Sample records for early diagenetic sediments

  1. Early-diagenetic processes in marine mangrove sediments from Guadeloupe, French West Indies

    NASA Astrophysics Data System (ADS)

    Crémière, Antoine; Sebilo, Mathieu; Strauss, Harald; Gros, Olivier; Laverman, Anniet M.

    2014-05-01

    Sediment and pore-water geochemistry were investigated in two short sediment cores from the Manche-à-eau lagoon (Guadeloupe, French Caribbean island) surrounded by mangroves trees. These sediments present high total organic carbon content, ranging between 10 to 18 % wt, mainly originating from mangrove litter fall. Oxygen is depleted in the first few millimetres of the sediment indicating active organic carbon degradation. Seawater sulphate is entirely consumed within the first 20 cm of the sediments and total organic carbon content decreases with depth pointing out that early-diagenetic degradation of organic matter occurs with sulphate reduction. Sulphide produced as the results of sulphate reduction partly reacts with detrital iron-bearing minerals and precipitates as pyrite which is consistent with high amounts of sulphur in the sediments (4-5 % wt). The sulphur isotopic composition (δ34S) of both dissolved sulphate and sulphide in pore-water increases with depth displaying a large apparent isotopic fractionation (Δ34S) between both species of 65-80o as a result of bacterial sulphate reduction. Scanning electron microscopy investigation reveals that a part of the carbonate alkalinity produced either by organic matter oxidation or anaerobic methane oxidation leads to authigenic carbonates precipitation. These results provide straightforward evidence that carbon and sulphur biogeochemical cycles are intimately governed by sedimentary microbial activity.

  2. PEaCH4 v.2.0: A modelling platform to predict early diagenetic processes in marine sediments with a focus on biogenic methane - Case study: Offshore Namibia

    NASA Astrophysics Data System (ADS)

    Arning, Esther T.; Häußler, Steffen; van Berk, Wolfgang; Schulz, Hans-Martin

    2016-07-01

    The modelling of early diagenetic processes in marine sediments is of interest in marine science, and in the oil and gas industry, here, especially with respect to methane occurrence and gas hydrate formation as resources. Early diagenesis in marine sediments evolves from a complex web of intertwining (bio)geochemical reactions. It comprises microbially catalysed reactions and inorganic mineral-water-gas interactions. A model that will describe and consider all of these reactions has to be complex. However, it should be user-friendly, as well as to be applicable for a broad community and not only for experts in the field of marine chemistry. The presented modelling platform PeaCH4 v.2.0 combines both aspects, and is Microsoft Excel©-based. The modelling tool is PHREEQC (version 2), a computer programme for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. The conceptual PEaCH4 model is based on the conversion of sediment-bound degradable organic matter. PEaCH4 v.2.0 was developed to quantify and predict early diagenetic processes in marine sediments with the focus on biogenic methane formation and its phase behaviour, and allows carbon mass balancing. In regard to the irreversible degradation of organic matter, it comprises a "reaction model" and a "kinetic model" to predict methane formation. Both approaches differ in their calculations and outputs as the "kinetic model" considers the modelling time to integrate temperature dependent biogenic methane formation in its calculations, whereas the "reaction model" simply relies on default organic matter degradation. With regard to the inorganic mineral-water-gas interactions, which are triggered by irreversible degradation of organic matter, PEaCH4 v.2.0 is based on chemical equilibrium thermodynamics, appropriate mass-action laws, and their temperature dependent equilibrium constants. The programme is exemplarily presented with the example of upwelling sediments off Namibia

  3. Controls on Cyclic Formation of Quaternary Early Diagenetic Dolomite

    NASA Astrophysics Data System (ADS)

    McCormack, J.; Bontognali, T. R. R.; Immenhauser, A.; Kwiecien, O.

    2018-04-01

    The origin of sedimentary dolomite and the factors that control its formation within the geological record remain speculative. In most models, dolomite formation is linked to evaporative conditions, high water temperature, increasing Mg/Ca ratio, increasing alkalinity, and high amounts of biomass. Here we challenge these archetypal views, by documenting a case example of Quaternary dolomite which formed in Lake Van at constantly low temperature (<4°C) and without direct control of the latter conditions. Dolomite occurs within highstand sediments related to suborbital climate variability (Dansgaard-Oeschger cycles). We propose that dolomite precipitation is a product of a microbially influenced process, triggered by ecological stress, resulting from reventilation of the water-sediment interface. Independently from the validity of this hypothesis, our results call for a reevaluation of the paleoenvironmental conditions often invoked for early diagenetic dolomite-rich intervals within sedimentary sequences and for caution when interpreting time series of subrecent lacustrine carbonates.

  4. Diagenetic Crystal Growth in the Murray Formation, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Kah, L. C.; Kronyak, R. E.; Ming, D. W.; Grotzinger, J. P.; Schieber, J.; Sumner, D. Y.; Edgett, K. S.

    2015-01-01

    The Pahrump region (Gale Crater, Mars) marks a critical transition between sedimentary environments dominated by alluvial-to-fluvial materials associated with the Gale crater rim, and depositional environments fundamentally linked to the crater's central mound, Mount Sharp. At Pahrump, the Murray formation consists of an approximately 14-meter thick succession dominated by massive to finely laminated mudstone with occasional interbeds of cross-bedded sandstone, and is best interpreted as a dominantly lacustrine environment containing tongues of prograding fluvial material. Murray formation mudstones contain abundant evidence for early diagenetic mineral precipitation and its subsequent removal by later diagenetic processes. Lenticular mineral growth is particularly common within lacustrine mudstone deposits at the Pahrump locality. High-resolution MAHLI images taken by the Curiosity rover permit detailed morphological and spatial analysis of these features. Millimeter-scale lenticular features occur in massive to well-laminated mudstone lithologies and are interpreted as pseudomorphs after calcium sulfate. The distribution and orientation of lenticular features suggests deposition at or near the sediment-water (or sediment-air) interface. Retention of chemical signals similar to host rock suggests that original precipitation was likely poikilotopic, incorporating substantial amounts of the primary matrix. Although poikilotopic crystal growth is common in burial environments, it also occurs during early diagenetic crystal growth within unlithified sediment where high rates of crystal growth are common. Loss of original calcium sulfate mineralogy suggests dissolution by mildly acidic, later-diagenetic fluids. As with lenticular voids observed at Meridiani by the Opportunity Rover, these features indicate that calcium sulfate deposition may have been widespread on early Mars; dissolution of depositional and early diagenetic minerals is a likely source for both calcium

  5. Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce∗: results from ODP Leg 127

    USGS Publications Warehouse

    Murray, R.; Buchholtz ten Brink, Marilyn R.; Brumsack, Hans-Juergen; Gerlach, David C.; Russ III, G. Price

    1991-01-01

    Ce/Ce* profiles at all three sites increase monotonically with depth, and record progressive diagenetic LREE fractionation. The observed Ce/Ce* record does not respond to changes in oxygenation state of the overlying water, and Ce/Ce* correlated slightly better with depth than with age. The downhole increase in Ce/Ce* at Site 794 and Site 797 is a passive response to diagenetic transfer of LREE (except Ce) from sediment to interstitial water. At Site 795, the overall lack of correlation between Ce/Ce* and L(ln/Ybnsuggests that other processes are occurring which mask the diagenetic behavior of all LREEs. First-order calculations of the Ce budget in Japan Sea waters and sediment indicate that ~20% of the excess Ce adsorbed by settling particles is recycled within the water column, and that an additional ~38% is recycled at or near the seafloor (data from Masuzawa and Koyama, 1989). Thus, because the remaining excess Ce is only ~10% of the total Ce, there is not a large source of Ce to the deeply buried sediment, further suggesting that the downhole increase in Ce/Ce* is a passive response to diagenetic behavior of the other LREEs. The REE chemistry of Japan Sea sediment therefore predicts successive downhole addition of LREEs to deeply-buried interstitial waters.

  6. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments.

    PubMed

    Mõtlep, Riho; Sild, Terje; Puura, Erik; Kirsimäe, Kalle

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.; Blättler, C. L.; Lundstrom, E. A.; Santiago-Ramos, D. P.; Akhtar, A. A.; Crüger Ahm, A.-S.; Bialik, O.; Holmden, C.; Bradbury, H.; Murray, S. T.; Swart, P. K.

    2018-01-01

    Shallow-water carbonate sediments constitute the bulk of sedimentary carbonates in the geologic record and are widely used archives of Earth's chemical and climatic history. One of the main limitations in interpreting the geochemistry of ancient carbonate sediments is the potential for post-depositional diagenetic alteration. In this study, we use paired measurements of calcium (44Ca/40Ca or δ44Ca) and magnesium (26Mg/24Mg or δ26Mg) isotope ratios in sedimentary carbonates and associated pore-fluids as a tool to understand the mineralogical and diagenetic history of Neogene shallow-water carbonate sediments from the Bahamas and southwest Australia. We find that the Ca and Mg isotopic composition of bulk carbonate sediments at these sites exhibits systematic stratigraphic variability that is related to both mineralogy and early marine diagenesis. The observed variability in bulk sediment Ca isotopes is best explained by changes in the extent and style of early marine diagenesis from one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the fluid (fluid-buffered) to one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the precursor sediment (sediment-buffered). Our results indicate that this process, together with variations in carbonate mineralogy (aragonite, calcite, and dolomite), plays a fundamental and underappreciated role in determining the regional and global stratigraphic expressions of geochemical tracers (δ13C, δ18O, major, minor, and trace elements) in shallow-water carbonate sediments in the geologic record. Our results also provide evidence that a large shallow-water carbonate sink that is enriched in 44Ca can explain the mismatch between the δ44/40Ca value of rivers and deep-sea carbonate sediments and call into question the hypothesis that the δ44/40Ca value of seawater depends on the mineralogy of primary carbonate precipitations (e.g. 'aragonite seas' and

  8. Photochemical dissolution of organic matter from resuspended sediments: Impact of source and diagenetic state on photorelease

    NASA Astrophysics Data System (ADS)

    Helms, J. R.; Glinski, D. A.; Mead, R. N.; Southwell, M.; Avery, G. B., Jr.; Kieber, R. J.; Skrabal, S. A.

    2015-12-01

    Resuspended sediments exposed to simulated solar radiation release dissolved organic carbon (DOC). However, it is unclear how the provenance of sedimentary organic matter (OM) impacts this photorelease. In the first geographically extensive study of this phenomenon, twenty three size fractionated, fine grained sediments (< ca. 10-20 μm) from a variety of drainage basins were resuspended (at suspended solid loading of 29- 255 mg/l) and exhibited a net photochemical DOC release ranging from 2 to 178 μmol/g/h. There was a logarithmic increase in photoreleased DOC vs. the proportion of sedimentary OC (%), most likely due to photon limitation at high sedimentary OC loading (i.e. high mass-specific absorption limiting light penetration). Sediment source and quality - determined using lipid biomarkers - had a significant effect on DOC photorelease. The fatty acid terrestrial aquatic ratio (TARFA) indicated that terrestrially derived sediments exhibited relatively greater DOC photorelease. The long chain carbon preference index (CPI24-34) indicated that diagenetically unaltered terrestrial OM photoreleased more DOC than diagenetically altered terrestrial OM. The short chain carbon preference index (CPI14-22) demonstrated that sediments containing diagenetically altered planktonic or algal derived OM had a greater photorelease rate of DOC than fresh algal OM. This suggests that humic substances (humus and/or adsorbed humic and fulvic acids) play an important role in the photochemical dissolution of OC regardless of whether or not they are imported from upstream (i.e. terrestrial humics) or generated within the depositional or sedimentary environment (i.e. humification of algal dissolved OM).

  9. Paleoenvironmental implications of early diagenetic siderites of the Paraíba do Sul Deltaic Complex, eastern Brazil

    NASA Astrophysics Data System (ADS)

    Rodrigues, Amanda Goulart; De Ros, Luiz Fernando; Neumann, Reiner; Borghi, Leonardo

    2015-06-01

    Abundant early diagenetic siderites occur as spherulites and rhombohedral microcrystalline and macrocrystalline crystals in the cores of the 2-MU-1-RJ well, drilled in the Paraíba do Sul Deltaic Complex, Rio de Janeiro (Brazil). The host sediments of the siderites are siliciclastic, hybrid, and carbonate deposits. Intense pedogenetic processes affected the siliciclastic sediments immediately after deposition, comprising clay illuviation, plants bioturbation, feldspar dissolution, and iron oxide/hydroxide precipitation. Siderite and pyrite are the main diagenetic constituents. The other diagenetic products are kaolinite, smectite, argillaceous and carbonate pseudomatrix, quartz overgrowths, diagenetic titanium minerals, jarosite, and iron oxides/hydroxides. Early diagenetic siderites were separated into four groups based on their elemental and stable isotopic composition, as well as on their paragenetic relationships with the other constituents and with the host sediments. Spherulitic to macrocrystalline siderites from group 1 are almost pure (average: 94.7 mol% FeCO3; 1.2 mol% MgCO3; 2.3 mol% CaCO3; 1.8 mol% MnCO3) and precipitated from meteoric porewaters in continental siliciclastic rocks under suboxic conditions (δ18Ovpdb values range in - 10.28 to - 5.57‰ and the δ13Cvpdb values in - 12.68 to - 4.33‰). Microcrystalline rhombohedral siderites from group 2 have zonation due to substantial Ca and Mg substitution (core average: 78.5 mol% FeCO3; 4.2 mol% MgCO3; 15.7 mol% CaCO3; 1.6 mol% MnCO3; edge average: 74.0 mol% FeCO3; 9.2 mol% MgCO3; 15.6 mol% CaCO3; 1.1 mol% MnCO3), and δ13Cvpdb and δ18Ovpdb values of + 0.17‰ and - 1.96‰, precipitated from marine porewaters in packstones/wackestones under methanogenic conditions. The group 3 is represented by irregular spherulitic siderites with moderate Ca and Mg substitutions (average: 80.2 mol% FeCO3; 7.9 mol% MgCO3; 11.3 mol% CaCO3; 0.6 mol% MnCO3), with δ18Ovpdb values ranging from - 5.96 to - 7.61‰ and

  10. Parameterization of biogeochemical sediment-water fluxes using in-situ measurements and a steady-state diagenetic model

    EPA Science Inventory

    Diagenetic processes are important drivers of water column biogeochemistry in coastal areas. For example, sediment oxygen consumption can be a significant contributor to oxygen depletion in hypoxic systems, and sediment–water nutrient fluxes support primary productivity in ...

  11. Diagenetic history of late Oligocene-early Miocene carbonates in East Sabah, Malaysia

    NASA Astrophysics Data System (ADS)

    Zainal Abidin, N. S.; Raymond, R. R.; Bashah, N. S. I.

    2017-10-01

    Limestones are particularly susceptible to drastic early diagenesis modifications, mainly cementation and dissolution. During the early Miocene, a major tectonic deformation has caused a widespread of uplift in Sabah. This has resulted change in depositional environment from deep to shallow marine, which favours the deposition of Gomantong Limestone. This study aims to investigate the diagenetic history of Gomantong Limestone in East Sabah. Thorough understanding of the diagenetic processes may provide data to unravel the tectonic activities which affected the reservoir quality of the carbonates. Combining the data from comprehensive petrographic analysis, and Scanning Electron Microscopy (SEM) of 30 samples, two main cements type were identified. These are microcrystalline cement and Mg-calcite cement of granular and blocky mosaics which are dominantly seen in all samples. The sequence of diagenesis events are determined as (1) micritization; (2) grain scale compaction; (3) cementation (pore-filling); (4) mechanical compaction and cementation infilling fractures and (5) chemical compaction. These diagenetic events are interpreted as reflection of changes in diagenetic environment from shallow marine to deep burial. The massive cementation in the Gomantong Limestone has resulted into a poor reservoir quality.

  12. Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce∗: Results from ODP Leg 127

    NASA Astrophysics Data System (ADS)

    Murray, Richard W.; Buchholtzten Brink, Marilyn R.; Brumsack, Hans J.; Gerlach, David C.; Russ, G. Price

    1991-09-01

    The relative effects of paleoceanographic and paleogeographic variations, sediment lithology, and diagenetic processes on the recorded rare earth element (REE) chemistry of Japan Sea sediments are evaluated by investigating REE total abundances and relative fractionations in 59 samples from Ocean Drilling Program Leg 127. REE total abundances (ΣREE) in the Japan Sea are strongly dependent upon the paleoceanographic position of a given site with respect to terrigenous and biogenic sources. REE concentrations at Site 794 (Yamato Basin) overall correspond well to aluminosilicate chemical indices and are strongly diluted by SiO2 within the late Miocene-Pliocene diatomaceous sequence. Eu/Eu∗ values at Site 794 reach a maximum through the diatomaceous interval as well, most likely suggesting an association of Eu/Eu∗ with the siliceous component, or reflecting slight incorporation of a detrital feldspar phase. ΣREE at Site 795 (Japan Basin) also is affiliated strongly with aluminosilicate phases, yet is diluted only slightly by siliceous input. At Site 797 (Yamato Basin), REE is not as clearly associated with the aluminosilicate fraction, is correlated moderately to siliceous input, and may be sporadically influenced by detrital heavy minerals originating from the nearby rifted continental fragment composing the Yamato Rise. The biogenic influence is largest at Site 794, moderately developed at Site 797, and of only minor importance at Site 795, reflecting basinal contrasts in productivity such that the Yamato Basin records greater biogenic input than the Japan Basin, while the most productive waters overlie the easternmost sequence of Site 794. Ce/Ce∗ profiles at all three sites increase monotonically with depth, and record progressive diagenetic LREE fractionation. The observed Ce/Ce∗ record does not respond to changes in oxygenation state of the overlying water, and Ce/Ce∗ correlates slightly better with depth than with age. The downhole increase in Ce

  13. Paleo-fluid flow in folded, poorly lithified Quaternary sediments revealed by diagenetic concretions developed during the growth of Quattro Castella Anticline (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Pizzati, Mattia; Balsamo, Fabrizio; Iacumin, Paola; Swennen, Rudy; Storti, Fabrizio

    2017-04-01

    Diagenetic concretions and mineral masses may provide a useful tool to better understand paleo-fluid flows in transforming porous media. Moreover, the selective cementation responsible of diagenetic alterations formation, plays a key role in diminishing sediments porosity and permeability and hence reservoir quality. In compressive settings of a fold-and-thrust-belt, the presence of deep or blind thrusts could lead to the generation of folds which may influence syn-kinematic sedimentation, deep fluids migration and shallow fluid flow pattern. In this contribution we present a multidisciplinary field and laboratory study on carbonate concretions developed in Quaternary poorly lithified, shallow marine syn-kinematic sediments of the Quattro Castella Anticline in Northern Apennines (Italy). The study site is located along the Enza River, where shallow marine to continental sediments are exposed along the forelimb of the fold nucleated during Late Miocene and still active today. Field mapping was aimed to link bedding attitude of syn-kinematic sediments with the geometry, arrangement, shape and size of concretionary bodies. The studied concretions are both tabular (i.e. parallel to sediment bedding) and elongate single or coalescent concretionary bodies (i.e. plunging at different angle to bedding dip throughout the stratigraphic section). Concretions dimensions range from a few centimeters in single elongate concretions, up to a few meters in tabular and coalescent ones. In situ permeability measurements and laboratory grain size analyses were performed along the studied section to constrain the petrophysical properties of sediments hosting carbonate concretions. Carbon and oxygen stable isotopes analyses on carbonate concretions (performed both on hand specimens and also on thin sections), together with petrographic and cathodoluminescence observations, were used to better constrain the diagenetic environment in which calcite precipitation occurred. Our results

  14. The early diagenetic and PETROphysical behaviour of recent cold-water CARbonate mounds in Deep Environments (PETROCARDE)

    NASA Astrophysics Data System (ADS)

    Foubert, Anneleen; Pirlet, Hans; Thierens, Mieke; de Mol, Ben; Henriet, Jean-Pierre; Swennen, Rudy

    2010-05-01

    Sub-recent cold-water carbonate mounds localized in deeper slope settings on the Atlantic continental margins cannot be any longer neglected in the study of carbonate systems. They clearly play a major role in the dynamics of mixed siliciclastic-carbonate and/or carbonate-dominated continental slopes. Carbonate accumulation rates of cold-water carbonate mounds are about 4 to 12 % of the carbonate accumulation rates of tropical shallow-water reefs but exceed the carbonate accumulation rates of their slope settings by a factor of 4 to 12 (Titschack et al., 2009). These findings emphasize the importance of these carbonate factories as carbonate niches on the continental margins. The primary environmental architecture of such carbonate bodies is well-characterized. However, despite proven evidences of early diagenesis overprinting the primary environmental record (e.g. aragonite dissolution) (Foubert & Henriet, 2009), the extent of early diagenetic and biogeochemical processes shaping the petrophysical nature of mounds is until now not yet fully understood. Understanding (1) the functioning of a carbonate mound as biogeochemical reactor triggering early diagenetic processes and (2) the impact of early diagenesis on the petrophysical behaviour of a carbonate mound in space and through time are necessary (vital) for the reliable prediction of potential late diagenetic processes. Approaching the fossil carbonate mound record, through a profound study of recent carbonate bodies is innovative and will help to better understand processes observed in the fossil mound world (such as cementation, brecciation, fracturing, etc…). In this study, the 155-m high Challenger mound (Porcupine Seabight, SW of Ireland), drilled during IODP Expedition 307 aboard the R/V Joides Resolution (Foubert & Henriet, 2009), and mounds from the Gulf of Cadiz (Moroccan margin) will be discussed in terms of early diagenetic processes and petrophysical behaviour. Early differential diagenesis

  15. dSED: A database tool for modeling sediment early diagenesis

    NASA Astrophysics Data System (ADS)

    Katsev, S.; Rancourt, D. G.; L'Heureux, I.

    2003-04-01

    Sediment early diagenesis reaction transport models (RTMs) are becoming powerful tools in providing kinetic descriptions of the metal and nutrient diagenetic cycling in marine, lacustrine, estuarine, and other aquatic sediments, as well as of exchanges with the water column. Whereas there exist several good database/program combinations for thermodynamic equilibrium calculations in aqueous systems, at present there exist no database tools for classification and analysis of the kinetic data essential to RTM development. We present a database tool that is intended to serve as an online resource for information about chemical reactions, solid phase and solute reactants, sorption reactions, transport mechanisms, and kinetic and equilibrium parameters that are relevant to sediment diagenesis processes. The list of reactive substances includes but is not limited to organic matter, Fe and Mn oxides and oxyhydroxides, sulfides and sulfates, calcium, iron, and manganese carbonates, phosphorus-bearing minerals, and silicates. Aqueous phases include dissolved carbon dioxide, oxygen, methane, hydrogen sulfide, sulfate, nitrate, phosphate, some organic compounds, and dissolved metal species. A number of filters allow extracting information according to user-specified criteria, e.g., about a class of substances contributing to the cycling of iron. The database also includes bibliographic information about published diagenetic models and the reactions and processes that they consider. At the time of preparing this abstract, dSED contained 128 reactions and 12 pre-defined filters. dSED is maintained by the Lake Sediment Structure and Evolution (LSSE) group at the University of Ottawa (www.science.uottawa.ca/LSSE/dSED) and we invite input from the geochemical community.

  16. Integrated diagenetic and sequence stratigraphy of a late Oligocene-early Miocene, mixed-sediment platform (Austral Basin, southern Patagonia): Resolving base-level and paleoceanographic changes, and paleoaquifer characteristics

    NASA Astrophysics Data System (ADS)

    Dix, George R.; Parras, Ana

    2014-06-01

    A condensed (~ 20-m-thick) marine transgressive-highstand succession comprises the upper San Julián Formation (upper Oligocene-lower Miocene) of the northern retroarc Austral Basin, southern Patagonia. Mixed-sediment facies identify a shelf-interior setting, part of an overall warm-temperate regional platform of moderate energy. Giant oyster-dominated skeletal-hiatal accumulations along the maximum flooding surface and forming high-energy event beds in the highstand succession preserve relict micrite in protected shelter porosity, and identify periods of reduced sediment accumulation. The stratigraphic distribution of marine-derived glaucony and diagenetic carbonates is spatially related to sequence development. Depositional siderite coincides with prominent marine transgression, defining transient mixing of marine and meteoric waters across coastal-plain deposits. Chemically evolved autochthonous glaucony coincides with periods of extended seafloor exposure and transgressions that bracket the marine succession, and within the oyster-dominated skeletal accumulations. Seafloor cement, likely once magnesian calcite, formed in association with an encrusting/boring biota along the maximum flooding surface in concert with incursion of cool (11-13 °C) water. The cement is present locally in skeletal event beds in the highstand succession suggesting a possible association with high-order base-level change and cooler water. As the highstand succession coincides with elevated global sea level in the late Oligocene-early Miocene, the locally marine-cemented glauconitic skeletal event beds in the highstand succession may identify higher order glacio-eustatic control. Local stratal condensation, however, is best explained by regional differences in basement subsidence. In the burial realm, carbonate diagenesis produced layers of phreatic calcrete coincident with skeletal-rich deposits. Zeolite (clinoptilolite-K) cement is restricted to the lowermost marine transgressive

  17. Examining early-diagenetic processes as a chief sink for carbonate in the aftermath of the Triassic-Jurassic crisis: Hettangian concretions of Muller Canyon, NV, USA

    NASA Astrophysics Data System (ADS)

    Ritterbush, K. A.; Loyd, S. J.; Corsetti, F. A.; Bottjer, D. J.; Berelson, W.

    2015-12-01

    Tectonic, climate, and biotic changes across the Triassic-Jurassic transition appear to have resulted in a "carbonate gap" in the rock record of many shallow marine environments. Ecological state changes documented in near-shore settings in both Tethys and Panthassa show an earliest Jurassic switch to sponge-dominated biosiliceous sedimentation regimes. The Sunrise Formation exposed in the Gabbs Valley Range of Nevada (USA) records a peculiar juxtaposition of Hettangian carbonate-rich strata that contain demosponge spicules as the primary bioclast. It is unclear 1) why biocalcifiers were not recorded in higher abundance in this near-shore back-arc basin setting; 2) why carbonates formed following a biosiliceous regime; and 3) what the lithology indicates about post-extinction marine geochemical dynamics. Detailed sedimentological, paleontological, and geochemical analyses were applied to a 20-m thick sequence of limestone and chert in the Muller Canyon area, which is the Auxiliary Stratotype for the Triassic/Jurassic boundary. Concretion anatomy, bioclast microfacies, and oxygen and carbon isotopic signatures all indicate the Hettangian limestones are chiefly diagenetic concretions that all formed very shallowly, some essentially at the sediment-water interface. We infer that local bottom waters and/or pore waters were supersaturated with respect to calcium carbonate and that this contributed to widespread concretion sedimentation independent of biomineralization. Ecological incumbency of the demosponge meadows may have been supported by concurrent augmentation of marine silica concentration and this apparently proved inhospitable to re-colonization of benthic biocalcifying macrofauna. Together the biotic and lithologic consequences of the extinction represent million-year scale ecological restructuring and highlight early diagenetic precipitation as a major sink in long-term regional carbonate cycling. Perhaps the widespread 'carbonate gap' is actually a gap in

  18. Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars

    USGS Publications Warehouse

    Frydenvang, Jens; Gasda, Patrick J.; Hurowitz, Joel A.; Grotzinger, John P.; Wiens, Roger C.; Newsom, Horton E.; Edgett, Ken S.; Watkins, Jessica; Bridges, John C.; Maurice, Sylvestre; Fisk, Martin R.; Johnson, Jeffrey R.; Rapin, William; Stein, Nathan; Clegg, Sam M.; Schwenzer, S. P.; Bedford, C.; Edwards, P.; Mangold, Nicolas; Cousin, Agnes; Anderson, Ryan; Payre, Valerie; Vaniman, David; Blake, David; Lanza, Nina L.; Gupta, Sanjeev; Van Beek, Jason; Sautter, Violaine; Meslin, Pierre-Yves; Rice, Melissa; Milliken, Ralf; Gellert, Ralf; Thompson, Lucy; Clark, Ben C.; Sumner, Dawn Y.; Fraeman, Abigail A.; Kinch, Kjartan M; Madsen, Morten B.; Mitofranov, Igor; Jun, Insoo; Calef, Fred J.; Vasavada, Ashwin R.

    2017-01-01

    Diagenetic silica enrichment in fracture-associated halos that crosscut lacustrine and unconformably overlying aeolian sedimentary bedrock is observed on the lower north slope of Aeolis Mons in Gale crater, Mars. The diagenetic silica enrichment is colocated with detrital silica enrichment observed in the lacustrine bedrock yet extends into a considerably younger, unconformably draping aeolian sandstone, implying that diagenetic silica enrichment postdates the detrital silica enrichment. A causal connection between the detrital and diagenetic silica enrichment implies that water was present in the subsurface of Gale crater long after deposition of the lacustrine sediments and that it mobilized detrital amorphous silica and precipitated it along fractures in the overlying bedrock. Although absolute timing is uncertain, the observed diagenesis likely represents some of the most recent groundwater activity in Gale crater and suggests that the timescale of potential habitability extended considerably beyond the time that the lacustrine sediments of Aeolis Mons were deposited.

  19. Repeated occurrences of methanogenic zones, diagenetic dolomite formation and linked silicate alteration in southern Bering Sea sediments (Bowers Ridge, IODP Exp. 323 Site U1341)

    NASA Astrophysics Data System (ADS)

    Wehrmann, L. M.; Ockert, C.; Mix, A. C.; Gussone, N.; Teichert, B. M. A.; Meister, P.

    2016-03-01

    Diagenetic precipitates, such as dolomite, and the chemistry of residual deeply buried porewater often represent the only traces of past biogeochemical activity in marine sediments. A 600 m thick sedimentary section, recently drilled at Integrated Ocean Drilling Program (IODP) Site U1341 on Bowers Ridge (southern Bering Sea), provides insight into such a 4.3 Ma old paleo-diagenetic archive. Hard-lithified calcite-dolomite layers, and laminae of disseminated carbonate, were recovered in diatom-rich sediments over a depth range of 400 m. Carbon isotope values of the diagenetic carbonates between -16.6 and -14.4‰ (VPDB) and strontium isotope ratios of dolomites close to past seawater values suggest carbonate precipitation induced by the production of dissolved inorganic carbon (DIC) during elevated rates of organic carbon mineralization, primarily via sulfate reduction, at shallow sediment depth below the paleo-seafloor. Diagenetic carbonates at 280-440 m below seafloor were likely also produced by the intermittent onset of sulfate reduction coupled to the anaerobic oxidation of methane (AOM) at sulfate-methane transition zones (SMTZ). These microbially mediated processes do not occur in the sediment at this site at present but were likely connected to the presence of a methanogenic zone at 2.58-2.51 Ma. A minimum in sulfate concentrations in modern porewaters and low sedimentary Ba/Al ratios resulting from former sulfate depletion are reminiscent of the presence of this large methanogenic zone. The minimum in sulfate concentrations is reflected in a minimum in magnesium concentrations, less radiogenic strontium and isotopically light calcium in the porewater. It is proposed that magnesium was removed from the porewater during carbonate precipitation and volcanic ash alteration which occurred in the former methanogenic zone and also released strontium with a less radiogenic isotope ratio and isotopically light calcium into the porewater. The isotopic composition of

  20. Cyclic, Early Diagenetic Dolomite Formation in Alkaline Lake Van

    NASA Astrophysics Data System (ADS)

    McCormack, J.; Bontognali, T. R. R.; Immenhauser, A.; Kwiecien, O.

    2017-12-01

    rapid Northern Hemisphere temperature oscillation (i.e. Greenland Interstadials). Lake Vańs dolomite record thus provides compelling arguments suggesting that early diagenetic dolomite formation within an alkaline environment can be highly sensitive to hydrological changes even on centennial timescales.

  1. Early diagenetic processes of saline meromictic Lake Kai-ike, southwest Japan: III. Sulfur speciation and isotopes

    NASA Astrophysics Data System (ADS)

    Sakai, N.; Yamaguchi, K. E.; Oguri, K.

    2014-12-01

    ., 2010; Palaeo3). Geochemical characteristics of sulfur in the uppermost part of Lake Kai-ike sediment were significantly modified during early diagenesis. Such diagenetic modification for sulfur isotopes should be fully taken into account to better reconstruct past anoxic environment such as Cretaceous OAEs and Archean oceans.

  2. Active hematite concretion formation in modern acid saline lake sediments, Lake Brown, Western Australia

    NASA Astrophysics Data System (ADS)

    Bowen, Brenda Beitler; Benison, K. C.; Oboh-Ikuenobe, F. E.; Story, S.; Mormile, M. R.

    2008-04-01

    Concretions can provide valuable records of diagenesis and fluid-sediment interactions, however, reconstruction of ancient concretion-forming conditions can be difficult. Observation of modern hematite concretion growth in a natural sedimentary setting provides a rare glimpse of conditions at the time of formation. Spheroidal hematite-cemented concretions are actively precipitating in shallow subsurface sediments at Lake Brown in Western Australia. Lake Brown is a hypersaline (total dissolved solids up to 23%) and acidic (pH ˜ 4) ephemeral lake. The concretion host sediments were deposited between ˜ 1 and 3 ka, based on dating of stratigraphically higher and lower beds. These age constraints indicate that the diagenetic concretions formed < 3 ka, and field observations suggest that some are currently forming. These modern concretions from Lake Brown provide an example of very early diagenetic formation in acid and saline conditions that may be analogous to past conditions on Mars. Previously, the hematite concretions in the Burns formation on Mars have been interpreted as late stage diagenetic products, requiring long geologic time scales and multiple fluid flow events to form. In contrast, the Lake Brown concretions support the possibility of similar syndepositional to very early diagenetic concretion precipitation on Mars.

  3. Overview of the diagenetic features analyzed by ChemCam onboard Curiosity

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Forni, O.; Nachon, M.; Blaney, D. L.; Wiens, R. C.; Kah, L. C.; Kronyak, R. E.; Clegg, S. M.; Cousin, A.; Fisk, M. R.; Gasnault, O.; Grotzinger, J. P.; Lanza, N.; Lasue, J.; Le Deit, L.; Le Mouelic, S.; Maurice, S.; Meslin, P. Y.; Rapin, W.; Newsom, H. E.; Sumner, D. Y.

    2015-12-01

    The Curiosity rover has encountered a variety of sedimentary rocks with significant variations in both texture and composition. Most of the sandstones and mudstones are interpreted as having been deposited in a fluvio-lacustrine environment, as analyzed in details in the waypoints named Yellowknife Bay, Kimberley and Pahrump. All of these sediments have been crossed by diagenetic features of different composition. Light-toned Ca-sulfate veins observed initially at Yellowknife Bay were observed along the traverse, and in high density at the Pahrump location. As they appear in all sediments and show straight fractures, they correspond to late-stage diagenetic features, due to fluid circulation, with fractures probably due to hydraulic stress at depth. In contrast to light-toned veins, earlier-stage diagenetic features have shown variable composition in the three areas. At Yellowknife Bay, raised ridges display enriched Mg proportion, probably linked to Mg-clay whereas outcrops at Kimberley display fracture fills enriched in Mn and Zn. Pahrump displays a large variety of diagenetic features distinct from these previous examples. Mg-enriched concretions contain S and abundant Ni. Mg enrichments have also been observed in resistant zones along fractures and in resistant layers. Locally concretions also display high Fe, S-bearing material interpreted as Fe-sulfate, probably jarosite. A special location named Garden City at the top of the Parhump sequence displays a complex area with light-toned veins surrounded by darker veins. The latter display strong Ca signatures correlated with F, interpreted as fluorite. No C or S emissions were observed that could alternatively explain the high Ca abundance by carbonates or sulfates. The dark tone of the F-bearing minerals may be due to the presence of Fe. These specific dark veins could derive from the leaching of F-apatite, a mineral that has been observed both in the sandstones and in some of the igneous clasts analyzed by Chem

  4. The diagenetic fate of taraxer-14-ene and oleanene isomers

    NASA Astrophysics Data System (ADS)

    ten Haven, H. L.; Rullkötter, J.

    1988-10-01

    The extractable organic matter in Holocene to early Miocene deep-sea sediments from Site 645 (ODP Leg 105) in Baffin Bay contains almost exclusively biological markers of terrigenous origin. Pentacyclic triterpenoids of the α-(ursene) and β-amyrin (oleanene) type often occur as the most abundant compounds in the aliphatic hydrocarbon, ketone and alcohol fractions of the sediment extract. A specific diagenetic reaction involves the conversion of taraxer-14-ene into olean-12-ene in the upper 700 metres of the sedimentary sequence. The taraxerene-to-oleanene conversion is complete before the onset of isomerisation of diasterenes at C-20. In the sediment as well as in laboratory simulation experiments, olean-12-ene further isomerises to olean-13(18)-ene and olean-18-ene, the latter of which may be the direct precursor of 18β(H)- and 18α(H)-oleanane found in sediments containing more mature organic matter and in crude oils. The subsurface interconversion of these triterpenoid skeletons indicate that oleanane does not necessarily start life as an oleanoid.

  5. The diagenetic behavior of cutin acids in buried conifer needles and sediments from a coastal marine environment

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Hedges, John I.

    1990-11-01

    Whole green, litter, and sedimentary fir, hemlock, and cedar needles and bulk sediments collected from the Dabob Bay region in Washington state were analyzed for their cutin-derived CuO reaction products. All samples yielded dihydroxyhexadecanoic acid isomers (x,ω-C 16), 16-hydroxyhexa-decanoic acid (ω-C 16), 14-hydroxytetradecanoic acid (ω-C 14), and 18-hydroxyoctadec-9-enoic acid (ω-C 18: 1) as the major cutin acids. Fir/hemlock needle mixtures were characterized by a high abundance of the 9,16-dihydroxyhexadecanoic acid positional isomer, while cedar needles produced primarily the 10,16-dihydroxy counterpart. Cutin acids accounted for ~3% of tissue C in green needles, ~4% in needle litter, 0.5-1.5% in sedimentary needles, and about 0.1% of the organic carbon (OC) in bulk sediments. Approximately 80% of the original cutin acids in fresh green needles were lost from the deepest (~100 years old) sedimentary tissues. Cutin was more reactive than lignin and polysaccharides, but more stable than the cyclitol components of the same needles. Comparative diagenetic losses of the individual cutin acids were not uniform and suggest that additional hydroxy groups and the presence of C double bonds both increase overall reactivity. The relative stability series derived for all the molecular constituents measured is: total vanillyl phenols > total P- hydroxy phenols, ferulic acid, most aldoses, bulk organic matter > mannose, ω-C 14, ω-C 16 ⩾ ω-C 18:1 > glucose, p- coumaric acid, x, ω-C 16 > all cyclitols. Diagenetically induced changes in the various cutin parameters used to characterize nonwoody vascular plant tissues were not large enough to confuse degraded conifer tissues with other cutin sources. Based on these trends, the finely disseminated cutin-bearing tissues in Dabob Bay sediments appear to be comprised approximately of equal amounts of highly degraded fir/hemlock and cedar needle fragments. According to this estimate, nonwoody vascular plant debris

  6. Flavins in Coastal Marine Sediments: New Perspectives on Diagenetic Electron Transfer

    NASA Astrophysics Data System (ADS)

    Monteverde, D.; Berelson, W.; Baronas, J. J.; Sanudo-Wilhelmy, S. A.

    2016-02-01

    Coastal marine sediments play a critical role in the global cycling of metals and nutrients, many of which undergo diagenetic alteration. Central to these transformations are redox reactions where electron-rich organic matter is oxidized via transfer to terminal electron acceptors (NO3-, MnOx, FeOx, SO42-). The flavins (flavin adenine dinucleotide [FAD], flavin mononucleotide [FMN], and riboflavin [B2]) are microbially synthesized organic coenzymes that perform both single and double electron transfer and are known to mediate reduction of insoluble metal oxides. Culture experiments have found high rates of flavin excretion in metal-reducing Shewanella and Geobacter species, however environmental measurements of these highly labile molecules have not been previously reported. Here we present porewater measurements of FAD, FMN, and B2 from San Pedro Basin. This California Borderland basin is silled, suboxic, 900 m deep, and experiences high sedimentation. Flavin concentrations ranged from pico- (FAD: 0- 60 pM; B2: 40 - 90 pM) to nanomolar (FMN: 0.4 - 1.2 nM). The concentration cascade of FMN>B2>FAD fits well within culture experiments. Interestingly, profiles of all three flavins show a near linear increase with depth from 0-30 cm and a relatively steady concentration from 30-45 cm, supporting likely in situ production. Additionally, the flavins showed a negative correlation with dissolved Fe (R2 = 0.7 for FMN, 0.8 for FAD, and 0.9 for B2), which decreased linearly with depth from 160µM to 65µM. We discuss hypothesized mechanisms controlling flavin concentrations based on a suite of sediment geochemical parameters (dissolved Fe, Mn, TCO2, δ13C, NH3, DOM, and SO42-) as well as implications for microbial redox syntrophy. These data provide a critical link between the extensive culture-based mechanistic understanding of flavin function and the sedimentary environment. Furthermore, these results demonstrate that flavins likely serve as a significant electron transfer

  7. Diagenetic susceptibility of carbonate archives - an experimental approach

    NASA Astrophysics Data System (ADS)

    Pederson, C.; Purgstaller, B.; Mavromatis, V.; Dietzel, M.; Jöns, N.; Buhl, D.; Neuser, R. D.; Breitenbach, S. F. M.; Hoffmann, R.; Kwiecien, O.; Riechelmann, S.; Immenhauser, A.

    2017-12-01

    Carbonate sediments and biominerals can record environmental conditions during both deposition and subsequent diagenesis, making them important archives of within the geologic record. Therefore, the alteration processes of these paleoenvironmental proxies are important to understand if one is to deduce environmental conditions based on their petrographic and geochemical signature. This study uses an experimental approach in order to best indicate the controls and effects of the diagenesis of various carbonate archives. Samples are hydrothermally altered at known conditions including pore water chemistry (meteoric and brine fluids), and temperature (100-200°C), and are directly compared to an unaltered subsample (same specimen) for petrographic and geochemical alteration, allowing for reduced heterogeneity, and a quantitative and systematic approach to determine the type, extent, and controls of diagenesis. Initial results indicate little-no alteration at the lower temperature experiments (100°C), and almost complete alteration observed at higher temperatures (175-200°C), while intermediate temperature ranges (130-160°C) prove promising for the evaluation of both diagenetic mechanisms, as well as rate limiting factors controlling alteration. Initial results indicate partial recrystallization of the bivalve A. Islandica, as well as other carbonates (corals, bivalves, gastropods, ammonites, and speleothems), with a visually distinct recrystallization front for select specimens. Results indicate that the diagenetic pathway preferentially follows organic distribution, and internal structures within the organo-sediments and minerals, possibly formed during initial formation. Alteration also suggests preferential movement of intercrystalline organics in some sample types, where they appear to be pushed away from the diagenetic front, causing concentration of the water insoluble organics, and the production of visually darker areas surrounding diagenetic fluid pathways.

  8. Cement Distribution and Diagenetic Pathway of the Miocene Sediments on Kardiva Platform, Maldives.

    NASA Astrophysics Data System (ADS)

    Laya, J. C.; Prince, K.; Betzler, C.; Eberli, G. P.; Blättler, C. L.; Swart, P. K.; Reolid, J.; Alvarez Zarikian, C. A.; Reijmer, J.

    2017-12-01

    The Maldives archipelago is an ideal example for understanding the dynamics of isolated carbonate platforms. While previous sedimentological studies have focused on oceanographic and climatic controls on deposition, there have been limited studies on the diagenetic evolution of the Maldives archipelago. This project seeks to establish a relationship between the facies, cement distribution, and diagenetic evolution of the Kardiva Platform and associated diagenetic fluids. Samples from cores of IODP Expedition 359 at Sites U1645, U1469, and U1470 were analyzed for stable isotope geochemistry and detailed petrography including SEM, confocal and CL microscopy to investigate variations in facies, cements, porosity and diagenetic products. The facies analyzed consist mainly of planktonic and benthic foraminifers, red coralline algae, echinoderm, coral and skeletal fragments. The main facies include foraminifera grain/packstone, red algae rich grain/packstone, algal floatstone and coral floatstone. Those facies present a cyclic and general shallowing upwards trend. These facies are interpreted as shallow platform deposits on proximal areas to the margin associated with the oligophotic zone. Cement volume varies between 5% and 48%, and they have been classified as isopachous, bladed to fibrous (dog tooth), drusy and equant. Equant and drusy show recognizable growth bands with CL and confocal. Evidence of intense dissolution is shown by extensive moldic porosity within phreatic and limited vadose zones. In addition, dolomite appears as a replacement phase associated with red-algae-rich horizons and as cement on pore walls and voids. These deposits experienced a variety of diagenetic processes driven by the evolution of diagenetic fluid chemistry and by the nature of the skeletal components. Those processes can be tied to external controls such as climate (monsoonal effects), sea-level and currents.

  9. Dynamic depositional and early diagenetic processes in a deep-water shelf setting, upper cretaceous Austin Chalk, North Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovorka, S.D.; Nance, H.S.

    1994-12-31

    The Austin Chalk of north Texas was deposited on a deep-water shelf north of the Sea Marcos Platform during a worldwide Coniacian and Santonian sea-level highstand. Transgressive (lowermost lower Austin Chalk), highstand (uppermost lower Austin Chalk), and regressive (middle and upper Austin Chalk) phases of cyclic chalk and marl sedimentation are recognized in excavations and tunnels created in Ellis County for the Superconducting Super Collider provide new evidence of sediment transport during Austin Chalk deposition. During transgression, bottom currents syndepositionally reworked nannoplankton oozes, incising channels as much as 120 ft across and 8 ft deep. Weakly burrowed channel fills havingmore » preservation of fine lamination document rapid infilling. Channel fills are composed of pyritized and carbonized wood and Inoceramus lag deposits, pellets, echinoderm fragments, and globigerinid grainstones, and coccolith ooze. During maximum highstand, bottom reworking was suppressed. Detrital content of highstand marls is low (>20 percent); organic content is high (1.4 to 3.5 percent). Coccolith preservation is excellent because of minimal diagenetic alteration. Regression is marked by resumed channel cutting and storm-bed winnowing in the middle and upper Austin Chalk. Suppressed resistivity log response and recessive weathering characteristics of the middle Austin Chalk are not primarily related to depositional environment but rather to increased input of volcanic ash during the accumulation of this interval. Early stabilization of ash produced clay-coated microfabrics in sediments that are otherwise similar to the transgressive deposits.« less

  10. Diagenetic alteration of biogenic silica oxygen isotope values: implications for use as a paleoenvironmental proxy

    NASA Astrophysics Data System (ADS)

    Dodd, J. P.; Abbott, T.; Scherer, R. P.

    2016-12-01

    Oxygen isotope (δ18O) values of biogenic silica have enormous potential as paleoenvironmental proxies in marine and non-marine environments. Isotopic exchange and phase changes (opal-A to opal-CT) can overprint the initial δ18O values, but these diagenetic processes can also provide additional paleoenvironmental information. The timing and magnitude of isotopic exchange reactions are difficult to constrain in natural environments; however, experimental results of diatom aging indicate that changes in the δ18O values of the biogenic silca occur coincident with dehydroxylation of the silica prior to opal-CT formation. Diagenetic alteration of biogenic silica dramatically changes our interpretation of silica isotope data from sedimentary records. For example, diatom δ18O values from a Pliocene ( 4.68 to 3.44 Ma) age marine sediment core (AND-1B) from the Ross Sea, Antarctica range from +28 to +36‰. The silica-water fractionation relationship for marine diatoms of Juillet-Leclerc and Labeyrie (1987) and a standard marine δ18O water value of 0‰ results in unrealistic sea surface temperatures of >20°C. Conversely, if water temperatures of 0 to 10°C are used, the resulting water δ18O values range from -8 to -16‰. A plausible alternate scenario is that the diatom δ18O values are recording sediment pore-water conditions. Pore waters in the AND-2A core had δ18O values of -11‰, possibly as a result cryogenic brine formation (Frank et al., 2010). These low δ18O values are in close agreement with our calculated δ18O water values. Despite diagenetic overprinting of the diatom δ18O values, there is still good agreement between the measured diatom δ18O values and the stacked benthic δ18O record (Lisiecki and Raymo, 2005); biogenic silica δ18O values in the AND-1B core likely record the composition of shallow sediment pore water and cryogenic brine formation. The agreement between our δ18O record and the benthic stack δ18O values suggests that brine

  11. Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic

    NASA Astrophysics Data System (ADS)

    Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.

    2017-12-01

    Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.

  12. Early diagenetic microporosity in the Cotton Valley Limestone of east Texas

    NASA Astrophysics Data System (ADS)

    Ahr, Wayne M.

    1989-07-01

    dolomite, late leaching, and formation of authigenic sulfides. The microporosity is interpreted to have been formed in the near surface diagenetic environment, early in the burial history of the Cotton Valley. As there is no evidence of vadose diagenesis, the ooids on the crests of calcarenite shoals must have been placed is disequilibrium with their surroundings by a change in water chemistry, probably as a consequence of regression and an influx of fresh water. The introduction of hydrocarbons appears to be contemporaneous with such late diagenetic features as saddle dolomite and authigenic sulfides; however, the extent to which those fluids affected the micro-rhombic calcite crystals appears to be negligible.

  13. Latent volcanic heat and further unique aspects of early diagenetic stratiform copper mineralization in the White Pine-Presque Isle District, northern Michigan

    NASA Astrophysics Data System (ADS)

    Brown, Alex C.

    2018-06-01

    The curious occurrence of copper-rich early diagenetic sediment-hosted stratiform copper mineralization in the finest-grained facies of Nonesuch greybeds in northern Michigan has been previously attributed to the warming of cupriferous brines in the footwall Copper Harbor Conglomerate by latent volcanic heat from the subjacent Porcupine Volcanics shield volcano. That anomalous footwall warming is employed here to explain other unique aspects of the White Pine-Presque Isle mineralization: the abrupt downward sulfide zoning from disseminated pyrite to chalcocite across the top of the cupriferous zone; the absence of bornite and chalcopyrite in the cupriferous zone proper; and the essential absence of pseudomorphs after pyrite euhedra and framboidal aggregates within the cupriferous zone proper, as well as the relatively coarse-grained character of disseminated chalcocite in the cupriferous zone.

  14. Diagenetic Mineralogy at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Vaniman, David; Blake, David; Bristow, Thomas F.; Chipera, Steve; Gellert, Ralf; Ming, Douglas; Morris, Richard; Rampe, E. B.; Rapin, William

    2015-01-01

    Three years into exploration of sediments in Gale crater on Mars, the Mars Science Laboratory rover Curiosity has provided data on several modes and episodes of diagenetic mineral formation. Curiosity determines mineralogy principally by X-ray diffraction (XRD), but with supporting data from thermal-release profiles of volatiles, bulk chemistry, passive spectroscopy, and laser-induced breakdown spectra of targeted spots. Mudstones at Yellowknife Bay, within the landing ellipse, contain approximately 20% phyllosilicate that we interpret as authigenic smectite formed by basalt weathering in relatively dilute water, with associated formation of authigenic magnetite as in experiments by Tosca and Hurowitz [Goldschmidt 2014]. Varied interlayer spacing of the smectite, collapsed at approximately 10 A or expanded at approximately 13.2 A, is evidence of localized diagenesis that may include partial intercalation of metal-hydroxyl groups in the approximately 13.2 A material. Subsequent sampling of stratigraphically higher Windjana sandstone revealed sediment with multiple sources, possible concentration of detrital magnetite, and minimal abundance of diagenetic minerals. Most recent sampling has been of lower strata at Mount Sharp, where diagenesis is widespread and varied. Here XRD shows that hematite first becomes abundant and products of diagenesis include jarosite and cristobalite. In addition, bulk chemistry identifies Mg-sulfate concretions that may be amorphous or crystalline. Throughout Curiosity's traverse, later diagenetic fractures (and rarer nodules) of mm to dm scale are common and surprisingly constant and simple in Ca-sulfate composition. Other sulfates (Mg,Fe) appear to be absent in this later diagenetic cycle, and circumneutral solutions are indicated. Equally surprising is the rarity of gypsum and common occurrence of bassanite and anhydrite. Bassanite, rare on Earth, plays a major role at this location on Mars. Dehydration of gypsum to bassanite in the

  15. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars

    USGS Publications Warehouse

    Nachon, Marion; Mangold, Nicolas; Forni, Olivier; Kah, Linda C.; Cousin, Agnes; Wiens, Roger C.; Anderson, Ryan; Blaney, Diana L.; Blank, Jen G.; Calef, Fred J.; Clegg, Samuel M.; Fabre, Cecile; Fisk, Martin R.; Gasnault, Olivier; Grotzinger, John P.; Kronyak, Rachel; Lanza, Nina L.; Lasue, Jeremie; Le Deit, Laetitia; Le Mouelic, Stephane; Maurice, Sylvestre; Meslin, Pierre-Yves; Oehler, D. Z.; Payre, Valerie; Rapin, William; Schroder, Susanne; Stack, Katherine M.; Sumner, Dawn

    2017-01-01

    The Curiosity rover's campaign at Pahrump Hills provides the first analyses of lower Mount Sharp strata. Here we report ChemCam elemental composition of a diverse assemblage of post-depositional features embedded in, or cross-cutting, the host rock. ChemCam results demonstrate their compositional diversity, especially compared to the surrounding host rock: (i) Dendritic aggregates and relief enhanced features, characterized by a magnesium enhancement and sulfur detection, and interpreted as Mg-sulfates; (ii) A localized observation that displays iron enrichment associated with sulfur, interpreted as Fe-sulfate; (iii) Dark raised ridges with varying Mg- and Ca-enriched compositions compared to host rock; (iv) Several dark-toned veins with calcium enhancement associated with fluorine detection, interpreted as fluorite veins. (v) Light-toned veins with enhanced calcium associated with sulfur detection, and interpreted as Ca-sulfates. The diversity of the Pahrump Hills diagenetic assemblage suggests a complex post-depositional history for fine-grained sediments for which the origin has been interpreted as fluvial and lacustrine. Assessment of the spatial and relative temporal distribution of these features shows that the Mg-sulfate features are predominant in the lower part of the section, suggesting local modification of the sediments by early diagenetic fluids. In contrast, light-toned Ca-sulfate veins occur in the whole section and cross-cut all other features. A relatively late stage shift in geochemical conditions could explain this observation. The Pahrump Hills diagenetic features have no equivalent compared to targets analyzed in other locations at Gale crater. Only the light-toned Ca-sulfate veins are present elsewhere, along Curiosity's path, suggesting they formed through a common late-stage process that occurred at over a broad area.

