=0.64; 95% CI 0.44-0.93; p=0.020). Compared to first-borns, individuals with older siblings had a significantly lower risk (OR=0.75; 95% CI 0.61-0.91; p=0.004). Birth weight, having been breast fed in infancy, and season of birth were not associated with glioma risk. The current findings lend further support to a growing body of evidence that early exposure to childhood infections reduces the risk of glioma onset in children and adults.

  18. Vicissitudes of Children's Mathematical Knowledge: Implications of Developmental Research for Early Childhood Mathematics Education

    ERIC Educational Resources Information Center

    Sophian, Catherine

    2013-01-01

    Hachey's (2013) article celebrates a revolution that is taking place in early childhood mathematics education, fueled in part by developmental research demonstrating the mathematical capabilities of young children. At the same time, Hachey notes that the mathematics revolution she describes is not yet complete. In this commentary, the author…

  19. Caregiver Descriptions of the Developmental Skills of Infants and Toddlers Entering Early Intervention Services

    ERIC Educational Resources Information Center

    Scarborough, Anita A.; Hebbeler, Kathleen M.; Simeonsson, Rune J.; Spiker, Donna

    2007-01-01

    The present study was conducted to describe the developmental skills of a national sample of infants and toddlers at entry into early intervention services. Caregivers were asked about their child's skills during a telephone interview. Summary values were derived from descriptions of motor, communication, independence, and cognitive skills. More…

  20. Child development following in utero exposure

    PubMed Central

    Shallcross, R.; Bromley, R.L.; Irwin, B.; Bonnett, L.J.; Morrow, J.

    2011-01-01

    Objective: Children born to women with epilepsy (WWE), exposed in utero to levetiracetam (LEV, n = 51), were assessed for early cognitive development and compared to children exposed to sodium valproate in utero (VPA, n = 44) and a group of children representative of the general population (n = 97). Methods: Children were recruited prospectively from 2 cohorts in the United Kingdom and assessed using the Griffiths Mental Development Scale (1996), aged <24 months. Information regarding maternal demographics were collected and controlled for. This is an observational study with researchers not involved in the clinical management of the WWE. Results: On overall developmental ability, children exposed to LEV obtained higher developmental scores when compared to children exposed to VPA (p < 0.001). When compared, children exposed to LEV did not differ from control children (p = 0.62) on overall development. Eight percent of children exposed to LEV in utero fell within the below average range (DQ score of <84), compared with 40% of children exposed to VPA. After controlling for maternal epilepsy and demographic factors using linear regression analysis, exposure to LEV in utero was not associated with outcome (p = 0.67). Conversely, when compared with VPA exposure, LEV exposure was associated with higher scores for the overall developmental quotient (p < 0.001). Conclusion: Children exposed to LEV in utero are not at an increased risk of delayed early cognitive development under the age of 24 months. LEV may therefore be a preferable drug choice, where appropriate, for WWE prior to and of childbearing age. PMID:21263139

  1. Effect of socioeconomic status disparity on child language and neural outcome: how early is early?

    PubMed

    Hurt, Hallam; Betancourt, Laura M

    2016-01-01

    It is not news that poverty adversely affects child outcome. The literature is replete with reports of deleterious effects on developmental outcome, cognitive function, and school performance in children and youth. Causative factors include poor nutrition, exposure to toxins, inadequate parenting, lack of cognitive stimulation, unstable social support, genetics, and toxic environments. Less is known regarding how early in life adverse effects may be detected. This review proposes to elucidate "how early is early" through discussion of seminal articles related to the effect of socioeconomic status on language outcome and a discussion of the emerging literature on effects of socioeconomic status disparity on brain structure in very young children. Given the young ages at which such outcomes are detected, the critical need for early targeted interventions for our youngest is underscored. Further, the fiscal reasonableness of initiating quality interventions supports these initiatives. As early life adversity produces lasting and deleterious effects on developmental outcome and brain structure, increased focus on programs and policies directed to reducing the impact of socioeconomic disparities is essential.

  2. DIAGNOSTIC CLASSIFICATION OF MENTAL HEALTH AND DEVELOPMENTAL DISORDERS OF INFANCY AND EARLY CHILDHOOD DC:0-5: SELECTIVE REVIEWS FROM A NEW NOSOLOGY FOR EARLY CHILDHOOD PSYCHOPATHOLOGY.

    PubMed

    Zeanah, Charles H; Carter, Alice S; Cohen, Julie; Egger, Helen; Gleason, Mary Margaret; Keren, Miri; Lieberman, Alicia; Mulrooney, Kathleen; Oser, Cindy

    2016-09-01

    The Diagnostic Classification of Mental Health and Developmental Disorders of Infancy and Early Childhood: Revised Edition (DC:0-5; ZERO TO THREE) is scheduled to be published in 2016. The articles in this section are selective reviews that have been undertaken as part of the process of refining and updating the nosology. They provide the rationales for new disorders, for disorders that had not been included previously in the Diagnostic Classification of Mental Health and Developmental Disorders of Infancy and Early Childhood: Revised Edition (DC:0-3R; ZERO TO THREE, 2005), and for changes in how certain types of disorders are conceptualized. © 2016 Michigan Association for Infant Mental Health.

  3. Developmental lead exposure causes startle response deficits in zebrafish.

    PubMed

    Rice, Clinton; Ghorai, Jugal K; Zalewski, Kathryn; Weber, Daniel N

    2011-10-01

    Lead (Pb(2+)) exposure continues to be an important concern for fish populations. Research is required to assess the long-term behavioral effects of low-level concentrations of Pb(2+) and the physiological mechanisms that control those behaviors. Newly fertilized zebrafish embryos (<2h post fertilization; hpf) were exposed to one of three concentrations of lead (as PbCl(2)): 0, 10, or 30 nM until 24 hpf. (1) Response to a mechanosensory stimulus: Individual larvae (168 hpf) were tested for response to a directional, mechanical stimulus. The tap frequency was adjusted to either 1 or 4 taps/s. Startle response was recorded at 1000 fps. Larvae responded in a concentration-dependent pattern for latency to reaction, maximum turn velocity, time to reach V(max) and escape time. With increasing exposure concentrations, a larger number of larvae failed to respond to even the initial tap and, for those that did respond, ceased responding earlier than control larvae. These differences were more pronounced at a frequency of 4 taps/s. (2) Response to a visual stimulus: Fish, exposed as embryos (2-24 hpf) to Pb(2+) (0-10 μM) were tested as adults under low light conditions (≈ 60 μW/m(2)) for visual responses to a rotating black bar. Visual responses were significantly degraded at Pb(2+) concentrations of 30 nM. These data suggest that zebrafish are viable models for short- and long-term sensorimotor deficits induced by acute, low-level developmental Pb(2+) exposures. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The role of developmental plasticity and epigenetics in human health.

    PubMed

    Gluckman, Peter D; Hanson, Mark A; Low, Felicia M

    2011-03-01

    Considerable epidemiological, experimental and clinical data have amassed showing that the risk of developing disease in later life is dependent on early life conditions, mainly operating within the normative range of developmental exposures. This relationship reflects plastic responses made by the developing organism as an evolved strategy to cope with immediate or predicted circumstances, to maximize fitness in the context of the range of environments potentially faced. There is now increasing evidence, both in animals and humans, that such developmental plasticity is mediated in part by epigenetic mechanisms. However, recognition of the importance of developmental plasticity as an important factor in influencing later life health-particularly within the medical and public health communities-is low, and we argue that this indifference cannot be sustained in light of the growing understanding of developmental processes and the rapid rise in the prevalence of obesity and metabolic disease globally. Copyright © 2011 Wiley-Liss, Inc.

  5. African ancestry, early life exposures, and respiratory morbidity in early childhood.

    PubMed

    Kumar, R; Tsai, H-J; Hong, X; Gignoux, C; Pearson, C; Ortiz, K; Fu, M; Pongracic, J A; Burchard, E G; Bauchner, H; Wang, X

    2012-02-01

    Racial disparities persist in early childhood wheezing and cannot be completely explained by known risk factors. To evaluate the associations of genetic ancestry and self-identified race with early childhood recurrent wheezing, accounting for socio-economic status (SES) and early life exposures. We studied 1034 children in an urban, multi-racial, prospective birth cohort. Multivariate logistic regression was used to evaluate the association of genetic ancestry as opposed to self-identified race with recurrent wheezing (>3 episodes). Sequential models accounted for demographic, socio-economic factors and early life risk factors. Genetic ancestry, estimated using 150 ancestry informative markers, was expressed in deciles. Approximately 6.1% of subjects (mean age 3.1 years) experienced recurrent wheezing. After accounting for SES and demographic factors, African ancestry (OR: 1.16, 95% CI: 1.02-1.31) was significantly associated with recurrent wheezing. By self-reported race, hispanic subjects had a borderline decrease in risk of wheeze compared with African Americans (OR: 0.44, 95% CI: 0.19-1.00), whereas white subjects (OR: 0.46, 95% CI: 0.14-1.57) did not have. After further adjustment for known confounders and early life exposures, both African (OR: 1.19, 95% CI: 1.05-1.34) and European ancestry (OR: 0.84, 95% CI: 0.74-0.94) retained a significant association with recurrent wheezing, as compared with self-identified race (OR(whites) : 0.31, 95% CI: 0.09-1.14; OR(hispanic) : 0.47, 95% CI: 0.20-1.08). There were no significant interactions between ancestry and early life factors on recurrent wheezing. In contrast to self-identified race, African ancestry remained a significant, independent predictor of early childhood wheezing after accounting for early life and other known risk factors associated with lung function changes and asthma. Genetic ancestry may be a powerful way to evaluate wheezing disparities and a proxy for differentially distributed genetic and

  6. African ancestry, early life exposures, and respiratory morbidity in early childhood

    PubMed Central

    Kumar, R.; Tsai, H.-J.; Hong, X.; Gignoux, C.; Pearson, C.; Ortiz, K.; Fu, M.; Pongracic, J. A.; Burchard, E. G.; Bauchner, H.; Wang, X.

    2012-01-01

    Summary Background Racial disparities persist in early childhood wheezing and cannot be completely explained by known risk factors. Objective To evaluate the associations of genetic ancestry and self-identified race with early childhood recurrent wheezing, accounting for socio-economic status (SES) and early life exposures. Methods We studied 1034 children in an urban, multi-racial, prospective birth cohort. Multivariate logistic regression was used to evaluate the association of genetic ancestry as opposed to self-identified race with recurrent wheezing (>3 episodes). Sequential models accounted for demographic, socio-economic factors and early life risk factors. Genetic ancestry, estimated using 150 ancestry informative markers, was expressed in deciles. Results Approximately 6.1% of subjects (mean age 3.1 years) experienced recurrent wheezing. After accounting for SES and demographic factors, African ancestry (OR: 1.16, 95% CI: 1.02–1.31) was significantly associated with recurrent wheezing. By self-reported race, hispanic subjects had a borderline decrease in risk of wheeze compared with African Americans (OR: 0.44, 95% CI: 0.19–1.00), whereas white subjects (OR: 0.46, 95% CI: 0.14–1.57) did not have. After further adjustment for known confounders and early life exposures, both African (OR: 1.19, 95% CI: 1.05–1.34) and European ancestry (OR: 0.84, 95% CI: 0.74–0.94) retained a significant association with recurrent wheezing, as compared with self-identified race (ORwhites: 0.31, 95% CI: 0.09–1.14; ORhispanic: 0.47, 95% CI: 0.20–1.08). There were no significant interactions between ancestry and early life factors on recurrent wheezing. Conclusions and Clinical Relevance In contrast to self-identified race, African ancestry remained a significant, independent predictor of early childhood wheezing after accounting for early life and other known risk factors associated with lung function changes and asthma. Genetic ancestry may be a powerful way to

  7. Latent Class Analysis of Early Developmental Trajectory in Baby Siblings of Children with Autism

    ERIC Educational Resources Information Center

    Landa, Rebecca J.; Gross, Alden L.; Stuart, Elizabeth A.; Bauman, Margaret

    2012-01-01

    Background: Siblings of children with autism (sibs-A) are at increased genetic risk for autism spectrum disorders (ASD) and milder impairments. To elucidate diversity and contour of early developmental trajectories exhibited by sibs-A, regardless of diagnostic classification, latent class modeling was used. Methods: Sibs-A (N = 204) were assessed…

  8. A physiologically based pharmacokinetic model for developmental exposure to BDE-47 in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emond, Claude, E-mail: claude.emond@umontreal.c; BioSimulation Consulting Inc., Newark, DE 19711; Raymer, James H.

    2010-02-01

    Polybrominated diphenyl ethers (PBDEs) are used commercially as additive flame retardants and have been shown to transfer into environmental compartments, where they have the potential to bioaccumulate in wildlife and humans. Of the 209 possible PBDEs, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is usually the dominant congener found in human blood and milk samples. BDE-47 has been shown to have endocrine activity and produce developmental, reproductive, and neurotoxic effects. The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for BDE-47 in male and female (pregnant and non-pregnant) adult rats to facilitate investigations of developmental exposure. This model consistsmore » of eight compartments: liver, brain, adipose tissue, kidney, placenta, fetus, blood, and the rest of the body. Concentrations of BDE-47 from the literature and from maternal-fetal pharmacokinetic studies conducted at RTI International were used to parameterize and evaluate the model. The results showed that the model simulated BDE-47 tissue concentrations in adult male, maternal, and fetal compartments within the standard deviations of the experimental data. The model's ability to estimate BDE-47 concentrations in the fetus after maternal exposure will be useful to design in utero exposure/effect studies. This PBPK model is the first one designed for any PBDE pharmaco/toxicokinetic description. The next steps will be to expand this model to simulate BDE-47 pharmacokinetics and distributions across species (mice), and then extrapolate it to humans. After mouse and human model development, additional PBDE congeners will be incorporated into the model and simulated as a mixture.« less

  9. Developmental toxicity of PAH mixtures in fish early life stages. Part II: adverse effects in Japanese medaka.

    PubMed

    Le Bihanic, Florane; Clérandeau, Christelle; Le Menach, Karyn; Morin, Bénédicte; Budzinski, Hélène; Cousin, Xavier; Cachot, Jérôme

    2014-12-01

    In aquatic environments, polycyclic aromatic hydrocarbons (PAHs) mostly occur as complex mixtures, for which risk assessment remains problematic. To better understand the effects of PAH mixture toxicity on fish early life stages, this study compared the developmental toxicity of three PAH complex mixtures. These mixtures were extracted from a PAH-contaminated sediment (Seine estuary, France) and two oils (Arabian Light and Erika). For each fraction, artificial sediment was spiked at three different environmental concentrations roughly equivalent to 0.5, 4, and 10 μg total PAH g(-1) dw. Japanese medaka embryos were incubated on these PAH-spiked sediments throughout their development, right up until hatching. Several endpoints were recorded at different developmental stages, including acute endpoints, morphological abnormalities, larvae locomotion, and genotoxicity (comet and micronucleus assays). The three PAH fractions delayed hatching, induced developmental abnormalities, disrupted larvae swimming activity, and damaged DNA at environmental concentrations. Differences in toxicity levels, likely related to differences in PAH proportions, were highlighted between fractions. The Arabian Light and Erika petrogenic fractions, containing a high proportion of alkylated PAHs and low molecular weight PAHs, were more toxic to Japanese medaka early life stages than the pyrolytic fraction. This was not supported by the toxic equivalency approach, which appeared unsuitable for assessing the toxicity of the three PAH fractions to fish early life stages. This study highlights the potential risks posed by environmental mixtures of alkylated and low molecular weight PAHs to early stages of fish development.

  10. Parenting and the development of effortful control from early childhood to early adolescence: A transactional developmental model.

    PubMed

    Tiberio, Stacey S; Capaldi, Deborah M; Kerr, David C R; Bertrand, Maria; Pears, Katherine C; Owen, Lee

    2016-08-01

    Poor effortful control is a key temperamental factor underlying behavioral problems. The bidirectional association of child effortful control with both positive parenting and negative discipline was examined from ages approximately 3 to 13-14 years, involving five time points, and using data from parents and children in the Oregon Youth Study-Three Generational Study (N = 318 children from 150 families). Based on a dynamic developmental systems approach, it was hypothesized that there would be concurrent associations between parenting and child effortful control and bidirectional effects across time from each aspect of parenting to effortful control and from effortful control to each aspect of parenting. It was also hypothesized that associations would be more robust in early childhood, from ages 3 to 7 years, and would diminish as indicated by significantly weaker effects at the older ages, 11-12 to 13-14 years. Longitudinal feedback or mediated effects were also tested. The findings supported (a) stability in each construct over multiple developmental periods; (b) concurrent associations, which were significantly weaker at the older ages; (c) bidirectional effects, consistent with the interpretation that at younger ages children's effortful control influenced parenting, whereas at older child ages, parenting influenced effortful control; and (d) a transactional effect, such that maternal parenting in late childhood was a mechanism explaining children's development of effortful control from middle childhood to early adolescence.

  11. Parenting and the Development of Effortful Control from Early Childhood to Early Adolescence: A Transactional Developmental Model

    PubMed Central

    Capaldi, Deborah M.; Kerr, David C. R.; Bertrand, Maria; Pears, Katherine C.; Owen, Lee

    2016-01-01

    Poor effortful control is a key temperamental factor underlying behavioral problems. The bidirectional association of child effortful control with both positive parenting and negative discipline was examined from ages approximately 3 to 13–14 years, involving 5 time points, and using data from parents and children in the Oregon Youth Study-Three Generational Study (N = 318 children from 150 families). Based on a dynamic developmental systems approach, it was hypothesized that there would be concurrent associations between parenting and child effortful control and bidirectional effects across time from each aspect of parenting to effortful control and from effortful control to each aspect of parenting. It was also hypothesized that associations would be more robust in early childhood, from ages 3 to 7 years, and would diminish as indicated by significantly weaker effects at the older ages, 11–12 to 13–14 years. Longitudinal feedback or mediated effects were also tested. Findings supported (a) stability in each construct over multiple developmental periods; (b) concurrent associations, which were significantly weaker at the older ages; (c) bidirectional effects, consistent with the interpretation that at younger ages children’s effortful control influenced parenting, whereas at older child ages, parenting influenced effortful control; and (d) a transactional effect, such that maternal parenting in late childhood was a mechanism explaining children’s development of effortful control from midchildhood to early adolescence. PMID:27427809

  12. Developmental Exposure to Diethylstilbestrol Alters Uterine Gene Expression That May Be Associated With Uterine Neoplasia Later in Life

    PubMed Central

    Newbold, Retha R.; Jefferson, Wendy N.; Grissom, Sherry F.; Padilla-Banks, Elizabeth; Snyder, Ryan J.; Lobenhofer, Edward K.

    2008-01-01

    Previously, we described a mouse model where the well-known reproductive carcinogen with estrogenic activity, diethylstilbestrol (DES), caused uterine adenocarcinoma following neonatal treatment. Tumor incidence was dose-dependent reaching >90% by 18 mo following neonatal treatment with 1000 μg/kg/d of DES. These tumors followed the initiation/promotion model of hormonal carcinogenesis with developmental exposure as initiator, and exposure to ovarian hormones at puberty as the promoter. To identify molecular pathways involved in DES-initiation events, uterine gene expression profiles were examined in prepubertal mice exposed to DES (1, 10, or 1000 μg/kg/d) on days 1–5 and compared to controls. Of more than 20 000 transcripts, approximately 3% were differentially expressed in at least one DES treatment group compared to controls; some transcripts demonstrated dose–responsiveness. Assessment of gene ontology annotation revealed alterations in genes associated with cell growth, differentiation, and adhesion. When expression profiles were compared to published studies of uteri from 5-d-old DES-treated mice, or adult mice treated with 17β estradiol, similarities were seen suggesting persistent differential expression of estrogen responsive genes following developmental DES exposure. Moreover, several altered genes were identified in human uterine adenocarcinomas. Four altered genes [lactotransferrin (Ltf), transforming growth factor beta inducible (Tgfb1), cyclin D1 (Ccnd1), and secreted frizzled-related protein 4 (Sfrp4)], selected for real-time RT-PCR analysis, correlated well with the directionality of the microarray data. These data suggested altered gene expression profiles observed 2 wk after treatment ceased, were established at the time of developmental exposure and maybe related to the initiation events resulting in carcinogenesis. PMID:17394237

  13. Developmental exposure to diethylstilbestrol alters uterine gene expression that may be associated with uterine neoplasia later in life.

    PubMed

    Newbold, Retha R; Jefferson, Wendy N; Grissom, Sherry F; Padilla-Banks, Elizabeth; Snyder, Ryan J; Lobenhofer, Edward K

    2007-09-01

    Previously, we described a mouse model where the well-known reproductive carcinogen with estrogenic activity, diethylstilbestrol (DES), caused uterine adenocarcinoma following neonatal treatment. Tumor incidence was dose-dependent reaching >90% by 18 mo following neonatal treatment with 1000 microg/kg/d of DES. These tumors followed the initiation/promotion model of hormonal carcinogenesis with developmental exposure as initiator, and exposure to ovarian hormones at puberty as the promoter. To identify molecular pathways involved in DES-initiation events, uterine gene expression profiles were examined in prepubertal mice exposed to DES (1, 10, or 1000 microg/kg/d) on days 1-5 and compared to controls. Of more than 20 000 transcripts, approximately 3% were differentially expressed in at least one DES treatment group compared to controls; some transcripts demonstrated dose-responsiveness. Assessment of gene ontology annotation revealed alterations in genes associated with cell growth, differentiation, and adhesion. When expression profiles were compared to published studies of uteri from 5-d-old DES-treated mice, or adult mice treated with 17beta estradiol, similarities were seen suggesting persistent differential expression of estrogen responsive genes following developmental DES exposure. Moreover, several altered genes were identified in human uterine adenocarcinomas. Four altered genes [lactotransferrin (Ltf), transforming growth factor beta inducible (Tgfb1), cyclin D1 (Ccnd1), and secreted frizzled-related protein 4 (Sfrp4)], selected for real-time RT-PCR analysis, correlated well with the directionality of the microarray data. These data suggested altered gene expression profiles observed 2 wk after treatment ceased, were established at the time of developmental exposure and maybe related to the initiation events resulting in carcinogenesis. (c) 2007 Wiley-Liss, Inc.

  14. Early exposure to media violence and later child adjustment.

    PubMed

    Fitzpatrick, Caroline; Barnett, Tracie; Pagani, Linda S

    2012-05-01

    The extent to which early childhood exposure to violent media is associated with subsequent adverse child functioning remains disconcerting. In this study, we examine whether preschool child exposure to what parents generally characterize as violent television programming predicts a range of second-grade mental health outcomes. Participants are from the Quebec Longitudinal Study of Child Development (N = 1786). At 41 and 53 months, parents reported whether the child had viewed television shows and videos consisting of what they judged as violent content. According to parents, children watched on average 1.8 hours of mixed programming per day. Parent-reported child exposure to televised violence was associated with teacher-reported antisocial symptoms (β = 0.180, 95% confidence interval [CI]: 0.026-0.333), emotional distress (β = 0.224, 95% CI: 0.010-0.438), inattention (β = 0.349, 95% CI: 0.048-0.651), and lower global academic achievement (β = -0.127, 95% CI: -0.237-0.017) in second grade. Violent televiewing was also associated with less child-reported academic self-concept (β = -0.175, 95% CI: -0.296-0.053) and intrinsic motivation (β = -0.162, 95% CI: -0.016-0.307) in second grade. Effects remained significant after adjusting for preexisting child and family characteristics such as baseline child aggression. This prospective study suggests risks associated with early childhood violent media exposure for long-term mental health in children. These findings, suggesting diffusive relationships between early childhood violent media exposure and negative socioemotional and academic outcomes, empirically support the notion that access to early childhood violent television represents a threat to population health and should be discouraged by adult caregivers.

  15. Similar developmental trajectories in autism and Asperger syndrome: from early childhood to adolescence.

    PubMed

    Szatmari, Peter; Bryson, Susan; Duku, Eric; Vaccarella, Liezanne; Zwaigenbaum, Lonnie; Bennett, Teresa; Boyle, Michael H

    2009-12-01

    The objective of this study was to chart the developmental trajectories of high-functioning children with autism spectrum disorders (ASD) from early childhood to adolescence using the presence and absence of structural language impairment (StrLI) as a way of differentiating autism from Asperger syndrome (AS). Sixty-four high-functioning children with ASD were ascertained at 4-6 years of age from several different regional diagnostic and treatment centers. At 6-8 years of age, the ADI-R and the Test of Oral Language Development were used to define an autism group (those with StrLI at 6-8 years of age) and an AS group (those without StrLI). Growth curve analysis was then used to chart the developmental trajectories of these children on measures of autistic symptoms, and adaptive skills in communication, daily living and socialization. Differentiating the ASD group in terms of the presence/absence of StrLI provided a better explanation of the variation in growth curves than not differentiating high-functioning ASD children. The two groups had similar developmental trajectories but the group without StrLI (the AS group) was functioning better and had fewer autistic symptoms than the group with StrLI (the autism group) on all measures across time. The differences in outcome could not be explained by non-verbal IQ or change in early language skills. Distinguishing between autism and Asperger syndrome based on the presence or absence of StrLI appears to be a clinically useful way of classifying ASD sub-types.

  16. Early Childhood Household Smoke Exposure Predicts Less Task-Oriented Classroom Behavior at Age 10.

    PubMed

    Pagani, Linda S; Fitzpatrick, Caroline

    2016-10-01

    Secondhand tobacco smoke is considered a developmental neurotoxicant especially given underdeveloped vital systems in young children. An ecological test of its negative influence on brain development can be made by examining the prospective association between early childhood household smoke exposure and later classroom behavior. Using a longitudinal birth cohort, we examined the unique contribution of household tobacco smoke exposure to children's subsequent classroom engagement at age 10. From child ages 1.5 to 7 years, parents of 2,055 participants from the Quebec Longitudinal Study of Child Development reported on household smoking by themselves and other home occupants. At age 10, fourth-grade teachers reported on the child's classroom engagement. In terms of prevalence, 58% of parents reported that their children were never exposed to smoke in the home, while 34% and 8% of children were exposed to transient and continuous household smoke, respectively. Compared with never exposed children, those who were exposed to transient and continuous household smoke scored 13% and 9% of a standard deviation lower on classroom engagement in fourth grade, standardized B = -.128 (95% confidence interval = -.186, -.069) and standardized B = -.093 (95% confidence interval = -.144, -.043), respectively. Compared with their never exposed peers, children exposed to transient and continuous early childhood household smoke showed proportionately less classroom engagement, which reflects task-orientation, following directions, and working well autonomously and with others. This predisposition poses risks for high school dropout, which from a population health perspective is closely linked with at-risk lifestyle habits and unhealthy outcomes. © 2015 Society for Public Health Education.

  17. The die is cast: arsenic exposure in early life and disease susceptibility.

    PubMed

    Thomas, David J

    2013-12-16

    Early life exposure to arsenic in humans and mice produces similar patterns of disease in later life. Given the long interval between exposure and effect, epigenetic effects of early life exposure to arsenic may account for the development and progression of disease in both species. Mode of action and dosimetric studies in the mouse may help assess the role of age at exposure as a factor in susceptibility to the toxic and carcinogenic effects of arsenic in humans.

  18. Review shows that early foetal alcohol exposure may cause adverse effects even when the mother consumes low levels.

    PubMed

    Sarman, Ihsan

    2018-06-01

    Studies are increasingly focusing on the effects of prenatal alcohol exposure (PAE) on child health. The aim of this review was to provide paediatricians with new insights to help them communicate key messages about avoiding alcohol during pregnancy. Inspired by the 7th International Conference on Fetal Alcohol Spectrum Disorder, which focused on integrating research, policy and practice, we studied English language papers published since 2010 on how early PAE triggered epigenetic mechanisms that had an impact on the development of some chronic diseases. We also report the findings of a human study using three-dimensional photography of the face to explore associations between PAE and craniofacial phenotyping. Animal models with different alcohol exposure patterns show that early PAE may lead to long-term chronic effects, due to developmental programming for some adult diseases in cardiovascular, metabolic and renal systems. The study with three-dimensional photographing is very promising in helping paediatricians to understand how even small amounts of PAE can affect craniofacial phenotyping. Even low levels of PAE can cause adverse foetal effects and not just in the brain. It is not currently possible to determine a safe period and level when alcohol consumption would not affect the foetus. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  19. Developmental changes in automatic rule-learning mechanisms across early childhood.

    PubMed

    Mueller, Jutta L; Friederici, Angela D; Männel, Claudia

    2018-06-27

    Infants' ability to learn complex linguistic regularities from early on has been revealed by electrophysiological studies indicating that 3-month-olds, but not adults, can automatically detect non-adjacent dependencies between syllables. While different ERP responses in adults and infants suggest that both linguistic rule learning and its link to basic auditory processing undergo developmental changes, systematic investigations of the developmental trajectories are scarce. In the present study, we assessed 2- and 4-year-olds' ERP indicators of pitch discrimination and linguistic rule learning in a syllable-based oddball design. To test for the relation between auditory discrimination and rule learning, ERP responses to pitch changes were used as predictor for potential linguistic rule-learning effects. Results revealed that 2-year-olds, but not 4-year-olds, showed ERP markers of rule learning. Although, 2-year-olds' rule learning was not dependent on differences in pitch perception, 4-year-old children demonstrated a dependency, such that those children who showed more pronounced responses to pitch changes still showed an effect of rule learning. These results narrow down the developmental decline of the ability for automatic linguistic rule learning to the age between 2 and 4 years, and, moreover, point towards a strong modification of this change by auditory processes. At an age when the ability of automatic linguistic rule learning phases out, rule learning can still be observed in children with enhanced auditory responses. The observed interrelations are plausible causes for age-of-acquisition effects and inter-individual differences in language learning. © 2018 John Wiley & Sons Ltd.

  20. Developmentally Appropriate Technology Practice: Exploring Myths and Perceptions of Early Childhood and Instructional Technology Professionals

    ERIC Educational Resources Information Center

    Blake, Sally; Winsor, Denise; Burkett, Candice; Allen, Lee

    2011-01-01

    The integration of technology in early childhood classrooms has become a controversial issue among professionals in this field. One issue which may influence technology in these classrooms may be perceptions of what is developmentally appropriate practice (DAP). This article explores perceptions about technology and age appropriate recommendations…

  1. Pre- and Postnatal Exposure to Low Dose Glufosinate Ammonium Induces Autism-Like Phenotypes in Mice

    PubMed Central

    Laugeray, Anthony; Herzine, Ameziane; Perche, Olivier; Hébert, Betty; Aguillon-Naury, Marine; Richard, Olivier; Menuet, Arnaud; Mazaud-Guittot, Séverine; Lesné, Laurianne; Briault, Sylvain; Jegou, Bernard; Pichon, Jacques; Montécot-Dubourg, Céline; Mortaud, Stéphane

    2014-01-01

    Glufosinate ammonium (GLA) is one of the most widely used herbicides in agriculture. As is the case for most pesticides, potential adverse effects of GLA have not been studied from the perspective of developmental neurotoxicity. Early pesticides exposure may weaken the basic structure of the developing brain and cause permanent changes leading to a wide range of lifelong effects on health and/or behavior. Here, we addressed the developmental impact of GLA by exposing female mice to low dose GLA during both pre- and postnatal periods and analyzed potential developmental and behavioral changes of the offspring during infancy and adulthood. A neurobehavioral test battery revealed significant effects of GLA maternal exposure on early reflex development, pup communication, affiliative behaviors, and preference for social olfactory cues, but emotional reactivity and emotional memory remained unaltered. These behavioral alterations showed a striking resemblance to changes seen in animal models of Autistic Spectrum Disorders. At the brain level, GLA maternal exposure caused some increase in relative brain weight of the offspring. In addition, reduced expression of Pten and Peg3 – two genes implicated in autism-like deficits – was observed in the brain of GLA-exposed pups at postnatal day 15. Our work thus provides new data on the link between pre- and postnatal exposure to the herbicide GLA and the onset of autism-like symptoms later in life. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during critical developmental periods. PMID:25477793

  2. Prenatal and early postnatal NOAEL-dose clothianidin exposure leads to a reduction of germ cells in juvenile male mice

    PubMed Central

    YANAI, Shogo; HIRANO, Tetsushi; OMOTEHARA, Takuya; TAKADA, Tadashi; YONEDA, Naoki; KUBOTA, Naoto; YAMAMOTO, Anzu; MANTANI, Youhei; YOKOYAMA, Toshifumi; KITAGAWA, Hiroshi; HOSHI, Nobuhiko

    2017-01-01

    Neonicotinoids are pesticides used worldwide. They bind to insect nicotinic acetylcholine receptors (nAChRs) with high affinity. We previously reported that clothianidin (CTD), one of the latest neonicotinoids, reduced antioxidant expression and induced germ cell death in the adult testis of vertebrates. Here, we investigated the male reproductive toxicity of prenatal and early postnatal exposure to CTD, because it is likely that developmental exposure more severely affects the testis compared to adults due to the absence of the blood-testis barrier. Pregnant C57BL/6 mice were given water gel blended with CTD (0, 10 or 50 mg/kg/day; no-observed-adverse-effect-level [NOAEL for mice]: 47.2 mg/kg/day) between gestational day 1 and 14 days post-partum. We then examined the testes of male offspring at postnatal day 14. The testis weights and the numbers of germ cells per seminiferous tubule were decreased in the CTD-50 group, and abnormal tubules containing no germ cells appeared. Nevertheless, the apoptotic cell number and proliferative activity were not significantly different between the control and CTD-exposed groups. There were no significant differences in the androgen-related parameters, such as the Leydig cell volume per testis, the Sertoli cell number and the tubule diameter. The present study is the first demonstration that in utero and lactational exposures to CTD at around the NOAEL for mice reduce the germ cell number, but our findings suggest that these exposures do not affect steroidogenesis in Leydig cells during prenatal or early postnatal life. PMID:28579575

  3. Early Risk Factors of Overweight Developmental Trajectories during Middle Childhood

    PubMed Central

    Pryor, Laura E.; Brendgen, Mara; Tremblay, Richard E.; Pingault, Jean-Baptiste; Liu, Xuecheng; Dubois, Lise; Touchette, Evelyne; Falissard, Bruno; Boivin, Michel; Côté, Sylvana M.

    2015-01-01

    Background Research is needed to identify early life risk factors associated with different developmental paths leading to overweight by adolescence. Objectives To model heterogeneity in overweight development during middle childhood and identify factors associated with differing overweight trajectories. Methods Data was drawn from the Quebec Longitudinal Study of Child Development (QLSCD; 1998-2010). Trained research assistants measured height and weight according to a standardized protocol and conducted yearly home interviews with the child’s caregiver (mother in 98% of cases). Information on several putative early life risk factors for the development of overweight were obtained, including factors related to the child’s perinatal, early behavioral family and social environment. Group-based trajectories of the probability of overweight (6-12 years) were identified with a semiparametric method (n=1678). Logistic regression analyses were used to identify early risk factors (5 months- 5 years) associated with each trajectory. Results Three trajectories of overweight were identified: “early-onset overweight” (11.0 %), “late-onset overweight” (16.6%) and “never overweight” (72.5%). Multinomial analyses indicated that children in the early and late-onset group, compared to the never overweight group, had 3 common types of risk factors: parental overweight, preschool overweight history, and large size for gestational age. Maternal overprotection (OR= 1.12, CI: 1.01-1.25), short nighttime sleep duration (OR=1.66, CI: 1.07-2.57), and immigrant status (OR=2.01, CI: 1.05-3.84) were factors specific to the early-onset group. Finally, family food insufficiency (OR=1.81, CI: 1.00-3.28) was weakly associated with membership in the late-onset trajectory group. Conclusions The development of overweight in childhood follows two different trajectories, which have common and distinct risk factors that could be the target of early preventive interventions. PMID

  4. Early-life chemical exposures and risk of metabolic syndrome.

    PubMed

    De Long, Nicole E; Holloway, Alison C

    2017-01-01

    The global prevalence of obesity has been increasing at a staggering pace, with few indications of any decline, and is now one of the major public health challenges worldwide. While obesity and metabolic syndrome (MetS) have historically thought to be largely driven by increased caloric intake and lack of exercise, this is insufficient to account for the observed changes in disease trends. There is now increasing evidence to suggest that exposure to synthetic chemicals in our environment may also play a key role in the etiology and pathophysiology of metabolic diseases. Importantly, exposures occurring in early life (in utero and early childhood) may have a more profound effect on life-long risk of obesity and MetS. This narrative review explores the evidence linking early-life exposure to a suite of chemicals that are common contaminants associated with food production (pesticides; imidacloprid, chlorpyrifos, and glyphosate) and processing (acrylamide), in addition to chemicals ubiquitously found in our household goods (brominated flame retardants) and drinking water (heavy metals) and changes in key pathways important for the development of MetS and obesity.