  16. Identification of novel sulfur-containing steroids in sediments and petroleum: probable incorporation of sulfur into δ 5,7-sterols during early diagenesis

    NASA Astrophysics Data System (ADS)

    Sinninghe Damsté, Jaap S.; Schouten, Stefan; de Leeuw, Jan W.; van Duin, Adri C. T.; Geenevasen, Jan A. J.

    1999-01-01

    A novel sulfur-containing sterane, 4α,7α-epithio-5β-cholestane, has been identified in a sediment extract from the Miocene Northern Apennines marl (Italy) after its isolation by column chromatography and high pressure liquid chromatography. The compound has been characterised by GC-MS and mild Nickel boride desulfurisation and one and two-dimensional 1H NMR techniques. C 27-C 29 homologs have been detected in sediment extracts of three different formations and in one petroleum sample. These sulfur-containing steroids are probably formed by an intramolecular reaction of inorganic sulfides with early diagenetic products of Δ 5,7-sterols.

  17. Percolation of diagenetic fluids in the Archaean basement of the Franceville basin

    NASA Astrophysics Data System (ADS)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; Albani, Abderrazak El; Cuney, Michel; Boiron, Marie-Christine; Gauthier-Lafaye, François

    2014-01-01

    -rich formations; a low-salinity fluid likely of meteoric origin migrating through the granitic basement; mineralizing fluids resulting from the mixing of fluids 1 and 3; high-temperature fluids resulting from the natural nuclear reactor environment (Mathieu et al., 2000). The present paper attempts to characterize the succession of alteration events that have affected the top of the basement below the Palaeoproterozoic sediment unconformity. Are these alterations related to early post-magmatic to hydrothermal events, to palaeoweathering, or to late infiltration of diagenetic brines from the overlying basin? Our study, carried out on drill core samples from Kiéné, is supported by petrographic investigation, new fluid inclusion data and U-Pb geochronology on monazite.

  18. Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: A case study from the Jura Mountains (NW Switzerland, E France)

    NASA Astrophysics Data System (ADS)

    Rameil, Niels

    2008-12-01

    Early diagenetic dolomitization is a common feature in cyclic shallow-water carbonates throughout the geologic record. After their generation, dolomites may be subject to dedolomitization (re-calcification of dolomites), e.g. by contact with meteoric water during emersion. These patterns of dolomitization and subsequent dedolomitization frequently play a key role in unravelling the development and history of a carbonate platform. On the basis of excellent outcrops, detailed logging and sampling and integrating sedimentological work, high-resolution sequence stratigraphic interpretations, and isotope analyses (O, C), conceptual models on early diagenetic dolomitization and dedolomitization and their underlying mechanisms were developed for the Upper Jurassic / Lower Cretaceous Jura platform in north-western Switzerland and eastern France. Three different types of early diagenetic dolomites and two types of dedolomites were observed. Each is defined by a distinct petrographic/isotopic signature and a distinct spatial distribution pattern. Different types of dolomites are interpreted to have been formed by different mechanisms, such as shallow seepage reflux, evaporation on tidal flats, and microbially mediated selective dolomitization of burrows. Depending on the type of dolomite, sea water with normal marine to slightly enhanced salinities is proposed as dolomitizing fluid. Based on the data obtained, the main volume of dolomite was precipitated by a reflux mechanism that was switched on and off by high-frequency sea-level changes. It appears, however, that more than one dolomitization mechanism was active (pene)contemporaneously or several processes alternated in time. During early diagenesis, percolating meteoric waters obviously played an important role in the dedolomitization of carbonate rocks that underlie exposure surfaces. Cyclostratigraphic interpretation of the sedimentary succession allows for estimates on the timing of early diagenetic (de

  19. Diagenetic Features in Yellowknife Bay, Gale Crater, Mars: Implications for Substrate Rheology and Potential Gas Release

    NASA Technical Reports Server (NTRS)

    Kah, L. C.; Stack, K; Siebach, K.; Grotzinger, J.; Summer, D.; Farien, A.; Oehler, D.; Schieber, J.; Leville, R.; Edgar, L; hide

    2014-01-01

    Multiple diagenetic features have been observed in clay­-bearing mudstone exposed within Yellowknife Bay, Gale Crater, Mars. These features occurred during at least two separate episodes: an early generation of spheroidal concretions that co-­occur with a dense networks of mineralized fractures, and a later generation of mineralized veins. Concretions consist of mm-sized spheroids (0.4 to 8.0 mm, mean diameter of 1.2 mm) that are distinctly more resistant than the encompassing mudstone. Dissected spheroids suggest an origin via compaction and incipient lithification of the substrate at the perimeter of syndepositional void space. Concretions are generally patchy in their distribution within clay--bearing mudstone, but in places can be the dominant fabric element. Locally dense networks of mineralized fractures occur in regions of low concretion abundance. These consist of short (< 50 cm), curvilinear to planar mineralized voids that occur across a range of orientations from vertical to subhorizontal. Fractures are filled by multi-phase cement consisting of two isopachous, erosionally resistant outer bands, and a central less resistant fill. Physical relationships suggests that original fractures may have formed as both interconnected voids and as discrete cross--cutting features. Co--occurrence of early diagenetic concretions and fracture networks suggests a common origin via gas release within a subaqueous, shallow substrate. We suggest that gas release within weakly cohesive subsurface sediments resulted in substrate dewatering and an increase in the cohesive strength of the substrate. Local differences in substrate strength and rate of gas production would have result in formation of either discrete voids or fracture networks. A second generation of mineralized veins is characterized by a regionally low spatial density, predominantly vertical or horizontal orientations, and a single phase of Ca--sulfate mineral fill. These veins cross-cut the early diagenetic

  20. Geochemistry of ferromanganese nodules from DOMES site a, Northern Equatorial Pacific: Multiple diagenetic metal sources in the deep sea

    USGS Publications Warehouse

    Calvert, S.E.; Piper, D.Z.

    1984-01-01

    The major and minor element composition of ferromanganese nodules from DOMES Site A has been determined by X-ray fluorescence methods. Three phases appear to control the bulk compositions: Mn and Fe oxyhydroxides and aluminosilicates. Relatively wide compositional variations are evident throughout the area. Nodules with high Mn/Fe ratios, high Cu, Mg, Mo, Ni and Zn concentrations and high todorokite/??-MnO2 ratios have granular surface textures and are confined to an east-west trending depression with thin Quaternary sediment cover. Nodules with low Mn/Fe ratios, high concentrations of As, Ca, Ce, Co, La, P, Sr, Ti, V, Y and Zr and low todorokite/??-MnO2 ratios have smooth surfaces and are confined to shallower areas with relatively thick Quaternary sediment to the north and south of the depression. All nodules in the area have compositions which are influenced by diagenesis, but those with the most marked diagenetic signature (high Mn/Fe and Cu/Ni ratios, low Ce/La ratios and more todorokite) are found in areas of very slow or non-existent sedimentation; many of these nodules are actually in contact with outcropping Tertiary sediment. This paradox may be resolved by postulating, by analogy with some shallow-water occurrences, that the nodules accrete from bottom waters which have enhanced particulate and dissolved metal contents derived from diagenetic reaction in areas remote from the site of nodule formation. The metals are supplied in a bottom flow (probably Antarctic Bottom Water) which also erodes, or prevents modern sedimentation in, the depression. Nodules on the flanks of the depression are not evidently affected by this flow and derive at least pan of their constituent metals from diagenetic reaction in the underlying Quaternary sediment. Apparently, abyssal diagenetic nodules can have an immediate and a remote diagenetic metal source. Metal fluxes derived from pore water dissolved metal gradients may not be relevant to particular accreting nodules if a

  1. Dehydroxylation and diagenetic variations in diatom oxygen isotope values

    NASA Astrophysics Data System (ADS)

    Dodd, Justin P.; Wiedenheft, Wilson; Schwartz, Joshua M.

    2017-02-01

    Numerous studies have documented changes in the dissolution and reactivity of biogenic silica as it is transferred from the water column to sediment archives; here we present the first experimental data that demonstrate a physical mechanism by which the oxygen isotope (δ18Osil) values of biogenic silica (diatoms) are altered during early diagenesis. The δ18Osil value of diatom silica cultured at 19.3 °C was +31.9‰ ± 0.2‰ (n = 6); the same silica experimentally aged in an artificial seawater media at near silica saturation at 85 °C had an average δ18Osil value of +27.1‰ ± 0.6‰ (n = 20). The most significant change in the δ18Osil value was coincident with an initial reduction in the total silanol abundance, indicating that the timing of dehydroxylation reactions in natural sedimentary environments is associated with diagenetic changes in the recorded δ18Osil values. The rate of change in the experimental aging environment at 85 °C was rapid, with significant changes in both silanol abundance and δ18Osil values. Additionally, the silica-water fractionation relationship recorded by the experimentally-aged samples approaches the equilibrium quartz-water fractionation factor. The linear rate law was used to estimate the timing of these changes in low temperature environments; the initial and most significant change in silica reactivity and δ18Osil values is likely to occur on the order of 10's of years at 4 °C. Published silica-water fractionation factors for sedimentary diatoms most likely represent a combination of growth and diagenetic environments, and the δ18O value of diagenetic water needs to be addressed when using δ18Osil values to reconstruct paleoceanographic and paleoenvironmental conditions.

  2. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars

    DOE PAGES

    Nachon, M.; Mangold, N.; Forni, O.; ...

    2017-09-01

    The Curiosity rover's campaign at Pahrump Hills provides the first analyses of lower Mount Sharp strata. We report ChemCam elemental composition of a diverse assemblage of post-depositional features embedded in, or cross-cutting, the host rock. ChemCam results demonstrate their compositional diversity, especially compared to the surrounding host rock: (i) Dendritic aggregates and relief enhanced features, characterized by a magnesium enhancement and sulfur detection, and interpreted as Mg-sulfates; (ii) A localized observation that displays iron enrichment associated with sulfur, interpreted as Fe-sulfate; (iii) Dark raised ridges with varying Mg- and Ca-enriched compositions compared to host rock; (iv) Several dark-toned veins withmore » calcium enhancement associated with fluorine detection, interpreted as fluorite veins. (v) Light-toned veins with enhanced calcium associated with sulfur detection, and interpreted as Ca-sulfates. The diversity of the Pahrump Hills diagenetic assemblage suggests a complex post-depositional history for fine-grained sediments for which the origin has been interpreted as fluvial and lacustrine. Assessment of the spatial and relative temporal distribution of these features shows that the Mg-sulfate features are predominant in the lower part of the section, suggesting local modification of the sediments by early diagenetic fluids. Conversely, light-toned Ca-sulfate veins occur in the whole section and cross-cut all other features. A relatively late stage shift in geochemical conditions could explain this observation. The Pahrump Hills diagenetic features have no equivalent compared to targets analyzed in other locations at Gale crater. Only the light-toned Ca-sulfate veins are present elsewhere, along Curiosity's path, suggesting they formed through a common late-stage process that occurred at over a broad area.« less

  3. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachon, M.; Mangold, N.; Forni, O.

    The Curiosity rover's campaign at Pahrump Hills provides the first analyses of lower Mount Sharp strata. We report ChemCam elemental composition of a diverse assemblage of post-depositional features embedded in, or cross-cutting, the host rock. ChemCam results demonstrate their compositional diversity, especially compared to the surrounding host rock: (i) Dendritic aggregates and relief enhanced features, characterized by a magnesium enhancement and sulfur detection, and interpreted as Mg-sulfates; (ii) A localized observation that displays iron enrichment associated with sulfur, interpreted as Fe-sulfate; (iii) Dark raised ridges with varying Mg- and Ca-enriched compositions compared to host rock; (iv) Several dark-toned veins withmore » calcium enhancement associated with fluorine detection, interpreted as fluorite veins. (v) Light-toned veins with enhanced calcium associated with sulfur detection, and interpreted as Ca-sulfates. The diversity of the Pahrump Hills diagenetic assemblage suggests a complex post-depositional history for fine-grained sediments for which the origin has been interpreted as fluvial and lacustrine. Assessment of the spatial and relative temporal distribution of these features shows that the Mg-sulfate features are predominant in the lower part of the section, suggesting local modification of the sediments by early diagenetic fluids. Conversely, light-toned Ca-sulfate veins occur in the whole section and cross-cut all other features. A relatively late stage shift in geochemical conditions could explain this observation. The Pahrump Hills diagenetic features have no equivalent compared to targets analyzed in other locations at Gale crater. Only the light-toned Ca-sulfate veins are present elsewhere, along Curiosity's path, suggesting they formed through a common late-stage process that occurred at over a broad area.« less

  4. Morphological recognition of Globigerinoides ruber morphotypes and their susceptibility to diagenetic alteration in the eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Kontakiotis, G.; Antonarakou, A.; Mortyn, P. G.; Drinia, H.; Anastasakis, G.; Zarkogiannis, S.; Möbius, J.

    2017-10-01

    Planktonic foraminiferal geochemistry presents a valuable archive for paleoceanographic reconstructions. However in high salinity and carbonate super-saturated settings, precipitation of inorganic calcite onto foraminiferal tests can potentially alter the primary geochemical signal, biasing Mg/Ca ratios and ensuing paleoceanographic reconstructions. Here we utilize test biometrics (specifically related to the compression and elongation of the last chambers) to identify four distinct morphotypes (labelled A-D) of the paleoceanographically important planktonic foraminifer species Globigerinoides ruber, and further evaluate their susceptibility to diagenetic alteration from a suite of surface sediments in the eastern Mediterranean Sea. The three distinguished morphotypes (A-C) correspond to previously recognized morphotypes ("Normal", "Platys", "Elongate" respectively) in the Mediterranean Sea, while the remaining (D or "Twin") was designated for the first time. We also compare Scanning Electron Microscopy (SEM) observations performed on four distinguished morphotypes, indicative of potential diagenetic alteration influence. We identified 3 different overgrowth stages (OGA1-OGA3), as a function of geography in the study area. The early diagenesis degrees (involving all the morphotypes) are only geographically distinct along the eastern Mediterranean (increasing to the south), since the morphology does not play a role in the likelihood of diagenetic alteration. Particularly, in the north Aegean Sea, SEM analyses reveal the absence or limited presence of an overgrowth imprint in all recognized morphotypes, while in the central-south Aegean and Levantine Seas they show higher amplitudes of diagenetic overprint supporting the general trend to advanced diagenetic alteration. The semi-enclosed oligotrophic nature and high salinity of this setting, in combination with the different degree of carbonate precipitation and calcite super-saturation between the sub-basins, could

  5. Benthic hypoxia and early diagenesis in the Black Sea shelf sediments

    NASA Astrophysics Data System (ADS)

    Plante, Audrey; Roevros, Nathalie; Capet, Arthur; Grégoire, Marilaure; Fagel, Nathalie; Chou, Lei

    2017-04-01

    Marine waters of semi-enclosed seas are affected by a major environmental issue which is oxygen depletion in bottom waters. Deoxygenation is one of the most widespread man-induced consequences which can be catastrophic for living species. Between 1970 and 1990, the benthic compartment of the Black Sea underwent modifications due to the occurrence and increase of hypoxia. Indeed, these changes might cause a deterioration of the structure and functioning of the ecosystems. Nowadays, some regions, such as the north-western shelf, are still affected seasonally by this phenomenon. Within the framework of the BENTHOX project, a biogeochemical study focusing on the early diagenesis is conducted in the Black Sea. It aims (1) to obtain a better understanding of the impact of benthic hypoxia on the diagenetic pathways, (2) to contribute to a new dataset of biogeochemical measurements in the sediments including porewaters. During a cruise (Emblas II - May 2016), on board the RV Mare Nigrum, sediment cores were taken at 4 stations on the Ukrainian shelf. Porewaters were extracted on board the ship using Rhizon technique under N2 atmosphere and will be analyzed for dissolved nutrients and major ions. In addition, sediments were sliced and will be determined for major solid phases and trace element contents. A multi-proxies (biological, sedimentological, mineralogical and geochemical) approach will be used to identify the hypoxic events and to reconstruct the history of bottom hypoxia. The results obtained will be presented and discussed with emphasis on the first outcomes and the major biogeochemical processes involved in the early diagenesis.

  6. Experimental evidence for an effect of early-diagenetic interaction between labile and refractory marine sedimentary organic matter on nitrogen dynamics

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Domeyer, Bettina; Graf, Gerhard

    2007-05-01

    In most natural sedimentary systems labile and refractory organic material (OM) occur concomitantly. Little, however, is known on how different kinds of OM interact and how such interactions affect early diagenesis in sediments. In a simple sediment experiment, we investigated how interactions of OM substrates of different degradability affect benthic nitrogen (N) dynamics. Temporal evolution of a set of selected biogeochemical parameters was monitored in sandy sediment over 116 days in three experimental set-ups spiked with labile OM (tissue of Mytilus edulis), refractory OM (mostly aged Zostera marina and macroalgae), and a 1:1 mixture of labile and refractory OM. The initial amounts of particulate organic carbon (POC) were identical in the three set-ups. To check for non-linear interactions between labile and refractory OM, the evolution of the mixture system was compared with the evolution of the simple sum of the labile and refractory systems, divided by two. The sum system is the experimental control where labile and refractory OM are virtually combined but not allowed to interact. During the first 30 days there was evidence for net dissolved-inorganic-nitrogen (DIN) production followed by net DIN consumption. (Here 'DIN' is the sum of ammonium, nitrite and nitrate.) After ˜ 30 days a quasi steady state was reached. Non-linear interactions between the two types of OM were reflected by three main differences between the early-diagenetic evolutions of nitrogen dynamics of the mixture and sum (control) systems: (1) In the mixture system the phases of net DIN production and consumption commenced more rapidly and were more intense. (2) The mixture system was shifted towards a more oxidised state of DIN products [as indicated by increased (nitrite + nitrate)/(ammonium) ratios]. (3) There was some evidence that more OM, POC and particulate nitrogen were preserved in the mixture system. That is, in the mixture system more particulate OM was preserved while a higher

  7. Origin and diagenetic transformations of C 25 and C 30 highly branched isoprenoid sulphur compounds: Further evidence for the formation of organically bound sulphur during early diagenesis

    NASA Astrophysics Data System (ADS)

    Kohnen, M. E. L.; Damsté, J. S. Slnninghe; Kock-van Dalen, A. C.; Haven, H. L. Ten; Rullkötter, J.; De Leeuw, J. W.

    1990-11-01

    A number of C 25 and C 30 highly branched isoprenoid (HBI) sulphur compounds (E.G., thiolanes, 1-oxo-thiolanes, thiophenes, and benzo[ b]thiophenes) with 2,6,10,14-tetramethyl-7-(3-methylpentyl)pentadecane and 2,6,10,14,18-pentamethyl-7-(3-methylpentyl)nonadecane carbon skeletons were identified in sediments, ranging from Holocene to Upper Cretaceous. These identifications are based on mass spectral characterisation, desulphurisation, and, in some cases, by comparison of mass spectral and relative retention time data with those of authentic standards. The presence of unsaturated C 25 and C 30 HBI thiolanes in a Recent sediment from the Black Sea (age 3-6 × 10 3 a) strongly supports their formation during early diagenesis. The co-occurrence of HBI polyenes (C 25 and C 30) and unsaturated HBI thiolanes (C 25 and C 30) possessing two double bonds less than the corresponding HBI polyenes, in this Recent sediment, testifies to the formation of unsaturated HBI thiolanes by a reaction of inorganic sulphur species with double bonds of the HBI polyenes. Furthermore, a diagenetic scheme for HBI sulphur compounds is proposed based on the identification of HBI sulphur compounds in sediment samples with different maturity levels.

  8. Diagenetic Iron Cycling in Ancient Alkaline Saline Lacustrine Sedimentary Rocks: A Case Study on the Jurassic Brushy Basin Member of the Morrison Formation, Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Potter-McIntyre, S. L.; Chan, M. A.; McPherson, B. J. O. L.

    2014-12-01

    The upper part of the Brushy Basin Member in the Four Corners region of the U.S. was deposited in an ephemeral alkaline saline lake system with copious input of volcanic ash. The variegated shale formation provides a setting for the study of early diagenetic iron cycling that records the action of alkaline saline fluid chemistries reacting with volcaniclastic sediments in the presence of microbes. A bull's-eye pattern of authigenic minerals with increasing alteration towards the basinal center similar to modern alkaline saline lakes provides evidence for an extreme paleoenvironmental interpretation. The purpose of this research is to document specific factors, such as reactive sediments, microbial influences, and grain size that affect concretion formation and iron cycling in an ancient extreme environment. Three broad diagenetic facies are interpreted by color and associated bioturbation features: red, green and intermediate. Diagenetic facies reflect meter-scale paleotopography: red facies represent shallow water to subaerial, oxidizing conditions; green facies reflect saturated conditions and reducing pore water chemistry shortly after deposition, and intermediate facies represent a combination of the previous two conditions. Evidence of biotic influence is abundant and trace fossils exhibit patterns associated with the diagenetic facies. Red diagenetic facies typically contain burrows and root traces and green diagenetic facies exhibit restricted biotic diversity typically limited to algal molds (vugs). Microbial fossils are well-preserved and are in close proximity to specific iron mineral textures suggesting biotic influence on the crystal morphology. Three categories of concretions are characterized based on mineralogy: carbonate, iron (oxyhydr)oxide and phosphate concretions. Concretion mineralogy and size vary within an outcrop and even within a stratigraphic horizon such that more than one main category is typically present in an outcrop. Variation in

  9. Diagenetic effects on magnetic minerals in a Holocene lacustrine sediment core from Huguangyan maar lake, southeast China

    NASA Astrophysics Data System (ADS)

    Wu, Xudong; Wang, Yong; Bian, Liu; Shen, Ji

    2016-09-01

    strong Asian summer monsoon intensity during the early Holocene are accountable for intensive diagenesis in the lowermost subsection. Complete erasing of detrital magnetic input signal at certain positions of the lowermost subsection, and considerable formation of authigenic siderite indicate that palaeomagnetic records of the studied core have been significantly compromised. The studied core has relatively higher TOC content, lower detrital matter content, calmer sedimentary environments, and less DO available at its water-sediment interface than the cores retrieved at relatively shallower water depths, which all contribute to its relatively stronger diagenesis. Progressive thickening of the upper two subsections with increasing water depth is owing to progressive increase in sedimentation rate with increasing water depth, which is the key factor in determining the thickness of each diagenetic subsection of cores from HGY. It would be better that lake sediments for palaeomagnetic investigations collected at a water depth shallower than the depth of its thermocline.

  10. Phosphorus retention and internal loading in the Bay of Quinte, Lake Ontario, using diagenetic modelling.

    PubMed

    Doan, Phuong T K; Watson, Sue B; Markovic, Stefan; Liang, Anqi; Guo, Jay; Mugalingam, Shan; Stokes, Jonathan; Morley, Andrew; Zhang, Weitao; Arhonditsis, George B; Dittrich, Maria

    2018-04-24

    Internal phosphorus (P) loading significantly contributes to hysteresis in ecosystem response to nutrient remediation, but the dynamics of sediment P transformations are often poorly characterized. Here, we applied a reaction-transport diagenetic model to investigate sediment P dynamics in the Bay of Quinte, a polymictic, spatially complex embayment of Lake Ontario, (Canada). We quantified spatial and temporal variability of sediment P binding forms and estimated P diffusive fluxes and sediment P retention in different parts of the bay. Our model supports the notion that diagenetic recycling of redox sensitive and organic bound P forms drive sediment P release. In the recent years, summer sediment P diffusive fluxes varied in the range of 3.2-3.6 mg P m -2  d -1 in the upper bay compared to 1.5 mg P m -2  d -1 in the middle-lower bay. Meanwhile sediment P retention ranged between 71% and 75% in the upper and middle-lower bay, respectively. The reconstruction of temporal trends of internal P loading in the past century, suggests that against the backdrop of reduced external P inputs, sediment P exerts growing control over the lake nutrient budget. Higher sediment P diffusive fluxes since mid-20th century with particular increase in the past 20 years in the shallower upper basins, emphasize limited sediment P retention potential and suggest prolonged ecosystem recovery, highlighting the importance of ongoing P control measures. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Characterization of diagenetic siderites formed in recent and ancient ferruginous sediments of Lake Towuti, Indonesia.

    NASA Astrophysics Data System (ADS)

    Vuillemin, Aurele; Kallmeyer, Jens; Wagner, Dirk; Kemnitz, Helga; Wirth, Richard; Luecke, Andreas; Mayr, Christoph

    2016-04-01

    Authigenic minerals in lacustrine settings can be formed in the water column and within the sediment, abiotically and/or triggered by biological activity. Such minerals have been used as paleosalinity and paleoproductivity proxies, reflecting trophic state, and/or early diagenetic conditions. They have also been considered as potential biosignatures of past and present microbial activity. Here we present a study from Lake Towuti, a deep tectonic basin in Sulawesi, Indonesia. Its geographic position makes it a prime location to record paleoclimatic changes in the tropical Western Pacific warm pool in its sedimentary sequence. The ultramafic rocks and surrounding lateritic soils in the catchment area supply considerable amounts of iron and other metals to the lake. These elements further restrain primary productivity along with the development of specific microbial metabolic pathways involved in early diagenesis. Lake Towuti is stratified with anoxic conditions below 130 m, allowing metal reduction processes to take place in the hypolimnion. The extreme scarcity of sulphate and nitrate/nitrite make Lake Towuti's bottom waters a modern analogue for the Archaean Ocean. It was therefore chosen as a drilling target by the International Continental Drilling Program (ICDP). In May to July 2015, the Towuti Drilling Project recovered a total >1000 m of sediment core from three drilling sites, including a 114 m long core drilled with a contamination tracer dedicated to geomicrobiological studies. Heavy mineral fractions were extracted from core catcher samples and siderite crystals (FeCO3) were selected from different depths. Characterization of their habitus was achieved via SEM and TEM imaging. Preliminary results show that siderites grow from amorphous into nanocrystalline phases and form twinned aggregates developing into mosaic monocrystals with depth. Gradual filling of vugs and microporosity were observed along with inclusions of magnetite nanocrystals. Work in

  12. Diagenetic patterns and pore space distribution along a platform to outer-shelf transect (Urgonian limestone, Barremian-Aptian, SE France)

    NASA Astrophysics Data System (ADS)

    Léonide, Philippe; Fournier, François; Reijmer, John J. G.; Vonhof, Hubert; Borgomano, Jean; Dijk, Jurrien; Rosenthal, Maelle; van Goethem, Manon; Cochard, Jean; Meulenaars, Karlien

    2014-06-01

    The Urgonian limestones of Late Barremian/Early Aptian from Provence (SE, France) are characterized by the occurrence of microporous limestones at regional scale alternating with tight carbonates. This study, based on petrographical (sediment texture, facies) and diagenetical analyses (cement stratigraphy, porosity and isotope geochemistry) of more than 800 limestone samples provides insight into the parameters controlling the genesis, preservation or occlusion of microporosity along an inner platform to outer shelf transect. The tight and microporous Urgonian limestones from Provence can be grouped into 5 rock-types based on textures, associated depositional environments, porosity and pore-type, being: (1) tight inner-platform: TIP; (2) porous inner platform: PIP; (3) tight outer platform: TOP; (4) porous outer platform: POP and (5) tight outer shelf: TOS. In tight (TIP, TOP and TOS types) limestones intergranular and intragranular pore spaces were entirely occluded by early marine and/or early meteoric cementation, whereas in microporous (PIP, POP) limestones a significant fraction of the intergranular macroporosity was preserved during early and shallow burial diagenesis. Micrite neomorphism (hybrid Ostwald ripening process) occurred during meteoric shallow burial diagenesis in PIP and POP limestones during the regional Durancian Uplift event (Albian-Lower Cenomanian). This process resulted in microporosity enhancement and preservation. Circulation of meteoric fluids during exhumation produces intercrystalline microporosity enhancement and moldic porosity development. The present study documents the important role that both early diagenetic and depositional cycles and long-term tectonic processes have on pore space evolution and distribution in Mesozoic platform carbonates.

  13. Development of diagenetic seals in carbonates and sandstones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, V.; Almon, W.

    1983-03-01

    Diagenetic seals effectively block the movement of reservoir hydrocarbons in many sandstone and carbonate rock units. Diagenetic seals in sandstones and carbonate rocks encase reservoir rocks with either depositional or diagenetic porosity. Diagenetic reservoir porosity may originate before or after the establishment of an effective diagenetic seal. Hydrocarbon traps with diagenetic seals may conform in their geometry as well to structure or stratigraphy as to diagenetic facies. Therefore, some structural and stratigraphic traps may, in part or entirely, depend on diagenetic seals. Detailed analysis of diagenetic seals in sandstones and carbonate rocks can considerably improve our ability to predict theirmore » occurrence and to recognize their spatial and temporal relationship to reservoir rocks and hydrocarbon migration.« less

  14. A biodetrital coral mound complex: Key to early diagenetic processes in the mississippian bangor limestone

    USGS Publications Warehouse

    Haywick, D.W.; Kopaska-Merkel, D. C.; Bersch, M.G.

    2009-01-01

    The Bangor Limestone is a Mississippian (Chesterian) shallow marine carbonate formation exposed over a large portion of the Interior Low Plateaus province of northern Alabama. It is dominated by oolitic grainstone and skeletal wackestone and packstone, but in one outcrop near Moulton, Alabama, the Bangor contains a five m thick, 25 m wide, oolitebiodetrital moundtidal flat succession. This sequence is interpreted as a 4th order sea level cycle. Four petrofacies (oolite, mound, skeletal and mudstone/dolomicrite) and four diagenetic phases (iron oxide, fibrous calcite cement, calcite spar cement and dolomite) are distinguished at the study site. Iron oxide, a minor component, stained and/or coated some ooids, intraclasts and skeletal components in the oolite petrofacies. Many of the allochems were stained prior to secondary cortical growth suggesting a short period of subaerial exposure during oolite sedimentation. The oolite petrofacies also contains minor amounts of fibrous calcite cement, a first generation marine cement, and rare infiltrated micrite that might represent a second phase of marine cement, or a first phase of meteoric cement (i.e., "vadose silt") (Dunham 1969). Intergranular pore space in all four petrofacies is filled with up to three phases of meteoric calcite spar cement. The most complete record of meteoric cementation is preserved within coralline void spaces in the mound petrofacies and indicates precipitation in the following order: (1) non-ferroan scalenohedral spar, (2) ferroan drusy spar (0.1-0.4 wt% Fe2+) and (3) non-ferroan drusy spar. The first scalenohedral phase of meteoric cement is distributed throughout the oolite and mound petrofacies. The ferroan phase of meteoric calcite is a void-filling cement that is abundant in the mound petrofacies and less common in the skeletal and mudstone/dolomicrite petrofacies. Non-ferroan drusy calcite is pervasive throughout the Bangor Limestone at the Moulton study site. Growth of the fourth

  15. Organic matter mineralization and trace element post-depositional redistribution in Western Siberia thermokarst lake sediments

    NASA Astrophysics Data System (ADS)

    Audry, S.; Pokrovsky, O. S.; Shirokova, L. S.; Kirpotin, S. N.; Dupré, B.

    2011-11-01

    This study reports the very first results on high-resolution sampling of sediments and their porewaters from three thermokarst (thaw) lakes representing different stages of ecosystem development located within the Nadym-Pur interfluve of the Western Siberia plain. Up to present time, the lake sediments of this and other permafrost-affected regions remain unexplored regarding their biogeochemical behavior. The aim of this study was to (i) document the early diagenesic processes in order to assess their impact on the organic carbon stored in the underlying permafrost, and (ii) characterize the post-depositional redistribution of trace elements and their impact on the water column. The estimated organic carbon (OC) stock in thermokarst lake sediments of 14 ± 2 kg m-2 is low compared to that reported for peat soils from the same region and denotes intense organic matter (OM) mineralization. Mineralization of OM in the thermokarst lake sediments proceeds under anoxic conditions in all the three lakes. In the course of the lake development, a shift in mineralization pathways from nitrate and sulfate to Fe- and Mn-oxyhydroxides as the main terminal electron acceptors in the early diagenetic reactions was suggested. This shift was likely promoted by the diagenetic consumption of nitrate and sulfate and their gradual depletion in the water column due to progressively decreasing frozen peat lixiviation occurring at the lake's borders. Trace elements were mobilized from host phases (OM and Fe- and Mn-oxyhydroxides) and partly sequestered in the sediment in the form of authigenic Fe-sulfides. Arsenic and Sb cycling was also closely linked to that of OM and Fe- and Mn-oxyhydroxides. Shallow diagenetic enrichment of particulate Sb was observed in the less mature stages. As a result of authigenic sulfide precipitation, the sediments of the early stage of ecosystem development were a sink for water column Cu, Zn, Cd, Pb and Sb. In contrast, at all stages of ecosystem development

  16. Organic matter mineralization and trace element post-depositional redistribution in Western Siberia thermokarst lake sediments

    NASA Astrophysics Data System (ADS)

    Audry, S.; Pokrovsky, O. S.; Shirokova, L. S.; Kirpotin, S. N.; Dupré, B.

    2011-08-01

    This study reports the very first results on high-resolution sampling of sediments and their porewaters from three thermokarst (thaw) lakes representing different stages of ecosystem development located within the Nadym-Pur interfluve of the Western Siberia plain. Up to present time, the lake sediments of this and other permafrost-affected regions remain unexplored regarding their biogeochemical behavior. The aim of this study was to (i) document the early diagenesic processes in order to assess their impact on the organic carbon stored in the underlying permafrost, and (ii) characterize the post-depositional redistribution of trace elements and their impact on the water column. The estimated organic carbon (OC) stock in thermokarst lake sediments of 14 ± 2 kg m-2 is low compared to that reported for peat soils from the same region and denotes intense organic matter (OM) mineralization. Mineralization of OM in the thermokarst lake sediments proceeds under anoxic conditions in all the three lakes. In the course of the lake development, a shift in mineralization pathways was evidenced from nitrate and sulfate to Fe- and Mn-oxyhydroxides as the main terminal electron acceptors in the early diagenetic reactions. This shift was promoted by the diagenetic consumption of nitrate and sulfate and their gradual depletion in the water column due to progressively decreasing frozen peat lixiviation occurring at the lake's borders. Trace elements were mobilized from host phases (OM and Fe- and Mn-oxyhydroxides) and partly sequestered in the sediment in the form of authigenic Fe-sulfides. Arsenic and Sb cycling was also closely linked to that of OM and Fe- and Mn-oxyhydroxides. Shallow diagenetic enrichment of particulate Sb was observed in the less mature stages. As a result of authigenic sulfide precipitation, the sediments of the early stage of ecosystem development were a sink for water column Cu, Zn, Cd, Pb and Sb. In contrast, at all stages of ecosystem development, the

  17. Assessing past and present P Retention in Sediments in Lake Ontario (Bay of Quinte) by Reaction-Transport Diagenetic Modeling

    NASA Astrophysics Data System (ADS)

    Doan, Phuong; Berry, Sandra; Markovic, Stefan; Watson, Sue; Mugalingam, Shan; Dittrich, Maria

    2016-04-01

    Phosphorus (P) is an important macronutrient that can limit aquatic primary production and the risk of harmful algal blooms. Although there is considerable evidence that P release from sediments can represent a significant source of P and burial in sediments returns P to the geological sink; these processes have been poorly characterised. In this study, we applied a non-steady state reactive transport diagenetic model to gain insights into the dynamics of phosphorus binding forms in sediments and the phosphorus cycling of the Bay of Quinte, an embayment of Lake Ontario, Canada. The three basins of the bay (Belleville, Hay Bay and Napanee) that we investigated had differences in their phosphorus binding forms and phosphorus release, reflecting the distinct spatial temporal patterns of land use and urbanization levels in the watershed. Sediment cores from the three stations were collected during summer and under ice cover in 2013-14. Oxygen, pH and redox potential were monitored by microsensors; porewater and sediment solid matter were analyzed for P content, and a sequential extraction was used to analyze P binding forms. In the reaction-transport model, total phosphorus was divided into adsorbed phosphorus, phosphorus bound with aluminium, organic phosphorus, redox sensitive and apatite phosphorus. Using the fluxes of organic and inorganic matter as dynamic boundary conditions, we simulated the depth profiles of solute and solid components. The model closely reproduced the fractionation data of phosphorus binding forms and soluble reactive phosphorus. The past and present P fluxes were calculated and estimated; they related to geochemical conditions, and P binding forms in sediments. Our results show that P release from sediments is dominated by the redox-sentive P fraction accounting for higher percentage at Napanee station. The main P binding form that can be immobilized through diagenesis is apatite P contributing highest P retention at HayBay station. The mass

  18. Groundwater dolocretes from the Upper Triassic of the Paris Basin, France: a case study of an arid, continental diagenetic facies

    USGS Publications Warehouse

    Spotl, S.; Wright, V.P.

    1992-01-01

    The majority of the dolomite consists of a finely crystalline groundmass of dolomicrospar and, less commonly, dolomicrite. Glaebules, irregular spar-filled cracks, spheroidal dolomite, silificiation and vuggy porosity are locally abundant in the massive dolomite. In contrast, biologically induced micromorphological features such as rhizocretions and alveolar-septal fabrics were observed in the thin, nodular dolomite beds. Petrographic observations argue in favour of primary (proto)dolomite precipitation, although early diagenetic replacement of calcite by (proto)dolomite cannot be ruled out. Strontium and carbon isotope data of early diagenetic dolocrete cements and oxygen isotope data of early diagenetic silica indicate an entirely non-marine, continental origin for the groundwaters. -from Authors

  19. Insights into the diagenetic environment of fossil marine vertebrates of the Pisco Formation (late Miocene, Peru) from mineralogical and Sr-isotope data

    NASA Astrophysics Data System (ADS)

    Gioncada, A.; Petrini, R.; Bosio, G.; Gariboldi, K.; Collareta, A.; Malinverno, E.; Bonaccorsi, E.; Di Celma, C.; Pasero, M.; Urbina, M.; Bianucci, G.

    2018-01-01

    The late Miocene Pisco Formation of Peru is an outstanding example of richness and high-quality preservation of fossil marine vertebrates. In order to reconstruct the fossilization path, we present new textural, mineralogical and Sr-isotope data of diagenetic minerals formed in correspondence of fossil specimens such as marine vertebrates and mollusks. These fossil specimens were found at Cerro los Quesos, in the Ica Desert, within the diatomaceous strata of the Pisco Formation. Dolomite, gypsum, anhydrite and Mn minerals are the main phases found, while the calcium carbonate originally forming the mollusk valves is replaced by gypsum. An early formation of dolomite and of Mn minerals, triggered by the modifications of the geochemical environment due to organic matter degradation, is suggested by the textural relationships and is confirmed by the Sr isotopic ratio of dolomite, which agrees with that of seawater at the time of sedimentation. Instead, gypsum Sr isotopic ratios indicate a pre-Miocene seawater-derived brine circulating within the sedimentary sequence as a source for Sr. Oxidation of diagenetic sulfide causing a lowering of the pH of porewater is proposed as an explanation for Ca-carbonate dissolution. The diagenetic chemical environment was, nevertheless, favorable to bone preservation.

  20. Fluid expulsion sites on the Cascadia accretionary prism: mapping diagenetic deposits with processed GLORIA imagery

    USGS Publications Warehouse

    Carson, Bobb; Seke, Erol; Paskevich, Valerie F.; Holmes, Mark L.

    1994-01-01

    Point-discharge fluid expulsion on accretionary prisms is commonly indicated by diagenetic deposition of calcium carbonate cements and gas hydrates in near-surface (<10 m below seafloor; mbsf) hemipelagic sediment. The contrasting clastic and diagenetic lithologies should be apparent in side scan images. However, sonar also responds to variations in bottom slope, so unprocessed images mix topographic and lithologic information. We have processed GLORIA imagery from the Oregon continental margin to remove topographic effects. A synthetic side scan image was created initially from Sea Beam bathymetric data and then was subtracted iteratively from the original GLORIA data until topographic features disappeared. The residual image contains high-amplitude backscattering that we attribute to diagenetic deposits associated with fluid discharge, based on submersible mapping, Ocean Drilling Program drilling, and collected samples. Diagenetic deposits are concentrated (1) near an out-of-sequence thrust fault on the second ridge landward of the base of the continental slope, (2) along zones characterized by deep-seated strikeslip faults that cut transversely across the margin, and (3) in undeformed Cascadia Basin deposits which overlie incipient thrust faults seaward of the toe of the prism. There is no evidence of diagenetic deposition associated with the frontal thrust that rises from the dècollement. If the dècollement is an important aquifer, apparently the fluids are passed either to the strike-slip faults which intersect the dècollement or to the incipient faults in Cascadia Basin for expulsion. Diagenetic deposits seaward of the prism toe probably consist dominantly of gas hydrates.

  1. Trace elements and REE geochemistry of Middle Devonian carbonate mounds (Maïder Basin, Eastern Anti-Atlas, Morocco): Implications for early diagenetic processes

    NASA Astrophysics Data System (ADS)

    Franchi, Fulvio; Turetta, Clara; Cavalazzi, Barbara; Corami, Fabiana; Barbieri, Roberto

    2016-08-01

    Trace and rare earth elements (REEs) have proven their utility as tools for assessing the genesis and early diagenesis of widespread geological bodies such as carbonate mounds, whose genetic processes are not yet fully understood. Carbonates from the Middle Devonian conical mud mounds of the Maïder Basin (eastern Anti-Atlas, Morocco) have been analysed for their REE and trace element distribution. Collectively, the carbonates from the Maïder Basin mud mounds appear to display coherent REE patterns. Three different geochemical patterns, possibly related with three different diagenetic events, include: i) dyke fills with a normal marine REE pattern probably precipitated in equilibrium with seawater, ii) mound micrite with a particular enrichment of overall REE contents and variable Ce anomaly probably related to variation of pH, increase of alkalinity or dissolution/remineralization of organic matter during early diagenesis, and iii) haematite-rich vein fills precipitated from venting fluids of probable hydrothermal origin. Our results reinforce the hypothesis that these mounds were probably affected by an early diagenesis induced by microbial activity and triggered by abundance of dispersed organic matter, whilst venting may have affected the mounds during a later diagenetic phase.

  2. Hg concentrations from Late Triassic and Early Jurassic sedimentary rocks: first order similarities and second order depositional and diagenetic controls

    NASA Astrophysics Data System (ADS)

    Yager, J. A.; West, A. J.; Bergquist, B. A.; Thibodeau, A. M.; Corsetti, F. A.; Berelson, W.; Bottjer, D. J.; Rosas, S.

    2016-12-01

    Mercury concentrations in sediments have recently gained prominence as a potential tool for identifying large igneous province (LIP) volcanism in sedimentary records. LIP volcanism coincides with several mass extinctions during the Phanerozoic, but it is often difficult to directly tie LIP activity with the record of extinction in marine successions. Here, we build on mercury concentration data reported by Thibodeau et al. (Nature Communications, 7:11147, 2016) from the Late Triassic and Early Jurassic of New York Canyon, Nevada, USA. Increases in Hg concentrations in that record were attributed to Central Atlantic Magmatic Province (CAMP) activity in association with the end-Triassic mass extinction. We expand the measured section from New York Canyon and report new mercury concentrations from Levanto, Peru, where dated ash beds provide a discrete chronology, as well as St. Audrie's Bay, UK, a well-studied succession. We correlate these records using carbon isotopes and ammonites and find similarities in the onset of elevated Hg concentrations and Hg/TOC in association with changes in C isotopes. We also find second order patterns that differ between sections and may have depositional and diagenetic controls. We will discuss these changes within a sedimentological framework to further understand the controls on Hg concentrations in sedimentary records and their implications for past volcanism.

  3. Magnetic Hysteresis Parameters and Day-Plot Analysis to Delineate Diagenetic Alteration in Gas Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Enkin, R. J.; Baker, J.; Nourgaliev, D.; Iassonov, P.

    2005-12-01

    Gas hydrates are naturally occurring cage structures of ice found in continental slope and permafrost sediments. They contain vast quantities of methane which is important both as a climate driver and an energy resource. Hydrate formation alters the redox potential of interstitial fluids which can in turn alter magnetic minerals. Thus magnetic methods can help delineate diagenetic pathways, provide a proxy method to map out past hydrate occurrences, and eventually lead to new remote sensing methods in prospecting for gas hydrates. We present data acquired using a J-Meter Coercivity Spectrometer. Induced and remanent magnetism are simultaneously measured on 1.5 cc samples as they spin on a 50 cm diameter disk, 20 times per second. The applied field ramps between ± 500 mT to produce a hysteresis loop in 7 minutes. Sub-second viscous decay is measured to provide a proxy for the amount of superparamagnetism present. The rapid and simple measurements made possible by this robust machine are ideal for core logging. Measurements made on frozen core from the Mallik permafrost gas hydrate field in Canada's Northwest Territories demonstrates that the magnetic properties are dependent on the concentration of gas hydrate present. Day-plots of magnetic hysteresis parameter ratios distinguish the magnetic carriers in gas hydrate rich sediments. The original magnetite is often reduced to sulphide when gas hydrate concentration exceeds 40%. In other high-concentration gas hydrate horizons, fine single-domain (SD) grains of magnetite apparently dissolve leaving nothing but large multi-domain (MD) magnetite grains. Independently measured superparamagnetism is shown to push hysteresis ratios off the hyperbola expected for SD-MD mixtures, as predicted by Dunlop [JGR, 10.10291/2001JB000486, 2002]. Magnetic study of host sediments in gas hydrate systems provides a powerful core-logging tool, offers a window into the processes of gas hydrate formation, and forms the basis for

  4. Diagenetic fate of organic contaminants on the Palos Verdes Shelf, California

    USGS Publications Warehouse

    Eganhouse, R.P.; Pontolillo, J.; Leiker, T.J.

    2000-01-01

    Municipal wastes discharged through deepwater submarine outfalls since 1937 have contaminated sediments of the Palos Verdes Shelf. A site approximately 6-8 km downcurrent from the outfall system was chosen for a study of the diagenetic fate of organic contaminants in the waste-impacted sediments. Concentrations of three classes of hydrophobic organic contaminants (DDT + metabolites, polychlorinated biphenyls (PCBs), and the long-chain alkylbenzenes) were determined in sediment cores collected at the study site in 1981 and 1992. Differences between the composition of effluent from the major source of DDT (Montrose Chemical) and that found in sediments suggests that parent DDT was transformed by hydrolytic dehydrochlorination during the earliest stages of diagenesis. As a result, p,p'-DDE is the dominant DDT metabolite found in shelf sediments, comprising 60-70% of ??DDT. The p,p-DDE/p,p'-DDMU concentration ratio decreases with increasing sub-bottom depth in sediment cores, indicating that reductive dechlorination of p,p'-DDE is occurring. Approximately 9-23% of the DDE inventory in the sediments may have been converted to DDMU since DDT discharges began ca. 1953. At most, this is less than half of the decline in p,p'-DDE inventory that has been observed at the study site for the period 1981-1995. Most of the observed decrease is attributable to remobilization by processes such as sediment mixing coupled to resuspension, contaminant desorption, and current advection. Existing field data suggest that the in situ rate of DDE transformation is 102-103 times slower than rates determined in recent laboratory microcosm experiments (Quensen, J.F., Mueller, S.A., Jain, M.K., Tiedje, J.M., 1998. Reductive dechlorination of DDE to DDMU in marine sediment microcosms. Science, 280, 722-724.). This explains why the DDT composition (i.e. o,p'-, p,p'-isomers of DDE, DDD, DDT) of sediments from this site have not changed significantly since at least 1972. Congener-specific PCB

  5. Chesapeake Bay Sediment Flux Model

    DTIC Science & Technology

    1993-06-01

    1988; Van der Molen , -88- 1991; Yoshida, 1981.) The model developed below is based on both of these approaches. It incorporates the diagenetic...288: pp. 289-333. Van der Molen , D.T. (1991): A simple, dynamic model for the simulation of the release of phosphorus from sediments in shallow...1974; Berner, 1980; van Cappellen and Berner, 1988). These relate the diagenetic production of phosphate to the resulting pore water concentration

  6. Geochemistry of ferromanganese nodule-sediment pairs from Central Indian Ocean Basin

    NASA Astrophysics Data System (ADS)

    Pattan, J. N.; Parthiban, G.

    2011-01-01

    Fourteen ferromanganese nodule-sediment pairs from different sedimentary environments such as siliceous ooze (11), calcareous ooze (two) and red clay (one) from Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements (REE) to understand the possible elemental relationship between them. Nodules from siliceous and calcareous ooze are diagenetic to early diagenetic whereas, nodule from red clay is of hydrogenetic origin. Si, Al and Ba are enriched in the sediments compared to associated nodules; K and Na are almost in the similar range in nodule-sediment pairs and Mn, Fe, Ti, Mg, P, Ni, Cu, Mo, Zn, Co, Pb, Sr, V, Y, Li and REEs are all enriched in nodules compared to associated sediments (siliceous and calcareous). Major portion of Si, Al and K in both nodules and sediments appear to be of terrigenous nature. The elements which are highly enriched in the nodules compared to associated sediments from both siliceous and calcareous ooze are Mo - (307, 273), Ni - (71, 125), Mn - (64, 87), Cu - (43, 80), Co - (23, 75), Pb - (15, 24), Zn - (9, 11) and V - (8, 19) respectively. These high enrichment ratios of elements could be due to effective diagenetic supply of metals from the underlying sediment to the nodule. Enrichment ratios of transition metals and REEs in the nodule to sediment are higher in CIOB compared to Pacific and Atlantic Ocean. Nodule from red clay, exhibit very small enrichment ratio of four with Mn and Ce while, Al, Fe, Ti, Ca, Na, K, Mg, P, Zn, Co, V, Y and REE are all enriched in red clay compared to associated nodule. This is probably due to presence of abundant smectite, fish teeth, micronodules and phillipsite in the red clay. The strong positive correlation ( r ⩾ 0.8) of Mn with Ni, Cu, Zn and Mo and a convex pattern of shale-normalized REE pattern with positive Ce-anomaly of siliceous ooze could be due to presence of abundant manganese micronodules. None of the major trace and REE exhibits any type of inter

  7. Vivianite formation and distribution in Lake Baikal sediments

    NASA Astrophysics Data System (ADS)

    Fagel, N.; Alleman, L. Y.; Granina, L.; Hatert, F.; Thamo-Bozso, E.; Cloots, R.; André, L.

    2005-04-01

    In an effort to better understand vivianite formation processes, four Lake Baikal sediment cores spanning two to four interglacial stages in the northern, central and southern basins and under various biogeochemical environments are scrutinized. The vivianite-rich layers were detected by anomalous P-enrichments in bulk geochemistry and visually by observations on X-radiographs. The millimetric concretions of vivianite were isolated by sieving and analysed by X-ray diffraction, scanning electron microscope (SEM), microprobe, infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and mass spectrometry (ICP-AES, ICP-MS). All the vivianites display similar morphological, mineralogical and geochemical signature, suggesting a common diagenetic origin. Their geochemical signature is sensitive to secondary alteration where vivianite concretions are gradually transformed from the rim to the center into an amorphous santabarbaraite phase with a decreasing Mn content. We analysed the spatial and temporal distribution of the concretions in order to determine the primary parameters controlling the vivianite formation, e.g., lithology, sedimentation rates, and porewater chemistry. We conclude that vivianite formation in Lake Baikal is mainly controlled by porewater chemistry and sedimentation rates, and it is not a proxy for lacustrine paleoproductivity. Vivianite accumulation is not restricted to areas of slow sedimentation rates (e.g., Academician and Continent ridges). At the site of relatively fast sedimentation rate, i.e., the Posolsky Bank near the Selenga Delta, vivianite production may be more or less related to the Selenga River inputs. It could be also indirectly related to the past intensive methane escapes from the sediments. While reflecting an early diagenetic signal, the source of P and Fe porewater for vivianites genesis is still unclear.

  8. Unravelling the Paleoenvironmental and Diagenetic History of Fluviolacustrine Sediments from a Northern Kenya Rift Basin Through Analysis of HSPDP West Turkana-Kaitio Core Material

    NASA Astrophysics Data System (ADS)

    Rabideaux, N. M.; Chaudhary, M. S.; Deocampo, D.; Feibel, C. S.; Cohen, A. S.

    2016-12-01

    The Hominin Sites and Paleolakes Drilling Project (HSPDP) collected sediment cores from six rift basins in Ethiopia and Kenya. The goal of HSPDP is to construct high-resolution records of environmental change, and to understand how those changes relate to early human evolution and cultural adaptations. The West Turkana-Kaitio (WTK) site was targeted due to the abundant archeological and paleontological artifacts and fossils discovered around the basin. We conducted XRD and XRF analyses on HSPDP-WTK core material to construct a high-resolution record of paleoenvironmental conditions in the Kenya Rift during the Early Pleistocene ( 1.9-1.35 Ma). Mineralogical and geochemical trends were also used to identify the diagenetic history of fluviolacustrine sediments in the basin. The bulk mineralogy is comprised of mostly detrital feldspars, muscovite, α-quartz, and carbonates. Zeolites are present in intervals throughout the core, possibly suggesting pulses of increased salinity. Oxides and S-bearing minerals are abundant from 100-170 mbs, which may be indicative of redox and or hydrothermal processes in that interval. The lowermost portion of the core contains α- and β-quartz, pyrite and zeolites, suggesting either low-oxygen saline conditions or hydrothermal activity. Oriented clay analysis indicated multiple intervals of diagenesis, with the illitization of smectite related to hydrothermal and or microbial activity. Clay analysis provided evidence for a low degree of illitization in the upper portion of the core, whereas mixed-layered illite-smectite (I/S) contained 30-50% illite proximal to fault breccia and up to 70% illite below the faulted section, indicative of significant alteration in the lowermost portion of the core. Coupled mineralogical and geochemical analysis revealed a complex alteration history in the basin indicated by: 1) the presence of mixed-layer I/S throughout the 216 m core; 2) pronounced alteration proximal to faulting; and 3) authigenic

  9. Structural and diagenetic evolution of deformation bands in contractional and extensional tectonic regimes

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; O'Brien, C. M.; Elliott, S. J.

    2016-12-01

    Mechanisms of brittle deformation of sediments and sedimentary rock change with burial because of increasing confining stress, change in pore fluid chemical and temperature conditions, and diagenetic state. In the field, these changes are observed in a transition from early non-cataclastic to later cataclastic deformation bands and to joint-based structures. Jurassic eolian sandstones in the San Rafael monocline and adjacent San Rafael Desert region, Utah, allow comparison of deformation band structures and their diagenetic attributes in contractional and extensional tectonic settings in close proximity. In the Entrada and Navajo Sandstones, we observe up to six generations of deformation bands, with earliest non-cataclastic bands having diffuse boundaries to host rock, and short and irregular traces. Later bands are cataclastic, more sharply defined, with long and straight traces. Cataclastic bands in the San Rafael monocline are interpreted to form as reverse faults during progressive rotation of the steeply dipping fold limb, resulting in an array of bands of varying dip. Bands in the San Rafael Desert form as normal faults with a narrower dip range. Although structural characteristics of bands differ in extensional and contractional tectonic regimes, cataclastic bands in either regime have comparable amount of porosity loss and quartz cementation indicating that tectonic regime does not influence band diagenesis. Abundance of quartz cement in bands, determined by point counting of SEM images, increases from earlier to later generations of bands and, within a single generation, with increasing slip along the band, reaching up to 24% of band volume. This trend is attributed to an increase in cataclasis with increasing host rock cementation and confining stress during burial, and, within the same generation, with increasing slip. Porosity loss by cementation tends to dominate over porosity loss by mechanical compaction. These findings demonstrate that quartz

  10. SEDIMENT GEOCHEMICAL MODEL

    EPA Science Inventory

    Until recently, sediment geochemical models (diagenetic models) have been only able to explain sedimentary flux and concentration profiles for a few simplified geochemical cycles (e.g., nitrogen, carbon and sulfur). However with advances in numerical methods, increased accuracy ...

  11. What do we really know about early diagenesis of non-marine carbonates?

    NASA Astrophysics Data System (ADS)

    De Boever, Eva; Brasier, Alexander T.; Foubert, Anneleen; Kele, Sándor

    2017-11-01

    Non-marine carbonate rocks including cave, spring, stream, calcrete and lacustrine-palustrine sediments, are susceptible to early diagenetic processes. These can profoundly alter the carbonate fabric and affect paleoclimatic proxies. This review integrates recent insights into diagenesis of non-marine carbonates and in particular the variety of early diagenetic processes, and presents a conceptual framework to address them. With ability to study at smaller and smaller scales, down to nanometers, one can now observe diagenesis taking place the moment initial precipitates have formed, and continuing thereafter. Diagenesis may affect whole rocks, but it typically starts in nano- and micro-environments. The potential for diagenetic alteration depends on the reactivity of the initial precipitate, commonly being metastable phases like vaterite, Ca-oxalates, hydrous Mg-carbonates and aragonite with regard to the ambient fluid. Furthermore, organic compounds commonly play a crucial role in hosting these early transformations. Processes like neomorphism (inversion and recrystallization), cementation and replacement generally result in an overall coarsening of the fabric and homogenization of the wide range of complex, primary microtextures. If early diagenetic modifications are completed in a short time span compared to the (annual to millennial) time scale of interest, then recorded paleoenvironmental signals and trends could still acceptably reflect original, depositional conditions. However, even compact, non-marine carbonate deposits may behave locally and temporarily as open systems to crystal-fluid exchange and overprinting of one or more geochemical proxies is not unexpected. Looking to the future, relatively few studies have examined the behaviour of promising geochemical records, such as clumped isotope thermometry and (non-conventional) stable isotopes, in well-constrained diagenetic settings. Ongoing and future in-vitro and in-situ experimental approaches will

  12. Mineralogy of Nicobar Fan turbidites (IODP Leg 362): Himalayan provenance and diagenetic control.

    NASA Astrophysics Data System (ADS)

    Limonta, M.; Garzanti, E.; Ando, S.; Carter, A.; Milliken, K. L.; Pickering, K. T.

    2017-12-01

    In this study we use quantitative petrographic and heavy-mineral data on silt-sized and sand-sized sediments from the Nicobar Fan turbiditic depositional system to unravel their provenance and discriminate between pre-depositional and post-depositional processes controlling sediment mineralogy. Eighteen samples from the two drill sites U1480 e U1481, collected down to a depth of 1400 m during International Ocean Discovery Expedition 362, were selected for analysis. A complete section of the sedimentary section overlying oceanic basaltic basement was recovered at the U1480 drill site, whereas the U1481 drill site, located 35 km to the southeast, focused on the deeper interval of the sedimentary section overlying oceanic basement. Here we illustrate the compositional trends observed throughout the recovered succession, and compare heavy-mineral suites characterizing sediments drilled at the two U1480 and U1481 sites to check for potential differences in sediment provenance over a relatively short distance in trench settings. Diagenetic control with increasing burial depth was also specifically investigated. In Pleistocene sediments at depths of a few tens of meters only, rich heavy-mineral assemblages include mainly hornblende, epidote, and garnet, associated with apatite, clinopyroxene, tourmaline, sillimanite, kyanite, zircon, titanite, and rare staurolite and rutile, testifying to long-distance provenance from the Himalayan range via the Ganga-Brahmaputra fluvio-deltaic-turbiditic system. Heavy-mineral concentration shows a progressive decrease with burial depth, pointing to selective diagenetic dissolution of less durable detrital minerals. Clinopyroxene becomes rare below 400 m depth and was not recorded below 500 m depth, where amphibole decreases notably in relative abundance. More durable heavy minerals, including zircon, tourmaline, apatite, garnet and epidote, consequently tend to be relatively enriched with increasing age and burial depth. Petrographic and

  13. Early Diagenetic Changes of Sediment Pore Properties Beneath the Seafloor and Their Contributions to Gas Hydrate Concentration in the Eastern Margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Horiuchi, S.; Kato, Y.; Matsumoto, R.

    2014-12-01

    Recently many of the chimney-shape gas hydrate concentrated beneath the seafloor have been confirmed off Shimane and off Akita as well as off Joetsu in the eastern margin of Japan Sea, which are quite different from the occurrences of pore space hydrate filling the intergranular pore system of sands recognized in Nankai Trough, Mallik and other sites. Sediment samples below the seafloor were retrieved in 2010 up to 40 m long at the Umitaka Spur, Joetsu Channel, Toyama Trough, Japan Basin, Nishi Tsugaru and Okushiri Ridge areas. Small amounts of sandy sediment have been retrieved as thin intercalations in Pleistocene and Holocene muddy layers transported approximately around 3 to 30 ka according to the tephra ages, where supplying sediments might have not been abundant due to sea level fluctuation during the Pleistocene ice age. It is important to clarify the relationship between burial depths and absolute porosities of the argillaceous sediments in relation to early diagenesis. Macroscopic observations and descriptions, measurements of porosity and permeability, SEM (scanning electron microscope) observations, and X-ray diffraction analyses have been performed. They consist of silt- to clay-grained particles, and they sometimes contain very fine- to medium-grained thin sandy layers. Average porosities of these fine-grained sediments are 50 % in all study areas, which quickly reduce from 60% to less than 50% within 10 meters and gradually decrease to the depth. However, mean pore sizes in the Nishi Tsugaru are around 1000 nm while 100 nm in the other areas, which tend to decrease with depth. It is suggested that repacking of the muddy particles gradually advances by mechanical compaction, which may crucially influence permeability. They usually contain much opal-A, quartz, feldspar, illite and smectite that do not change definitely with depth. By optical and microscopic observations, diatom tests, foraminifers and framboidal pyrites are commonly observed, and, in

  14. Quantifying the effect of diagenetic recrystallization on the Mg isotopic composition of marine carbonates

    NASA Astrophysics Data System (ADS)

    Chanda, Piyali; Fantle, Matthew S.

    2017-05-01

    The Mg and Sr isotopic compositions (δ26Mg and 87Sr/86Sr) of pore fluids and bulk carbonates from Ocean Drilling Project Site 1171 (South Tasman Rise; 2148.2 m water depth) are reported, in order to evaluate the potential of diagenesis to alter carbonate-based geochemical proxies in an open marine system. Given the trace amounts of Mg in marine carbonates relative to coexisting pore fluids, diagenesis can alter carbonate δ26Mg, a promising proxy for seawater δ26Mg that may help elucidate long-term changes in the global Mg cycle. Constraints on the effect of diagenetic recrystallization on carbonate δ26Mg are therefore critical for accurate proxy interpretations. This study provides context for assessing the fidelity of geochemical proxy-reconstructions using the primary components (i.e., foraminiferal tests and nannofossils) of bulk carbonate sediments. We find that pore fluid δ26Mg values (on the DSM3 scale) at Site 1171 increase systematically with depth (from -0.72‰ to -0.39‰ in the upper ∼260 m), while the δ26Mg of bulk carbonates decrease systematically with depth (from -2.23‰ to -5.00‰ in the upper ∼260 m). This variability is ascribed primarily to carbonate recrystallization, with a small proportion of the variability due to down-hole changes in nannofossil and foraminiferal species composition. The inferred effect of diagenesis on bulk carbonate δ26Mg correlates with down-core changes in Mg/Ca, Sr/Ca, Na/Ca, and 87Sr/86Sr. A depositional reactive-transport model is employed to validate the hypothesis that calcite recrystallization in this system can generate sizeable shifts in carbonate δ26Mg. Model fits to the data suggest a fractionation factor and a partition coefficient that are consistent with previous work, assuming calcite recrystallization rates of ⩽7%/Ma constrained by Sr geochemistry. In addition, either partial dissolution or a distinctly different previous diagenetic regime must be invoked in order to explain aspects of the

  15. Hydrothermal and Diagenetic Mineralization on Mars

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Quinn, D. P.

    2015-12-01

    Predicted by geophysical modeling, the mineraolgic record of early Mars groundwater has only recently been discovered. First, rover exploration in sedimentary basins reveals diagenesis. At Meridiani, sandstone porosity is occluded by precipitation of secondary sulfates, hematite, and silica. Multiple alteration episodes are indicated by crystal vugs, disruption of preexisting textures by hematite concretions, and grain coatings (e.g. McLennan et al., 2005). At Gale crater, raised ridges in mudstones, interpreted to be early diagenetic features, are crossed by later-emplaced hydrated calcium sulfate veins (e.g. Grotzinger et al., 2014). Waters in Gale were likely circumneutral while jarosite mineralogy at Meridiani implies acidic waters. Second, systems of raised ridges at 100-m scale are observed from orbit in multiple Martian sedimentary rock units. An outstanding example is sulfate-bearing sediments exhumed at the northern margin of the Syrtis Major lavas (e.g. Quinn & Ehlmann, 2015). Polygonal and with no clearly preferred orientation, the ridges rise 5-30 m above the surrounding terrain. Parallel light-toned grooves with dark interiors (indicative of isopachous fills) and jarosite in ridge mineralogy point to mineralization by acidic waters. Third, some mineral assemblages observed from orbit represent the products of subsurface aqueous alteration at elevated temperatures (Ehlmann et al., 2011). These are globally distributed, exposed in scarps and by impact cratering. Mineral assemblages variously include (a) serpentine and carbonate; (b) prehnite and chlorite, and (c) zeolites. Collectively, these datasets indicate that groundwaters were spatially widespread on ancient Mars, contributing to the sustenance of lakes and to the alteration of bedrock to >1 km depths. While the Martian surface may have always been relatively inhospitable, a warmer, wetter subsurface provided a long-term potentially habitable environment. Key outstanding questions remaining include

  16. Geochemical effects of rapid sedimentation in aquatic systems: Minimal diagenesis and the preservation of historical metal signatures

    USGS Publications Warehouse

    Callender, E.

    2000-01-01

    Rapid sedimentation exerts a pronounced influence on early sedimentary diagenesis in that there is insufficient time for a sediment particle to equilibrate in any one sediment layer before that layer may be displaced vertically by another layer. These sedimentation patterns are common in surface-water reservoirs whose sedimentation rates (1-10 cm yr-1) are several orders of magnitude greater than those for natural lakes (0.01-0.5 cm yr-1). Two examples of the effects of rapid sedimentation on geochemical metal signatures are presented here. Interstitial-water data (Fe) from two sites in the Cheyenne River Embayment of Lake Oahe on the Missouri River illustrate the effects of changing sedimentation rates on dissolved species. Rapid burial during high-flow yrs appears to limit early sedimentary diagenesis to aerobic respiration. Solid-phase metal data (Pb) from a site in Pueblo Reservoir on the upper Arkansas River in Colorado appear to record historical releases by flooding of abandoned mine sites upstream in Leadville, Colorado. Interstitial-water ammonia and ferrous Fe data indicate that at least one interval at depth in the sediment where solid metal concentrations peak is a zone of minimal diagenesis. The principal diagenetic reactions that occur in these sediments are aerobic respiration and the reduction of Mn and Fe oxides. Under slower sedimentation conditions, there is sufficient time for particulate organic matter to decompose and create a diagenetic environment where metal oxides may not be stable. The quasi-steady-state interstitial Fe profiles from Tidal Potomac River sediments are an example of such a situation. This occurs primarily because the residence time of particles in the surficial sediment column is long enough to allow benthic organisms and bacteria to perform their metabolic functions. When faster sedimentation prevails, there is less time for these metabolic reactions to occur since the organisms do not occupy a sediment layer for any

  17. Petrology and diagenetic history of the upper shale member of the Late Devonian-Early Mississippian Bakken Formation, Williston Basin, North Dakota

    USGS Publications Warehouse

    Neil S. Fishman,; Sven O. Egenhoff,; Boehlke, Adam; Lowers, Heather A.

    2015-01-01

    The organic-rich upper shale member of the upper Devonian–lower Mississippian Bakken Formation (Williston Basin, North Dakota, USA) has undergone significant diagenetic alteration, irrespective of catagenesis related to hydrocarbon generation. Alteration includes precipitation of numerous cements, replacement of both detrital and authigenic minerals, multiple episodes of fracturing, and compaction. Quartz authigenesis occurred throughout much of the member, and is represented by multiple generations of microcrystalline quartz. Chalcedonic quartz fills radiolarian microfossils and is present in the matrix. Sulfide minerals include pyrite and sphalerite. Carbonate diagenesis is volumetrically minor and includes thin dolomite overgrowths and calcite cement. At least two generations of fractures are observed. Based on the authigenic minerals and their relative timing of formation, the evolution of pore waters can be postulated. Dolomite and calcite resulted from early postdepositional aerobic oxidation of some of the abundant organic material in the formation. Following aerobic oxidation, conditions became anoxic and sulfide minerals precipitated. Transformation of the originally opaline tests of radiolaria resulted in precipitation of quartz, and quartz authigenesis is most common in more distal parts of the depositional basin where radiolaria were abundant. Because quartz authigenesis is related to the distribution of radiolaria, there is a link between diagenesis and depositional environment. Furthermore, much of the diagenesis in the upper shale member preceded hydrocarbon generation, so early postdepositional processes were responsible for occlusion of significant original porosity in the member. Thus, diagenetic mineral precipitation was at least partly responsible for the limited ability of these mudstones to provide porosity for storage of hydrocarbons.

  18. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments

    NASA Astrophysics Data System (ADS)

    Elderfield, H.; Hawkesworth, C. J.; Greaves, M. J.; Calvert, S. E.

    1981-04-01

    Analyses have been made of REE contents of a well-characterized suite of deep-sea (> 4000 m.) principally todorokite-bearing ferromanganese nodules and associated sediments from the Pacific Ocean. REE in nodules and their sediments are closely related: nodules with the largest positive Ce anomalies are found on sediments with the smallest negative Ce anomalies; in contrast, nodules with the highest contents of other rare earths (3 + REE) are found on sediments with the lowest 3 + REE contents and vice versa. 143Nd /144Nd ratios in the nodules (˜0.51244) point to an original seawater source but an identical ratio for sediments in combination with the REE patterns suggests that diagenetic reactions may transfer elements into the nodules. Analysis of biogenic phases shows that the direct contribution of plankton and carbonate and siliceous skeletal materials to REE contents of nodules and sediments is negligible. Inter-element relationships and leaching tests suggest that REE contents are controlled by a P-rich phase with a REE pattern similar to that for biogenous apatite and an Fe-rich phase with a pattern the mirror image of that for sea water. It is proposed that 3 + REE concentrations are controlled by the surface chemistry of these phases during diagenetic reactions which vary with sediment accumulation rate. Processes which favour the enrichment of transition metals in equatorial Pacific nodules favour the depletion of 3 + REE in nodules and enrichment of 3 + REE in associated sediments. In contrast, Ce appears to be added both to nodules and sediments directly from seawater and is not involved in diagenetic reactions.

  19. Offshore sediments record the history of onshore iron ore mining in Goa State, India.

    PubMed

    Sebastian, Tyson; Nath, B Nagender; Naik, Sangeeta; Borole, D V; Pierre, Salou; Yazing, Armoury Kazip

    2017-01-30

    Environmental magnetic and geochemical analyses combined with 210 Pb dating were carried out on a sediment core off Goa from Arabian Sea to reconstruct the sedimentation history of last three and a half centuries and to investigate the impact of onshore iron ore mining on the offshore sedimentation. A drastic increase in sedimentation rate and mineral magnetic concentration parameters divides the core into two units (1 & 2) at a depth of 41cm (1982CE). The high magnetic susceptibility values in Unit 1 sediments are coeval with increased iron ore production on land and illustrate the role of terrestrial mining on the increased offshore sedimentation. The early diagenetic signals were observed in Unit 2 of the core with low concentration parameters, coarse magnetic grain size and magnetically hard mineralogy. The geochemical data of the core also record the Little Ice Age (LIA) climatic events of Dalton and Maunder solar minima. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Genesis of sediment-hosted stratiform copper cobalt deposits, central African Copperbelt

    NASA Astrophysics Data System (ADS)

    Cailteux, J. L. H.; Kampunzu, A. B.; Lerouge, C.; Kaputo, A. K.; Milesi, J. P.

    2005-07-01

    The Neoproterozoic central African Copperbelt is one of the greatest sediment-hosted stratiform Cu-Co provinces in the world, totalling 140 Mt copper and 6 Mt cobalt and including several world-class deposits (⩾10 Mt copper). The origin of Cu-Co mineralisation in this province remains speculative, with the debate centred around syngenetic-diagenetic and hydrothermal-diagenetic hypotheses. The regional distribution of metals indicates that most of the cobalt-rich copper deposits are hosted in dolomites and dolomitic shales forming allochthonous units exposed in Congo and known as Congolese facies of the Katangan sedimentary succession (average Co:Cu = 1:13). The highest Co:Cu ratio (up to 3:1) occurs in ore deposits located along the southern structural block of the Lufilian Arc. The predominantly siliciclastic Zambian facies, exposed in Zambia and in SE Congo, forms para-autochthonous sedimentary units hosting ore deposits characterized by lower a Co:Cu ratio (average 1:57). Transitional lithofacies in Zambia (e.g. Baluba, Mindola) and in Congo (e.g. Lubembe) indicate a gradual transition in the Katangan basin during the deposition of laterally correlative clastic and carbonate sedimentary rocks exposed in Zambia and in Congo, and are marked by Co:Cu ratios in the range 1:15. The main Cu-Co orebodies occur at the base of the Mines/Musoshi Subgroup, which is characterized by evaporitic intertidal-supratidal sedimentary rocks. All additional lenticular orebodies known in the upper part of the Mines/Musoshi Subgroup are hosted in similar sedimentary rocks, suggesting highly favourable conditions for the ore genesis in particular sedimentary environments. Pre-lithification sedimentary structures affecting disseminated sulphides indicate that metals were deposited before compaction and consolidation of the host sediment. The ore parageneses indicate several generations of sulphides marking syngenetic, early diagenetic and late diagenetic processes. Sulphur isotopic

  1. Some chemical aspects of diagenetic carbonates from the Miocene of Sitakund, Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhter, S.H.; Chowdhury, S.Q.; Kandaker, N.I.

    1990-05-01

    A preliminary chemical and petrological study was done of the Miocene limestone and its comparison with surrounding and overlying marine shales. The material for these studies was obtained from the Miocene Surma sediments exposed in Sitakund region, Cluttagong, Bangladesh. These limestones occur in a predominantly marine shale sequence and show an apparent angular structural relationship with respect to the host marine shales. Three types of carbonates are recognized: banded limestone, dark laminated limestone, and argillaceous limestone. These are devoid of any skeletal remains and often show recrystallization phenomena. Carbonate mineral phases included calcite, aragonite, dolomite, and more rarely magnesite andmore » ankerite. Noncarbonate fraction shows quartz, although very fine grained, is intricately intergrown, indicating that it is at least recrystallized, if not authigenic. Petrographic study of these carbonates show a great variability in terms of texture and composition and suggest a complex multistep and presumably continuous diagenesis. Relatively high REE (rare earth elements) abundances in these carbonates are most likely due to diagenesis and incorporation of mobile REE from local detrital phases into diagenetic carbonates. The anomalously low abundances of cerium in all the carbonates indicates a predominantly marine source for the REE. Recrystallization of carbonate resulted in the extensive exchange of Sr and O between carbonate and diagenetic fluid, the latter being low in REE/Ca ratios. Associated marine shales have quite dissimilar trace-element signatures. This may reflect uncommon crustal sources of REE for the carbonates and clastics. The enrichment of Ni and Zn in marine shales are related to the proximality of local bedrock source areas and clay minerals in the marine sediments.« less

  2. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    USGS Publications Warehouse

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  3. Making a black shale shine: the interaction of hydrothermal fluids and diagenetic processes

    NASA Astrophysics Data System (ADS)

    Gleeson, Sarah; Magnall, Joe; Reynolds, Merilie

    2016-04-01

    Hydrothermal fluids are important agents of mass and thermal transfer in the upper crust. This is exemplified by shale-hosted massive sulphide deposits (SHMS), which are anomalous accumulations of Zn and Pb sulphides (± barite) in sedimentary basins created by hydrothermal fluids. These deposits occur in passive margin settings and, typically, there is no direct evidence of magmatic input. Recent studies of Paleozoic deposits in the North American Cordillera (MacMillan Pass and Red Dog Districts) have shown that the deposits are formed in a sub-seafloor setting, where the potential for thermal and chemical gradients is high. Mineralization is characterized by the replacement and displacement of unconsolidated, partially lithified and lithified biosiliceous mudstones (± carbonates), and commonly the sulphide mineralization post-dates, and replaces, bedded barite units in the sediments. The Red Dog District (Alaska, USA) contain some of the largest Zn-Pb deposits ever discovered. The host-rocks are dominantly carbonaceous mudstones, with carbonate units and some radiolarites. The ore forms massive sulphide bodies that replace pyritized mudstones, barite and carbonate units. Lithological and textural relationships provide evidence that much of the ore formed in bioturbated, biosiliceous zones that may have had high primary porosity and/or permeability. Sediment permeability may have been further modified by aging of the silica rich sediments and the dissolution/replacement of carbonate and barite beds. At the Tom and Jason deposits (MacMillan Pass, Yukon) the fault-controlled hydrothermal upflow zone is uniquely preserved as an unequivocal vent complex. Here, the metal bearing fluids are hot (300°C), low salinity (6 wt% NaCl equiv.) and acidic (pH < 4.5). These fluids were initially in thermal and chemical disequilibrium with a partially lithified organic rich host-rock but cooled rapidly during fluid rock interaction and the input of diagenetic pore fluids

  4. Sedimentary Carbon, Sulfur, and Iron Relationships in Modern and Ancient Diagenetic Environments of the Eel River Basin (U.S.A.)

    USGS Publications Warehouse

    Sommerfield, C.K.; Aller, R.C.; Nittrouer, C.A.

    2001-01-01

    Depositional and diagenetic controls on the distributions of carbon, sulfur, and iron (C-S-Fe) in modern sediments and upper Pleistocene mudrocks of the Eel River Basin (ERB), northern California continental margin, were investigated using a combination of geochemical, radioisotopic, and sedimentological methods. A mass balance based on down-core profiles of porewater and solid-phase constituents and diagenetic modeling suggests that only 12-30% of the pyrite-S produced via SO4-2 reduction during burial is retained in modern shelf and upper slope deposits of the ERB. Bioturbational reoxidation of initially reduced S is inferred to be the major control on S preservation, on the basis of an observed inverse relationship between pyrite-S retention and biological mixing intensity, estimated from profiles of excess 234Th. Importantly, these findings argue that massive depositional episodes on the shelf following floods of the Eel River have a negligible long-term impact on bioturbating macrofauna and the potential to affect geochemical properties of the sediments. Down-core profiles of reactive Fe3+and Py-Fe(II) for the modern deposits suggest that highly reactive Fe phases are sulfidized well within ∼ 500-2000 years of burial, thereby limiting later pyritization, which could occur through sulfidation of less reactive phases. This result explains the low (≤ 0.4) degree of pyritization (DOP) values exhibited by both modern and ancient deposits of the ERB and lends support to the notion that pyritization in aerobic continental-margin sediments is largely associated with highly reactive detrital Fe oxides. Comparable mean C/S weight ratios for modern sediments (5.4 ± 3.3, 1σ) and mudrocks (6.9 ± 4.5) of the ERB suggest that the upper Pleistocene strata reflect a geochemical environment analogous to that of the modern margin. Specifically, the C-S-Fe signatures shared by the modern and ancient deposits are a consequence of similar detrital Fe mineralogies, initial

  5. Diagenetic effects of compaction on reservoir properties: The case of early callovian ``Dalle Nacrée'' formation (Paris basin, France)

    NASA Astrophysics Data System (ADS)

    Nader, Fadi H.; Champenois, France; Barbier, Mickaël; Adelinet, Mathilde; Rosenberg, Elisabeth; Houel, Pascal; Delmas, Jocelyne; Swennen, Rudy

    2016-11-01

    The impact of compaction diagenesis on reservoir properties is addressed by means of observations made on five boreholes with different burial histories of the Early Callovian ;Dalle Nacrée; Formation in the Paris Basin. Petrographic analyses were carried out in order to investigate the rock-texture, pore space type and volume, micro-fabrics, and cement phases. Based on the acquired data, a chronologically ordered sequence of diagenetic events (paragenesis) for each borehole was reconstructed taking the burial history into account. Point counting and a segmentation algorithm (Matlab) were used to quantify porosity, as well as the amounts of grain constituents and cement phases on scanned images of studied thin sections. In addition, four key samples were analyzed by 3D imaging using microfocus X-ray computer tomography. Basin margin grainstones display a different burial diagenesis when compared to basin centre grainstones and wackestones. The former have been affected by considerable cementation (especially by blocky calcite) prior to effective burial, in contrast to the basin centre lithologies where burial and compaction prevailed with relatively less cementation. Fracturing and bed-parallel stylolitization, observed especially in basinal wackestone facies also invoke higher levels of mechanical and chemical compaction than observed in basin marginal equivalents. Compaction fluids may have migrated at the time of burial from the basin centre towards its margins, affecting hence the reservoir properties of similar rock textures and facies and resulting in cross-basin spatial diagenetic heterogeneities.

  6. Development and Application of a Paleomagnetic/Geochemical Method for Constraining the Timing of Burial Diagenetic and Fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmore, Richard D.; Engel, Michael H.

    2005-03-10

    Studies of diagenesis caused by fluid migration or other events are commonly hindered by a lack of temporal control. Our results to date demonstrate that a paleomagnetic/geochemical approach can be used to date fluid migration as well as burial diagenetic events. Our principal working hypothesis is that burial diagenetic processes (e.g., maturation of organic-rich sediments and clay diagenesis) and the migration of fluids can trigger the authigenesis of magnetic mineral phases. The ages of these events can be constrained by comparing chemical remanent magnetizations (CRMs) to independently established Apparent Polar Wander Paths. While geochemical (e.g. stable isotope and organic analyses)more » and petrographic studies provide important clues for establishing these relationships, the ultimate test of this hypothesis requires the application of independent dating methods to verify the paleomagnetic ages. Towards this end, we have used K-Ar dating of illitization as an alternative method for constraining the ages of magnetic mineral phases in our field areas.« less

  7. Early diagenesis and trace element accumulation in North American Arctic margin sediments

    NASA Astrophysics Data System (ADS)

    Kuzyk, Zou Zou A.; Gobeil, Charles; Goñi, Miguel A.; Macdonald, Robie W.

    2017-04-01

    Concentrations of redox-sensitive elements (S, Mn, Mo, U, Cd, Re) were analyzed in a set of 27 sediment cores collected along the North American Arctic margin (NAAM) from the North Bering Sea to Davis Strait via the Canadian Archipelago. Sedimentary distributions and accumulation rates of the elements were used to evaluate early diagenesis in sediments along this section and to estimate the importance of this margin as a sink for key elements in the polar and global oceans. Distributions of Mn, total S and reduced inorganic S demonstrated that diagenetic conditions and thus sedimentary carbon turnover in the NAAM is organized regionally: undetectable or very thin layers (<0.5 cm) of surface Mn enrichment occurred in the Bering-Chukchi shelves; thin layers (1-5 cm) of surface Mn enrichment occurred in Barrow Canyon and Lancaster Sound; and thick layers (5-20 cm) of surface Mn enrichment occurred in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Inventories of authigenic S below the Mn-rich layer decreased about fivefold from Bering-Chukchi shelf and Barrow Canyon to Lancaster Sound and more than ten-fold from Bering-Chukchi shelf to Beaufort Shelf, Canadian Archipelago and Davis Strait. The Mn, total S and reduced inorganic S distributions imply strong organic carbon (OC) flux and metabolism in the Bering-Chukchi shelves, lower aerobic OC metabolism in Barrow Canyon and Lancaster Sound, and deep O2 penetration and much lower OC metabolism in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Accumulation rates of authigenic S, Mo, Cd, Re, and U displayed marked spatial variability along the NAAM reflecting the range in sedimentary redox conditions. Strong relationships between the accumulation rates and vertical carbon flux, estimated from regional primary production values and water depth at the coring sites, indicate that the primary driver in the regional patterns is the supply of labile carbon to the seabed. Thus, high primary production

  8. An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon: II. Diagenetic modification of the sedimentary assemblage

    USGS Publications Warehouse

    Banfield, J.F.; Jones, B.F.; Veblen, D.R.

    1991-01-01

    This paper compares the mineralogy and chemistry of clay minerals in sediments from various depths and positions in Abert Lake and surrounding playa with those of the weathered materials entering the lake in order to reveal the nature and extent of post-depositional mineralogical modification. Analytical electron microscope (AEM) data from individual clay particles reveal that each sample is comprised of a highly inhomogeneous smectite assemblage. The thin clay flakes (commonly less than 10 nm wide) display a complete range in octahedral sheet compositions from nearly dioctahedral to nearly trioctahedral. The very abundant Mg-rich lake smectites with an estimated composition K0.29(Al0.23-Mg2.16Fe0.30)Si3.80Al0.20O10(OH)2 are not formed by weathering. This confirms the importance of diagenetic Mg uptake. Lattice-fringe imaging failed to reveal distinct brucite-like or vermiculite-like layers, suggesting that interstratifications of this type are rare or absent. Siliceous coatings on clay particles (identified by silica excess in smectite analyses) seem to favor topotactic overgrowth of stevensite rather than addition of brucite-like layers to the dioctahedral nuclei. The growth of K-stevensite dilutes the Al content of the crystal, and thus the increasing diagenetic modification reduces rather than supplements its illite component. Smectite compositions within individual samples were highly variable, yet source-related characteristics such as the abundance of Fe-rich smectite were apparent. Little evidence for systematic K or Mg enrichment with depth was identified in samples from depths of down to 16 feet below the sediment-water interface. The most magnesian assemblages are associated both with weathering sources of Mg-rich smectite and playa environments subjected to repeated wetting and drying cycles. Thus, the observations suggest that clay compositions primarily reflect changes in lake levels, brine composition, and source characteristics, rather than time and

  9. Early pleistocene sediments at Great Blakenham, Suffolk, England

    NASA Astrophysics Data System (ADS)

    Gibbard, P. L.; Allen, P.; Field, M. H.; Hallam, D. F.

    Detailed investigation of a fine sediment sequence, the College Farm Silty Clay Member, that overlies the Creeting Sands (Early Pleistocene) in Suffolk, is presented. The sedimentary sequence is thought to represent a freshwater pool accumulation in a small coastal embayment. Palaeobotanical investigation of the sediment indicates that it accumulated during the late temperate substage of a temperate (interglacial) event. The occurrence of Tsuga pollen, associated with abundant remains of the water fern Azolla tegeliensis indicate that the deposits are of Early Pleistocene age and are correlated with a later part of the Antian-Bramertonian Stage. Correlation with Tiglian TO substage in The Netherlands' sequence is most likely. The sediments' normal palaeomagnetic polarity reinforces the biostratigraphical correlation.

  10. A subtle diagenetic trap in the Cretaceous Glauconite Sandstone of Southwest Alberta

    USGS Publications Warehouse

    Meshri, I.D.; Comer, J.B.

    1990-01-01

    Despite the long history of research which documents many studies involving extensive diagenesis, there are a few examples of a fully documented diagenetic trap. In the context of this paper, a trap is a hydrocarbon-bearing reservoir with a seal; because a reservoir without a seal acts as a carrier bed. The difficulty in the proper documentation of diagenetic traps is often due to the lack of: (a) extensive field records on the perforation and production histories, which assist in providing the depth of separation between hydrocarbon production and non-hydrocarbon or water production; and (b) the simultaneous availability of core data from these intervals, which could be studied for the extent and nature of diagenesis. This paper provides documentation for the existence of a diagenetic trap, based on perforation depths, production histories and petrologic data from the cored intervals, in the context of the geologic and stratigraphic setting. Cores from 15 wells and SP logs from 45 wells were carefully correlated and the data on perforated intervals was also acquired. Extensive petrographic work on the collected cores led to the elucidation of a diagenetic trap that separates water overlying and updip from gas downdip. Amoco's Berrymore-Lobstick-Bigoray fields, located near the northeastern edge of the Alberta Basin, are prolific gas producers. The gas is produced from reservoir rock consisting of delta platform deposits formed by coalescing distributary mouth bars. The overlying rock unit is composed of younger distributary channels; although it has a good reservoir quality, it contains and produces water only. The total thickness of the upper, water-bearing and lower gas-bearing sandstone is about 40 ft. The diagenetic seal is composed of a zone 2 to 6 ft thick, located at the base of distributary channels. This zone is cemented with 20-30% ankerite cement, which formed the gas migration and is also relatively early compared to other cements formed in the water

  11. Sediment-pore water interactions controlling cementation in the NanTroSEIZE drilling transects

    NASA Astrophysics Data System (ADS)

    Hong, W.; Spinelli, G. A.; Torres, M. E.

    2012-12-01

    One goal of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is to understand how changes in subducting sediment control the transition from aseismic to seismogenic behavior in subduction zones. In the sediment entering the Nankai subduction zone, dramatic changes in physical and chemical properties occur across a diagenetic boundary; they are thought to affect sediment strength and deformation. The dissolution of disseminated volcanic ash and precipitation of silica cement may be responsible for these changes in physical properties, but the mechanism controlling cementation was unclear (Spinelli et al., 2007). In this study, we used CrunchFlow (Steefel, 2009) to simulate chemical reactions and fluid flow through 1-D sediment columns at Integrated Ocean Drilling Program (IODP) sites on the incoming plate in Nankai Trough. The simulations include the thermodynamics and kinetics of sediment-water interactions, advection of pore water and sediment due to compaction, and multi-component diffusion in an accumulating sediment column. Key reactions in the simulations are: ash dissolution, amorphous silica precipitation and dissolution, and zeolite precipitation. The rate of ash decomposition was constrained using Sr isotope data of Joseph et al. (2012). Our model reproduces the distinct diagenetic boundary observed in sediment and pore water chemistry, which defines two zones. Above this boundary (zone 1), dissolved and amorphous silicate contents are high and the potassium concentration remains near seawater values or gradually decreases toward the boundary. Below the boundary, both dissolved and amorphous silicate content drop rapidly, concomitant with a decrease in dissolved potassium. Our model shows that these changes in the system are driven by formation of clinoptilolite in response to changes in pore fluid pH. The low pH values (<7.6) above the diagenetic boundary accelerate ash decomposition and maintain clinoptilolite slightly undersaturated. The

  12. Sharp Permeability Transitions due to Shallow Diagenesis of Subduction Zone Sediments

    NASA Astrophysics Data System (ADS)

    James, S.; Screaton, E.

    2013-12-01

    The permeability of hemipelagic sediments is an important factor in fluid flow in subduction zones and can be affected by porosity changes and cementation-dissolution processes acting during diagenesis. Anomalously high porosities have been observed in cores from the Shikoku Basin sediments approaching the Nankai Trough subduction zone. These high porosities have been attributed to the presence of minor amounts of amorphous silica cement that strengthen the sediment and inhibit consolidation. The porosity rapidly drops from 66-68% to 54-56% at a diagenetic boundary where the amorphous silica cement dissolves. Although the anomalous porosity profiles at Nankai have received attention, the magnitude of the corresponding permeability change has not been addressed. In this study, permeability profiles were constructed using permeability-porosity relationships from previous studies, to estimate the magnitude and rate of permeability changes with depth. The predicted permeability profiles for the Nankai Trough sediment cores indicate that permeability drops by almost one order of magnitude across the diagenetic boundary. This abrupt drop in permeability has the potential to facilitate significant changes in pore fluid pressures and thus to influence the deformation of the sediment onto the accretionary prism. At the Costa Rica subduction zone, results vary with location. Site U1414 offshore the Osa Peninsula shows porosities stable at 69% above 145 mbsf and then decrease to 54% over a 40 m interval. A porosity drop of that magnitude is predicted to correlate to an order of magnitude permeability decrease. In contrast, porosity profiles from Site 1039 offshore the Nicoya Peninsula and Site U1381 offshore the Osa Peninsula show anomalously high porosities but no sharp drop. It is likely that sediments do not cross the diagenetic boundary due to the extremely low (<10°C/km) thermal gradient at Site 1039 and the thin (<100 m) sediment cover at Site U1381. At these locations

  13. Distal alluvial fan sediments in early Proterozoic red beds of the Wilgerivier formation, Waterberg Group, South Africa

    NASA Astrophysics Data System (ADS)

    Van Der Neut, M.; Eriksson, P. G.; Callaghan, C. C.

    The 1900 - 1700 M.a. Waterberg Group belongs to a series of southern African cratonic cover sequences of roughly equivalent age. Red beds of the Wilgerivier Formation comprise sandstones, interbedded with subordinate conglomerates and minor mudrocks. These immature sedimentary rocks exhibit lenticular bedding, radial palaeocurrent patterns and features indicative of both streamflow and gravity-flow deposition. A distal wet alluvial fan palaeoenvironmental setting is envisaged, with fan-deltas forming where alluvial lobes prograded into a lacustrine basin. Intrastratal, diagenetic alteration of ferromagnesian detrital grains and ferruginous grain coatings led to the red colouration of the Wilgerivier sediments.

  14. Depositional and diagenetic history and petroleum geology of the Jurassic Norphlet Formation of the Alabama coastal waters area and adjacent federal waters area

    USGS Publications Warehouse

    Kugler, R.L.; Mink, R.M.

    1999-01-01

    to a combination of factors, including a lack of sources of cement components and lack of pervasive early cement, so that fluid-flow pathways remained open during burial. Below the dominantly quartz-cemented tight zone near the top of the Norphlet, pyrobitumen is a major contributor to reduction in reservoir quality in offshore Alabama. The highest reservoir quality occurs in those wells where the present gas-water contact is below the paleohydrocarbon-water contact. Thiz zone of highest reservoir quality is between the lowermost occurrence of pyrobitumen and the present gas-water contact.The Upper Jurassic Norphlet Formation sediment was deposited in an arid environment in alluvial fans, alluvial plains, and wadis in undip areas. In downdip areas, the Norphlet was deposited in a broad desert plain, with erg development in some areas. Marine transgression, near the end of Norphlet deposition resulted in reworking of the upper part of the formation. he present framework grain assemblage of the Norphlet is dominantly diagenetic, owing to albitization and dissolution of feldspar. Despite the simple framework composition, the diagenetic character of the Norphlet is complex.

  15. Rare earth, major and trace element composition of Leg 127 sediments

    USGS Publications Warehouse

    Murray, R.W.; Buchholtz ten Brink, Marilyn R.; Brumsack, Hans-Juergen; Gerlach, David C.; Russ III, G. Price

    1992-01-01

    The relative effects of paleoceanographic and paleogeographic variations, sediment lithology, and diagenetic processes on the final preserved chemistry of Japan Sea sediments are evaluated by investigating the rare earth element (REE), major element, and trace element concentrations in 59 squeeze-cake whole-round and 27 physical-property sample residues from Sites 794, 795, and 797, cored during ODP Leg 127. The most important variation in sedimentary chemical composition is the increase in SiO2 concentration through the Pliocene diatomaceous sequences, which dilutes most other major and trace element components by various degrees. This biogenic input is largest at Site 794 (Yamato Basin), moderately developed at Site 797 (Yamato Basin), and of only minor importance at Site 795 (Japan Basin), potentially reflecting basinal contrasts in productivity with the Yamato Basin recording greater biogenic input than the Japan Basin and with the easternmost sequence of Site 794 lying beneath the most productive waters. There are few systematic changes in solid-phase chemistry resulting from the opal-A/opal-CT or opal-CT/quartz silica phase transformations. Most major and trace element concentrations are controlled by the aluminosilicate fraction of the sediment, although the effects of diagenetic silica phases and manganese carbonates are of localized importance. REE total abundances (IREE) in the Japan Sea are strongly dependent upon the paleoceanographic position of a given site with respect to terrigenous and biogenic sources. REE concentrations at Site 794 overall correspond well to aluminosilicate chemical indices and are strongly diluted by SiO2 within the upper Miocene-Pliocene diatomaceous sequence. Eu/Eu* values at Site 794 reach a maximum through the diatomaceous interval as well, most likely suggesting an association of Eu/Eu* with the siliceous component, or reflecting slight incorporation of a detrital feldspar phase. XREE at Site 795 also is affiliated strongly

  16. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil)

    NASA Astrophysics Data System (ADS)

    Dittmar, Thorsten; Lara, Rubén José

    2001-05-01

    - Molecular lignin analyses have become a powerful quantitative approach for estimating flux and fate of vascular plant organic matter in coastal and marine environments. The use of a specific molecular biomarker requires detailed knowledge of its decomposition rates relative to the associated organic matter and its structural diagenetic changes. To gain insight into the poorly known processes of anaerobic lignin diagenesis, molecular analyses were performed in the sulfate-reducing sediment of a north Brazilian mangrove. Organic matter in samples representing different diagenetic stages (i.e., fresh litter, a sediment core, and percolating water) was characterized by alkaline CuO oxidation for lignin composition, element (C, N), and stable carbon isotope analyses. On the basis of these results and on a balance model, long-term in situ decomposition rates of lignin in sulfate-reducing sediments were estimated for the first time. The half-life ( T1/2) of lignin derived from mangrove leaf litter (mainly Rhizophora mangle) was ˜150 yr in the upper 1.5 m of the sediment. Associated organic carbon from leaf tissue was depleted to ˜75% within weeks, followed by a slow mineralization in the sediment ( T1/2 ≈ 300 yr). Unlike the known pathways of lignin diagenesis, even highly degraded lignin did not show any alterations of the propyl or methoxyl side chains, as evident from stable acid to aldehyde ratios and the proportion of methoxylated phenols (vanillyl and syringyl phenols). Aromatic ring cleavage is probably the principal mechanism for lignin decay in the studied environment. Cinnamyl phenols were highly abundant in mangrove leaves and were rapidly depleted during early diagenesis. Thus, the cinnamyl to vanillyl ratio could be used as a tracer for early diagenesis even under the sulfate-reducing conditions. Syringyl phenols were removed from dissolved organic matter in interstitial water, probably by sorption onto the sediment. Suspended organic matter in a

  17. Processes of Formation of Spheroidal Concretions and Inferences for "Blueberries" in Meridiani Planum Sediments

    NASA Technical Reports Server (NTRS)

    Coleman, Max

    2005-01-01

    The MER Opportunity Athena Science team has described spheroidal hematite nodules in sediments at Meridiani Planum on Mars [1]. They were informally referred to as "Blueberries" in the initial press releases and for brevity that is the name to be used in this abstract. Not all spheroidal objects in sediments are nodular concretions, but this paper will discuss the diagenetic processes possibly relevant to understanding the origin of the Blueberries. There are many occurrences of spheroidal diagenetic concretions in terrestrial sediments and detailed work has been done to understand the processes of their formation. In particular, it is possible to reconstruct the controls on their shapes and compositions, both mineral and chemical. Although there may not be good analogs for the Meridiani Planum hematite spherules on Earth, it may be possible to deduce the former environmental conditions that led to their formation and whether they might retain (or even be) biosignatures.

  18. Unravelling the depositional origins and diagenetic alteration of carbonate breccias

    NASA Astrophysics Data System (ADS)

    Madden, Robert H. C.; Wilson, Moyra E. J.; Mihaljević, Morana; Pandolfi, John M.; Welsh, Kevin

    2017-07-01

    Carbonate breccias dissociated from their platform top counterparts are little studied despite their potential to reveal the nature of past shallow-water carbonate systems and the sequential alteration of such systems. A petrographic and stable isotopic study allowed evaluation of the sedimentological and diagenetic variability of the Cenozoic Batu Gading Limestone breccia of Borneo. Sixteen lithofacies representing six facies groups have been identified mainly from the breccia clasts on the basis of shared textural and compositional features. Clasts of the breccia are representative of shallow carbonate platform top and associated flank to basinal deposits. Dominant inputs are from rocky (karstic) shorelines or localised seagrass environments, coral patch reef and larger foraminiferal-rich deposits. Early, pre-brecciation alteration (including micritisation, rare dissolution of bioclasts, minor syntaxial overgrowth cementation, pervasive neomorphism and calcitisation of bioclasts and matrix) was mainly associated with marine fluids in a near surface to shallow burial environment. The final stages of pre-brecciation diagenesis include mechanical compaction and cementation of open porosity in a shallow to moderate depth burial environment. Post-brecciation diagenesis took place at increasingly moderate to deep burial depths under the influence of dominantly marine burial fluids. Extensive compaction, circum-clast dissolution seams and stylolites have resulted in a tightly fitted breccia fabric, with some development of fractures and calcite cements. A degree of facies-specific controls are evident for the pre-brecciation diagenesis. Pervasive mineralogical stabilisation and cementation have, however, led to a broad similarity of diagenetic features in the breccia clasts thereby effectively preserving depositional features of near-original platform top and margin environments. There is little intra-clast alteration overprint associated with subsequent clast reworking

  19. Chemical Composition of Diagenetic Features at Lower Aeolis Mons, Mars as Measured by Curiosity's APXS

    NASA Astrophysics Data System (ADS)

    Berger, J. A.; Schmidt, M. E.; Gellert, R.; Boyd, N.; Campbell, J. L.; Desouza, E.; Fisk, M. R.; Perrett, G. M.; Thompson, L. M.; VanBommel, S.; Yen, A. S.

    2015-12-01

    Curiosity's APXS investigation of the Murray Fm. (sols 755 - 950) at lower Aeolis Mons (Mt. Sharp) in Gale Crater, Mars has revealed (Mg, Ni)-sulfate diagenetic features and dark gray Ca-rich veins. The (Mg, Ni)-sulfate features occur as ~2 cm wide dendritic and botryoidal concretions that stand out in relief ~1 cm above the mudstone surface. APXS rasters over the features (Moenkopi, Mammoth, Morrison, Rosamond, Potatoe; sols 758 - 810) resulted in 1:1 molar variation of S and Mg consistent with a MgSO4 phase. The sulfate is not pure; the features are a mixture of 10 - 15% MgSO4 with the host mudstone. This mixture suggests the sulfates precipitated within pre-existing pore spaces, or were partially dissolved and replaced by sediment, preserving the crystal morphology. The sulfate features are enriched in Ni (2000 - 4250 ppm), indicating Ni-sulfate. The Murray Fm. mudstones that host the diagenetic features range to high SiO2 (60-73 wt%) and have bulk elemental signatures that are consistent with alteration by acid leaching. Low MgO (3.0 wt%) and low Ni (100 - 300 ppm) in the most apparently altered (highest SiO2) mudstones may link the acidic alteration with the fluids that formed the (Mg, Ni)-sulfates. Diagenetic Ca-sulfate-bearing veins that were abundant across Aeolis Palus persist at lower Aeolis Mons. A new vein type containing dark gray material as a separate crystalline phase within white Ca-sulfate veins was discovered in a cluster of veins in the Murray Fm. (Coalville, Alvord Mt., Amboy; sols 930 - 948). APXS rasters of the dark-toned material indicate high CaO (20 - 30 wt%) without concomitant increases in SO3. Ge (up to 650 ppm; 6.5X surrounding bedrock) and MnO (up to 1.0 wt%; 4X surrounding bedrock) are both enriched in the dark veins. These chemical observations are consistent with fluorite, although F (L.O.D. >5%) is not detectable in APXS spectra. The diagenetic features indicate that Ca, Mg, and Ni were mobilized with S in aqueous fluids, and that

  20. Characterization of Paleoredox Changes In Nw-pacific Deep-sea Sediments Using Environmental Magnetic In Combination With Geochemical-mineralogic Data

    NASA Astrophysics Data System (ADS)

    Urbat, M.; Pletsch, T.

    The understanding of environmental and oceanic controls on deep-sea sediments in the NW Pacific Ocean (ODP Site 1149A, Nadezhda Basin) benefits from the inte- gration of environmental magnetic methodology with geochemical-mineralogic XRD (x-ray defraction) and XRF (x-ray fluorescence) data. Crucially, the inherently grad- ual diagenetic processes related to paleo-redox changes in the sediment column may be more sensitively monitored using the integration of non-magnetic and magnetic data, because they do reflect various aspects of the entire postdepositional alteration. The studied 32 m long quaternary interval at Hole ODP 1149A provides an expanded record of eolian dust supply from the Asian continent, siliceous plankton accumulation and varying contributions of both discrete ash layers and disperse ash to a truly deep- sea environment (Plank et al. 2000). Recurrent diagenetic intervals appear to be related to changes in the Ocean water circulation (Kuriosho current) and concomitant produc- tivity variations as a function of glacial-interglacial paleoclimatic changes. Diagenetic intervals correspond to paleo-redox boundaries, where suboxic conditions promoted the destruction of the primary magnetic signal (iron oxides) and the precipitation of rhodochrosite (MnCO3). We used simple normative calculations on the basis of of Al and Cr contents to discriminate between the major groups of components (terrigenous, volcanogenic, biogenic, diagenetic) in combination with our magnetic results. These results form the grounds for the discrimation and independent interpretation of the genetically various sediment components in the paleoceanograhic context.