  5. Developmental amnesia associated with early hypoxic-ischaemic injury.

    PubMed

    Gadian, D G; Aicardi, J; Watkins, K E; Porter, D A; Mishkin, M; Vargha-Khadem, F

    2000-03-01

    We recently reported on three young patients with severe impairments of episodic memory resulting from brain injury sustained early in life. These findings have led us to hypothesize that such impairments might be a previously unrecognized consequence of perinatal hypoxic-ischaemic injury. Neuropsychological and quantitative magnetic resonance investigations were carried out on five young patients, all of whom had suffered hypoxic-ischaemic episodes at or shortly after birth. All five patients showed severe impairments of episodic memory (memory for events), with relative preservation of semantic memory (memory for facts). However, none had any of the major neurological deficits that are typically associated with hypoxic-ischaemic injury, and all attended mainstream schools. Quantitative magnetic resonance investigations revealed severe bilateral hippocampal atrophy in all cases. As a group, the patients also showed bilateral reductions in grey matter in the regions of the putamen and the ventral part of the thalamus. On the basis of their clinical histories and the pattern of magnetic resonance findings, we attribute the patients' pathology and associated memory impairments primarily to hypoxic-ischaemic episodes sustained very early in life. We suggest that the degree of hypoxia-ischaemia was sufficient to produce selective damage to particularly vulnerable regions of the brain, notably the hippocampi, but was not sufficient to result in the more severe neurological and cognitive deficits that can follow hypoxic-ischaemic injury. The impairments in episodic memory may be difficult to recognize, particularly in early childhood, but this developmental amnesia can have debilitating consequences, both at home and at school, and may preclude independent life in adulthood.

  6. Developmental fluoxetine and prenatal stress effects on serotonin, dopamine, and synaptophysin density in the PFC and hippocampus of offspring at weaning.

    PubMed

    Gemmel, Mary; Rayen, Ine; Lotus, Tiffany; van Donkelaar, Eva; Steinbusch, Harry W; De Lacalle, Sonsoles; Kokras, Nikolaos; Dalla, Christina; Pawluski, Jodi L

    2016-04-01

    Selective serotonin reuptake inhibitor medication exposure during the perinatal period can have a long term impact in adult offspring on neuroplasticity and the serotonergic system, but the impact of these medications during early development is poorly understood. The aim of this study was to determine the effects of developmental exposure to the SSRI, fluoxetine, on the serotonergic system, dopaminergic system, and synaptophysin density in the prefrontal cortex and hippocampus, as well as number of immature neurons in the dentate gyrus, in juvenile rat offspring at weaning. To model aspects of maternal depression, prenatal restraint stress was used. Sprague-Dawley rat offspring were exposed to either prenatal stress and/or fluoxetine. Main findings show that developmental fluoxetine exposure to prenatally stressed offspring decreased 5-HT and 5-HIAA levels and altered the dopaminergic system in the hippocampus. Prenatal stress, regardless of fluoxetine, increased synaptophysin density in the PFC. This work indicates that early exposure to maternal stress and SSRI medication can alter brain monoamine levels and synaptophysin density in offspring at weaning. © 2015 Wiley Periodicals, Inc.

  7. Developmental Ethanol Exposure Leads to Long-Term Deficits in Attention and Its Underlying Prefrontal Circuitry

    PubMed Central

    Bignell, Warren

    2016-01-01

    Abstract Chronic prenatal exposure to ethanol can lead to a spectrum of teratogenic outcomes that are classified in humans as fetal alcohol spectrum disorders (FASD). One of the most prevalent and persistent neurocognitive components of FASD is attention deficits, and it is now thought that these attention deficits differ from traditional attention deficit hyperactivity disorder (ADHD) in their quality and response to medication. However, the neuronal mechanisms underlying attention deficits in FASD are not well understood. We show here that after developmental binge-pattern ethanol exposure, adult mice exhibit impaired performance on the five-choice serial reaction time test for visual attention, with lower accuracy during initial training and a higher rate of omissions under challenging conditions of high attention demand. Whole-cell electrophysiology experiments in these same mice find dysregulated pyramidal neurons in layer VI of the medial prefrontal cortex, which are critical for normal attention performance. Layer VI neurons show decreased intrinsic excitability and increased responses to stimulation of both nicotinic acetylcholine receptors and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors. Moreover, although nicotinic acetylcholine responses correlate with performance on the five-choice task in control mice, these relationships are completely disrupted in mice exposed to ethanol during development. These findings demonstrate a novel outcome of developmental binge-pattern ethanol exposure and suggest that persistent alterations to the function of prefrontal layer VI neurons play an important mechanistic role in attention deficits associated with FASD. PMID:27844059

  8. The effects of violence exposure on the development of impulse control and future orientation across adolescence and early adulthood: Time-specific and generalized effects in a sample of juvenile offenders.

    PubMed

    Monahan, Kathryn C; King, Kevin M; Shulman, Elizabeth P; Cauffman, Elizabeth; Chassin, Laurie

    2015-11-01

    Impulse control and future orientation increase across adolescence, but little is known about how contextual factors shape the development of these capacities. The present study investigates how stress exposure, operationalized as exposure to violence, alters the developmental pattern of impulse control and future orientation across adolescence and early adulthood. In a sample of 1,354 serious juvenile offenders, higher exposure to violence was associated with lower levels of future orientation at age 15 and suppressed development of future orientation from ages 15 to 25. Increases in witnessing violence or victimization were linked to declines in impulse control 1 year later, but only during adolescence. Thus, beyond previous experiences of exposure to violence, witnessing violence and victimization during adolescence conveys unique risk for suppressed development of self-regulation.

  9. Developmental changes in maternal education and minimal exposure effects on vocabulary in English- and Spanish-learning toddlers.

    PubMed

    Friend, Margaret; DeAnda, Stephanie; Arias-Trejo, Natalia; Poulin-Dubois, Diane; Zesiger, Pascal

    2017-12-01

    The current research follows up on two previous findings: that children with minimal dual-language exposure have smaller receptive vocabularies at 16months of age and that maternal education is a predictor of vocabulary when the dominant language is English but not when it is Spanish. The current study extends this research to 22-month-olds to assess the developmental effects of minimal exposure and maternal education on direct and parent-report measures of vocabulary size. The effects of minimal exposure on vocabulary size are no longer present at 22months of age, whereas maternal education effects remain but only for English speakers. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Epigenetics, obesity and early-life cadmium or lead exposure

    PubMed Central

    Park, Sarah S; Skaar, David A; Jirtle, Randy L; Hoyo, Cathrine

    2017-01-01

    Obesity is a complex and multifactorial disease, which likely comprises multiple subtypes. Emerging data have linked chemical exposures to obesity. As organismal response to environmental exposures includes altered gene expression, identifying the regulatory epigenetic changes involved would be key to understanding the path from exposure to phenotype and provide new tools for exposure detection and risk assessment. In this report, we summarize published data linking early-life exposure to the heavy metals, cadmium and lead, to obesity. We also discuss potential mechanisms, as well as the need for complete coverage in epigenetic screening to fully identify alterations. The keys to understanding how metal exposure contributes to obesity are improved assessment of exposure and comprehensive establishment of epigenetic profiles that may serve as markers for exposures. PMID:27981852

  11. Epigenetics, obesity and early-life cadmium or lead exposure.

    PubMed

    Park, Sarah S; Skaar, David A; Jirtle, Randy L; Hoyo, Cathrine

    2017-01-01

    Obesity is a complex and multifactorial disease, which likely comprises multiple subtypes. Emerging data have linked chemical exposures to obesity. As organismal response to environmental exposures includes altered gene expression, identifying the regulatory epigenetic changes involved would be key to understanding the path from exposure to phenotype and provide new tools for exposure detection and risk assessment. In this report, we summarize published data linking early-life exposure to the heavy metals, cadmium and lead, to obesity. We also discuss potential mechanisms, as well as the need for complete coverage in epigenetic screening to fully identify alterations. The keys to understanding how metal exposure contributes to obesity are improved assessment of exposure and comprehensive establishment of epigenetic profiles that may serve as markers for exposures.

  12. Reproductive and developmental effects of disinfection by-products in drinking water.

    PubMed Central

    Reif, J S; Hatch, M C; Bracken, M; Holmes, L B; Schwetz, B A; Singer, P C

    1996-01-01

    Recent epidemiologic studies have reported associations between the consumption of chlorinated drinking water and reproductive and developmental effects. Here we review the available epidemiologic data, assess the hazard potential posed by exposure to disinfection by-products, identify critical data gaps, and offer recommendations for further research. The epidemiologic evidence supporting associations between exposure to water disinfection by-products (DBPs) and adverse pregnancy outcomes is sparse, and positive findings should be interpreted cautiously. The methods used during the early stages of research in this area have been diverse. Variability in exposure assessment and endpoints makes it difficult to synthesize or combine the available data. Exposure misclassification and unmeasured confounding may have lead to bias in risk estimation. Future studies of reproductive outcome and exposure to chlorinated water should use improved methods for exposure assessment to 1) assure selection of appropriate exposure markers, 2) assess seasonal and annual fluctuations in DBPs, 3) assess variability within the distribution system, and 4) assess exposure through multiple routes such as bathing and showering, as well as consumption. Population-based studies should be conducted to evaluate male and female fertility, conception delay, growth retardation, and specific birth defects. The reproductive and developmental effects of exposure to DBPs could be efficiently explored in ongoing investigations by incorporating valid exposure markers and relevant questionnaire information. Future studies should make use of naturally occurring variability in the concentrations of DBPs and may incorporate biomarkers of exposure and effect in their design. Epidemiologic investigations should be conducted in parallel with laboratory-based and animal studies in a coordinated, multidisciplinary approach. PMID:8930546

  13. Developmental neurotoxic effects of Malathion on 3D neurosphere system

    PubMed Central

    Salama, Mohamed; Lotfy, Ahmed; Fathy, Khaled; Makar, Maria; El-emam, Mona; El-gamal, Aya; El-gamal, Mohamed; Badawy, Ahmad; Mohamed, Wael M.Y.; Sobh, Mohamed

    2015-01-01

    Developmental neurotoxicity (DNT) refers to the toxic effects induced by various chemicals on brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have significant effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS; however, most of agents cannot be identified with certainty. This is because available animal models do not cover the whole spectrum of CNS developmental periods. A novel alternative method that can overcome most of the limitations of the conventional techniques is the use of 3D neurosphere system. This in-vitro system can recapitulate many of the changes during the period of brain development making it an ideal model for predicting developmental neurotoxic effects. In the present study we verified the possible DNT of Malathion, which is one of organophosphate pesticides with suggested possible neurotoxic effects on nursing children. Three doses of Malathion (0.25 μM, 1 μM and 10 μM) were used in cultured neurospheres for a period of 14 days. Malathion was found to affect proliferation, differentiation and viability of neurospheres, these effects were positively correlated to doses and time progress. This study confirms the DNT effects of Malathion on 3D neurosphere model. Further epidemiological studies will be needed to link these results to human exposure and effects data. PMID:27054080

  14. Are There Effects of Intrauterine Cocaine Exposure on Delinquency during Early Adolescence? A Preliminary Report

    PubMed Central

    Gerteis, Jessie; Chartrand, Molinda; Martin, Brett; Cabral, Howard J.; Rose-Jacobs, Ruth; Crooks, Denise; Frank, Deborah A.

    2011-01-01

    Objective To ascertain whether level of intrauterine cocaine exposure (IUCE) is associated with early adolescent delinquent behavior, after accounting for prenatal exposures to other psychoactive substances and relevant psychosocial factors. Methods Ninety-three early adolescents (12.5–14.5 years old) participating since birth in a longitudinal study of IUCE reported delinquent acts via an audio computer assisted self interview (ACASI). Level of IUCE and exposure to cigarettes, alcohol, and marijuana were determined by maternal report, maternal and infant urine assays, and infant meconium assays at birth. Participants reported their exposure to violence on the Violence Exposure Scale for Children – Revised (VEX-R) at ages 8.5, 9.5, 11 years and during early adolescence, and the strictness of supervision by their caregivers during early adolescence. Results Of the 93 participants, 24 (26%) reported ≥3 delinquent behaviors during early adolescence. In the final multivariate model (including level of IUCE and cigarette exposure, childhood exposure to violence, and caregiver strictness/supervision) ≥ 3 delinquent behaviors were not significantly associated with level of IUCE but were significantly associated with intrauterine exposure to half a pack or more of cigarettes per day and higher levels of childhood exposure to violence, effects substantially unchanged after control for early adolescent violence exposure. Conclusions In this cohort, prospectively ascertained prenatal exposure to cigarettes and childhood exposure to violence are associated with self-reported delinquent behaviors during early adolescence. Contrary to initial popular predictions, intrauterine cocaine is not a strong predictor of adolescent delinquent behaviors in this cohort. PMID:21558951

  15. Mothers of children with developmental disabilities: stress in early and middle childhood.

    PubMed

    Azad, Gazi; Blacher, Jan; Marcoulides, George A

    2013-10-01

    Using a sample of 219 families of children with (n=94) and without (n=125) developmental disabilities, this study examined the longitudinal perspectives of maternal stress in early (ages 3-5) and middle childhood (ages 6-13) and its relationship to mothers' and children's characteristics. Multivariate latent curve models indicated that maternal stress remained high and stable with minimal individual variation in early childhood, but declined with significant individual variation in middle childhood. Maternal stress at the beginning of middle childhood was associated with earlier maternal stress, as well as children's behavioral problems and social skills. The trajectory of maternal stress across middle childhood was related to children's behavioral problems. Implications for interventions are discussed. Copyright © 2013. Published by Elsevier Ltd.

  16. Gender differences in developmental programming of cardiovascular diseases

    PubMed Central

    Dasinger, John Henry; Alexander, Barbara T.

    2016-01-01

    Hypertension is a risk factor for cardiovascular disease, the leading cause of death worldwide. Although multiple factors contribute to the pathogenesis of hypertension, studies by Dr. David Barker reporting an inverse relationship between birth weight and blood pressure led to the hypothesis that slow growth during fetal life increases blood pressure and the risk for cardiovascular disease in later life. It is now recognized that growth during infancy and childhood in addition to exposure to adverse influences during fetal life contribute to the developmental programming of increased cardiovascular risk. Numerous epidemiological studies support the link between influences during early life with later cardiovascular health; experimental models provide proof of principle and indicate that numerous mechanisms contribute to the developmental origins of chronic disease. Sex impacts the severity of cardiovascular risk in experimental models of developmental insult. Yet, few studies examine the influence of sex on blood pressure and cardiovascular health in low birth weight men and women. Fewer still assess how aging impacts sex differences in programmed cardiovascular risk. Thus, the aim of this review is to highlight current data regarding sex differences in the developmental programming of blood pressure and cardiovascular disease. PMID:26814204

  17. Is prenatal smoking associated with a developmental pattern of conduct problems in young boys?

    PubMed

    Wakschlag, Lauren S; Pickett, Kate E; Kasza, Kristen E; Loeber, Rolf

    2006-04-01

    Prenatal smoking is robustly associated with increased risk of conduct problems in offspring. Observational studies that provide detailed phenotypic description are critical for generating testable hypotheses about underlying processes through which the effects of prenatal smoking may operate. To this end, we use a developmental framework to examine the association of exposure with (1) oppositional defiant disorder and attention-deficit/hyperactivity disorder in young boys and (2) the pattern of delinquent behavior at adolescence. Using diagnostic measures and repeated measures of delinquency, we compare exposed and nonexposed boys from the youngest cohort of the Pittsburgh Youth Study (N = 448). Exposed boys were significantly more likely to (1) develop oppositional defiant disorder and comorbid oppositional defiant disorder-attention-deficit/hyperactivity disorder but not attention-deficit/hyperactivity disorder alone and (2) to have an earlier onset of significant delinquent behavior. The early emergence and developmental coherence of exposure-related conduct problems is striking and is consistent with a behavioral teratological model. Phenotypically, exposure-related conduct problems appear to be characterized by socially resistant and impulsively aggressive behavior. Whether prenatal smoking plays an etiological role in or is a risk marker for the development of conduct problems, exposed offspring are at increased risk of an early-starter pathway to conduct problems.

  18. Developmental origins of epigenetic transgenerational inheritance

    PubMed Central

    Hanson, Mark A.; Skinner, Michael K.

    2016-01-01

    Abstract Environmental factors can induce epigenetic alterations in the germ cells that can potentially be transmitted transgenerationally. This non-genetic form of inheritance is termed epigenetic transgenerational inheritance and has been shown in a variety of species including plants, flies, worms, fish, rodents, pigs, and humans. This phenomenon operates during specific critical windows of exposure, linked to the developmental biology of the germ cells (sperm and eggs). Therefore, concepts of the developmental origins of transgenerational inheritance of phenotypic variation and subsequent disease risk need to include epigenetic processes affecting the developmental biology of the germ cell. These developmental impacts on epigenetic transgenerational inheritance, in contrast to multigenerational exposures, are the focus of this Perspective. PMID:27390622

  19. A meta-analysis of the evidence on the impact of prenatal and early infancy exposures to mercury on autism and attention deficit/hyperactivity disorder in the childhood.

    PubMed

    Yoshimasu, Kouichi; Kiyohara, Chikako; Takemura, Shigeki; Nakai, Kunihiko

    2014-09-01

    Although a measurable number of epidemiological studies have been conducted to clarify the associations between mercury exposure during embryo or early infancy and later incidences of autism spectrum disorders (ASD) or attention-deficit hyperactivity disorder (ADHD), the conclusion still remains unclear. Meta-analysis was conducted for two major exposure sources; i.e., thimerosal vaccines that contain ethylmercury (clinical exposure), and environmental sources, using relevant literature published before April 2014. While thimerosal exposures did not show any material associations with an increased risk of ASD or ADHD (the summary odds ratio (OR) 0.99, 95% confidence interval (CI) 0.80-1.24 for ASD; OR 0.91, 95% CI 0.70-1.13 for ADHD/ADD), significant associations were observed for environmental exposures in both ASD (OR 1.66, 95% CI 1.14-2.17) and ADHD (OR 1.60, 95% CI 1.10-2.33). The summary ORs were similar after excluding studies not adjusted for confounders. Moderate adverse effects were observed only between environmental inorganic or organic mercury exposures and ASD/ADHD. However, these results should be interpreted with caution since the number of epidemiological studies on this issue was limited and still at an early stage. Further studies focused on subjects with genetic vulnerabilities of developmental disorders are warranted for better understanding of the effects of such environmental exposures. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. 20170312 - Computer Simulation of Developmental ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  1. Trace elements as paradigms of developmental neurotoxicants: lead, methylmercury and arsenic

    PubMed Central

    Grandjean, Philippe; Herz, Katherine T.

    2014-01-01

    Trace elements have contributed unique insights into developmental neurotoxicity and serve as paradigms for such adverse effects. Many trace elements are retained in the body for long periods and can be easily measured to assess exposure by inexpensive analytical methods that became available several decades ago so that past and cumulated exposures could be easily characterized through analysis of biological samples, e.g. blood and urine. The first compelling evidence resulted from unfortunate poisoning events that allowed scrutiny of long-term outcomes of acute exposures that occurred during early development. Pursuant to this documentation, prospective studies of children's cohorts that applied sensitive neurobehavioral methods supported the notion that the brain is uniquely vulnerable to toxic damage during early development. Lead, methylmercury, and arsenic thereby serve as paradigm neurotoxicants that provide a reference for other substances that may have similar adverse effects. Less evidence is available on manganese, fluoride, and cadmium, but experience from the former trace elements suggest that, with time, adverse effects are likely to be documented at exposures previously thought to be low and safe. PMID:25175507

  2. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi (Coryphaena hippurus).

    PubMed

    Pasparakis, Christina; Mager, Edward M; Stieglitz, John D; Benetti, Daniel; Grosell, Martin

    2016-12-01

    The timing and location of the 2010 Deepwater Horizon (DWH) incident within the Gulf of Mexico resulted in crude oil exposure of many commercially and ecologically important fish species, such as mahi-mahi (Coryphaena hippurus), during the sensitive early life stages. Previous research has shown that oil exposure during the embryonic stage of predatory pelagic fish reduces cardiac function - a particularly important trait for fast-swimming predators with high aerobic demands. However, it is unclear whether reductions in cardiac function translate to impacts on oxygen consumption in these developing embryos and larvae. A 24-channel optical-fluorescence oxygen-sensing system for high-throughput respiration measurements was used to investigate the effects of oil exposure, temperature and developmental stage on oxygen consumption rates in embryonic and larval mahi-mahi. Oil-exposed developing mahi-mahi displayed increased oxygen consumption, despite clear cardiac deformities and bradycardia, confirming oxygen uptake and delivery from a source other than the circulatory system. In addition to metabolic rate measurements, nitrogenous waste excretion was measured to test the hypothesis that increased energy demand was fueled by protein catabolism. This is the first study to our knowledge that demonstrates increased energy demand and energy depletion in oil-exposed developing mahi-mahi. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Meconium Atazanavir Concentrations and Early Language Outcomes in HIV-Exposed Uninfected Infants With Prenatal Atazanavir Exposure.

    PubMed

    Himes, Sarah K; Huo, Yanling; Siberry, George K; Williams, Paige L; Rice, Mabel L; Sirois, Patricia A; Frederick, Toni; Hazra, Rohan; Huestis, Marilyn A

    2015-06-01

    To investigate whether prenatal atazanavir (ATV) exposure, assessed by meconium antiretroviral (ARV) quantification, predicts early child language outcomes. Prenatal ATV exposure previously was associated with poorer language development in 1-year olds. Pregnant women with HIV and their uninfected infants enrolled in the Surveillance Monitoring of Antiretroviral Therapy Toxicities study. Meconium ARV concentrations were quantified by liquid chromatography-tandem mass spectrometry. Language development at 1 year was assessed with MacArthur-Bates Communicative Development Inventory (CDI) and Bayley Scales of Infant and Toddler Development-Third Edition (Bayley-III). Late language emergence was defined as ≥ 1 of 4 CDI scores ≤ 10th percentile for age. Associations between fetal ATV exposure timing and duration, meconium ATV concentration, and language outcomes were evaluated, adjusting for potential confounders. Through 2013, meconium samples were available from 175 of 432 infants with prenatal ATV exposure. Valid Bayley-III (n = 93) and CDI (n = 106) assessments also were available. After adjustment for potential confounders, higher ATV meconium concentrations were associated with lower late language emergence risk (P = 0.04) and cumulative ATV exposure duration also was associated with higher Bayley-III Language scores (P = 0.03). Maternal ATV duration and initiation week correlated with ATV meconium concentrations (positively and negatively, respectively). Higher meconium ATV concentrations were protective against developmental language delays at 1 year, suggesting the importance of fetal ATV detoxification into meconium. This information supports ATV exposure safety for infant language development. ATV is a preferred ARV for pregnant women with HIV, suggesting the importance of ATV safety investigations. Additionally, further pursuit of the influences on language development in HIV-exposed uninfected infants is required.

  4. Specific subpopulations of hypothalamic leptin receptor-expressing neurons mediate the effects of early developmental leptin receptor deletion on energy balance.

    PubMed

    Rupp, Alan C; Allison, Margaret B; Jones, Justin C; Patterson, Christa M; Faber, Chelsea L; Bozadjieva, Nadejda; Heisler, Lora K; Seeley, Randy J; Olson, David P; Myers, Martin G

    2018-06-06

    To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance. In contrast, removal of LepRb from at least two large populations (expressing vGat or Nos1) spanning multiple hypothalamic regions produced profound obesity and metabolic dysfunction. Thus, we tested the notion that the total number of leptin-responsive hypothalamic neurons (rather than specific subsets of cells with a particular molecular or anatomical signature) subjected to early LepRb deletion might determine energy balance. We generated new mouse lines deleted for LepRb in ARC Ghrh Cre neurons or in Htr2c Cre neurons (representing roughly half of all hypothalamic LepRb neurons, distributed across many nuclei). We compared the phenotypes of these mice to previously-reported models lacking LepRb in Pomc, Agrp, vGat or Nos1 cells. The early developmental deletion of LepRb from vGat or Nos1 neurons produced dramatic obesity, but deletion of LepRb from Pomc, Agrp, Ghrh, or Htr2c neurons minimally altered energy balance. Although early developmental deletion of LepRb from known populations of ARC neurons fails to substantially alter body weight, the minimal phenotype of mice lacking LepRb in Htr2c cells suggests that the phenotype that results from early developmental LepRb deficiency depends not simply upon the total number of leptin-responsive hypothalamic LepRb cells. Rather, specific populations of LepRb neurons must play particularly important roles in body energy homeostasis; these as yet unidentified LepRb cells likely reside in the DMH. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. Early augmented language intervention for children with developmental delays: potential secondary motor outcomes.

    PubMed

    Whitmore, Ani S; Romski, Mary Ann; Sevcik, Rose A

    2014-09-01

    This exploratory study examined the potential secondary outcome of an early augmented language intervention that incorporates speech-generating devices (SGD) on motor skill use for children with developmental delays. The data presented are from a longitudinal study by Romski and colleagues. Toddlers in the augmented language interventions were either required (Augmented Communication-Output; AC-O) or not required (Augmented Communication-Input; AC-I) to use the SGD to produce an augmented word. Three standardized assessments and five event-based coding schemes measured the participants' language abilities and motor skills. Toddlers in the AC-O intervention used more developmentally appropriate motor movements and became more accurate when using the SGD to communicate than toddlers in the AC-I intervention. AAC strategies, interventionist/parent support, motor learning opportunities, and physical feedback may all contribute to this secondary benefit of AAC interventions that use devices.

  6. Moving beyond Screen Time: Redefining Developmentally Appropriate Technology Use in Early Childhood Education. Policy Brief

    ERIC Educational Resources Information Center

    Daugherty, Lindsay; Dossani, Rafiq; Johnson, Erin-Elizabeth; Wright, Cameron

    2014-01-01

    Conversations about what constitutes "developmentally appropriate" use of technology in early childhood education have, to date, focused largely on a single, blunt measure--screen time--that fails to capture important nuances, such as what type of media a child is accessing and whether technology use is taking place solo or with peers.…

  7. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice.

    PubMed

    Jonscher, Karen R; Stewart, Michael S; Alfonso-Garcia, Alba; DeFelice, Brian C; Wang, Xiaoxin X; Luo, Yuhuan; Levi, Moshe; Heerwagen, Margaret J R; Janssen, Rachel C; de la Houssaye, Becky A; Wiitala, Ellen; Florey, Garrett; Jonscher, Raleigh L; Potma, Eric O; Fiehn, Oliver; Friedman, Jacob E

    2017-04-01

    Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet-induced obesity during pregnancy, could protect obese offspring from progression of NAFLD. PQQ treatment given pre- and postnatally in WD-fed offspring had no effect on weight gain but increased metabolic flexibility while reducing body fat and liver lipids, compared with untreated obese offspring. Indices of NAFLD, including hepatic ceramide levels, oxidative stress, and expression of proinflammatory genes ( Nos2 , Nlrp3 , Il6 , and Ptgs2 ), were decreased in WD PQQ-fed mice, concomitant with increased expression of fatty acid oxidation genes and decreased Pparg expression. Notably, these changes persisted even after PQQ withdrawal at weaning. Our results suggest that supplementation with PQQ, particularly during pregnancy and lactation, protects offspring from WD-induced developmental programming of hepatic lipotoxicity and may help slow the advancing epidemic of NAFLD in the next generation.-Jonscher, K. R., Stewart, M. S., Alfonso-Garcia, A., DeFelice, B. C., Wang, X. X., Luo, Y., Levi, M., Heerwagen, M. J. R., Janssen, R. C., de la Houssaye, B. A., Wiitala, E., Florey, G., Jonscher, R. L., Potma, E. O., Fiehn, O. Friedman, J. E. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. © FASEB.

  8. Early-Life Soy Exposure and Gender-Role Play Behavior in Children

    PubMed Central

    Daniels, Julie L.; Edwards, Lloyd J.; Siega-Riz, Anna Maria; Rogan, Walter J.

    2011-01-01

    Background: Soy-based infant formula contains high levels of isoflavones. These estrogen-like compounds have been shown to induce changes in sexually dimorphic behaviors in animals exposed in early development. Objective: We examined gender-role play behavior in relation to soy-based and non-soy-based infant feeding methods among children in the Avon Longitudinal Study of Parents and Children. Methods: We studied 3,664 boys and 3,412 girls. Four exposure categories were created using data from questionnaires administered at 6 and 15 months postpartum: primarily breast, early formula (referent), early soy, and late soy. Gender-role play behavior was assessed using the Pre-School Activities Inventory (PSAI). Associations between infant feeding and PSAI scores at 42 months of age were assessed using linear regression. Post hoc analyses of PSAI scores at 30 and 57 months were also conducted. Results: Early-infancy soy use was reported for approximately 2% of participants. Mean [95% confidence interval (CI)] PSAI scores at 42 months were 62.3 (62.0, 62.6) and 36.9 (36.6, 37.2) for boys and girls, respectively. After adjustment, early soy (vs. early formula) feeding was associated with higher (less feminine) PSAI scores in girls (® = 2.66; 95% CI: 0.19, 5.12) but was not significantly associated with PSAI scores in boys. The association between soy exposure and PSAI scores in girls was substantially attenuated at 30 and 57 months. Conclusions: Although not consistent throughout childhood, early-life soy exposure was associated with less female-typical play behavior in girls at 42 months of age. Soy exposure was not significantly associated with play behavior in boys. PMID:21813368

  9. Early-life soy exposure and gender-role play behavior in children.

    PubMed

    Adgent, Margaret A; Daniels, Julie L; Edwards, Lloyd J; Siega-Riz, Anna Maria; Rogan, Walter J

    2011-12-01

    Soy-based infant formula contains high levels of isoflavones. These estrogen-like compounds have been shown to induce changes in sexually dimorphic behaviors in animals exposed in early development. We examined gender-role play behavior in relation to soy-based and non-soy-based infant feeding methods among children in the Avon Longitudinal Study of Parents and Children. We studied 3,664 boys and 3,412 girls. Four exposure categories were created using data from questionnaires administered at 6 and 15 months postpartum: primarily breast, early formula (referent), early soy, and late soy. Gender-role play behavior was assessed using the Pre-School Activities Inventory (PSAI). Associations between infant feeding and PSAI scores at 42 months of age were assessed using linear regression. Post hoc analyses of PSAI scores at 30 and 57 months were also conducted. Early-infancy soy use was reported for approximately 2% of participants. Mean [95% confidence interval (CI)] PSAI scores at 42 months were 62.3 (62.0, 62.6) and 36.9 (36.6, 37.2) for boys and girls, respectively. After adjustment, early soy (vs. early formula) feeding was associated with higher (less feminine) PSAI scores in girls (β = 2.66; 95% CI: 0.19, 5.12) but was not significantly associated with PSAI scores in boys. The association between soy exposure and PSAI scores in girls was substantially attenuated at 30 and 57 months. Although not consistent throughout childhood, early-life soy exposure was associated with less female-typical play behavior in girls at 42 months of age. Soy exposure was not significantly associated with play behavior in boys.

  10. Long-term effects of early life exposure to environmental estrogens on ovarian function: Role of epigenetics

    PubMed Central

    Cruz, Gonzalo; Foster, Warren; Paredes, Alfonso; Yi, Kun Don; Uzumcu, Mehmet

    2014-01-01

    Estrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is thought that developmental exposure to environmental estrogens can disrupt neural and reproductive tract development potentially resulting in long-term alterations in neurobehavior and reproductive function. Many chemicals have been shown to have estrogenic activity whereas others affect estrogen production and turnover resulting in disruption of estrogen signaling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on estrogen sensitive target tissues. Hence, alternative mechanisms are thought to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including estrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying disruption of ovarian follicular development. In addition, we discuss how exposure to environmental estrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology. PMID:25040227

  11. Long-term effects of early-life exposure to environmental oestrogens on ovarian function: role of epigenetics.

    PubMed

    Cruz, G; Foster, W; Paredes, A; Yi, K D; Uzumcu, M

    2014-09-01

    Oestrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is considered that developmental exposure to environmental oestrogens can disrupt neural and reproductive tract development, potentially resulting in long-term alterations in neurobehaviour and reproductive function. Many chemicals have been shown to have oestrogenic activity, whereas others affect oestrogen production and turnover, resulting in the disruption of oestrogen signalling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on oestrogen-sensitive target tissues. Hence, alternative mechanisms are assumed to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including oestrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying the disruption of ovarian follicular development. In addition, we discuss how exposure to environmental oestrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology. © 2014 British Society for Neuroendocrinology.

  12. Sexually Dimorphic Responses to Early Adversity: Implications for Affective Problems and Autism Spectrum Disorder

    PubMed Central

    Davis, Elysia Poggi; Pfaff, Donald

    2014-01-01

    During gestation, development proceeds at a pace that is unmatched by any other stage of the lifecycle. For these reason the human fetus is particularly susceptible not only to organizing influences, but also to pathogenic disorganizing influences. Growing evidence suggests that exposure to prenatal adversity leads to neurological changes that underlie lifetime risks for mental illness. Beginning early in gestation, males and females show differential developmental trajectories and responses to stress. It is likely that sex-dependent organization of neural circuits during the fetal period influences differential vulnerability to mental health problems. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two developmental disorders: affective problems (greater female prevalence) and autism spectrum disorder (greater male prevalence). Recent prospective studies illustrating the neurodevelopmental consequences of fetal exposure to stress and stress hormones for males and females are considered here. Plausible biological mechanisms including the role of the sexually differentiated placenta are discussed. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two sets of developmental disorders: affective problems (greater female prevalence) and autism spectrum disorders (greater male prevalence). PMID:25038479

  13. PPTOX III: environmental stressors in the developmental origins of disease--evidence and mechanisms.

    PubMed

    Schug, Thaddeus T; Barouki, Robert; Gluckman, Peter D; Grandjean, Philippe; Hanson, Mark; Heindel, Jerold J

    2013-02-01

    Fetal and early postnatal development constitutes the most vulnerable time period of human life in regard to adverse effects of environmental hazards. Subtle effects during development can lead to functional deficits and increased disease risk later in life. The hypothesis stating that environmental exposures leads to altered programming and, thereby, to increased susceptibility to disease or dysfunction later in life has garnered much support from both experimental and epidemiological studies. Similar observations have been made on the long-term impact of nutritional unbalance during early development. In an effort to bridge the fields of nutritional and environmental developmental toxicity, the Society of Toxicology sponsored this work. This report summarizes novel findings in developmental toxicity as reported by select invited experts and meeting attendees. Recommendations for the application and improvement of current and future research efforts are also presented.

  14. Early neural disruption and auditory processing outcomes in rodent models: implications for developmental language disability

    PubMed Central

    Fitch, R. Holly; Alexander, Michelle L.; Threlkeld, Steven W.

    2013-01-01

    Most researchers in the field of neural plasticity are familiar with the “Kennard Principle,” which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood). As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents) aspects of human sensory processing that may correlate—both developmentally and functionally—with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic (HI) injuries (similar to those seen in premature infants and term infants with birth complications) led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human “term,” but only transient deficits (undetectable in adulthood) when induced in a “preterm” window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing (RAP) outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations). Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in

  15. Developmental and Communication Disorders in Children with Intellectual Disability: The Place Early Intervention for Effective Inclusion

    ERIC Educational Resources Information Center

    Jacob, Udeme Samuel; Olisaemeka, Angela Nneka; Edozie, Isioma Sitamalife

    2015-01-01

    The paper attempts to discuss the place of intervention in the developmental and communication disorders of children with intellectual disability for the purpose of providing effective inclusion programme. The definition of early intervention was stated, areas affected by children communication disorder such as language comprehension, fluency,…

  16. LONG-LASTING NEUROSTRUCTURAL CONSEQUENCES IN THE RAT HIPPOCAMPUS BY DEVELOPMENTAL EXPOSURE TO A MIXTURE OF POLYCHLORINATED BIPHENYLS (PCBS).

    EPA Science Inventory

    The objective of the study was to assess the effects of developmental exposure to a commercial mixture of PCBs (Aroclor 1254) on neuronal dendritic morphology of hippocampal CA1 pyramidal neurons in postnatal day (PND) 22 and PND 60 male Long-Evans rats. Rat pups were born to mot...

  17. Biomonitoring of human fetal exposure to environmental chemicals in early pregnancy.

    PubMed

    Cooke, Gerard M

    2014-01-01

    The first trimester of human fetal life, a period of extremely rapid development of physiological systems, represents the most rapid growth phase in human life. Interference in the establishment of organ systems may result in abnormal development that may be manifest immediately or programmed for later abnormal function. Exposure to environmental chemicals may be affecting development at these early stages, and yet there is limited knowledge of the quantities and identities of the chemicals to which the fetus is exposed during early pregnancy. Clearly, opportunities for assessing fetal chemical exposure directly are extremely limited. Hence, this review describes indirect means of assessing fetal exposure in early pregnancy to chemicals that are considered disrupters of development. Consideration is given to such matrices as maternal hair, fingernails, urine, saliva, sweat, breast milk, amniotic fluid and blood, and fetal matrices such as cord blood, cord tissue, meconium, placenta, and fetal liver. More than 150 articles that presented data from chemical analysis of human maternal and fetal tissues and fluids were reviewed. Priority was given to articles where chemical analysis was conducted in more than one matrix. Where correlations between maternal and fetal matrices were determined, these articles were included and are highlighted, as these may provide the basis for future investigations of early fetal exposure. The determination of fetal chemical exposure, at the time of rapid human growth and development, will greatly assist regulatory agencies in risk assessments and establishment of advisories for risk management concerning environmental chemicals.

  18. Early developmental trajectories of number knowledge and math achievement from 4 to 10 years: Low-persistent profile and early-life predictors.

    PubMed

    Garon-Carrier, Gabrielle; Boivin, Michel; Lemelin, Jean-Pascal; Kovas, Yulia; Parent, Sophie; Séguin, Jean R; Vitaro, Frank; Tremblay, Richard E; Dionne, Ginette

    2018-06-01

    Little is known about the development of number knowledge (NK) and the antecedents of low-persistent NK profiles in early childhood. We documented the developmental trajectories of NK across the transition from preschool to elementary school, their predictive validity with respect to later math achievement, and the child and family early-life factors associated with low NK profiles. Children's NK was assessed four times at regular intervals between the ages 4 and 7 years in a large, representative population-based sample. Developmental trajectories of NK were established for 1597 children. These children were also assessed with respect to several features of their family environment at 5, 17, and 29 months, as well as their cognitive skills at age 41 months. Analyses revealed a best-fitting 4-trajectory model, characterized by Low-Increasing (10% of the children), Moderate-Increasing (39%), Moderate-Fast Increasing (32%) and High-Increasing (19%) groups. Children of these trajectory groups differed significantly with respect to math achievement at ages 8 and 10 years, with the Low-Increasing group persistently scoring lower than the other groups throughout these years. Children of Low-Increasing NK group were from household of lower income and father with low educational background, poorer early cognitive development, and more importantly, reduced visual-spatial skills and memory-span. Children displaying reduced cognitive abilities and impoverished living conditions early in life are at greater risk of low NK throughout late preschool and school entry, with ensuing difficulties in math achievement. They deserve early preventive attention to help alleviate later mathematic difficulties. Copyright © 2018 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  19. Developmental Exposure to Perchlorate Alters Synaptic Transmission in Hippocampus of the Adult Rat

    PubMed Central

    Gilbert, Mary E.; Sui, Li

    2008-01-01

    Background Perchlorate is an environmental contaminant that blocks iodine uptake into the thyroid gland and reduces thyroid hormones. This action of perchlorate raises significant concern over its effects on brain development. Objectives The purpose of this study was to evaluate neurologic function in rats after developmental exposure to perchlorate. Methods Pregnant rats were exposed to 0, 30, 300, or 1,000 ppm perchlorate in drinking water from gestational day 6 until weaning. Adult male offspring were evaluated on a series of behavioral tasks and neurophysiologic measures of synaptic function in the hippocampus. Results At the highest perchlorate dose, triiodothyronine (T3) and thyroxine (T4) were reduced in pups on postnatal day 21. T4 in dams was reduced relative to controls by 16%, 28%, and 60% in the 30-, 300-, and 1,000-ppm dose groups, respectively. Reductions in T4 were associated with increases in thyroid-stimulating hormone in the high-dose group. No changes were seen in serum T3. Perchlorate did not impair motor activity, spatial learning, or fear conditioning. However, significant reductions in baseline synaptic transmission were observed in hippocampal field potentials at all dose levels. Reductions in inhibitory function were evident at 300 and 1,000 ppm, and augmentations in long-term potentiation were observed in the population spike measure at the highest dose. Conclusions Dose-dependent deficits in hippocampal synaptic function were detectable with relatively minor perturbations of the thyroid axis, indicative of an irreversible impairment in synaptic transmission in response to developmental exposure to perchlorate. PMID:18560531

  20. Developmental differences in stress responding after repeated underwater trauma exposures in rats.

    PubMed

    Altman, Daniel E; Simmons, Laurence P; Vuong, Chau T; Taylor, Rachel M; Sousa, Jason C; Marcsisin, Sean R; Zottig, Victor E; Moore, Nicole L T

    2018-05-01

    Adolescence is a distinct developmental period characterized by behavioral and physiological maturation. Rapid ongoing changes during neurodevelopment in particular present potential opportunities for stress to have lasting effects on longitudinal outcomes of behavioral and neuroendocrine function. While adult stress effects on outcomes during adulthood have been characterized, little is known about the lasting effects of adolescent repeated stressor exposure on outcomes during adolescence. We have previously reported different stress responses in adolescent rats relative to adult rats, including a blunted fear response outcome in adulthood in rats stressed during adolescence. The present study characterized the ontogeny of behavioral and neuroendocrine responses to eight underwater trauma (UWT) exposures in rats over a two week poststress time period during adolescence (P34) or adulthood (P83) relative to age-matched control groups that underwent eight swimming episodes without UWT. Repeated UWT exposures starting in adolescence, but not adulthood, resulted in adverse behavioral responses on the elevated plus maze 1 day post-stress. Corticosterone responses did not differ between UWT-exposed and controls for either age group at 1 day or at 7 days poststress, although there was an effect of age on corticosterone levels. We conclude that repeated UWT stress events have a lasting, negative behavioral effect on adolescent rats that is not observed in adult rats after the two-week exposure window. These results suggest that neurophysiological mechanisms underlying recovery from a repeated stressor are immature in adolescence relative to adulthood in rats.

  1. Pervasive influence of maternal and paternal criminal offending on early childhood development: a population data linkage study.

    PubMed

    Laurens, K R; Tzoumakis, S; Kariuki, M; Green, M J; Hamde, M; Harris, F; Carr, V J; Dean, K

    2017-04-01

    Parental criminal offending is an established risk factor for offending among offspring, but little evidence is available indicating the impact of offending on early childhood functioning. We used data from a large Australian population cohort to determine associations between exposure to parental offending and a range of developmental outcomes at age 5 years. Multi-generation data in 66 477 children and their parents from the New South Wales Child Development Study were combined using data linkage. Logistic and multinomial regressions tested associations between any and violent offending histories of parents (fathers, mothers, or both parents) obtained from official records, and multiple measures of early childhood developmental functioning (social, emotional-behavioural, cognitive, communication and physical domains) obtained from the teacher-reported 2009 Australian Early Development Census. Parental offending conferred significantly increased risk of vulnerability on all domains, particularly the cognitive domain. Greater risk magnitudes were observed for offending by both parents and by mothers than by fathers, and for violent than for any offending. For all parental offending exposures, vulnerability on multiple domains (where medium to large effects were observed) was more likely than on a single domain (small to medium effects). Relationships remained significant and of comparable magnitude following adjustment for sociodemographic covariates. The effect of parental offending on early childhood developmental outcomes is pervasive, with the strongest effects on functioning apparent when both parents engage in violent offending. Supporting affected families in early childhood might mitigate both early developmental vulnerability and the propensity for later delinquency among these offspring.

  2. Divergence of developmental trajectories is triggered interactively by early social and ecological experience in a cooperative breeder

    PubMed Central

    Bohn, Lena; Oberhummer, Evelyne

    2017-01-01

    Cooperative breeders feature the highest level of social complexity among vertebrates. Environmental constraints foster the evolution of this form of social organization, selecting for both well-developed social and ecological competences. Cooperative breeders pursue one of two alternative social trajectories: delaying reproduction to care for the offspring of dominant breeders or dispersing early to breed independently. It is yet unclear which ecological and social triggers determine the choice between these alternatives and whether diverging developmental trajectories exist in cooperative vertebrates predisposing them to dispersal or philopatry. Here we experimentally reared juveniles of cooperatively breeding cichlid fish by varying the social environment and simulated predation threat in a two-by-two factorial long-term experiment. First, we show that individuals develop specialized behavioral competences, originating already in the early postnatal phase. Second, these specializations predisposed individuals to pursue different developmental trajectories and either to disperse early or to extend philopatry in adulthood. Thus, our results contrast with the proposition that social specializations in early ontogeny should be restricted to eusocial species. Importantly, social and ecological triggers were both required for the generation of divergent life histories. Our results thus confirm recent predictions from theoretical models that organisms should combine relevant information from different environmental cues to develop integrated phenotypes. PMID:29078289

  3. Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response

    PubMed Central

    Bromer, Jason G.; Zhou, Yuping; Taylor, Melissa B.; Doherty, Leo; Taylor, Hugh S.

    2010-01-01

    Bisphenol-A (BPA) is a nonsteroidal estrogen that is ubiquitous in the environment. The homeobox gene Hoxa10 controls uterine organogenesis, and its expression is affected by in utero BPA exposure. We hypothesized that an epigenetic mechanism underlies BPA-mediated alterations in Hoxa10 expression. We analyzed the expression pattern and methylation profile of Hoxa10 after in utero BPA exposure. Pregnant CD-1 mice were treated with BPA (5 mg/kg IP) or vehicle control on d 9–16 of pregnancy. Hoxa10 mRNA and protein expression were increased by 25% in the reproductive tract of mice exposed in utero. Bisulfite sequencing revealed that cytosine-guanine dinucleotide methylation was decreased from 67 to 14% in the promoter and from 71 to 3% in the intron of Hoxa10 after in utero BPA exposure. Decreased DNA methylation led to an increase in binding of ER-α to the Hoxa10 ERE both in vitro as and in vivo as determined by EMSA and chromatin immunoprecipitation, respectively. Diminished methylation of the ERE-containing promoter sequence resulted in an increase in ERE-driven gene expression in reporter assays. We identify altered methylation as a novel mechanism of BPA-induced altered developmental programming. Permanent epigenetic alteration of ERE sensitivity to estrogen may be a general mechanism through which endocrine disruptors exert their action.—Bromer, J. G., Zhou, Y., Taylor, M. B., Doherty, L., Taylor, H. S.. Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. PMID:20181937

  4. Interactions of sex and early life social experiences at two developmental stages shape nonapeptide receptor profiles.

    PubMed

    Hiura, Lisa C; Ophir, Alexander G

    2018-05-31

    Early life social experiences are critical to behavioral and cognitive development, and can have a tremendous influence on developing social phenotypes. Most work has focused on outcomes of experiences at a single stage of development (e.g., perinatal, or post-weaning). Few studies have assessed the impact of social experience at multiple developmental stages and across sex. Oxytocin and vasopressin are profoundly important for modulating social behavior and these nonapeptide systems are highly sensitive to developmental social experience, particularly in brain areas important for social behavior. We investigated whether oxytocin receptor (OTR) and vasopressin receptor (V1aR) distributions of prairie voles (Microtus ochrogaster) change as a function of parental composition within the natal nest or social composition after weaning. We raised pups either in the presence or absence of their fathers. At weaning, offspring were housed either individually or with a same-sex sibling. We also examined whether changes in receptor distributions are sexually dimorphic because the impact of the developmental environment on the nonapeptide system could be sex-dependent. We found that differences in nonapeptide receptor expression were region-, sex-, and rearing condition-specific, indicating a high level of complexity in the ways that early life experiences shape the social brain. We found many more differences in V1aR density compared to OTR density, indicating that nonapeptide receptors demonstrate differential levels of neural plasticity and sensitivity to environmental and biological variables. Our data highlight that critical factors including biological sex and multiple experiences across the developmental continuum interact in complex ways to shape the social brain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Comparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System

    PubMed Central

    Bugel, Sean M.; Bonventre, Josephine A.; Tanguay, Robert L.

    2016-01-01

    Flavonoids are a large, structurally diverse class of bioactive naturally occurring chemicals commonly detected in breast milk, soy based infant formulas, amniotic fluid, and fetal cord blood. The potential for pervasive early life stage exposures raises concerns for perturbation of embryogenesis, though developmental toxicity and bioactivity information is limited for many flavonoids. Therefore, we evaluated a suite of 24 flavonoid and flavonoid-like chemicals using a zebrafish embryo-larval toxicity bioassay—an alternative model for investigating developmental toxicity of environmentally relevant chemicals. Embryos were exposed to 1–50 µM of each chemical from 6 to 120 h postfertilization (hpf), and assessed for 26 adverse developmental endpoints at 24, 72, and 120 hpf. Behavioral changes were evaluated in morphologically normal animals at 24 and 72 hpf, at 120 hpf using a larval photomotor response (LPR) assay. Gene expression was comparatively evaluated for all compounds for effects on biomarker transcripts indicative of AHR (cyp1a) and ER (cyp19a1b, esr1, lhb, vtg) pathway bioactivity. Overall, 15 of 24 flavonoids elicited adverse effects on one or more of the developmental or behavioral endpoints. Hierarchical clustering and principle component analyses compared toxicity profiles and identified 3 distinct groups of bioactive flavonoids. Despite robust induction of multiple estrogen-responsive biomarkers, co-exposure with ER and GPER antagonists did not ameliorate toxicity, suggesting ER-independence and alternative modes of action. Taken together, these studies demonstrate that development is sensitive to perturbation by bioactive flavonoids in zebrafish that are not related to traditional estrogen receptor mode of action pathways. This integrative zebrafish platform provides a useful framework for evaluating flavonoid developmental toxicity and hazard prioritization. PMID:27492224

  6. Developmental exposure to the SSRI citalopram causes long-lasting behavioural effects in the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Kellner, M; Porseryd, T; Porsch-Hällström, I; Borg, B; Roufidou, C; Olsén, K H

    2018-01-01

    Selective Serotonin re-uptake inhibitors (SSRIs) are a class of psychotropic drugs used to treat depression in both adolescents and pregnant or breast-feeding mothers as well as in the general population. Recent research on rodents points to long-lasting behavioural effects of pre- and perinatal exposure to SSRIs which last into adulthood. In fish however, studies on effects of developmental exposure to SSRIs appears to be non-existent. In order to study effects of developmental SSRI exposure in fish, three-spine sticklebacks were exposed to 1.5 µg/l of the SSRI citalopram in the ambient water for 30 days, starting two days post-fertilisation. After approximately 100 days of remediation in clean water the fish were put through an extensive battery of behavioural tests. Feeding behaviour was tested as the number of bites against a piece of food and found to be increased in the exposed fish. Aggression levels were measured as the number of bites against a mirror image during 10 min and was also found to be significantly increased in the exposed fish. Novel tank behaviour and locomotor activity was tested in an aquarium that had a horizontal line drawn half-way between the bottom and the surface. Neither the latency to the first transition to the upper half, nor the number of transitions or the total time spent in the upper half was affected by treatment. Locomotor activity was significantly reduced in the exposed fish. The light/dark preference was tested in an aquarium where the bottom and walls were black on one side and white on the other. The number of transitions to the white side was significantly reduced in the exposed fish but there was no effect on the latency to the first transition or the total time spent in the white half. The results in the current study indicate that developmental SSRI exposure causes long-lasting behavioural effects in fish and contribute to the existing knowledge about SSRIs as environmental pollutants.

  7. Face race processing and racial bias in early development: A perceptual-social linkage.

    PubMed

    Lee, Kang; Quinn, Paul C; Pascalis, Olivier

    2017-06-01

    Infants have asymmetrical exposure to different types of faces (e.g., more human than other-species, more female than male, and more own-race than other-race). What are the developmental consequences of such experiential asymmetry? Here we review recent advances in research on the development of cross-race face processing. The evidence suggests that greater exposure to own- than other-race faces in infancy leads to developmentally early perceptual differences in visual preference, recognition, category formation, and scanning of own- and other-race faces. Further, such perceptual differences in infancy may be associated with the emergence of implicit racial bias, consistent with a Perceptual-Social Linkage Hypothesis. Current and future work derived from this hypothesis may lay an important empirical foundation for the development of intervention programs to combat the early occurrence of implicit racial bias.

  8. Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes.

    PubMed

    Xu, Ning; Chua, Angela K; Jiang, Hong; Liu, Ning-Ai; Goodarzi, Mark O

    2014-08-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study.

  9. Developmental and neurobehavioral effects of perinatal exposure to polychlorinated biphenyls in mice.

    PubMed

    Sugawara, Norio; Nakai, Kunihiko; Nakamura, Tomoyuki; Ohba, Takashi; Suzuki, Keita; Kameo, Satomi; Satoh, Chieko; Satoh, Hiroshi

    2006-05-01

    Because behavioral deficits associated with gestational exposure to polychlorinated biphenyls (PCBs) have been a concern, we studied the developmental and neurobehavioral effects of perinatal exposure to Aroclor 1254 (A1254), a commercial mixture of PCBs, in mice. The PCB mixture (A1254; 0, 6, 18, and 54 mg/kg body weight) was administered to pregnant mice (C57BL/6Cr) every 3 days by gavage from gestational day (GD) 6 to postnatal day (PND) 20. Compared with the control, treatment with A1254 did not alter the maternal body weight during the gestation and lactation periods. The body weight of the offspring did not differ among treatments. To assess the effects on offspring following such exposure, physical and neurobehavioral development (i.e., pinna detachment, hair growth, eye opening, incisor eruption, grasp reflex, righting reflex, walking, negative geotaxis, and cliff avoidance) was observed before weaning. At PND 7, poor adult-like responses in negative geotaxis were observed in all exposed groups. When the offspring were at 8-week old, the PCB-treated (18 mg/kg body weight) mice showed a decreased walking speed in the open-field test, and a prolonged time to reach the platform in the water maze test. Spontaneous locomotion activity was not affected by PCB exposure at 9 weeks . These results showed that perinatal exposure to PCBs produces several behavioral alterations in mice. Although dose-dependent changes were not observed, the neurobehavioral effects such as a decreased walking speed in the open-field test and a prolonged time to reach the platform in the water maze test remained in adulthood after the seeming recovery from the transient delay in development before weaning.

  10. The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding.

    PubMed

    Murrough, James W; Czermak, Christoph; Henry, Shannan; Nabulsi, Nabeel; Gallezot, Jean-Dominique; Gueorguieva, Ralitza; Planeta-Wilson, Beata; Krystal, John H; Neumaier, John F; Huang, Yiyun; Ding, Yu-Shin; Carson, Richard E; Neumeister, Alexander

    2011-09-01

    Serotonergic dysfunction is implicated in the pathogenesis of posttraumatic stress disorder (PTSD), and recent animal models suggest that disturbances in serotonin type 1B receptor function, in particular, may contribute to chronic anxiety. However, the specific role of the serotonin type 1B receptor has not been studied in patients with PTSD. To investigate in vivo serotonin type 1B receptor expression in individuals with PTSD, trauma-exposed control participants without PTSD (TC), and healthy (non-trauma-exposed) control participants (HC) using positron emission tomography and the recently developed serotonin type 1B receptor selective radiotracer [(11)C]P943. Cross-sectional positron emission tomography study under resting conditions. Academic and Veterans Affairs medical centers. Ninety-six individuals in 3 study groups: PTSD (n = 49), TC (n = 20), and HC (n = 27). Main Outcome Measure  Regional [(11)C]P943 binding potential (BP(ND)) values in an a priori-defined limbic corticostriatal circuit investigated using multivariate analysis of variance and multiple regression analysis. A history of severe trauma exposure in the PTSD and TC groups was associated with marked reductions in [(11)C]P943 BP(ND) in the caudate, the amygdala, and the anterior cingulate cortex. Participant age at first trauma exposure was strongly associated with low [(11)C]P943 BP(ND). Developmentally earlier trauma exposure also was associated with greater PTSD symptom severity and major depression comorbidity. These data suggest an enduring effect of trauma history on brain function and the phenotype of PTSD. The association of early age at first trauma and more pronounced neurobiological and behavioral alterations in PTSD suggests a developmental component in the cause of PTSD.

  11. Associations of Early Developmental Milestones with Adult Intelligence

    ERIC Educational Resources Information Center

    Flensborg-Madsen, Trine; Mortensen, Erik L.

    2018-01-01

    The study investigated whether age at attainment of 20 developmental milestones within the areas of language, walking, eating, dressing, social interaction, and toilet training was associated with adult intelligence. Mothers of 821 children of the Copenhagen Perinatal Cohort recorded 20 developmental milestones at a 3-year examination, and all…

  12. Computer Simulation of Developmental Processes and ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  13. Potential of chromium(III) picolinate for reproductive or developmental toxicity following exposure of male CD-1 mice prior to mating.

    PubMed

    McAdory, DeAna; Rhodes, Nicholas R; Briggins, Felicia; Bailey, Melissa M; Di Bona, Kristin R; Goodwin, Craig; Vincent, John B; Rasco, Jane F

    2011-12-01

    Chromium(III) picolinate, [Cr(pic)(3)], is a commonly used nutritional supplement in humans, which has also been approved for use in animals. Health concerns have arisen over the use of [Cr(pic)(3)]. At high [Cr(pic)(3)] doses, developmental toxicity tests in female mice have shown a higher litter incidence of split cervical arch in exposed fetuses, but this was not consistently reproducible. In the current study, male CD-1 mice were used to further assess the potential for reproductive or developmental toxicity. Four weeks prior to mating, the males were fed a diet providing 200 mg/kg/day [Cr(pic)(3)] for comparison with untreated controls. Females were not treated. Each male was mated with two females, which were sacrificed on gestation day 17, and their litters were examined for adverse effects. Mating and fertility indices were not significantly altered by treatment. Male exposure to [Cr(pic)(3)] also had no effect on prenatal mortality, fetal weight, or gross or skeletal morphology. These results suggest that paternal dietary exposure to chromium(III) picolinate has little potential for adverse reproductive effects, even at exposure levels considerably higher than expected human exposures from nutritional supplements (1 mg of Cr per day or less).

  14. Early-life exposure to combustion-derived particulate matter causes pulmonary immunosuppression

    PubMed Central

    Saravia, Jordy; You, Dahui; Thevenot, Paul; Lee, Greg I.; Shrestha, Bishwas; Lomnicki, Slawo; Cormier, Stephania A.

    2013-01-01

    Elevated levels of combustion-derived particulate matter (CDPM) are a risk factor for the development of lung diseases such as asthma. Studies have shown that CDPM exacerbates asthma, inducing acute lung dysfunction and inflammation; however, the impact of CDPM exposure on early immunological responses to allergens remains unclear. To determine the effects of early-life CDPM exposure on allergic asthma development in infants, we exposed infant mice to CDPM and then induced a mouse model of asthma using house dust mite (HDM) allergen. Mice exposed to CDPM+HDM failed to develop a typical asthma phenotype including airway hyperresponsiveness, Th2-inflammation, Muc5ac expression, eosinophilia, and HDM-specific Ig compared to HDM-exposed mice. Although HDM-specific IgE was attenuated, total IgE was two-fold higher in CDPM+HDM mice compared to HDM-mice. We further demonstrate that CDPM exposure during early life induced an immunosuppressive environment in the lung, concurrent with increases in tolerogenic dendritic cells and Tregs, resulting in suppression of Th2 responses. Despite having early immunosuppression, these mice develop severe allergic inflammation when challenged with allergen as adults. These findings demonstrate a mechanism whereby CDPM exposure modulates adaptive immunity, inducing specific-antigen tolerance while amplifying total IgE, and leading to a predisposition to develop asthma upon rechallenge later in life. PMID:24172848

  15. Developmental toxicity in white leghorn chickens following in ovo exposure to perfluorooctane sulfonate (PFOS)

    USGS Publications Warehouse

    Peden-Adams, M. M.; Stuckey, Joyce E.; Gaworecki, K.M.; Berger-Ritchie, J.; Bryant, K.; Jodice, P.G.; Scott, T.R.; Ferrario, J.B.; Guan, B.; Vigo, C.; Boone, J.S.; McGuinn, W.D.; DeWitt, J.C.; Keil, D.E.

    2009-01-01

    Studies show that perfluorinated compounds cause various toxicological effects; nevertheless, effects on immune function and developmental endpoints have not been addressed at length. This study examined the effects of perfluorooctane sulfonate (PFOS) in white leghorn hatchlings on various developmental, immunological, and clinical health parameters. In addition, serum PFOS concentrations were determined by LC/MS/MS. Embryonic day (ED) 0 eggs were injected with either safflower oil/10% DMSO (control, 0 mg/kg egg wt) or PFOS in safflower oil/10% DMSO at 1, 2.5, or 5 mg/kg egg wt, and the chicks were grown to post-hatch day (PHD) 14. Treatment with PFOS did not affect hatch rate. Following in ovo exposure chicks exhibited increases in spleen mass at all treatment levels, in liver mass at 2.5 and 5 mg/kg egg wt, and in body length (crown-rump length) at the 5 mg/kg treatment. Right wings were shorter in all treatments compared to control. Increases in the frequency of brain asymmetry were evident in all treatment groups. SRBC-specific immunoglobulin (IgM and IgY combined) titers were decreased significantly at all treatment levels, while plasma lysozyme activity was increased at all treatment levels. The PHA skin test response decreased in relation to increasing PFOS dose. Serum concentrations where significant immunological, morphological, and neurological effects were observed at the lowest dose (1 mg/kg egg wt) averaged 154 ng PFOS/g serum. These concentrations fall within environmental ranges reported in blood samples from wild caught avian species; thereby, verifying that the environmental egg concentrations used for the injections do indeed relate to serum levels in hatchlings that are also environmentally relevant. These data indicate that immune alterations and brain asymmetry can occur in birds following in ovo exposure to environmentally relevant concentrations of PFOS and demonstrates the need for further research on the developmental effects of

  16. Developmental timing of child maltreatment and symptoms of depression and suicidal ideation in young adulthood: Results from the National Longitudinal Study on Adolescent Health

    PubMed Central

    Dunn, Erin C.; McLaughlin, Katie A.; Slopen, Natalie; Rosand, Jonathan; Smoller, Jordan W.

    2013-01-01

    Background Child maltreatment is a potent risk factor for psychopathology. Although the developmental timing of first exposure to maltreatment is considered important in shaping risk of future psychopathology, no consensus exists on whether earlier or later exposures are more deleterious. This study examines whether age at first exposure to abuse is associated with subsequent depression and suicidal ideation. Methods Data were drawn from the National Longitudinal Study on Adolescent Health (n=15,701). Timing of first maltreatment exposure was classified using: (1) a crude measure capturing early childhood (0–5), middle childhood (6–10), or adolescence (11–17); and (2) a refined measure capturing infancy (0–2), preschool (3–5), latency (6–8), prepubertal (9–10), pubertal (11–13), or adolescence (14–17). We examined whether timing of first exposure was associated with depression and suicidal ideation in early adulthood in the entire sample and among those exposed to maltreatment. Results Respondents exposed to physical abuse at any age had a higher odds of depression and suicidal ideation in young adulthood than non-maltreated respondents. Among maltreated respondents, exposure during early childhood (0–5), particularly pre-school (3–5), was most strongly associated with depression. Respondents first exposed to physical abuse during preschool had a 77% increase in the odds of depression and those first exposed to sexual abuse during early childhood had a 146% increase in the odds of suicidal ideation compared to respondents maltreated as adolescents. Conclusions Developmental timing of first exposure to maltreatment influences risk for depression and suicidal ideation. Whether these findings are evidence for biologically-based sensitive periods requires further study. PMID:23592532

  17. Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensis.

    PubMed

    Chen, Qiang; Lin, Gui-miao; Wu, Nan; Tang, Sheng-wei; Zheng, Zhi-jia; Lin, Marie Chia-mi; Xu, Gai-xia; Liu, Hao; Deng, Yue-yue; Zhang, Xiao-yun; Chen, Si-ping; Wang, Xiao-mei; Niu, Han-ben

    2016-05-01

    Magnetic field exposure is an accepted safe and effective modality for nerve injury. However, it is clinically used only as a supplement or salvage therapy at the later stage of treatment. Here, we used a planarian Girardia sinensis decapitated model to investigate beneficial effects of early rotary non-uniform magnetic fields (RMFs) exposure on central nervous regeneration. Our results clearly indicated that magnetic stimulation induced from early RMFs exposure significantly promoted neural regeneration of planarians. This stimulating effect is frequency and intensity dependent. Optimum effects were obtained when decapitated planarians were cultured at 20 °C, starved for 3 days before head-cutting, and treated with 6 Hz 0.02 T RMFs. At early regeneration stage, RMFs exposure eliminated edema around the wound and facilitated subsequent formation of blastema. It also accelerated cell proliferation and recovery of neuron functionality. Early RMFs exposure up-regulated expression of neural regeneration related proteins, EGR4 and Netrin 2, and mature nerve cell marker proteins, NSE and NPY. These results suggest that RMFs therapy produced early and significant benefit in central nervous regeneration, and should be clinically used at the early stage of neural regeneration, with appropriate optimal frequency and intensity. © 2016 Wiley Periodicals, Inc.

  18. Effects of early life exposure to ultraviolet C radiation on mitochondrial DNA content, transcription, ATP production, and oxygen consumption in developing Caenorhabditis elegans

    PubMed Central

    2013-01-01

    Background Mitochondrial DNA (mtDNA) is present in multiple copies per cell and undergoes dramatic amplification during development. The impacts of mtDNA damage incurred early in development are not well understood, especially in the case of types of mtDNA damage that are irreparable, such as ultraviolet C radiation (UVC)-induced photodimers. Methods We exposed first larval stage nematodes to UVC using a protocol that results in accumulated mtDNA damage but permits nuclear DNA (nDNA) repair. We then measured the transcriptional response, as well as oxygen consumption, ATP levels, and mtDNA copy number through adulthood. Results Although the mtDNA damage persisted to the fourth larval stage, we observed only a relatively minor ~40% decrease in mtDNA copy number. Transcriptomic analysis suggested an inhibition of aerobic metabolism and developmental processes; mRNA levels for mtDNA-encoded genes were reduced ~50% at 3 hours post-treatment, but recovered and, in some cases, were upregulated at 24 and 48 hours post-exposure. The mtDNA polymerase γ was also induced ~8-fold at 48 hours post-exposure. Moreover, ATP levels and oxygen consumption were reduced in response to UVC exposure, with marked reductions of ~50% at the later larval stages. Conclusions These results support the hypothesis that early life exposure to mitochondrial genotoxicants could result in mitochondrial dysfunction at later stages of life, thereby highlighting the potential health hazards of time-delayed effects of these genotoxicants in the environment. PMID:23374645

  19. Dog and cat exposure and respective pet allergy in early childhood.

    PubMed

    Pyrhönen, Kaisa; Näyhä, Simo; Läärä, Esa

    2015-05-01

    The association of dog and cat exposure in early childhood with the incidence of respective allergies has remained controversial. The aim of the study was to obtain population-based evidence on the association of early exposure to dog or cat, or both, with dog and cat allergies. The study population was identified from the nationwide population register comprising all children aged 1-4 yr (N = 4779) born between 2001 and 2005 and living in the province of South Karelia, Finland. Cross-sectional questionnaire data on pet exposure in infancy and physician-diagnosed pet allergies were obtained from 3024 participants and merged with longitudinally accumulated data on sIgE and skin prick tests indicating allergic sensitization abstracted from all patient records in the area. The adjusted relative incidence of positive test results (with 95% confidence intervals) was 2.69 (1.45-5.02) for dog and 5.03 (2.47-10.2) for cat allergens among children exposed to a respective pet alone compared with children without such exposure. The corresponding adjusted prevalence odds ratios for diagnosed dog and cat allergies were 1.75 (0.77-3.79) and 5.13 (2.30-11.4), respectively. The association between pet exposure and the incidence of positive test results was independent of parents' allergies. Early exposure to dog and cat at home is associated with a higher incidence of respective pet allergy during the first four years of life. Further evidence from population-based studies with longer follow-up is required to justify any recommendation concerning early pet contacts with a view to preventing pet allergies later in life. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish

    PubMed Central

    Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui

    2013-01-01

    Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556

  1. Children's Prenatal Exposure to Drugs: Implications for Early Childhood Educators.

    ERIC Educational Resources Information Center

    Mayfield, Phyllis K.; Chapman, J. Keith

    1998-01-01

    Examines the effects of drug use during pregnancy on early and later child development, the extent of women's drug use, and behavioral and learning characteristics of children prenatally exposed to drugs. Provides intervention guidelines for early childhood settings including children with prenatal drug exposure, focusing on recommendations for…

  2. Developmental delay and emotion dysregulation: Predicting parent-child conflict across early to middle childhood.

    PubMed

    Marquis, Willa A; Noroña, Amanda N; Baker, Bruce L

    2017-04-01

    Cumulative risk research has increased understanding of how multiple risk factors impact various socioemotional and interpersonal outcomes across the life span. However, little is known about risk factors for parent-child conflict early in development, where identifying predictors of change could be highly salient for intervention. Given their established association with parent-child conflict, child developmental delay (DD) and emotion dysregulation were examined as predictors of change in conflict across early to middle childhood (ages 3 to 7 years). Participants (n = 211) were part of a longitudinal study examining the development of psychopathology in children with or without DD. Level of parent-child conflict was derived from naturalistic home observations, whereas child dysregulation was measured using an adapted CBCL-Emotion Dysregulation Index. PROCESS was used to examine the conditional interactive effects of delay status (typically developing, DD) and dysregulation on change in conflict from child ages 3 to 5 and 5 to 7 years. Across both of these timeframes, parent-child conflict increased only for families of children with both DD and high dysregulation, providing support for an interactive risk model of parent-child conflict. Findings are considered in the context of developmental transitions, and implications for intervention are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Developmental delay and emotion dysregulation: Predicting parent-child conflict across early to middle childhood

    PubMed Central

    Marquis, Willa A.; Noroña, Amanda N.; Baker, Bruce L.