  1. Fatty acids in sparry calcite fracture fills and microsparite cement of septarian diagenetic concretions

    NASA Astrophysics Data System (ADS)

    Pearson, M. J.; Hendry, J. P.; Taylor, C. W.; Russell, M. A.

    2005-04-01

    Sparry calcite fracture fills and concretion body cements in concretions from the Flodigarry Shale Member of the Staffin Shale Formation, Isle of Skye, Scotland, entrap and preserve mineral and organic materials of sedimentary and diagenetic origin. Fatty acids are a major component of the lipids recovered by decarbonation and comprise mainly n-alkanoic and α-ω dicarboxylic acids. Two generations of fracture-fill calcite (early brown and later yellow) and the concretion body microspar yield significantly different fatty acid profiles. Early brown calcites yield mainly medium-chain n-alkanoic acids with strong even predominance; later yellow calcites are dominated by α-ω dicarboxylic acids with no even predominance. Both fracture fills lack the long-chain n-alkanoic and α-ω dicarboxylic acids additionally recovered from the concretion bodies. The absence of longer chain acids in the calcite spar fracture fills is inferred to result from the transport of fatty acids by septarian mineralising fluids whereby low-aqueous solubility of longer chain acids or their salts accounts for their relative immobility. Comparative experiments have been carried out using conventional solvent extraction on the concretion body and associated shales, both decarbonated and untreated. Extracted lipid yields are higher, but the fatty acids probably derive from mixed locations in the rock including both kerogen- and carbonate-associated lipid pools. Only experiments involving decarbonation yielded α-ω dicarboxylic acids in molecular distributions probably controlled mainly by fluid transport. Alkane biomarker ratios indicate very low thermal maturity has been experienced by the concretions and their host sediments. Septarian cracks lined by brown calcite formed during early burial. Microbial CO 2 from sulphate-reducing bacteria was probably the main source of mineralising carbonate. Emplacement of the later septarian fills probably involved at least one episode of fluid invasion.

  2. Arsenic behavior in river sediments under redox gradient: a review.

    PubMed

    Gorny, Josselin; Billon, Gabriel; Lesven, Ludovic; Dumoulin, David; Madé, Benoît; Noiriel, Catherine

    2015-02-01

    The fate of arsenic - a redox sensitive metalloid - in surface sediments is closely linked to early diagenetic processes. The review presents the main redox mechanisms and final products of As that have been evidenced over the last years. Oxidation of organic matter and concomitant reduction of oxidants by bacterial activity result in redox transformations of As species. The evolution of the sediment reactivity will also induce secondary abiotic reactions like complexation/de-complexation, sorption, precipitation/dissolution and biotic reactions that could, for instance, lead to the detoxification of some As species. Overall, abiotic redox reactions that govern the speciation of As mostly involve manganese (hydr)-oxides and reduced sulfur species produced by the sulfate-reducing bacteria. Bacterial activity is also responsible for the inter-conversion between As(V) and As(III), as well as for the production of methylated arsenic species. In surficial sediments, sorption processes also control the fate of inorganic As(V), through the formation of inner sphere complexes with iron (hydr)-oxides, that are biologically reduced in buried sediment. Arsenic species can also be bound to organic matter, either directly to functional groups or indirectly through metal complexes. Finally, even if the role of reduced sulfur species in the cycling of arsenic in sediments has been evidenced, some of the transformations remain hypothetical and deserve further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Speciation of organic phosphorus in a sediment profile of Lake Taihu. I: Chemical forms and their transformation.

    PubMed

    Xu, Di; Ding, Shiming; Li, Bin; Bai, Xiuling; Fan, Chengxin; Zhang, Chaosheng

    2013-04-01

    Organic phosphorus (nonreactive P, NRP) is a major component of P in sediments, but information about its chemical forms and dynamic transformation is limited. The chemical forms and dynamic behaviors of NRP in a sediment profile from Lake Taihu, a freshwater and eutrophic lake in China, were investigated. Five forms of NRP in the sediments were extracted based on a chemical fractionation technique, including easily labile NRP (NaHCO3-NRP), reactive metal oxide-bound NRP (HCl-NRP), humic acid-associated NRP (NaOH-NRP(HA)), fulvic acid-associated NRP (NaOH-NRP(FA)) and residual NRP (Res-TP). There were notable transformations with increasing sediment depth from the labile NaHCO3-NRP and NaOH-NRP pools to the recalcitrant HCl-NRP and Res-TP pools, which caused the NRP to become increasingly recalcitrant as the early diagenetic processes proceeded. Further analyses showed that the relative changes in contents of organic matter and reactive Fe oxides in the sediment profile triggered a competition for binding NRP fractions and led to the transformation of NRP. The results highlighted the importance of abiotic processes in regulating the diagenesis of organic P and its stability in sediments.

  4. Diagenetic Crystal Clusters and Dendrites, Lower Mount Sharp, Gale Crater

    NASA Technical Reports Server (NTRS)

    Kah, L. C.; Kronyak, R.; Van Beek, J.; Nachon, M.; Mangold, N.; Thompson, L.; Wiens, R.; Grotzinger, J.; Farmer, J.; Minitti, M.; hide

    2015-01-01

    Since approximately Sol 753 (to sol 840+) the Mars Science Laboratory Curiosity rover has been investigating the Pahrump locality. Mapping of HiRise images suggests that the Pahrup locality represents the first occurrence of strata associated with basal Mount Sharp. Considerable efforts have been made to document the Pahrump locality in detail, in order to constrain both depositional and diagenetic facies. The Pahrump succession consists of approximately 13 meters of recessive-weathering mudstone interbedded with thin (decimeter-scale) intervals of more erosionally resistant mudstone, and crossbedded sandstone in the upper stratigraphic levels. Mudstone textures vary from massive, to poorly laminated, to well-laminated. Here we investigate the distribution and structure of unusual diagenetic features that occur in the lowermost portion of the Pahrump section. These diagenetic features consist of three dimensional crystal clusters and dendrites that are erosionally resistant with respect to the host rock.

  5. Clues to early diagenetic sulfurization processes from mild chemical cleavage of labile sulfur-rich geomacromolecules

    NASA Astrophysics Data System (ADS)

    Adam, P.; Schneckenburger, P.; Schaeffer, P.; Albrecht, P.

    2000-10-01

    Macromolecular fractions, isolated from the solvent extract of sulfur-rich Recent (Siders Pond, USA; Lake Cadagno, Switzerland; Walvis Bay, Namibia) and immature sediments (Gibellina, Messinian of Sicily; Vena del Gesso, Messinian of Italy), were investigated by chemical degradation using sodium ethanethiolate/methyliodide. This mild reagent which cleaves polysulfide bonds to yield methylsulfides has the advantage over other methods of leaving intact other functionalities (like double bonds) and preserving sulfur atoms at their incorporation site. The method is, therefore, well-suited to the molecular level investigation of sulfur-rich macromolecules from Recent sediments containing highly functionalized polysulfide-bound subunits. In Recent anoxic sulfur-rich sediments, the release of various methylthioethers clearly demonstrates that intermolecular sulfurization of organic matter does occur at the earliest stages of diagenesis. Steroids and phytane derivatives are the major sulfurized lipids, a feature also observed in more mature sulfur-rich sediments. Several phytene derivatives, such as cis and trans 1-methylthiophyt-2-enes, as well as methylthiosteroids, including 5α- and 5β-3-(methylthio)-cholest-2-enes, were identified by comparison with synthesized standards. Steroid methylthioenolethers are released from polysulfide-bound steroid enethiols present in the macromolecular fractions. The latter, which correspond to thioketones, can be considered as intermediates in the reductive sulfurization pathway leading from steroid ketones to polysulfide-bound saturated steroid skeletons and are characterized for the first time in the present study. Thus, it could be shown that the major part of the polysulfide-bound lipids occurring in Recent sediments is apparently the result of sulfurization processes affecting carbonyls (aldehydes and ketones). The unsaturated methylthioethers obtained from Recent sediments were not present in more mature evaporitic samples, which

  6. Diagenetic Carbonates Related to Hydrocarbon-rich Fluid Seepage in the Nile Deep Sea Fan (East Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Gontharet, S.; Blanc-Valleron, M. M.; Bayon, G.; Dupré, S.; Mascle, J.

    2017-12-01

    During the NAUTINIL (September-October 2003), MIMES (July 2004), BIONIL (October 2006) and MEDECO2 (November 2007) cruises, coring and submersible dives were realized in the Nile Deep Sea Fan (NDSF) area. Active fluid venting sites were identified by the presence of living benthic organisms and by methane plumes in the bottom waters above the seeping structures. At all sites, hard carbonate crusts cover irregularly the sea floor. The sediments from the venting areas are organic-rich, contain sometimes carbonate concretions and have a strong H2S smell indicative of active sulfate reduction. The mineralogy of carbonate crusts is dominated by aragonite and Mg-calcite; the mineralogy of concretions is more complex, with mixtures of Mg-calcite, dolomite and ankerite. The oxygen and carbon isotopic compositions of the carbonate from crusts and concretions exhibit large variations (-2.8< δ18O ‰ VPDB <+9.5; -42.6< δ13C ‰ VPDB <+22.4). The wide range of δ18O values reflects variable sources of fluids. Most of the authigenic carbonates from the NDSF were precipitated in isotopic equilibrium with the Mediterranean bottom water. The carbonate crusts and concretions from the brine seeps of the north-western NDSF are enriched in 18O indicating that a source of 18O-rich fluids originated from depth. Differently, a few crusts and concretions from the eastern NDSF exhibit relatively low δ18O values, which are due to precipitation at warm temperatures. The very low δ13C values of the diagenetic carbonates indicate that methane and possibly other heavier hydrocarbons were the major source of carbon that was oxidized as bicarbonate mostly through bacterial sulfate reduction coupled with anaerobic methane oxidation within the anoxic sediment. The very positive δ13C values of the diagenetic carbonates from many carbonate concretions are related to the production of 13C-rich CO2 during methanogenesis within the sub-seafloor sediments.

  7. Diagenetic alteration of impact spherules in the Neoarchean Monteville layer, South Africa

    USGS Publications Warehouse

    Kohl, I.; Simonson, B.M.; Berke, M.

    2006-01-01

    Intercontinental correlation of distal Archean impact ejecta layers can be used to help create a global time-stratigraphic framework for early Earth events. For example, an impact spherule layer in the Neoarchean Monteville Formation (Griqualand West Basin, South Africa) may be correlated with layers in one or more formations in Western Australia. To help assess the degree to which diagenetic alteration would hinder such correlations, we performed a petrographic study of spherules in the Monteville layer. Most of the spherules in the Monteville layer have botryoidal rims composed of radial-fibrous K-feldspar, but compaction and replacement have greatly altered their appearance and mineralogy. Moreover, the Monteville spherule layer consists of three main subunits, and spherule compaction varies between subunits as well as across the Griqualand West region. Compaction is about three times greater in a medial spherulerich subunit as compared to a basal subunit rich in large intraclasts, resulting in better preservation of the shapes of melt particles in the latter. However, spherule rims have omparable numbers of fractures in both subunits, indicating the melt particles were fractured prior to compaction. Some spherules contain mica ribbons with a septarian geometry. Fracturing via rapid thermal quenching could help explain all of these features. f hot spherules possessing crystalline rims were thermally shocked when they hit the ocean, fractures would have the observed geometries and provide pathways for fluid infiltration and local replacement of glass by mica. Although heavily distorted, impact spherules in the Monteville layer are very similar to those in the Hesta occurrence of the Neoarchean Jeerinah spherule layer of the Hamersley Basin, even showing similar diagenetic histories. In this instance, diagenetic alteration may actually help rather than hinder intercontinental correlation of impact spherule layers. ??2006 Geological Society of America.

  8. Formation of Mg-aluminosilicates During Early Diagenesis of Carbonate Sediments in the Volcanic Crater Lake of Dziani Dzaha (Mayotte - Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Milesi, V. P.; Jezequel, D.; Debure, M.; Marty, N.; Guyot, F. J.; Claret, F.; Virgone, A.; Gaucher, E.; Ader, M.

    2017-12-01

    Authigenic clays are increasingly reported in ancient carbonate rocks, but their origin remains poorly understood, strongly limiting paleoenvironmental interpretations. To tackle this issue, the carbonate sediments of the volcanic crater lake Dziani Dzaha are studied and reactive transport modeling is performed to assess the processes originating carbonate sediments associated with Mg-rich silicates during early diagenesis. The Dziani Dzaha is characterized by CO2-rich gases bubbling in three different locations, a high primary productivity leading to organic carbon contents of up to 30wt.% in the sediment, an alkalinity of 0.26 molal in the water column and pH values of 9 to 9.5. Characterization of bulk samples and clay fraction (<2µm) from the first meter of sediment with X-ray powder diffraction and X-ray fluorescence spectrometry indicates aragonite and hydromagnesite in surface sediment. The contents of hydromagnesite and organic matter decrease at depth while saponite, a Mg- and Al-rich trioctahedral smectite, accumulates to reach up to 25wt.% of mineral phases. Concurrently, chemical analyses of pore waters show a decrease of pH values from 9 to 8.3. Modeling of these diagenetic evolutions is performed with the reactive transport code Crunchflow, taking into account the sediment burial. High pH values combined with the alteration of alkaline feldspars and clinopyroxenes from the volcanic catchment allow supersaturation of lake waters relative to aragonite, hydromagnesite and saponite. Kinetic limitations in the formation of saponite explain its accumulation at depth. Production of CO2 associated with organic matter mineralization accounts for the pH decrease of pore waters, which induces hydromagnesite destabilisation leaving behind a saponite-aragonite mineral assemblage. The main driving force for the observed sequence is the intense primary productivity partly fueled by inputs of CO2-rich volcanic gases, which generates high pH, promoting the formation

  9. Cryogenic brines as diagenetic fluids: Reconstructing the diagenetic history of the Victoria Land Basin using clumped isotopes

    NASA Astrophysics Data System (ADS)

    Staudigel, Philip T.; Murray, Sean; Dunham, Daniel P.; Frank, Tracy D.; Fielding, Christopher R.; Swart, Peter K.

    2018-03-01

    The isotopic analyses (δ13C, δ18O, and Δ47) of carbonate phases recovered from a core in McMurdo Sound by ANtarctic geologic DRILLing (ANDRILL-2A) indicate that the majority of secondary carbonate mineral formation occurred at cooler temperatures than the modern burial temperature, and in the presence of fluids with δ18Owater values ranging between -11 and -6‰ VSMOW. These fluids are interpreted as being derived from a cryogenic brine formed during the freezing of seawater. The Δ47 values were converted to temperature using an in-house calibration presented in this paper. Measurements of the Δ47 values in the cements indicate increasingly warmer crystallization temperatures with depth and, while roughly parallel to the observed geothermal gradient, consistently translate to temperatures that are cooler than the current burial temperature. The difference in temperature suggests that cements formed when they were ∼260 ± 100 m shallower than at the present day. This depth range corresponds to a period of minimal sediment accumulation from 3 to 11 Myr; it is therefore interpreted that the majority of cements formed during this time. This behavior is also predicted by time-integrated modeling of cementation at this site. If this cementation had occurred in the presence of these fluids, then the cryogenic brines have been a longstanding feature in the Victoria Land Basin. Brines such as those found at this site have been described in numerous modern high-latitude settings, and analogous fluids could have played a role in the diagenetic history of other ice-proximal sediments and basins during glacial intervals throughout geologic history. The agreement between the calculated δ18Owater value and the measured values in the pore fluids shows how the Δ47 proxy can be used to identify the origin of negative δ18O values in carbonate rocks and that extremely negative values do not necessarily need to be a result of the influence of meteoric fluids or reaction at

  10. Diagenetic gypsum related to sulfur deposits in evaporites (Libros Gypsum, Miocene, NE Spain)

    NASA Astrophysics Data System (ADS)

    Ortí, Federico; Rosell, Laura; Anadón, Pere

    2010-07-01

    The Libros Gypsum is the thickest evaporite unit of the Miocene infill of the Teruel Basin in NE Spain. During the deposition of this unit, intense bacterial sulfate-reducing (BSR) activity in the lake depocenter generated a native sulfur deposit. Diagenetic gypsum resulted from subsequent sulfur oxidation. The different processes involved in these transformations were first investigated by Anadón et al. (1992). The present paper is concerned with this diagenetic gypsum from the stratigraphic, petrographic, isotopic and genetic points of view. Diagenetic gypsum occurs mainly as continuous or discontinuous layers, individual levels or lenses, irregular masses, nodules and micronodules, and veins. Its main textures are coarse-crystalline anhedral and fine-grained (alabastrine), both of which can replace any former lithology (carbonate, gypsum, and sulfur). The following sequence of processes and mineral/textural transformations is deduced: primary gypsum deposition — BSR and biodiagenetic carbonate/H 2S production — growth of native sulfur — growth of diagenetic gypsum — partial recrystallization of the diagenetic gypsum textures. The gypsification of the native sulfur generated two types of banded structures in the diagenetic gypsum: (1) concentric structures of centripetal growth, and (2) expansive, roughly concentric structures. In the first type, the gypsification operated from the outer boundaries towards the inner parts. In the second type, part of the carbonate hosting the sulfur was also gypsified (replaced/cemented). In the diagenetic gypsum, the δ34S values are in agreement with a native sulfur and H 2S provenance. The δ18O sulfate values, however, enable us to differentiate two main groups of values: one with positive values and the other with negative values. In the group of positive values, interstitial (evaporated) solutions participated in the sulfur oxidation; this process presumably occurred in a first oxidation stage during shallow

  11. Diagenetically altered fossil micrometeorites suggest cosmic dust is common in the geological record

    NASA Astrophysics Data System (ADS)

    Suttle, Martin D.; Genge, Matthew J.

    2017-10-01

    We report the discovery of fossil micrometeorites from Late Cretaceous chalk. Seventy-six cosmic spherules were recovered from Coniacian (87 ± 1 Ma) sediments of the White Chalk Supergroup. Particles vary from pristine silicate and iron-type spherules to pseudomorphic spherules consisting of either single-phase recrystallized magnetite or Fe-silicide. Pristine spherules are readily identified as micrometeorites on the basis of their characteristic mineralogies, textures and compositions. Both magnetite and silicide spherules contain dendritic crystals and spherical morphologies, testifying to rapid crystallisation of high temperature iron-rich metallic and oxide liquids. These particles also contain spherical cavities, representing weathering and removal of metal beads and irregular cavities, representing vesicles formed by trapped gas during crystallization; both features commonly found among modern Antarctic Iron-type (I-type) cosmic spherules. On the basis of textural analysis, the magnetite and Fe-silicide spherules are shown to be I-type cosmic spherules that have experienced complete secondary replacement during diagenesis (fossilization). Our results demonstrate that micrometeorites, preserved in sedimentary rocks, are affected by a suite of complex diagenetic processes, which can result in disparate replacement minerals, even within the same sequence of sedimentary beds. As a result, the identification of fossil micrometeorites requires careful observation of particle textures and comparisons with modern Antarctic collections. Replaced micrometeorites imply that geochemical signatures the extraterrestrial dust are subject to diagenetic remobilisation that limits their stratigraphic resolution. However, this study demonstrates that fossil, pseudomorphic micrometeorites can be recognised and are likely common within the geological record.

  12. Reactive transport modeling of nitrogen in Seine River sediments

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  13. Diagenetic overprinting of the sphaerosiderite palaeoclimate proxy: are records of pedogenic groundwater δ18O values preserved?

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzkes, Brian J.

    2004-01-01

    Meteoric sphaerosiderite lines (MSLs), defined by invariant ??18O and variable ??13C values, are obtained from ancient wetland palaeosol sphaerosiderites (millimetre-scale FeCO3 nodules), and are a stable isotope proxy record of terrestrial meteoric isotopic compositions. The palaeoclimatic utility of sphaerosiderite has been well tested; however, diagenetically altered horizons that do not yield simple MSLs have been encountered. Well-preserved sphaerosiderites typically exhibit smooth exteriors, spherulitic crystalline microstructures and relatively pure (> 95 mol% FeCO3) compositions. Diagenetically altered sphaerosiderites typically exhibit corroded margins, replacement textures and increased crystal lattice substitution of Ca2+, Mg2+ and Mn2+ for Fe2+. Examples of diagenetically altered Cretaceous sphaerosiderite-bearing palaeosols from the Dakota Formation (Kansas), the Swan River Formation (Saskatchewan) and the Success S2 Formation (Saskatchewan) were examined in this study to determine the extent to which original, early diagenetic ??18O and ??13C values are preserved. All three units contain poikilotopic calcite cements with significantly different ??18O and ??13C values from the co-occurring sphaerosiderites. The complete isolation of all carbonate phases is necessary to ensure that inadvertent physical mixing does not affect the isotopic analyses. The Dakota and Swan River samples ultimately yield distinct MSLs for the sphaerosiderites, and MCLs (meteoric calcite lines) for the calcite cements. The Success S2 sample yields a covariant ??18O vs. ??13C trend resulting from precipitation in pore fluids that were mixtures between meteoric and modified marine phreatic waters. The calcite cements in the Success S2 Formation yield meteoric ??18O and ??13C values. A stable isotope mass balance model was used to produce hyperbolic fluid mixing trends between meteoric and modified marine end-member compositions. Modelled hyperbolic fluid mixing curves for the

  14. Diagenesis in coastal carbonates related to Pleistocene sea level, Bermuda Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollbrecht, R.; Meischner, D.

    1996-01-01

    Pleistocene glacioeustatic sea-level oscillation on the stable Bermuda Platform is expressed in a succession of shallow-water carbonates interrupted by lowstand unconformities. In Bermuda, the maximum highstands of the last 400,000 yr ranged within 10 m around the present level. Coastal carbonates of various highstands are exposed along the present shoreline. These carbonates were penetrated by meteoric and marine pore waters during lowstands and highstands following on deposition. Two representative Pleistocene shoreline sections were studied to see whether early diagenesis has recorded these pore-water changes. The sediments of both sections show multiple generations of cement. Optical and scanning electron microscopy, cathodoluminescencemore » microscopy, X-ray diffraction, microprobe studies and stable-isotope analyses were used to determine the diagenetic environments involved. Regardless of the degree of substrate cementation, freshwater alteration was mainly vadose whereas marine cementation was either phreatic or vadose or both. Early diagenetic oscillation is easier recorded in coastal successions than in lagoonal sediments, mainly because marine cementation is more active nearshore.Because the coastal environment is prone to wave destruction, the potential for preserving these diagenetic features is usually low. Data published on tectonically unstable areas suggest that early diagenetic oscillation may characterize stable coastlines.« less

  15. Phosphorus dynamics in lake sediments: Insights from field study and reactive-transport modeling

    NASA Astrophysics Data System (ADS)

    Dittrich, Maria; Markovic, Stefan; Cadena, Sandra; Doan, Phuong T. K.; Watson, Sue; Mugalingam, Shan

    2016-04-01

    Phosphorus is an indispensable nutrient for organisms in aquatic systems and its availability often controls primary productivity. At the sediment-water interface, intensive microbiological, geochemical and physical processes determine the fraction of organic matter, nutrients and pollutants released into the overlying water. Therefore, detailed understanding of the processes occurring in the top centimeters of the sediment is essential for the assessment of water quality and the management of surface waters. In cases where measurements are impossible or expensive, diagenetic modelling is required to investigate the interplay among the processes, verify concepts and predict potential system behavior. The main aims of this study are to identify and predict the dynamics of phosphorus (P) in sediments and gain insight into the mechanism of P release from sediments under varying environmental conditions. We measured redox, O2 and pH profiles with micro-sensors at the sediment-water interface; analyzed phosphate and metals (Fe, Mn, Al, Ca) content in pore waters collected using in situ samplers, so called "peepers"; determined P binding forms using sequential extraction and analyzed metals associated with each fraction. Following the sediment analysis, P binding forms were divided in five groups: inert, carbonate-bound, organic, redox-sensitive, and labile P. Using the flux of organic and inorganic matter as dynamic boundary conditions, the diagenetic model simulates P internal loading and predicts P retention. This presentation will discuss the results of two years studies on P dynamics at the sediment-water interface in three different lakes ranging from heavy-polluted Hamilton Harbor and Bay of Quinte to pristine Georgian Bay in Ontario, Canada.

  16. Diagenetic contrast of sandstones in hydrocarbon prospective Mesozoic rift basins (Ethiopia, UK, USA)

    NASA Astrophysics Data System (ADS)

    Wolela, A.

    2014-11-01

    Diagenetic studied in hydrocarbon-prospective Mesozoic rift basins were carried out in the Blue Nile Basin (Ethiopia), Ulster Basin (United Kingdom) and Hartford Basin (United States of America). Alluvial fan, single and amalgamated multistorey meandering and braided river, deep and shallow perennial lake, shallow ephemeral lake, aeolian and playa mud-flat are the prominent depositional environments. The studied sandstones exhibit red bed diagenesis. Source area geology, depositional environments, pore-water chemistry and circulation, tectonic setting and burial history controlled the diagenetic evolution. The diagenetic minerals include: facies-related minerals (calcrete and dolocrete), grain-coating clay minerals and/or hematite, quartz and feldspar overgrowths, carbonate cements, hematite, kaolinite, illite-smectite, smectite, illite, chlorite, actinolite, laumontite, pyrite and apatite. Diversity of diagenetic minerals and sequence of diagenetic alteration can be directly related to depositional environment and burial history of the basins. Variation in infiltrated clays, carbonate cements and clay minerals observed in the studied sandstones. The alluvial fan and fluviatile sandstones are dominated by kaolinite, illite calcite and ferroan calcite, whereas the playa and lacustrine sandstones are dominated by illite-smectite, smectite-chlorite, smectite, chlorite, dolomite ferroan dolomite and ankerite. Albite, pyrite and apatite are predominantly precipitated in lacustrine sandstones. Basaltic eruption in the basins modified mechanically infiltrated clays to authigenic clays. In all the studied sandstones, secondary porosity predominates over primary porosity. The oil emplacement inhabited clay authigenesis and generation of secondary porosity, whereas authigenesis of quartz, pyrite and apatite continued after oil emplacement.

  17. Trace metal concentrations in tropical mangrove sediments, NE Brazil.

    PubMed

    Miola, Brígida; Morais, Jáder Onofre de; Pinheiro, Lidriana de Souza

    2016-01-15

    Sediment cores were taken from the mangroves of the Coreaú River estuary off the northeast coast of Brazil. They were analyzed for grain size, CaCO3, organic matter, and trace metal (Cd, Pb, Zn, Cu, Al, and Fe) contents. Mud texture was the predominant texture. Levels of trace metals in surface sediments indicated strong influence of anthropogenic processes, and diagenetic processes controlled the trace metal enrichment of core sediments of this estuary. The positive relationships between trace metals and Al and Fe indicate that Cu, Zn, Pb, and Cd concentrations are associated mainly with Al and Fe oxy-hydroxides and have natural sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Depositional and diagenetic processes of Qa Khanna playa, North Jordan basaltic plateau, Jordan

    NASA Astrophysics Data System (ADS)

    Howari, F. M.; Banat, K. M.; Abu-Salha, Y. A.

    2010-09-01

    The present study explored mineral occurrences and sediment characteristics of playas from northern Jordan and explained depositional and diagenetic processes as reflected from bulk chemistry and sedimentary structures. Mudcracks of different sizes and shape patterns, laminations, intersediment vesicles, and bioturbation pipes are the main sedimentary structures. Plagioclase, olivine, orthopyroxene, nepheline and other opaque minerals are all of detrital origin, and are derived from the basaltic bedrocks surrounding the studied playa. Evaporites are very rare; they are represented only by trace amounts of gypsum. The identified clay minerals in the clay fraction of the studied sediments, arranged according to their decreasing abundances are palygorskite, illite, kaolinite, smectite and chlorite. The elemental abundances were tied to clay, CaCO 3 and nearby igneous rocks. The type of clay minerals, the high pH values of the studied sediments, and the considerable incorporation of Mg and K in palygorskite and illite respectively, may strongly reflect a high evaporative and alkaline environment under arid to semi-arid conditions in an ephemeral lake of the Qa Khanna. Concentrations and distributions of both major and trace elements are essentially controlled by the clay mineralogy and the calcium carbonate content; Ca is mainly incorporated in the CaCO 3, which is either generated authigenically or by aeolian deposition. Fe and K are incorporated and fixed by illite under an evaporative and alkaline environment. Mg is incorporated in palygorskite while Mn is adsorbed on various clay minerals. Sr substitutes for Ca in the aeolian CaCO 3 and its presence in the studied sediments is independent of the prevailing conditions during the playa evolution. Rb substitutes for K in illite under the prevailing chemical conditions in the studied playa.

  19. Origin of the diagenetic carbonate crusts and concretions from the mud volcanoes of the Nile deep-sea fan

    NASA Astrophysics Data System (ADS)

    Gontharet, S.; Pierre, C.; Blanc Valleron, M.; Rouchy, J.; Fouquet, Y.; Bayon, G.

    2004-12-01

    sources of diagenetic fluids. Typically, the very low \\delta13C values of the authigenic carbonates indicate that CH4 was the major source of carbon which was oxidized as CO2, either through bacterial sulfate reduction within the sediment, or via bacterial aerobic oxidation at the sea floor. Similar isotopic values were previously measured in the diagenetic carbonate crusts from the mud volcanoes of the Mediterranean Ridge area (Aloisi et al., 2000) as well as in other areas of cold seeps outside the Mediterranean sea (for instance Gulf of Mexico, Cascadia margin, Barbados prism). References: Aloisi G., Pierre C., Rouchy J.M., Foucher J.P., Woodside J. and the Medinaut Scientific Party, 2000. E.P.S.L., 184, 321-338. Loncke L., Gaullier V., Bellaiche G., and Mascle J., 2004. A.A.P.G. Bull

  20. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation

    NASA Astrophysics Data System (ADS)

    Liang, Chao; Cao, Yingchang; Liu, Keyu; Jiang, Zaixing; Wu, Jing; Hao, Fang

    2018-05-01

    Lacustrine carbonate-rich shales are well developed within the Mesozoic-Cenozoic strata of the Bohai Bay Basin (BBB) of eastern China and across southeast Asia. Developing an understanding of the diagenesis of these shales is essential to research on mass balance, diagenetic fluid transport and exchange, and organic-inorganic interactions in black shales. This study investigates the origin and distribution of authigenic minerals and their diagenetic characteristics, processes, and pathways at the scale of lacustrine laminae within the Es4s-Es3x shale sequence of the BBB. The research presented in this study is based on thin sections, field emission scanning electron microscope (FESEM) and SEM-catholuminescence (CL) observations of well core samples combined with the use of X-ray diffraction (XRD), energy dispersive spectroscopy, electron microprobe analysis, and carbon and oxygen isotope analyses performed using a laser microprobe mass spectrometer. The dominant lithofacies within the Es4s-Es3x sequence are a laminated calcareous shale (LCS-1) and a laminated clay shale (LCS-2). The results of this study show that calcite recrystallization1 is the overarching diagenetic process affecting the LCS-1, related to acid generation from organic matter (OM) thermal evolution. This evolutionary transition is the key factor driving the diagenesis of this lithofacies, while the transformation of clay minerals is the main diagenetic attribute of the LCS-2. Diagenetic differences occur within different laminae and at variable locations within the same lamina level, controlled by variations in mineral composition and the properties of laminae interfaces. The diagenetic fluid migration scale is vertical and responses (dissolution and replacement) are limited to individual laminae, between zero and 100 μm in width. In contrast, the dominant migration pathway for diagenetic fluid is lateral, along the abrupt interfaces between laminae boundaries, which leads to the vertical

  1. Development and Application of a Paleomagnetic/Geochemical Method for Constraining the Timing of Burial Diagenetic Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmore, Richard D.; Engel, Michael H.

    2006-01-05

    Studies of diagenesis caused by fluid migration or other events are commonly hindered by a lack of temporal control. Our results to date demonstrate that a paleomagnetic/geochemical approach can be used to date fluid migration as well as burial diagenetic events. Our principal working hypothesis is that burial diagenetic processes (e.g., maturation of organic-rich sediments and clay diagenesis) and the migration of fluids can trigger the authigenesis of magnetic mineral phases. The ages of these events can be constrained by comparing chemical remanent magnetizations (CRMs) to independently established Apparent Polar Wander Paths. Whilst geochemical (e.g. stable isotope and organic analyses)more » and petrographic studies provide important clues for establishing these relationships, the ultimate test of this hypothesis requires the application of independent dating methods to verify the paleomagnetic ages. Towards this end, we have used K-Ar dating of illitization as an alternative method for constraining the ages of magnetic mineral phases in our field areas. We have made significant progress toward understanding the origin and timing of chemical remagnetization related to burial diagenetic processes. For example, a recently completed field study documents a relationship between remagnetization and the maturation of organic matter (Blumstein et al., 2004). We have tested the hypothesized connection between clay diagenesis and remagnetization by conducting K-Ar dating of authigenic illites in units in Scotland and Montana with CRMs (e.g., Elliott et al., 2006a; Elliott et al., 2006b). We have also developed a fluid related model for alteration and remagnetization of Appalachian red beds that involves reduction and mobilization of iron phases by hydrocarbons and precipitation of authigenic hematite as a result of the introduction of meteoric fluid recharge (Cox et al., 2005). In addition, our recent studies of fluid-related CRMs along faults in Scotland provide

  2. Evolution of sediment metal concentrations in a tidal marsh restoration project.

    PubMed

    Teuchies, Johannes; Beauchard, Olivier; Jacobs, Sander; Meire, Patrick

    2012-03-01

    The combination of flood prevention and tidal marsh restoration will be implemented on a large scale in the Schelde estuary (Belgium). Densely populated and industrialized, this estuary was found to be severely contaminated with trace metals. In this study we evaluated the effect of tidal restoration on sediment trace metal concentrations. To asses historical contamination of embanked-, a restored- and natural tidal areas, deep sediment cores were sampled while the evolution of metal concentrations was determined by means of superficial samples taken during 10 sampling campaigns spread over the first 3 years of the restoration project. Metal concentrations in the natural tidal marsh reflected the estuaries' contamination history. Fertilization by irrigation caused high metal concentrations in superficial soil layers of some embanked areas. However, reintroduction of the tide resulted in deposition of a new sediment layer with lower metal concentrations, comparable to the natural tidal marsh. Despite diagenetic mobility of manganese no diagenetic movements of the trace metals were observed during these first three years. Removal of metals from the estuary and burial of contaminated sediments in the restored site emphasize the potential of these restoration projects to decrease metal contamination risks. However, more research under field conditions on the effects of changes in land use and inundation related changes in metal bioavailability is needed to draw clear conclusions on the environmental consequences. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Non-steady state diagenesis of organic and inorganic sulfur in lake sediments

    NASA Astrophysics Data System (ADS)

    Couture, Raoul-Marie; Fischer, Rachele; Van Cappellen, Philippe; Gobeil, Charles

    2016-12-01

    Sulfur controls the fate of many geochemical elements in lake sediments, including iron, phosphorus and environmentally important trace elements. We measured the speciation of pore-water and sediment-bound sulfur (aqueous sulfate and sulfides, elemental sulfur, iron monosulfide, pyrite, organic sulfur) and supporting geochemical variables (carbon, oxygen, iron) in the sediments of a perennially oxygenated and a seasonally anoxic basin of an oligotrophic lake in Québec, using a combination of pore-water analyses, sequential extractions and X-ray absorption near edge structure. A non-steady state early diagenetic model was developed and calibrated against this extensive dataset to help unravel the pathways and quantify the rates of S transformations. Results suggest that the main source of S to the sediments is the settling of organic ester-sulfate (R-O-SO3-H). Hydrolysis of these compounds provides an additional source of sulfate for anaerobic microbial oxidation of sedimentary organic matter, releasing sulfide to the pore-water. Reduced solid-bound S species accumulate as thiols (R-SH) and iron sulfides in the perennially oxygenated and seasonally anoxic basin, respectively. The model-estimated rate constant for R-SH formation is lower than previously estimated for this particular lacustrine site, but similar to that proposed for marine shelf sediments. The solid sediment S profiles, however, carry the imprint of the time-dependent sulfate input to the lake. Iron sulfide enrichments formed during past decades of elevated atmospheric SO4 deposition are presently dissolving. In the sediments of the perennially oxygenated basin this reaction hampers the build-up of Fe(III) (oxy)hydroxide near the sediment-water interface.

  4. Diagenesis in tephra-rich sediments from the Lesser Antilles Volcanic Arc: Pore fluid constraints

    NASA Astrophysics Data System (ADS)

    Murray, Natalie A.; McManus, James; Palmer, Martin R.; Haley, Brian; Manners, Hayley

    2018-05-01

    We present sediment pore fluid and sediment solid phase results obtained during IODP Expedition 340 from seven sites located within the Grenada Basin of the southern Lesser Antilles Volcanic Arc region. These sites are generally characterized as being low in organic carbon content and rich in calcium carbonate and volcanogenic material. In addition to the typical reactions related to organic matter diagenesis, pore fluid chemistry indicates that the diagenetic reactions fall within two broad categories; (1) reactions related to chemical exchange with volcanogenic material and (2) reactions related to carbonate dissolution, precipitation, or recrystallization. For locations dominated by reaction with volcanogenic material, these sites exhibit increases in dissolved Ca with coeval decreases in Mg. We interpret this behavior as being driven by sediment-water exchange reactions from the alteration of volcanic material that is dispersed throughout the sediment package, which likely result in formation of Mg-rich secondary authigenic clays. In contrast to this behavior, sediment sequences that exhibit decreases in Ca, Mg, Mn, and Sr with depth suggest that carbonate precipitation is an active diagenetic process affecting solute distributions. The distributions of pore fluid 87Sr/86Sr reflect these competitive diagenetic reactions between volcanic material and carbonate, which are inferred by the major cation distributions. From one site where we have solid phase 87Sr/86Sr (site U1396), the carbonate fraction is found to be generally consistent with the contemporaneous seawater isotope values. However, the 87Sr/86Sr of the non-carbonate fraction ranges from 0.7074 to 0.7052, and these values likely represent a mixture of local arc volcanic sources and trans-Atlantic eolian sources. Even at this site where there is clear evidence for diagenesis of volcanogenic material, carbonate diagenesis appears to buffer pore fluid 87Sr/86Sr from the larger changes that might be

  5. Organic matter diagenesis within the water column and surface sediments of the northern Sargasso Sea revealed by lipid biomarkers

    NASA Astrophysics Data System (ADS)

    Conte, M. H.; Pedrosa Pàmies, R.; Weber, J.

    2017-12-01

    The intensity of particle cycling processes within the mesopelagic and bathypelagic ocean controls the length scale of organic material (OM) remineralization and diagenetic transformations of OM composition through the water column and into the sediments. To elucidate the OM cycling in the oligotrophic North Atlantic gyre, we analyzed lipid biomarkers in the suspended particles (30-4400 m depth, 100 mab), the particle flux (500 m, 1500 m and 3200 m depth), and in the underlying surficial sediments (0-0.5 cm, 4500-4600 m depth) collected at the Oceanic Flux Program (OFP) time series site located 75km SE of Bermuda. Changes in lipid biomarker concentration and composition with depth highlight the rapid remineralization of OM within the upper mesopelagic layer and continuing diagenetic transformations of OM throughout the water column and within surficial sediments. Despite observed similarities in biomarker composition in suspended and sinking particles, results show there are also consistent differences in relative contributions of phytoplankton-, bacterial- and zooplankton-derived sources that are maintained throughout the water column. For example, sinking particles are more depleted in labile biomarkers (e.g. polyunsaturated fatty acids (PUFA)) and more enriched in bacteria-derived biomarkers (e.g. hopanoids and odd/branched fatty acids) and indicators of fecal-derived OM (e.g. saturated fatty acids, FA 18:1w9 and cholesterol) than in the suspended pool. Strong seasonality in deep (3200 m) fluxes of phytoplankton-derived biomarkers reflect the seasonal input of bloom-derived material to underlying sediments. The rapid diagenetic alteration of this bloom-derived input is evidenced by depletion of PUFAs and enrichment of microbial biomarkers (e.g. odd/branched fatty acids) in surficial sediments over a two month period.

  6. Quantification of diagenetic overprint processes deduced from fossil carbonate shells and laboratory-based hydrothermal alteration experiments

    NASA Astrophysics Data System (ADS)

    Griesshaber, Erika; Casella, Laura; Mavromatis, Vasileios; Dietzel, Martin; Immenhauser, Adrian; Schmahl, Wolfgang

    2016-04-01

    Benthic and nektonic marine biogenic carbonate archives represent the foundation of numerous studies aiming at reconstructions of past climate dynamics and environmental change. However, living organisms are not in thermodynamic equilibrium and create local chemical environments where physiologic processes such as biomineralization takes place. After the death of the organism the former physiologic disequilibrium conditions are not sustained any more and all biological tissues are altered by equilibration according to the surrounding environment: diagenesis. With increasing diagenetic alteration, the biogenic structure and fingerprint fades away and is replaced by inorganic features. Thus, recrystallization of organism-specific microstructure is a clear indicator for diagenetic overprint. Microstructural data, which mirror recrystallization, are of great value for interpreting geochemical proxies for paleo-environment reconstruction. Despite more than a century of research dealing with carbonate diagenesis, many of the controlling processes and factors are only understood in a qualitative manner. One of the main issues is that diagenetically altered carbonates are usually present as the product of a complex preceding diagenetic pathway with an unknown number of intermediate steps. In this contribution we present and discuss laboratory based alteration experiments with the aim to investigate time-series data sets in a controlled manner. We conducted hydrothermal alteration experiments with modern Arctica islandica (bivalvia) and Notosaria nigricans (brachiopoda) in order to mimic diagenetic overprint. We explore first the potential of electron backscattered diffraction (EBSD) measurements together with statistical data evaluation as a tool to quantify diagenetic alteration of carbonate skeletons. Subsequently, we compare microstructural patterns obtained from experimentally altered shell material with those of fossil specimens that have undergone variable degrees of

  7. The chemistry and mineralogy of haloed burrows in pelagic sediment at DOMES Site A: The equatorial North Pacific

    USGS Publications Warehouse

    Piper, D.Z.; Rude, P.D.; Monteith, S.

    1987-01-01

    The chemical and mineralogical composition of burrowed sediment, recovered in 66 box cores at latitude 9??25???N and longitude 151??15???W in the equatorial Pacific, demonstrates the important role of infauna in determining the geochemistry of pelagic sediment. Haloed burrows, approximately 3 cm across, were present in many of the cores. Within early Tertiary sediment that was covered by less than 5 cm of surface Quaternary sediment in several cores, the burrows in cross-section consist of three units: (1) a dark yellowish-brown central zone of Quaternary sediment surrounded, by (2) a pale yellowish-orange zone (the halo) of Tertiary sediment, which is surrounded by (3) a metal-oxide precipitate; the enclosing Tertiary sediment is dusky brown. Several elements - Mn, Ni, Cu, Co, Zn, Sb and Ce - have been leached from the light-colored halo, whereas Cr, Cs, Hf, Rb, Sc, Ta, Th, U, the rare earth elements exclusive of Ce, and the major oxides have not been leached. The metal-oxide zone, 1-5 mm thick, contains as much as 16% MnO2, as the mineral todorokite. The composition of the todorokite, exclusive of the admixed Tertiary sediment, resembles the composition of the metal deficit of the halo and also the composition of surface ferromanganese nodules that have been interpreted as having a predominantly diagenetic origin. Thus bioturbation contributes not only to the redistribution of metals within pelagic sediment, but also to the accretion of ferromanganese nodules on the sea floor. ?? 1987.

  8. Giant calcite concretions in aeolian dune sandstones; sedimentological and architectural controls on diagenetic heterogeneity, mid-Cretaceous Iberian Desert System, Spain

    NASA Astrophysics Data System (ADS)

    Arribas, Maria Eugenia; Rodríguez-López, Juan Pedro; Meléndez, Nieves; Soria, Ana Rosa; de Boer, Poppe L.

    2012-01-01

    Aeolian dune sandstones of the Iberian erg system (Cretaceous, Spain) host giant calcite concretions that constitute heterogeneities of diagenetic origin within a potential aeolian reservoir. The giant calcite concretions developed in large-scale aeolian dune foresets, at the transition between aeolian dune toeset and damp interdune elements, and in medium-scale superimposed aeolian dune sets. The chemical composition of the giant concretions is very homogeneous. They formed during early burial by low Mg-calcite precipitation from meteoric pore waters. Carbonate components with yellow/orange luminescence form the nuclei of the poikilotopic calcite cement. These cements postdate earlier diagenetic features, characterized by early mechanical compaction, Fe-oxide cements and clay rims around windblown quartz grains resulting from the redistribution of aeolian dust over the grain surfaces. The intergranular volume (IGV) in friable aeolian sandstone ranges from 7.3 to 15.3%, whereas in cemented aeolian sandstone it is 18.6 to 25.3%. The giant-calcite concretions developed during early diagenesis under the influence of meteoric waters associated with the groundwater flow of the desert basin, although local (e.g. activity of fluid flow through extensional faults) and/or other regional controls (e.g. variations of the phreatic level associated with a variable water influx to the erg system and varying sea level) could have favoured the local development of giant-calcite concretions. The spatial distribution pattern of carbonate grains and the main bounding surfaces determined the spatial distribution of the concretions. In particular, the geometry of the giant calcite concretions is closely associated with main bounding aeolian surfaces. Thus, interdune, superimposition and reactivation surfaces exerted a control on the concretion geometries ranging from flat and tabular ones (e.g. bounded by interdunes) to wedge-shaped concretions at the dune foresets (e.g. bounded by

  9. Sulfides of Bottom Sediments in the Northeastern Part of the Black Sea

    NASA Astrophysics Data System (ADS)

    Rozanov, A. G.

    2018-03-01

    A study of bottom sediments conducted on the 100th cruise of R/V Professor Shtokman in the northeastern part of the Black Sea along the section from the Kerch Strait to the deep-sea depression allowed estimation of Holocene sulfide sedimentation and consideration of the accompanying diagenetic processes, which involve reactions with C, N, and P. The behavior of dissolved forms of Mn and Fe is considered from the viewpoint of their different solubility and formation of sulfides. The redox system of the Black Sea sediments can significantly be expanded at the expense of the migration methane and hydrogen, which accompanies its anaerobic oxidation.

  10. Cadmium Diagenesis in Polluted Sediments of a Tropical Estuary of SE Brazil

    NASA Astrophysics Data System (ADS)

    Patchineelam, S. R.; Metzger, E.; Jézéquel, D.; Sarazin, G.; Smoak, J. M.

    2006-12-01

    Sepetiba bay is a shallow semi enclosed water body located about 70km on the west side of the city of Rio de Janeiro with an area of 450km² separated from the Atlantic Ocean by a sand spit. Fishing, shrimp and tourism are important economic activities. During 35 years a Zinc/Cadmium smelter has polluted the bay. The objective of this investigation is to demonstrate how diagenetic processes are responsible for the cadmium remobilization out or fixation into the sediment column.. Two contrasting sites were selected to compare the diagenetic process. P1 located near to the smelter and P2 is about 20km away from the smelter next to a domestic effluents discharge into the bay. Peeper samplers with 25 cells with a resolution of 2,5cm were introduced into the sediment at both sites. After a period of 3 weeks equilibrium, the pore waters were separated from each cell and analyzed within 24 hours for alkalinity, H2S, NH3 and soluble phosphate by conventional methods An ICP-AES spectrometer was used to analyze Na, Mg, Li, Ba, Sr, Si, Fe and Mn. The total and labile Cd in pore waters were determined by differential-pulse stripping voltammetry. The solute profiles have revealed that the sediments at both sites were anoxic. The slopes of the ferrous and sulfide profile constituents permitted characterization the area at P1 as ferrous dominant with oxic conditions in the overlying water and P2 as a sulfidic rich environment with suboxic conditions in the water column. At P1 total dissolved Cd in the overlying water was about 450pM and labile fraction varied from 85 to 177pM. Just below the sediment water interface 695pM of total dissolved Cd was observed. Probably diagenetic processes are responsible for release of cadmium at the sediment interface. Below this maxima Cd concentrations decreased to 30pM. At P2 a concentration o of 150pM of total dissolved Cd was detected in the overlying water and samples in the pore waters at the sediment interface had an average concentration

  11. Bacterially mediated diagenetic origin for chert-hosted manganese deposits in the Franciscan Complex, California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Koski, Randolph A.

    1987-08-01

    Numerous manganese deposits in the Franciscan Complex, California, occur as conformable lenses within bedded radiolarian chert-argillite sequences that are, in turn, intercalated within thicker sections of sandstone and shale. The field relations, composition, and petro-graphic and isotopic characteristics indicate that the manganese was concentrated by diagenetic reconstitution of siliceous and hemipelagic sediment during burial. The ore lenses are Mn-rich and Fe-poor assemblages consisting largely of rhodochrosite, manganese silicates, opal-CT (disordered cristobalite-tridymite), and quartz. Highly negative δ13C values for the carbonate carbon in rhodochrosite indicate that CO2 likely originated from oxidation of methane; less negative values result from mixing of methanogenic carbon and CO2 derived from bacterial degradation of organic matter. The δ18O values for the carbonate of rhodochrosite indicate temperatures of formation between 12 and 100 °C. The oxidation of methane prior to carbonate precipitation may have used the minor (0.4% 0.5%) Mn and Fe oxyhydroxides and oxides deposited with the sediment. The mobilization of manganese from biogenic and terrigenous sources in the sediment column into discrete horizons and the fractioriation of manganese from iron reflect the presence of oxidation-reduction boundaries and gradients in the sediment column. Fluids derived from compaction and silica-dehydration reactions in the transformation of opal-A (X-ray amorphous biogenic silica) to quartz were involved in transportation of principal components. Sedimentary and geochemical attributes suggest that the deposits formed in a deep-water environment in a zone of oceanic upwelling near a continental margin.

  12. Fish debris record the hydrothermal activity in the Atlantis II deep sediments (Red Sea)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oudin, E.; Cocherie, A.

    1988-01-01

    The REE and U, Th, Zr, Hf, Sc have been analyzed in samples from Atlantis II and Shaban/Jean Charcot Deeps in the Red Sea. The high Zr/Hf ratio in some sediments indicates the presence of fish debris or of finely crystallized apatite. The positive ..sigma..REE vs P/sub 2/O/sub 5/ and ..sigma..REE vs Zr/Hf correlations show that fish debris and finely crystallized apatite are the main REE sink in Atlantis II Deep sediments as in other marine environments. The hydrothermal sediments and the fish debris concentrates have similar REE patterns, characterized by a LREE enrichment and a large positive Eu anomaly.more » This REE pattern is also observed in E.P.R. hydrothermal solutions. Fish debris from marine environments acquire their REE content and signature mostly from sea water during early diagenesis. The hydrothermal REE signature of Atlantis II Deep fish debris indicate that they probably record the REE signature of their hydrothermal sedimentation and diagenetic environment. The different REE signatures of the Shaban/Jean Charcot and Atlantis II Deep hydrothermal sediments suggest a sea water-dominated brine in the Shaban/Jean Charcot Deep as opposed to the predominantly hydrothermal brine in Atlantis II Deep. Atlantis II Deep fish debris are also characterized by their high U but low Th contents. Their low Th contents probably reflect the low Th content of the various possible sources (sea water, brine, sediments). Their U contents are probably controlled by the redox conditions of sedimentation.« less

  13. Diagenetic Microcrystalline Opal Varieties from the Monterey Formation, CA: HRTEM Study of Structures and Phase Transformation Mechanisms

    NASA Technical Reports Server (NTRS)

    Cady, Sherry L.; Wenk, H.-R.; DeVincenzi, Don (Technical Monitor)

    1994-01-01

    Microcrystalline opal varieties form as intermediary precipitates during the diagenetic transformation of biogenically precipitated non-crystalline opal (opal-A) to microquartz. With regard to the Monterey Formation of California, X-ray powder diffraction studies have shown that a decrease in the primary d-spacing of opal-CT toward that of cristobalite occurs with increasing diagenesis. The initial timing of opal-CT/quartz formation and the value of the primary opal-CT d-spacing, are influenced by the sediment. lithology. Transmission electron microscopy methods (CTEM/HRTEM) were used to investigate the structure of the diagenetic phases and establish transformation mechanisms between the varieties of microcrystalline opals in charts and porcelanites from the Monterey Formation. HRTEM images revealed that the most common fibrous varieties of microcrystalline opals contain varying amounts of structural disorder. Finite lamellar units of cristobalite-and tridymite-type. layer sequences were found to be randomly stacked in a direction perpendicular to the fiber axis. Disordered and ordered fibers were found to have coprecipitated within the same radial fiber bundles that formed within the matrix of the Most siliceous samples. HRTEM images, which reveal that the fibers within radial and lepispheric fiber bundles branch non-crystallographically, support an earlier proposal that microspheres in chert grow via a spherulitic growth mechanism. A less common variety of opal-CT was found to be characterized by non-parallel (low-angle) stacking sequences that often contain twinned lamellae. Tabular-shaped crystals of orthorhombic tridymite (PO-2) were also identified in the porcelanite samples. A shift in the primary d-spacing of opal-CT has been interpreted as an indication of solid-state ordering g toward a predominantly cristobalite structure, (opal-C). Domains of opal-C were identified as topotactically-oriented overgrowths on discrete Sections of opal-CT fibers and as

  14. Organic-rich sediments in ventilated deep-sea environments: Relationship to climate, sea level, and trophic changes

    NASA Astrophysics Data System (ADS)

    Bertrand, P.; Pedersen, T. F.; Schneider, R.; Shimmield, G.; Lallier-Verges, E.; Disnar, J. R.; Massias, D.; Villanueva, J.; Tribovillard, N.; Huc, A. Y.; Giraud, X.; Pierre, C.; VéNec-Peyré, M.-T.