    2016-01-01

    Cumulative risk research has increased understanding of how multiple risk factors impact various socioemotional and interpersonal outcomes across the life span. However, little is known about risk factors for parent-child conflict early in development, where identifying predictors of change could be highly salient for intervention. Given their established association with parent-child conflict, child developmental delay (DD) and emotion dysregulation were examined as predictors of change in conflict across early to middle childhood (ages 3 to 7 years). Participants (n=211) were part of a longitudinal study examining the development of psychopathology in children with or without DD. Level of parent-child conflict was derived from naturalistic home observations, while child dysregulation was measured using an adapted CBCL-Emotion Dysregulation Index. PROCESS was used to examine the conditional interactive effects of delay status (typically developing, DD) and dysregulation on change in conflict from child ages 3 to 5 and 5 to 7 years. Across both of these timeframes, parent-child conflict increased only for families of children with both DD and high dysregulation, providing support for an interactive risk model of parent-child conflict. Findings are considered in the context of developmental transitions, and implications for intervention are discussed. PMID:28054804

  4. The effects of early positive parenting and developmental delay status on child emotion dysregulation.

    PubMed

    Norona, A N; Baker, B L

    2017-02-01

    Emotion regulation has been identified as a robust predictor of adaptive functioning across a variety of domains (Aldao et al. ). Furthermore, research examining early predictors of competence and deficits in ER suggests that factors internal to the individual (e.g. neuroregulatory reactivity, behavioural traits and cognitive ability) and external to the individual (e.g. caregiving styles and explicit ER training) contribute to the development of ER (Calkins ). Many studies have focused on internal sources or external sources; however, few have studied them simultaneously within one model, especially in studies examining children with developmental delays (DD). Here, we addressed this specific research gap and examined the contributions of one internal factor and one external factor on emotion dysregulation outcomes in middle childhood. Specifically, our current study used structural equation modelling (SEM) to examine prospective, predictive relationships between DD status, positive parenting at age 4 years and child emotion dysregulation at age 7 years. Participants were 151 families in the Collaborative Family Study, a longitudinal study of young children with and without DD. A positive parenting factor was composed of sensitivity and scaffolding scores from mother-child interactions at home and in the research centre at child age 4 years. A child dysregulation factor was composed of a dysregulation code from mother-child interactions and a parent-report measure of ER and lability/negativity at age 7 years. Finally, we tested the hypothesis that positive parenting would mediate the relationship between DD and child dysregulation. Mothers of children with DD exhibited fewer sensitive and scaffolding behaviours compared with mothers of typically developing children, and children with DD were more dysregulated on all measures of ER. SEM revealed that both DD status and early positive parenting predicted emotion dysregulation in middle childhood. Furthermore

  5. Increasing pre-kindergarten early literacy skills in children with developmental disabilities and delays.

    PubMed

    Pears, Katherine C; Kim, Hyoun K; Fisher, Philip A; Yoerger, Karen

    2016-08-01

    Two hundred and nine children receiving early childhood special education services for developmental disabilities or delays who also had behavioral, social, or attentional difficulties were included in a study of an intervention to increase school readiness, including early literacy skills. Results showed that the intervention had a significant positive effect on children's literacy skills from baseline to the end of summer before the start of kindergarten (d=.14). The intervention also had significant indirect effects on teacher ratings of children's literacy skills during the fall of their kindergarten year (β=.09). Additionally, when scores were compared to standard benchmarks, a greater percentage of the children who received the intervention moved from being at risk for reading difficulties to having low risk. Overall, this study demonstrates that a school readiness intervention delivered prior to the start of kindergarten may help increase children's early literacy skills. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  6. Estrogenic exposure affects metamorphosis and alters sex ratios in the northern leopard frog (Rana pipiens): identifying critically vulnerable periods of development.

    PubMed

    Hogan, Natacha S; Duarte, Paula; Wade, Michael G; Lean, David R S; Trudeau, Vance L

    2008-05-01

    During the transformation from larval tadpole to juvenile frog, there are critical periods of metamorphic development and sex differentiation that may be particularly sensitive to endocrine disruption. The aim of the present study was to identify sensitive developmental periods for estrogenic endocrine disruption in the northern leopard frog (Rana pipiens) using short, targeted exposures to the synthetic estrogen, ethinylestradiol (EE2). Post-hatch tadpoles (Gosner stage 27) were exposed over five distinct periods of metamorphosis: early (stage 27-30), mid (stage 30-36), early and mid (stage 27-36), late (stage 36-42), and the entire metamorphic period (chronic; stage 27-42). For each period, animals were sampled immediately following the EE2 exposure and at metamorphic climax (stage 42). The effects of EE2 on metamorphic development and sex differentiation were assessed through measures of length, weight, developmental stage, days to metamorphosis, sex ratios and incidence of gonadal intersex. Our results show that tadpoles exposed to EE2 during mid-metamorphosis were developmentally delayed immediately following exposure and took 2 weeks longer to reach metamorphic climax. In the unexposed groups, there was low proportion (0.15) of intersex tadpoles at stage 30 and gonads appeared to be morphologically distinct (male and female) in all individuals by stage 36. Tadpoles exposed early in development displayed a strong female-biased sex ratio compared to the controls. Moreover, these effects were also seen at metamorphic climax, approximately 2-3 months after the exposure period, demonstrating that transient early life-stage exposure to estrogen can induce effects on the reproductive organs that persist into the beginning of adult life-stages.

  7. Trace elements as paradigms of developmental neurotoxicants: Lead, methylmercury and arsenic.

    PubMed

    Grandjean, Philippe; Herz, Katherine T

    2015-01-01

    Trace elements have contributed unique insights into developmental neurotoxicity and serve as paradigms for such adverse effects. Many trace elements are retained in the body for long periods and can be easily measured to assess exposure by inexpensive analytical methods that became available several decades ago so that past and cumulated exposures could be easily characterized through analysis of biological samples, e.g. blood and urine. The first compelling evidence resulted from unfortunate poisoning events that allowed scrutiny of long-term outcomes of acute exposures that occurred during early development. Pursuant to this documentation, prospective studies of children's cohorts that applied sensitive neurobehavioral methods supported the notion that the brain is uniquely vulnerable to toxic damage during early development. Lead, methylmercury, and arsenic thereby serve as paradigm neurotoxicants that provide a reference for other substances that may have similar adverse effects. Less evidence is available on manganese, fluoride, and cadmium, but experience from the former trace elements suggest that, with time, adverse effects are likely to be documented at exposures previously thought to be low and safe. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Long-Term Neurotoxic Effects of Early Life Exposure to Tetrachloroethylene-contaminated Drinking Water

    PubMed Central

    Aschengrau, Ann; Janulewicz, Patricia A.; White, Roberta F.; Vieira, Veronica M.; Gallagher, Lisa G.; Getz, Kelly D.; Webster, Thomas F.; Ozonoff, David M.

    2016-01-01

    Background Tetrachloroethene (PCE) is a common environmental and occupational contaminant and an acknowledged neurotoxicant. From 1968 through 1983 widespread contamination of public drinking water supplies with PCE occurred in the Cape Cod region of Massachusetts. The source of the contamination was a vinyl liner applied to the inner surface of water distribution pipes. Objectives A retrospective cohort study (“the Cape Cod Health Study”) was undertaken to examine possible health consequences of early life exposure to PCE-contaminated drinking water. This review describes the study methods and findings regarding the impact of prenatal and childhood exposure on neurological outcomes during early adulthood, including vision, neuropsychological functioning, brain structure, risky behaviors, and mental illness. The review also describes the strengths and challenges of conducting population-based epidemiological research in this unique setting. Methods Subjects were identified by cross-matching birth certificate and water system data. Information on health outcomes and confounding variables was collected from self-administered surveys (N= 1,689), neuropsychological tests (N=63), vision exam (N=63), and magnetic resonance imaging (N=42). Early life exposure to PCE was estimated using a leaching and transport model. The data analysis compared the occurrence of each health outcome among subjects with prenatal and early childhood PCE exposure to unexposed subjects while considering the impact of confounding variables. Results The study found evidence that early life exposure to PCE-contaminated drinking water has long-term neurotoxic effects. The strongest associations were seen with illicit drug use, bipolar disorder, and post-traumatic stress disorder. Key strengths of the study were availability of historical data on affected water systems, a relatively high exposure prevalence and wide range of exposure levels, and little confounding. Challenges arose mainly from

  9. Latent class analysis of early developmental trajectory in baby siblings of children with autism.

    PubMed

    Landa, Rebecca J; Gross, Alden L; Stuart, Elizabeth A; Bauman, Margaret

    2012-09-01

    Siblings of children with autism (sibs-A) are at increased genetic risk for autism spectrum disorders (ASD) and milder impairments. To elucidate diversity and contour of early developmental trajectories exhibited by sibs-A, regardless of diagnostic classification, latent class modeling was used. Sibs-A (N = 204) were assessed with the Mullen Scales of Early Learning from age 6 to 36 months. Mullen T scores served as dependent variables. Outcome classifications at age 36 months included: ASD (N = 52); non-ASD social/communication delay (broader autism phenotype; BAP; N = 31); and unaffected (N = 121). Child-specific patterns of performance were studied using latent class growth analysis. Latent class membership was then related to diagnostic outcome through estimation of within-class proportions of children assigned to each diagnostic classification. A 4-class model was favored. Class 1 represented accelerated development and consisted of 25.7% of the sample, primarily unaffected children. Class 2 (40.0% of the sample), was characterized by normative development with above-average nonverbal cognitive outcome. Class 3 (22.3% of the sample) was characterized by receptive language, and gross and fine motor delay. Class 4 (12.0% of the sample), was characterized by widespread delayed skill acquisition, reflected by declining trajectories. Children with an outcome diagnosis of ASD were spread across Classes 2, 3, and 4. Results support a category of ASD that involves slowing in early non-social development. Receptive language and motor development is vulnerable to early delay in sibs-A with and without ASD outcomes. Non-ASD sibs-A are largely distributed across classes depicting average or accelerated development. Developmental trajectories of motor, language, and cognition appear independent of communication and social delays in non-ASD sibs-A. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.

  10. Latent Class Analysis of Early Developmental Trajectory in Baby Siblings of Children with Autism

    PubMed Central

    Landa, Rebecca J.; Gross, Alden L.; Stuart, Elizabeth A.; Bauman, Margaret

    2012-01-01

    Background Siblings of children with autism (sibs-A) are at increased genetic risk for autism spectrum disorders (ASD) and milder impairments. To elucidate diversity and contour of early developmental trajectories exhibited by sibs-A, regardless of diagnostic classification, latent class modeling was used. Methods Sibs-A (n=204) were assessed with the Mullen Scales of Early Learning from age 6–36 months. Mullen T scores served as dependent variables. Outcome classifications at age 36 months included: ASD (n=52); non-ASD social/communication delay (broader autism phenotype; BAP) (n=31); and unaffected (n=121). Child-specific patterns of performance were studied using latent class growth analysis. Latent class membership was then related to diagnostic outcome through estimation of within-class proportions of children assigned to each diagnostic classification. Results A 4-class model was favored. Class 1 represented accelerated development and consisted of 25.7% of the sample, primarily unaffected children. Class 2 (40.0% of the sample), was characterized by normative development with above-average nonverbal cognitive outcome. Class 3 (22.3% of the sample) was characterized by receptive language, and gross and fine motor delay. Class 4 (12.0% of the sample), was characterized by widespread delayed skill acquisition, reflected by declining trajectories. Children with an outcome diagnosis of ASD were spread across Classes 2, 3, and 4. Conclusions Results support a category of ASD that involves slowing in early non-social development. Receptive language and motor development is vulnerable to early delay in sibs-A with and without ASD outcomes. Non-ASD sibs-A are largely distributed across classes depicting average or accelerated development. Developmental trajectories of motor, language, and cognition appear independent of communication and social delays in non-ASD sibs-A. PMID:22574686

  11. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi Xiongjie; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Du Yongbing

    2008-07-01

    Perfluorooctanesulfonate (PFOS) is a persistent organic pollutant, the potential toxicity of which is causing great concern. In the present study, we employed zebrafish embryos to investigate the developmental toxicity of this compound. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0.1, 0.5, 1, 3 and 5 mg/L PFOS. Hatching was delayed and hatching rates as well as larval survivorship were significantly reduced after the embryos were exposed to 1, 3 and 5 mg/L PFOS until 132 hpf. The fry displayed gross developmental malformations, including epiboly deformities, hypopigmentation, yolk sac edema, tail and heart malformations and spinal curvature upon exposure tomore » PFOS concentrations of 1 mg/L or greater. Growth (body length) was significantly reduced in the 3 and 5 mg/L PFOS-treated groups. To test whether developmental malformation was mediated via apoptosis, flow cytometry analysis of DNA content, acridine orange staining and TUNEL assay was used. These techniques indicated that more apoptotic cells were present in the PFOS-treated embryos than in the control embryos. Certain genes related to cell apoptosis, p53 and Bax, were both significantly up-regulated upon exposure to all the concentrations tested. In addition, we investigated the effects of PFOS on marker genes related to early thyroid development (hhex and pax8) and genes regulating the balance of androgens and estrogens (cyp19a and cyp19b). For thyroid development, the expression of hhex was significantly up-regulated at all concentrations tested, whereas pax8 expression was significantly up-regulated only upon exposure to lower concentrations of PFOS (0.1, 0.5, 1 mg/L). The expression of cyp19a and of cyp19b was significantly down-regulated at all exposure concentrations. The overall results indicated that zebrafish embryos constitute a reliable model for testing the developmental toxicity of PFOS, and the gene expression patterns in the embryos were able to reveal some

  12. Early neurotrophic pharmacotherapy rescues developmental delay and Alzheimer’s-like memory deficits in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Kazim, Syed Faraz; Blanchard, Julie; Bianchi, Riccardo; Iqbal, Khalid

    2017-01-01

    Down syndrome (DS), caused by trisomy 21, is the most common genetic cause of intellectual disability and is associated with a greatly increased risk of early-onset Alzheimer’s disease (AD). The Ts65Dn mouse model of DS exhibits several key features of the disease including developmental delay and AD-like cognitive impairment. Accumulating evidence suggests that impairments in early brain development caused by trisomy 21 contribute significantly to memory deficits in adult life in DS. Prenatal genetic testing to diagnose DS in utero, provides the novel opportunity to initiate early pharmacological treatment to target this critical period of brain development. Here, we report that prenatal to early postnatal treatment with a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic, Peptide 021 (P021), rescued developmental delay in pups and AD-like hippocampus-dependent memory impairments in adult life in Ts65Dn mice. Furthermore, this treatment prevented pre-synaptic protein deficit, decreased glycogen synthase kinase-3beta (GSK3β) activity, and increased levels of synaptic plasticity markers including brain derived neurotrophic factor (BNDF) and phosphorylated CREB, both in young (3-week-old) and adult (~ 7-month-old) Ts65Dn mice. These findings provide novel evidence that providing neurotrophic support during early brain development can prevent developmental delay and AD-like memory impairments in a DS mouse model. PMID:28368015

  13. Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny.

    PubMed

    Volkova, Kristina; Reyhanian Caspillo, Nasim; Porseryd, Tove; Hallgren, Stefan; Dinnétz, Patrik; Porsch-Hällström, Inger

    2015-07-01

    Exposure to estrogenic endocrine disruptors (EDCs) during development affects fertility, reproductive and non-reproductive behavior in mammals and fish. These effects can also be transferred to coming generations. In fish, the effects of developmental EDC exposure on non-reproductive behavior are less well studied. Here, we analyze the effects of 17α-ethinylestradiol (EE2) on anxiety, shoaling behavior and fertility in zebrafish after developmental treatment and remediation in clean water until adulthood. Zebrafish embryos were exposed from day 1 to day 80 post fertilization to actual concentrations of 1.2 and 1.6ng/L EE2. After remediation for 82days non-reproductive behavior and fertilization success were analyzed in both sexes. Males and females from the 1.2ng/L group, as well as control males and females, were bred, and behavior of the untreated F1 offspring was tested as adults. Developmental treatment with 1.2 and 1.6ng/L EE2 significantly increased anxiety in the novel tank test and increased shoaling intensity in both sexes. Fertilization success was significantly reduced by EE2 in both sexes when mated with untreated fish of opposite sex. Progeny of fish treated with 1.2ng/L EE2 showed increased anxiety in the novel tank test and increased light avoidance in the scototaxis test compared to control offspring. In conclusion, developmental exposure of zebrafish to low doses of EE2 resulted in persistent changes in behavior and fertility. The behavior of unexposed progeny was affected by their parents' exposure, which might suggest transgenerational effects. Copyright © 2015. Published by Elsevier Inc.

  14. Predicting Later-Life Outcomes of Early-Life Exposures

    EPA Science Inventory

    Background: In utero exposure of the fetus to a stressor can lead to disease in later life. Epigenetic mechanisms are likely mediators of later-life expression of early-life events.Objectives: We examined the current state of understanding of later-life diseases resulting from ea...

  15. An Annotated Bibliography of Some Recent Articles That Correlate with the Sewall Early Education Developmental Program (SEED).

    ERIC Educational Resources Information Center

    Jackson, Janice; Flamboe, Thomas C.

    The annotated bibliography contains approximately 110 references (1969-1976) of articles related to the Sewall Early Education Developmental Program. Entries are arranged alphabetically by author within the following seven topic areas: social emotional, gross motor, fine motor, adaptive reasoning, speech and language, feeding and dressing and…

  16. Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus

    EPA Science Inventory

    Title (20 words): Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus. Introduction (120 words): Polybrominated diphenyl ethers (PBDE5) possess neurotoxic effects similar to those of PCBs. The cellular a...

  17. Early alcohol exposure impairs ocular dominance plasticity throughout the critical period.

    PubMed

    Medina, Alexandre E; Ramoa, Ary S

    2005-06-09

    Animal models of fetal alcohol syndrome (FAS) have revealed an impairment of sensory neocortex plasticity. Here, we examine whether early alcohol exposure leads to a permanent impairment of ocular dominance plasticity (OD) or to an alteration in the timing of the critical period. Ferrets were exposed to alcohol during a brief period of development prior to eye opening and effects of monocular deprivation examined during early, mid and late critical period. Single-unit electrophysiology revealed markedly reduced OD plasticity at every age examined. This finding provides evidence that early alcohol exposure does not affect the timing or duration of the critical period of OD plasticity and suggests an enduring impairment of neural plasticity in FAS.

  18. Identifying key features of early stressful experiences that produce stress vulnerability and resilience in primates

    PubMed Central

    Parker, Karen J.; Maestripieri, Dario

    2010-01-01

    This article examines the complex role of early stressful experiences in producing both vulnerability and resilience to later stress-related psychopathology in a variety of primate models of human development. Two types of models are reviewed: Parental Separation Models (e.g., isolate-rearing, peer-rearing, parental separations, and stress inoculation) and Maternal Behavior Models (e.g., foraging demands, variation in maternal style, and maternal abuse). Based on empirical evidence, it is argued that early life stress exposure does not increase adult vulnerability to stress-related psychopathology as a linear function, as is generally believed, but instead reflects a quadratic function. Features of early stress exposure including the type, duration, frequency, ecological validity, sensory modality, and developmental timing, within and between species, are identified to better understand how early stressful experiences alter neurobiological systems to produce such diverse developmental outcomes. This article concludes by identifying gaps in our current knowledge, providing directions for future research, and discussing the translational implications of these primate models for human development and psychopathology. PMID:20851145

  19. Generation of a transgenic medaka (Oryzias latipes) strain for visualization of nuclear dynamics in early developmental stages.

    PubMed

    Inoue, Takanobu; Iida, Atsuo; Maegawa, Shingo; Sehara-Fujisawa, Atsuko; Kinoshita, Masato

    2016-12-01

    In this study, we verified nuclear transport activity of an artificial nuclear localization signal (aNLS) in medaka fish (Oryzias latipes). We generated a transgenic medaka strain expresses the aNLS tagged enhanced green fluorescent protein (EGFP) driven by a medaka beta-actin promoter. The aNLS-EGFP was accumulated in the nuclei of somatic tissues and yolk nuclei of oocytes, but undetectable in the spermatozoa. The fluorescent signal was observed from immediately after fertilization by a maternal contribution. Furthermore, male and female pronuclei were visualized in fertilized eggs, and nuclear dynamics of pronuclear fusion and subsequent cleavage were captured by time-lapse imaging. In contrast, SV40NLS exhibited no activity of nuclear transport in early embryos. In conclusion, the aNLS possesses a strong nuclear localization activity and is a useful probe for fluorescent observation of the pronuclei and nuclei in early developmental stage of medaka. © 2016 Japanese Society of Developmental Biologists.

  20. Early adolescent exposure to alcohol advertising and its relationship to underage drinking.

    PubMed

    Collins, Rebecca L; Ellickson, Phyllis L; McCaffrey, Daniel; Hambarsoomians, Katrin

    2007-06-01

    To determine whether early adolescents who are exposed to alcohol marketing are subsequently more likely to drink. Recent studies suggest that exposure to alcohol ads has a limited influence on drinking in mid-adolescence. Early adolescents may be more vulnerable to alcohol advertising effects. Two in-school surveys of 1786 South Dakota youth measured exposure to television beer advertisements, alcohol ads in magazines, in-store beer displays and beer concessions, radio-listening time, and ownership of beer promotional items during 6th grade, and drinking intentions and behavior at 7th grade. Multivariate regression equations predicted the two drinking outcomes using the advertising exposure variables and controlling for psychosocial factors and prior drinking. After adjusting for covariates, the joint effect of exposure to advertising from all six sources at grade 6 was strongly predictive of grade 7 drinking and grade 7 intentions to drink. Youth in the 75th percentile of alcohol marketing exposure had a predicted probability of drinking that was 50% greater than that of youth in the 25th percentile. Although causal effects are uncertain, policy makers should consider limiting a variety of marketing practices that could contribute to drinking in early adolescence.

  1. Early Embryonic Androgen Exposure Induces Transgenerational Epigenetic and Metabolic Changes

    PubMed Central

    Xu, Ning; Chua, Angela K.; Jiang, Hong; Liu, Ning-Ai

    2014-01-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study. PMID:24992182

  2. Multigenerational effects of benzo[a]pyrene exposure on survival and developmental deformities in zebrafish larvae

    PubMed Central

    Corrales, Jone; Thornton, Cammi; White, Mallory; Willett, Kristine L.

    2014-01-01

    In the aquatic environment, adverse outcomes from dietary polycyclic aromatic hydrocarbon (PAH) exposure are poorly understood, and multigenerational developmental effects following exposure to PAHs are in need of exploration. Benzo[a]pyrene (BaP), a model PAH, is a recognized carcinogen and endocrine disruptor. Here adult zebrafish (F0) were fed 0, 10, 114, or 1012 μg BaP/g diet at a feed rate of 1% body weight twice/day for 21 days. Eggs were collected and embryos (F1) were raised to assess mortality and time to hatch at 24, 32, 48, 56, 72, 80, and 96 hours post fertilization (hpf) before scoring developmental deformities at 96 hpf. F1 generation fish were raised to produce the F2 generation followed by the F3 and F4 generations. Mortality significantly increased in the higher dose groups of BaP (2.3 and 20 μg BaP/g fish) in the F1 generation while there were no differences in the F2, F3, or F4 generations. In addition, premature hatching was observed among the surviving fish in the higher dose of the F1 generation, but no differences were found in the F2 and F3 generations. While only the adult F0 generation was BaP-treated, this exposure resulted in multigenerational phenotypic impacts on at least two generations (F1 and F2). Body morphology deformities (shape of body, tail, and pectoral fins) were the most severe abnormality observed, and these were most extreme in the F1 generation but still present in the F2 but not F3 generations. Craniofacial structures (length of brain regions, size of optic and otic vesicles, and jaw deformities), although not significantly affected in the F1 generation, emerged as significant deformities in the F2 generation. Future work will attempt to molecularly anchor the persistent multigenerational phenotypic deformities noted in this study caused by BaP exposure. PMID:24440964

  3. Developmental sub-chronic exposure to chlorpyrifos reduces anxiety-related behavior in zebrafish larvae

    PubMed Central

    Richendrfer, Holly; Pelkowski, Sean D.; Colwill, Ruth M.; Créton, Robbert

    2013-01-01

    Neurobehavioral disorders such as anxiety, autism, and attention deficit hyperactivity disorders are typically influenced by genetic and environmental factors. Although several genetic risk factors have been identified in recent years, little is known about the environmental factors that either cause neurobehavioral disorders or contribute to their progression in genetically predisposed individuals. One environmental factor that has raised concerns is chlorpyrifos, an organophosphate pesticide that is widely used in agriculture and is found ubiquitously in the environment. In the present study, we examined the effects of sub-chronic chlorpyrifos exposure on anxiety-related behavior during development using zebrafish larvae. We found that sub-chronic exposure to 0.01 or 0.1 μM chlorpyrifos during development induces specific behavioral defects in 7-day-old zebrafish larvae. The larvae displayed decreases in swim speed and thigmotaxis, yet no changes in avoidance behavior were seen. Exposure to 0.001 μM chlorpyrifos did not affect swimming, thigmotaxis, or avoidance behavior and exposure to 1 μM chlorpyrifos induced behavioral defects, but also induced defects in larval morphology. Since thigmotaxis, a preference for the edge, is an anxiety-related behavior in zebrafish larvae, we propose that sub-chronic chlorpyrifos exposure interferes with the development of anxiety-related behaviors. The results of this study provide a good starting point for examination of the molecular, cellular, developmental, and neural mechanisms that are affected by environmentally relevant concentrations of organophosphate pesticides. A more detailed understanding of these mechanisms is important for the development of predictive models and refined health policies to prevent toxicant-induced neurobehavioral disorders. PMID:22579535

  4. Early life exposure to ambient air pollution and childhood asthma in China.

    PubMed

    Deng, Qihong; Lu, Chan; Norbäck, Dan; Bornehag, Carl-Gustaf; Zhang, Yinping; Liu, Weiwei; Yuan, Hong; Sundell, Jan

    2015-11-01

    Early life is suggested to be a critical time in determining subsequent asthma development, but the extent to which the effect of early-life exposure to ambient air pollution on childhood asthma is unclear. We investigated doctor-diagnosed asthma in preschool children due to exposure to ambient air pollution in utero and during the first year of life. In total 2490 children aged 3-6 years participated in a questionnaire study regarding doctor-diagnosed asthma between September 2011 and January 2012 in China. Children's exposure to critical air pollutants, sulfur dioxide (SO2) as proxy of industrial air pollution, nitrogen dioxide (NO2) as proxy of traffic pollution, and particulate matter≤10µm in diameter (PM10) as a mixture, was estimated from the concentrations measured at the ambient air quality monitoring stations by using an inverse distance weighted (IDW) method. Logistic regression analysis was employed to determine the relationship between early-life exposure and childhood asthma in terms of odds ratio (OR) and 95% confidence interval (CI). Association between early-life exposure to air pollutants and childhood asthma was observed. SO2 and NO2 had significant associations with adjusted OR (95% CI) of 1.45 (1.02-2.07) and 1.74 (1.15-2.62) in utero and 1.62 (1.01-2.60) and 1.90 (1.20-3.00) during the first year for per 50 µg/m(3) and 15 µg/m(3) increase respectively. Exposure to the combined high level of SO2 and NO2 in China significantly elevated the asthmatic risk with adjusted OR (95% CI) of 1.76 (1.18-2.64) in utero and 1.85 (1.22-2.79) during the first year compared to the low level exposure. The associations were higher for males and the younger children aged 3-4 than females and the older children aged 5-6. Early-life exposure to ambient air pollution is associated with childhood asthma during which the level and source of air pollution play important roles. The high level and nature of combined industrial and traffic air pollution in China may

  5. Latent carcinogenicity of early-life exposure to dichloroacetic acid in mice

    EPA Science Inventory

    AbstractEnvironmental exposures occurring early in life may have an important influence on cancer risk later in life. Here we investigated carryover effects of young-adult exposure to dichloroacetic acid (DCA), a small molecule analog of pyruvate and low-level environmental cont...

  6. Developmental origins of adult health and disease: the role of periconceptional and foetal nutrition.

    PubMed

    McMillen, I Caroline; MacLaughlin, Severence M; Muhlhausler, Beverly S; Gentili, Sheridan; Duffield, Jaime L; Morrison, Janna L

    2008-02-01

    The 'developmental origins of adult health and disease' hypothesis stated that environmental factors, particularly maternal undernutrition, act in early life to programme the risks for adverse health outcomes, such as cardiovascular disease, obesity and the metabolic syndrome in adult life. Early physiological tradeoffs, including activation of the foetal hypothalamo-pituitary-adrenal (HPA) axis, confer an early fitness advantage such as foetal survival, while incurring delayed health costs. We review the evidence that such tradeoffs are anticipated from conception and that the periconceptional nutritional environment can programme the developmental trajectory of the stress axis and the systems that maintain and regulate arterial blood pressure. There is also evidence that restriction of placental growth and function, results in an increased dependence of the maintenance of arterial blood pressure on the sequential recruitment of the sympathetic nervous system and HPA axis. While the 'early origins of adult disease' hypothesis has focussed on the impact of maternal undernutrition, an increase in maternal nutritional intake and in maternal body mass intake has become more prevalent in developed countries. Exposure to overnutrition in foetal life results in a series of central and peripheral neuroendocrine responses that in turn programme development of the fat cell and of the central appetite regulatory system. While the physiological responses to foetal undernutrition result in the physiological trade off between foetal survival and poor health outcomes that emerge after reproductive senescence, exposure to early overnutrition results in poor health outcomes that emerge in childhood and adolescence. Thus, the effects of early overnutrition can directly impact on reproductive fitness and on the health of the next generation. In this context, the physiological responses to relative overnutrition in early life may directly contribute to an intergenerational cycle of

  7. Developmental Implications for Prenatal Exposure to Environmental Toxins: Consumption Habits of Pregnant Women and Prenatal Nicotine Exposure in a Mouse Model

    NASA Astrophysics Data System (ADS)

    Santiago, Sarah Emily

    This dissertation provides a discussion of the effects of maternal consumption of environmental toxins, and will hopefully contribute to the prevention and understanding of developmental disorders and physiological deficits. Developing systems are particularly susceptible to toxic insults, and small changes in utero can result in long-term deficits. Chapter one of this dissertation reviews the potential teratogenicity of nicotine, alcohol, caffeine, MeHg, PCBs, BPA, and tap water contaminants, so as to characterize the current body of literature detailing the effects and implications of prenatal exposure to toxins. In chapter two, research on maternal consumption habits is presented, with an emphasis on commonly-consumed, potentially-teratogenic substances. Occurrences and frequencies of maternal intake of healthy and unhealthy foods, beverages, and medications in a population of predominantly Hispanic women in Southern California were assessed using the Food, Beverage, and Medication Intake Questionnaire (FBMIQ). The described study reveals that a proportion of pregnant women consumed BPA, MeHg, caffeine, and alcohol at varied levels during pregnancy. The following chapters provide an in-depth analysis of the postnatal effects of a particular neuroteratogen, nicotine, which has been shown to impart various detrimental postnatal effects on exposed offspring. A CD-1 mouse model of prenatal nicotine exposure (PNE) was used to analyze aspects of the brain and neocortex that may underly some of the cognitive and behavioral phenotypes seen with PNE. Analyses included postnatal measurements of brain weight, brain widths and lengths, development of neocortical circuitry, and cortical thickness measures. Exposed mice were found to exhibit reduced brain and body weights at birth, a phenotype that recovered by postnatal day 10. No changes in neocortical circuity or thickness in sensory and motor areas were found. PNE also resulted in persistent behavioral effects, including

  8. Brain circuit imprints of developmental 17α-Ethinylestradiol exposure in guppies (Poecilia reticulata): persistent effects on anxiety but not on reproductive behaviour.

    PubMed

    Volkova, Kristina; Reyhanian, Nasim; Kot-Wasik, Agata; Olsén, Håkan; Porsch-Hällström, Inger; Hallgren, Stefan

    2012-09-01

    The effects of endocrine disruptors may vary with the timing of exposure. The physiological implications of adult exposure are present during and shortly after exposure while embryonic exposure can imprint changes manifested in adulthood. In this study, guppy (Poecilia reticulata) embryos were exposed to 2 and 20 ng/L of 17α-ethinylestradiol during development via the mother and reared in clean water from gestation until 6 months of age. As adults, fish exposed to 20 ng/L during development showed significantly altered behaviour in the Novel Tank test, where anxiety is determined as the tendency to remain at the bottom upon introduction into an unfamiliar tank. 17α-ethinylestradiol treatment increased the latency time before swimming to the upper half of the tank and decreased the number of transitions to the upper half. In control females the basal stress behaviour responses were significantly higher than in males, as indicated by longer latency period and fewer and shorter visits to the upper half, supporting the importance of gonadal hormones for the behaviour. The anxiety increased, however, with treatment in both sexes, suggesting that the observed response is not entirely due to feminisation of the males. Shoaling behaviour, analysed as tendency to leave a shoal of littermates, was neither sex-differentiated nor changed by treatment. Also male reproductive behaviour, brain aromatase activity and testes histology, previously shown to respond to oestrogen exposure in adult guppy, were unaffected by the developmental treatment. This suggests that the stress system in the guppy is very sensitive to 17α-ethinylestradiol, which possibly causes an early organisational imprint on the brain circuit that regulates stress reactions. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The Effect of Early Childhood Developmental Program Attendance on Future School Enrollment in Rural North India

    ERIC Educational Resources Information Center

    Hazarika, Gautam; Viren, Vejoya

    2013-01-01

    This paper examines the effect of prior participation in early childhood developmental programs, considered endogenous, upon 7-18 years olds' school enrollment in rural North India. Analyses by age group of data from the World Bank's 1997-98 Survey of Living Conditions in Uttar Pradesh and Bihar reveal that 7-10 year olds, 11-14 year olds, and…

  10. Developmental pathways from childhood conduct problems to early adult depression: findings from the ALSPAC cohort.

    PubMed

    Stringaris, Argyris; Lewis, Glyn; Maughan, Barbara

    2014-07-01

    Pathways from early-life conduct problems to young adult depression remain poorly understood. To test developmental pathways from early-life conduct problems to depression at age 18. Data (n = 3542) came from the Avon Longitudinal Study of Parents and Children (ALSPAC). Previously derived conduct problem trajectories (ages 4-13 years) were used to examine associations with depression from ages 10 to 18 years, and the role of early childhood factors as potential confounders. Over 43% of young adults with depression in the ALSPAC cohort had a history of child or adolescent conduct problems, yielding a population attributable fraction of 0.15 (95% CI 0.08-0.22). The association between conduct problems and depression at age 18 was considerable even after adjusting for prior depression (odds ratio 1.55, 95% CI 1.24-1.94). Early-onset persistent conduct problems carried the highest risk for later depression. Irritability characterised depression for those with a history of conduct problems. Early-life conduct problems are robustly associated with later depressive disorder and may be useful targets for early intervention. Royal College of Psychiatrists.

  11. Impact of Early Postnatal Androgen Exposure on Voice Development

    PubMed Central

    Grisa, Leila; Leonel, Maria L.; Gonçalves, Maria I. R.; Pletsch, Francisco; Sade, Elis R.; Custódio, Gislaine; Zagonel, Ivete P. S.; Longui, Carlos A.; Figueiredo, Bonald C.

    2012-01-01

    Background The impact of early postnatal androgen exposure on female laryngeal tissue may depend on certain characteristics of this exposure. We assessed the impact of the dose, duration, and timing of early androgen exposure on the vocal development of female subjects who had been treated for adrenocortical tumor (ACT) in childhood. Methods The long-term effects of androgen exposure on the fundamental vocal frequency (F0), vocal pitch, and final height and the presence of virilizing signs were examined in 9 adult (age, 18.4 to 33.5 years) and 10 adolescent (13.6 to 17.8 years) female ACT patients. We also compared the current values with values obtained 0.9 years to 7.4 years after these subjects had undergone ACT surgery, a period during which they had shown normal androgen levels. Results Of the 19 subjects, 17 (89%) had been diagnosed with ACT before 4 years of age, 1 (5%) at 8.16 years, and 1 (5%) at 10.75 years. Androgen exposure (2 to 30 months) was sufficiently strong to cause pubic hair growth in all subjects and clitoromegaly in 74% (14/19) of the subjects, but did not reduce their height from the target value. Although androgen exposure induced a remarkable reduction in F0 (132 Hz) and moderate pitch virilization in 1 subject and partial F0 virilization, resulting in F0 of 165 and 169 Hz, in 2 subjects, the majority had normal F0 ranging from 189 to 245 Hz. Conclusions Female laryngeal tissue is less sensitive to androgen exposure between birth and adrenarche than during other periods. Differential larynx sensitivity to androgen exposure in childhood and F0 irreversibility in adulthood are age-, concentration-, duration-, and timing-dependent events that may also be affected by exposure to inhibitory or stimulatory hormones. Further studies are required to better characterize each of these factors. PMID:23284635

  12. Late emerging effects of prenatal and early postnatal nicotine exposure on the cholinergic system and anxiety-like behavior.

    PubMed

    Eppolito, Amy K; Bachus, Susan E; McDonald, Craig G; Meador-Woodruff, James H; Smith, Robert F

    2010-01-01

    Animal models of prenatal nicotine exposure clearly indicate that nicotine is a neuroteratogen. Some of the persisting effects of prenatal nicotine exposure include low birth weight, behavioral changes and deficits in cognitive function, although few studies have looked for neurobehavioral and neurochemical effects that might persist throughout the lifespan. Pregnant rats were given continuous infusions of nicotine (0.96mg/kg/day or 2.0mg/kg/day, freebase) continuing through the third trimester equivalent, a period of rapid brain development. Because the third trimester equivalent occurs postnatally in the rat (roughly the first week of life) nicotine administration to neonate pups continued via maternal milk until postnatal day (P) 10. Exposure to nicotine during pre- and early postnatal development had an anxiogenic effect on adult rats (P75) in the elevated plus maze (EPM), and blocked extinction learning in a fear conditioning paradigm, suggesting that pre- and postnatal nicotine exposure affect anxiety-like behavior and cognitive function well into adulthood. In contrast, nicotine exposure had no effect on anxiety-like behaviors in the EPM in adolescent animals (P30). Analysis of mRNA for the alpha4, alpha7, and beta2 subunits of nicotinic acetylcholine receptors revealed lower expression of these subunits in the adult hippocampus and medial prefrontal cortex following pre- and postnatal nicotine exposure, suggesting that nicotine altered the developmental trajectory of the brain. These long-term behavioral and neurochemical changes strengthen the case for discouraging cigarette smoking during pregnancy and clearly indicate that the use of the patch as a smoking cessation aid during pregnancy is not a safe alternative.

  13. Sex-dependent effects of developmental exposure to bisphenol A and ethinyl estradiol on metabolic parameters and voluntary physical activity

    PubMed Central

    Johnson, S. A.; Painter, M. S.; Javurek, A. B.; Ellersieck, M. R.; Wiedmeyer, C. E.; Thyfault, J. P.; Rosenfeld, C. S.

    2016-01-01

    Endocrine disrupting chemicals (EDC) have received considerable attention as potential obesogens. Past studies examining obesogenic potential of one widespread EDC, bisphenol A (BPA), have generally focused on metabolic and adipose tissue effects. However, physical inactivity has been proposed to be a leading cause of obesity. A paucity of studies has considered whether EDC, including BPA, affects this behavior. To test whether early exposure to BPA and ethinyl estradiol (EE, estrogen present in birth control pills) results in metabolic and such behavioral disruptions, California mice developmentally exposed to BPA and EE were tested as adults for energy expenditure (indirect calorimetry), body composition (echoMRI) and physical activity (measured by beam breaks and voluntary wheel running). Serum glucose and metabolic hormones were measured. No differences in body weight or food consumption were detected. BPA-exposed females exhibited greater variation in weight than females in control and EE groups. During the dark and light cycles, BPA females exhibited a higher average respiratory quotient than control females, indicative of metabolizing carbohydrates rather than fats. Various assessments of voluntary physical activity in the home cage confirmed that during the dark cycle, BPA and EE-exposed females were significantly less active in this setting than control females. Similar effects were not observed in BPA or EE-exposed males. No significant differences were detected in serum glucose, insulin, adiponectin and leptin concentrations. Results suggest that females developmentally exposed to BPA exhibit decreased motivation to engage in voluntary physical activity and altered metabolism of carbohydrates v. fats, which could have important health implications. PMID:26378919

  14. Relations of Early Motor Skills on Age and Socialization, Communication, and Daily Living in Young Children With Developmental Disabilities.

    PubMed

    MacDonald, Megan; Ross, Samantha; McIntyre, Laura Lee; Tepfer, Amanda

    2017-04-01

    Young children with developmental disabilities experience known deficits in salient child behaviors, such as social behaviors, communication, and aspects of daily living, behaviors that generally improve with chronological age. The purpose of this study was to examine the mediating effects of motor skills on relations of age and salient child behaviors in a group of young children with developmental disabilities, thus tapping into the potential influences of motor skills in the development of salient child behaviors. One hundred thirteen young children with developmental disabilities participated in this study. Independent mediation analysis, with gender as a moderator between the mediating and outcome variable, indicated that motor skills meditated relations between age and socialization, communication, and daily living skills in young male children with developmental disabilities, but not female participants. Findings suggest motor skill content needs to be considered in combination with other child behaviors commonly focused on in early intervention.

  15. Virtual Tissue Models in Developmental Toxicity Research

    EPA Science Inventory

    Prenatal exposure to drugs and chemicals may perturb, directly or indirectly, core developmental processes in the embryo (patterning, morphogenesis, proliferation and apoptosis, and cell differentiation), leading to adverse developmental outcomes. Because embryogenesis entails a...

  16. Developmental Timing of Trauma Exposure Relative to Puberty and the Nature of Psychopathology Among Adolescent Girls.

    PubMed

    Marshall, Amy D

    2016-01-01

    Increased neuroplasticity and neural development during puberty provide a context for which stress and trauma can have dramatic and long-lasting effects on psychological systems; therefore, this study was designed to determine whether exposure to potentially traumatic events during puberty uniquely predicts adolescent girls' psychopathology. Because neural substrates associated with different forms of psychopathology seemingly develop at different rates, the possibility that the developmental timing of trauma relative to puberty predicts the nature of psychopathology (posttraumatic stress disorder [PTSD], depressive, and anxiety disorders) was examined. A subset of 2,899 adolescent girls from the National Comorbidity Survey Replication-Adolescent Supplement who completed the study 2+ years postmenarche was selected. Past-year psychiatric disorders and reports of age of trauma exposure were assessed using the Composite International Diagnostic Interview. Developmental stages were defined as the 2 years after the year of menarche ("postpuberty"), 3 years before and year of menarche ("puberty"), 2 to 6 years before the puberty period ("grade school"), and 4 to 5 years after birth ("infancy-preschool"). Compared to other developmental periods, trauma during puberty conferred significantly more risk (50.47% of model R(2)) for girls' past-year anxiety disorder diagnoses (primarily social phobia), whereas trauma during the grade school period conferred significantly more risk (47.24% of model R(2)) for past-year depressive disorder diagnoses. Recency of trauma best predicted past-year PTSD diagnoses. Supporting rodent models, puberty may be a sensitive period for the impact of trauma on girls' development of an anxiety disorder. Trauma prepuberty or postpuberty distinctly predicts depression or PTSD, suggesting differential etiological processes. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. The human early-life exposome (HELIX): project rationale and design.

    PubMed

    Vrijheid, Martine; Slama, Rémy; Robinson, Oliver; Chatzi, Leda; Coen, Muireann; van den Hazel, Peter; Thomsen, Cathrine; Wright, John; Athersuch, Toby J; Avellana, Narcis; Basagaña, Xavier; Brochot, Celine; Bucchini, Luca; Bustamante, Mariona; Carracedo, Angel; Casas, Maribel; Estivill, Xavier; Fairley, Lesley; van Gent, Diana; Gonzalez, Juan R; Granum, Berit; Gražulevičienė, Regina; Gutzkow, Kristine B; Julvez, Jordi; Keun, Hector C; Kogevinas, Manolis; McEachan, Rosemary R C; Meltzer, Helle Margrete; Sabidó, Eduard; Schwarze, Per E; Siroux, Valérie; Sunyer, Jordi; Want, Elizabeth J; Zeman, Florence; Nieuwenhuijsen, Mark J

    2014-06-01

    Developmental periods in early life may be particularly vulnerable to impacts of environmental exposures. Human research on this topic has generally focused on single exposure-health effect relationships. The "exposome" concept encompasses the totality of exposures from conception onward, complementing the genome. The Human Early-Life Exposome (HELIX) project is a new collaborative research project that aims to implement novel exposure assessment and biomarker methods to characterize early-life exposure to multiple environmental factors and associate these with omics biomarkers and child health outcomes, thus characterizing the "early-life exposome." Here we describe the general design of the project. In six existing birth cohort studies in Europe, HELIX will estimate prenatal and postnatal exposure to a broad range of chemical and physical exposures. Exposure models will be developed for the full cohorts totaling 32,000 mother-child pairs, and biomarkers will be measured in a subset of 1,200 mother-child pairs. Nested repeat-sampling panel studies (n = 150) will collect data on biomarker variability, use smartphones to assess mobility and physical activity, and perform personal exposure monitoring. Omics techniques will determine molecular profiles (metabolome, proteome, transcriptome, epigenome) associated with exposures. Statistical methods for multiple exposures will provide exposure-response estimates for fetal and child growth, obesity, neurodevelopment, and respiratory outcomes. A health impact assessment exercise will evaluate risks and benefits of combined exposures. HELIX is one of the first attempts to describe the early-life exposome of European populations and unravel its relation to omics markers and health in childhood. As proof of concept, it will form an important first step toward the life-course exposome.

  18. Early Adversity and Developmental Outcomes: Interaction Between Genetics, Epigenetics, and Social Experiences Across the Life Span.

    PubMed

    Champagne, Frances A

    2010-09-01

    Longitudinal studies in humans demonstrate the association between prenatal and postnatal experiences of adversity and long-term changes in neurodevelopment. These studies raise the question of how experiences become incorporated at a biological level to induce persistent changes in functioning. Laboratory studies using animal models and recent analyses in human cohorts implicate epigenetic mechanisms as a possible route through which these environmental effects are achieved. In particular, there is evidence that changes in DNA methylation are associated with early life experiences with consequences for gene expression and behavior. Despite the potential stability of DNA methylation, it is apparent that this epigenetic mark can be dynamically modified through pharmacological targeting and behavioral experiences. Developmental plasticity may also be achieved through modification of the juvenile environment. Although these juvenile experiences may lead to common endpoints, there is evidence suggesting that the effects of early and later life experiences may be achieved by different molecular pathways. This review discusses evidence for the role of epigenetic mechanisms in shaping developmental trajectories in response to early life experience as well as the potential plasticity that can occur beyond the perinatal period. These studies have implications for approaches to intervention and suggest the importance of considering individual differences in genetic and epigenetic vulnerability in developing treatment strategies. © The Author(s) 2010.

  19. Early Adolescent Exposure to Alcohol Advertising and Its Relationship to Underage Drinking

    PubMed Central

    Collins, Rebecca L.; Ellickson, Phyllis L.; McCaffrey, Daniel; Hambarsoomians, Katrin

    2009-01-01

    Purpose To determine whether early adolescents who are exposed to alcohol marketing are subsequently more likely to drink. Recent studies suggest that exposure to alcohol ads has a limited influence on drinking in mid-adolescence. Early adolescents may be more vulnerable to alcohol advertising effects. Methods Two in-school surveys of 1,786 South Dakota youth measured exposure to television beer advertisements, alcohol ads in magazines, in-store beer displays and beer concessions, radio-listening time, and ownership of beer promotional items during sixth grade, and drinking intentions and behavior at seventh grade. Multivariate regression equations predicted the two drinking outcomes using the advertising exposure variables and controlling for psychosocial factors and prior drinking. Results After adjusting for covariates, the joint effect of exposure to advertising from all six sources at Grade 6 was strongly predictive of Grade 7 drinking and Grade 7 intentions to drink. Youth in the 75th percentile of alcohol marketing exposure had a predicted probability of drinking that was 50% greater than that of youth in the 25th percentile. Conclusions Although causal effects are uncertain, policy makers should consider limiting a variety of marketing practices that could contribute to drinking in early adolescence. PMID:17531759

  20. Does developmental timing of exposure to child maltreatment predict memory performance in adulthood? Results from a large, population-based sample.

    PubMed

    Dunn, Erin C; Busso, Daniel S; Raffeld, Miriam R; Smoller, Jordan W; Nelson, Charles A; Doyle, Alysa E; Luk, Gigi

    2016-01-01

    Although maltreatment is a known risk factor for multiple adverse outcomes across the lifespan, its effects on cognitive development, especially memory, are poorly understood. Using data from a large, nationally representative sample of young adults (Add Health), we examined the effects of physical and sexual abuse on working and short-term memory in adulthood. We examined the association between exposure to maltreatment as well as its timing of first onset after adjusting for covariates. Of our sample, 16.50% of respondents were exposed to physical abuse and 4.36% to sexual abuse by age 17. An analysis comparing unexposed respondents to those exposed to physical or sexual abuse did not yield any significant differences in adult memory performance. However, two developmental time periods emerged as important for shaping memory following exposure to sexual abuse, but in opposite ways. Relative to non-exposed respondents, those exposed to sexual abuse during early childhood (ages 3-5), had better number recall and those first exposed during adolescence (ages 14-17) had worse number recall. However, other variables, including socioeconomic status, played a larger role (than maltreatment) on working and short-term memory. We conclude that a simple examination of "exposed" versus "unexposed" respondents may obscure potentially important within-group differences that are revealed by examining the effects of age at onset to maltreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae.

    PubMed

    Di Paolo, Carolina; Groh, Ksenia J; Zennegg, Markus; Vermeirssen, Etiënne L M; Murk, Albertinka J; Eggen, Rik I L; Hollert, Henner; Werner, Inge; Schirmer, Kristin

    2015-12-01

    The occurrence of chronic or delayed toxicity resulting from the exposure to sublethal chemical concentrations is an increasing concern in environmental risk assessment. The Fish Embryo Toxicity (FET) test with zebrafish provides a reliable prediction of acute toxicity in adult fish, but it cannot yet be applied to predict the occurrence of chronic or delayed toxicity. Identification of sublethal FET endpoints that can assist in predicting the occurrence of chronic or delayed toxicity would be advantageous. The present study characterized the occurrence of delayed toxicity in zebrafish larvae following early exposure to PCB126, previously described to cause delayed effects in the common sole. The first aim was to investigate the occurrence and temporal profiles of delayed toxicity during zebrafish larval development and compare them to those previously described for sole to evaluate the suitability of zebrafish as a model fish species for delayed toxicity assessment. The second aim was to examine the correlation between the sublethal endpoints assessed during embryonal and early larval development and the delayed effects observed during later larval development. After exposure to PCB126 (3-3000ng/L) until 5 days post fertilization (dpf), larvae were reared in clean water until 14 or 28 dpf. Mortality and sublethal morphological and behavioural endpoints were recorded daily, and growth was assessed at 28 dpf. Early life exposure to PCB126 caused delayed mortality (300 ng/L and 3000 ng/L) as well as growth impairment and delayed development (100 ng/L) during the clean water period. Effects on swim bladder inflation and cartilaginous tissues within 5 dpf were the most promising for predicting delayed mortality and sublethal effects, such as decreased standard length, delayed metamorphosis, reduced inflation of swim bladder and column malformations. The EC50 value for swim bladder inflation at 5 dpf (169 ng/L) was similar to the LC50 value at 8 dpf (188 and 202 ng/L in

  2. The Exposure Advantage: Early Exposure to a Multilingual Environment Promotes Effective Communication.

    PubMed

    Fan, Samantha P; Liberman, Zoe; Keysar, Boaz; Kinzler, Katherine D

    2015-07-01

    Early language exposure is essential to developing a formal language system, but may not be sufficient for communicating effectively. To understand a speaker's intention, one must take the speaker's perspective. Multilingual exposure may promote effective communication by enhancing perspective taking. We tested children on a task that required perspective taking to interpret a speaker's intended meaning. Monolingual children failed to interpret the speaker's meaning dramatically more often than both bilingual children and children who were exposed to a multilingual environment but were not bilingual themselves. Children who were merely exposed to a second language performed as well as bilingual children, despite having lower executive-function scores. Thus, the communicative advantages demonstrated by the bilinguals may be social in origin, and not due to enhanced executive control. For millennia, multilingual exposure has been the norm. Our study shows that such an environment may facilitate the development of perspective-taking tools that are critical for effective communication. © The Author(s) 2015.

  3. Discriminative stimulus effects of cocaine and amphetamine in rats following developmental exposure to polychlorinated biphenyls (PCBs)

    PubMed Central

    Sable, Helen J. K.; Monaikul, Supida; Poon, Emily; Eubig, Paul A.; Schantz, Susan L.

    2010-01-01

    Polychlorinated biphenyls (PCBs) are environmental neurotoxicants known to affect the brain dopaminergic (DA) system. This project investigated whether developmental exposure to PCBs would alter the discriminative stimulus effects of psychostimulant drugs known to act on the DA system. Female Long-Evans rats were orally exposed to 0, 3, or 6 mg/kg/day of an environmentally relevant PCB mixture from four weeks prior to breeding through weaning of their litters on PND 21. When they reached adulthood one male and female/litter were trained to discriminate cocaine (10.0 mg/kg, IP) from saline by repeatedly pairing cocaine injections with reinforcement on one operant response lever, and saline injections with reinforcement on the other lever. After response training, generalization tests to four lower doses of cocaine (7.5, 5.0, 2.5, and 1.25 mg/kg, IP) and to amphetamine (1.0, 0.5, 0.25, and 0.125 mg/kg, IP) were given two days/week, with additional training dose days in-between. Percent responding of the PCB-exposed rats on the cocaine-paired lever was significantly higher than that of controls for the highest generalization dose of cocaine, and lower than that of controls for the highest dose of amphetamine. Response rate and percent responding on the cocaine lever did not differ among the exposure groups on the days when the training dose of cocaine was given, suggesting the generalization test results were not due to pre-existing differences in discrimination ability or rate of responding. These findings suggest developmental PCB exposure can alter the interoceptive cues of psychostimulants. PMID:20933596

  4. Reproductive and Developmental Toxicity of Formaldehyde: A Systematic Review

    PubMed Central

    Duong, Anh; Steinmaus, Craig; McHale, Cliona M.; Vaughan, Charles P.; Zhang, Luoping

    2011-01-01

    Formaldehyde, the recently classified carcinogen and ubiquitous environmental contaminant, has long been suspected of causing adverse reproductive and developmental effects, but previous reviews were inconclusive, due in part, to limitations in the design of many of the human population studies. In the current review, we systematically evaluated evidence of an association between formaldehyde exposure and adverse reproductive and developmental effects, in human populations and in vivo animal studies, in the peer-reviewed literature. The mostly retrospective human studies provided evidence of an association of maternal exposure with adverse reproductive and developmental effects. Further assessment of this association by meta-analysis revealed an increased risk of spontaneous abortion (1.76, 95% CI 1.20–2.59, p=0.002) and of all adverse pregnancy outcomes combined (1.54, 95% CI 1.27–1.88, p<0.001), in formaldehyde-exposed women, although differential recall, selection bias, or confounding cannot be ruled out. Evaluation of the animal studies including all routes of exposure, doses and dosing regimens studied, suggested positive associations between formaldehyde exposure and reproductive toxicity, mostly in males. Potential mechanisms underlying formaldehyde-induced reproductive and developmental toxicities, including chromosome and DNA damage (genotoxicity), oxidative stress, altered level and/or function of enzymes, hormones and proteins, apoptosis, toxicogenomic and epigenomic effects (such as DNA methylation), were identified. To clarify these associations, well-designed molecular epidemiologic studies, that include quantitative exposure assessment and diminish confounding factors, should examine both reproductive and developmental outcomes associated with exposure in males and females. Together with mechanistic and animal studies, this will allow us to better understand the systemic effect of formaldehyde exposure. PMID:21787879

  5. Morphological and histomorphological structures of testes and ovaries in early developmental stages of the silkworm, Bombyx mori.

    PubMed

    Sakai, Hiroki; Kirino, Yohei; Katsuma, Susumu; Aoki, Fugaku; Suzuki, Masataka G

    2016-01-01

    The gonad develops as a testis in male or an ovary in female. In the silkworm, B. mori , little is known about testis and ovary in the embryonic stages and early larval stages. In this study, we performed morphological and histomorphological observations of ovaries and testes from the late embryonic stage to the 1st instar larval stage. Results obtained with lack of accurate information on sex of examined individuals may be misleading, thus we performed phenotypic observations of gonads by utilizing sex-limited strain that enables us to easily discriminate female embryos from male ones based on those egg colors. In testis, four testicular follicles were clearly observed in the testis at the first instar larval stage, and boundary layers were formed between the testicular follicles. At the late embryonic stage, the testis consisted of four testicular follicles, while the boundary layers were still obscure. In ovary, four ovarioles were easily recognizable in the ovary at the first instar larval stage, and boundary layers were formed between the ovarioles. However, in the late embryonic stage, it was quite difficult to identify four ovarioles. Morphological characteristics were almost similar between testis and ovary in early developmental stages. Our present study demonstrates that the most reliable difference between testis and ovary in early developmental stages is the attaching point of the duct. Formation and development of the duct may be sensitive to the sex-determining signal and display sexual dimorphism in early embryonic stages.

  6. Early childhood adversity, toxic stress, and the role of the pediatrician: translating developmental science into lifelong health.

    PubMed

    Garner, Andrew S; Shonkoff, Jack P

    2012-01-01

    Advances in a wide range of biological, behavioral, and social sciences are expanding our understanding of how early environmental influences (the ecology) and genetic predispositions (the biologic program) affect learning capacities, adaptive behaviors, lifelong physical and mental health, and adult productivity. A supporting technical report from the American Academy of Pediatrics (AAP) presents an integrated ecobiodevelopmental framework to assist in translating these dramatic advances in developmental science into improved health across the life span. Pediatricians are now armed with new information about the adverse effects of toxic stress on brain development, as well as a deeper understanding of the early life origins of many adult diseases. As trusted authorities in child health and development, pediatric providers must now complement the early identification of developmental concerns with a greater focus on those interventions and community investments that reduce external threats to healthy brain growth. To this end, AAP endorses a developing leadership role for the entire pediatric community-one that mobilizes the scientific expertise of both basic and clinical researchers, the family-centered care of the pediatric medical home, and the public influence of AAP and its state chapters-to catalyze fundamental change in early childhood policy and services. AAP is committed to leveraging science to inform the development of innovative strategies to reduce the precipitants of toxic stress in young children and to mitigate their negative effects on the course of development and health across the life span.

  7. Early Developmental Disturbances of Cortical Inhibitory Neurons: Contribution to Cognitive Deficits in Schizophrenia

    PubMed Central

    Volk, David W.; Lewis, David A.

    2014-01-01

    Cognitive dysfunction is a disabling and core feature of schizophrenia. Cognitive impairments have been linked to disturbances in inhibitory (gamma-aminobutyric acid [GABA]) neurons in the prefrontal cortex. Cognitive deficits are present well before the onset of psychotic symptoms and have been detected in early childhood with developmental delays reported during the first year of life. These data suggest that the pathogenetic process that produces dysfunction of prefrontal GABA neurons in schizophrenia may be related to altered prenatal development. Interestingly, adult postmortem schizophrenia brain tissue studies have provided evidence consistent with a disease process that affects different stages of prenatal development of specific subpopulations of prefrontal GABA neurons. Prenatal ontogeny (ie, birth, proliferation, migration, and phenotypic specification) of distinct subpopulations of cortical GABA neurons is differentially regulated by a host of transcription factors, chemokine receptors, and other molecular markers. In this review article, we propose a strategy to investigate how alterations in the expression of these developmental regulators of subpopulations of cortical GABA neurons may contribute to the pathogenesis of cortical GABA neuron dysfunction and consequently cognitive impairments in schizophrenia. PMID:25053651

  8. Developmental exposure to terbutaline and chlorpyrifos: pharmacotherapy of preterm labor and an environmental neurotoxicant converge on serotonergic systems in neonatal rat brain regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, Justin E.; Meyer, Armando; Centro de Estudos da Saude do Trabalhador e Ecologia Humana, Escola Nacional de Saude Publica, Fundacao Oswaldo Cruz, Rio de Janeiro

    2005-03-01

    Developmental exposure to unrelated neurotoxicants can nevertheless produce similar neurobehavioral outcomes. We examined the effects of developmental exposure to terbutaline, a tocolytic {beta}{sub 2}-adrenoceptor agonist used to arrest preterm labor, and chlorpyrifos (CPF), a widely used organophosphate pesticide, on serotonin (5HT) systems. Treatments were chosen to parallel periods typical of human developmental exposures, terbutaline (10 mg/kg) on postnatal days (PN) 2-5 and CPF (5 mg/kg) on PN11-14, with assessments conducted on PN45, comparing each agent alone as well as sequential administration of both. Although neither treatment affected growth or viability, each elicited similar alterations in factors that are critical tomore » the function of the 5HT synapse: 5HT{sub 1A} receptors, 5HT{sub 2} receptors, and the presynaptic 5HT transporter (5HTT). Either agent elicited global increases in 5HT receptors and the 5HTT in brain regions possessing 5HT cell bodies (midbrain, brainstem) as well as in the hippocampus, which contains 5HT projections. For both terbutaline and CPF, males were affected more than females, although there were some regional disparities in the sex selectivity between the two agents. Both altered 5HT receptor-mediated cell signaling, suppressing stimulatory effects on adenylyl cyclase and enhancing inhibitory effects. When animals were exposed sequentially to both agents, the outcomes were no more than additive and, for many effects, less than additive, suggesting convergence of the two agents on a common set of developmental mechanisms. Our results indicate that 5HT systems represent a target for otherwise unrelated neuroteratogens.« less

  9. Long-term Neurotoxic Effects of Early-life Exposure to Tetrachloroethylene-contaminated Drinking Water.

    PubMed

    Aschengrau, Ann; Janulewicz, Patricia A; White, Roberta F; Vieira, Veronica M; Gallagher, Lisa G; Getz, Kelly D; Webster, Thomas F; Ozonoff, David M

    2016-01-01

    Tetrachloroethene (PCE) is a common environmental and occupational contaminant and an acknowledged neurotoxicant. From 1968 through 1983, widespread contamination of public drinking water supplies with PCE occurred in the Cape Cod region of Massachusetts. The source of the contamination was a vinyl liner applied to the inner surface of water distribution pipes. A retrospective cohort study (the Cape Cod Health Study) was undertaken to examine possible health consequences of early-life exposure to PCE-contaminated drinking water. This review describes the study methods and findings regarding the effects of prenatal and childhood exposure on neurologic outcomes during early adulthood, including vision, neuropsychological functioning, brain structure, risky behaviors, and mental illness. The review also describes the strengths and challenges of conducting population-based epidemiologic research in this unique setting. Participants were identified by cross-matching birth certificates and water system data. Information on health outcomes and confounding variables was collected from self-administered surveys (n = 1689), neuropsychological tests (n = 63), vision examinations (n = 63), and magnetic resonance imaging (n = 42). Early-life exposure to PCE was estimated using a leaching and transport model. The data analysis compared the occurrence of each health outcome among individuals with prenatal and early childhood PCE exposure to unexposed individuals while considering the effect of confounding variables. The study found evidence that early-life exposure to PCE-contaminated drinking water has long-term neurotoxic effects. The strongest associations were seen with illicit drug use, bipolar disorder, and post-traumatic stress disorder. Key strengths of the study were availability of historical data on affected water systems, a relatively high exposure prevalence and wide range of exposure levels, and little confounding. Challenges arose mainly from the historical

  10. USING THE MEDAKA EMBRYO ASSAY TO INVESTIGATE DEVELOPMENTAL ETHANOL TOXICITY.

    EPA Science Inventory

    Ethanol (EtOH) is a well-known developmental toxicant that produces a range of abnormal phenotypes. While the toxic potential of developmental EtOH exposure is well characterized, the effect of the timing of exposure on the extent of toxicity remains unknown. Fish models such as ...

  11. A Review of Nitrates in Drinking Water: Maternal Exposure and Adverse Reproductive and Developmental Outcomes

    PubMed Central

    Manassaram, Deana M.; Backer, Lorraine C.; Moll, Deborah M.

    2006-01-01

    In this review we present an update on maternal exposure to nitrates in drinking water in relation to possible adverse reproductive and developmental effects, and also discuss nitrates in drinking water in the United States. The current standard for nitrates in drinking water is based on retrospective studies and approximates a level that protects infants from methemoglobinemia, but no safety factor is built into the standard. The current standard applies only to public water systems. Drinking water source was related to nitrate exposure (i.e., private systems water was more likely than community system water to have nitrate levels above the maximum contaminant limit). Animal studies have found adverse reproductive effects resulting from higher doses of nitrate or nitrite. The epidemiologic evidence of a direct exposure–response relationship between drinking water nitrate level and adverse reproductive effect is still not clear. However, some reports have suggested an association between exposure to nitrates in drinking water and spontaneous abortions, intrauterine growth restriction, and various birth defects. Uncertainties in epidemiologic studies include the lack of individual exposure assessment that would rule out confounding of the exposure with some other cause. Nitrates may be just one of the contaminants in drinking water contributing to adverse outcomes. We conclude that the current literature does not provide sufficient evidence of a causal relationship between exposure to nitrates in drinking water and adverse reproductive effects. Future studies incorporating individual exposure assessment about users of private wells—the population most at risk—should be considered. PMID:16507452

  12. Early life experience contributes to the developmental programming of depressive-like behaviour, neuroinflammation and oxidative stress.

    PubMed

    Réus, Gislaine Z; Fernandes, Gabrielly C; de Moura, Airam B; Silva, Ritele H; Darabas, Ana Caroline; de Souza, Thays G; Abelaira, Helena M; Carneiro, Celso; Wendhausen, Diogo; Michels, Monique; Pescador, Bruna; Dal-Pizzol, Felipe; Macêdo, Danielle S; Quevedo, João

    2017-12-01

    This study used an animal model of depression induced by maternal care deprivation (MCD) to investigate whether depressive behaviour, neuroinflammation and oxidative stress were underlying factors in developmental programming after early life stress. At postnatal days (PND) 20, 30, 40, and 60, individual subsets of animals were evaluated in behavioural tests and then euthanized to assess cytokine levels and oxidative stress parameters in the prefrontal cortex (PFC), hippocampus and serum. The results showed that MCD did not induce behavioural changes at PND 30 and 40. However, at PND 20 and 60, the rats displayed a depressive-like behaviour in the forced swimming test, without changes in locomotor spontaneous activity. In the brain and serum, the levels of pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α)) were increased, and the anti-inflammatory cytokine (interleukin-10) level was reduced throughout developmental programming (PND 20, 30, 40 and 60). Protein carbonyl levels increased in the brain at PND 30, 40 and 60. Superoxide dismutase (SOD) activity was decreased during all developmental programming phases evaluated in the brain. Catalase (CAT) activity was decreased at PND 20, 40 and 60 in the brain. Our results revealed that "critical episodes" in early life stressful events are able to induce behavioural alterations that persist into adulthood and can stimulate inflammation and oxidative damage in both central and peripheral systems, which are required for distinct patterns of resilience against psychiatric disorders later in life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Interdyad differences in early mother-infant face-to-face communication: real-time dynamics and developmental pathways.

    PubMed

    Lavelli, Manuela; Fogel, Alan

    2013-12-01

    A microgenetic research design with a multiple case study method and a combination of quantitative and qualitative analyses was used to investigate interdyad differences in real-time dynamics and developmental change processes in mother-infant face-to-face communication over the first 3 months of life. Weekly observations of 24 mother-infant dyads with analyses performed dyad by dyad showed that most dyads go through 2 qualitatively different developmental phases of early face-to-face communication: After a phase of mutual attentiveness, mutual engagement begins in Weeks 7-8, with infant smiling and cooing bidirectionally linked with maternal mirroring. This gives rise to sequences of positive feedback that, by the 3rd month, dynamically stabilizes into innovative play routines. However, when there is a lack of bidirectional positive feedback between infant and maternal behaviors, and a lack of permeability of the early communicative patterns to incorporate innovations, the development of the mutual engagement phase is compromised. The findings contribute both to theories of relationship change processes and to clinical work with at-risk mother-infant interactions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  14. Early Exposure to General Anesthesia Disrupts Spatial Organization of Presynaptic Vesicles in Nerve Terminals of the Developing Rat Subiculum.

    PubMed

    Lunardi, N; Oklopcic, A; Prillaman, M; Erisir, A; Jevtovic-Todorovic, V

    2015-10-01

    Exposure to general anesthesia (GA) during critical stages of brain development induces widespread neuronal apoptosis and causes long-lasting behavioral deficits in numerous animal species. Although several studies have focused on the morphological fate of neurons dying acutely by GA-induced developmental neuroapoptosis, the effects of an early exposure to GA on the surviving synapses remain unclear. The aim of this study is to study whether exposure to GA disrupts the fine regulation of the dynamic spatial organization and trafficking of synaptic vesicles in presynaptic terminals. We exposed postnatal day 7 (PND7) rat pups to a clinically relevant anesthetic combination of midazolam, nitrous oxide, and isoflurane and performed a detailed ultrastructural analysis of the synaptic vesicle architecture at presynaptic terminals in the subiculum of rats at PND 12. In addition to a significant decrease in the density of presynaptic vesicles, we observed a reduction of docked vesicles, as well as a reduction of vesicles located within 100 nm from the active zone, in animals 5 days after an initial exposure to GA. We also found that the synaptic vesicles of animals exposed to GA are located more distally with respect to the plasma membrane than those of sham control animals and that the distance between presynaptic vesicles is increased in GA-exposed animals compared to sham controls. We report that exposure of immature rats to GA during critical stages of brain development causes significant disruption of the strategic topography of presynaptic vesicles within the nerve terminals of the subiculum.

  15. Prostate Cancer Risk and DNA Methylation Signatures in Aging Rats following Developmental BPA Exposure: A Dose-Response Analysis.