    2003-02-01

    Sediments on the Namibian Margin in the SE Atlantic between water depths of ˜1000 and ˜3600 m are highly enriched in hydrocarbon-prone organic matter. Such sedimentation has occurred for more than 2 million years and is geographically distributed over hundreds of kilometers along the margin, so that the sediments of this region contain a huge concentrated stock of organic carbon. It is shown here that most of the variability in organic content is due to relative dilution by buried carbonates. This reflects both export productivity and diagenetic dissolution, not differences in either water column or bottom water anoxia and related enhanced preservation of organic matter. These observations offer a new mechanism for the formation of potential source rocks in a well-ventilated open ocean, in this case the South Atlantic. The organic richness is discussed in terms of a suite of probable controls including local wind-driven productivity (upwelling), trophic conditions, transfer efficiency, diagenetic processes, and climate-related sea level and deep circulation. The probability of past occurrences of such organic-rich facies in equivalent oceanographic settings at the edge of large oceanic basins should be carefully considered in deep offshore exploration.

  15. Remobilization of polycyclic aromatic hydrocarbons and organic matter in seawater during sediment resuspension experiments from a polluted coastal environment: Insights from Toulon Bay (France).

    PubMed

    Guigue, Catherine; Tedetti, Marc; Dang, Duc Huy; Mullot, Jean-Ulrich; Garnier, Cédric; Goutx, Madeleine

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) and organic matter contents were measured in seawater during resuspension experiments using sediments collected from Toulon Bay (Northwestern Mediterranean Sea, France). The studied sediments were very highly contaminated in PAHs, especially in 4-ring compounds emitted from combustion processes. The sediments used for resuspension experiments were collected at 0-2 cm (diagenetically new organic matter, OM) and 30-32 cm depths (diagenetically transformed OM). They were both mostly composed of fine particles (<63 μm), enriched in organic carbon (8.2 and 6.3%, respectively) and in PAHs (concentration of Σ34 PAHs: 38.2 and 35.7 × 10 3  ng g -1 , respectively). The resuspension of these sediments led to an increase in concentrations of dissolved Σ34 PAHs, dissolved organic carbon (DOC) and dissolved humic- and tryptophan-like fluorophores in seawater up to 10-, 1.3-, 4.4- and 5.7-fold, respectively. The remobilization in seawater was higher for 4-6 ring PAHs, especially benzo(g,h,i)perylene, whose concentration exceeded the threshold values of the European Water Framework Directive. This noted the potential harmful effects of sediment resuspension on marine biota. From these sediment resuspension experiments, we determined OC-normalized partition coefficients of PAHs between sediment and water (K oc ) and found that during such events, the transfer of PAHs from sediment particles to seawater was lower than that predicted from octanol-water partition coefficients (K ow ) (i.e., measured K oc  > K oc predicted from K ow ). The results confirmed the sequestration role of sedimentary OC quality and grain size on PAHs; the OM diagenetic state seemed to impact the partition process but in a relatively minor way. Furthermore, differences were observed between 2-4 ring and 5-6 ring PAHs, with the latter displaying a relatively higher mobility towards seawater. These differences may be explained by the distribution of these

  16. Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones.

    PubMed

    Dal Sasso, Gregorio; Angelini, Ivana; Maritan, Lara; Artioli, Gilberto

    2018-03-01

    Retrieving the pristine chemical or isotopic composition of archaeological bones is of great interest for many studies aiming to reconstruct the past life of ancient populations (i.e. diet, mobility, palaeoenvironment, age). However, from the death of the individual onwards, bones undergo several taphonomic and diagenetic processes that cause the alteration of their microstructure and composition. A detailed study on bone diagenesis has the double purpose to assess the preservation state of archaeological bones and to understand the alteration pathways, thus providing evidence that may contribute to evaluate the reliability of the retrieved information. On these bases, this research aims to explore the effectiveness of Raman hyperspectral imaging to detect types, extent and spatial distribution of diagenetic alteration at the micro-scale level. An early-Holocene bone sample from the Al Khiday cemetery (Khartoum, Sudan) was here analysed. Parameters related to the collagen content, bioapatite crystallinity and structural carbonate content, and to the occurrence of secondary mineral phases were calculated from Raman spectra. The acquired data provided spatially-resolved information on both the preservation state of bone constituents and the diagenetic processes occurring during burial. Given the minimal sample preparation, the easy and fast data acquisition and the improvement of system configurations, micro-Raman spectroscopy can be extensively applied as a screening method on a large set of samples in order to characterise the preservation state of archaeological bones. This technique can be effectively applied to identify suitable and well preserved portions of the analysed sample on which perform further analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Recent Compositional Trends within the Murray Formation, Gale Crater, Mars, as seen by APXS: Implications for Sedimentary, Diagenetic and Alteration History.

    NASA Astrophysics Data System (ADS)

    Thompson, L. M.; Yen, A.; Spray, J. G.; Johnson, J. R.; Fraeman, A. A.; Berger, J. A.; Gellert, R.; Boyd, N.; Desouza, E.; O'Connell-Cooper, C.; VanBommel, S.

    2017-12-01

    The >230 m thick Murray Formation is the lower-most unit of the Mount Sharp Group, and interpreted as primarily lacustrine. Representative mudstone, siltstone and fine sandstone targets, encountered above -4330 m elevation, trend to lower Si, Al, Ti, Cr and Ca, and higher Fe, Mn, Zn, P and Mg than the Murray below. Less common, distinctive, coarser grained sandstone lenses tend to exhibit slightly different compositions to the more typical Murray but, overall, show similar elemental trends with elevation, albeit exaggerated. This suggests that the variations observed with elevation in Al, Ti, Cr, K, Fe, Mn, Zn and P within both the coarser sandstones and finer grained Murray are the result of diagenetic and/or alteration processes rather than provenance or physical sedimentary processes such as sorting. This is supported by the chemistry of obvious diagenetic, dark grey nodules, and other potential diagenetic/alteration features within this section, which show variations in the same element concentrations (i.e., P, Mn, Fe, Zn, Mg, Ca and S), distinct from diagenetic features lower down in the stratigraphy, indicating mobility of these elements within this section and changing fluid chemistry. Trends in FeO/MnO generally mimic the presence of ferric absorption features observed in visible/near infrared passive spectra from the ChemCam instrument and from CRISM orbital data, which may be consistent with changes in redox conditions as we climb up section towards Vera Rubin Ridge (Hematite Ridge). Layer-parallel CaSO4 is also common, and not observed below -4330 m. This may represent syndepositional evaporite layers, or late bedding/laminae parallel veins emplaced after lithification, in conjunction with cross-cutting veins. The overall differences in composition between the sandstone targets and finer grained Murray are attributed to distinct provenances and/or sorting during transport. We will discuss the implications of the trends and composition of the Murray above

  18. Preparation of Authigenic Pyrite from Methane-bearing Sediments for In Situ Sulfur Isotope Analysis Using SIMS.

    PubMed

    Lin, Zhiyong; Sun, Xiaoming; Peckmann, Jörn; Lu, Yang; Strauss, Harald; Xu, Li; Lu, Hongfeng; Teichert, Barbara M A

    2017-08-31

    Different sulfur isotope compositions of authigenic pyrite typically result from the sulfate-driven anaerobic oxidation of methane (SO4-AOM) and organiclastic sulfate reduction (OSR) in marine sediments. However, unravelling the complex pyritization sequence is a challenge because of the coexistence of different sequentially formed pyrite phases. This manuscript describes a sample preparation procedure that enables the use of secondary ion mass spectroscopy (SIMS) to obtain in situ δ 34 S values of various pyrite generations. This allows researchers to constrain how SO4-AOM affects pyritization in methane-bearing sediments. SIMS analysis revealed an extreme range in δ 34 S values, spanning from -41.6 to +114.8‰, which is much wider than the range of δ 34 S values obtained by the traditional bulk sulfur isotope analysis of the same samples. Pyrite in the shallow sediment mainly consists of 34 S-depleted framboids, suggesting early diagenetic formation by OSR. Deeper in the sediment, more pyrite occurs as overgrowths and euhedral crystals, which display much higher SIMS δ 34 S values than the framboids. Such 34 S-enriched pyrite is related to enhanced SO4-AOM at the sulfate-methane transition zone, postdating OSR. High-resolution in situ SIMS sulfur isotope analyses allow for the reconstruction of the pyritization processes, which cannot be resolved by bulk sulfur isotope analysis.

  19. Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporite basin of the Carpathian Foredeep, southern Poland

    NASA Astrophysics Data System (ADS)

    Kasprzyk, Alicja

    2003-05-01

    Anhydrite deposits are widely distributed in the Middle Miocene Badenian evaporite basin of Poland, including the marginal sulphate platform and adjacent salt depocenter. Particular sedimentological, petrographic and geochemical characteristics of these anhydrite deposits and especially common pseudomorphic features, inherited from the precursor gypsum deposits, allow the interpretation of the original sedimentary facies. The observed facies distribution and succession (lower and upper members) reveal three distinct facies associations that record a range of depositional environments from nearshore to deeper basinal settings. Platform sulphates were deposited in subaerial and shallow-marine environments (shoreline and inner platform-lagoon system) mainly as autochthonous selenitic gypsum. This was reworked and redistributed into deeper waters (outer platform-lagoon, slope and the proximal basin floor system) to form resedimented facies composed mostly of allochthonous clastic gypsum and minor anhydrite. The general variation in petrographic and geochemical compositions of anhydrite lithofacies of the lower and upper members reflects the brine evolution, as the result of interactions between seawater, meteoric runoff and highly saline, residual pore fluids. The results indicate the importance of synsedimentary and diagenetic anhydritisation processes in formation of the Badenian anhydrite lithofacies, all of which preserve the original depositional features of the former gypsum. This also applies to the basinal anhydrite previously interpreted to have a depositional genesis. Two different genetic patterns of anhydrite have been reinforced by this study: (1) synsedimentary anhydritisation of gypsum deposits by highly concentrated brines or elevated temperatures in surficial to shallow-burial environments (lower member), and (2) successive phases (syndepositional de novo growth, early diagenetic to late diagenetic replacement of former gypsum) of anhydrite formation

  20. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis

    USGS Publications Warehouse

    Murray, R.W.; Buchholtz ten Brink, Marilyn R.; Gerlach, David C.; Russ III, G. Price; Jones, David L.

    1992-01-01

    Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 ≥ 98 wt%. This contrast in SiO2 (and SiAl">SiAl) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and SiAl">SiAl ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert.The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from

  1. Eogenetic siderite as an indicator for fluctuations in sedimentation rate in the Oligocene Boom Clay Formation (Belgium)

    NASA Astrophysics Data System (ADS)

    Laenen, B.; De Craen, M.

    2004-01-01

    Horizons with septarian concretions are a salient feature of the marine Boom Clay Formation. At most horizons, the concretions consist of ferroan calcite with variable amounts of pyrite, but at stratigraphic level S60 they also contain siderite. S60 is situated at the centre of an intensely bioturbated zone that is underlain by a pyrite-rich layer. Furthermore, the enclosing clay is strongly enriched in iron, manganese and phosphorous. The sedimentological and chemical zoning is indicative for low sedimentation rates, which allowed the concentration of iron in the aerobic zone of the sediment. Concentration of iron was the prerequisite for the formation of the siderite-containing concretions. The co-precipitation with pyrite is an argument for a formation in the sulphate reduction zone, and is indicative for a high rate of iron-reduction. The latter was due to the rapid burial of the iron-enriched layer below the redox boundary. The abrupt fluctuations in sedimentation rate were a response to the maximum flooding event of the second Rupelian third-order relative sea-level cycle, which caused a brief pushback of the detrital sediment wedge to its source areas. As this response is logically explained by the general sequence stratigraphic model [Spec. Publ.-Soc. Econ. Paleontol. Mineral. 42 (1988) 109], early diagenetic siderite may be widespread at maximum flooding surfaces in rapidly prograding marine mudstones.

  2. Reactive Fe(II) layers in deep-sea sediments

    NASA Astrophysics Data System (ADS)

    König, Iris; Haeckel, Matthias; Drodt, Matthias; Suess, Erwin; Trautwein, Alfred X.

    1999-05-01

    The percentage of the structural Fe(II) in clay minerals that is readily oxidized to Fe(III) upon contact with atmospheric oxygen was determined across the downcore tan-green color change in Peru Basin sediments. This latent fraction of reactive Fe(II) was only found in the green strata, where it proved to be large enough to constitute a deep reaction layer with respect to the pore water O 2 and NO 3-. Large variations were detected in the proportion of the reactive Fe(II) concentration to the organic matter content along core profiles. Hence, the commonly observed tan-green color change in marine sediments marks the top of a reactive Fe(II) layer, which may represent the major barrier to the movement of oxidation fronts in pelagic subsurface sediments. This is also demonstrated by numerical model simulations. The findings imply that geochemical barriers to pore water oxidation fronts form diagenetically in the sea floor wherever the stage of iron reduction is reached, provided that the sediments contain a significant amount of structural iron in clay minerals.

  3. 210Pb, 137Cs and 7Be in the sediments of coastal lakes on the polish coast: Implications for sedimentary processes.

    PubMed

    Woszczyk, Michał; Poręba, Grzegorz; Malinowski, Łukasz

    2017-04-01

    In this study we combined radioisotopes ( 210 Pb, 137 Cs and 7 Be) and hydrodynamic modeling to investigate sedimentary processes in three coastal lakes on the Polish Baltic coast. The research aimed at establishing the depth of sediment mixing and its effects on sediment geochemistry as well as showing the relationship between lake water salinity and radionuclide distribution in the sediment cores. We established that the intensity of mixing displayed appreciable variability throughout the lakes and the thickness of sediment mixing layer was between <2 and 22 cm. The mixing was primarily due to wind-induced waves. The vertical mixing was shown to shift sulfidation of the sediments towards deeper layers. We found that the distributions of radioisotopes, 137 Cs in particular, in the sediment cores from coastal lakes were strongly affected by the early diagenetic processes, which caused diffusive migration of radionuclides. The inventories of 210 Pb ex and 137 Cs in the lakes were positively related to salinity. The high inventories of both isotopes (3.2-10.9 kBq ·m -2 for 210 Pb ex and 3.0-6.0 kBq·m -2 for 137 Cs) in coastal lakes were explained by enhanced sedimentation within estuarine mixing zone and delivery of "additional" 210 Pb and 137 Cs to the lakes during saltwater ingressions. The results of this study have implications for the paleolimnology, sedimentology and biogeochemistry of coastal lakes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment

    NASA Astrophysics Data System (ADS)

    Alperin, M. J.; Albert, D. B.; Martens, C. S.

    1994-11-01

    Dissolved organic carbon (DOC) concentrations in anoxic marine sediments are controlled by at least three processes: (1) production of nonvolatile dissolved compounds, such as peptides and amino acids, soluble saccharides and fatty acids, via hydrolysis of particulate organic carbon (POC). (2) conversion of these compounds to volatile fatty acids and alcohols by fermentative bacteria. (3) consumption of volatile fatty acids and alcohols by terminal bacteria, such as sulfate reducers and methanogens. We monitored seasonal changes in concentration profiles of total DOC, nonacid-volatile (NAV) DOC and acid-volatile (AV) DOC in anoxic sediment from Cape Lookout Bight, North Carolina, USA, in order to investigate the factors that control seasonal variations in rates of hydrolysis, fermentation, and terminal metabolism. During the winter months, DOC concentrations increased continuously from 0.2 mM in the bottomwater to ~4 mM at a depth of 36 cm in the sediment column. During the summer, a large DOC maximum developed between 5 and 20 cm, with peak concentrations approaching 10 mM. The mid-depth summertime maximum was driven by increases in both NAV- and AV-DOC concentrations. Net NAV-DOC reaction rates were estimated by a diagenetic model applied to NAV-DOC concentration profiles. Depth-integrated production rates of NAV-DOC increased from February through July, suggesting that net rates of POC hydrolysis during this period are controlled by temperature. Net consumption of NAV-DOC during the late summer and early fall suggests reduced gross NAV-DOC production rates, presumably due to a decline in the availability of labile POC. A distinct subsurface peak in AV-DOC concentration developed during the late spring, when the sulfate depletion depth shoaled from 25 to 10 cm. We hypothesize that the AV-DOC maximum results from a decline in consumption by sulfate-reducing bacteria (due to sulfate limitation) and a lag in the development of an active population of methanogenic

  5. Detrital illite crystals identified from crystallite thickness measurements in siliciclastic sediments

    USGS Publications Warehouse

    Aldega, L.; Eberl, D.D.

    2005-01-01

    Illite crystals in siliciclastic sediments are heterogeneous assemblages of detrital material coming from various source rocks and, at paleotemperatures >70 ??C, of superimposed diagenetic modification in the parent sediment. We distinguished the relative proportions of 2M1 detrital illite and possible diagenetic 1Md + 1M illite by a combined analysis of crystal-size distribution and illite polytype quantification. We found that the proportions of 1Md + 1M and 2M1 illite could be determined from crystallite thickness measurements (BWA method, using the MudMaster program) by unmixing measured crystallite thickness distributions using theoretical and calculated log-normal and/or asymptotic distributions. The end-member components that we used to unmix the measured distributions were three asymptotic-shaped distributions (assumed to be the diagenetic component of the mixture, the 1Md + 1M polytypes) calculated using the Galoper program (Phase A was simulated using 500 crystals per cycle of nucleation and growth, Phase B = 333/cycle, and Phase C = 250/ cycle), and one theoretical log-normal distribution (Phase D, assumed to approximate the detrital 2M1 component of the mixture). In addition, quantitative polytype analysis was carried out using the RockJock software for comparison. The two techniques gave comparable results (r2 = 0.93), which indicates that the unmixing method permits one to calculate the proportion of illite polytypes and, therefore, the proportion of 2M1 detrital illite, from crystallite thickness measurements. The overall illite crystallite thicknesses in the samples were found to be a function of the relative proportions of thick 2M1 and thin 1Md + 1M illite. The percentage of illite layers in I-S mixed layers correlates with the mean crystallite thickness of the 1Md + 1M polytypes, indicating that these polytypes, rather than the 2M1 polytype, participate in I-S mixed layering.

  6. Remote detection of fluid-related diagenetic mineralogical variations in the Wingate Sandstone at different spatial and spectral resolutions

    NASA Astrophysics Data System (ADS)

    Okyay, Unal; Khan, Shuhab D.

    2016-02-01

    Well-exposed eolian units of the Jurassic system on the Colorado Plateau including the Wingate Sandstone, show prominent color variations throughout southeastern Utah due to diagenetic changes that include precipitation and/or removal of iron oxide, clay, and carbonate cement. Spatially variable characteristic diagenetic changes suggest fluid-rock interactions through the sandstone. Distinctive spectral signatures of diagenetic minerals can be used to map diagenetic mineral variability and possibly fluid-flow pathways. The main objective of this work was to identify characteristic diagenetic minerals, and map their spatial variability from regional to outcrop scale in Wingate Sandstone exposures of Lisbon Valley, Utah. Laboratory reflectance spectroscopy analysis of the samples facilitated identification of diagnostic spectral characteristics of the common diagenetic minerals and their relative abundances between altered and unaltered Wingate Sandstone. Comparison of reflectance spectroscopy with satellite, airborne, and ground-based imaging spectroscopy data provided a method for mapping and evaluating spatial variations of diagenetic minerals. The Feature-oriented Principal Component Selection method was used on Advanced Spaceborne Thermal Emission and Reflection Radiometer data so as to map common mineral groups throughout the broader Wingate Sandstone exposure in the area. The Minimum Noise Fraction and Spectral Angle Mapper methods were applied on airborne HyMap and ground-based hyperspectral imaging data to identify and map mineralogical changes. The satellite and airborne data showed that out of 25.55 km2 total exposure of Wingate Sandstone in Lisbon Valley, unaltered sandstone cover 12.55 km2, and altered sandstone cover 8.90 km2 in the northwest flank and 5.09 km2 in the southern flank of the anticline. The ground-based hyperspectral data demonstrated the ability to identify and map mineral assemblages with two-dimensional lateral continuity on near

  7. Testing lagoonal sediments with early life stages of the copepod Acartia tonsa (Dana): An approach to assess sediment toxicity in the Venice Lagoon.

    PubMed

    Picone, Marco; Bergamin, Martina; Delaney, Eugenia; Ghirardini, Annamaria Volpi; Kusk, Kresten Ole

    2018-01-01

    The early-life stages of development of the calanoid copepod Acartia tonsa from egg to copepodite I is proposed as an endpoint for assessing sediment toxicity by exposing newly released eggs directly onto the sediment-water interface. A preliminary study of 5 sediment samples collected in the lagoon of Venice highlighted that the larval development rate (LDR) and the early-life stages (ELS) mortality endpoints with A. tonsa are more sensitive than the standard amphipod mortality test; moreover LDR resulted in a more reliable endpoint than ELS mortality, due to the interference of the sediment with the recovery of unhatched eggs and dead larvae. The LDR data collected in a definitive study of 48 sediment samples from the Venice Lagoon has been analysed together with the preliminary data to evaluate the statistical performances of the bioassay (among replicate variance and minimum significant difference between samples and control) and to investigate the possible correlation with sediment chemistry and physical properties. The results showed that statistical performances of the LDR test with A. tonsa correspond with the outcomes of other tests applied to the sediment-water interface (Strongylocentrotus purpuratus embryotoxicity test), sediments (Neanthes arenaceodentata survival and growth test) and porewater (S. purpuratus); the LDR endpoint did, however, show a slightly higher variance as compared with other tests used in the Lagoon of Venice, such as 10-d amphipod lethality test and larval development with sea urchin and bivalves embryos. Sediment toxicity data highlighted the high sensitivity and the clear ability of the larval development to discriminate among sediments characterized by different levels of contamination. The data of the definitive study evidenced that inhibition of the larval development was not affected by grain-size and the organic carbon content of the sediment; in contrast, a strong correlation between inhibition of the larval development

  8. Geochemical gradients within modern and fossil shells of Concholepas concholepas from northern Chile: an insight into U-Th systematics and diagenetic/authigenic isotopic imprints in mollusk shells

    NASA Astrophysics Data System (ADS)

    Labonne, Maylis; Hillaire-Marcel, Claude

    2000-05-01

    Seriate geochemical measurements through shells of one modern, one Holocene, and two Sangamonian Concholepas concholepas, from marine terraces of Northern Chile, were performed to document diagenetic vs. authigenic geochemical signatures, and to better interpret U-series ages on such material. Subsamples were recovered by drilling from the outer calcitic layer to the inner aragonitic layer of each of the studied shells. Unfortunately, this sampling procedure induces artifacts, notably the convertion of up to ˜20% of calcite into aragonite, and of up to ˜6% of aragonite into calcite, as well as in the epimerization of a few percent of isoleucine into D-alloisoleucine/ L-isoleucine. Negligible sampling artifacts were noticed for stable isotope and total amino acid contents. Diagenetic effects on the geochemical properties of the shells are particularly pronounced in the inner aragonitic layer and more discrete in the outer calcitic layer. The time-dependent decay of the organic matrix of the shell is illustrated by a one order of magnitude lower total amino acid content in the Sangamonian specimens by comparison with the modern shell. Conversely, the Sangamonian shells U contents increase by a similar factor and 13C- 18O enrichments as high as 2 to 3‰ seem also to occur through the same time interval possibly due to partial replacement of aragonite by gypsum. The decay of the organic matrix of the aragonitic layer of the shell is thought to play a major role with respect to U-uptake processes and stable isotope shifts. Nevertheless, asymptotic 230Th-ages (˜100 ka) in the inner U-rich layers of the Sangamonian shells, and 234U/ 238U ratios compatible with a marine origin for U, suggest U-uptake within a short diagenetic interval, when marine waters were still bathing the embedding sediment. Thus, U-series ages on fossil mollusks from such a hyper-arid environment should not differ much from the age of the corresponding marine unit deposition. However, the

  9. Compaction bands in high temperature/pressure diagenetically altered unconventional shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Veveakis, M.; Poulet, T.

    2014-12-01

    Unconventional energy and mineral resources are typically trapped in a low porosity/permeability environment and are difficult to produce. An extreme end-member is the shale gas reservoir in the Cooper Basin (Australia) that is located at 3500-4000 m depth and ambient temperature conditions around 200oC. Shales of lacustrine origin (with high clay content) are diagenetically altered. Diagenesis involves fluid release mineral reactions of the general type Asolid ↔ Bsolid +Cfluid and switches on suddenly in the diagenetic window between 100-200oC. Diagenetic reactions can involve concentrations of smectite, aqueous silica compound, illite, potassium ions, aqueous silica, quartz, feldspar, kerogen, water and gas . In classical petroleum engineering such interlayer water/gas release reactions are considered to cause cementation and significantly reduce porosity and permeability. Yet in contradiction to the expected permeability reduction gas is successfully being produced. We propose that the success is based on the ductile equivalent of classical compaction bands in solid mechanics. The difference being that that the rate of the volumetric compaction is controlled by the diagenetic reactions. Ductile compaction bands are forming high porosity fluid channels rather than low porosity crushed grains in the solid mechanical equivalent. We show that this new type of volumetric instability appears in rate-dependent heterogenous materials as Cnoidal waves. These are nonlinear and exact periodic stationary waves, well known in the shallow water theory of fluid mechanics. Their distance is a direct function of the hydromechanical diffusivities. These instabilities only emerge in low permeability environment where the fluid diffusivity is about an order of magnitude lower than the mechanical loading. The instabilities are expected to be of the type as shown in the image below. The image shows a CT-scan of a laboratory experiment kindly provided by Papamichos (pers

  10. Recognition of primary and diagenetic magnetizations to determine the magnetic polarity record and timing of deposition of the moat-fill rocks of the Oligocene Creede Caldera, Colorado

    USGS Publications Warehouse

    Reynolds, Richard L.; Rosenbaum, Joseph G.; Sweetkind, Donald S.; Lanphere, Marvin A.; Robert, Andrew P.; Verosub, Kenneth L.

    2000-01-01

    Sedimentary and volcaniclastic rocks of the Oligocene Creede Formation fill the moat of the Creede caldera, which formed at about 26.9 Ma during the eruption of the Snowshoe Mountain Tuff. Paleomagnetic and rock magnetic studies of two cores (418 and 703 m long) that penetrated the lower half of the Creede Formation, in addition to paleomagnetic and isotopic dating studies of stratigraphically bracketing volcanic units, provide information on the age and the time span of sedimentation of the caldera fill. Normal polarity magnetization are found in Snowshoe Mountain Tuff beneath the moat sediments; in detrital-magnetite-bearing graded tuffs near the bottom of the moat fill; in an ash-fall deposit about 200 m stratigraphically about the top of core 2; and in postcaldera lava flows of the Fisher Dacite that overlie the Creede Formation. Normal polarity also characterizes detrital-magnetite-bearing tuff and sandstone unites within the caldera moat rocks that did not undergo severe sulfidic alteration. The combination of initially low magnitude of remanent magnetization and the destructive effects of subsequent diagenetic sulfidization on detrital iron oxides results in a poor paleomagnetic record for the fine-grained sedimentary rocks of the Creede Formation. these fine-grained rocks have either normal or revered polarity magnetizations that are carried by magnetite and/or maghemite. Many more apparent reversals are found that can be accommodated by any geomagnetic polarity time scale over the interval spanned by the ages of the bracketing extrusive rocks. Moreover, opposite polarity magnetization are found in specimens separated by only a few centimeters, without intervening hiatuses, and by specimens in several tuff beds, each of which represents a single depositional event. These polarity changes cannot, therefore, be attributed to detrital remanent magnetization. Many polarity changes are apparently related to chemical remanent magnetizations carried by

  11. Trace element and isotope geochemistry of Cretaceous-Tertiary boundary sediments: identification of extra-terrestrial and volcanic components

    NASA Technical Reports Server (NTRS)

    Margolis, S. V.; Doehne, E. F.

    1988-01-01

    Trace element and stable isotope analyses were performed on a series of sediment samples crossing the Cretaceous-Tertiary (K-T) boundary from critical sections at Aumaya and Sopelano, Spain. The aim is to possibly distinguish extraterrestrial vs. volcanic or authigenic concentration of platinum group and other elements in K-T boundary transitional sediments. These sediments also have been shown to contain evidence for step-wise extinction of several groups of marine invertebrates, associated with negative oxygen and carbon isotope excursions occurring during the last million years of the Cretaceous. These isotope excursions have been interpreted to indicate major changes in ocean thermal regime, circulation, and ecosystems that may be related to multiple events during latest Cretaceous time. Results to date on the petrographic and geochemical analyses of the Late Cretaceous and Early Paleocene sediments indicate that diagenesis has obviously affected the trace element geochemistry and stable isotope compositions at Zumaya. Mineralogical and geochemical analysis of K-T boundary sediments at Zumaya suggest that a substantial fraction of anomalous trace elements in the boundary marl are present in specific mineral phases. Platinum and nickel grains perhaps represent the first direct evidence of siderophile-rich minerals at the boundary. The presence of spinels and Ni-rich particles as inclusions in aluminosilicate spherules from Zumaya suggests an original, non-diagenetic origin for the spherules. Similar spherules from southern Spain (Caravaca), show a strong marine authigenic overprint. This research represents a new approach in trying to directly identify the sedimentary mineral components that are responsible for the trace element concentrations associated with the K-T boundary.

  12. Mechanisms for creating accommodation space during early Tertiary sedimentation in Tibet.

    NASA Astrophysics Data System (ADS)

    Studnicki-Gizbert, C.; Burchfiel, B. C.

    2003-12-01

    The Tibetan plateau is for the most part underlain by rocks of pre-Cenozoic age, a fact that has hindered the identification of Cenozoic shortening structures that can be unequivocally related to the effects of India-Asia collision. Notably, however, the Qiangtang block contains a number of small, short wavelength basins filled with terrestrial sediments of early Tertiary age. Where these basins have been well studied, sedimentation is recognized as having occurred coevally with compressional deformation. The classic treatment of compressional basins appeals to accommodation space created by the flexure of an elastic plate in response to loads created by adjacent thrust fault bound ranges. It is unlikely that the Tertiary basins of the Qiangtang block formed in this manner. The wavelength of a classically modelled flexural basin is a basically a function of the thickness of the elastic plate and the density difference between sedimentary fill and ductile material underlying the plate. Assuming a model of elastic flexure, the very small wavelengths (5 - 30km) characteristic of Qiangtang basins would then imply extremely thin (~ 1-5 km) effective elastic plate thicknesses. These very low values are difficult to reconcile with any reasonable characterization of crustal rheology. Instead, these relatively small basins likely record the creation of accommodation space created by differential uplift across the strike of folds and faults. Stratal geometries and sedimentation rates reflect the kinematics and geometries of local compressional structures and the mechanical basis for the creation of accommodation space remains uncertain. Finally, the origin of these basins makes it unlikely that early Tertiary sedimentation represents a significant fraction of the upper crust of Tibetan plateau.

  13. Diagenetic controls on reservoir heterogeneity in St. Peter Sandstone, deep Michigan basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, D.A.; Turmelle, T.M.; Adam, R.

    1989-03-01

    The St. Peter Sandstone is a highly productive gas and condensate reservoir throughout the central part of the Michigan basin. Production occurs in several intervals: a laterally continuous zone at the top of the formation typified in the Woodville, Falmouth, and Rose City fields and less continuous intervals lower in the formation typified in the Ruwe Gulf zone of the Reed City field. Porosity is not limited to hydrocarbon productive zones, however. Diagenesis has dramatically modified primary mineralogy and textures in the formation. Dominant diagenetic components are quartz, dolomite, and clay authigenic cements, extensive chemical compaction, and pervasive mineral leaching.more » Their model for sandstone diagenesis is consistent throughout the basin. Variation in the significance of these diagenetic components is strongly templated by stratigraphically predictable facies variations within the St. Peter Sandstone.« less

  14. (S, C, O, Sr) isotopic constraints on the diagenetic evolution of the COX clay formations at the Bure URL site, Paris Basin)

    NASA Astrophysics Data System (ADS)

    Lerouge, C.; Gaucher, E. C.; Tournassat, C.; Agrinier, P.; Widory, D.; Guerrot, C.; Buschaert, S.

    2009-04-01

    The Underground Research Laboratory of Bure, located in the Eastern part of the Paris Basin, was selected by ANDRA (French Agency for Nuclear Management) in order to study the feasibility of a nuclear waste disposal in the Callovian-Oxfordian thick clayey formation at 400 meters depth. Since 1994's, numerous investigations have been initiated to understand and predict the behaviour of the clay formation in time and in space, by constraining its stability, the chemical evolution of the porewaters, and solution transfers between the clayey formation and its adjacent limestone sequences during geological times (ANDRA, 2005). In that way, this study presents combined new mineralogical and isotopic data of the diagenetic mineral sequence to constrain the porewater chemistry of the rock at different stages of the sedimentary then burial history of the clayey formation. The petrological study of Callovian-Oxfordian claystones provided evidence of the following diagenetic mineral sequence: 1) Framboïdal pyrite ± micritic calcite in replacement of carbonate bioclasts and in bioturbations, 2) Iron-rich euhedral carbonates (ankerite, sideroplesite), Glauconite, 3) Sparry dolomite, celestite in residual porosity, 4) Chalcedony 5) quartz/calcite. Pyrite in bioturbations shows a wide range of δ34S (-38 to +74 permil/CDT), providing evidence of bacterial sulphate reduction processes. The lowest negative values (-38 to -22 permil) indicate precipitation of pyrite in a marine environment with a permanent recharge in sulphate, whereas the higher pyrite δ34S values (-14 up to +74 permil) show that pyrite precipitated in a system that closed for sulphate. Consequently the variations of pyrite δ34S in bioturbations along the lithostratigraphic profil indicate a change of sedimentation conditions from a deep marine environment to an environment with alternative recharge of marine sulphates; that is consistent with the transgression/regression cycle observed in the middle sequence

  15. Early diagenetic high-magnesium calcite and dolomite indicate that coal balls formed in marine or brackish water: Stratigraphic and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Raymond, Anne

    2016-04-01

    Coal balls are carbonate and pyrite permineralizations of peat that contain three-dimensional plant fossils preserved at the cellular level. Coal balls, which occur in Pennsylvanian and earliest Permian equatorial coals, provide a detailed record of terrestrial ecology and tropical climate during the Late Paleozoic Ice Age; yet their depositional environment remains controversial. The exquisite preservation of some coal-ball fossils, e.g. pollen with pollen tubes and leaves with mesophyll, indicates rapid formation. The presence of abundant, cement-filled, void spaces within and between the plant debris in most coal balls indicates that they formed in uncompacted peat, near the surface of the mire. Botanical, taphonomic and isotopic evidence point to a freshwater origin for coal balls. The nearest living relatives of coal ball plants (modern lycopsids, sphenopsids, marratialean ferns and conifers) grow in fresh water. Coal-ball peat contains a high percentage of aerial debris, similar to modern freshwater peat. The stable oxygen isotopes of coal-ball carbonate (δ18O = 16 to 3 per mil) suggest a freshwater origin. However, the widespread occurrence of marine invertebrates and early diagenetic framboidal pyrite in coal balls suggests that many formed in close proximity to marine water. Indeed, carbonate petrology points to a marine or brackish water origin for the first-formed carbonate cements in coal balls. Petrographic and geochemical (microprobe) analysis of coal-ball carbonates in Pennsylvanian coals from the midcontinent of North America (Western Interior Basin, West Pangaea) and the Ruhr and Donets Basins (East Pangaea) indicate that the first formed carbonate is either radaxial, nonstochiometric dolomite or high magnesium calcite (9 - 17 mol % MgCO3, indicating precipitation in marine or brackish water. Although both primary dolomite and high magnesium calcite can form in lacustrine settings, the lakes in which these minerals form occur in carbonate terranes

  16. Origin of stratiform sediment-hosted manganese carbonate ore deposits: Examples from Molango, Mexico, and TaoJiang, China

    USGS Publications Warehouse

    Okita, P.M.; Shanks, Wayne C.

    1992-01-01

    space, suggest they were formed similarly by MnO2 precipitation at the margins of dysaerobic to anoxic marine basins. Mn-carbonate formed predominantly by early-diagenetic reduction of Mn-oxides via oxidation of organic matter in near-surface sediments. In addition to MnCO3 precipitation, organic matter oxidation reactions resulted in oxidation of FeS to Fe-oxides such as magnetite, maghemite and hematite. The latter process explains anomalously low pyrite content and abundant Fe-oxide minerals in ore zones dominated by rhodochrosite. ?? 1992.

  17. Aragonite preservation in late Quaternary sediment cores on the Brazilian Continental Slope: implications for intermediate water circulation

    NASA Astrophysics Data System (ADS)

    Gerhardt, S.; Groth, H.; Rühlemann, C.; Henrich, R.

    We present late Quaternary records of aragonite preservation determined for sediment cores recovered on the Brazilian Continental Slope (1790-2585m water depth) where North Atlantic Deep Water (NADW) dominates at present. We have used various indirect dissolution proxies (carbonate content, aragonite/calcite contents, and sand percentages) as well as gastropodal abundances and fragmentation of Limacina inflata to determine the state of aragonite preservation. In addition, microscopic investigations of the dissolution susceptibility of three Limacina species yielded the Limacina Dissolution Index which correlates well with most of the other proxies. Excellent preservation of aragonite was found in the Holocene section, whereas aragonite dissolution gradually increases downcore. This general pattern is attributed to an overall increase in aragonite corrosiveness of pore waters. Overprinted on this early diagenetic trend are high-frequency fluctuations of aragonite preservation, which may be related to climatically induced variations of intermediate water masses.

  18. Depositional and diagenetic variability within the Cambrian Mount Simon Sandstone: Implications for carbon dioxide sequestration

    USGS Publications Warehouse

    Bowen, B.B.; Ochoa, R.I.; Wilkens, N.D.; Brophy, J.; Lovell, T.R.; Fischietto, N.; Medina, C.R.; Rupp, J.A.

    2011-01-01

    The Cambrian Mount Simon Sandstone is the major target reservoir for ongoing geologic carbon dioxide (CO2) sequestration demonstrations throughout the midwest United States. The potential CO2 reservoir capacity, reactivity, and ultimate fate of injected CO2 depend on textural and compositional properties determined by depositional and diagenetic histories that vary vertically and laterally across the formation. Effective and efficient prediction and use of the available pore space requires detailed knowledge of the depositional and diagenetic textures and mineralogy, how these variables control the petrophysical character of the reservoir, and how they vary spatially. Here, we summarize the reservoir characteristics of the Mount Simon Sandstone based on examination of geophysical logs, cores, cuttings, and analysis of more than 150 thin sections. These samples represent different parts of the formation and depth ranges of more than 9000 ft (>2743 m) across the Illinois Basin and surrounding areas. This work demonstrates that overall reservoir quality and, specifically, porosity do not exhibit a simple relationship with depth, but vary both laterally and with depth because of changes in the primary depositional facies, framework composition (i.e., feldspar concentration), and diverse diagenetic modifications. Diagenetic processes that have been significant in modifying the reservoir include formation of iron oxide grain coatings, chemical compaction, feldspar precipitation and dissolution, multiple generations of quartz overgrowth cementation, clay mineral precipitation, and iron oxide cementation. These variables provide important inputs for calculating CO2 capacity potential, modeling reactivity, and are also an important baseline for comparisons after CO2 injection. Copyright ??2011. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  19. Diagenetic pathways in deposits of cool- and cold-water carbonate factories

    NASA Astrophysics Data System (ADS)

    Frank, T. D.; James, N. P.

    2017-12-01

    This investigation integrates sedimentological, petrographic, and geochemical observations from modern and ancient heterozoan carbonate deposits that formed at temperate to polar latitudes with the aim of evaluating diagenetic pathways characteristic of these systems. These factories operate under conditions distinct from those of photozoan counterparts. Lower temperatures, higher trophic resources, lower carbonate saturation states, and strong seasonality govern not only the nature of carbonate communities, but also how deposits translate into the rock record. In these settings, carbonate production is entirely biogenic, assemblages are of low diversity, and there are no significant calcareous phototrophs. Aragonitic taxa may be present in living communities, but allochems rapidly disappear via dissolution. Carbonate producers are not capable of building rigid frameworks, so their deposits accumulate as sands and gravels and are prone to winnowing and reworking. Low production rates lead to long seafloor residence times (1000s of years) for grains, which undergo physical reworking, dissolution, and repeated infestation by endolithic borers. Microborings remain empty, increasing grain susceptibility to disintegration. Intergranular cementation on the seafloor is rare and restricted to hardgrounds. Periods of subaerial exposure do not leave traces of meteoric alteration. Results show that the deposits of heterozoan carbonate factories tend enter the geologic record as taphonomic remnants, namely reworked, unconsolidated sands and gravels with low diagenetic potential. During burial, physical and chemical compaction produce limestones with tightly packed, grain-supported fabrics, often with grains in sutured contact. Significant cementation is associated with the deep burial realm. Results reveal a dramatically different diagenetic pathway than is typical for deposits of tropical photozoan factories, in which significant recrystallization and lithification occur on

  20. The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in early Cambrian carbonate settings

    PubMed Central

    Zhang, Li-Jun; Qi, Yong-An; Buatois, Luis A.; Mángano, M. Gabriela; Meng, Yao; Li, Da

    2017-01-01

    Bioturbation plays a substantial role in sediment oxygen concentration, chemical cycling, regeneration of nutrients, microbial activity, and the rate of organic matter decomposition in modern oceans. In addition, bioturbators are ecosystem engineers which promote the presence of some organisms, while precluding others. However, the impact of bioturbation in deep time remains controversial and limited sediment mixing has been indicated for early Paleozoic seas. Our understanding of the actual impact of bioturbation early in the Phanerozoic has been hampered by the lack of detailed analysis of the functional significance of specific burrow architectures. Integration of ichnologic and sedimentologic evidence from North China shows that deep-tier Thalassinoides mazes occur in lower Cambrian nearshore carbonate sediments, leading to intense disruption of the primary fabric. Comparison with modern studies suggest that some of the effects of this style of Cambrian bioturbation may have included promotion of nitrogen and ammonium fluxes across the sediment-water interface, average deepening of the redox discontinuity surface, expansion of aerobic bacteria, and increase in the rate of organic matter decomposition and the regeneration of nutrients. Our study suggests that early Cambrian sediment mixing in carbonate settings may have been more significant than assumed in previous models. PMID:28374857

  1. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2014-09-01

    Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (<0.4 μm) obtained by Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased

  2. Chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Warren, R.G.; Hagan, R.C.

    1986-10-01

    The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, thesemore » tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange.« less

  3. Compositional changes of surface sediments and variability of manganese nodules in the Peru Basin

    NASA Astrophysics Data System (ADS)

    Marchig, Vesna; von Stackelberg, Ulrich; Hufnagel, Heinz; Durn, Goran

    Two types of manganese nodules were observed in the Peru Basin: large botryoidal nodules in basins and small ellipsoidal nodules on slope positions. The sediment in areas with large botryoidal nodules contains a thinner and weaker oxidation zone than the sediment under small ellipsoidal nodules, indicating that diagenetic processes in the sediment, which supply manganese nodules with metals for their growth, are stronger in sediments on which large botryoidal nodules grow. Organic matter, which activates remobilization of metals, occurs mostly in the form of refractory lipidic compounds in the inner capsule of radiolaria. This material needs bacterial degradation to act as a reducing agent. Easily oxidizable organic components could not be found in the sediments. Other changes in sediment composition do not have a link to manganese nodule growth. Biogenous components (radiolarians, organogenic barite and apatite) increase towards the equatorial high-productivity zone. Authigenous clay minerals (nontronite as well as montmorillonite with high Fe +3 incorporation on positions of ochtaedral Al) increase with distance from the continent. The assessment of environmental impacts will have to take into account the regional differences in sediment composition and the small-scale variability of manganese nodules.

  4. Formation and preservation of greigite (Fe3S4) in a thick sediment layer from the central South Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, Jianxing; Mei, Xi; Shi, Xuefa; Liu, Qingsong; Liu, Yanguang; Ge, Shulan

    2018-04-01

    Sediments from continental shelves are sensitive to changes in both oceanic and terrestrial conditions, and, therefore, magnetic minerals in such sediments are affected strongly by depositional and diagenetic processes. Here, we investigated systematically an N-S transect of three sediment cores from the central South Yellow Sea (SYS) muddy area. Magnetic data indicate the presence of a horizontally distributed thick greigite-bearing layer. From an age model based on published magnetostratigraphy, accelerator mass spectrometry 14C dating ages, sedimentary characteristics and foraminiferal analysis, this layer was deposited within marine isotope stages (MIS) 17-13, following an enhanced sulphidic period over MIS 21-19 when the YS Warm Current and the associated YS Cold Water Mass were strong and where underlying sediments have higher total organic carbon, total sulphur and trace element molybdenum contents. Trace element cadmium enrichment in the greigite-bearing layers is documented for the first time, which indicates that weakly sulphidic (i.e. with trace levels of free H2S) conditions existed before greigite formed in a sulphidic environment during early diagenesis. It also indicates that subsequent conditions free of oxygen and H2S after greigite formation are more favourable for its preservation. We propose that organic matter supply was controlled over an extended period by moderate primary productivity. The combined effects of palaeoclimate and local tectonic subsidence were crucial for the formation and preservation of the identified greigite. In brief, our study improves understanding of the formation and preservation mechanisms of greigite in continental shelf sediments and reveals mid-Pleistocene palaeoenvironmental changes in the SYS.

  5. Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Hausrath, E. M.; Ming, D. W.; Peretyazhko, T. S.; Rampe, E. B.

    2018-06-01

    On a planet as cold and dry as present-day Mars, evidence of multiple aqueous episodes offers an intriguing view into very different past environments. Fluvial, lacustrine, and eolian depositional environments are being investigated by the Mars Science Laboratory Curiosity in Gale crater, Mars. Geochemical and mineralogical observations of these sedimentary rocks suggest diagenetic processes affected the sediments. Here, we analyze diagenesis of the Stimson formation eolian parent material, which caused loss of olivine and formation of magnetite. Additional, later alteration in fracture zones resulted in preferential dissolution of pyroxene and precipitation of secondary amorphous silica and Ca sulfate. The ability to compare the unaltered parent material with the reacted material allows constraints to be placed on the characteristics of the altering solutions. In this work we use a combination of a mass balance approach calculating the fraction of a mobile element lost or gained, τ, with fundamental geochemical kinetics and thermodynamics in the reactive transport code CrunchFlow to examine the characteristics of multiple stages of aqueous alteration at Gale crater, Mars. Our model results indicate that early diagenesis of the Stimson sedimentary formation is consistent with leaching of an eolian deposit by a near-neutral solution, and that formation of the altered fracture zones is consistent with a very acidic, high sulfate solution containing Ca, P and Si. These results indicate a range of past aqueous conditions occurring at Gale crater, Mars, with important implications for past martian climate and environments.

  6. Identification and determination of the contribution of iron-steel manufacturing industry to sediment-associated polycyclic aromatic hydrocarbons (PAHs) in a large shallow lake of eastern China.

    PubMed

    Zhang, Liu; Bai, Ya-Shu; Wang, Ji-Zhong; Peng, Shu-Chuan; Chen, Tian-Hu; Yin, Da-Qiang

    2016-11-01

    Seventeen polycyclic aromatic hydrocarbon (PAH) compounds were determined in surface sediments collected from the Chaohu Lake (a large shallow lake in eastern China) and its tributaries. Both diagnostic ratios and a receptor model (positive matrix factorization, PMF) were applied to identify and determine the contribution of a local iron-steel manufacturing plant located in the Nanfei River (NFR) to the Chaohu Lake basin. The results show that sites located in the downstream of the steel plant contained concentrations of 17 PAH (Σ 17 PAH) approximately two orders of magnitudes higher than those from other sites. Five factors were identified by the PMF model, including industrial waste, wood/biomass burning, diagenetic origin, domestic coal combustion, and industrial combustion. Our findings suggest that sediments in the downstream of the plant and in the western part of the Chaohu Lake were predominantly affected by industrial coal combustion. A mixture of pyrolytic origins impacted urban sediments in the upstream of the plant, whereas diagenetic origins along with coal and biomass burning were suggested to influence the eastern part and rural tributaries of the lake. To assess the potential ecological risk and toxicity caused by the iron-steel plant, sediment toxicity was evaluated by the PMF model, sediment quality guideline, and toxic equivalent factors. All of the three approaches suggested PAH accumulation in the NFR sediments could produce significant adverse ecological effects and half of the sediment toxicity in the NFR may be attributed to the emissions from the iron-steel plant. Some rural locations also exhibited PAH concentrations above probable effects, most likely contributed by wood/biomass burning.

  7. Sedimentation, bioturbation, and sedimentary fabric evolution on a modern mesotidal mudflat: A multi-tracer study of processes, rates, and scales

    NASA Astrophysics Data System (ADS)

    Bentley, Samuel J.; Swales, Andrew; Pyenson, Benjamin; Dawe, Justin

    2014-03-01

    A study of muddy tidal-flat sedimentation and bioturbation was undertaken in the Waitetuna Arm of Raglan Harbor, New Zealand, to evaluate the physical and biological processes that control cycling of sediment between the intertidal seabed and sediment-water interface, and also the formation of tidal flat sedimentary fabric and fine-scale stratigraphy. Cores were collected along an intertidal transect, and analyzed for sedimentary fabric, 210Pb and 7Be radiochemical distributions, and grain size. At the same locations, a new approach for time-series core-X-radiography study was undertaken (spanning 191 days), using magnetite-rich sand as a tracer for sedimentation and bioturbation processes in shallow tidal flat sediments. Sedimentary fabric consists of a shallow stratified layer overlying a deeper zone of intensely bioturbated shelly mud. Bioadvection mixes the deeper zone and contributes fine sediment to the surface stratified layer, via biodeposition. Physical resuspension and deposition of surface muds by wave and tidal flow are also likely contributors to formation of the surficial stratified layer, but physical stratification is not observed below this depth. The deliberate tracer study allowed calculation of bioadvection rates that control strata formation, and can be used to model diagenetic processes. Results suggest that the upper ˜15 cm of seabed can be fully mixed over timescales <1.75 y. Such mixing will erase pre-existing sedimentary fabric and transport buried sediment and chemical compounds back to the tidal-flat surface. Shallow biodiffusion also exists, but produces much slower and shallower mass transport. Best fits for 210Pb profiles using a diagenetic bioadvection/sedimentation model and independently measured tiered bioadvection rates suggest that sediment accumulation rates (SARs) on the tidal flat are ˜0.25 cm/y, near the low end of contemporary New Zealand muddy intertidal SARs. Frequent deposition and erosion of the surface layer

  8. Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones

    USGS Publications Warehouse

    Keller, Margaret A.; Macquaker, Joe H.S.; Taylor, Kevin G.; Polya, David

    2014-01-01

    Diagenesis significantly impacts mudstone lithofacies. Processes operating to control diagenetic pathways in mudstones are poorly known compared to analogous processes occurring in other sedimentary rocks. Selected organic-carbon-rich mudstones, from the Kimmeridge Clay and Monterey Formations, have been investigated to determine how varying starting compositions influence diagenesis.The sampled Kimmeridge Clay Formation mudstones are organized into thin homogenous beds, composed mainly of siliciclastic detritus, with some constituents derived from water-column production (e.g., coccoliths, S-depleted type-II kerogen, as much as 52.6% total organic carbon [TOC]) and others from diagenesis (e.g., pyrite, carbonate, and kaolinite). The sampled Monterey Formation mudstones are organized into thin beds that exhibit pelleted wavy lamination, and are predominantly composed of production-derived components including diatoms, coccoliths, and foraminifera, in addition to type-IIS kerogen (as much as 16.5% TOC), and apatite and silica cements.During early burial of the studied Kimmeridge Clay Formation mudstones, the availability of detrital Fe(III) and reactive clay minerals caused carbonate- and silicate-buffering reactions to operate effectively and the pore waters to be Fe(II) rich. These conditions led to pyrite, iron-poor carbonates, and kaolinite cements precipitating, preserved organic carbon being S-depleted, and sweet hydrocarbons being generated. In contrast, during the diagenesis of the sampled Monterey Formation mudstones, sulfide oxidation, coupled with opal dissolution and the reduced availability of both Fe(III) and reactive siliciclastic detritus, meant that the pore waters were poorly buffered and locally acidic. These conditions resulted in local carbonate dissolution, apatite and silica cements precipitation, natural kerogen sulfurization, and sour hydrocarbons generation.Differences in mud composition at deposition significantly influence subsequent

  9. Geochemistry of recent aragonite-rich sediments in Mediterranean karstic marine lakes: Trace elements as pollution and palaeoredox proxies and indicators of authigenic mineral formation.