    PubMed

    Prins, Gail S; Ye, Shu-Hua; Birch, Lynn; Zhang, Xiang; Cheong, Ana; Lin, Han; Calderon-Gierszal, Esther; Groen, Jacob; Hu, Wen-Yang; Ho, Shuk-Mei; van Breemen, Richard B

    2017-07-11

    Previous studies have uncovered heightened prostatic susceptibility to hormone-induced neoplasia from early-life exposure to low-dose bisphenol A (BPA). However, significant data gaps remain that are essential to address for biological relevance and necessary risk assessment. A complete BPA dose-response analysis of prostate lesions across multiple prostatic lobes was conducted that included internal BPA dosimetry, progression to adenocarcinoma with aging and mechanistic connections to epigenetically reprogramed genes. Male neonatal Sprague-Dawley rats were briefly exposed to 0.1 to 5,000 μg BPA/kg BW on postnatal days (PND) 1, 3, and 5. Individual prostate lobes plus periurethral prostatic ducts were evaluated at 7 mo or 1 y of age without or with adult testosterone plus estradiol (T+E) to promote carcinogenesis. DNA methylation of five genes was quantified by bisulfite genomic sequencing in d-200 dorsal prostates across BPA doses. Serum free-BPA and BPA-glucuronide were quantitated in sera of individual PND 3 pups collected 1 hr postexposure utilizing ultra-high-pressure tandem mass spectrometry (UHPLC-MS-MS). The lowest BPA dose initiated maximal hormonal carcinogenesis in lateral prostates despite undetectable free BPA 1 hr postexposure. Further, prostatic intraepithelial neoplasia (PIN) progressed to carcinoma in rats given neonatal low-dose BPA with adult T+E but not in rats given adult T+E alone. The dorsal and ventral lobes and periurethral prostatic ducts exhibited a nonmonotonic dose response with peak PIN, proliferation and apoptotic values at 10–100 μg/kg BW. This was paralleled by nonmonotonic and dose-specific DNA hypomethylation of genes that confer carcinogenic risk, with greatest hypomethylation at the lowest BPA doses. Developmental BPA exposures heighten prostate cancer susceptibility in a complex dose- and lobe-specific manner. Importantly, elevated carcinogenic risk is found at doses that yield undetectable serum free BPA. Dose

  16. Prostate Cancer Risk and DNA Methylation Signatures in Aging Rats following Developmental BPA Exposure: A Dose–Response Analysis

    PubMed Central

    Ye, Shu-Hua; Birch, Lynn; Zhang, Xiang; Cheong, Ana; Lin, Han; Calderon-Gierszal, Esther; Groen, Jacob; Hu, Wen-Yang; Ho, Shuk-Mei; van Breemen, Richard B.

    2017-01-01

    Background: Previous studies have uncovered heightened prostatic susceptibility to hormone-induced neoplasia from early-life exposure to low-dose bisphenol A (BPA). However, significant data gaps remain that are essential to address for biological relevance and necessary risk assessment. Objectives: A complete BPA dose–response analysis of prostate lesions across multiple prostatic lobes was conducted that included internal BPA dosimetry, progression to adenocarcinoma with aging and mechanistic connections to epigenetically reprogramed genes. Methods: Male neonatal Sprague-Dawley rats were briefly exposed to 0.1 to 5,000μg BPA/kg BW on postnatal days (PND) 1, 3, and 5. Individual prostate lobes plus periurethral prostatic ducts were evaluated at 7 mo or 1 y of age without or with adult testosterone plus estradiol (T+E) to promote carcinogenesis. DNA methylation of five genes was quantified by bisulfite genomic sequencing in d-200 dorsal prostates across BPA doses. Serum free-BPA and BPA-glucuronide were quantitated in sera of individual PND 3 pups collected 1 hr postexposure utilizing ultra-high-pressure tandem mass spectrometry (UHPLC-MS-MS). Results: The lowest BPA dose initiated maximal hormonal carcinogenesis in lateral prostates despite undetectable free BPA 1 hr postexposure. Further, prostatic intraepithelial neoplasia (PIN) progressed to carcinoma in rats given neonatal low-dose BPA with adult T+E but not in rats given adult T+E alone. The dorsal and ventral lobes and periurethral prostatic ducts exhibited a nonmonotonic dose response with peak PIN, proliferation and apoptotic values at 10–100μg/kg BW. This was paralleled by nonmonotonic and dose-specific DNA hypomethylation of genes that confer carcinogenic risk, with greatest hypomethylation at the lowest BPA doses. Conclusions: Developmental BPA exposures heighten prostate cancer susceptibility in a complex dose- and lobe-specific manner. Importantly, elevated carcinogenic risk is found at

  17. Is Lead Exposure in Early Life An Environmental Risk Factor for Schizophrenia? Neurobiological Connections and Testable Hypotheses

    PubMed Central

    Guilarte, Tomás R.; Opler, Mark; Pletnikov, Mikhail

    2013-01-01

    Schizophrenia is a devastating neuropsychiatric disorder of unknown etiology. There is general agreement in the scientific community that schizophrenia is a disorder of neurodevelopmental origin in which both genes and environmental factors come together to produce a schizophrenia phenotype later in life. The challenging questions have been which genes and what environmental factors? Although there is evidence that different chromosome loci and several genes impart susceptibility for schizophrenia; and epidemiological studies point to broad aspects of the environment, only recently there has been an interest in studying gene × environment interactions. Recent evidence of a potential association between prenatal lead (Pb2+) exposure and schizophrenia precipitated the search for plausible neurobiological connections. The most promising connection is that in schizophrenia and in developmental Pb2+ exposure there is strong evidence for hypoactivity of the N-methyl-d-aspartate (NMDA) subtype of excitatory amino acid receptors as an underlying neurobiological mechanism in both conditions. A hypofunction of the NMDA receptor (NMDAR) complex during critical periods of development may alter neurobiological processes that are essential for brain growth and wiring, synaptic plasticity and cognitive and behavioral outcomes associated with schizophrenia. We also describe on-going proof of concept gene-environment interaction studies of early life Pb2+ exposure in mice expressing the human mutant form of the disrupted in schizophrenia 1 (DISC-1) gene, a gene that is strongly associated with schizophrenia and allied mental disorders. PMID:22178136

  18. DEVELOPMENTAL DISRUPTION OF THYROID HORMONE: CORRELATIONS WITH HEARING DYSFUNCTION IN RATS.

    EPA Science Inventory

    A manuscript presents evidence that thyroxine (T4) is a good biomarker-of-effect for developmental neurotoxicity associated with exposure to environmental thyrotoxicants. A major uncertainty in assessing the risks of developmental exposure to thyrotoxicants is the lack of a clear...

  19. Developmental pathways from childhood conduct problems to early adult depression: findings from the ALSPAC cohort

    PubMed Central

    Stringaris, Argyris; Lewis, Glyn; Maughan, Barbara

    2014-01-01

    Background Pathways from early-life conduct problems to young adult depression remain poorly understood. Aims To test developmental pathways from early-life conduct problems to depression at age 18. Method Data (n = 3542) came from the Avon Longitudinal Study of Parents and Children (ALSPAC). Previously derived conduct problem trajectories (ages 4-13 years) were used to examine associations with depression from ages 10 to 18 years, and the role of early childhood factors as potential confounders. Results Over 43% of young adults with depression in the ALSPAC cohort had a history of child or adolescent conduct problems, yielding a population attributable fraction of 0.15 (95% CI 0.08-0.22). The association between conduct problems and depression at age 18 was considerable even after adjusting for prior depression (odds ratio 1.55, 95% CI 1.24-1.94). Early-onset persistent conduct problems carried the highest risk for later depression. Irritability characterised depression for those with a history of conduct problems. Conclusions Early-life conduct problems are robustly associated with later depressive disorder and may be useful targets for early intervention. PMID:24764545

  20. Developmental Trajectories of Early Communication Skills

    ERIC Educational Resources Information Center

    Maatta, Sira; Laakso, Marja-Leena; Tolvanen, Asko; Ahonen, Timo; Aro, Tuija

    2012-01-01

    Purpose: This study focused on developmental trajectories of prelinguistic communication skills and their connections to later parent-reported language difficulties. Method: The participants represent a subset of a community-based sample of 508 children. Data include parent reports of prelinguistic communication skills at 12, 15, 18, and 21 months…

  1. Early object labels: the case for a developmental lexical principles framework.

    PubMed

    Golinkoff, R M; Mervis, C B; Hirsh-Pasek, K

    1994-02-01

    Universally, object names make up the largest proportion of any word type found in children's early lexicons. Here we present and critically evaluate a set of six lexical principles (some previously proposed and some new) for making object label learning a manageable task. Overall, the principles have the effect of reducing the amount of information that language-learning children must consider for what a new word might mean. These principles are constructed by children in a two-tiered developmental sequence, as a function of their sensitivity to linguistic input, contextual information, and social-interactional cues. Thus, the process of lexical acquisition changes as a result of the particular principles a given child has at his or her disposal. For children who have only the principles of the first tier (reference, extendibility, and object scope), word learning has a deliberate and laborious look. The principles of the second tier (categorical scope, novel name-nameless category' or N3C, and conventionality) enable the child to acquire many new labels rapidly. The present unified account is argued to have a number of advantages over treating such principles separately and non-developmentally. Further, the explicit recognition that the acquisition and operation of these principles is influenced by the child's interpretation of both linguistic and non-linguistic input is seen as an advance.

  2. Exposure to PFOS, PFHxS, or PFHxA, but not GenX, Nafion BP1, or ADONA, Elicits Developmental Neurotoxicity in Larval Zebrafish

    EPA Science Inventory

    Exposure to polyfluoroalkyl substances (PFAS) like perfluorooctane sulfonic acid (PFOS) or perfluorooctanoic acid (PFOA) are associated with developmental toxicity, neurotoxicity, and carcinogenesis. Legacy PFAS have therefore been replaced with shorter carbon chain and polyfluor...

  3. Sex-dependent effects of developmental exposure to different pesticides on spatial learning. The role of induced neuroinflammation in the hippocampus.

    PubMed

    Gómez-Giménez, Belén; Llansola, Marta; Hernández-Rabaza, Vicente; Cabrera-Pastor, Andrea; Malaguarnera, Michele; Agusti, Ana; Felipo, Vicente

    2017-01-01

    The use of pesticides has been associated with impaired neurodevelopment in children. The aims of this work were to assess: 1) the effects on spatial learning of developmental exposure to pesticides 2) if the effects are sex-dependent and 3) if hippocampal neuroinflammation is associated with the impairment of spatial learning. We analyzed the effects of developmental exposure to four pesticides: chlorpyrifos, carbaryl, endosulfan and cypermethrin. Exposure was from gestational day 7 to post-natal day 21 and spatial learning and memory was assessed when the rats were young adults. The effects of pesticides on spatial learning were pesticide and gender-dependent. Carbaryl did not affect spatial learning in males or females. Endosulfan and chlorpyrifos impaired learning in males but not in females. Cypermethrin improved spatial learning in the Morris water maze both in males and females while impaired learning in the radial maze only in males. Spatial learning ability was lower in control female rats than in males. All pesticides induced neuroinflammation, increasing IL-1b content in the hippocampus and there is a negative correlation between IL-1b levels in the hippocampus and spatial learning. Neuroinflammation would contribute to the effects of pesticides on spatial learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Excess Imidacloprid Exposure Causes the Heart Tube Malformation of Chick Embryos.

    PubMed

    Gao, Lin-Rui; Li, Shuai; Zhang, Jing; Liang, Chang; Chen, En-Ni; Zhang, Shi-Yao; Chuai, Manli; Bao, Yong-Ping; Wang, Guang; Yang, Xuesong

    2016-11-30

    As a neonicotinoid pesticide, imidacloprid is widely used to control sucking insects on agricultural planting and fleas on domestic animals. However, the extent to which imidacloprid exposure has an influence on cardiogensis in early embryogenesis is still poorly understood. In vertebrates, the heart is the first organ to be formed. In this study, to address whether imidacloprid exposure affects early heart development, the early chick embryo has been used as an experimental model because of its accessibility at its early developmental stage. The results demonstrate that exposure of the early chick embryo to imidacloprid caused malformation of heart tube. Furthermore, the data reveal that down-regulation of GATA4, NKX2.5, and BMP4 and up-regulation of Wnt3a led to aberrant cardiomyocyte differentiation. In addition, imidacloprid exposure interfered with basement membrane breakdown, E-cadherin/laminin expression, and mesoderm formation during the epithelial-mesenchymal transition (EMT) in gastrula chick embryos. Finally, the DiI-labeled cell migration trajectory indicated that imidacloprid restricted the cell migration of cardiac progenitors to primary heart field in gastrula chick embryos. A similar observation was also obtained from the cell migration assay of scratch wounds in vitro. Additionally, imidacloprid exposure negatively affected the cytoskeleton structure and expression of corresponding adhesion molecules. Taken together, these results reveal that the improper EMT, cardiac progenitor migration, and differentiation are responsible for imidacloprid exposure-induced malformation of heart tube during chick embryo development.

  5. Punishment insensitivity in early childhood: A developmental, dimensional approach

    PubMed Central

    Nichols, Sara R.; Briggs-Gowan, Margaret; Estabrook, Ryne; Burns, James; Kestler, Jacqueline; Berman, Grace; Henry, David; Wakschlag, Lauren

    2014-01-01

    Impairment in learning from punishment ("punishment insensitivity") is an established feature of severe antisocial behavior in adults and youth but it has not been well studied as a developmental phenomenon. In early childhood, differentiating a normal:abnormal spectrum of punishment insensitivity is key for distinguishing normative misbehavior from atypical manifestations. This study employed a novel measure, the Multidimensional Assessment Profile of Disruptive Behavior (MAPDB), to examine the distribution, dimensionality, and external validity of punishment insensitivity in a large, demographically diverse community sample of preschoolers (three-five years) recruited from pediatric clinics (N=1,855). Caregivers completed surveys from which a seven-item Punishment Insensitivity scale was derived. Findings indicated that Punishment Insensitivity behaviors are relatively common in young children, with at least 50% of preschoolers exhibiting them sometimes. Item response theory analyses revealed a Punishment Insensitivity spectrum. Items varied along a severity continuum: most items needed to occur "Often" in order to be severe and behaviors that were qualitatively atypical or intense were more severe. Although there were item-level differences across sociodemographic groups, these were small. Construct, convergent, and divergent validity were demonstrated via association to low concern for others and noncompliance, motivational regulation, and a disruptive family context. Incremental clinical utility was demonstrated in relation to impairment. Early childhood punishment insensitivity varies along a severity continuum and is atypical when it predominates. Implications for understanding the phenomenology of emergent disruptive behavior are discussed. PMID:25425187

  6. Punishment Insensitivity in Early Childhood: A Developmental, Dimensional Approach.

    PubMed

    Nichols, Sara R; Briggs-Gowan, Margaret J; Estabrook, Ryne; Burns, James L; Kestler, Jacqueline; Berman, Grace; Henry, David B; Wakschlag, Lauren S

    2015-08-01

    Impairment in learning from punishment ("punishment insensitivity") is an established feature of severe antisocial behavior in adults and youth but it has not been well studied as a developmental phenomenon. In early childhood, differentiating a normal: abnormal spectrum of punishment insensitivity is key for distinguishing normative misbehavior from atypical manifestations. This study employed a novel measure, the Multidimensional Assessment Profile of Disruptive Behavior (MAP-DB), to examine the distribution, dimensionality, and external validity of punishment insensitivity in a large, demographically diverse community sample of preschoolers (3-5 years) recruited from pediatric clinics (N = 1,855). Caregivers completed surveys from which a seven-item Punishment Insensitivity scale was derived. Findings indicated that Punishment Insensitivity behaviors are relatively common in young children, with at least 50 % of preschoolers exhibiting them sometimes. Item response theory analyses revealed a Punishment Insensitivity spectrum. Items varied along a severity continuum: most items needed to occur "Often" in order to be severe and behaviors that were qualitatively atypical or intense were more severe. Although there were item-level differences across sociodemographic groups, these were small. Construct, convergent, and divergent validity were demonstrated via association to low concern for others and noncompliance, motivational regulation, and a disruptive family context. Incremental clinical utility was demonstrated in relation to impairment. Early childhood punishment insensitivity varies along a severity continuum and is atypical when it predominates. Implications for understanding the phenomenology of emergent disruptive behavior are discussed.

  7. Interpersonal Callousness from Childhood to Adolescence: Developmental Trajectories and Early Risk Factors.

    PubMed

    Byrd, Amy L; Hawes, Samuel W; Loeber, Rolf; Pardini, Dustin A

    2018-01-01

    Youth with a callous interpersonal style, consistent with features of adult psychopathy (e.g., lack of guilt, deceitful), are at risk for exhibiting severe and protracted antisocial behaviors. However, no studies have examined changes that occur in interpersonal callousness (IC) from childhood to adolescence, and little is known about the influence of early child, social, and contextual factors on trajectories of IC. The current study examined distinct patterns of IC across childhood and adolescence and associations with early risk factors. Participants were an at-risk sample of 503 boys (56% African American) assessed annually from around ages 7-15. Analyses examined child (anger dysregulation, fearfulness), social (peer, family, maltreatment), and contextual (psychosocial adversity) factors associated with teacher-reported IC trajectories across childhood and adolescence. Using latent class growth analysis, five trajectories of IC were identified (early-onset chronic, childhood-limited, adolescent-onset, moderate, low). Approximately 10% of boys followed an early-onset chronic trajectory, and a roughly equal percent of youth followed childhood-limited trajectory (10%) or an adolescent-onset trajectory (12%) of IC across development. Specifically, half of the boys with high IC in childhood did not continue to exhibit significant levels of these features into adolescence, whereas an equal proportion of youth with low IC in childhood demonstrated increasing levels during the transition to adolescence. Boys in the early-onset chronic group were characterized by the most risk factors and were differentiated from those with childhood-limited and adolescent-onset IC only by higher conduct problems, fearlessness, and emotional abuse/neglect. Findings are discussed in terms of developmental models of IC and several avenues for early targeted interventions.

  8. Developmentally dynamic genome: Evidence of genetic influences on increases and decreases in conduct problems from early childhood to adolescence

    PubMed Central

    Pingault, Jean-Baptiste; Rijsdijk, Frühling; Zheng, Yao; Plomin, Robert; Viding, Essi

    2015-01-01

    The development of conduct problems in childhood and adolescence is associated with adverse long-term outcomes, including psychiatric morbidity. Although genes constitute a proven factor of stability in conduct problems, less is known regarding their role in conduct problems’ developmental course (i.e. systematic age changes, for instance linear increases or decreases).Mothers rated conduct problems from age 4 to 16 years in 10,038 twin pairs from the Twins Early Development Study. Individual differences in the baseline level (.78; 95% CI: .68-.88) and the developmental course of conduct problems (.73; 95% CI: .60-.86) were under high and largely independent additive genetic influences. Shared environment made a small contribution to the baseline level but not to the developmental course of conduct problems. These results show that genetic influences not only contribute to behavioural stability but also explain systematic change in conduct problems. Different sets of genes may be associated with the developmental course versus the baseline level of conduct problems. The structure of genetic and environmental influences on the development of conduct problems suggests that repeated preventive interventions at different developmental stages might be necessary to achieve a long-term impact. PMID:25944445

  9. Developmentally dynamic genome: Evidence of genetic influences on increases and decreases in conduct problems from early childhood to adolescence.

    PubMed

    Pingault, Jean-Baptiste; Rijsdijk, Frühling; Zheng, Yao; Plomin, Robert; Viding, Essi

    2015-05-06

    The development of conduct problems in childhood and adolescence is associated with adverse long-term outcomes, including psychiatric morbidity. Although genes constitute a proven factor of stability in conduct problems, less is known regarding their role in conduct problems' developmental course (i.e. systematic age changes, for instance linear increases or decreases).Mothers rated conduct problems from age 4 to 16 years in 10,038 twin pairs from the Twins Early Development Study. Individual differences in the baseline level (.78; 95% CI: .68-.88) and the developmental course of conduct problems (.73; 95% CI: .60-.86) were under high and largely independent additive genetic influences. Shared environment made a small contribution to the baseline level but not to the developmental course of conduct problems. These results show that genetic influences not only contribute to behavioural stability but also explain systematic change in conduct problems. Different sets of genes may be associated with the developmental course versus the baseline level of conduct problems. The structure of genetic and environmental influences on the development of conduct problems suggests that repeated preventive interventions at different developmental stages might be necessary to achieve a long-term impact.

  10. Early Exposure to Toxic Substances Damages Brain Architecture. Working Paper #4

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2006

    2006-01-01

    New science shows that exposure to toxins prenatally or early in life can have a devastating and lifelong effect on the developing architecture of the brain. Exposures to many chemicals have much more severe consequences for embryos, fetuses, and young children, whose brains are still developing, than for adults. Substances that can have a truly…

  11. Young Children with Developmental Delays as Young Adults: Predicting Developmental and Personal-Social Outcomes

    ERIC Educational Resources Information Center

    Bernheimer, Lucinda P.; Keogh, Barbara K.; Guthrie, Donald

    2006-01-01

    We report on a 20-year follow-up of 30 children with developmental delays identified at age 3. Our purpose was to assess the relationship of early indicators of delay to cognitive and personal-social status in young adulthood. Predictors were Developmental and Personal-Social factors derived from standardized tests and parent questionnaires…

  12. Increased lung and bladder cancer incidence in adults after in utero and early-life arsenic exposure.

    PubMed

    Steinmaus, Craig; Ferreccio, Catterina; Acevedo, Johanna; Yuan, Yan; Liaw, Jane; Durán, Viviana; Cuevas, Susana; García, José; Meza, Rodrigo; Valdés, Rodrigo; Valdés, Gustavo; Benítez, Hugo; VanderLinde, Vania; Villagra, Vania; Cantor, Kenneth P; Moore, Lee E; Perez, Saida G; Steinmaus, Scott; Smith, Allan H

    2014-08-01

    From 1958 to 1970, >100,000 people in northern Chile were exposed to a well-documented, distinct period of high drinking water arsenic concentrations. We previously reported ecological evidence suggesting that early-life exposure in this population resulted in increased mortality in adults from several outcomes, including lung and bladder cancer. We have now completed the first study ever assessing incident cancer cases after early-life arsenic exposure, and the first study on this topic with individual participant exposure and confounding factor data. Subjects included 221 lung and 160 bladder cancer cases diagnosed in northern Chile from 2007 to 2010, and 508 age and gender-matched controls. ORs adjusted for age, sex, and smoking in those only exposed in early life to arsenic water concentrations of ≤110, 110 to 800, and >800 μg/L were 1.00, 1.88 [95% confidence interval (CI), 0.96-3.71], and 5.24 (3.05-9.00; P(trend) < 0.001) for lung cancer, and 1.00, 2.94 (1.29-6.70), and 8.11 (4.31-15.25; P(trend) < 0.001) for bladder cancer. ORs were lower in those not exposed until adulthood. The highest category (>800 μg/L) involved exposures that started 49 to 52 years before, and ended 37 to 40 years before the cancer cases were diagnosed. Lung and bladder cancer incidence in adults was markedly increased following exposure to arsenic in early life, even up to 40 years after high exposures ceased. Such findings have not been identified before for any environmental exposure, and suggest that humans are extraordinarily susceptible to early-life arsenic exposure. Policies aimed at reducing early-life exposure may help reduce the long-term risks of arsenic-related disease. ©2014 American Association for Cancer Research.

  13. Carryover Effects of Acute DEHP Exposure on Ovarian Function and Oocyte Developmental Competence in Lactating Cows

    PubMed Central

    Kalo, Dorit; Hadas, Ron; Furman, Ori; Ben-Ari, Julius; Maor, Yehoshua; Patterson, Donald G.; Tomey, Cynthia; Roth, Zvi

    2015-01-01

    We examined acute exposure of Holstein cows to di(2-ethylhexyl) phthalate (DEHP) and its carryover effects on ovarian function and oocyte developmental competence. Synchronized cows were tube-fed with water or 100 mg/kg DEHP per day for 3 days. Blood, urine and milk samples were collected before, during and after DEHP exposure to examine its clearance pattern. Ovarian follicular dynamics was monitored through an entire estrous cycle by ultrasonographic scanning. Follicular fluids were aspirated from the preovulatory follicles on days 0 and 29 of the experiment and analyzed for phthalate metabolites and estradiol concentration. The aspirated follicular fluid was used as maturation medium for in-vitro embryo production. Findings revealed that DEHP impairs the pattern of follicular development, with a prominent effect on dominant follicles. The diameter and growth rate of the first- and second-wave dominant follicles were lower (P < 0.05) in the DEHP-treated group. Estradiol concentration in the follicular fluid was lower in the DEHP-treated group than in controls, and associated with a higher number of follicular pathologies (follicle diameter >25 mm). The pattern of growth and regression of the corpus luteum differed between groups, with a lower volume in the DEHP-treated group (P < 0.05). The follicular fluid aspirated from the DEHP-treated group, but not the controls, contained 23 nM mono(2-ethylhexyl) phthalate. Culturing of cumulus oocyte complexes in the follicular fluid aspirated from DEHP-treated cows reduced the proportion of oocytes progressing to the MII stage, and the proportions of 2- to 4-cell-stage embryos (P < 0.04) and 7-day blastocysts (P < 0.06). The results describe the risk associated with acute exposure to DEHP and its deleterious carryover effects on ovarian function, nuclear maturation and oocyte developmental competence. PMID:26154164

  14. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako

    2014-09-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis atmore » 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc{sup +} neurons at 1000 ppm and Fos{sup +} neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical

  15. A rapid throughput approach identifies cognitive deficits in adult zebrafish from developmental exposure to polybrominated flame retardants.

    PubMed

    Truong, Lisa; Mandrell, David; Mandrell, Rick; Simonich, Michael; Tanguay, Robert L

    2014-07-01

    A substantial body of evidence has correlated the human body burdens of some polybrominated diphenyl ether (PBDE) flame retardants with cognitive and other behavioral deficits. Adult zebrafish exhibit testable learning and memory, making them an increasingly attractive model for neurotoxicology. Our goal was to develop a rapid throughput means of identifying the cognitive impact of developmental exposure to flame retardants in the zebrafish model. We exposed embryos from 6h post fertilization to 5 days post fertilization to either PBDE 47 (0.1μM), PBDE 99 (0.1μM) or PBDE 153 (0.1μM), vehicle (0.1% DMSO), or embryo medium (EM). The larvae were grown to adulthood and evaluated for the rate at which they learned an active-avoidance response in an automated shuttle box array. Zebrafish developmentally exposed to PBDE 47 learned the active avoidance paradigm significantly faster than the 0.1% DMSO control fish (P<0.0001), but exhibited significantly poorer performance when retested suggestive of impaired memory retention or altered neuromotor activity. Learning in the PBDE 153 group was not significantly different from the DMSO group. Developmental exposure to 0.1% DMSO impaired adult active avoidance learning relative to the sham group (n=39; P<0.0001). PBDE 99 prevented the DMSO effect, yielding a learning rate not significantly different from the sham group (n=36; P>0.9). Our results underscore the importance of vehicle choice in accurately assessing chemical effects on behavior. Active avoidance response in zebrafish is an effective model of learning that, combined with automated shuttle box testing, will provide a highly efficient platform for evaluating persistent neurotoxic hazard from many chemicals. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. DEVELOPMENTAL DIVERSITY OF AMPHIBIANS

    PubMed Central

    Elinson, Richard P.; del Pino, Eugenia M.

    2011-01-01

    The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother’s back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes. PMID:22662314

  17. Developmental alcohol exposure leads to a persistent change on astrocyte secretome

    PubMed Central

    Trindade, P; Hampton, B; Manhães, AC; Medina, AE

    2016-01-01

    Fetal alcohol spectrum disorder (FASD) is the most common cause of mental disabilities in the western world. It has been quite established that acute alcohol exposure can dramatically affect astrocyte function. Because the effects of early alcohol exposure on cell physiology can persist into adulthood, we tested the hypothesis that ethanol exposure in ferrets during a period equivalent to the last months of human gestation leads to persistent changes in astrocyte secretome in vitro. Animals were treated with ethanol (3.5g/kg) or saline between post-natal day (P)10-30. At P31, astrocyte cultures were made and cells were submitted to stable isotope labeling by amino acids (SILAC). 24h-conditioned media of cells obtained from ethanol- or saline-treated animals (ET-CM or SAL-CM) were collected and analyzed by quantitative mass spectrometry in tandem with liquid chromatography. Here we show that 65 out of 280 quantifiable proteins displayed significant differences comparing ET-CM to SAL-CM. Among the 59 proteins that were found to be reduced in ET-CM we observed components of the extracellular matrix such as Laminin subunits α2, α4, β1, β2 and γ1 and the proteoglycans Biglycan, Heparin Sulfate Proteoglycan 2 and Lumican. Proteins with trophic function such as Insulin-Like Growth Factor Binding Protein 4, Pigment Epithelium-Derived Factor and Clusterin as well as proteins involved on modulation of proteolysis such as TIMP-1 and PAI-1 were also reduced. In contrast, pro-synaptogeneic proteins like Thrombospondin-1, Hevin as well as the modulator of extracelular matrix expression, Angiotensinogen, were found increased in ET-CM. The analysis of interactome maps through Ingenuity Pathway Analysis demonstrated that the Amyloid beta A4 protein precursor (APP), which was found reduced in ET-CM, was previously shown to interact with ten other proteins that exhibited significant changes in the ET-CM. Taken together our results strongly suggest that early exposure to

  18. Behavioral alterations of zebrafish larvae after early embryonic exposure to ketamine.

    PubMed

    Félix, Luís M; Antunes, Luís M; Coimbra, Ana M; Valentim, Ana M

    2017-02-01

    Ketamine has been associated with pediatric risks that include neurocognitive impairment and long-term behavioral disorders. However, the neurobehavioral effects of ketamine exposure in early development remain uncertain. This study aimed to test stage- and dose-dependent effects of ketamine exposure on certain brain functions by evaluating alterations in locomotion, anxiety-like and avoidance behaviors, as well as socialization. Embryos were exposed to different concentrations of ketamine (0, 0.2, 0.4, and 0.8 mg mL -1 ) for 20 min during the 256-cell (2.5 h post fertilization-hpf), 50% epiboly (5.5 hpf), and 1-4 somites (10.5 hpf) stages. General exploratory activities, natural escape-like responses, and social interactions were analyzed under continuous light or under a moving light stimulus. A dose-dependent decrease in the overall mean speed was perceived in the embryos exposed during the 256-cell stage. These results were related to previously observed head and eye malformations, following ketamine exposure at this stage and may indicate possible neurobehavioral disorders when ketamine exposure is performed at this stage. Results also showed that ketamine exposure during the 50% epiboly and 1-4 somites stages induced a significant increment of the anxiety-like behavior and a decrease in avoidance behavior in all exposed groups. Overall, the results validate the neurodevelopmental risks of early-life exposure to ketamine.

  19. Prenatal Exposure to Perfluoroalkyl Substances and Adiposity in Early and Mid-Childhood

    PubMed Central

    Mora, Ana María; Oken, Emily; Rifas-Shiman, Sheryl L.; Webster, Thomas F.; Gillman, Matthew W.; Calafat, Antonia M.; Ye, Xiaoyun; Sagiv, Sharon K.

    2016-01-01

    Background: Few studies have examined whether prenatal exposure to perfluoroalkyl substances (PFASs) is associated with childhood adiposity. Objective: We examined associations of prenatal exposure to PFASs with adiposity in early and mid-childhood. Methods: We measured plasma PFAS concentrations in 1,645 pregnant women (median, 9.6 weeks gestation) enrolled in Project Viva, a prospective pre-birth cohort study in Massachusetts (USA), between 1999 and 2002. We assessed overall and central adiposity in 1,006 children in early childhood (median, 3.2 years) and 876 in mid-childhood (median, 7.7 years) using anthropometric and dual X-ray absorptiometry (DXA) measurements. We fitted multivariable linear regression models to estimate exposure-outcome associations and evaluated effect modification by child sex. Results: Median (25–75th percentiles) prenatal plasma perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA) concentrations in children assessed in early childhood were 5.6 (4.1–7.7), 24.8 (18.4–33.9), 2.4 (1.6–3.8), and 0.6 (0.5–0.9) ng/mL, respectively. Among girls, each interquartile range increment of prenatal PFOA concentrations was associated with 0.21 kg/m2 (95% CI: –0.05, 0.48) higher body mass index, 0.76 mm (95% CI: –0.17, 1.70) higher sum of subscapular and triceps skinfold thickness, and 0.17 kg/m2 (95% CI: –0.02, 0.36) higher DXA total fat mass index in mid-childhood. Similar associations were observed for PFOS, PFHxS, and PFNA. We observed null associations for boys and early-childhood adiposity measures. Conclusions: In this cohort, prenatal exposure to PFASs was associated with small increases in adiposity measurements in mid-childhood, but only among girls. Citation: Mora AM, Oken E, Rifas-Shiman SL, Webster TF, Gillman MW, Calafat AM, Ye X, Sagiv SK. 2017. Prenatal exposure to perfluoroalkyl substances and adiposity in early and mid-childhood. Environ Health

  20. Thermally induced chronic developmental stress in coho salmon: Integrating measures of mortality, early growth and fluctuating asymmetry

    USGS Publications Warehouse

    Campbell, W.B.; Emlen, J.M.; Hershberger, W.K.

    1998-01-01

    Developmental stability, or homeostasis, facilitates the production of consistent phenotypes by buffering against stress. Fluctuating asymmetry is produced by developmental instability and is manifested as small random departures from bilateral symmetry. Increased fluctuating asymmetry is thought to parallel compromised fitness, in part, because stress promotes energy dissipation. Compensatory energy expenditures within the organism are required to complete development, thus promoting instability through reductions in homeostasis. Increased heterozygosity may enhance developmental stability by reducing energy dissipation from stress through increased metabolic efficiency, possibly by providing greater flexibility in metabolic pathways. Traditionally, fluctuating asymmetry has been used as a bioindicator of chronic stress, provided that selective mortality of less fit individuals did not reduce stress-mediated increases in fluctuating asymmetry to background levels produced by natural developmental error, or create data inconsistencies such as higher asymmetry in groups exposed to lower stress. Unfortunately, absence of selective mortality and its effects, while often assumed, can be difficult to substantiate. We integrated measures of early growth, mortality, fluctuating asymmetry (mandibular pores, pectoral finrays, pelvic finrays, and gillrakers on the upper and lower arms of the first branchial arch) and directional asymmetry (branchiostegal rays) to assess chronic thermal stress (fluctuating temperatures as opposed to ambient temperatures) in developing eggs from two different coho salmon (Oncorhynchus kisutch) stocks and their reciprocal hybrids. Hybridization provided insight on the capacity of heterozygosity to reduce stress during development. Although egg losses were consistently higher in crosses exposed to fluctuating temperatures, egg mortality was predominantly a function of maternal stock of origin. Post-hatch losses were higher in crosses exposed to

  1. Early-postnatal changes in adiposity and lipids profile by transgenerational developmental programming in swine with obesity/leptin resistance.

    PubMed

    Gonzalez-Bulnes, Antonio; Astiz, Susana; Ovilo, Cristina; Lopez-Bote, Clemente J; Sanchez-Sanchez, Raul; Perez-Solana, Maria L; Torres-Rovira, Laura; Ayuso, Miriam; Gonzalez, Jorge

    2014-10-01

    Maternal malnutrition during pregnancy, both deficiency and excess, induces changes in the intrauterine environment and the metabolic status of the offspring, playing a key role in the growth, status of fitness/obesity and appearance of metabolic disorders during postnatal life. There is increasing evidence that these effects may not be only limited to the first generation of descendants, the offspring directly exposed to metabolic challenges, but to subsequent generations. This study evaluated, in a swine model of obesity/leptin resistance, the existence and extent of transgenerational developmental programming effects. Pre- and postnatal development, adiposity and metabolic features were assessed in the second generation of piglets, descendant of sows exposed to either undernutrition or overnutrition during pregnancy. The results indicated that these piglets exhibited early-postnatal increases in adiposity and disturbances in lipid profiles compatible with the early prodrome of metabolic syndrome, with liver tissue also displaying evidence of paediatric liver disease. These features indicative of early-life metabolic disorders were more evident in the males that were descended from overfed grandmothers and during the transition from milk to solid feeding. Thus, this study provides evidence supporting transgenerational developmental programming and supports the necessity for the development of strategies for avoiding the current epidemics of childhood overweight and obesity. © 2014 Society for Endocrinology.