    PubMed

    Sondi, Ivan; Mikac, Nevenka; Vdović, Neda; Ivanić, Maja; Furdek, Martina; Škapin, Srečo D

    2017-02-01

    This study investigates the geochemical characteristics of recent shallow-water aragonite-rich sediments from the karstic marine lakes located in the pristine environment on the island of Mljet (Adriatic Sea). Different trace elements were used as authigenic mineral formation, palaeoredox and pollution indicators. The distribution and the historical record of trace elements deposition mostly depended on the sedimentological processes associated with the formation of aragonite, early diagenetic processes governed by the prevailing physico-chemical conditions and on the recent anthropogenic activity. This study demonstrated that Sr could be used as a proxy indicating authigenic formation of aragonite in a marine carbonate sedimentological environment. Distribution of the redox sensitive elements Mo, Tl, U and Cd was used to identify changes in redox conditions in the investigated lake system and to determine the geochemical cycle of these elements through environmental changes over the last 100 years. The significant enrichment of these elements and the presence of early formed nanostructured authigenic framboidal pyrite in laminated deeper parts of sediment in Malo Jezero, indicate sporadic events of oxygen-depleted euxinic conditions in the recent past. Concentrations of trace elements were in the range characteristic for non-contaminated marine carbonates. However, the increase in the concentrations of Zn, Cu, Pb, Sn, Bi in the upper-most sediment strata of Veliko Jezero indicates a low level of trace element pollution, resulting from anthropogenic inputs over the last 40 years. The presence of butyltin compounds (BuTs) in the surface sediment of Veliko Jezero additionally indicates the anthropogenic influence in the recent past. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The metal oxide fraction of pelagic sediment in the equatorial North Pacific Ocean: A source of metals in ferromanganese nodules

    USGS Publications Warehouse

    Piper, D.Z.

    1988-01-01

    Pelagic sediment recovered at DOMES Site A in the equatorial North Pacific (151??W, 9?? 15???N) consists of a surface homogeneous layer, approximately 10 cm thick, overlying a strongly mottled layer that is lighter in color. The radiolarian composition of both units is Quaternary. In areas where this sediment was only a few centimeters thick, the underlying sediment was early Tertiary. Clay mineralogy and major oxide composition of the two Quaternary sediments are uniform. Their similarity to continental shale suggests that the sediment has a terrigenous source. Clay mineralogy and major oxide composition of the Tertiary sediment also are uniform, although they differ markedly from the Quarternary sediment. In contrast to the major oxides, concentrations of Mn, Co, Cu, and Ni soluble in hydroxylamine hydrochlorideacetic acid are strongly different in the surface and subsurface Quaternary sediment. Mn and Ni exhibit pronounced depletions in the subsurface sediment, Ni slightly more than Mn. Cu is also depleted in the subsurface sediment, but less than Mn. It is also depleted in the subsurface Tertiary sediment, whereas the Mn concentration remains high. Concentration of Co relative to Mn increases into the subsurface Quaternary sediment to a constant Co:Mn ratio of 3 ?? 10-2. The trivalent REE (the REE exclusive of Ce) and Fe exhibit little down-core variation. Distribution of elements in these sediments is closely related to their concentration in associated surface ferromanganese nodules. The nodules are of two distinct types: those from the area where the Quaternary sediment is relatively thick have ??-MnO2 as the dominant manganese mineral. The ratios of Ni:Mn, Cu:Mn, and Fe:Mn in these nodules approximate the corresponding ratios of the soluble fraction of surface sediment. Todorokite is the dominant mineral of nodules recovered from areas where the Quaternary sediment is thin. Relatively high Cu/Mn, Ni/Mn, and low Fe/Mn ratios of these nodules mirror

  11. Evaporite geometries and diagenetic traps, lower San Andres, Northwest shelf, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, D.R.

    An east-west-trending belt of lower San Andres oil fields extends 80 mi across southeastern New Mexico from the Pecos River near Roswell to the Texas-New Mexico border. These fields are along a porosity pinch-out zone where porous carbonates grade laterally into bedded anhydrite and halite. The lower San Andres traps are associated with pre-Tertiary structural or stratigraphic traps. Oil and water production relationships from these fields are not consistent with present-day structure. These fields have been commonly interpreted to be hydrodynamic traps created by the eastern flow of fresh surface water that enters the lower San Andres outcrops west ofmore » Pecos River. There is no evidence, however, that surface water has moved through the lower San Andres in this area. This conclusion is supported by the fact that formation-water resistivities are uniform throughout the producing trend, no significant dissolution of carbonates or evaporites has occurred, and there has been no increase in biogradation of oils adjacent to the lower San Andres outcrops. These fields actually are diagenetic traps created by porosity occlusion in the water column beneath the oil accumulations. Hydrocarbons originally were trapped in pre-Tertiary structural and structural-stratigraphic traps. Bedded evaporites were effective barriers to vertical and lateral hydrocarbon migration. Eastward tilting of the Northwest shelf during the Tertiary opened these traps, but the oil remained in these structurally unfavorable positions because of the diagenetic sealing. The gas-solution drive in these reservoirs is a result of this sealing. The sequence of events leading to diagenetic entrapment include (1) Triassic and Jurassic migration of hydrocarbons into broad, low-relief post-San Andres structural and structural-stratigraphic traps; (2) rapid occlusion of porosity in the water column beneath oil reservoirs, and (3) Tertiary tilt-out traps.« less

  12. Diagenetic history of the Surma Group sandstones (Miocene) in the Surma Basin, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rahman, M. Julleh Jalalur; McCann, Tom

    2012-02-01

    This study examines the various diagenetic controls of the Miocene Surma Group sandstones encountered in petroleum exploration wells from the Surma Basin, which is situated in the northeastern part of the Bengal Basin, Bangladesh. The principal diagenetic minerals/cements in the Surma Group sandstones are Fe-carbonates (with Fe-calcite dominating), quartz overgrowths and authigenic clays (predominantly chlorite, illite-smectite and minor kaolin). The isotopic composition of the carbonate cement revealed a narrow range of δ 18O values (-10.3‰ to -12.4‰) and a wide range of δ 13C value (+1.4‰ to -23.1‰). The δ 13C VPDB and δ 18O VPDB values of the carbonate cements reveal that carbon was most likely derived from the thermal maturation of organic matter during burial, as well as from the dissolution of isolated carbonate clasts and precipitated from mixed marine-meteoric pore waters. The relationship between the intergranular volume (IGV) versus cement volume indicates that compaction played a more significant role than cementation in destroying the primary porosity. However, cementation also played a major role in drastically reducing porosity and permeability in sandstones with poikilotopic, pore-filling blocky cements formed in early to intermediate and deep burial areas. In addition to Fe-carbonate cements, various clay minerals including illite-smectite and chlorite occur as pore-filling and pore-lining authigenic phases. Significant secondary porosity has been generated at depths from 2500 m to 4728 m. The best reservoir rocks found at depths of 2500-3300 m are well sorted, relatively coarse grained; more loosely packed and better rounded sandstones having good porosities (20-30%) and high permeabilities (12-6000 mD). These good quality reservoir rocks are, however, not uniformly distributed and can be considered to be compartmentalized as a result of interbedding with sandstone layers of low to moderate porosities, low permeabilities owing to poor

  13. Bioturbation and Manganese Cycling in Hemipelagic Sediments

    NASA Astrophysics Data System (ADS)

    Aller, R. C.

    1990-06-01

    The activities of infaunal macrobenthos have major influences on the types, rates and distributions of diagenetic reactions involving manganese in relatively carbon-rich deep-sea and nearshore sediments. In some non-sulphidic hemipelagic deposits of the eastern equatorial Pacific (Panama Basin) biogenic reworking drives internal cycles of manganese, which can apparently account for up to ca. 100% of organic carbon oxidation and reduction of O2 supplied (diffusively) to the sea floor. Heterotrophic (carbon-based) manganese reduction is stimulated by simultaneous mixing of reactive organic matter and manganese oxide into suboxic-anoxic deposits. In sulphidic sediments, biogenic reworking must also enhance a lithotrophic pathway (sulphur-based) pathway of manganese reduction by promoting contact of manganese oxides and iron sulphides. Particle reworking dramatically alters the balance between aerobic and anaerobic decomposition pathways, promoting the utilization of O2 in the reoxidaton of reduced metabolites rather than direct oxidation of carbon. Irrigated burrows create microenvironments, which increase manganese reduction-oxidation and deplete Mn2+ from deeper pore waters. This may increase net Mn2+ production rates by removal of metabolites and potential co-precipitants with Mn2+. The occurrence and geometry of manganese oxide encrusted biogenic structures imply specific adaptations of infauna to manganese based microbial activity in hemipelagic sediments like the Panama Basin.

  14. Early Mesozoic rift basin architecture and sediment routing system in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Perez, N.; Teixell, A.; Gomez, D.

    2016-12-01

    Late Permian to Triassic extensional systems associated with Pangea breakup governed the structural framework and rift basin architecture that was inherited by Cenozoic High Atlas Mountains in Morocco. U-Pb detrital zircon geochronologic and mapping results from Permo-Triassic deposits now incorporated into the High Atlas Mountains provide new constraints on the geometry and interconnectivity among synextensional depocenters. U-Pb detrital zircon data provide provenance constraints of Permo-Triassic deposits, highlighting temporal changes in sediment sources and revealing the spatial pattern of sediment routing along the rift. We also characterize the U-Pb detrital zircon geochronologic signature of distinctive interfingering fluvial, tidal, and aeolian facies that are preferentially preserved near the controlling normal faults. These results highlight complex local sediment mixing patterns potentially linked to the interplay between fault motion, eustatic, and erosion/transport processes. We compare our U-Pb geochronologic results with existing studies of Gondwanan and Laurentian cratonic blocks to investigate continent scale sediment routing pathways, and with analogous early Mesozoic extensional systems situated in South America (Mitu basin, Peru) and North America (Newark Basin) to assess sediment mixing patterns in rift basins.

  15. Uranium accumulation in modern and ancient Fe-oxide sediments: Examples from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and Yubileynoe massive sulfide deposit (South Urals, Russia)

    NASA Astrophysics Data System (ADS)

    Ayupova, N. R.; Melekestseva, I. Yu.; Maslennikov, V. V.; Tseluyko, A. S.; Blinov, I. A.; Beltenev, V. E.

    2018-05-01

    Fe-oxyhydroxide sediments (gossans) from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and hematite-carbonate-quartz rocks (gossanites) from the Yubileynoe Cu-Zn VHMS deposit (South Urals) are characterized by anomalously high U contents (up to 352 ppm and 73 ppm, respectively). In gossans from the Ashadze-2 hydrothermal sulfide field, rare isometric anhedral uraninite grains (up to 2 μm) with outer P- and Ca-rich rims, and numerous smaller (<1 μm) grains, occur in Fe-oxyhydroxides and sepiolite, associated with pyrite, isocubanite, chalcopyrite, galena, atacamite and halite. In gossanites from the Yubileynoe deposit, numerous uraninite particles (<3 μm) are associated with apatite, V-rich Mg-chlorite, micro-nodules of pyrite, Se-bearing galena, hessite and acanthite in a hematite-carbonate-quartz matrix. Small (1-3 μm) round grains of uraninite, which locally coalesce to large grains up to 10 μm in size, are associated with authigenic chalcopyrite. The similar diagenetic processes of U accumulation in modern and ancient Fe-oxyhydroxide sediments were the result of U fixation from seawater during the oxidation of sulfide minerals. Uraninite in gossanites was mainly deposited from diagenetic pore fluids, which circulated in the sulfide-hyaloclast-carbonate sediments.

  16. Influence of early diagenesis on the vertical distribution of metal forms in sediments of Bohai Bay, China.

    PubMed

    Lu, Xueqiang; Zhang, Yan; Liu, Honglei; Xing, Meinan; Shao, Xiaolong; Zhao, Feng; Li, Xiaojuan; Liu, Qiongqiong; Yu, Dan; Yuan, Xuezhu; Yuan, Min

    2014-11-15

    The influence of early diagenesis on the vertical distribution of metal forms in the sediments of Bohai Bay was discussed in this paper. The results showed that the concentrations were: Al > Fe ≈ Ca > Mn > Cr > Zn > Cu > Pb > Cd. In vertical distribution, the forms of Cr and Pb were stable from the top to the bottom. However, the exchangeable forms and acid-extracted forms of Cd, Cu and Zn presented an obvious declining trend. The metals would be transformed to more stable forms during the early-diagenesis process. Further analysis found that early diagenesis can change the sedimentary environment, affecting pH, oxidation-reduction potential (ORP), total dissolved solid (TDS) and the structure of organic matter (OM), all main factors influencing metal forms in the sediments of Bohai Bay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Sedimentological context of the continental sabkhas of Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Lokier, Stephen; Paul, Andreas; Bixiao, Xin

    2017-04-01

    For more than half a century, the coastal sabkhas of Abu Dhabi have been the focus of intensive research focusing on deposition, early diagenesis and the role of microbial communities. Given all of this activity, it is somewhat surprising that their continental counterparts have been largely neglected with only a brief mention in larger-scale regional studies. This study redresses this imbalance by documenting the sedimentological, mineralogical and early diagenetic characteristics of continental sabkhas that are hosted in the Rub al Khali desert of the United Arab Emirates. During reconnaissance surveys it has been established that organic-rich microbial mats and evaporite minerals, both similar to those observed in the coastal sabkha, also occur in these continental sabkha settings. Satellite imagery was utilised to identify potential field locations for surface and shallow sub surface investigation; subsequent field reconnaissance established the validity of sites in terms of anthropogenic disruption and accessibility. At each site, surface features were described in detail, particularly with reference to any microbial communities or evaporite crusts; sample pits were dug in order to document sub-surface facies geometries and to recover both sediment and pore water samples for subsequent analysis. In each pit, a range of environmental parameters was measured over a prolonged period, including surface and sub-surface temperatures, ground water salinity and dissolved oxygen. Sediment samples were subjected to a range of analyses in order to establish and quantify primary sediment composition and any early diagenetic mineral phases. The results of this study are used to build an atlas of sedimentary structures and textures that are associated with continental sabkha settings. These observations allow us to establish the defining sedimentological and early diagenetic characteristics that can be employed to identify similar depositional environments in ancient

  18. A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late Cretaceous global correlation

    NASA Astrophysics Data System (ADS)

    Wendler, Ines

    2013-11-01

    carbonate, and in partitioning of carbon between organic carbon and carbonate sinks. These variations are mainly controlled by changes in climate and eustasy. Additionally, some globally synchronous shifts in the bulk δ13Ccarb records could result from parallel variation in the contribution of authigenic carbonate to the sediment. Formation of these cements through biologically mediated early diagenetic processes is related to availability of oxygen and organic material and, thus, can be globally synchronized by fluctuations in eustasy, atmospheric and oceanic oxygen levels or in large-scale oceanic circulation. Because the influence of early diagenetic cements on the bulk δ13Ccarb signal can, but need not be synchronized, chemostratigraphy should not be used as a stand-alone method for trans-continental correlation, and especially minor isotopic shifts have to be interpreted with utmost care. Nevertheless, the observed consistency of the δ13C correlations confirms global scale applicability of bulk sediment δ13C chemostratigraphy for the Late Cretaceous, including sediments that underwent lithification and burial diagenesis such as the sediments from the Himalayan and Alpine sections. Limitations arise from increased uncertainties (1) in sediments with very low carbonate content, (2) from larger δ13C variability in sediments from very shallow marine environments, (3) from unrecognized hiatuses or strong changes in sedimentation rates, and (4) in sections with short stratigraphic coverage or with few biostratigraphic marker horizons.

  19. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean

    USGS Publications Warehouse

    Polyak, L.; Bischof, J.; Ortiz, J.D.; Darby, D.A.; Channell, J.E.T.; Xuan, C.; Kaufman, D.S.; Lovlie, R.; Schneider, D.A.; Eberl, D.D.; Adler, R.E.; Council, E.A.

    2009-01-01

    Sediment cores from the western Arctic Ocean obtained on the 2005 HOTRAX and some earlier expeditions have been analyzed to develop a stratigraphic correlation from the Alaskan Chukchi margin to the Northwind and Mendeleev-Alpha ridges. The correlation was primarily based on terrigenous sediment composition that is not affected by diagenetic processes as strongly as the biogenic component, and paleomagnetic inclination records. Chronostratigraphic control was provided by 14C dating and amino-acid racemization ages, as well as correlation to earlier established Arctic Ocean stratigraphies. Distribution of sedimentary units across the western Arctic indicates that sedimentation rates decrease from tens of centimeters per kyr on the Alaskan margin to a few centimeters on the southern ends of Northwind and Mendeleev ridges and just a few millimeters on the ridges in the interior of the Amerasia basin. This sedimentation pattern suggests that Late Quaternary sediment transport and deposition, except for turbidites at the basin bottom, were generally controlled by ice concentration (and thus melt-out rate) and transportation distance from sources, with local variances related to subsurface currents. In the long term, most sediment was probably delivered to the core sites by icebergs during glacial periods, with a significant contribution from sea ice. During glacial maxima very fine-grained sediment was deposited with sedimentation rates greatly reduced away from the margins to a hiatus of several kyr duration as shown for the Last Glacial Maximum. This sedimentary environment was possibly related to a very solid ice cover and reduced melt-out over a large part of the western Arctic Ocean.

  20. Factors influencing the biogeochemistry of sedimentary carbon and phosphorus in the Sacramento-San Joaquin Delta

    USGS Publications Warehouse

    Nilsen, E.B.; Delaney, M.L.

    2005-01-01

    This study characterizes organic carbon (Corganic) and phosphorus (P) geochemistry in surface sediments of the Sacramento-San Joaquin Delta, California. Sediment cores were collected from five sites on a sample transect from the edge of the San Francisco Bay eastward to the freshwater Consumnes River. The top 8 cm of each core were analyzed (in 1-cm intervals) for Corganic, four P fractions, and redox-sensitive trace metals (uranium and manganese). Sedimentary Corganic concentrations and Corganic:P ratios decreased, while reactive P concentrations increased moving inland in the Delta. The fraction of total P represented by organic P increased inland, while that of authigenic P was higher bayward than inland reflecting increased diagenetic alteration of organic matter toward the bayward end of the transect. The redox indicator metals are consistent with decreasing sedimentary suboxia inland. The distribution of P fractions and C:P ratios reflect the presence of relatively labile organic matter in upstream surface sediments. Sediment C and P geochemistry is influenced by site-specific particulate organic matter sources, the sorptive power of the sedimentary material present, physical forcing, and early diagenetic transformations presumably driven by Corganic oxidation. ?? 2005 Estuarine Research Federation.

  1. Diagenetic evaluation of Pannonian lacustrine deposits in the Makó Trough, southeastern Hungary

    NASA Astrophysics Data System (ADS)

    Szőcs, Emese; Milovský, Rastislav; Gier, Susanne; Hips, Kinga; Sztanó, Orsolya

    2017-04-01

    The Makó Trough is the deepest sub-basin of the Pannonian Basin. As a possible shale gas and tight gas accumulation the area was explored by several hydrocarbon companies. In this study, we present the preliminary results on the diagenetic history and the porosity evolution of sandstones and shales. Petrographic (optical microscopy, CL, blue light microscopy) and geochemical methods (SEM-EDX, WDX, O and C stable isotopes) were applied on core samples of Makó-7 well (3408- 5479 m). Processes which influenced the porosity evolution of the sandstones were compaction, cementation, mineral replacement and dissolution. The most common diagenetic minerals are carbonates (non-ferroan and Fe-bearing calcite, dolomite and ankerite), clay minerals (kaolinite, mixed layer illite-smectite and chlorite) and other silicates (quartz and feldspar). Initial clay mineral and ductile grain content also influences reservoir quality. The volumetrically most significant diagenetic minerals are calcite and clay minerals. The petrography of calcite is variable (bright orange to dull red luminescence color, pore-filling cement, replacive phases which are occasionally scattered in the matrix). The δ13 C-PDB values of calcite range from 1.7 ‰ to -5.5 ‰, while δ18 O-PDB values range from 0.5 ‰ to -9.1 ‰, no depth related trend was observed. These data suggest that calcite occurs in more generations, i.e. eogenetic pre-compactional and mesogenetic post-compactional. Kaolinite is present in mottles in size similar to detrital grains, where remnants of feldspars can be seen. This indicates feldspar alteration via influx of water rich in organic derived carbon dioxide. Secondary porosity can be observed in carbonates and feldspars at some levels, causing the improvement of the reservoir quality.

  2. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks

    USGS Publications Warehouse

    Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, Charles N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.

    2012-01-01

    The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5‰) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2‰. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.

  3. Iron and Sulfur Species and Sulfur Isotopic Compositions of Authigenic Pyrite in Gas Hydrate-Bearing Sediments from Hydrate Ridge, Cascadia Margin (ODP Leg 204): A Proposal of Conceptual Models to Indicate the Non-Steady State Depositional and Diagenetic Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Jiang, S. Y.; Su, X.

    2017-12-01

    Two accretionary sediment sequences from Sites 1245 and 1252 recovered during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge, Cascadia Margin were investigated to explore the non-steady state depositional and diagenetic history. Five iron species and three sulfur species were chemically extracted, and their concentrations and the sulfur isotopic compositions of pyrite were determined. After the mineral recognitions of these species and detailed comparative analyses, the aerobic history of bottom seawater has been determined. The formation of pyrite is thought to be controlled by the limited production of hydrogen sulfide relative to the supply of reactive iron. Also, the intrusion of oxygen by bioturbation would oxidize the reduced sulfur species and further suppress pyritization. To explain the geochemical relationship between pyrite and siderite and the sulfur isotope characteristics of pyrite, we propose seven conceptual models based on the variations in depositional rate and methane flux, and the models succeed in explaining the geochemical results and are validated by the observed non-steady state events. These models may contribute to the reconstruction of the non-steady state processes in other research areas in the future.

  4. Manganese cycles in Arctic marine sediments - Climate signals or diagenesis?

    NASA Astrophysics Data System (ADS)

    März, C.; Stratmann, A.; Eckert, S.; Schnetger, B.; Brumsack, H.-J.

    2009-04-01

    In comparison to sediments from other parts of the world ocean, the inorganic geochemistry of Arctic Ocean sediments is poorly investigated. However, marked light to dark brown layers are well-known features of Quaternary Arctic sediments, and have been related to variable Mn contents. Brown layers represent intervals relatively rich in Mn (often > 1 wt.%), while yellowish-greyish intervals contain less Mn. As these brown layers are widespread in pelagic Quaternary deposits of the Arctic Ocean, there are attempts to use them as stratigraphic, age-equivalent marker horizons that are genetically related to global climate changes (e.g. Jakobsson et al., 2000; Löwemark et al., 2008). In the Arctic Ocean, other conventional stratigraphic methods often fail, therefore the use of Mn-rich layers as a chemostratigraphic tool seems to be a promising approach. However, several inorganic-geochemical and modelling studies of Mn cycles in the Arctic as well as in other parts of the world ocean have shown that multiple Mn layers in marine sediments can be created by non-steady state diagenetic processes, i.e. secondary Mn redistribution in the sediment due to microbially mediated dissolution-reprecipitation reactions (e.g. Li et al., 1969; Gobeil et al., 1997; Burdige, 2006; Katsev et al., 2006). Such biogeochemical processes can lead to rapid migration or fixation of redox boundaries in the sediment, resulting in the formation or (partial) destruction of metal-rich layers several thousands of years after sediment deposition. As this clearly would alter primary paleoenvironmental signals recorded in the sediments, we see an urgent need to unravel the real stratigraphic potential of Arctic Mn cycles before they are readily established as standard tools. For this purpose, we are studying Mn cycles in Arctic Ocean sediments recovered during R/V Polarstern expedition ARK XXIII/3 on the Mendeleev Ridge (East Siberian Sea). First results of pore water and sediment composition

  5. Laboratory studies of the diagenesis and mobility of 239,240pu and 137Cs in nearshore sediments

    NASA Astrophysics Data System (ADS)

    Sholkovitz, Edward R.; Cochran, J. Kirk; Carey, Anne E.

    1983-08-01

    Controlled laboratory experiments have been used to study the diagenetic chemistry of 239,240Pu 137Cs, and 55Fe. Experiments using Buzzards Bay sediments in small tanks show that sulfate reduction is accompanied by the production of large pore water concentration gradients of alkalinity, phosphate, ammonia and dissolved organic carbon and the formation of subsurface maxima in Fe and Mn. These pore water profiles demonstrate that bacterially-mediated processes of organic matter degradation and redox reactions can be simulated in the laboratory. A vertical profile of 55Fe in pore waters is reported for the first time: it follows the profile of stable Fe and as such has a large (200 dpm/100 kg) subsurface maximum between 2-4 cm depth. Comparison of 55Fe/Fe ratios in sediments and pore waters shows that there is preferential solubilization of 55Fe over stable Fe. The pore water activities of 239,240Pu show no gradients within the large uncertainties of the counting statistics, but are two to four times higher than Buzzards Bay seawater (0.05 dpm/100 kg). The activity of 137Cs in the pore water profile is constant (40 dpm/100 kg) within the large counting uncertainties and is twice that of Buzzards Bay seawater. Cs-137 does not appear to be involved in diagenetic chemistry but may increase in pore waters as a result of ion exchange reactions. Flux estimates based on the pore water data show that remobilization and transport of 239,240 Pu in coastal sediments are not significant processes while the transport of l37Cs may be.

  6. Tracking the Transformation and Preservation of Organic Biomarkers in a Varved Sediment-Core Series

    NASA Astrophysics Data System (ADS)

    Tolu, J.; Bigler, C.; Bindler, R.

    2014-12-01

    An important premise for reconstructing environmental changes using sediment records is to understand which environmental information reaches the lake bottom and how diagenetic processes may affect the proxies, such as terrestrial and aquatic organic biomarkers. We can tackle this question using a unique series of varved sediment cores collected from the lake Nylandssjön (northern Sweden). In addition to limnological and sediment trap sampling since 2001, we have a collection of freeze cores taken in late winter and stored since 1979, which allows us to track individual varve years (e.g., 1978) over time (~30 years). A previous study using this collection showed that 23 % of C and 35 % of N were lost during the first 25 years with a C:N ratio increase of ≈21, suggesting important implications for diagenetic effects on organic biomarkers. To assess the preservation/transformation of organic biomarkers, we developed a new Pyrolysis-Gas Chromatography/Mass Spectrometry method that allows the rapid determination of biomarkers from the common OM classes (e.g., plant waxes, microbial lipids, lignins) using sub-mg sample sizes and thus applicable to high-resolution sampling of the varved sediment (Tolu et al., under review). Our results show that the different biomarkers exhibit a broad spectrum of reactivities over ~30 years -% change determined by ([Peak area at t] - [Peak area at t=0])/ [peak area at t=0] x 100-. For example: 67-80 % of the algal chlorophyll-derived product 'phytene' is lost depending which single varve year is followed over time (e.g., 1979). Only 12-32 % of "pristene", the degraded form of algal chlorophyll, is lost. The guaiacyl and syringyl lignin units are affected by a smaller loss, i.e. 5-15 %, and the S/G ratio, indicative of angiosperm/gymnosperm plant input remains stable, which is contrary to previous work on non-varved lake sediments. Considering all biomarkers, the degradation/production plateaued after ~15 years, which indicates that

  7. Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments

    NASA Astrophysics Data System (ADS)

    Jilbert, Tom; Asmala, Eero; Schröder, Christian; Tiihonen, Rosa; Myllykangas, Jukka-Pekka; Virtasalo, Joonas J.; Kotilainen, Aarno; Peltola, Pasi; Ekholm, Päivi; Hietanen, Susanna

    2018-03-01

    Iron (Fe) plays a key role in sedimentary diagenetic processes in coastal systems, participating in various redox reactions and influencing the burial of organic carbon. Large amounts of Fe enter the marine environment from boreal river catchments associated with dissolved organic matter (DOM) and as colloidal Fe oxyhydroxides, principally ferrihydrite. However, the fate of this Fe pool in estuarine sediments has not been extensively studied. Here we show that flocculation processes along a salinity gradient in an estuary of the northern Baltic Sea efficiently transfer Fe and OM from the dissolved phase into particulate material that accumulates in the sediments. Flocculation of Fe and OM is partially decoupled. This is likely due to the presence of discrete colloidal ferrihydrite in the freshwater Fe pool, which responds differently from DOM to estuarine mixing. Further decoupling of Fe from OM occurs during sedimentation. While we observe a clear decline with distance offshore in the proportion of terrestrial material in the sedimentary particulate organic matter (POM) pool, the distribution of flocculated Fe in sediments is modulated by focusing effects. Labile Fe phases are most abundant at a deep site in the inner basin of the estuary, consistent with input from flocculation and subsequent focusing. The majority of the labile Fe pool is present as Fe (II), including both acid-volatile sulfur (AVS)-bound Fe and unsulfidized phases. The ubiquitous presence of unsulfidized Fe (II) throughout the sediment column suggests Fe (II)-OM complexes derived from reduction of flocculated Fe (III)-OM, while other Fe (II) phases are likely derived from the reduction of flocculated ferrihydrite. Depth-integrated rates of Fe (II) accumulation (AVS-Fe + unsulfidized Fe (II) + pyrite) for the period 1970-2015 are greater in the inner basin of the estuary with respect to a site further offshore, confirming higher rates of Fe reduction in near-shore areas. Mössbauer 57Fe

  8. Microbial Nitrogen Cycling Associated with the Early Diagenesis of Organic Matter in Subseafloor Sediments

    NASA Astrophysics Data System (ADS)

    Zhao, R.

    2015-12-01

    The early diagenesis of organic matter is the major energy source of marine sedimentary biosphere and thus controls its population size; however, the vertical distribution of any functional groups along with the diagenesis of organic matter is remained unclear, especially for those microbes involved in nitrogen transformation which serve as a major control on the nitrogen flux between reservoirs. Here we investigated the vertical distributions of various functional groups in five sediment cores retrieved from Arctic Mid-Ocean Ridge (AMOR), with emphasis on the nitrifiers, denitrifiers and anaerobic ammonium oxidizing bacteria (anammox). We observed the clear geochemical zonation associated with organic matter diagenesis in the sediments based on the pore water profiles of oxygen, nitrate, ammonium, manganese and sulfate, with distinct geochemical transition zones at the boundaries of geochemical zones, including oxic-anoxic transition zone (OATZ) and nitrate-manganese reduction zone (NMTZ). Nitrate was produced in surface oxygenated sediments and nitrate consumption mainly took place at the NMTZ, splitted between re-oxidation of ammonium and manganese (II). Abundances of ammonia oxidizers, nitrite oxidizers, and denitrifiers, estimated through quantitative PCR targeting their respective functional genes, generally decrease with depth, but constantly elevated around the OATZ, NMTZ, and manganese-reduction zone as well. Anammox bacteria were only detected around the NMTZ where both nitrate/nitrite and ammonium are available. These depth profiles of functional groups were also confirmed by the community structure profiling by prokaryotic 16S rRNA gene tag pyrosequencing. Cell-specific rates of nitrification and denitrification, calculated from the bulk net reaction rates divided by functional group abundances, were similar to those values from oligotrophic sediments like North Pond and thus suggested that nitrifiers and denitirifiers populations were in maintenance

  9. Remagnetization and Cementation of Unconsolidated Sediments in the Mallik 5L-38 Well (Canadian Arctic) by Solute Exclusion During Gas Hydrate Formation

    NASA Astrophysics Data System (ADS)

    Hamilton, T. S.; Enkin, R. J.; Esteban, L.

    2007-05-01

    Bulk magnetic properties provide a sensitive measure of sedimentary diagenesis related to the stability and growth of gas hydrates. The deposit at Mallik (Mackenzie Delta, Canadian Arctic) occurs in unconsolidated Tertiary sands, but is absent in interstratified silt layers. A detailed sampling of the JAPEX/JNOC/GSC Mallik 5L-38 core tested the use of magnetic properties for detecting diagenetic changes related to the hydrate. Petrographic studies reveal that the sands are well sorted and clean, with quartz > chert >> muscovite and little fines content. Excepting a few rare bands of indurated dolomite in the midst of the gas hydrate zone, there is little or no cementation in the sands. Detrital magnetite is the dominant magnetic mineral, comprising up to a few percent of the sand grain population. In contrast, the muddier layers have a somewhat different detrital grain composition, richer in lithic (sedimentary and metamorphic) grains, feldspar, and clays. They are extensively diagenetically altered (to as much as 30- 40%) and cemented with carbonates, clays, chlorite and the iron sulphide greigite (the dominant magnetic mineral). The greigite is recognized by its isotropic creamy-white reflectance, cubic to prismatic habit, and characteristic tarnish to faintly bluish bireflectant mackinawite. Habits range from disseminated cubes and colliform masses to inflationary massive sulphide veins and clots. Rare detrital grains of magnetite were observed among the silt grains, but never in a reaction relationship or overgrown. Instead the greigite has nucleated separately, in tensional fractures and granular masses up to 4 mm across. In this particular sediment sequence, being so quartz and chert rich, there is insufficient local source for the introduced cements (calcite, dolomite, greigite, clays, jarosite), so ions must have been introduced by fluid flow. Magnetic studies reveal a bi-modal character related to the lithology (sands versus silts) and their magnetic

  10. Compositional similarities of non-solvent extractable fatty acids from recent marine sediments deposited in differing environments

    NASA Astrophysics Data System (ADS)

    Nishimura, Mitsugu; Baker, Earl W.

    1987-06-01

    Five recent sediment samples from a variety of North American continental shelves were analyzed for fatty acids (FAs) in the solvent-extractable (SOLEX) lipids as well as four types of non-solvent extractable (NONEX) lipids. The NONEX lipids were operationally defined by the succession of extraction procedure required to recover them. The complete procedure included (i) very mild acid treatment, (ii) HF digestion and (iii) saponification of the sediment residue following exhaustive solvent extraction. The distribution pattern and various compositional parameters of SOLEX FAs in the five sediments were divided into three different groups, indicating the difference of biological sources and also diagenetic factors and processes among the three groups of samples. Nevertheless, the compositions of the corresponding NONEX FAs after acid treatment were surprisingly very similar. This was also true for the remaining NONEX FA groups in the five sediment samples. The findings implied that most of the NONEX FAs reported here are derived directly from living organisms. It is also concluded that a large part of NONEX FAs are much more resistant to biodegradation than we have thought, so that they can form the large percentage of total lipids with increasing depth of water and sediments.

  11. The influence of buried nodules on the mobility of metals in deep sea sediments

    NASA Astrophysics Data System (ADS)

    Heller, Christina; Kuhn, Thomas

    2017-04-01

    Hydrothermal fluids can extract significant amounts of heat from oceanic lithosphere by lateral fluid flow through permeable basaltic crust of an age of up to 65 Ma. Fluid recharge and discharge occur at basement outcrops in between impermeable pelagic deep sea sediments. Recharge of oxic seawater causes upward oxygen diffusion into sediments overlying the permeable basalt in areas proximal to recharge sites. It is suggested that this oxygen has a strong impact on sediments and Mn-nodules during fluid exposure time. The aim of this study is to investigate if/how fluid flow through oceanic crust influence the distribution and element budget of Mn-nodules. Nodules occur widespread at the seafloor of the Clarion-Clipperton Zone (CCZ) in the equatorial North Pacific and were analyzed in many studies worldwide. Nodules buried in the deep sea sediments could be found only rarely (von Stackelberg, 1997, Geol. Soc. Spec. Publ., 119: 153-176). High resolution side-scan sonar recordings (unpublished Data BGR Hannover) indicate that there exist a coherent layer of nodules buried in the sediments of the working area. During the expedition SO 240/FLUM nodules were found on the sediment surface in 4200 to 4300 m water depth as well as in the sediment down to 985 cm below seafloor. In general, nodules consist of different nm- to µm-thick, dense and porous layers. The geochemical composition of bulk nodules and single nodule layers were determined by XRF, ICP-MS/OES, XRD and by high resolution analyses with electron microprobe and LA-ICP-MS. Dense layers have low Mn/Fe ratios (<4) and high concentrations of Co, Zr and REY, while porous layers are characterized by high Mn/Fe ratios (> 10) and high Ni+Cu and Li concentrations. The different compositions depend on different formation processes of the layers. They were formed by metal precipitation from oxic (hydrogenetic) and suboxic (diagenetic) bottom-near seawater and/or pore water (Wegorzewski and Kuhn, 2014, Mar. Geol. 357, 123

  12. Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: An experimental and theoretical study of hydrothermal activity at guaymas basin, gulf of california

    USGS Publications Warehouse

    Seewald, Jeffrey S.; Seyfried, W.E.; Shanks, Wayne C.

    1994-01-01

    Organic-rich diatomaceous ooze was reacted with seawater and a Na-Ca-K-Cl fluid of seawater chlorinity at 325-400??C, 400-500 bars, and fluid/sediment mass ratios of 1.56-2.35 to constrain factors regulating the abundance and stable isotope composition of C and S species during hydrothermal alteration of sediment from Guaymas Basin, Gulf of California. Alteration of inorganic and organic sedimentary components resulted in extensive exchange reactions, the release of abundant H2S, CO2, CH4, and Corganic, to solution, and recrystallization of the sediment to an assemblage containing albitic plagioclase, quartz, pyrrhotite, and calcite. The ??34Scdt values of dissolved H2S varied from -10.9 to +4.3??? during seawater-sediment interaction at 325 and 400??C and from -16.5 to -9.0??? during Na-Ca-K-Cl fluid-sediment interaction at 325 and 375??C. In the absence of seawater SO4, H2S is derived from both the transformation of pyrite to pyrrhotite and S released during the degradation of organic matter. In the presence of seawater SO4, reduction of SO4 contributes directly to H2S production. Sedimentary organic matter acts as the reducing agent during pyrite and SO4 reduction. Requisite acidity for the reduction of SO4 is provided by Mg fixation during early-stage sediment alteration and by albite and calcite formation in Mg-free solutions. Organically derived CH4 was characterized by ??13Cpdb values ranging between -20.8 and -23.1???, whereas ??13Cpdb values for dissolved Corganic ranged between -14.8 and -17.7%. Mass balance calculations indicate that ??13C values for organically derived CO2 were ??? - 14.8%. Residual solid sedimentary organic C showed small (??? 0.7???) depletions in 13C relative to the starting sediment. The experimental results are consistent with the isotopic and chemical composition of natural hydrothermal fluids and minerals at Guaymas Basin and permit us to better constrain sources and sinks for C and S species in subseafloor hydrothermal systems

  13. Release of Methane from Bering Sea Sediments During the Last Glacial Period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mea Cook; Lloyd Keigwin

    2007-11-30

    Several lines of evidence suggest that during times of elevated methane flux the sulfate-methane transition zone (SMTZ) was positioned near the sediment-water interface. We studied two cores (from 700 m and 1457 m water depth) from the Umnak Plateau region. Anomalously low d13C and high d18O in benthic and planktonic foraminifera in these cores are the consequence of diagenetic overgrowths of authigenic carbonates. There are multiple layers of authigenic-carbonate-rich sediment in these cores, and the stable isotope compositions of the carbonates are consistent with those formed during anaerobic oxidation of methane (AOM). The carbonate-rich layers are associated with biomarkers producedmore » by methane-oxidizing archaea, archaeol and glyceryl dibiphytanyl glyceryl tetraether (GDGT). The d13C of the archaeol and certain GDGTs are isotopically depleted. These carbonate- and AOM-biomarker-rich layers were emplaced in the SMTZ during episodes when there was a high flux of methane or methane-rich fluids upward in the sediment column. The sediment methane in the Umnak Plateau region appears to have been very dynamic during the glacial period, and interacted with the ocean-atmosphere system at millennial time scales. The upper-most carbonate-rich layers are in radiocarbon-dated sediment deposited during interstitials 2 and 3, 28-20 ka, and may be associated with the climate warming during this time.« less

  14. Raised Ridges in the Sheepbed Member as Evidence for Early Subaqueous Diagenesis at Yellowknife Bay, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Siebach, K. L.; Grotzinger, J. P.; Kah, L. C.; Stack, K.; Leveille, R. J.; Sumner, D. Y.; Edgar, L. A.; Team, M.

    2013-12-01

    Spatially restricted clusters of erosion-resistant, ridged fracture fills have been found throughout the fine-grained clay-rich Sheepbed member of the Yellowknife Bay Formation where the Mars Science Laboratory rover recently drilled. These 'raised ridge' features are characterized by 1-6 mm thick fractures filled with 2-4 subparallel resistant ridges. The ridges have been mapped throughout the Sheepbed member on Mastcam mosaics from sols 137 to 194 and are shown to be constrained to relatively dense, spatially localized clusters within the unit. The ridges have highly variable attitudes, ranging in dip from vertical to sub-horizontal, and striking in all directions, indicating that the original fractures formed in a mechanically isotropic setting. The fractures are generally short (<50 cm), have spindle-shaped terminations, and do not form regular polygons. The individual ridges are approximately a millimeter across and separated by at least a millimeter of less-resistant material. Based on the geometry of these features and lateral fabric variability within the unit, these are interpreted as early diagenetic synaeresis cracks, likely formed by gas expansion prior to final lithification of the Sheepbed member. Based on the isopachous nature of both the resistant and less-resistant fracture fills, the fracture-filling also occurred subaqueously, in the phreatic zone, and was likely a very early diagenetic process. This is supported by the observation that later diagenetic features, including light-toned sulfate-rich veins, cross-cut raised ridges. Investigation into the characteristics and distribution of these features, and comparison with synaeresis cracks on Earth, provide insight into the formation of the Sheepbed member and early aqueous and diagenetic processes in Gale Crater.

  15. Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment

    NASA Astrophysics Data System (ADS)

    Yunker, Mark B.; Macdonald, Robie W.; Cretney, Walter J.; Fowler, Brian R.; McLaughlin, Fiona A.

    1993-07-01

    To study the largest source of river sediment to the Arctic Ocean, we have collected suspended particulates from the Mackenzie River in all seasons and sediments from the Mackenzie shelf between the river mouth and the shelf edge. These samples have been analyzed for alkanes, triterpenes and polycyclic aromatic hydrocarbons (PAHs). We found that naturally occurring hydrocarbons predominate in the river and on the shelf. These hydrocarbons include biogenic alkanes and triterpenes with a higher plant/peat origin, diagenetic PAHs from peat and plant detritus, petrogenic alkanes, triterpenes and PAHs from oil seeps and/or bitumens and combustion PAHs that are likely relict in peat deposits. Because these components vary independently, the season is found to strongly influence the concentration and composition of hydrocarbons in the Mackenzie River. While essentially the same pattern of alkanes, diagenetic hopanes and alkyl PAHs is observed in all river and most shelf sediment samples, alkane and triterpene concentration variations are strongly linked to the relative amount of higher plant/peat material. Polycyclic aromatic hydrocarbon molecular-mass profiles also appear to be tied primarily to varying proportions of peat, with an additional petrogenic component which is most likely associated with lithic material mobilized by the Mackenzie River at freshet. Consistent with the general lack of alkyl PAHs in peat, the higher PAHs found in the river are probably derived from forest and tundra fires. A few anthropogenic/pyrogenic compounds are manifest only at the shelf edge, probably due to a weakening of the river influence. We take this observation of pyrogenic PAHs and the pronounced source differences between two sediment samples collected at the shelf edge as evidence of a transition from dominance by the Mackenzie River to the geochemistry prevalent in Arctic regions far removed from major rivers.

  16. Geochemical characteristics and early diagenesis of recent carbonate mound sediments in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Hamaekers, Helen; Foubert, Anneleen; Wienberg, Claudia; Hebbeln, Dierk; Swennen, Rudy

    2010-05-01

    Cold-water coral carbonate mounds occur in patches along the continental margin of the North Atlantic Ocean, from northern Norway down to Mauretania. Recent research has been focused on carbonate mounds in the Gulf of Cadiz, especially along the Moroccan margin. The Pen Duick, the Renard and the Vernadsky carbonate mound provinces in the Gulf of Cádiz are only some of the mound provinces which have been the subject of several recent research projects (Foubert et al., 2008; Wienberg et al., 2009). No living scleractinians could be found on top of those carbonate mounds. During cruise 64PE284 of RV Pelagia, gravity cores have been taken through carbonate mounds in the Carbonate Mound Provinces (CMP) SE of Yuma mud volcano and N of Meknes mud volcano. These cores have been analysed by several methods such as Magnetic Susceptibility (MS), X-Ray Fluorescence (XRF), Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and X-Ray Diffraction (XRD) to determine the geochemical characteristics of carbonate mounds, which can be used to quantify the effects of early diagenetic processes which may have altered the palaeo-environmental characteristics of the carbonate mounds. Dating has been done with 14C and U/Th methods pointing to mound growth phases being restricted to glacial periods. XRF and ICP-OES measurements give both qualitative and quantitative data of the chemical composition of the core. The main elements that have been analysed are Ca, Si, Fe, Sr, Al, K, Mg, Ti. According to the trend they follow, they can be devided in two groups, representative for the two encountered fraction types. These two fraction types (biogenic carbonate-rich fraction and terrigenous silicate-rich fraction) can be coupled to interglacial/glacial palaeo-environmental conditions. XRD measurements give an overview of the mineralogical composition of the cores. Thin sections, analysed by cathodeluminescence and classical optical petrography, and micro-CT scans are used to

  17. Dynamic modeling of environmental risk associated with drilling discharges to marine sediments.

    PubMed

    Durgut, İsmail; Rye, Henrik; Reed, Mark; Smit, Mathijs G D; Ditlevsen, May Kristin

    2015-10-15

    Drilling discharges are complex mixtures of base-fluids, chemicals and particulates, and may, after discharge to the marine environment, result in adverse effects on benthic communities. A numerical model was developed to estimate the fate of drilling discharges in the marine environment, and associated environmental risks. Environmental risk from deposited drilling waste in marine sediments is generally caused by four types of stressors: oxygen depletion, toxicity, burial and change of grain size. In order to properly model these stressors, natural burial, biodegradation and bioturbation processes were also included. Diagenetic equations provide the basis for quantifying environmental risk. These equations are solved numerically by an implicit-central differencing scheme. The sediment model described here is, together with a fate and risk model focusing on the water column, implemented in the DREAM and OSCAR models, both available within the Marine Environmental Modeling Workbench (MEMW) at SINTEF in Trondheim, Norway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake

    NASA Astrophysics Data System (ADS)

    Herndon, Elizabeth M.; Havig, Jeff R.; Singer, David M.; McCormick, Michael L.; Kump, Lee R.

    2018-06-01

    Manganese and iron are redox-sensitive elements that yield clues about biogeochemistry and redox conditions both in modern environments and in the geologic past. Here, we investigated Mn and Fe-bearing minerals preserved in basin sediments underlying Fayetteville Green Lake, a redox-stratified lake that serves as a geochemical analogue for Paleoproterozoic oceans. Synchrotron-source microprobe techniques (μXRF, μXANES, and μXRD) and bulk geochemical analyses were used to examine the microscale distribution and speciation of Mn, Fe, and S as a function of depth in the top 48 cm of anoxic lake sediments. Manganese was primarily associated with calcite grains as a manganese-rich carbonate that precipitated in the chemocline of the water column and settled through the euxinic basin to collect in lake sediments. Iron was preserved in framboidal iron sulfides that precipitated in euxinic bottom waters and underwent transformation to pyrite and marcasite in the sediments. Previous studies attribute the formation of manganese-rich carbonates to the diagenetic alteration of manganese oxides deposited in basins underlying oxygenated water. Our study challenges this paradigm by providing evidence that Mn-bearing carbonates form in the water column and accumulate in sediments below anoxic waters. Consequently, manganoan carbonates preserved in the rock record do not necessarily denote the presence of oxygenated bottom waters in ocean basins.

  19. Mineralogy of Sediments on a Cold and Icy Early Mars

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Horgan, B. H. N.; Smith, R.; Scudder, N.; Rutledge, A. M.; Bamber, E.; Morris, R. V.

    2017-12-01

    The water-related minerals discovered in ancient martian terrains suggest liquid water was abundant on the surface and/or near subsurface during Mars' early history. The debate remains, however, whether these minerals are indicative of a warm and wet or cold and icy climate. To characterize mineral assemblages of cold and icy mafic terrains, we analyzed pro- and supraglacial rocks and sediments from the Collier and Diller glacial valleys in Three Sisters, Oregon. We identified primary and secondary phases using X-ray diffraction (XRD), scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible/short-wave-infrared (VSWIR) and thermal-infrared (TIR) spectroscopies. Samples from both glacial valleys are dominated by primary igneous minerals (i.e., plagioclase and pyroxene). Sediments in the Collier glacial valley contain minor to trace amounts of phyllosilicates and zeolites, but these phases are likely detrital and sourced from hydrothermally altered units on North Sister. We find that the authigenic phases in cold and icy mafic terrains are poorly crystalline and/or amorphous. TEM-EDS analyses of the <2 um size fraction of glacial flour shows the presence of many different nanophase materials, including iron oxides, devitrified volcanic glass, and Fe-Si-Al (e.g., proto-clay) phases. A variety of primary and secondary amorphous materials (e.g., volcanic glass, leached glass, allophane) have been suggested from orbital IR data from Mars, and the CheMin XRD on the Curiosity rover has identified X-ray amorphous materials in all rocks and soils measured to date. The compositions of the Gale Crater amorphous components cannot be explained by primary volcanic glass alone and likely include secondary silicates, iron oxides, and sulfates. We suggest that the prevalence of amorphous materials on the martian surface and the variety of amorphous components may be a signature of a cold and icy climate on Early Mars.

  20. Mesozoic (Lower Jurassic) red stromatactis limestones from the Southern Alps (Arzo, Switzerland): calcite mineral authigenesis and syneresis-type deformation

    NASA Astrophysics Data System (ADS)

    Neuweiler, Fritz; Bernoulli, Daniel

    2005-02-01

    The Broccatello lithological unit (Lower Jurassic, Hettangian to lower parts of Upper Sinemurian) near the village of Arzo (southern Alps, southern Switzerland) is a mound-shaped carbonate deposit that contains patches of red stromatactis limestone. Within the largely bioclastic Broccatello unit, the stromatactis limestone is distinguished by its early-diagenetic cavity system, a relatively fine-grained texture, and an in-situ assemblage of calcified siliceous sponges (various demosponges and hexactinellids). A complex shallow subsurface diagenetic pathway can be reconstructed from sediment petrography in combination with comparative geochemical analysis (carbon and oxygen isotopes; trace and rare earth elements, REE + Y). This pathway includes organic matter transformation, aragonite and skeletal opal dissolution, patchy calcification and lithification, sediment shrinkage, sagging and collapse, partial REE remobilization, and multiple sediment infiltration. These processes occurred under normal-marine, essentially oxic conditions and were independent from local, recurring syn-sedimentary faulting. It is concluded that the stromatactis results from a combination of calcite mineral authigenesis and syneresis-type deformation. The natural stromatactis phenomenon may thus be best explained by maturation processes of particulate polymer gels expected to form in fine-grained carbonate sediments in the shallow subsurface. Conditions favorable for the evolution of stromatactis appear to be particularly frequent during drowning of tropical or subtropical carbonate platforms.

  1. Diagenetic changes in the elemental composition of unrecrystallized mollusk shells

    USGS Publications Warehouse

    Ragland, P.C.; Pilkey, O.H.; Blackwelder, B. W.

    1979-01-01

    The Mg, Sr, Mn, Fe, Na and K contents were determined for 230 apparently unrecrystallized mollusk shells (gastropods and bivalves) ranging in age from late Cretaceous to Holocene. Consistent differences between the Holocene and fossil shells with respect to concentrations of all these elements are attributed to postburial diagenetic changes. Fossil-Holocene shell comparisons are made on the intergeneric level, a more severe test of compositional differences than was previous work involved with few species. The observed differences re-emphasize the need for extreme caution in the use of the many geochemical tools which assume that no compositional changes have taken place prior to recrystallization of calcareous materials. ?? 1979.