  2. Developmental Constraints in a Wild Primate

    PubMed Central

    Lea, Amanda J.; Altmann, Jeanne; Alberts, Susan C.; Tung, Jenny

    2015-01-01

    Early-life experiences can dramatically affect adult traits. However, the evolutionary origins of such early-life effects are debated. The predictive adaptive response hypothesis argues that adverse early environments prompt adaptive phenotypic adjustments that prepare animals for similar challenges in adulthood. In contrast, the developmental constraints hypothesis argues that early adversity is generally costly. To differentiate between these hypotheses, we studied two sets of wild female baboons: those born during low-rainfall, low-quality years and those born during normal-rainfall, high-quality years. For each female, we measured fertility-related fitness components during years in adulthood that matched and mismatched her early conditions. We found support for the developmental constraints hypothesis: females born in low-quality environments showed greater decreases in fertility during drought years than females born in high-quality environments, even though drought years matched the early conditions of females born in low-quality environments. Additionally, we found that females born in low-quality years to high-status mothers did not experience reduced fertility during drought years. These results indicate that early ecological adversity did not prepare individuals to cope with ecological challenges in later life. Instead, individuals that experienced at least one high-quality early environment—either ecological or social—were more resilient to ecological stress in later life. Together, these data suggest that early adversity carries lifelong costs, which is consistent with the developmental constraints hypothesis. PMID:25996865

  3. Diabetic Embryopathy: A Developmental Perspective from Fertilization to Adulthood

    PubMed Central

    Castori, M.

    2013-01-01

    Maternal diabetes mellitus is one of the strongest human teratogens. Despite recent advances in the fields of clinical embryology, experimental teratology and preventive medicine, diabetes-related perturbations of the maternofetal unit maintain a considerable impact on the Healthcare System. Classic consequences of prenatal exposure to hyperglycemia encompass (early) spontaneous abortions, perinatal death and malformations. The spectrum of related malformations comprises some recurrent blastogenic monotopic patterns, i.e. holoprosencephaly, caudal dysgenesis and oculoauriculovertebral spectrum, as well as pleiotropic syndromes, i.e. femoral hypoplasia-unusual face syndrome. Despite this, most malformed fetuses display multiple blastogenic defects of the VACTERL type, whose (apparently) casual combination preclude recognizing recurrent patterns, but accurately testifies to their developmental stage at onset. With the application of developmental biology in modern medicine, the effects of diabetes on the unborn patient are expanded to include the predisposition to develop insulin resistance in adulthood. The mechanisms underlying the transgenerational correlation between maternal diabetes and proneness to adult disorders in the offspring remain unclear, and the epigenetic plasticity may represent the missing link. In this scenario, a development-driven summary of the multifaced consequences of maternal diabetes on fertility and child health may add a practical resource to the repertoire of available information on early stages of embryogenesis. PMID:23653578

  4. Early exposure to ultraviolet-B radiation decreases immune function later in life

    PubMed Central

    Ceccato, Emma; Cramp, Rebecca L.; Seebacher, Frank; Franklin, Craig E.

    2016-01-01

    Amphibians have declined dramatically worldwide. Many of these declines are occurring in areas where no obvious anthropogenic stressors are present. It is proposed that in these areas, environmental factors such as elevated solar ultraviolet-B (UV-B) radiation could be responsible. Ultraviolet-B levels have increased in many parts of the world as a consequence of the anthropogenic destruction of the ozone layer. Amphibian tadpoles are particularly sensitive to the damaging effects of UV-B radiation, with exposure disrupting growth and fitness in many species. Given that UV-B can disrupt immune function in other animals, we tested the hypothesis that early UV-B exposure suppresses the immune responses of amphibian tadpoles and subsequent juvenile frogs. We exposed Limnodynastes peronii tadpoles to sublethal levels of UV-B radiation for 6 weeks after hatching, then examined indices of immune function in both the tadpoles and the subsequent metamorphs. There was no significant effect of UV-B on tadpole leucocyte counts or on their response to an acute antigen (phytohaemagglutinin) challenge. However, early UV-B exposure resulted in a significant reduction in both metamorph leucocyte abundance and their response to an acute phytohaemagglutinin challenge. These data demonstrate that early UV-B exposure can have carry-over effects on later life-history traits even if the applied stressor has no immediately discernible effect. These findings have important implications for our understanding of the effects of UV-B exposure on amphibian health and susceptibility to diseases such as chytridiomycosis. PMID:27668081

  5. Teaching the Standards Is Developmentally Appropriate Practice: Strategies for Incorporating the Sociopolitical Dimension of DAP in Early Childhood Teaching

    ERIC Educational Resources Information Center

    Goldstein, Lisa S.

    2008-01-01

    Many early childhood practitioners in the U.S. are experiencing tension between their desire to offer students developmentally appropriate learning experiences and their obligation to teach the academic knowledge and skills mandated by their states. However, careful examination of the DAP guidelines' definition of culturally appropriate practice…

  6. Preservice Early Childhood Educators' and Elementary Teachers' Perspectives on Including Young Children with Developmental Disabilities: A Mixed Methods Analysis

    ERIC Educational Resources Information Center

    Frankel, Elaine B.; Hutchinson, Nancy L.; Burbidge, Julie; Minnes, Patricia

    2014-01-01

    This mixed methods study reports on the perspectives of 143 preservice early childhood educators (ECE) and 208 elementary teacher candidates (TC) on teaching children with developmental disabilities and delays (DDD) in inclusive classrooms. A questionnaire was administered which included items on demographic characteristics, experience, knowledge,…

  7. Missing the Boat with Technology Usage in Early Childhood Settings: A 21st Century View of Developmentally Appropriate Practice

    ERIC Educational Resources Information Center

    Parette, Howard P.; Quesenberry, Amanda C.; Blum, Craig

    2010-01-01

    Technology use permeates virtually all aspects of twenty-first century society, though its integration in early childhood settings and recognition as a developmentally appropriate practice remains problematic. A position is taken that education professionals may be "missing the boat" by not embracing technology usage as a developmentally…

  8. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  9. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine

    PubMed Central

    Massarsky, Andrey; Jayasundara, Nishad; Bailey, Jordan M.; Oliveri, Anthony N.; Levin, Edward D.; Prasad, G.L.; Di Giulio, Richard T.

    2016-01-01

    Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a ‘bridge model’; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2 h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents. PMID:26391568

  10. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine.

    PubMed

    Massarsky, Andrey; Jayasundara, Nishad; Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D; Prasad, G L; Di Giulio, Richard T

    2015-01-01

    Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a 'bridge model'; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Antibiotic Exposure in Early Life Increases Risk of Childhood Obesity: A Systematic Review and Meta-Analysis

    PubMed Central

    Shao, Xiaoqing; Ding, Xiaolian; Wang, Bin; Li, Ling; An, Xiaofei; Yao, Qiuming; Song, Ronghua; Zhang, Jin-an

    2017-01-01

    A number of studies have previously assessed the impact of antibiotic exposure in early life on the risk of childhood obesity, but no systematic assessment is currently available. A systematic review and meta-analysis was performed to comprehensively and quantitatively elucidate the risk of childhood obesity caused by antibiotic exposure in early life. Literature search was performed in PubMed, Embase, and Web of Science. Random-effect meta-analysis was used to pool the statistical estimates. Fifteen cohort studies involving 445,880 participants were finally included, and all those studies were performed in developed countries. Antibiotic exposure in early life significantly increased risk of childhood overweight [relative risk (RR) = 1.23, 95% confidence interval (CI) 1.13–1.35, P < 0.001] and childhood obesity (RR = 1.21, 95% CI 1.13–1.30, P < 0.001). Antibiotic exposure in early life also significantly increased the z-score of childhood body mass index (mean difference: 0.07, 95% CI 0.05–0.09, P < 0.00001). Importantly, there was an obvious dose–response relationship between antibiotic exposure in early life and childhood adiposity, with a 7% increment in the risk of overweight (RR = 1.07, 95% CI 1.01–1.15, P = 0.03) and a 6% increment in the risk of obesity (RR = 1.06, 95% CI 1.02–1.09, P < 0.001) for each additional course of antibiotic exposure. In conclusion, antibiotic exposure in early life significantly increases risk of childhood obesity. Moreover, current analyses are mainly taken from developed countries, and therefore the impact of antibiotic exposure on risk of childhood obesity in vulnerable populations or developing countries still needs to be evaluated in future studies. PMID:28775712

  12. Developmental Trajectories of Social Skills during Early Childhood and Links to Parenting Practices in a Japanese Sample.

    PubMed

    Takahashi, Yusuke; Okada, Kensuke; Hoshino, Takahiro; Anme, Tokie

    2015-01-01

    This study used data from a nationwide survey in Japan to model the developmental course of social skills during early childhood. The goals of this study were to identify longitudinal profiles of social skills between 2 and 5 years of age using a group-based trajectory approach, and to investigate whether and to what extent parenting practices at 2 years of age predicted developmental trajectories of social skills during the preschool period. A relatively large sample of boys and girls (N > 1,000) was assessed on three social skill dimensions (Cooperation, Self-control, and Assertion) at four time points (ages 2, 3, 4, and 5), and on four parenting practices (cognitive and emotional involvement, avoidance of restriction and punishment, social stimulation, and social support for parenting) at age 2. The results indicated that for each social skill dimension, group-based trajectory models identified three distinct trajectories: low, moderate, and high. Multinomial regression analysis revealed that parenting practice variables showed differential contributions to development of child social skills. Specifically, Cooperation and Assertion were promoted by cognitive and emotional involvement, Self-control by social stimulation, and Assertion by avoidance of restriction and punishment. Abundant social support for parenting was not associated with higher child social skills trajectories. We found heterogeneity in developmental profiles of social skills during the preschool ages, and we identified parenting practices that contributed to different patterns of social skills development. We discussed the implications of higher-quality parenting practices on the improvement of child social skills across early childhood.

  13. Developmental Trajectories of Social Skills during Early Childhood and Links to Parenting Practices in a Japanese Sample

    PubMed Central

    Takahashi, Yusuke; Okada, Kensuke; Hoshino, Takahiro; Anme, Tokie

    2015-01-01

    This study used data from a nationwide survey in Japan to model the developmental course of social skills during early childhood. The goals of this study were to identify longitudinal profiles of social skills between 2 and 5 years of age using a group-based trajectory approach, and to investigate whether and to what extent parenting practices at 2 years of age predicted developmental trajectories of social skills during the preschool period. A relatively large sample of boys and girls (N > 1,000) was assessed on three social skill dimensions (Cooperation, Self-control, and Assertion) at four time points (ages 2, 3, 4, and 5), and on four parenting practices (cognitive and emotional involvement, avoidance of restriction and punishment, social stimulation, and social support for parenting) at age 2. The results indicated that for each social skill dimension, group-based trajectory models identified three distinct trajectories: low, moderate, and high. Multinomial regression analysis revealed that parenting practice variables showed differential contributions to development of child social skills. Specifically, Cooperation and Assertion were promoted by cognitive and emotional involvement, Self-control by social stimulation, and Assertion by avoidance of restriction and punishment. Abundant social support for parenting was not associated with higher child social skills trajectories. We found heterogeneity in developmental profiles of social skills during the preschool ages, and we identified parenting practices that contributed to different patterns of social skills development. We discussed the implications of higher-quality parenting practices on the improvement of child social skills across early childhood. PMID:26267439

  14. Research Models in Developmental Behavioral Toxicology.

    ERIC Educational Resources Information Center

    Dietrich, Kim N.; Pearson, Douglas T.

    Developmental models currently used by child behavioral toxicologists and teratologists are inadequate to address current issues in these fields. Both child behavioral teratology and toxicology scientifically study the impact of exposure to toxic agents on behavior development: teratology focuses on prenatal exposure and postnatal behavior…

  15. Developmental Neurotoxicity of Methamidophos in the Embryo-Larval Stages of Zebrafish.

    PubMed

    He, Xiaowei; Gao, Jiawei; Dong, Tianyu; Chen, Minjian; Zhou, Kun; Chang, Chunxin; Luo, Jia; Wang, Chao; Wang, Shoulin; Chen, Daozhen; Zhou, Zuomin; Tian, Ying; Xia, Yankai; Wang, Xinru

    2016-12-28

    Methamidophos is a representative organophosphate insecticide. The knowledge of its developmental neurotoxicity is limited, especially for zebrafish in the early stages of their life. Four hour post-fertilization (hpf) zebrafish embryos were exposed to several environmentally relevant concentrations of methamidophos (0, 25, and 500 μg/L) for up to 72 hpf. Locomotor behavior was then studied in the zebrafish larvae at this timepoint. Acridine orange (AO) staining was carried out in the zebrafish larvae, and the mRNA levels of genes associated with neural development ( mbp and syn2a ) were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). The number of escape responders for mechanical stimulation was significantly decreased in exposed groups. AO staining showed noticeable signs of apoptosis mainly in the brain. In addition, the mRNA levels of mbp and syn2a were both significantly down-regulated in exposed groups. Our study provides the first evidence that methamidophos exposure can cause developmental neurotoxicity in the early stages of zebrafish life, which may be caused by the effect of methamidophos on neurodevelopmental genes and the activation of cell apoptosis in the brain.

  16. Developmental exposure to paracetamol causes biochemical alterations in medulla oblongata.

    PubMed

    Blecharz-Klin, Kamilla; Joniec-Maciejak, Ilona; Jawna, Katarzyna; Pyrzanowska, Justyna; Piechal, Agnieszka; Wawer, Adriana; Widy-Tyszkiewicz, Ewa

    2015-09-01

    The effect and safety of prenatal and early life administration of paracetamol - routinely used over-the-counter antipyretic and analgesic medication on monoamines content and balance of amino acids in the medulla oblongata is still unknown. In this study we have determined the level of neurotransmitters in this structure in two-month old Wistar male rats exposed to paracetamol in the dose of 5 (P5, n=10) or 15mg/kg b.w. (P15, n=10) during prenatal period, lactation and till the end of the second month of life. Control group received drinking water (Con, n=10). Monoamines, their metabolites and amino acids concentration in medulla oblongata of rats were determined using high performance liquid chromatography (HPLC) in 60 postnatal day (PND60). This experiment shows that prenatal and early life paracetamol exposure modulates neurotransmission associated with serotonergic, noradrenergic and dopaminergic system in medulla oblongata. Reduction of alanine and taurine levels has also been established. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. How Resource Dynamics Explain Accumulating Developmental and Health Disparities for Teen Parents’ Children

    PubMed Central

    Mollborn, Stefanie; Lawrence, Elizabeth; James-Hawkins, Laurie; Fomby, Paula

    2014-01-01

    This study examines the puzzle of disparities experienced by U.S. teen parents’ young children, whose health and development increasingly lag behind those of peers while their parents are simultaneously experiencing socioeconomic improvements. Using the nationally representative Early Childhood Longitudinal Study-Birth Cohort (2001–2007; N ≈ 8,600), we assess four dynamic patterns in socioeconomic resources that might account for these growing developmental and health disparities throughout early childhood and then test them in multilevel growth curve models. Persistently low socioeconomic resources constituted the strongest explanation, given that consistently low income, maternal education, and assets fully or partially account for growth in cognitive, behavioral, and health disparities experienced by teen parents’ children from infancy through kindergarten. That is, although teen parents gained socioeconomic resources over time, those resources remained relatively low, and the duration of exposure to limited resources explains observed growing disparities. Results suggest that policy interventions addressing the time dynamics of low socioeconomic resources in a household, in terms of both duration and developmental timing, are promising for reducing disparities experienced by teen parents’ children. PMID:24802282

  18. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish.

    PubMed

    Chen, Pei-Jen; Wu, Wan-Lin; Wu, Kevin Chia-Wen

    2013-08-01

    Nanoscale zerovalent iron (nZVI)-mediated oxidation reaction is increasingly being used for enhanced treatment of water or wastewater processes; however, the fate and eco-toxicological effects of nZVI in the surface aquifer remain unclear. We investigated bioaccumulation and lethal-to-sublethal toxic effects on early life development of Japanese medaka (Oryzias latipes) with 7-day exposure to 25-200 mg/L of well-characterized solutions containing carboxymethyl cellulose (CMC)-stabilized nZVI (CMC-nZVI), nanoscale iron oxide (nFe3O4) or ferrous ion [Fe(II)aq]. The CMC-nZVI solution had the greatest acute mortality and developmental toxic effects in embryos, with lesser and the least effects with Fe(II)aq and nFe3O4. The toxicity of CMC-nZVI was ascribed to its high reactivity in the oxygenic solution, which led to a combination of hypoxia and production of reactive oxygen species (ROS) and Fe(II)aq. nFe3O4 (50-100 mg/L) was more bioavailable to embryos and bioaccmulative in hatchlings than suspended CMC-nZVI. The antioxidant balance was differentially altered by induced intracellular ROS in hatchlings with all 3 iron species. We revealed causal toxic effects of nZVI and its oxidized products in early life stages of medaka fish using different organizational levels of biomarker assays. The toxicity results implicate a potential eco-toxicological impact of nZVI on the aquatic environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Developmental experiences of child sexual abusers and rapists.

    PubMed

    Simons, Dominique A; Wurtele, Sandy K; Durham, Robert L

    2008-05-01

    The aim of this study is to identify the distinct developmental experiences associated with child sexual abuse and rape. For 269 sexual offenders (137 rapists and 132 child sexual abusers), developmental experiences were recorded from a behavioral checklist, a parental-bonding survey, and a sexual history questionnaire. Offender classification was obtained from official records and verified through polygraph examinations. Compared to rapists, child sexual abusers reported more frequent experiences of child sexual abuse (73%), early exposure to pornography (65% before age 10), an earlier onset of masturbation (60% before age 11), and sexual activities with animals (38%). In contrast to child sexual abusers, rapists reported more frequent experiences of physical abuse (68%), parental violence (78%), emotional abuse (70%), and cruelty to animals (68%). Both child sexual abusers and rapists (>93%) reported frequent exposure to violent media during their childhood. Most offenders (94%) described having insecure parental attachment bonds; 76% of rapists reported avoidant parental attachments and 62% of child sexual abusers reported anxious parental attachments. Findings from this study support the role of specific developmental experiences as etiological factors in differential sexual offending. Child sexual abusers' developmental histories were characterized by heightened sexuality; whereas rapists' childhood histories were more indicative of violence. These findings have implications for the treatment of sexual abusers and the prevention of sexual abuse. This study's findings suggest that sexual offenders have been socialized to satisfy human needs of intimacy and sexuality through maladaptive means, which implies that a risk management approach may not be sufficient treatment. Although risk models teach offenders skills to avoid high-risk situations, they fail to address the maladaptive strategies that they may have developed for satisfying needs. Instead, the focus

  20. CONSEQUENCES OF REPEATED ETHANOL EXPOSURE DURING EARLY OR LATE ADOLESCENCE ON CONDITIONED TASTE AVERSIONS IN RATS

    PubMed Central

    Saalfield, Jessica; Spear, Linda

    2015-01-01

    Alcohol use is prevalent during adolescence, yet little is known about possible long-lasting consequences.. Recent evidence suggests that adolescents are less sensitive than adults to ethanol’s aversive effects, an insensitivity that may be retained into adulthood after repeated adolescent ethanol exposure. This study assessed whether intermittent ethanol exposure during early or late adolescence (early-AIE or late-AIE, respectively) would affect ethanol conditioned taste aversions 2 days (CTA1) and >3 weeks (CTA2) post-exposure using supersaccharin and saline as conditioning stimuli (CS), respectively. Pair-housed male Sprague-Dawley rats received 4 g/kg i.g. ethanol (25%) or water every 48 hours from postnatal day (P) 25–45 (early AIE) or P45–65 (late AIE), or were left non-manipulated (NM). During conditioning, 30 min home cage access to the CS was followed by 0, 1, 1.5, 2 or 2.5 g/kg ethanol i.p., with testing 2 days later. Attenuated CTA relative to controls was seen among early and late AIE animals at both CTA1 and CTA2, an effect particularly pronounced at CTA1 after late AIE. Thus, adolescent exposure to ethanol was found to induce an insensitivity to ethanol CTA seen soon after exposure and lasting into adulthood, and evident with ethanol exposures not only early but also later in adolescence. PMID:25698309

  1. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates later-life Notch1-mediated T cell development and leukemogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrenhoerster, Lori S.; Leuthner, Tess C.; Tate, Everett R.

    2015-03-01

    Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively activemore » Notch1 transgene (Notch{sup ICN-TG}). Following exposure of adult Notch{sup ICN-TG} mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3 μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch{sup ICN-TG} offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch{sup ICN-TG} offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. - Highlights: • Adult mice exposed to 30 μg/kg TCDD have higher efficiency of CD8 thymocyte generation. • Mice carrying a constitutively active Notch transgene were exposed to 3 μg/kg TCDD throughout development. • Progression of Notch

  2. Developmental exposure to methimazole increases anxiety behavior in zebrafish.

    PubMed

    Reider, Masha; Connaughton, Victoria P

    2015-10-01

    The role of thyroid hormones in vertebrate development has been well documented for several decades. As hypothyroidism during critical periods of development can cause defects to the development of every major organ system, including brain, eye, and general morphology, we hypothesized that hypothyroidism would affect specific behaviors. To assess this, we treated zebrafish with the hypothyroid drug methimazole (MMI) and examined changes in anxiety, shoaling, vision, and locomotion. Following low-dose MMI exposure for the first 10 days of life, a time of rapid and significant development, larvae were removed from treatment and allowed to develop until 1 month of age. Comparisons between treated and controls took place between 10 and 30 days postfertilization to examine times both during and after treatment. Using the novel tank and startle response tests, we found that anxiety behaviors are significantly increased following MMI treatment. These effects persisted for several days following removal from treatment and indicate a prolonged effect of early hypothyroidism. However, permanent MMI effects on anxiety were not observed, as anxiety behaviors of early treated zebrafish recovered to control levels following 10 days out of treatment. In contrast to the strong link between MMI treatment and anxiety, shoaling and visual behaviors were not significantly affected within our experimental parameters. This indicates that disruption of thyroid system functioning early in life can differentially affect behavior by specifically altering anxiety responses without producing indiscriminate changes to overall behavioral development. (c) 2015 APA, all rights reserved).

  3. Exposure to dim light at night during early development increases adult anxiety-like responses.

    PubMed

    Borniger, Jeremy C; McHenry, Zachary D; Abi Salloum, Bachir A; Nelson, Randy J

    2014-06-22

    Early experiences produce effects that may persist throughout life. Therefore, to understand adult phenotype, it is important to investigate the role of early environmental stimuli in adult behavior and health. Artificial light at night (LAN) is an increasingly common phenomenon throughout the world. However, animals, including humans, evolved under dark night conditions. Many studies have revealed affective, immune, and metabolic alterations provoked by aberrant light exposure and subsequent circadian disruption. Pups are receptive to entraining cues from the mother and then light early during development, raising the possibility that the early life light environment may influence subsequent behavior. Thus, to investigate potential influences of early life exposure to LAN on adult phenotype, we exposed mice to dim (~5 lux; full spectrum white light) or dark (~0 lux) nights pre- and/or postnatally. After weaning at 3 weeks of age, all mice were maintained in dark nights until adulthood (9 weeks of age) when behavior was assessed. Mice exposed to dim light in early life increased anxiety-like behavior and fearful responses on the elevated plus maze and passive avoidance tests. These mice also displayed reduced growth rates, which ultimately normalized during adolescence. mRNA expression of brain derived neurotrophic factor (BDNF), a neurotrophin previously linked to early life environment and adult phenotype, was not altered in the prefrontal cortex or hippocampus by early life LAN exposure. Serum corticosterone concentrations were similar between groups at weaning, suggesting that early life LAN does not elicit a long-term physiologic stress response. Dim light exposure did not influence behavior on the open field, novel object, sucrose anhedonia, or forced swim tests. Our data highlight the potential deleterious consequences of low levels of light during early life to development and subsequent behavior. Whether these changes are due to altered maternal behavior

  4. Exposure of BALB/c Mice to Diesel Engine Exhaust Origin Secondary Organic Aerosol (DE-SOA) during the Developmental Stages Impairs the Social Behavior in Adult Life of the Males.

    PubMed

    Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Fujitani, Yuji; Tsukahara, Shinji; Hirano, Seishiro

    2015-01-01

    Secondary organic aerosol (SOA) is a component of particulate matter (PM) 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE) originated SOA (DE-SOA) affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the developmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control), DE, DE-SOA and gas without any PM in the inhalation chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO)-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty preference as well as social interaction were remarkably impaired, expression levels of estrogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, expression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxicity and impair social behavior in the males.

  5. Exposure of BALB/c Mice to Diesel Engine Exhaust Origin Secondary Organic Aerosol (DE-SOA) during the Developmental Stages Impairs the Social Behavior in Adult Life of the Males

    PubMed Central

    Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Fujitani, Yuji; Tsukahara, Shinji; Hirano, Seishiro

    2016-01-01

    Secondary organic aerosol (SOA) is a component of particulate matter (PM) 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE) originated SOA (DE-SOA) affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the developmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control), DE, DE-SOA and gas without any PM in the inhalation chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO)-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty preference as well as social interaction were remarkably impaired, expression levels of estrogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, expression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxicity and impair social behavior in the males. PMID:26834549

  6. The concept of homology as a basis for evaluating developmental mechanisms: exploring selective attention across the life-span.

    PubMed

    Lickliter, Robert; Bahrick, Lorraine E

    2013-01-01

    Research with human infants as well as non-human animal embryos and infants has consistently demonstrated the benefits of intersensory redundancy for perceptual learning and memory for redundantly specified information during early development. Studies of infant affect discrimination, face discrimination, numerical discrimination, sequence detection, abstract rule learning, and word comprehension and segmentation have all shown that intersensory redundancy promotes earlier detection of these properties when compared to unimodal exposure to the same properties. Here we explore the idea that such intersensory facilitation is evident across the life-span and that this continuity is an example of a developmental behavioral homology. We present evidence that intersensory facilitation is most apparent during early phases of learning for a variety of tasks, regardless of developmental level, including domains that are novel or tasks that require discrimination of fine detail or speeded responses. Under these conditions, infants, children, and adults all show intersensory facilitation, suggesting a developmental homology. We discuss the challenge and propose strategies for establishing appropriate guidelines for identifying developmental behavioral homologies. We conclude that evaluating the extent to which continuities observed across development are homologous can contribute to a better understanding of the processes of development. Copyright © 2012 Wiley Periodicals, Inc.

  7. Part II: Differences between Sexually Victimized and Nonsexually Victimized Male Adolescent Sexual Abusers and Delinquent Youth--Further Group Comparisons of Developmental Antecedents and Behavioral Challenges

    ERIC Educational Resources Information Center

    Leibowitz, George S.; Burton, David L.; Howard, Alan

    2012-01-01

    In a recent paper published in the "Journal of Child Sexual Abuse," we assessed the differences between sexually victimized and nonsexually victimized male adolescent sexual abusers (Burton, Duty, & Leibowitz, 2011). We found that the sexually victimized group had more severe developmental antecedents (e.g., trauma and early exposure to…

  8. Epigenetic Vestiges of Early Developmental Adversity: Childhood Stress Exposure and DNA Methylation in Adolescence

    PubMed Central

    Essex, Marilyn J.; Boyce, W. Thomas; Hertzman, Clyde; Lam, Lucia L.; Armstrong, Jeffrey M.; Neumann, Sarah M.A.; Kobor, Michael S.

    2011-01-01

    Fifteen-year-old adolescents (N=109) in a longitudinal study of child development were recruited to examine differences in DNA methylation in relation to parent reports of adversity during the adolescents’ infancy and preschool periods. Microarray technology applied to 28,000 cytosine-guanine dinucleotide (CpG) sites within DNA derived from buccal epithelial cells showed differential methylation among adolescents whose parents reported high levels of stress during their children’s early lives. Maternal stressors in infancy and paternal stressors in the preschool years were most strongly predictive of differential methylation, and the patterning of such epigenetic marks varied by children’s gender. To the authors’ knowledge, this is the first report of prospective associations between adversities in early childhood and the epigenetic conformation of adolescents’ genomic DNA. PMID:21883162

  9. Early-Life Stress Triggers Juvenile Zebra Finches to Switch Social Learning Strategies.

    PubMed

    Farine, Damien R; Spencer, Karen A; Boogert, Neeltje J

    2015-08-17

    Stress during early life can cause disease and cognitive impairment in humans and non-humans alike. However, stress and other environmental factors can also program developmental pathways. We investigate whether differential exposure to developmental stress can drive divergent social learning strategies between siblings. In many species, juveniles acquire essential foraging skills by copying others: they can copy peers (horizontal social learning), learn from their parents (vertical social learning), or learn from other adults (oblique social learning). However, whether juveniles' learning strategies are condition dependent largely remains a mystery. We found that juvenile zebra finches living in flocks socially learned novel foraging skills exclusively from adults. By experimentally manipulating developmental stress, we further show that social learning targets are phenotypically plastic. While control juveniles learned foraging skills from their parents, their siblings, exposed as nestlings to experimentally elevated stress hormone levels, learned exclusively from unrelated adults. Thus, early-life conditions triggered individuals to switch strategies from vertical to oblique social learning. This switch could arise from stress-induced differences in developmental rate, cognitive and physical state, or the use of stress as an environmental cue. Acquisition of alternative social learning strategies may impact juveniles' fit to their environment and ultimately change their developmental trajectories. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Developmental milestones record

    MedlinePlus

    ... in the early years is to follow your child's development. Most parents also watch for different milestones. Talk ... child's provider if you have concerns about your child's development. Closely watching a "checklist" or calendar of developmental ...

  11. Low-Dose Alkylphenol Exposure Promotes Mammary Epithelium Alterations and Transgenerational Developmental Defects, But Does Not Enhance Tumorigenic Behavior of Breast Cancer Cells

    PubMed Central

    Chamard-Jovenin, Clémence; Thiebaut, Charlène; Chesnel, Amand; Bresso, Emmanuel; Morel, Chloé; Smail-Tabbone, Malika; Devignes, Marie-Dominique; Boukhobza, Taha; Dumond, Hélène

    2017-01-01

    Fetal and neonatal exposure to long-chain alkylphenols has been suspected to promote breast developmental disorders and consequently to increase breast cancer risk. However, disease predisposition from developmental exposures remains unclear. In this work, human MCF-10A mammary epithelial cells were exposed in vitro to a low dose of a realistic (4-nonylphenol + 4-tert-octylphenol) mixture. Transcriptome and cell-phenotype analyses combined to functional and signaling network modeling indicated that long-chain alkylphenols triggered enhanced proliferation, migration ability, and apoptosis resistance and shed light on the underlying molecular mechanisms which involved the human estrogen receptor alpha 36 (ERα36) variant. A male mouse-inherited transgenerational model of exposure to three environmentally relevant doses of the alkylphenol mix was set up in order to determine whether and how it would impact on mammary gland architecture. Mammary glands from F3 progeny obtained after intrabuccal chronic exposure of C57BL/6J P0 pregnant mice followed by F1–F3 male inheritance displayed an altered histology which correlated with the phenotypes observed in vitro in human mammary epithelial cells. Since cellular phenotypes are similar in vivo and in vitro and involve the unique ERα36 human variant, such consequences of alkylphenol exposure could be extrapolated from mouse model to human. However, transient alkylphenol treatments combined to ERα36 overexpression in mammary epithelial cells were not sufficient to trigger tumorigenesis in xenografted Nude mice. Therefore, it remains to be determined if low-dose alkylphenol transgenerational exposure and subsequent abnormal mammary gland development could account for an increased breast cancer susceptibility. PMID:29109696

  12. A comparative view of early development in the corals Favia lizardensis, Ctenactis echinata, and Acropora millepora - morphology, transcriptome, and developmental gene expression.

    PubMed

    Okubo, Nami; Hayward, David C; Forêt, Sylvain; Ball, Eldon E

    2016-02-29

    Research into various aspects of coral biology has greatly increased in recent years due to anthropogenic threats to coral health including pollution, ocean warming and acidification. However, knowledge of coral early development has lagged. The present paper describes the embryonic development of two previously uncharacterized robust corals, Favia lizardensis (a massive brain coral) and Ctenactis echinata (a solitary coral) and compares it to that of the previously characterized complex coral, Acropora millepora, both morphologically and in terms of the expression of a set of key developmental genes. Illumina sequencing of mixed age embryos was carried out, resulting in embryonic transcriptomes consisting of 40605 contigs for C.echinata (N50 = 1080 bp) and 48536 contigs for F.lizardensis (N50 = 1496 bp). The transcriptomes have been annotated against Swiss-Prot and were sufficiently complete to enable the identification of orthologs of many key genes controlling development in bilaterians. Developmental series of images of whole mounts and sections reveal that the early stages of both species contain a blastocoel, consistent with their membership of the robust clade. In situ hybridization was used to examine the expression of the developmentally important genes brachyury, chordin and forkhead. The expression of brachyury and forkhead was consistent with that previously reported for Acropora and allowed us to confirm that the pseudo-blastopore sometimes seen in robust corals such as Favia spp. is not directly associated with gastrulation. C.echinata chordin expression, however, differed from that seen in the other two corals. Embryonic transcriptomes were assembled for the brain coral Favia lizardensis and the solitary coral Ctenactis echinata. Both species have a blastocoel in their early developmental stages, consistent with their phylogenetic position as members of the robust clade. Expression of the key developmental genes brachyury, chordin and

  13. Quartz exposure, retention, and early silicosis in sheep.

    PubMed

    Bégin, R; Dufresne, A; Cantin, A; Possmayer, F; Sébastien, P; Fabi, D; Bilodeau, G; Martel, M; Bisson, D; Pietrowski, B

    1989-05-01

    The purposes of this study were (1) to investigate the chronology of events in cellular and biochemical changes thought to be important in the development of silicosis, (2) to relate these to changes in lung function and radiograph, and (3) to evaluate the relation of quartz exposure and retention to individual response leading to early silicosis. Thirty-six sheep were exposed by repeated intratracheal infusion at 10-day intervals to 100 mg Minusil-5 in 100 ml saline (Si group), and 10 sheep were exposed at the same intervals to 100 ml saline (control). All sheep were investigated at 3-month intervals by chest radiograph, lung function, and lung lavage. At month 9, chest radiograph score of parenchymal opacities was significantly increased at 2.8 +/- 0.6 versus 0.4 +/- 0.4 in the Si group (p less than .05), establishing early radiologic silicosis. Lung function was significantly altered with reduction in lung compliance, vital capacity, and diffusion capacity (p less than .05). Lung lavage cellularity revealed significant increase in total cells (X 2.5), macrophages (X3), and neutrophils (X3). Albumin in BAL remained at the control level. Fibronectin production was significantly increased, as was the fibroblast growth activity, without significant change in procollagen 3 at this early stage of disease. Total phospholipids were significantly elevated in the Si-exposed sheep, and the profile demonstrated an increase in all the phospholipid components. Spontaneous release of hydrogen peroxide by alveolar cells was not increased, but in the presence of phorbol myristate acetate (PMA) higher levels of peroxide were found in the quartz-exposed sheep (p less than .05). The cellular and biochemical alterations of lung lavage preceded other changes. At month 12, there were good correlations (r greater than .49, p less than .001) between parameters evaluating related phenomena but poor correlations between measurements evaluating different aspects of the disorder. To

  14. Early-life metal exposure and schizophrenia: A proof-of-concept study using novel tooth-matrix biomarkers.

    PubMed

    Modabbernia, A; Velthorst, E; Gennings, C; De Haan, L; Austin, C; Sutterland, A; Mollon, J; Frangou, S; Wright, R; Arora, M; Reichenberg, A

    2016-08-01

    Despite evidence for the effects of metals on neurodevelopment, the long-term effects on mental health remain unclear due to methodological limitations. Our objective was to determine the feasibility of studying metal exposure during critical neurodevelopmental periods and to explore the association between early-life metal exposure and adult schizophrenia. We analyzed childhood-shed teeth from nine individuals with schizophrenia and five healthy controls. We investigated the association between exposure to lead (Pb(2+)), manganese (Mn(2+)), cadmium (Cd(2+)), copper (Cu(2+)), magnesium (Mg(2+)), and zinc (Zn(2+)), and schizophrenia, psychotic experiences, and intelligence quotient (IQ). We reconstructed the dose and timing of early-life metal exposures using laser ablation inductively coupled plasma mass spectrometry. We found higher early-life Pb(2+) exposure among patients with schizophrenia than controls. The differences in log Mn(2+) and log Cu(2+) changed relatively linearly over time to postnatal negative values. There was a positive correlation between early-life Pb(2+) levels and psychotic experiences in adulthood. Moreover, we found a negative correlation between Pb(2+) levels and adult IQ. In our proof-of-concept study, using tooth-matrix biomarker that provides direct measurement of exposure in the fetus and newborn, we provide support for the role of metal exposure during critical neurodevelopmental periods in psychosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Exposure to Childhood Sexual and Physical Abuse and Adjustment in Early Adulthood

    ERIC Educational Resources Information Center

    Fergusson, David M.; Boden, Joseph M.; Horwood, L. John

    2008-01-01

    Objective: This research examined linkages between exposure to childhood sexual abuse (CSA) and childhood physical punishment/abuse (CPA) and mental health issues in early adulthood. Method: The investigation analyzed data from a birth cohort of over 1,000 New Zealand young adults studied to the age of 25. Results: Exposure to CSA and CPA was…

  16. Developmental and Persistent Toxicities of Maternally Deposited Selenomethionine in Zebrafish (Danio rerio).

    PubMed

    Thomas, Jith K; Janz, David M

    2015-08-18

    The objectives of this study were (1) to establish egg selenium (Se) toxicity thresholds for mortality and deformities in early life stages of zebrafish (Danio rerio) after exposure to excess selenomethionine (SeMet, the dominant chemical species of Se in diets) via in ovo maternal transfer and (2) to investigate the persistent effects of developmental exposure to excess SeMet on swim performance and metabolic capacities in F1-generation adult zebrafish. Adult zebrafish were fed either control food (1.3 μg Se/g, dry mass or d.m.) or food spiked with increasing measured concentrations of Se (3.4, 9.8, or 27.5 μg Se/g, d.m.) in the form of SeMet for 90 d. In ovo exposure to SeMet increased mortality and deformities in larval zebrafish in a concentration-dependent fashion with threshold egg Se concentrations (EC10s) of 7.5 and 7.0 μg Se/g d.m., respectively. Impaired swim performance and greater respiration and metabolic rates were observed in F1-generation zebrafish exposed in ovo to 6.8 and 12.7 μg Se/g d.m and raised to adulthood in clean water. A species sensitivity distribution (SSD) based on egg Se developmental toxicity thresholds suggests that zebrafish are the most sensitive fish species studied to date.