  2. Early Triassic fluctuations of the global carbon cycle: New evidence from paired carbon isotopes in the western USA basin

    NASA Astrophysics Data System (ADS)

    Caravaca, Gwénaël; Thomazo, Christophe; Vennin, Emmanuelle; Olivier, Nicolas; Cocquerez, Théophile; Escarguel, Gilles; Fara, Emmanuel; Jenks, James F.; Bylund, Kevin G.; Stephen, Daniel A.; Brayard, Arnaud

    2017-07-01

    In the aftermath of the catastrophic end-Permian mass extinction, the Early Triassic records recurrent perturbations in the carbon isotope signal, most notably during the Smithian and through the Smithian/Spathian Boundary (SSB; 1.5 myr after the Permian/Triassic boundary), which show some of the largest excursions of the Phanerozoic. The late Smithian also corresponds to major biotic turnovers and environmental changes, such as temperature fluctuations, that deeply impacted the recovery after the end-Permian mass extinction. Here we document the paired carbon isotope signal along with an analysis of the trace and major elements at the long-known Hot Springs section (southeastern Idaho, USA). This section records Early Triassic sediments from the Griesbachian-Dienerian up to the lower Spathian. We show that the organic and carbonate δ13C variations mirror the signals identified at a global scale. Particularly, the middle Smithian-SSB event represented by a negative-positive isotopic couplet is well identified and is not of diagenetic origin. We also document a positive excursion potentially corresponding to the Dienerian/Smithian Boundary. Observed Smithian-Spathian excursions are recorded similarly in both the organic and carbonate reservoirs, but the organic matter signal systematically shows unexpectedly dampened variations compared to its carbonate counterpart. Additionally, we show that variations in the net isotopic effect (i.e., Δ13C) probably resulted from a complex set of forcing parameters including either a mixing between terrestrial and marine organic matter depending on the evolution of the depositional setting, or variations in the biological fractionation. We establish that the Δ13C signal cannot be directly related to CO2-driven temperature variations at Hot Springs. Even though the carbon isotope signal mirrors the Early Triassic variations known at the global scale, the Hot Springs signal probably also reflects local influences on the carbon

  3. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment mixing

    PubMed Central

    Droser, Mary L.; Jensen, Sören; Gehling, James G.

    2002-01-01

    The trace fossil record is important in determining the timing of the appearance of bilaterian animals. A conservative estimate puts this time at ≈555 million years ago. The preservational potential of traces made close to the sediment–water interface is crucial to detecting early benthic activity. Our studies on earliest Cambrian sediments suggest that shallow tiers were preserved to a greater extent than typical for most of the Phanerozoic, which can be attributed both directly and indirectly to the low levels of sediment mixing. The low levels of sediment mixing meant that thin event beds were preserved. The shallow depth of sediment mixing also meant that muddy sediments were firm close to the sediment–water interface, increasing the likelihood of recording shallow-tier trace fossils in muddy sediments. Overall, trace fossils can provide a sound record of the onset of bilaterian benthic activity. PMID:12271130

  4. Zinc and germanium in the sedimentary rocks of Gale Crater on Mars indicate hydrothermal enrichment followed by diagenetic fractionation

    NASA Astrophysics Data System (ADS)

    Berger, Jeff A.; Schmidt, Mariek E.; Gellert, Ralf; Boyd, Nicholas I.; Desouza, Elstan D.; Flemming, Roberta L.; Izawa, Matthew R. M.; Ming, Douglas W.; Perrett, Glynis M.; Rampe, Elizabeth B.; Thompson, Lucy M.; VanBommel, Scott J. V.; Yen, Albert S.

    2017-08-01

    Zinc and germanium enrichments have been discovered in sedimentary rocks in Gale Crater, Mars, by the Alpha Particle X-ray Spectrometer on the rover Curiosity. Concentrations of Zn (910 ± 840 ppm) and Ge (65 ± 58 ppm) are tens to hundreds of times greater than in Martian meteorites and estimates for average silicate Mars. Enrichments occur in diverse rocks including minimally to extensively altered basaltic and alkalic sedimentary rocks. The magnitude of the enrichments indicates hydrothermal fluids, but Curiosity has not discovered unambiguous hydrothermal mineral assemblages. We propose that Zn- and Ge-rich hydrothermal deposits in the source region were dispersed in siliciclastic sediments during transport into the crater. Subsequent diagenetic mobilization and fractionation of Zn and Ge is evident in a Zn-rich sandstone (Windjana; Zn 4000 ppm, Ge 85 ppm) and associated Cl-rich vein (Stephen; Zn 8000 ppm, Ge 60 ppm), in Ge-rich veins (Garden City; Zn 2200 ppm, Ge 650 ppm), and in silica-rich alteration haloes leached of Zn (30-200 ppm). In moderately to highly altered silica-rich rocks, Ge remained immobile relative to leached elements (Fe, Mn, Mg, and Ca), consistent with fluid interaction at pH ≪ 7. In contrast, crosscutting Ge-rich veins at Garden City suggest aqueous mobilization as Ge-F complexes at pH < 2.5. Multiple jarosite detections by the CheMin X-ray diffractometer and variable Zn concentrations indicate diagenesis of lower Mount Sharp bedrock under acidic conditions. The enrichment and fractionation of Zn and Ge constrains fluid events affecting Gale sediments and can aid in unraveling fluid histories as Curiosity's traverse continues.

  5. Quantifying the impact of early calcite cementation on the reservoir quality of carbonate rocks: A 3D process-based model

    NASA Astrophysics Data System (ADS)

    Hosa, Aleksandra; Wood, Rachel

    2017-06-01

    The reservoir properties of carbonate rocks are controlled by both deposition and diagenesis. The latter includes the early precipitation of calcite cements, which can exert a strong control on the evolution of subsequent diagenetic pathways. We quantify the impact of early marine cement growth in grainstones on evolving pore space by examining trends in the relationship between cementation and permeability using a 3D process-based model (Calcite3D). The model assumes varying proportions of polycrystalline and monocrystalline grain types, upon which we grow isopachous and syntaxial calcite cement types, respectively. We model two syntaxial cement shapes, compact and elongated, that approximate the geometries of typical rhombohedral calcite forms. Results demonstrate the effect of cement competition: an increasing proportion of monocrystalline grains creates stronger competition and a reduction in the impact of individual grains on final calcite cement volume and porosity. Isopachous cement is effective in closing pore throats and limiting permeability. We also show that the impact of syntaxial cement on porosity occlusion and therefore flow is highly dependent on monocrystalline grain location and the orientation of crystal axes. This demonstrates the importance of diagenetic overprint in controlling the evolution of rock properties, but also that this process can be essentially random. We also show that diagenesis alone can create notable heterogeneity in the permeability of carbonates. While Calcite3D is successful in modelling realistic changes in cement volumes and pore space morphology, modelled permeabilities (0.01 -30D) are above the range reported in reservoir grainstones due to the very high permeability of the initial synthetic sediment deposit (58.9D). Poroperm data generated by Calcite3D, however, exhibits a linear relationship between the logarithms of porosity and permeability with a high coefficient of determination, as observed in natural media.

  6. Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: Implications for the evaluation of paleoseawater phosphate concentrations

    NASA Astrophysics Data System (ADS)

    Poulton, Simon W.; Canfield, Donald E.

    2006-12-01

    We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ˜19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ˜12 m. Molar P/Fe ratios are then relatively constant to a depth of ˜35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the

  7. Early steroid sulfurization in surface sediments of a permanently stratified lake (Ace Lake, Antarctica)

    NASA Astrophysics Data System (ADS)

    Kok, Marika D.; Rijpstra, W. Irene C.; Robertson, Lisette; Volkman, John K.; Sinninghe Damstéé, Jaap S.

    2000-04-01

    Surface sediments (0-25 cm) from Ace Lake (eastern Antarctica), a saline euxinic lake, were analyzed to study the early incorporation of reduced inorganic sulfur species into organic matter. The apolar fractions were shown to consist predominantly of dimeric (poly)sulfide linked C 27-C 29 steroids. These steroid moieties were identified by GC-MS analysis of the apolar fractions after cleavage of polysulfide linkages using MeLi and MeI and after desulfurisation. The polar fractions contained the oligomeric analogues. The S-bound steroids are most likely formed by sulfur incorporation into steroidal ketones formed from Δ 5 sterols by biohydrogenation by anaerobic bacteria. The concentrations of these sulfurised steroids increased with depth in the sediment. The sulfurisation reaction is completed in 1000-3000 years. Despite a wide range of functionalised lipids present in these sediments that are potentially available for sulfurisation, there is a very strong preference for the incorporation of sulfur into steroidal compounds. A predominance of sulfurised C 27 steroids contrasted with the distribution of free sterols, which showed a strong predominance of C 29 sterols. This indicates that the incorporation of sulfur is biased towards C 27 sterols. The results demonstrate that intermolecular sulfurisation of organic matter can occur in surface sediments at low temperatures and in the absence of light.

  8. Magnetic hysteresis parameters and Day plot analysis to characterize diagenetic alteration in gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Enkin, Randolph J.; Baker, Judith; Nourgaliev, Danis; Iassonov, Pavel; Hamilton, Tark S.

    2007-06-01

    The J meter coercivity spectrometer is a machine capable of rapid and simple measurement of magnetic hysteresis, isothermal remanence acquisition and magnetic viscosity of rocks and sediments. The J meter was used to study a suite of samples collected from strata in the gas hydrate-bearing JAPEX/JNOC/GSC Mallik 5L-38 well (69.5°N, 134.6°W) in the Mackenzie Delta of the northwestern Canadian Arctic. The Day plot of magnetic hysteresis ratios for these samples is exotic in that the points do not plot along a hyperbola as is usually observed. Rather, they plot as a scatter which is shown to contour into vertical slices using coercivity field (HC) or saturation magnetization (JS), and horizontal slices using the relative quantity of superparamagnetism (JSPM/JS). Optical microscopy reveals that the magnetic minerals are detrital magnetite and authigenic greigite. Greigite is dominant in sands which in situ had >70% gas hydrate saturation and in silts in which gas hydrate growth was blocked by insufficient porosity. We infer that the silts were the accumulation sites for solutes which had been excluded from the pore waters in neighboring coarser-grained sediments during the course of gas hydrate formation. Consequently, we conclude that magnetic properties are related to gas hydrate-related processes, and as such, may have potential as a method of remote sensing for gas hydrate deposits.

  9. Early diagenesis driven by widespread meteoric infiltration of a Central European carbonate ramp: A reinterpretation of the Upper Muschelkalk

    NASA Astrophysics Data System (ADS)

    Adams, Arthur; Diamond, Larryn W.

    2017-12-01

    Meteoric diagenesis of carbonate ramps is often difficult to interpret and can commonly be confused with other coinciding diagenetic processes. The Middle Triassic Upper Muschelkalk of Switzerland provides an insightful case in which the effects of several overprinting diagenetic environments, including matrix dolomitization, can be clearly unravelled. Previous studies suggested that diagenesis took place in connate marine waters, with later meteoric waters being invoked to explain recrystallization of dolomite. In this study, diagenetic analyses (C-O stable isotope ratios, thin-section point counting, cathodoluminescence and UV-fluorescence microscopy) of calcitic bioclastic samples have revealed that early diagenesis (pre-stylolitization) and the accompanying porosity evolution did not occur exclusively in the presence of marine fluids. Five sequential stages of diagenesis have been identified: marine, shallow burial, mixing-zone, meteoric and dolomitization. Marine diagenesis induced precipitation of bladed and inclusion-rich syntaxial cements that fluoresce strongly under UV-light. Both cements account for a mean 7.5 vol% reduction in the porosity of bioclastic beds. Shallow burial diagenesis likely induced mouldic porosity and associated fluorescent dog-tooth cementation. Based on light oxygen isotope and elevated strontium isotope ratios, matrix aragonite-calcite neomorphism is interpreted to have occurred in a mixture of marine and meteoric fluids. The combination of shallow burial and mixing-zone processes reduced porosity on average by 4.8 vol%. Evidence for subsequent meteoric diagenesis is found in abundant dog-tooth and blocky calcite cements that have mean δ18OVPDB of - 9.36‰ and no signs of recrystallization. These meteoric cements reduced porosity by a further 13.4 vol%. Percolation of meteoric water through the ramp was driven by hydraulic gradients on an adjacent basement high, which was exposed by a cycle of early Ladinian regressions

  10. Distribution patterns and possible influencing factors of As speciation in ornithogenic sediments from the Ross Sea region, East Antarctica.

    PubMed

    Lou, Chuangneng; Liu, Xiaodong; Liu, Wenqi; Wu, Libin; Nie, Yaguang; Emslie, Steven D

    2016-05-15

    Ornithogenic sediments are rich in toxic As (arsenic) compounds, posing a potential threat to local ecosystems. Here we analyzed the distribution of As speciation in three ornithogenic sediment profiles (MB6, BI and CC) collected from the Ross Sea region, East Antarctica. The distributions of total As and total P (phosphorus) concentrations were highly consistent in all three profiles, indicating that guano input is a major factor controlling total As distribution in the ornithogenic sediments. The As found in MB6 and CC is principally As(V) (arsenate), in BI As(III) (arsenite) predominates, but the As in fresh guano is largely composed of DMA (dimethylarsinate). The significant difference of As species between fresh guano and ornithogenic sediment samples may be related to diagenetic processes after deposition by seabirds. Based on analysis of the sedimentary environment in the studied sediments, we found that the redox conditions have an obvious influence on the As speciation distribution. Moreover, the distributions of As(III) and chlorophyll a in the MB6 and BI profiles are highly consistent, demonstrating that aquatic algae abundance may also influence the distribution patterns of As speciation in the ornithogenic sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation.

    PubMed

    Wakeham, Stuart G; Canuel, Elizabeth A

    2016-06-01

    Biogenic perylene and higher plant pentacyclic triterpenoid-derived alkylated and partially aromatized tetra- and pentacyclic derivatives of chrysene (3,4,7-trimethyl- and 3,3,7-trimethyl-1,2,3,4-tetrahydrochrysene, THC) and picene (1,2,9-trimethyl- and 2,2,9-trimethyl-1,2,3,4-tetrahydropicene, THP) were two- to four-fold more abundant than pyrogenic PAH in two sediment cores from the San Joaquin River in Northern California (USA). In a core from Venice Cut (VC), located in the river, PAH concentrations varied little downcore and the whole-core PAH concentration (biogenics + pyrogenics) was 250.6 ± 73.7 ng g(-1) dw; biogenic PAH constituted 67 ± 4 % of total PAH. THC were 26 ± 9 % of total biogenic PAH, THP were 36 ± 7 %, and perylene was 38 ± 7 %. PAH distributions in a core from Franks Tract (FT), a former wetland that was converted to an agricultural tract in the late 1800s and flooded in 1938, were more variable. Surface sediments were dominated by pyrogenic PAH so that biogenic PAH were only ~30 % of total PAH. Deeper in the core, biogenic PAH constituted 60-93 % of total PAH; THC, THP and perylene were 31 ± 28 %, 24 ± 32 %, and 45 ± 36 % of biogenic PAH. At 100-103 cm depth, THP constituted 80 % of biogenic PAH and at 120-123 cm perylene was 95 % of biogenic PAH. Current concepts related to precursors and transformation processes responsible for the diagenetic generation of perylene and triterpenoid-derived PAH are discussed. Distributions of biogenic PAH in VC and FT sediments suggest that they may not form diagenetically within these sediments but rather might be delivered pre-formed from the river's watershed.

  12. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments

    USGS Publications Warehouse

    Rehkamper, M.; Frank, M.; Hein, J.R.; Halliday, A.

    2004-01-01

    Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe-Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe-Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ??205Tl greater than +2.5, whereas anoxic sediments have ??205Tl of less than -1.5 (??205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ??205Tl values of oxic sediments probably reflect authigenic Fe-Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe-Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe-Mn crusts distributed globally (??205 Tl=+12.8??1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe-Mn crusts that are older than 25 Ma show a systematic increase of ??205Tl with decreasing age, from about +6 at 60-50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ??205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic

  13. Impact of diagenetic alteration on sea urchin (Echinodermata) magnesium isotope signatures: Comparison of experimental and fossil data

    NASA Astrophysics Data System (ADS)

    Riechelmann, Sylvia; Mavromatis, Vasileios; Buhl, Dieter; Dietzel, Martin; Hoffmann, René; Jöns, Niels; Eisenhauer, Anton; Immenhauser, Adrian

    2017-04-01

    Due to their thermodynamically instable high-Mg calcite mineralogy, the skeletal elements of echinoderms are often regarded as unreliable archives of Phanerozoic marine climate dynamics. Nevertheless, traditional and non-traditional isotope and elemental proxy data from echinoderms have been used to reconstruct global changes in palaeoseawater composition (Sandberg-cycles). Recently, these data and the interpretation have been controversially discussed in context with ancient seawater properties. This paper tests the sensitivity of echinoderm skeletal hardparts, specifically sea urchin spines to diagenetic alteration based on magnesium isotope data. We apply a dual approach by: (i) performing hydrothermal alteration experiments using meteoric, marine, and burial reactive fluids; and (ii) comparing these data with fossil sea urchin hardparts. The degree of alteration of experimentally altered and fossil sea urchin hardparts is assessed by a combination of optical (fluorescence, cathodoluminescence (CL), scanning electron microscopy (SEM)) and geochemical tools (elemental distribution, carbon, oxygen and magnesium isotopes). Although initial fluid chemistry of the experiments did not allow the detection of diagenetic overprint by elemental distribution (Fe, Mn) and cathodoluminescence, other tools such as fluorescence, SEM, delta18O, Mg concentration and delta26Mg display alteration effects, which respond to differential fluid temperature, chemistry, and experiment duration time. At experiments run under meteoric conditions with no Mg in the initial fluid, the solid is enriched in the heavier Mg isotopomer due to preferential dissolution of the lighter isotope. In contrast, initial burial and marine fluids have medium to high Mg concentrations. There, the Mg concentration and the delta26Mg values of the altered sea urchin spines increase. Fossil sea urchin hardparts display partly very strong diagenetic overprint as observed by their elemental distribution

  14. Petrography and geochemistry of the Permian-Triassic boundary interval, Yangou section, South China: Implications for early Griesbachian seawater δ13CDIC gradient with depth

    NASA Astrophysics Data System (ADS)

    Li, Rong

    2017-04-01

    The carbon isotopic composition (δ13Ccarb) recorded in shelf carbonates has been widely used as a proxy for the isotopic composition (δ13CDIC) of surface ocean water to establish paleocean chemistry and circulation patterns. However, δ13Ccarb values do not necessarily preserve the δ13CDIC, due to post-depositional diagenetic alteration. In order to examine the early Griesbachian surface-to-deep δ13CDIC gradient with depth, the diagenetic features of the Permian-Triassic boundary interval (beds 18 to 35) from Yangou section, located in the Yangtze carbonate platform interior, South China, are delineated to compare with those of the slope GSSP Meishan section. The petrographic and geochemical observations show that the early Griesbachian carbonates in the Yangou section underwent pervasive dolomitization in its early diagenetic history. Three types of early replacement dolomites and one type of dolomite cement are present. The dolomite crystals display internal zonation, with high-Ca calcian dolomite (HCD) core being encased successively by calcite and an outermost Fe-rich HCD cortex. The initial dolomitization took place in anoxic seawater, and underwent subsequent diagenetic system involved with meteoric water. The two most negative δ13C values in claystones of Beds 21-3 and 35 are probably related to meteoric diagenesis. Above and/or below the meteorically influenced beds, the dolomite and calcite have uniformly positive δ13C values. The primary carbon isotopic compositions are probably preserved in the early Griesbachian carbonate from the platform Yangou section, which could probably be related to the poor formation of the outermost Fe-rich HCD cortex. Compared to the slope carbonate from the Meishan section, the platform carbonate from the Yangou section has lower primary δ13Ccarb values. It is estimated that the δ13CDIC gradient with depth between Yangou and Meishan is less than the previously suggested. The results highlight the need for evaluation

  15. Iron geochemistry and organic carbon preservation by iron (oxyhydr)oxides in surface sediments of the East China Sea and the south Yellow Sea

    NASA Astrophysics Data System (ADS)

    Ma, Wei-Wei; Zhu, Mao-Xu; Yang, Gui-Peng; Li, Tie

    2018-02-01

    In marine sediments factors that influence iron (Fe) geochemistry and its interactions with other elements are diverse and remain poorly understood. Here we comparatively study Fe speciation and reactive Fe-bound organic carbon (Fe-OC) in surface sediments of the East China Sea (ECS) and the south Yellow Sea (SYS). The objectives are to better understand the potential impacts of geochemically distinct sediment sources and depositional/diagenetic settings on Fe geochemistry and OC preservation by Fe (hydr)oxides in sediments of the two extensive shelf seas around the world. Contents of carbonate- and acid-volatile-sulfide (AVS)-associated Fe(II) (FeAVS + carb) and magnetite (Femag) in the ECS sediments are about 5 and 9 times higher, respectively, than in the SYS. This could be ascribed to the ferruginous conditions of the ECS sediments that favor the formation/accumulation of Fecarb and Femag, a unique feature of marine unsteady depositional regimes. Much lower total Fe(II) contents in the SYS than in the ECS suggest that lower availability of highly reactive Fe (FeHR) and/or weak Fe reduction is a factor limiting Fe(II) formation and accumulation in the SYS sediments. The ratio of FeHR to total Fe is, on average, markedly higher (2.4 times) in the ECS sediments than in the SYS, which may be a combined result of several factors relevant to different sediment sources and depositional/diagenetic settings. In comparison with many other marine sediments, the percent fractions (fFe-OC) of Fe-OC to total organic carbon (TOC) in the ECS and the SYS are low, which can be ascribed to surface adsorption of OC rather than coprecipitation or organic complexation as the dominant binding mechanisms. Based on the fFe-OC in this study, total Fe-OC estimated for global continental shelves is equivalent to 38% of the atmospheric CO2 pool, which indicates the important role of sorptive stabilization of Fe-OC in continental shelf sediments for buffering CO2 release to the atmosphere

  16. Quaternary Sediment Accumulation in the Aleutian Trench: Implications for Dehydration Reaction Progress and Pore Pressure Development Offshore Alaska

    NASA Astrophysics Data System (ADS)

    Meridth, L. N.; Screaton, E.; Jaeger, J. M.; James, S. R.; Villaseñor, T. G.

    2015-12-01

    Sediment inputs to subduction zones impart a significant control on diagenetic reaction progress, fluid production and pore pressure development and thus affect hydrologic and tectonic behavior during subduction. Intensified glaciation following the mid-Pleistocene transition increased sediment flux to the Gulf of Alaska. Rapid sediment accumulation (>1 km/my) in the Aleutian Trench increases overburden and should accelerate dehydration of hydrous sedimentary components by elevating temperatures in the incoming sediment column. These processes have the potential to generate fluid overpressures in the mud-dominated, low permeability sediments deposited on the incoming plate, offshore SE Alaska. Mineralogical analyses on incoming sediments from Deep Sea Drilling Project Leg 18 and Integrated Ocean Drilling Program Expedition 341 show that both smectite and Opal-A are present as hydrous mineral phases. A 1-D numerical model was developed to track dehydration reaction progress and pore pressures in the incoming sediment column from the abyssal plain to the Aleutian Trench. Simulated temperatures in the incoming column increase due to the insulating effect of trench sediments. As a result, trench sedimentation causes smectite dehydration to begin and Opal-A dehydration to nearly reach completion at the deformation front. Simulated excess pore pressures in the proto-decollement zone increase from nearly hydrostatic to almost half of lithostatic due to the rapid deposition of trench sediments. The 1-D modeling results were incorporated into a 2-D model that follows the underthrust column at the deformation front into the subduction zone. Simulated results of the 2-D flow model illustrate the effects of lateral flow on pore pressure distribution following subduction.

  17. Punctuated Sediment Discharge during Early Pliocene Birth of the Colorado River: Evidence from Regional Stratigraphy, Sedimentology, and Paleontology

    NASA Astrophysics Data System (ADS)

    Dorsey, Rebecca J.; O'Connell, Brennan; McDougall, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at 5.4-5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough. These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment

  18. Prokaryotic algae associated with Australian proterozoic stromatolites.

    NASA Technical Reports Server (NTRS)

    Licari, G. R.; Cloud, P.

    1972-01-01

    The most favorable sites in which to study the associations between stromatolites and the algae responsible for them are places where a variety of stromatolites of possibly early diagenetic or primary silica occupy a layer of substantial thickness of little metamorphosed ancient sediments. One such place is in northwestern Queensland, Australia. Five cases of association between stromatolites and blue-green algal nannofossils were observed within a 100-m sequence of carbonate rocks in that area.

  19. Diffusion-reaction modelling of early diagenesis of sediments affected by acid mine drainage.

    NASA Astrophysics Data System (ADS)

    Torres, E.; Ayora, C.; Arias, J. L.; Garcia Robledo, E.; Papaspyrou, S.; Corzo, A.

    2012-04-01

    The Sancho Reservoir (SW Spain) is a monomictic water reservoir affected by acid mine drainage. It has a pH of ~4, with high sulfate (200 ppm) and heavy metal concentrations in the water column. The reservoir develops reducing conditions at the bottom during the stratification period. A laboratory experiment was carried out to study the effect of this oxygen variation on the early diagenesis processes and the cycling of metals. Sediment cores and bottom water were collected during the stratification period and brought to the laboratory. The cores were maintained in an aquarium bubbled with nitrogen gas to maintain hypoxic conditions (~10 µmol O2 L-1) for 1 day. Then, oxic conditions were induced by bubbling with air and maintained for 50 days. Finally, hypoxia was re-established for 10 days. Triplicate cores were sliced in a anaerobic glove box at each stage. Pore water was extracted by centrifugation and: Eh, pH, DO, DOC, sulfate, Fe and trace metals were analyzed. The sediment was freeze-dried and a sequential extraction protocol was applied to determine the exchangeable, AVS, Fe-(oxy)hydroxides, Fe-oxides, organic matter, pyrite sulfur and residual phase iron fractions. Organic carbon and total C, N, H and S were also analyzed in the sediment. A reactive diffusion model has been used to obtain the rates of biogeochemical reactions by fitting to the experimental data. During hypoxic conditions sulfate and Fe-(oxy)hydroxides are reduced, due to the anaerobic oxidation of organic matter, at the very first few cm, releasing sulfide and Fe(II) which precipitate as iron sulfide. When oxygen diffuses in the sediment, sulfate-reduction and the sulfide peaks are displaced deeper into the sediment. Oxygen penetration depth and its consumption rates in the sediment increase quickly, resulting in the reoxidation of the iron sulfides that had precipitated during hypoxic conditions. Sulfide and Fe(II) are released and are again oxidized to Fe(III) and sulfate respectively

  20. Diagenetic changes of lignin compounds in a more than 0.6 million-year-old lacustrine sediment (Lake Biwa, Japan)

    NASA Astrophysics Data System (ADS)

    Ishiwatari, Ryoshi; Uzaki, Minoru

    1987-02-01

    A vertical profile of lignin in the upper 700 m layer of a 1400 m sediment core of Lake Biwa, an oligotrophic freshwater lake in Japan, was determined using a CuO oxidative degradation method. The results indicated that lignin is found throughout the core, demonstrating lignin to be very stable for over 0.6 million years. Moreover, the upper 250 m (approximately 0.6 million years old) segment of the sediment core was investigated to determine the apparent long term degradation rate of lignin. A downward lignin concentration decrease is observed over the upper 250 m of the core which corresponds to a calculated half life of at least approximately 40 × 10 4 years, assuming that lignin decrease is due to its in situ degradation (diagenesis).

  1. Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis.

    PubMed

    Humanes, Adriana; Ricardo, Gerard F; Willis, Bette L; Fabricius, Katharina E; Negri, Andrew P

    2017-03-10

    Coral reproduction is vulnerable to both declining water quality and warming temperatures, with simultaneous exposures likely compounding the negative impact of each stressor. We investigated how early life processes of the coral Acropora tenuis respond to increasing levels of suspended sediments in combination with temperature or organic nutrients. Fertilization success and embryo development were more sensitive to suspended sediments than to high temperatures or nutrient enrichment, while larval development (after acquisition of cilia) and settlement success were predominantly affected by thermal stress. Fertilization success was reduced 80% by suspended sediments, and up to 24% by temperature, while the addition of nutrients to suspended sediments had no further impact. Larval survivorship was unaffected by any of these treatments. However, settlement success of larvae developing from treatment-exposed embryos was negatively affected by all three stressors (e.g. up to 55% by suspended sediments), while exposure only during later larval stages predominantly responded to temperature stress. Environmentally relevant levels of suspended sediments and temperature had the greatest impacts, affecting more processes than the combined impacts of sediments and nutrients. These results suggest that management strategies to maintain suspended sediments at low concentrations during coral spawning events will benefit coral recruitment, especially with warming climate.

  2. Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis

    NASA Astrophysics Data System (ADS)

    Humanes, Adriana; Ricardo, Gerard F.; Willis, Bette L.; Fabricius, Katharina E.; Negri, Andrew P.

    2017-03-01

    Coral reproduction is vulnerable to both declining water quality and warming temperatures, with simultaneous exposures likely compounding the negative impact of each stressor. We investigated how early life processes of the coral Acropora tenuis respond to increasing levels of suspended sediments in combination with temperature or organic nutrients. Fertilization success and embryo development were more sensitive to suspended sediments than to high temperatures or nutrient enrichment, while larval development (after acquisition of cilia) and settlement success were predominantly affected by thermal stress. Fertilization success was reduced 80% by suspended sediments, and up to 24% by temperature, while the addition of nutrients to suspended sediments had no further impact. Larval survivorship was unaffected by any of these treatments. However, settlement success of larvae developing from treatment-exposed embryos was negatively affected by all three stressors (e.g. up to 55% by suspended sediments), while exposure only during later larval stages predominantly responded to temperature stress. Environmentally relevant levels of suspended sediments and temperature had the greatest impacts, affecting more processes than the combined impacts of sediments and nutrients. These results suggest that management strategies to maintain suspended sediments at low concentrations during coral spawning events will benefit coral recruitment, especially with warming climate.

  3. Iron Cycling in Marine Sediments - New Insights from Isotope Analysis on Sequentially Extracted Fe Fractions

    NASA Astrophysics Data System (ADS)

    Henkel, S.; Kasten, S.; Poulton, S.; Hartmann, J.; Staubwasser, M.

    2014-12-01

    Reactive Fe (oxyhydr)oxides preferentially undergo early diagenetic cycling and may cause a diffusive flux of dissolved Fe2+ from sediments towards the sediment-water interface. The partitioning of Fe in sediments has traditionally been studied by applying sequential extractions based on reductive dissolution of Fe minerals. We complemented the sequential leaching method by Poulton and Canfield [1] in order to be able to gain δ56Fe data for specific Fe fractions, as such data are potentially useful to study Fe cycling in marine environments. The specific mineral fractions are Fe-carbonates, ferrihydrite + lepidocrocite, goethite + hematite, and magnetite. Leaching was performed with acetic acid, hydroxylamine-HCl, Na-dithionite and oxalic acid. The processing of leachates for δ56Fe analysis involved boiling the samples in HCl/HNO3/H2O2, Fe precipitation and anion exchange column chromatography. The new method was applied to short sediment cores from the North Sea and a bay of King George Island (South Shetland Islands, Antarctica). Downcore mineral-specific variations in δ56Fe revealed differing contributions of Fe (oxyhydr)oxides to redox cycling. A slight decrease in easily reducible Fe oxides correlating with a slight increase in δ56Fe for this fraction with depth, which is in line with progessive dissimilatory iron reduction [2,3], is visible in the top 10 cm of the North Sea core, but not in the antarctic sediments. Less reactive (dithionite and oxalate leachable) fractions did not reveal isotopic trends. The acetic acid-soluble fraction displayed pronounced δ56Fe trends at both sites that cannot be explained by acid volatile sulfides that are also extracted by acetic acid [1]. We suggest that low δ56Fe values in this fraction relative to the pool of easily reducible Fe oxides result from adsorbed Fe(II) that was open to isotopic exchange with oxide surfaces, affirming the experimental results of Crosby el al. [2]. Hence, δ56Fe analyses on marine

  4. Role of sediment size and biostratinomy on the development of biofilms in recent avian vertebrate remains

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph E.; Lenczewski, Melissa E.; Clawson, Steven R.; Warnock, Jonathan P.

    2017-04-01

    Microscopic soft tissues have been identified in fossil vertebrate remains collected from various lithologies. However, the diagenetic mechanisms to preserve such tissues have remained elusive. While previous studies have described infiltration of biofilms in Haversian and Volkmann’s canals, biostratinomic alteration (e.g., trampling), and iron derived from hemoglobin as playing roles in the preservation processes, the influence of sediment texture has not previously been investigated. This study uses a Kolmogorov Smirnov Goodness-of-Fit test to explore the influence of biostratinomic variability and burial media against the infiltration of biofilms in bone samples. Controlled columns of sediment with bone samples were used to simulate burial and subsequent groundwater flow. Sediments used in this study include clay-, silt-, and sand-sized particles modeled after various fluvial facies commonly associated with fossil vertebrates. Extant limb bone samples obtained from Gallus gallus domesticus (Domestic Chicken) buried in clay-rich sediment exhibit heavy biofilm infiltration, while bones buried in sands and silts exhibit moderate levels. Crushed bones exhibit significantly lower biofilm infiltration than whole bone samples. Strong interactions between biostratinomic alteration and sediment size are also identified with respect to biofilm development. Sediments modeling crevasse splay deposits exhibit considerable variability; whole-bone crevasse splay samples exhibit higher frequencies of high-level biofilm infiltration, and crushed-bone samples in modeled crevasse splay deposits display relatively high frequencies of low-level biofilm infiltration. These results suggest that sediment size, depositional setting, and biostratinomic condition play key roles in biofilm infiltration in vertebrate remains, and may influence soft tissue preservation in fossil vertebrates.

  5. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils.

    PubMed

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F; Currano, Ellen D; Jacobs, Louis L; Sylvestersen, Rene Lyng; Gabbott, Sarah E; Vinther, Jakob

    2015-10-13

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns.

  6. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils

    PubMed Central

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F.; Currano, Ellen D.; Jacobs, Louis L.; Sylvestersen, Rene Lyng; Gabbott, Sarah E.; Vinther, Jakob

    2015-01-01

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns. PMID:26417094

  7. Deep aquifer as driver for mineral authigenesis in Gulf of Alaska sediments (IODP Expedition 341, Site U1417)

    NASA Astrophysics Data System (ADS)

    Zindorf, Mark; März, Christian; Wagner, Thomas; Strauss, Harald; Gulick, Sean P. S.; Jaeger, John M.; LeVay, Leah J.

    2016-04-01

    Bacterial sulphate reduction plays a key role in authigenic mineral formation in marine sediments. Usually, decomposition of organic matter follows a sequence of microbial metabolic pathways, where microbial sulphate reduction leads to sulphate depletion deeper in the sediment. When sulphate is consumed completely from the pore waters, methanogenesis commences. The contact of sulphate- and methane-containing pore waters is a well-defined biogeochemical boundary (the sulphate-methane transition zone, SMTZ). Here authigenic pyrite, barite and carbonates form. Pyrite formation is directly driven by bacterial sulphate reduction since pyrite precipitates from produced hydrogen sulphide. Barite and carbonate formation are secondary effects resulting from changes of the chemical milieu due to microbial activity. However, this mineral authigenesis is ultimately linked to abiotic processes that determine the living conditions for microorganisms. At IODP Site U1417 in the Gulf of Alaska, a remarkable diagenetic pattern has been observed: Between sulphate depletion and methane enrichment, a ~250 m wide gap exists. Consequently, no SMTZ can be found under present conditions, but enrichments of pyrite indicate that such zones have existed in the past. Solid layers consisting of authigenic carbonate-cemented sand were partly recovered right above the methane production zone, likely preventing continued upward methane diffusion. At the bottom of the sediment succession, the lower boundary of the methanogenic zone is constrained by sulphate-rich pore waters that appear to originate from a deeper source. Here, a well-established SMTZ exists, but in reversed order (sulphate diffusing up, methane diffusing down). Sulphur isotopes of pyrite reveal that sulphate reduction here does not occur under closed system conditions. This indicates that a deep aquifer is actively recharging the deep sulphate pool. Similar deep SMTZs have been found at other sites, yet mostly in geologically

  8. A Perspective on Diagenetic Geometries and Patterns of Iron Oxide Cement and Coloration: Understanding Challenges and Complexities

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Wang, Y.

    2015-12-01

    Diagenetic records of fluid flow are underutilized proxies of water and environmental conditions in sedimentary rocks on Earth as well as Mars. The terrestrial iron-oxide records can be highly varied from faint wisps of coloration, to heavily cemented masses and layers. Other than vein cements, concretionary forms are some of the most prominent, yet enigmatic records. Concretions can have various mineral cement compositions with sizes that can span three orders of magnitude from mm, to cm, and m scales, in remarkably consistent, common spheroidal forms. Concretion geometries and banding may indicate directions and timings of fluid flow and precipitation, but deciphering the origins can be difficult with limited analytical tools. Definite complexities are the possibilities of: 1) overprinted events in an open system; 2) the role of organics in the nucleation and precipitation of authigenic minerals; and 3) multiple fluids, pathways, or processes that may produce similar-looking end products. In near-surface environments, likely any water since the Proterozoic has contained microbial life, and thus it seems highly probable that microbes play a significant role in the precipitation of diagenetic minerals due to the interactions of the biosphere and geosphere. However, recognition of ancient biosignatures that may have poor preservation potential remains a challenge. Iron oxides are particularly common, valuable indicators of near-surface iron cycling and are recognizable because the visual coloration. Our recent studies in Jurassic sandstones indicate preserved records of fingering at the interface of two immiscible fluids. The integration of geochemical self-organization models and field data provides new insights to understanding diagenetic fluid compositions, their relative densities, and flow direction flux and movement. These studies can have valuable implications and applications for understanding past fluid flow history, and reservoir characterization for CO2

  9. Chromium isotope fractionation in ferruginous sediments

    NASA Astrophysics Data System (ADS)

    Bauer, Kohen W.; Gueguen, Bleuenn; Cole, Devon B.; Francois, Roger; Kallmeyer, Jens; Planavsky, Noah; Crowe, Sean A.

    2018-02-01

    Ferrous Fe is a potent reductant of Cr(VI), and while a number of laboratory studies have characterized Cr isotope fractionation associated with Cr(VI) reduction by ferrous iron, the expression of this fractionation in real-world ferrous Fe-rich environments remains unconstrained. Here we determine the isotope fractionation associated with Cr(VI) reduction in modern ferrous Fe-rich sediments obtained from the previously well studied Lake Matano, Indonesia. Whole core incubations demonstrate that reduction of Cr(VI) within ferruginous sediments provides a sink for Cr(VI) leading to Cr(VI) concentration gradients and diffusive Cr(VI) fluxes across the sediment water interface. As reduction proceeded, Cr(VI) remaining in the overlying lake water became progressively enriched in the heavy isotope (53Cr), increasing δ53Cr by 2.0 ± 0.1‰ at the end of the incubation. Rayleigh distillation modelling of the evolution of Cr isotope ratios and Cr(VI) concentrations in the overlying water yields an effective isotope fractionation of εeff = 1.1 ± 0.2‰ (53Cr/52Cr), whereas more detailed diagenetic modelling implies an intrinsic isotope fractionation of εint = 1.80 ± 0.04‰. Parallel slurry experiments performed using anoxic ferruginous sediment yield an intrinsic isotope fractionation of εint = 2.2 ± 0.1‰. These modelled isotope fractionations are corroborated by direct measurement of the δ53Cr composition on the upper 0.5 cm of Lake Matano sediment, revealing an isotopic offset from the lake water of Δ53Cr = 0.21-1.81‰. The data and models reveal that effective isotope fractionations depend on the depth at which Cr(VI) reduction takes place below the sediment water interface-the deeper the oxic non-reactive zone, the smaller the effective fractionation relative to the intrinsic fractionation. Based on the geochemistry of the sediment we suggest the electron donors responsible for reduction are a combination of dissolved Fe(II) and 0.5 M HCl extractable (solid

  10. Assessment of diagenetic alteration of dinosaur eggshells through petrography and geochemical analysis

    NASA Astrophysics Data System (ADS)

    Enriquez, M. V.; Eagle, R.; Eiler, J. M.; Tripati, A. K.; Ramirez, P. C.; Loyd, S. J.; Chiappe, L.; Montanari, S.; Norell, M.; Tuetken, T.

    2012-12-01

    Carbonate clumped isotope analysis of fossil eggshells has the potential to constrain both the physiology of extinct animals and, potentially, paleoenvironmental conditions, especially when coupled with isotopic measurements of co-occurring soil carbonates. Eggshell samples from both modern vertebrates and Cretaceous Hadrosaurid, Oviraptorid, Titanosaur, Hypselosaurus, Faveoolithus, dinosaur fossils have been collected from Auca Mahuevo, Argentina and Rousett, France, amongst other locations, for geochemical analysis to determine if isotopic signatures could be used to indicate warm- or cold-bloodedness. In some locations soil carbonates were also analyzed to constrain environmental temperatures. In order to test the validity of the geochemical results, an extensive study was undertaken to establish degree of diagenetic alteration. Petrographic and cathodoluminescence characterization of the eggshells were used to assess diagenetic alteration. An empirical 1-5 point scale was used to assign each sample an alteration level, and the observations were then compared with the geochemical results. Specimens displayed a wide range of alteration states. Some of which were well preserved and others highly altered. Another group seemed to be structural intact and only under cathodoluminescence was alteration clearly observed. In the majority of samples, alteration level was found to be predictably related to geochemical results. From specimens with little evidence for diagenesis, carbonate clumped isotope signatures support high (37-40°C) body temperature for Titanosaurid dinosaurs, but potentially lower body temperatures for other taxa. If these data do, in fact, represent original eggshell growth temperatures, these results support variability in body temperature amongst Cretaceous dinosaurs and potentially are consistent with variations between adult body temperature and size — a characteristic of 'gigantothermy'.

  11. Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Yao, Peng; Bianchi, Thomas S.; Xu, Yahong; Liu, Hui; Mi, Tiezhu; Zhang, Xiao-Hua; Liu, Jiwen; Yu, Zhigang

    2017-08-01

    Large-river delta-front estuaries (LDEs) and their adjacent shelf margins are sites of dynamic diagenetic processes that play a significant role in coastal biogeochemical cycling. In this study, we used dissolved inorganic carbon (DIC), redox sensitive elements (Fe2 + and Mn2 +), dissolved inorganic nitrogen (DIN) nutrients (NH4+, NO3-, and NO2-), major cations and anions (K+, Ca2 +, Mg2 +, SO42 -, and Cl-) in bottom-water and sediment pore-waters, to investigate the early chemical diagenesis and authigenic mineral formation in mobile-mud deposits of the Changjiang Estuary and adjacent inner shelf of the East China Sea (ECS). Vertical profiles of DIC and NH4+ in pore-waters had similar trends at most sites, showing a significant increase with depth near the Changjiang Estuary and being relatively constant at offshore sites. Higher pore-water DIC and NH4+ concentrations were observed in nearshore sites in winter, which were likely attributed to exposure of deeper deposits by winter coastal erosion. Nitrification was observed at most sites, and AOB (ammonia-oxidizing bacteria) played a leading role in ammonia oxidation in the study areas. The nitrification-denitrification was likely important in contributing to the loss of DIN in offshore sites during summer. Large inputs of organic carbon (OC) and terrestrial materials from Changjiang River resulted in intense sulfate reduction and Fe and Mn reduction in nearshore sites. Lower C/N and C/S ratios coupled with an apparent decrease in pore-water Ca2 + and Mg2+ concentrations with depth near the Changjiang Estuary, which indicated that authigenic carbonate formation occurs in these sediments. Decreases in K+ and Mg2 + with depth reflected that reverse weathering was an important process of authigenic mineral formation in these sediments. We conclude that adsorption process, seasonal erosion-redeposition, and summer hypoxic conditions of bottom-waters may play an important role in early diagenesis processes and

  12. Origin and diagenetic evolution of gypsum and microbialitic carbonates in the Late Sag of the Namibe Basin (SW Angola)

    NASA Astrophysics Data System (ADS)

    Laurent, Gindre-Chanu; Edoardo, Perri; Ian, Sharp R.; Peacock, D. C. P.; Roger, Swart; Ragnar, Poulsen; Hercinda, Ferreira; Vladimir, Machado

    2016-08-01

    Ephemeral evaporitic conditions developed within the uppermost part of the transgressive Late Sag sequence in the Namibe Basin (SW Angola), leading to the formation of extensive centimetre- to metre-thick sulphate-bearing deposits and correlative microbialitic carbonates rich in pseudomorphs after evaporite crystals. The onshore pre-salt beds examined in this study are located up to 25 m underneath the major mid-Aptian evaporitic succession, which is typified at the outcrop by gypsiferous Bambata Formation and in the subsurface by the halite-dominated Loeme Formation. Carbonate-evaporite cycles mostly occur at the top of metre-thick regressive parasequences, which progressively onlap and overstep landward the former faulted (rift) topography, or fill major pre-salt palaeo-valleys. The sulphate beds are made up of alabastrine gypsum associated with embedded botryoidal nodules, dissolution-related gypsum breccia, and are cross-cut by thin satin-spar gypsum veins. Nodular and fine-grained fabrics are interpreted as being diagenetic gypsum deposits resulting from the dissolution and recrystallisation of former depositional subaqueous sulphates, whereas gypsum veins and breccia result from telogenetic processes. The carbonates display a broader diversity of facies, characterised by rapid lateral variations along strike. Thin dolomitic and calcitic bacterial-mediated filamentous microbialitic boundstones enclose a broad variety of evaporite pseudomorphs and can pass laterally over a few metres into sulphate beds. Dissolution-related depositional breccias are also common and indicate early dissolution of former evaporite layers embedded within the microbialites. Sulphate and carbonate units are interpreted as being concomitantly deposited along a tide-dominated coastal supra- to intertidal- sabkha and constitute high-frequency hypersaline precursor events, prior to the accumulation of the giant saline mid-Aptian Bambata and Loeme Formations. Petrographic and geochemical

  13. Contributions of a Strengthened Early Holocene Monsoon and Sediment Loading to Present-Day Subsidence of the Ganges-Brahmaputra Delta

    NASA Astrophysics Data System (ADS)

    Karpytchev, M.; Ballu, V.; Krien, Y.; Becker, M.; Goodbred, S.; Spada, G.; Calmant, S.; Shum, C. K.; Khan, Z.

    2018-02-01

    The contribution of subsidence to relative sea level rise in the Ganges-Brahmaputra delta (GBD) is largely unknown and may considerably enhance exposure of the Bengal Basin populations to sea level rise and storm surges. This paper focuses on estimating the present-day subsidence induced by Holocene sediment in the Bengal Basin and by oceanic loading due to eustatic sea level rise over the past 18 kyr. Using a viscoelastic Earth model and sediment deposition history based on in situ measurements, results suggest that massive sediment influx initiated in the early Holocene under a strengthened South Asian monsoon may have contributed significantly to the present-day subsidence of the GBD. We estimate that the Holocene loading generates up to 1.6 mm/yr of the present-day subsidence along the GBD coast, depending on the rheological model of the Earth. This rate is close to the twentieth century global mean sea level rise (1.1-1.7 mm/yr). Thus, past climate change, by way of enhanced sedimentation, is impacting vulnerability of the GBD populations.

  14. Mobility of authigenic rhenium, silver, and selenium during postdepositional oxidation in marine sediments

    USGS Publications Warehouse

    Crusius, John; Thomson, John

    2003-01-01

    Sedimentary records of redox-sensitive trace elements hold significant potential as indicators of paleoceanographic environmental conditions. Records of Re can reveal the intensity of past reducing conditions in sediments at the time of deposition, whereas records of Ag may record the magnitude of past diatom fluxes to the seafloor. Confidence in paleoenvironmental reconstruction from records of either metal, however, requires it to have experienced negligible redistribution since deposition. This study examines diagenetic rearrangements of Re and Ag that occur in response to exposure to bottom-water O2 in environments of low sedimentation rate, including Madeira Abyssal Plain turbidites and eastern Mediterranean basin sapropels. Authigenic Re was remobilized quantitatively by oxidation but poorly retained by the underlying sediments. All records are consistent with previous work demonstrating that only a limited reimmobilization of Re occurs preferentially in Corg-rich, reducing sediments. Silver was also mobilized quantitatively by oxidation, but it was subsequently immobilized more efficiently in all cases as sharp peaks immediately into anoxic conditions below active oxidation fronts, and these peaks remain immobile in anoxic conditions during long-term burial. Comparison of Ag, S, and Se records from various cores suggests that Ag is likely to have been immobilized as a selenide, a mechanism previously proposed for Hg in similar situations (Mercone et al., 1999). Coexisting narrow peaks of Ag and Hg with Se offer a means of assessing whether oxidative burndown has ever occurred at the top of Corg- and sulfide-rich sedimentary units. Although these results suggest that caution must be used when inferring paleoenvironmental information from records of Ag and Re in cores with low sediment accumulation rates (<5 cm ka−1), they should not affect the promise that authigenic Ag and Re records hold for paleoenvironmental reconstruction in sediments with higher

  15. Sediment impacts on marine sponges.

    PubMed

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Bennett, Holly; Marlow, Joseph; Shaffer, Megan

    2015-05-15

    Changes in sediment input to marine systems can influence benthic environments in many ways. Sponges are important components of benthic ecosystems world-wide and as sessile suspension feeders are likely to be impacted by changes in sediment levels. Despite this, little is known about how sponges respond to changes in settled and suspended sediment. Here we review the known impacts of sedimentation on sponges and their adaptive capabilities, whilst highlighting gaps in our understanding of sediment impacts on sponges. Although the literature clearly shows that sponges are influenced by sediment in a variety of ways, most studies confer that sponges are able to tolerate, and in some cases thrive, in sedimented environments. Critical gaps exist in our understanding of the physiological responses of sponges to sediment, adaptive mechanisms, tolerance limits, and the particularly the effect of sediment on early life history stages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Sediment-hosted Pb-Zn Deposits: a global perspective

    USGS Publications Warehouse

    Leach, David L.; Sangster, Donald F.; Kelley, Karen D.; Large, R; Garven, G.; Allen, Craig R.

    2005-01-01

    Sediment-hosted Pb-Zn deposits contain the world's greatest lead and zinc resources and dominate world production of these metals. They are a chverse group of ore deposits hosted by a wide variety of carbonate and siliciclastic roch that have no obviolls genetic association with igneous activity. A nmge of ore-fortl1ing processes in a vmiety of geologic and tectonic environments created these deposits over at least two billion years of Earth history. The metals were precipitated by basinal brines in synsedimentary and early diagenetic to low-grade metamorphic environments. The deposits display a broad range of relationships to enclosing host rocks that includes stratiform, strata-bound, and discordant ores. These ores are divided into two broad subt)1Jes: Mississippi Valley-type (MVT) and sedimentmy exhalative (SEDEX), Despite the "exhalative" component inherent in the term "SEDEX," in this manusclipt, direct evidence of an exhalite in the ore or alteration component is not essential for a deposit to be classified as SEDEX. The presence of laminated sulfides parallel to bedding is assumed to be permissive evidence for exhalative ores. The chstinction between some SEDEX and MVT depOSits can be quite subjective because some SEDEX ores replaced carbonate, whereas some MVT depOSits formed in an early diagenetic environment and display laminated ore textures. Geologic and resource information are presented for 248 depositS that provide a framework to describe ,mel compare these deposits. Nine of tlle 10 largest sediment-hosted Pb-Zn deposits are SEDEX, Of the deposits that contain at least 2.5 million metric tons (Mt), there are 35 SEDEX (excluding Broken Hill-type) deposits and 15 MVT (excluding Iris-type) deposits. Despite the skewed distribution of the deposit size, the two deposits types have an excellent correlation between total tonnage and tonnage of contained metal (Pb + Zn), with a fairly consistent ratio of about lO/l, regardless of the size of the deposit or

  17. Influences of Sedimentary Environments and Volcanic Sources on Diagenetic Alteration of Volcanic Tuffs in South China.

    PubMed

    Gong, Nina; Hong, Hanlie; Huff, Warren D; Fang, Qian; Bae, Christopher J; Wang, Chaowen; Yin, Ke; Chen, Shuling

    2018-05-16

    Permian-Triassic (P-Tr) altered volcanic ashes (tuffs) are widely distributed within the P-Tr boundary successions in South China. Volcanic altered ashes from terrestrial section-Chahe (CH) and marine section-Shangsi (SS) are selected to further understand the influence of sedimentary environments and volcanic sources on diagenetic alterarion on volcanic tuffs. The zircon 206 Pb/ 238 U ages of the corresponding beds between two sections are almost synchronous. Sedimentary environment of the altered tuffs was characterized by a low pH and did not experience a hydrothermal process. The dominant clay minerals of all the tuff beds are illite-smectite (I-S) minerals, with minor chlorite and kaolinite. I-S minerals of CH (R3) are more ordered than SS (R1), suggesting that CH also shows a higher diagenetic grade and more intensive chemical weathering. Besides, the nature of the volcanism of the tuff beds studied is derived from different magma sources. The clay mineral compositions of tuffs have little relation with the types of source volcanism and the depositional environments. Instead, the degree of the mixed-layer clay minerals and the REE distribution are mainly dependent upon the sedimentary environments. Thus, the mixed-layer clay minerals ratio and their geochemical index can be used as the paleoenvironmental indicator.

  18. Diagenetic evidence for an epigenetic origin of the Courtbrown Zn-Pb deposit, Ireland

    NASA Astrophysics Data System (ADS)

    Reed, Christopher P.; Wallace, Malcolm W.