  17. Evaluation of the developmental toxicity of lead in the Danio rerio body.

    PubMed

    Roy, Nicole M; DeWolf, Sarah; Carneiro, Bruno

    2015-01-01

    Lead has been utilized throughout history and is widely distributed and mobilized globally. Although lead in the environment has been somewhat mitigated, the nature of lead and its extensive uses in the past prohibit it from being completely absent from our environment and exposure to lead is still a public health concern. Most studies regarding lead toxicity have focused on the brain. However, little is found in the literature on the effects of lead in other tissues. Here, we utilize the zebrafish model system to investigate effects of lead exposure during early developmental time windows at 24, 48 and 72 h post fertilization in the body. We analyze whole body, notochord and somatic muscle changes, vascular changes of the body, as well as motor neuron alterations. We find lead exposure induces a curved body phenotype with concomitant changes in somite length, decreased notochord staining and abnormal muscle staining using live and in situ approaches. Furthermore, altered vasculature within the somatic regions, loss and/or alternations of motor neuron extension both dorsally and ventrally from the spinal cord, loss of Rohon-Beard sensory neurons, and increased areas of apoptosis were found. We conclude that lead is developmentally toxic to other areas of the developing embryo, not just the brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Early life exposure to malaria and cognition in adulthood: evidence from Mexico.

    PubMed

    Venkataramani, Atheendar S

    2012-09-01

    This study examines the impact of early life malaria exposure on cognition in sample of Mexican adults, using the nationwide introduction of malaria eradication efforts to identify causal impacts. The core findings are that birth year exposure to malaria eradication was associated with increases in Raven Progressive Matrices test scores and consumption expenditures, but not schooling. Additionally, cohorts born after eradication both entered and exited school earlier than their pre-eradication counterparts. These effects were only seen for men and explanations for this are assessed. Collectively, these findings suggest that improvements in infant health help explain secular increases in cognitive test scores, that better cognition may link early life health to adulthood earnings, and that human capital investments through childhood and young adulthood respond sensitively to market returns to early life endowment shocks. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Developmental Programming: State-of-the-Science and Future Directions

    PubMed Central

    Sutton, Elizabeth F.; Gilmore, L. Anne; Dunger, David B.; Heijmans, Bas T.; Hivert, Marie-France; Ling, Charlotte; Martinez, J. Alfredo; Ozanne, Susan E.; Simmons, Rebecca A.; Szyf, Moshe; Waterland, Robert A.; Redman, Leanne M.; Ravussin, Eric

    2016-01-01

    Objective On December 8–9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current scientific advances in animal models, population-based cohort studies and human clinical trials, (ii) the state-of-the-science of epigenetic-based research, and (iii) considerations for future studies. Results The overarching goal was to provide a comprehensive assessment of the state of the scientific field, to identify research gaps and opportunities for future research in order to identify and understand the mechanisms contributing to the developmental programming of health and disease. Conclusions Identifying the mechanisms which cause or contribute to developmental programming of future generations will be invaluable to the scientific and medical community. The ability to intervene during critical periods of prenatal and early postnatal life to promote lifelong health is the ultimate goal. Considerations for future research including the use of animal models, the study design in human cohorts with considerations about the timing of the intrauterine exposure and the resulting tissue specific epigenetic signature were extensively discussed and are presented in this meeting summary. PMID:27037645

  20. Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence.

    PubMed

    Essex, Marilyn J; Boyce, W Thomas; Hertzman, Clyde; Lam, Lucia L; Armstrong, Jeffrey M; Neumann, Sarah M A; Kobor, Michael S

    2013-01-01

    Fifteen-year-old adolescents (N = 109) in a longitudinal study of child development were recruited to examine differences in DNA methylation in relation to parent reports of adversity during the adolescents' infancy and preschool periods. Microarray technology applied to 28,000 cytosine-guanine dinucleotide sites within DNA derived from buccal epithelial cells showed differential methylation among adolescents whose parents reported high levels of stress during their children's early lives. Maternal stressors in infancy and paternal stressors in the preschool years were most strongly predictive of differential methylation, and the patterning of such epigenetic marks varied by children's gender. To the authors' knowledge, this is the first report of prospective associations between adversities in early childhood and the epigenetic conformation of adolescents' genomic DNA. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.

  1. Consequences of repeated ethanol exposure during early or late adolescence on conditioned taste aversions in rats.

    PubMed

    Saalfield, Jessica; Spear, Linda

    2015-12-01

    Alcohol use is prevalent during adolescence, yet little is known about possible long-lasting consequences. Recent evidence suggests that adolescents are less sensitive than adults to ethanol's aversive effects, an insensitivity that may be retained into adulthood after repeated adolescent ethanol exposure. This study assessed whether intermittent ethanol exposure during early or late adolescence (early-AIE or late-AIE, respectively) would affect ethanol conditioned taste aversions 2 days (CTA1) and >3 weeks (CTA2) post-exposure using supersaccharin and saline as conditioning stimuli (CS), respectively. Pair-housed male Sprague-Dawley rats received 4g/kg i.g. ethanol (25%) or water every 48 h from postnatal day (P) 25-45 (early AIE) or P45-65 (late AIE), or were left non-manipulated (NM). During conditioning, 30 min home cage access to the CS was followed by 0, 1, 1.5, 2 or 2.5g/kg ethanol i.p., with testing 2 days later. Attenuated CTA relative to controls was seen among early and late AIE animals at both CTA1 and CTA2, an effect particularly pronounced at CTA1 after late AIE. Thus, adolescent exposure to ethanol was found to induce an insensitivity to ethanol CTA seen soon after exposure and lasting into adulthood, and evident with ethanol exposures not only early but also later in adolescence. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Examining the social determinants of children's developmental health: protocol for building a pan-Canadian population-based monitoring system for early childhood development

    PubMed Central

    Guhn, Martin; Janus, Magdalena; Enns, Jennifer; Brownell, Marni; Forer, Barry; Duku, Eric; Muhajarine, Nazeem; Raos, Rob

    2016-01-01

    Introduction Early childhood is a key period to establish policies and practices that optimise children's health and development, but Canada lacks nationally representative data on social indicators of children's well-being. To address this gap, the Early Development Instrument (EDI), a teacher-administered questionnaire completed for kindergarten-age children, has been implemented across most Canadian provinces over the past 10 years. The purpose of this protocol is to describe the Canadian Neighbourhoods and Early Child Development (CanNECD) Study, the aims of which are to create a pan-Canadian EDI database to monitor trends over time in children's developmental health and to advance research examining the social determinants of health. Methods and analysis Canada-wide EDI records from 2004 to 2014 (representing over 700 000 children) will be linked to Canada Census and Income Taxfiler data. Variables of socioeconomic status derived from these databases will be used to predict neighbourhood-level EDI vulnerability rates by conducting a series of regression analyses and latent variable models at provincial/territorial and national levels. Where data are available, we will measure the neighbourhood-level change in developmental vulnerability rates over time and model the socioeconomic factors associated with those trends. Ethics and dissemination Ethics approval for this study was granted by the Behavioural Research Ethics Board at the University of British Columbia. Study findings will be disseminated to key partners, including provincial and federal ministries, schools and school districts, collaborative community groups and the early childhood development research community. The database created as part of this longitudinal population-level monitoring system will allow researchers to associate practices, programmes and policies at school and community levels with trends in developmental health outcomes. The CanNECD Study will guide future early childhood

  3. Another View on "Reinforcement in Developmentally Appropriate Early Childhood Classrooms."

    ERIC Educational Resources Information Center

    Wolfgang, Charles H.

    2001-01-01

    Contrasts the use of behavioral and developmental theories to address a child's aggression. Presents concerns about the use of social reinforcers, activity reinforcers, and tangible reinforcers. Asserts that behavioral techniques that shape children's surface behaviors without placing the behaviors within a developmental context may interfere with…

  4. The Broad Scope of Health Effects from Chronic Arsenic Exposure: Update on a Worldwide Public Health Problem

    PubMed Central

    Anderson, Beth; Ahsan, Habibul; Aposhian, H. Vasken; Graziano, Joseph H.; Thompson, Claudia; Suk, William A.

    2013-01-01

    Background: Concerns for arsenic exposure are not limited to toxic waste sites and massive poisoning events. Chronic exposure continues to be a major public health problem worldwide, affecting hundreds of millions of persons. Objectives: We reviewed recent information on worldwide concerns for arsenic exposures and public health to heighten awareness of the current scope of arsenic exposure and health outcomes and the importance of reducing exposure, particularly during pregnancy and early life. Methods: We synthesized the large body of current research pertaining to arsenic exposure and health outcomes with an emphasis on recent publications. Discussion: Locations of high arsenic exposure via drinking water span from Bangladesh, Chile, and Taiwan to the United States. The U.S. Environmental Protection Agency maximum contaminant level (MCL) in drinking water is 10 µg/L; however, concentrations of > 3,000 µg/L have been found in wells in the United States. In addition, exposure through diet is of growing concern. Knowledge of the scope of arsenic-associated health effects has broadened; arsenic leaves essentially no bodily system untouched. Arsenic is a known carcinogen associated with skin, lung, bladder, kidney, and liver cancer. Dermatological, developmental, neurological, respiratory, cardiovascular, immunological, and endocrine effects are also evident. Most remarkably, early-life exposure may be related to increased risks for several types of cancer and other diseases during adulthood. Conclusions: These data call for heightened awareness of arsenic-related pathologies in broader contexts than previously perceived. Testing foods and drinking water for arsenic, including individual private wells, should be a top priority to reduce exposure, particularly for pregnant women and children, given the potential for life-long effects of developmental exposure. PMID:23458756

  5. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem.

    PubMed

    Naujokas, Marisa F; Anderson, Beth; Ahsan, Habibul; Aposhian, H Vasken; Graziano, Joseph H; Thompson, Claudia; Suk, William A

    2013-03-01

    Concerns for arsenic exposure are not limited to toxic waste sites and massive poisoning events. Chronic exposure continues to be a major public health problem worldwide, affecting hundreds of millions of persons. We reviewed recent information on worldwide concerns for arsenic exposures and public health to heighten awareness of the current scope of arsenic exposure and health outcomes and the importance of reducing exposure, particularly during pregnancy and early life. We synthesized the large body of current research pertaining to arsenic exposure and health outcomes with an emphasis on recent publications. Locations of high arsenic exposure via drinking water span from Bangladesh, Chile, and Taiwan to the United States. The U.S. Environmental Protection Agency maximum contaminant level (MCL) in drinking water is 10 µg/L; however, concentrations of > 3,000 µg/L have been found in wells in the United States. In addition, exposure through diet is of growing concern. Knowledge of the scope of arsenic-associated health effects has broadened; arsenic leaves essentially no bodily system untouched. Arsenic is a known carcinogen associated with skin, lung, bladder, kidney, and liver cancer. Dermatological, developmental, neurological, respiratory, cardiovascular, immunological, and endocrine effects are also evident. Most remarkably, early-life exposure may be related to increased risks for several types of cancer and other diseases during adulthood. These data call for heightened awareness of arsenic-related pathologies in broader contexts than previously perceived. Testing foods and drinking water for arsenic, including individual private wells, should be a top priority to reduce exposure, particularly for pregnant women and children, given the potential for life-long effects of developmental exposure.

  6. Developmental milestones among Aboriginal children in Canada

    PubMed Central

    Findlay, Leanne; Kohen, Dafna; Miller, Anton

    2014-01-01

    BACKGROUND: Windows of achievement provide age ranges for the attainment of early developmental skills. Group-specific research is warranted given that development may be influenced by social or cultural factors. OBJECTIVES: To examine developmental milestones for Inuit, Métis and off-reserve First Nation children in Canada, based on developmental domains collected from the 2006 Aboriginal Children’s Survey. Sociodemographic and health predictors of risk for developmental delay were also examined. RESULTS: The ranges in which children achieve certain developmental milestones are presented. Gross motor and self-help skills were found to be achieved earlier (across the three Aboriginal groups), whereas language skills were achieved slightly later than in Canadian children in general. Furthermore, health factors (eg, low birth weight, chronic health conditions) were associated with late achievement of developmental outcomes even when sociodemographic characteristics were considered. CONCLUSIONS: Findings suggest that the timing of milestone achievement may differ for Aboriginal children, highlighting the importance of establishing culturally specific norms and standards rather than relying on those derived from general populations. This information may be useful for practitioners and parents interested in identifying the age ranges for development, as well as age ranges indicating potential for developmental risk and opportunities for early intervention among Aboriginal children. PMID:24855426

  7. Linking Prenatal Maternal Adversity to Developmental Outcomes in Infants: The Role of Epigenetic Pathways

    PubMed Central

    Monk, Catherine; Spicer, Julie; Champagne, Frances A.

    2013-01-01

    Prenatal exposure to maternal stress, anxiety, and depression can have lasting effects on infant development with consequences for risk of psychopathology. Though the impact of prenatal maternal distress has been well documented, the potential mechanisms through which maternal psychosocial variables shape development have yet to be fully elucidated. Advances in molecular biology have highlighted the role of epigenetic mechanisms in regulating gene activity, neurobiology, and behavior and the potential role of environmentally-induced epigenetic variation in linking early life exposures to long-term biobehavioral outcomes. In this review, we discuss evidence illustrating the association between maternal prenatal distress and both fetal and infant developmental trajectories and the potential role of epigenetic mechanisms in mediating these effects. Postnatal experiences may have a critical moderating influence on prenatal effects, and here we review findings illustrating prenatal-postnatal interplay and the developmental and epigenetic consequences of postnatal mother-infant interactions. The in utero environment is regulated by placental function and there is emerging evidence that the placenta is highly susceptible to maternal distress and a target of epigenetic dysregulation. Integrating studies of prenatal exposures, placental function, and postnatal maternal care with the exploration of epigenetic mechanisms may provide novel insights into the pathophysiology induced by maternal distress. PMID:23062303

  8. Early-life bisphenol a exposure and child body mass index: a prospective cohort study.

    PubMed

    Braun, Joseph M; Lanphear, Bruce P; Calafat, Antonia M; Deria, Sirad; Khoury, Jane; Howe, Chanelle J; Venners, Scott A

    2014-11-01

    Early-life exposure to bisphenol A (BPA) may increase childhood obesity risk, but few prospective epidemiological studies have investigated this relationship. We sought to determine whether early-life exposure to BPA was associated with increased body mass index (BMI) at 2-5 years of age in 297 mother-child pairs from Cincinnati, Ohio (HOME Study). Urinary BPA concentrations were measured in samples collected from pregnant women during the second and third trimesters and their children at 1 and 2 years of age. BMI z-scores were calculated from weight/height measures conducted annually from 2 through 5 years of age. We used linear mixed models to estimate BMI differences or trajectories with increasing creatinine-normalized BPA concentrations. After confounder adjustment, each 10-fold increase in prenatal (β = -0.1; 95% CI: -0.5, 0.3) or early-childhood (β = -0.2; 95% CI: -0.6, 0.1) BPA concentrations was associated with a modest and nonsignificant reduction in child BMI. These inverse associations were suggestively stronger in girls than in boys [prenatal effect measure modification (EMM) p-value = 0.30, early-childhood EMM p-value = 0.05], but sex-specific associations were imprecise. Children in the highest early-childhood BPA tercile had lower BMI at 2 years (difference = -0.3; 95% CI: -0.6, 0.0) and larger increases in their BMI slope from 2 through 5 years (BMI increase per year = 0.12; 95% CI: 0.07, 0.18) than children in the lowest tercile (BMI increase per year = 0.07; 95% CI: 0.01, 0.13). All associations were attenuated without creatinine normalization. Prenatal and early-childhood BPA exposures were not associated with increased BMI at 2-5 years of age, but higher early-childhood BPA exposures were associated with accelerated growth during this period.

  9. Effects of Developmental Bisphenol A Exposure on Reproductive-Related Behaviors in California Mice (Peromyscus californicus): A Monogamous Animal Model

    PubMed Central

    Williams, Scott A.; Jasarevic, Eldin; Vandas, Gregory M.; Warzak, Denise A.; Geary, David C.; Ellersieck, Mark R.; Roberts, R. Michael; Rosenfeld, Cheryl S.

    2013-01-01

    Bisphenol A (BPA), a pervasive, endocrine disrupting compound (EDC), acts as a mixed agonist- antagonist with respect to estrogens and other steroid hormones. We hypothesized that sexually selected traits would be particularly sensitive to EDC. Consistent with this concept, developmental exposure of males from the polygynous deer mouse, Peromyscus maniculatus, to BPA resulted in compromised spatial navigational ability and exploratory behaviors, while there was little effect on females. Here, we have examined a related, monogamous species, the California mouse (Peromyscus californicus), where we predicted that males would be less sensitive to BPA in terms of navigational and exploratory behaviors, while displaying other traits related to interactions with females and territorial marking that might be vulnerable to disruption. As in the deer mouse experiments, females were fed either a phytoestrogen-free CTL diet through pregnancy and lactation or the same diet supplemented with BPA (50 mg/kg feed weight) or ethinyl estradiol (EE) (0.1 part per billion) to provide a “pure” estrogen control. After weaning, pups were maintained on CTL diet until they had reached sexual maturity, at which time behaviors were evaluated. In addition, territorial marking was assessed in BPA-exposed males housed alone and when a control male was visible in the testing arena. In contrast to deer mice, BPA and EE exposure had no effect on spatial navigational skills in either male or female California mice. While CTL females exhibited greater exploratory behavior than CTL males, BPA exposure abolished this sex difference. BPA-exposed males, however, engaged in less territorial marking when CTL males were present. These studies demonstrate that developmental BPA exposure can disrupt adult behaviors in a sex- and species-dependent manner and are consistent with the hypothesis that sexually selected traits are particularly vulnerable to endocrine disruption and should be a consideration in

  10. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty

    2012-05-01

    current technical manuscript); (3) additional laboratory experimentation focused on the potential effects of long-term exposures to fly ash on fish survival and reproductive competence; and (4) a combined field and laboratory study examining the in vitro developmental success of embryos and larvae obtained from fish exposed in vivo for over two years to fly ash in the Emory and Clinch Rivers. These fish reproduction and early life-stage studies are being conducted in conjunction with a broader biological monitoring program administered by TVA that includes a field study of the condition of larval fish in the Emory and Clinch Rivers along with assessments of water quality, sediment composition, ecotoxicological studies, terrestrial wildlife studies, and human and ecological risk assessment. Information and data generated from these studies will provide direct input into risk assessment efforts and will also complement and help support other phases of the overall biomonitoring program. Fish eggs, in general, are known to be capable of concentrating heavy metals and other environmental contaminants from water-borne exposures during embryonic development (Jezierska and others 2009), and fathead minnow embryos in particular have been shown to concentrate methylmercury (Devlin 2006) as well as other chemical toxicants. This technical report focuses on the responses of fathead minnow embryos to simple contact exposures to fly ash in laboratory toxicity tests adapted from a standard fathead minnow (Pimephales promelas) 7-d embryo-larval survival and teratogenicity test (method 1001.0 in EPA 2002) with mortality, hatching success, and the incidences of developmental abnormalities as measured endpoints.« less

  11. Programming social, cognitive, and neuroendocrine development by early exposure to novelty.

    PubMed

    Tang, Akaysha C; Akers, Katherine G; Reeb, Bethany C; Romeo, Russell D; McEwen, Bruce S

    2006-10-17

    Mildly stressful early life experiences can potentially impact a broad range of social, cognitive, and physiological functions in humans, nonhuman primates, and rodents. Recent rodent studies favor a maternal-mediation hypothesis that considers maternal-care differences induced by neonatal stimulation as the cause of individual differences in offspring development. Using neonatal novelty exposure, a neonatal stimulation paradigm that dissociates maternal individual differences from a direct stimulation effect on the offspring, we investigated the effect of early exposures to novelty on a diverse range of psychological functions using several assessment paradigms. Pups that received brief neonatal novelty exposures away from the home environment showed enhancement in spatial working memory, social competition, and corticosterone response to surprise during adulthood compared with their home-staying siblings. These functional enhancements in novelty-exposed rats occurred despite evidence that maternal care was directed preferentially toward home-staying instead of novelty-exposed pups, indicating that greater maternal care is neither necessary nor sufficient for these early stimulation-induced functional enhancements. We suggest a unifying maternal-modulation hypothesis, which distinguishes itself from the maternal-mediation hypothesis in that (i) neonatal stimulation can have direct effects on pups, cumulatively leading to long-term improvement in adult offspring; and (ii) maternal behavior can attenuate or potentiate these effects, thereby decreasing or increasing this long-term functional improvement.

  12. Exposure to dust mite allergen and endotoxin in early life and asthma and atopy in childhood

    PubMed Central

    Celedón, Juan C.; Milton, Donald K.; Ramsey, Clare D.; Litonjua, Augusto A.; Ryan, Louise; Platts-Mills, Thomas A. E.; Gold, Diane R.

    2013-01-01

    Background There has been no longitudinal study of the relation between concurrent exposure to dust mite allergen and endotoxin in early life and asthma and atopy at school age. Objectives To examine the relation between exposure to dust mite allergen and endotoxin at age 2 to 3 months and asthma, wheeze, and atopy in high-risk children. Methods Birth cohort study of 440 children with parental history of atopy in the Boston metropolitan area. Results In multivariate analyses, early exposure to high levels of dust mite allergen (≥10 μg/g) was associated with increased risks of asthma at age 7 years (odds ratio [OR], 3.0; 95% CI, 1.1-7.9) and late-onset wheeze (OR, 5.0; 95% CI, 1.5-16.4). Exposure to endotoxin levels above the lowest quartile at age 2 to 3 months was associated with reduced odds of atopy at school age (OR, 0.5; 95% CI, 0.2-0.9). In contrast with its inverse association with atopy, endotoxin exposure in early life was associated with an increased risk of any wheeze between ages 1 and 7 years that did not change significantly with time (hazard ratio for each quartile increment in endotoxin levels, 1.23; 95% CI, 1.07-1.43). Conclusion Among children at risk of atopy, early exposure to high levels of dust mite allergen is associated with increased risks of asthma and late-onset wheeze. In these children, endotoxin exposure is associated with a reduced risk of atopy but an increased risk of wheeze. Clinical implications Early endotoxin exposure may be a protective factor against atopy but a risk factor for wheeze in high-risk children. PMID:17507083

  13. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms

    PubMed Central

    Burke, Richard D.; Todd, Spencer W.; Lumsden, Eric; Mullins, Roger J.; Mamczarz, Jacek; Fawcett, William P.; Gullapalli, Rao P.; Randall, William R.; Pereira, Edna F. R.; Albuquerque, Edson X.

    2017-01-01

    Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. PMID:28791702

  14. Genome-Wide Association Mapping of Fertility Reduction upon Heat Stress Reveals Developmental Stage-Specific QTLs in Arabidopsis thaliana

    PubMed Central

    Bac-Molenaar, Johanna A.; Fradin, Emilie F.; Becker, Frank F.M.; Rienstra, Juriaan A.; van der Schoot, J.; Vreugdenhil, Dick; Keurentjes, Joost J.B.

    2015-01-01

    For crops that are grown for their fruits or seeds, elevated temperatures that occur during flowering and seed or fruit set have a stronger effect on yield than high temperatures during the vegetative stage. Even short-term exposure to heat can have a large impact on yield. In this study, we used Arabidopsis thaliana to study the effect of short-term heat exposure on flower and seed development. The impact of a single hot day (35°C) was determined in more than 250 natural accessions by measuring the lengths of the siliques along the main inflorescence. Two sensitive developmental stages were identified, one before anthesis, during male and female meiosis, and one after anthesis, during fertilization and early embryo development. In addition, we observed a correlation between flowering time and heat tolerance. Genome-wide association mapping revealed four quantitative trait loci (QTLs) strongly associated with the heat response. These QTLs were developmental stage specific, as different QTLs were detected before and after anthesis. For a number of QTLs, T-DNA insertion knockout lines could validate assigned candidate genes. Our findings show that the regulation of complex traits can be highly dependent on the developmental timing. PMID:26163573

  15. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish

    NASA Astrophysics Data System (ADS)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy

    2013-11-01

    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target

  16. Developmental Changes in Ultradian Sleep Cycles across Early Childhood.

    PubMed

    Lopp, Sean; Navidi, William; Achermann, Peter; LeBourgeois, Monique; Diniz Behn, Cecilia

    2017-02-01

    Nocturnal human sleep is composed of cycles between rapid eye movement (REM) sleep and non-REM (NREM) sleep. In adults, the structure of ultradian cycles between NREM and REM sleep is well characterized; however, less is known about the developmental trajectories of ultradian sleep cycles across early childhood. Cross-sectional studies indicate that the rapid ultradian cycling of active-quiet sleep in infancy shifts to a more adult-like pattern of NREM-REM sleep cycling by the school-age years, yet longitudinal studies elucidating the details of this transition are scarce. To address this gap, we examined ultradian cycling during nocturnal sleep following 13 h of prior wakefulness in 8 healthy children at 3 longitudinal points: 2Y (2.5-3.0 years of age), 3Y (3.5-4.0 years of age), and 5Y (5.5-6.0 years of age). We found that the length of ultradian cycles increased with age as a result of increased NREM sleep episode duration. In addition, we observed a significant decrease in the number of NREM sleep episodes as well as a nonsignificant trend for a decrease in the number of cycles with increasing age. Together, these findings suggest a concurrent change in which cycle duration increases and the number of cycles decreases across development. We also found that, consistent with data from adolescents and adults, the duration of NREM sleep episodes decreased with time since lights-off whereas the duration of REM sleep episodes increased over this time period. These results indicate the presence of circadian modulation of nocturnal sleep in preschool children. In addition to characterizing changes in ultradian cycling in healthy children ages 2 to 5 years, this work describes a developmental model that may provide insights into the emergence of normal adult REM sleep regulatory circuitry as well as potential trajectories of dysregulated ultradian cycles such as those associated with affective disorders.

  17. Early-life income inequality and adolescent health and well-being.

    PubMed

    Elgar, Frank J; Gariépy, Geneviève; Torsheim, Torbjørn; Currie, Candace

    2017-02-01

    A prevailing hypothesis about the association between income inequality and poor health is that inequality intensifies social hierarchies, increases stress, erodes social and material resources that support health, and subsequently harms health. However, the evidence in support of this hypothesis is limited by cross-sectional, ecological studies and a scarcity of developmental studies. To address this limitation, we used pooled, multilevel data from the Health Behaviour in School-aged Children study to examine lagged, cumulative, and trajectory associations between early-life income inequality and adolescent health and well-being. Psychosomatic symptoms and life satisfaction were assessed in surveys of 11- to 15-year-olds in 40 countries between 1994 and 2014. We linked these data to national Gini indices of income inequality for every life year from 1979 to 2014. The results showed that exposure to income inequality from 0 to 4 years predicted psychosomatic symptoms and lower life satisfaction in females after controlling lifetime mean income inequality, national per capita income, family affluence, age, and cohort and period effects. The cumulative income inequality exposure in infancy and childhood (i.e., average Gini index from birth to age 10) related to lower life satisfaction in female adolescents but not to symptoms. Finally, individual trajectories in early-life inequality (i.e., linear slopes in Gini indices from birth to 10 years) related to fewer symptoms and higher life satisfaction in females, indicating that earlier exposures mattered more to predicting health and wellbeing. No such associations with early-life income inequality were found in males. These results help to establish the antecedent-consequence conditions in the association between income inequality and health and suggest that both the magnitude and timing of income inequality in early life have developmental consequences that manifest in reduced health and well-being in adolescent girls

  18. Sex-specific effects of developmental alcohol exposure on cocaine-induced place preference in adulthood.

    PubMed

    Macht, Victoria A; Kelly, Sandra J; Gass, Justin T

    2017-08-14

    Fetal Alcohol Syndrome (FAS) is associated with high rates of drug addiction in adulthood. One possible basis for increased drug use in this population is altered sensitivity to drug-associated contexts. This experiment utilized a rat model of FASD to examine behavioral and neural changes in the processing of drug cues in adulthood. Alcohol was given by intragastric intubation to pregnant rats throughout gestation and to rat pups during the early postnatal period (ET group). Controls consisted of a non-treated group (NC) and a pair-fed group given the intubation procedure without alcohol (IC). On postnatal day (PD) 90, rats from all treatment groups were given saline, 0.3mg/kg, 3.0mg/kg, or 10.0mg/kg cocaine pairings with a specific context in the conditioned place preference (CPP) paradigm. While control animals of both sexes showed cocaine CPP at the 3.0 and 10.0mg/kg doses, ET females also showed cocaine CPP at 0.3mg/kg. This was accompanied by a decrease in c-Fos/GAD 67 cells in the nucleus accumbens (NAc) shell and GAD 67 -only cells in the NAc shell and PFC at this 0.3mg/kg dose. ET males failed to show cocaine CPP at the 3.0mg/kg dose. This was associated with an increase in c-Fos only-labeled cells in the NAc core and PFC at this 3.0mg/kg dose. These results suggest that developmental alcohol exposure has a sexually-dimorphic effect on cocaine's conditioning effects in adulthood and the NAc. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Delayed impacts of developmental exposure to 17-α-ethinylestradiol in the self-fertilizing fish Kryptolebias marmoratus.

    PubMed

    Voisin, Anne-Sophie; Fellous, Alexandre; Earley, Ryan L; Silvestre, Frédéric

    2016-11-01

    17-α-ethinylestradiol (EE2) is one of the most potent endocrine disrupting compounds found in the aquatic environments, and is known to strongly alter fish reproduction and fitness. While the effects of direct exposure to EE2 are well studied in adults, there is an increasing need to assess the impacts of exposure during early life stages. Sensitivity to pollutants during this critical window can potentially affect the phenotype later in life or in subsequent generations. This study investigated phenotypic outcome of early-life exposure to 17-α-ethinylestradiol during development and in adults of the mangrove rivulus, Kryptolebias marmoratus. Being one of the only two known self-fertilizing hermaphroditic vertebrates, this fish makes it possible to work with genetically identical individuals. Therefore, using rivulus makes it possible to examine, explicitly, the phenotypic effects of environmental variance while eliminating the effects of genetic variance. Genetically identical rivulus were exposed for the first 28days post hatching (dph) to 0, 4 or 120ng/L of EE2, and then were reared in uncontaminated water until 168dph. Growth, egg laying and steroid hormone levels (estradiol, cortisol, 11-ketotestosterone, testosterone) were measured throughout development. Exposed fish showed a reduction in standard length directly after exposure (28dph), which was more pronounced in the 120ng/L group. This was followed by compensatory growth when reared in clean water: all fish recovered a similar size as controls by 91dph. There was no difference in the age at maturity and the proportions of mature, non-mature and male individuals at 168dph. At 4ng/L, fish layed significantly fewer eggs than controls, while, surprisingly, reproduction was not affected at 120ng/L. Despite a decrease in fecundity at 4ng/L, there were no changes in hormones levels at the lower concentration. In addition, there were no significant differences among treatments immediately after exposure

  20. Expression of glucocorticoid receptor and early growth response gene 1 during postnatal development of two inbred strains of mice exposed to early life stress.

    PubMed

    Navailles, Sylvia; Zimnisky, Ross; Schmauss, Claudia

    2010-07-01

    Early life stress can elicit profound changes in adult gene expression and behavior. One consequence of early life stress is a decreased expression of glucocorticoid receptors (GRs) in the frontal cortex and hippocampus. However, neither the time of onset nor the mechanism(s) leading to decreased GR expression during postnatal development are known. The present study used two inbred strains of mice that differ in their behavioral responsiveness to stress (Balb/c and C57Bl/6), exposed them to an established paradigm of early life stress (infant maternal separation), and measured their expression of frontal cortical and hippocampal GRs and the putative transcriptional activator of the GR gene, early growth response gene (egr)-1, at defined stages of postnatal development. In both strains, real-time RT-PCR experiments revealed that decreased expression of GR in adolescence and adulthood is, in fact, preceded by increased GR expression during early life stress exposure. Thus, the early life stress-induced disruption of the normal stress-hyporesponsive period during infancy is accompanied by increased GR expression. Moreover, chronic treatment with the antidepressant drug fluoxetine during adolescence or adulthood reversed the effect of early life stress on adult GR mRNA expression. In contrast to the strain-independent effect of early life stress on GR expression, however, changes in egr-1 expression occurred only in Balb/c mice, and unlike the biphasic developmental changes in GR mRNA expression, egr-1 mRNA was decreased throughout postnatal development. Moreover, there was no consistent overlap of anatomic regions affected by decreased GR and egr-1 protein expression. Thus, in Balb/c mice, changes in GR and egr-1 expression can independently contribute to the phenotypes resulting from early life stress exposure. These findings illustrate that the impact of early life stress on gene expression changes is modulated by the genetic background and that the persistent