    2001-08-01

    Mineralisation at the Courtbrown deposit in south-western Ireland is concentrated in the basal section of the Chadian Waulsortian Limestone, immediately above the Courceyan Ballysteen Limestone. Two episodes of sulphide deposition have been identified: an early stage of minor pyrite precipitation, and a later base-metal-rich mineralisation event. Sphalerite, galena and pyrite of the later mineralisation event occur predominantly as replacement phases along stylolites, dissolution seams, and within the micritic matrix of the host limestone. These sulphide minerals also occur as cements within late stage fractures. The following diagenetic phases are present in the Waulsortian and Ballysteen Limestones in the Courtbrown area (from oldest to youngest): non-luminescent synsedimentary calcite cements, non-luminescent equant calcite cements, bright luminescent calcite cement, dull luminescent calcite cement, planar dolomite cement and replacement dolomite (regional dolomite), saddle dolomite cement, and fibrous dull luminescent calcite cement filling pressure-shadows around the sulphide minerals. Homogenisation temperatures for primary fluid inclusions within dull luminescent calcite cements (precipitated penecontemporaneously with base-metal mineralisation) range from 160 to 200 °C, with a mode at 170-180 °C. These values are unlikely to be representative of mineralisation temperatures as the fluid inclusions may have been significantly affected by heating and/or deformation during late burial (maximum paleotemperatures from Ro and CAI data around 310 °C). The observed paragenetic sequence indicates that mineralisation is completely epigenetic. As the earliest mineralisation is hosted by macro-stylolites, the sequence must have obtained a minimum burial depth of around 800 m prior to the onset of mineralisation. A burial depth of 800 m would correspond to an approximate early Chadian age for the Courtbrown area. Pressure-shadows around sphalerite further indicate

  19. Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean

    NASA Astrophysics Data System (ADS)

    Slotnick, B. S.; Lauretano, V.; Backman, J.; Dickens, G. R.; Sluijs, A.; Lourens, L.

    2015-03-01

    Major variations in global carbon cycling occurred between 62 and 48 Ma, and these very likely related to changes in the total carbon inventory of the ocean-atmosphere system. Based on carbon cycle theory, variations in the mass of the ocean carbon should be reflected in contemporaneous global ocean carbonate accumulation on the seafloor and, thereby, the depth of the calcite compensation depth (CCD). To better constrain the cause and magnitude of these changes, the community needs early Paleogene carbon isotope and carbonate accumulation records from widely separated deep-sea sediment sections, especially including the Indian Ocean. Several CCD reconstructions for this time interval have been generated using scientific drill sites in the Atlantic and Pacific oceans; however, corresponding information from the Indian Ocean has been extremely limited. To assess the depth of the CCD and the potential for renewed scientific drilling of Paleogene sequences in the Indian Ocean, we examine lithologic, nannofossil, carbon isotope, and carbonate content records for late Paleocene - early Eocene sediments recovered at three sites spanning Ninetyeast Ridge: Deep Sea Drilling Project (DSDP) Sites 213 (deep, east), 214 (shallow, central), and 215 (deep, west). The disturbed, discontinuous sediment sections are not ideal, because they were recovered in single holes using rotary coring methods, but remain the best Paleogene sediments available from the central Indian Ocean. The δ13C records at Sites 213 and 215 are similar to those generated at several locations in the Atlantic and Pacific, including the prominent high in δ13C across the Paleocene carbon isotope maximum (PCIM) at Site 215, and the prominent low in δ13C across the early Eocene Climatic Optimum (EECO) at both Site 213 and Site 215. The Paleocene-Eocene thermal maximum (PETM) and the K/X event are found at Site 213 but not at Site 215, presumably because of coring gaps. Carbonate content at both Sites 213 and

  20. Early Tertiary Exhumation, Erosion, and Sedimentation in the Central Andes, NW Argentina

    NASA Astrophysics Data System (ADS)

    Carrapa, B.; Decelles, P. G.; Gerhels, G.; Mortimer, E.; Strecker, M. R.

    2006-12-01

    Timing of deformation and resulting sedimentation patterns in the Altiplano-Puna Plateau-Eastern Cordillera of the southern Central Andes are the subject of ongoing controversial debate. In the Bolivian Altiplano, sedimentation into a foreland basin system commenced during the Paleocene. Farther south in the Puna and Eastern Cordillera of NW Argentina, a lack of data has precluded a similar interpretation. Early Tertiary non-marine sedimentary rocks are preserved within the present day Puna Plateau and Eastern Cordillera of NW Argentina. The Salar de Pastos Grandes basin in the Puna Plateau contains more than 2 km of Eocene alluvial and fluvial strata in the Geste Formation, deposited in close proximity to orogenic source terrains. Sandstone and conglomerate petrographic data document Ordovician quartzites and minor phyllites and schists as the main source rocks. Detrital zircon U-Pb ages from both the Geste Formation and from underlying Ordovician quartzite cluster in the 900-1200 Ma (Grenville) and late Precambrian-Cambrian (Panafrican) ranges. Sparse late Eocene (~37-34 Ma) grains are also present; their large size, euhedral shape, and decreasing mean ages upsection suggest that these grains are volcanogenic (i.e. ash fall contamination), derived from an inferred magmatic arc to the west. The Eocene ages corroborate mammalian paleontological dates, defining the approximate begin of deposition of the Geste Formation. Alternatively, these young zircons could be of plutonic origin; however, no Eocene plutons are present in the surrounding source rocks and this interpretation is not likely. From W to E, fluvial rocks of the Quebrada de los Colorados Formation show similar sedimentological features as those observed for the Geste Formation, suggesting a genetic link between the two. Detrital zircon U-Pb data show mainly Panafrican ages, with sparse ages in the 860-935 Ma range and a few mid-Proterozoic ages. More importantly, a significant number of late Eocene

  1. Restoration and Purification of Dissolved Organic Nitrogen by Bacteria and Phytoremediation in Shallow Eutrophic Lakes Sediments

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yue, Yi

    2018-06-01

    Endogenous organic nitrogen loadings in lake sediments have increased with human activity in recent decades. A 6-month field study from two disparate shallow eutrophic lakes could partly reveal these issues by analysing seasonal variations of biodegradation and phytoremediation in the sediment. This paper describes the relationship between oxidation reduction potential, temperature, microbial activity and phytoremediation in nitrogen cycling by calculation degradative index of dissolved organic nitrogen and amino acid decomposition. The index was being positive in winter and negative in summer while closely positive correlated with biodegradation. Our analysis revealed that rather than anoxic condition, biomass is the primary factor to dissolved organic nitrogen distribution and decomposition. Some major amino acids statistics also confirm the above view. The comparisons of organic nitrogen and amino acid in abundance and seasons in situ provides that demonstrated plants cue important for nitrogen removal by their roots adsorption and immobilization. In conclusion, enhanced microbial activity and phytoremediation with the seasons will reduce the endogenous nitrogen loadings by the coupled mineralization and diagenetic process.

  2. Quantitative geochemical modeling along a transect off Peru: Carbon cycling in time and space, and the triggering factors for carbon loss and storage

    NASA Astrophysics Data System (ADS)

    Arning, Esther T.; van Berk, Wolfgang; Schulz, Hans-Martin

    2012-12-01

    Early diagenetic processes in Peruvian shelf and slope sediments are numerically reproduced by applying chemical thermodynamics in a complex, universal approach using the PHREEQC (version 2) computer code. The reaction kinetics of organic carbon remineralization are integrated into a set of equilibrium reactions by defining the type and the amount of converted organic matter in a certain time step. We calculate the most intense remineralization of organic carbon for present-day shelf sites, and the final carbon pool is dominated by secondary carbonates. This serves to highlight the influence of organic matter degradation and anaerobic oxidation of methane (AOM) on diagenetic mineral formation. The enrichment of aqueous methane and the formation of methane hydrate only takes place in slope sediments with high sedimentation rates that prevent diffusive loss of methane (e.g., Sites 682 and 688). Moreover, AOM prevents the diffusion of dissolved methane into overlying seawater. Throughout the Miocene period, these sites were located on a former shelf and the total carbon loss from the sediments was significantly higher in comparison with the present-day. Compared with the present-day shelf site, organic matter remineralization is high, and methane is produced but not stored within the sediments. Our model calculations rule out the possibility of present-day and former shelf site sediments off the coast of Peru as methane reservoirs. Remineralized TOC has to be considered, particularly in older sediments, when interpreting TOC profiles and calculating mass accumulation rates of total organic carbon (MARTOC). The more organic matter has been remineralized during the depositional history, the larger the difference between MARTOC calculated from measured TOC data, and from the sum of modeled and measured TOC data. Consequently, most reliable primary productivity calculations are based on the sum of measured relict TOC and the amount of remineralized organic carbon

  3. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings - Old and New Insights

    NASA Astrophysics Data System (ADS)

    Machel, H.

    2006-12-01

    The association of dissolved sulfate and hydrocarbons is thermodynamically unstable in virtually all diagenetic environments. Hence, redox-reactions occur, whereby sulfate is reduced by hydrocarbons either bacterially (bacterial sulfate reduction = BSR) or inorganically (thermochemical sulfate reduction = TSR). Based on empirical evidence, BSR and TSR occur in two mutually exclusive thermal regimes, i.e., low-T and high-T diagenetic environments, respectively. BSR is common in diagenetic settings at T = 0 - 80 ° C. Above this T range, almost all sulfate reducers cease to metabolize. Those few types of hyperthermophiles that can form H2S at higher T appear to be very rare and do not normally occur and/or metabolize in geologic settings that are otherwise conducive to BSR. TSR appears to be common in geologic settings at T = 100 - 140 ° C, but in some settings T up to 180 ° C appears to be necessary. TSR does not have a sharply defined, generally valid minimum T because the onset and rate of TSR are governed by several factors that vary from place to place, i.e., the composition of the available organic reactants, kinetic inhibitors and/or catalysts, anhydrite dissolution rates, wettability, as well as migration and diffusion rates of the major reactants. A well- defined, specific minimum T for TSR can be expected only where the reservoir conditions are fairly homogeneous on the scale of a field or a play. BSR is geologically instantaneous in most geologic settings. Rates of TSR are much lower, but still geologically significant. TSR may form sour gas reservoirs and/or MVT deposits in several tens of thousands to a few million years at T = 100 - 140 ° C. BSR and TSR may be exothermic or endothermic, depending mainly on the presence or absence of specific organic reactants. The main organic reactants for BSR are organic acids and other products of aerobic or fermentative biodegradation, and those for TSR are branched and n-alkanes, followed by cyclic and mono

  4. Hyper-spectral imaging: A promising tool for quantitative pigment analysis of varved lake sediments

    NASA Astrophysics Data System (ADS)

    Butz, Christoph; Grosjean, Martin; Tylmann, Wojciech

    2015-04-01

    Varved lake sediments are good archives for past environmental and climate conditions from annual to multi-millennial scales. Among other proxies, concentrations of sedimentary photopigments have been used for temperature reconstructions. However, obtaining well calibrated annually resolved records from sediments still remains challenging. Most laboratory methods used to analyse lake sediments require physical subsampling and are destructive in the process. Hence, temporal resolution and number of data are limited by the amount of material available in the core. Furthermore, for very low sediment accumulation rates annual subsampling is often very difficult or even impossible. To address these problems we explore hyper-spectral imaging as a non-destructive method to analyse lake sediments based on their reflectance spectra in the visible and near infrared spectrum. In contrast to other scanning methods like X-ray fluorescence, VIS/NIR reflectance spectrometry distinguishes between biogeochemical substances rather than single elements. Among others Rein (2003) has shown that VIS-RS can be used to detect relative concentrations of sedimentary photopigments (e.g. chlorins, carotenoids) and clay minerals. In this study hyper-spectral imaging is used to infer ecological proxy data from reflectance spectra of varved lake sediments. Hyper-spectral imaging permits the measurement of an entire sediment core in a single run at high spatial (30x30µm/pixel) and spectral resolutions (~2.8nm) within the visual to near infrared spectrum (400-1000nm). This allows the analysis of data time series and spatial mapping of sedimentary substances (e.g. chlorophylls/bacterio-chlorophylls and diagenetic products) at sub-varve scales. The method is demonstrated on two varved lake sediments from northern Poland showing the distributions of relative concentrations of two types of sedimentary pigments (Chlorophyll-a + derivatives and Bacterio-pheophytin-a) within individual varve years. The

  5. Early warning indicators for river nutrient and sediment loads in tropical seagrass beds: a benchmark from a near-pristine archipelago in Indonesia.

    PubMed

    van Katwijk, M M; van der Welle, M E W; Lucassen, E C H E T; Vonk, J A; Christianen, M J A; Kiswara, W; al Hakim, I Inayat; Arifin, A; Bouma, T J; Roelofs, J G M; Lamers, L P M

    2011-07-01

    In remote, tropical areas human influences increase, potentially threatening pristine seagrass systems. We aim (i) to provide a bench-mark for a near-pristine seagrass system in an archipelago in East Kalimantan, by quantifying a large spectrum of abiotic and biotic properties in seagrass meadows and (ii) to identify early warning indicators for river sediment and nutrient loading, by comparing the seagrass meadow properties over a gradient with varying river influence. Abiotic properties of water column, pore water and sediment were less suitable indicators for increased sediment and nutrient loading than seagrass properties. Seagrass meadows strongly responded to higher sediment and nutrient loads and proximity to the coast by decreasing seagrass cover, standing stock, number of seagrass species, changing species composition and shifts in tissue contents. Our study confirms that nutrient loads are more important than water nutrient concentrations. We identify seagrass system variables that are suitable indicators for sediment and nutrient loading, also in rapid survey scenarios with once-only measurements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Fe-C-S systematics in Bengal Fan sediments

    NASA Astrophysics Data System (ADS)

    Volvoikar, S. P.; Mazumdar, A.; Goswami, H.; Pujari, S.; Peketi, A.

    2017-12-01

    Global biogeochemical cycles of iron, carbon and sulfur (Fe-C-S) are interrelated. Sulfate reduction in marine sediments is the major factor controlling the cycling and burial of carbon, sulfur and iron. Organoclastic sulfate reduction and anaerobic oxidation of methane (AOM) are the two main processes responsible for sulfate reduction in marine sediments. The amount and reactivity of organic matter, iron minerals and concentrations of dissolved sulfide in pore water control the burial of iron sulfide and organic bound sulfur in marine sediments. Here we investigate the sulfidization process in a sediment core from the western part of upper Bay of Bengal fan characterized by efficient burial of organic matter with siliclastic load. A 30 m long sediment core (MD 161/29, Lat. 170 18.04' N, Long. 870 22.56' E, water depth: 2434m) was collected onboard Marion Dufresne (May, 2007) and studied for Fe-S speciation and organic matter characterization. Buffered dithionite extractable iron (FeD) varies from 0.71 to 1.43 wt % (Avg. 0.79 wt %). FeD represents Fe oxides and oxyhydroxides mainly, ferrihydrite, lepidocrocite, goethite and hematite. Acid volatile sulfur (AVS) varies from 0.0015 to 0.63 wt % (avg: 0.058 wt %), while chromium reducible sulfur (CRS) varies from 0.00047 to 0.29 wt % (avg. 0.054 wt %). Based on the vertical distribution patterns of FeD, AVS and CRS, the core is divided into three zones, the lower (3000 to 1833 cm), middle (1833 to 398 cm) and upper (398 cm to surface) zones. FeD shows higher concentration in the lower zone. FeTR (FeOx + FeD + FeCRS + FeAVS) also exhibit higher concentration in this zone, suggesting higher availability of reactive iron for iron sulfide precipitation. AVS, elemental sulfur, spikes of CRS and gradual enrichment of δ34SAVS and δ34SCRS with sharp peaks in-between is noted in the lower zone. The gradual enrichment of δ34SAVS and δ34SCRS is the outcome of late diagenetic pyritization with higher availability of sulfide

  7. Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernfoerde Bay, German Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martens, C.S.; Albert, D.B.; Alperin, M.J.

    Methane concentrations in the pore waters of Eckernfoerde Bay in the German Baltic Sea generally reach gas bubble saturation values within the upper meter of the sediment column. The depth at which saturation occurs is controlled by a balance between rates of methane production, consumption (oxidation), and transport. The relative importance of anaerobic methane oxidation (AMO) in controlling dissolved and gas bubble methane distributions in the bay's sediments is indirectly revealed through methane concentration versus depth profiles, depth variations in the stable C and H isotope composition of methane, and the C isotope composition of total dissolved inorganic carbon ({Sigma}CO{submore » 2}). Direct radiotracer measurements indicate that AMO rates of over 15 mM/yr are focused at the base of the sulfate reduction zone. Diagenetic equations that describe the depth destructions of the {delta}{sup 13}C and {delta}D values of methane reproduce isotopic shifts observed throughout the methane oxidation zone and are best fit with kinetic isotope fractionation factors of 1.012 {+-} 0.001 and 1.120 {plus{underscore}minus} 0.020 respectively.« less

  8. Prediction of the fate of p,p'-DDE in sediment on the Palos Verdes shelf, California, USA

    USGS Publications Warehouse

    Sherwood, C.R.; Drake, D.E.; Wiberg, P.L.; Wheatcroft, R.A.

    2002-01-01

    Long-term (60-yr) predictions of vertical profiles of p,p???-DDE concentrations in contaminated bottom sediments on the Palos Verdes shelf were calculated for three locations along the 60-m isobath using a numerical solution of the one-dimensional advection-diffusion equation. The calculations incorporated the following processes: sediment deposition (or erosion), depth-dependent solid-phase biodiffusive mixing, in situ diagenetic transformation, and loss of p,p???-DDE across the sediment-water interface by two mechanisms (resuspension of sediments by wave action and subsequent loss of p,p???-DDE to the water column by desorption, and desorption from sediments to porewater and subsequent molecular diffusion to the water column). A combination of field measurements, laboratory analyses, and calculations with supporting models was used to set parameters for the model. The model explains significant features observed in measurements made every 2 years from 1981 to 1997 by the County Sanitation Districts of Los Angeles (LACSD). Analyses of available data suggest that two sites northwest of the Whites Point sewage outfalls will remain depositional, even as particulate supply from the sewage-treatment plant and nearby Portuguese Bend Landslide decreases. At these sites, model predictions for 1991-2050 indicate that most of the existing inventory of p,p???-DDE will remain buried and that surface concentrations will gradually decrease. Analyses of data southeast of the outfalls suggest that erosion is likely to occur somewhere on the southeast edge of the existing effluent-affected deposit, and model predictions for such a site showed that erosion and biodiffusion will reintroduce the p,p???-DDE to the upper layer of sediments, with subsequent increases in surface concentrations and loss to the overlying water column.

  9. Distribution and Sources of Petroleum Hydrocarbons in Recent Sediments of the Imo River, SE Nigeria.

    PubMed

    Oyo-Ita, Inyang O; Oyo-Ita, Orok E; Dosunmu, Miranda I; Domínguez, Carmen; Bayona, Josep M; Albaigés, Joan

    2016-02-01

    The distribution of aliphatic and aromatic hydrocarbons in surface sediments of the lower course of the Imo River (Nigeria) was investigated to determine the sources and fate of these compounds. The aliphatic fraction is characterized by a widespread contribution of highly weathered/biodegraded hydrocarbon residues (reflected in the absence of prominent n-alkane peaks coupled with the presence of 17α(H),21β(H)-25-norhopane, an indicator of heavy hydrocarbon biodegradation) of Nigerian crude oils (confirmed by the occurrence of 18α(H)-oleanane, a compound characteristic of oils of deltaic origin). The concentrations of polycyclic aromatic hydrocarbons (PAHs) ranging from 48 to 117 ng/g dry weight (dw; ∑13PAHs) indicate a moderate pollution, possibly lowered by the sandy lithology and low organic carbon (OC) content of the sediments. Concentrations slightly decrease towards the estuary of the river, probably due to the fact that these stations are affected by tidal flushing of pollutants adsorbed on sediment particles and carried away by occasional storm to the Atlantic Ocean. A number of PAH ratios, including parent/alkylated and isomeric compounds, indicates a predominance of petrogenic sources, with a low contribution of pyrolytic inputs, particularly of fossil fuel combustion. On the basis of OC/ON (>10) and Per/ΣPAHpenta- (>10) values, a diagenetic terrigenous OC was proposed as a source of perylene to the river.

  10. Manganese carbonates in the Upper Jurassic Georgiev Formation of the Western Siberian marine basin

    NASA Astrophysics Data System (ADS)

    Eder, Vika G.; Föllmi, Karl B.; Zanin, Yuri N.; Zamirailova, Albina G.

    2018-01-01

    Manganese (Mn) carbonate rocks are a common lithological constituent of the Upper Oxfordian to Lower Tithonian (Volgian) Georgiev Formation of the Western Siberian marine basin (WSMB). The Mn carbonates in the Georgiev Formation are present in the form of massive sediments, stromatolites, and oncolites, and are associated with glauconite and partly also phosphate-rich clay- and siltstones. Unlike most Mn carbonates, they are not directly associated with organic-rich sediments, but occur below an organic-rich succession (Bazhenov Formation). The Mn carbonate occurrences can be traced from the western central area of the WSMB to its center along a distance of at least 750 km. The thickness of the Mn carbonates and their Mn contents becomes reduced in an eastward direction, related to increased detrital input. The geochemical and mineralogical heterogeneity within the Mn carbonates indicates that they were deposited stepwise in a diagenetic regime characterized by steep gradients in Mn, Ca, and Mg. A first step consisted in the replacement of initial sediments within the microbialites during an early diagenetic stage, followed by a second step where massive sediments were transformed into Mn carbonate. During both steps, the decomposition of organic matter was an important source of the newly formed carbonate. During a further step, voids were cemented by Mn carbonates, which are rich in pyrite. This last generation may only have formed once the organic-rich sediments of the overlying Bazhenov Formation were deposited. Accumulation of the Mn carbonates in the Upper Jurassic WSMB was controlled by the proximity of Mn-enriched parent rocks, likely in the Ural, which were subjected to intense geochemical weathering during the Late Jurassic.

  11. Bio- and chemostratigraphy of the Early Aptian Oceanic Anoxic Event 1a within the mid-latitudes of northwest Europe (Germany, Lower Saxony Basin)

    NASA Astrophysics Data System (ADS)

    Heldt, Matthias; Mutterlose, Joerg; Berner, Uli; Erbacher, Jochen

    2013-04-01

    The Mid-Cretaceous period was characterised by a series of prominent anoxic events, one of these was the late Early Aptian Oceanic Anoxic Event 1a (OAE 1a). The Fischschiefer horizon is the regional sedimentary expression of this event in a small epicontinental sea in northwest Europe (Germany, Lower Saxony Basin). In the present study, two sediment cores of Lower to Upper Aptian age (Hoheneggelsen KB 9 and 40) from the Brunswick area, north Germany, have been investigated in detail with respect to their lithostratigraphy, geochemistry (CaCO3, TOC), biostratigraphy (coccoliths, nannoliths) and high-resolution chemostratigraphy (^13Ccarb and ^13Corg). Together with separately published new planktonic foraminifer data of the cores it was possible to establish a detailed time frame and to recognise the OAE 1a. The ^13C data enabled us to subdivide the deposits into isotope segments (C2-C7), which are commonly used as stratigraphic markers in coeval sediments around the world. The carbon isotope curves are compared to recently published Aptian curves from other parts of the Lower Saxony Basin, all of which record the prominent carbon isotope anomaly of the OAE 1a. A high-resolution correlation of the typical isotope trends of OAE 1a (segments C3-6) across the Lower Saxony Basin appears difficult due to an early diagenetic overprint of the primary isotope signal. These alterations can be explained by the temporary establishment of euxinic conditions the Lower Saxony Basin during OAE 1a as consequence of an interplay of different factors, such as global warming, restricted palaeogeography, increased fluvial input and intensified stable water stratification, which is supported by several lines of regional evidence.

  12. Early Silurian (Llandoverian) Leask Point and Charlton Bay bioherms, Manitoulin Island, Ontario, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielczarek, W.; Copper, P.

    1986-08-01

    About 300 bioherms are known in the Llandoverian Manitoulin Formation of eastern Manitoulin Island. In the South Bay area, the large Leask Piont bioherm and Charlton Bay patch-reef complex lack a distinct skeletal growth framework. Bioherms consist of mudstone and wackestone, with isolated lenses of bafflestone, boundstone, floatstone. Fossils are scarce, but crinozoans and bryozoans comprise about 90% of the bioclasts. Other fauna include stromatoporoids, corals, brachiopods, gastropods, trilobites, and probable algae (algae are difficult to identify and may have played a significant role). Faunal ratios remained relatively constant during mound growth. Soft substrates with sedimentation rates of a fewmore » millimeters per year are suggested by bedding type and morphologic dominance of lamellar and tabular corals and stromatoporoids. An increased sedimentation rate, resulting from shoaling, is indicated by more overturned, broadly conical corals in the upper parts of the mounds. Shoaling may be responsible for cessation of mound growth. Lithoclasts are more common in the upper parts of the mounds. They formed when semiconsolidated muds were disturbed and redeposited during storms. Megarippled interreef surface areas, largely devoid of coral growth, indicate mud instability at Charlton Bay. Lack of suitable stable substrates may have hampered coral development. Dolomitization was postdepositional. The diagenetic sequence occurred in three stages: 1)selective pyritization and silicification, formation of an early muddy dolomite replacing the mud fraction of the dolostone, lithification and formation of rare calcite cement and neomorphic syntaxial rims; 2)clear, coarse dolomite replacing pore-filling calcite cement, syntaxial rims, and unaltered macrofossils, stylolitization, grain-to-grain dissolution; and 3)a late dolomite found mainly as fine rhombs in stylolites, solution seams, and intraskeletal pore space.« less

  13. Exploring the potential of clumped isotope thermometry on coccolith-rich sediments as a sea surface temperature proxy

    NASA Astrophysics Data System (ADS)

    Drury, Anna Joy; John, Cédric M.

    2016-10-01

    Understanding past changes in sea surface temperatures (SSTs) is crucial; however, existing proxies for reconstructing past SSTs are hindered by unknown ancient seawater composition (foraminiferal Mg/Ca and δ18O) or reflect subsurface temperatures (TEX86) or have a limited applicable temperature range (U37k'). We examine clumped isotope (Δ47) thermometry to fossil coccolith-rich material as an SST proxy, as clumped isotopes are independent of original seawater composition and applicable to a wide temperature range and coccolithophores are widespread and dissolution resistant. The Δ47-derived temperatures from <63, <20, <10, and 2-5 μm size fractions of two equatorial Pacific late Miocene-early Pliocene sediment samples (c1; c2) range between ˜18 and 29°C, with c1 temperatures consistently above c2. Removing the >63 μm fraction removes most nonmixed layer components; however, the Δ47-derived temperatures display an unexpected slight decreasing trend with decreasing size fraction. This unexpected trend could partly arise because larger coccoliths (5-12 μm) are removed during the size fraction separation process. The c1 and <63 μm c2 Δ47-derived temperatures are comparable to concurrent U37k' SSTs. The <20, <10, and 2-5 μm c2 Δ47-derived temperatures are consistently cooler than expected. The Δ47-U37k' temperature offset is probably caused by abiotic/diagenetic calcite present in the c2 2-5 μm fraction (˜53% by area), which potentially precipitated at bottom water temperatures of ˜6°C. Our results indicate that clumped isotopes on coccolith-rich sediment fractions have potential as an SST proxy, particularly in tropical regions, providing that careful investigation of the appropriate size fraction for the region and time scale is undertaken.

  14. Using provenance of terrigenous sediment to reconstruct the Agulhas Leakage during the Early and Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Pearson, B.; Franzese, A. M.

    2017-12-01

    The Agulhas Current, the strongest western boundary current in the southern hemisphere, is uniquely characterized by its strong retroflection. The current carries water southward from the Indian Ocean toward the cape of South Africa, before turning back on itself. At this point of retroflection, some of the current's flow escapes into the southern Atlantic Ocean. This transfer of water from the Indian Ocean to Atlantic Ocean makes up the Agulhas Leakage. The Leakage occurs in a series of eddies and rings located in the Cape Basin south of the African continent. Scientific literature demonstrates that relatively buoyant leakage water has been a determining factor varying strength of the Atlantic Meridional Ocean Current (AMOC), during glacial-interglacial cycles. It has been demonstrated that radiogenic isotope, major, and trace element concentrations serve as a proxy for terrigenous sediment provenance in the Agulhas region. Current understanding is that terrigenous sediment provenance is older during warmer periods of deposition. This corresponds to more input from southeastern African end members, and thus a stronger Agulhas Current, during warming periods in the paleoclimate record. Conversely, younger terrigenous sediment deposited during colder periods, such as the Last Glacial Maximum, suggests a weaker Agulhas Current, and less Agulhas Leakage. In 2016, on the International Ocean Discovery Program Expedition 361, sediment cores were drilled at 6 sites in the Greater Agulhas region. A major goal of the expedition was to expand knowledge of the relation between changes in the Agulhas System and changes in paleoclimate, southern African climate, and AMOC. We analyzed sediment from Expedition 361 Site U1479 (35°03.53'S; 17°24.06'E; 2615 mbsl) located where the Agulhas Leakage occurs. We measured Argon, strontium isotope ratios, ɛNd, trace and major element concentrations on the <2 micron clay fraction. Preliminary results foretell promising findings. For

  15. Ca Isotope Geochemistry in Marine Deep Sea Sediments of the Eastern Pacific

    NASA Astrophysics Data System (ADS)

    Wittke, A.; Gussone, N. C.; Derigs, D.; Schälling, M.; Teichert, B. M.

    2017-12-01

    Ca isotope ratio analysis (δ44/40Ca) is a powerful tool to investigate diagenetic reactions in marine sedimentary porewater systems, as it is sensitive to processes such as carbonate dissolution, precipitation, recrystallization, ion exchange and deep fluid sources, due to the isotopic difference between dissolved Ca and solid carbonate minerals (e.g. [1];[2]). We analyzed eight sediment cores of the (paleo-) Pacific equatorial age transect. Two sediment cores show decreasing Ca isotope profiles starting at the sediment/water interface with seawater-like values down to sediment-like values due to recrystallization and an increasing in the bottom part again to seawater-like values. The other studied cores show different degrees of flattening of this middle bulge. We interpret this pattern either as an effect of sediment composition and thickness, decreasing recrystallization rates and/or fluid flux or a combination of all of these factors at the respective sampling sites. Element concentration profiles and Sr-isotope variations on some of these sediment cores show a similar behavior, supporting our findings ([3]; [4]). Seawater influx at (inactive) seamounts is supposed to cause seawater-like values at the bottom of the sediment cores by fluids migrating through the oceanic basement (e.g. [5]). While [6] hypothesizes that two seamounts or bathymetric pits are connected, with a recharge and a discharge site [7] say that uptaken fluids could be released through the surrounding seafloor as well due to diffusive exchange with the underlying oceanic crust. Our Ca isotope results combined with a transport reaction model approach support the latter hypothesis. References: [1] Teichert B. M., Gussone N. and Torres M. E. (2009) [2] Ockert C., Gussone N., Kaufhold S. and Teichert B. (2013) [3] Pälike H., Lyle M., Nishi H., Raffi I., Gamage K. and Klaus A. (eds.) (2010) [4] Voigt J., Hathorne E. C., Frank M., Vollstaedt H. and Eisenhauer A. (2015) [5] Villinger H. W

  16. Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars

    USGS Publications Warehouse

    McLennan, S.M.; Bell, J.F.; Calvin, W.M.; Christensen, P.R.; Clark, B. C.; de Souza, P.A.; Farmer, J.; Farrand, W. H.; Fike, D.A.; Gellert, Ralf; Ghosh, A.; Glotch, T.D.; Grotzinger, J.P.; Hahn, B.; Herkenhoff, K. E.; Hurowitz, J.A.; Johnson, J. R.; Johnson, S.S.; Jolliff, B.; Klingelhofer, G.; Knoll, A.H.; Learner, Z.; Malin, M.C.; McSween, H.Y.; Pocock, J.; Ruff, S.W.; Soderblom, L.A.; Squyres, S. W.; Tosca, N.J.; Watters, W.A.; Wyatt, M.B.; Yen, A.

    2005-01-01

    Impure reworked evaporitic sandstones, preserved on Meridiani Planum, Mars, are mixtures of roughly equal amounts of altered siliciclastic debris, of basaltic provenance (40 ?? 10% by mass), and chemical constituents, dominated by evaporitic minerals (jarosite, Mg-, Ca-sulfates ?? chlorides ?? Fe-, Na-sulfates), hematite and possibly secondary silica (60 ?? 10%). These chemical constituents and their relative abundances are not an equilibrium evaporite assemblage and to a substantial degree have been reworked by aeolian and subaqueous transport. Ultimately they formed by evaporation of acidic waters derived from interaction with olivine-bearing basalts and subsequent diagenetic alteration. The rocks experienced an extended diagenetic history, with at least two and up to four distinct episodes of cementation, including stratigraphically restricted zones of recrystallization and secondary porosity, non-randomly distributed, highly spherical millimeter-scale hematitic concretions, millimeter-scale crystal molds, interpreted to have resulted from dissolution of a highly soluble evaporite mineral, elongate to sheet-like vugs and evidence for minor synsedimentary deformation (convolute and contorted bedding, possible teepee structures or salt ridge features). Other features that may be diagenetic, but more likely are associated with relatively recent meteorite impact, are meter-scale fracture patterns, veins and polygonal fractures on rock surfaces that cut across bedding. Crystallization of minerals that originally filled the molds, early cement and sediment deformation occurred syndepositionally or during early diagenesis. All other diagenetic features are consistent with formation during later diagenesis in the phreatic (fluid saturated) zone or capillary fringe of a groundwater table under near isotropic hydrological conditions such as those expected during periodic groundwater recharge. Textural evidence suggests that rapidly formed hematitic concretions post

  17. Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Bell, J. F.; Calvin, W. M.; Christensen, P. R.; Clark, B. C.; de Souza, P. A.; Farmer, J.; Farrand, W. H.; Fike, D. A.; Gellert, R.; Ghosh, A.; Glotch, T. D.; Grotzinger, J. P.; Hahn, B.; Herkenhoff, K. E.; Hurowitz, J. A.; Johnson, J. R.; Johnson, S. S.; Jolliff, B.; Klingelhöfer, G.; Knoll, A. H.; Learner, Z.; Malin, M. C.; McSween, H. Y.; Pocock, J.; Ruff, S. W.; Soderblom, L. A.; Squyres, S. W.; Tosca, N. J.; Watters, W. A.; Wyatt, M. B.; Yen, A.

    2005-11-01

    Impure reworked evaporitic sandstones, preserved on Meridiani Planum, Mars, are mixtures of roughly equal amounts of altered siliciclastic debris, of basaltic provenance (40 ± 10% by mass), and chemical constituents, dominated by evaporitic minerals (jarosite, Mg-, Ca-sulfates ± chlorides ± Fe-, Na-sulfates), hematite and possibly secondary silica (60 ± 10%). These chemical constituents and their relative abundances are not an equilibrium evaporite assemblage and to a substantial degree have been reworked by aeolian and subaqueous transport. Ultimately they formed by evaporation of acidic waters derived from interaction with olivine-bearing basalts and subsequent diagenetic alteration. The rocks experienced an extended diagenetic history, with at least two and up to four distinct episodes of cementation, including stratigraphically restricted zones of recrystallization and secondary porosity, non-randomly distributed, highly spherical millimeter-scale hematitic concretions, millimeter-scale crystal molds, interpreted to have resulted from dissolution of a highly soluble evaporite mineral, elongate to sheet-like vugs and evidence for minor synsedimentary deformation (convolute and contorted bedding, possible teepee structures or salt ridge features). Other features that may be diagenetic, but more likely are associated with relatively recent meteorite impact, are meter-scale fracture patterns, veins and polygonal fractures on rock surfaces that cut across bedding. Crystallization of minerals that originally filled the molds, early cement and sediment deformation occurred syndepositionally or during early diagenesis. All other diagenetic features are consistent with formation during later diagenesis in the phreatic (fluid saturated) zone or capillary fringe of a groundwater table under near isotropic hydrological conditions such as those expected during periodic groundwater recharge. Textural evidence suggests that rapidly formed hematitic concretions post

  18. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  19. Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars

    DOE PAGES

    Wiens, Roger C.; Rubin, David M.; Goetz, Walter; ...

    2017-02-21

    Voids and hollow spheroids between ~1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302–305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1–4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only onemore » hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. The origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Though some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions.« less

  20. Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger C.; Rubin, David M.; Goetz, Walter

    Voids and hollow spheroids between ~1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302–305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1–4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only onemore » hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. The origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Though some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions.« less

  1. Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars

    NASA Astrophysics Data System (ADS)

    Wiens, Roger C.; Rubin, David M.; Goetz, Walter; Fairén, Alberto G.; Schwenzer, Susanne P.; Johnson, Jeffrey R.; Milliken, Ralph; Clark, Ben; Mangold, Nicolas; Stack, Kathryn M.; Oehler, Dorothy; Rowland, Scott; Chan, Marjorie; Vaniman, David; Maurice, Sylvestre; Gasnault, Olivier; Rapin, William; Schroeder, Susanne; Clegg, Sam; Forni, Olivier; Blaney, Diana; Cousin, Agnes; Payré, Valerie; Fabre, Cecile; Nachon, Marion; Le Mouelic, Stephane; Sautter, Violaine; Johnstone, Stephen; Calef, Fred; Vasavada, Ashwin R.; Grotzinger, John P.

    2017-06-01

    Voids and hollow spheroids between ∼1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302-305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1-4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only one hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. Origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Although some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions.

  2. Magnetic Properties of Bermuda Rise Sediments Controlled by Glacial Cycles During the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Roud, S.

    2015-12-01

    Sediments from ODP site 1063 (Bermuda Rise, North Atlantic) contain a high-resolution record of geomagnetic field behavior during the Brunhes Chron. We present rock magnetic data of the upper 160 mcd (<900 ka) from hole 1063D that show magnetic properties vary in concert with glacial cycles. Magnetite appears to be the main magnetic carrier in the carbonate-dominated interglacial horizons, yet exhibits contrasting grain size distributions depending on the redox state of the horizons. Higher contributions of single domain magnetite exist above the present day sulfate reduction zone (ca. 44 mcd) with relatively higher multidomain magnetite components below that likely arise from the partial dissolution of SD magnetite in the deeper, anoxic horizons. Glacial horizons on the other hand, characterized by enhanced terrigenous deposition, show no evidence for diagenetic dissolution but do indicate the presence of authigenic greigite close to glacial maxima (acquisition of gyro-remanence, strong magnetostatic interactions and SD properties). Glacial horizons contain hematite (maxima in HIRM and S-Ratio consistent with a reddish hue) and exhibit higher ARM anisotropy and pronounced sedimentary fabrics. We infer that post depositional processes affected the magnetic grain size and mineralogy of Bermuda rise sediments deposited during the late Pleistocene. Hematite concentration is interpreted to reflect primary terrigenous input that is likely derived from the Canadian Maritime Provinces. A close correlation between HIRM and magnetic foliation suggests that changes in sediment composition (terrigenous vs. marine biogenic) were accompanied by changes in the depositional processes at the site.

  3. Influence of AOM on iron-sulfur-carbon systematics in marine sediment: A study from Krishna-Godavari basin, Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Carvalho, M. A.

    2017-12-01

    Sedimentary diagenetic processes play key role in global sulfur-iron-carbon cycle. Microbially driven organoclastic sulfate reduction and anaerobic oxidation of methane (AOM) pathways are responsible for sulfate reduction in marine sediments. Concomitant H2S production and iron sulfide precipitation lead to Fe-sulfide burial in the sediments. Intra/intermolecular organic bound sulfur is also another major sink of global sulfur burial. In the present study, we have investigated the sulfidisation process in a core from Krishna-Godavari (K-G) basin, Bay of Bengal. K-G basin is well known for gas hydrate deposits and methane enrichment within 100-120 mbsf. Previous work from K-G basin has shown tell-tale evidence of paleo episodic- methane expulsion events and formation of authigenic carbonate crust at or above the sea floor1. Our study was carried out on a core MD-161-15 (water depth of 983 m and Lat. =16° 00.5700' N;Long. = 82° 03.4502' E) recovered on board R/V Marion Dufrense). The pyrite content in the core (measured as chromium reducible sulfur: CRS) range from 0.003 to 1.1 wt%. The reactive content (FeTR = FeOx + FeD + FeCRS) range from 0.9 to 3.5 wt%, where FeOX, FeD and FeCRS represents oxalate extractable (magnetite), buffered dithionite extractable (ferrihydrite, lepidocrocite, goethite, hematite) and boiling CrCl2 (in 6N HCl) extractable (Pyrite: FeS2) iron respectively. The δ34SCRS range from -49 to +16.7 ‰ VCDT and show good positive correlation with FeTR. Presence of highly 13C depleted authigenic carbonate in the sediments within 1600-3000 mbsf indicate influence of AOM and possible methane seepage2. The δ34SCRS profile show marked 34S depletion trend within the top 1012 mbsf. Below this depth, δ34SCRS values show steadily increasing trend superimposed by zones of sharp enrichment/ depletion of 34S. The 34S enrichment trend may attributed to late diagenetic pyritization from 34S enriched H2S produced from residual pore water sulfate via AOM

  4. Effects of Offshore Oil Exploration and Development in the Alaskan Beaufort Sea: A Three-Decade Record for Sediment Metals.

    PubMed

    Trefry, John H; Neff, Jerry M

    2018-06-19

    Impacts from oil exploration, development and production in the Beaufort Sea, Alaska, are assessed using concentrations of metals in sediments collected during 2014-15, combined with a large dataset for 1985-2006. Concentrations of 7 (1980 s) or 17 (1999-2015) metals in 423 surface sediments from 134 stations, plus 563 samples from 30 cores were highly variable, primarily as a function of sediment granulometry with naturally greater metal concentrations in fine-grained, Al-rich sediment. Metals versus Al correlation plots were used to normalize metal concentrations and identify values significantly above background. Barium, Cr, Cu, Hg and Pb concentrations were above background, but variable, within 250 m of some offshore sites where drilling occurred between 1981-2001; these areas totaled <6 km 2 of 11,000 km 2 in the total lease area. Random and fixed sampling along the coastal Beaufort Sea from 1985-2015 yielded 40 positive anomalies for metals in surface sediments (∼0.8% of 5,082 data points). About 85% of the anomalies were from developed areas. Half the anomalies were for the five metals found enhanced near drilling sites. No metals concentrations, except As, exceeded accepted sediment quality criteria. Interannual shifts in metals values for surface sediments at inner shelf sites were common and linked to storm-induced transitions in granulometry; however, metal/Al ratios were uniform during these shifts. Sediment cores generally recorded centuries of background values, except for As, Fe and Mn. These three metals were naturally enriched in sediments from deeper water (>100 m) via diagenetic remobilization at sediment depths of 5-15 cm, upward diffusion, and precipitation in surface oxic layers. Minimal evidence for anthropogenic inputs of metals, except near some exploratory drilling sites, is consistent with extraction of most oil from land or barrier islands in the Alaskan Arctic and restricted offshore activity to date. This article is

  5. Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India.

    PubMed

    Kumar, Manoj; Ramanathan, A L; Rahman, Mohammad Mahmudur; Naidu, Ravi

    2016-12-15

    Concentrations of inorganic forms [arsenite, As(III) and arsenate, As(V) of arsenic (As) present in groundwater, agricultural soils and subsurface sediments located in the middle Gangetic plain of Bihar, India were determined. Approximately 73% of the groundwater samples (n=19) show As(III) as the dominant species while 27% reveals As(V) was the dominant species. The concentration of As(III) in agricultural soil samples varies from not detectable to 40μg/kg and As(V) was observed as the major species (ranging from 1050 to 6835μg/kg) while the total As concentration varied from 3528 to 14,690μg/kg. Total extracted concentration of As was higher in the subsurface sediments (range 9119-20,056μg/kg in Methrapur and 4788-19,681μg/kg in Harail Chapar) than the agricultural soil, indicating the subsurface sediment as a source of As. Results of X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) revealed the presence of hematite and goethite throughout the vertical section below while magnetite was observed only in the upper oxidized layer at Methrapur and Harail Chapar. Alteration of Fe-oxides and presence of fibrous goethite indicating presence of diagenetic sediment. Siderite plays a crucial role as sinks to the As in subsurface sediments. The study also concluded that decomposition of organic matter present in dark and grey sections promote the redox conditions and trigger mobilization of As into groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Sedimentary sulfur geochemistry of the Paleogene Green River Formation, western USA: Implications for interpreting depositional and diagenetic processes in saline alkaline lakes

    USGS Publications Warehouse

    Tuttle, M.L.; Goldhaber, M.B.

    1993-01-01

    The sulfur geochemistry of the lacustrine Paleogene Green River Formation (Colorado, Utah, and Wyoming, USA) is unlike that of most marine and other lacustrine rocks. Distinctive chemical, isotopic, and mineralogical characteristics of the formation are pyrrhotite and marcasite, high contents of iron mineral sulfides strikingly enriched in 34S, cyclical trends in sulfur abundance and ??34S values, and long-term evolutionary trends in ??34S values. Analyses that identified and quantified these characteristics include carbonate-free abundance of organic carbon (0.13-47 wt%), total iron (0.31-13 wt%), reactive iron (>70% of total iron), total sulfur (0.02-16 wt%), acid-volatile monosulfide (SAv), disulfide (SDi > 70% of total sulfur), sulfate (SSO4) and organosulfur (SOrg); isotopic composition of separated sulfur phases (??34SDi,Av up to +49???); and mineralogy, morphology and paragenesis of sulfide minerals. Mineralogy, morphology, ??34SDi,Av, and ??34SOrg have a distinctive relation, reflecting variable and unique depositional and early diagenetic conditions in the Green River lakes. When the lakes were brackish, dissimilatory sulfate-reducing bacteria in the sediment produced H2S, which initially reacted with labile iron to form pyrite framboids and more gradually with organic matter to form organosulfur compounds. During a long-lived stage of saline lake water, the amount of sulfate supplied by inflow decreased and alkalinity and pH of lake waters increased substantially. Extensive bacterial sulfate reduction in the water column kept lake waters undersaturated with sulfate minerals. A very high H2S:SO4 ratio developed in stagnant bottom water aided by the high pH that kinetically inhibited iron sulfidization. Progressive removal of H2S by coeval formation of iron sulfides and organosulfur compounds caused the isotopic composition of the entire dissolved sulfur reservoir to evolve to ??34S values much greater than that of inflow sulfate, which is estimated to have

  7. Final Report, University of California Merced: Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Mueller, Karl; O'Day, Peggy Anne

    2016-06-30

    Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from themore » same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.« less

  8. Nitrogen mineralization and geochemical characteristics of amino acids in surface sediments of a typical polluted area in the Haihe River Basin, China.

    PubMed

    Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong

    2015-11-01

    Studies of nitrogen mineralization and diagenetic status of organic matter evaluated by total hydrolysable amino acids (THAAs) were designed to test the hypothesis that nitrogen mineralization in sediments was a potential source of ammonium in strongly artificially disturbed rivers such as the Ziya River watershed. Ammonium and organic nitrogen in both water and sediment samples were the major forms of nitrogen in the watershed. NH3-N was significantly correlated with organic nitrogen in both water (R = 0.823, P < 0.01) and sediments (R = 0.787, P < 0.01). Organic nitrogen with an average content of 3,275.21 ± 1,476.10 mg · kg(-1), accounted for 82.73 % of total nitrogen (TN) in sediments. Organic nitrogen was a potential source of ammonia release into overlying water. Nitrogen mineralization experiments showed that accumulated dissolved inorganic nitrogen ranged from 326.15 to 545.72 mg · kg(-1) and accumulated NH3-N ranged from 320.95 to 533.93 mg · kg(-1). Most of the mineralized nitrogen was NH3-N ( approximately 98.17%) and mineralized nitrogen in sediments ranged from 6.20 to 22.10% of TN. Twenty amino acids were detected, accounting for 45.70 % of organic nitrogen. Protein amino acids, accounting for 89.22% of THAAs, were the dominant THAAs in sediments. The ratio of L-glutamic acid to γ-aminobutyric acid and degradation index showed that the organic matter was poorly degraded and presented a high potential risk of ammonium mineralization.

  9. Trajectory of early tidal marsh restoration: elevation, sedimentation and colonization of breached salt ponds in the northern San Francisco Bay

    USGS Publications Warehouse

    Brand, L. Arriana; Smith, Lacy M.; Takekawa, John Y.; Athearn, Nicole D.; Taylor, Karen; Shellenbarger, Gregory; Schoellhamer, David H.; Spenst, Renee

    2012-01-01

    Tidal marsh restoration projects that cover large areas are critical for maintaining target species, yet few large sites have been studied and their restoration trajectories remain uncertain. A tidal marsh restoration project in the northern San Francisco Bay consisting of three breached salt ponds (≥300 ha each; 1175 ha total) is one of the largest on the west coast of North America. These diked sites were subsided and required extensive sedimentation for vegetation colonization, yet it was unclear whether they would accrete sediment and vegetate within a reasonable timeframe. We conducted bathymetric surveys to map substrate elevations using digital elevation models and surveyed colonizing Pacific cordgrass (Spartina foliosa). The average elevation of Pond 3 was 0.96 ± 0.19 m (mean ± SD; meters NAVD88) in 2005. In 2008–2009, average pond elevations were 1.05 ± 0.25 m in Pond 3, 0.81 ± 0.26 m in Pond 4, and 0.84 ± 0.24 m in Pond 5 (means ± SD; meters NAVD88). The largest site (Pond 3; 508 ha) accreted 9.5 ± 0.2 cm (mean ± SD) over 4 years, but accretion varied spatially and ranged from sediment loss in borrow ditches and adjacent to an unplanned, early breach to sediment gains up to 33 cm in more sheltered regions. The mean elevation of colonizing S. foliosa varied by pond (F = 71.20, df = 84, P S. foliosa. Our results suggest that sedimentation to elevations that enable vegetation colonization is feasible in large sites with sufficient sediment loads although may occur more slowly compared with smaller sites.

  10. Is the Core Top Really Modern? A Story of Chemical Erosion, Bioturbation, and Lateral Sediment Redistribution from the Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Mekik, F.

    2016-12-01

    Paleoceanographic work is based on calibrating paleo-environmental proxies using well-preserved core top sediments which represent the last one thousand years or less. However, core top sediments may be in places as old as 9000 years due to various sedimentary and diagenetic processes, such as chemical erosion, bioturbation and lateral sediment redistribution. We hypothesize that in regions with high surface ocean productivity, high organic carbon to calcite ratios reaching the seabed promote calcite dissolution in sediments, even in regions above the lysocline. This process may lead to chemical erosion of core tops which in turn may result in core top aging. The eastern equatorial Pacific (EEP), a popular site for calibration of paleoceanographic proxies, is such a place. Better understanding the relationship between core top age and dissolution will help correct biases inherent in proxy calibration because dissolution of foraminifers alters shell chemistry, and wholesale dissolution of sediments leads to core top aging and loss. We present both new and literature-based core top data of radiocarbon ages from the EEP. We created regional maps of both core top radiocarbon age and calcite preservation measured with the Globorotalia menardii Fragmentation Index (MFI; over 100 core tops). Our maps show a clear pattern of deep sea sedimentary calcite dissolution mimicking the pattern of surface ocean productivity observed from satellites and sediment traps in the EEP. Core top radiocarbon ages generally parallel the dissolution patterns observed in the region. Where this relationship does not hold true, bioturbation and/or lateral sediment redistribution may play a role. Down core radiocarbon and 230Th-normalized sediment accumulation rate data from several cores in the EEP support this hypothesis. Better understanding the role of diagenesis promotes the development of more reliable paleo-environmental proxies.

  11. Comparative organic geochemistry of Indian margin (Arabian Sea) sediments: estuary to continental slope

    NASA Astrophysics Data System (ADS)

    Cowie, G.; Mowbray, S.; Kurian, S.; Sarkar, A.; White, C.; Anderson, A.; Vergnaud, B.; Johnstone, G.; Brear, S.; Woulds, C.; Naqvi, S. W.; Kitazato, H.

    2014-02-01

    Surface sediments from sites across the Indian margin of the Arabian Sea were analysed for their carbon and nitrogen compositions (elemental and stable isotopic), grain size distributions and biochemical indices of organic matter (OM) source and/or degradation state. Site locations ranged from the estuaries of the Mandovi and Zuari rivers to depths of ~ 2000 m on the continental slope, thus spanning nearshore muds and sands on the shelf and both the semi-permanent oxygen minimum zone (OMZ) on the upper slope (~ 200-1300 m) and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, and overwhelming predominance (80%+) of marine OM on the shelf and slope. Thus, riverine OM is heavily diluted by autochthonous marine OM and/or is efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from < 0.5 wt % in relict shelf sands to over 7 wt % at slope sites within the OMZ, decreasing to ≤ 1 wt % at 2000 m. Major variability (~ 5 wt %) was found at slope sites within the OMZ of similar depth and near-identical bottom-water oxygen concentration. A strong relationship between organic C and sediment grain size was seen for sediments within the OMZ, but lower C loadings were found for sites on the shelf and below the OMZ. Diagenetic indices confirmed that lower C content below the OMZ is associated with greater extent of OM degradation, but that C-poor shelf sediments are not consistently more degraded than those within the OMZ. Together, the results indicate that OM enrichment on the upper slope can be explained by physical controls (winnowing and/or dilution) on the shelf and progressive OM degradation

  12. Land-use effects on erosion, sediment yields, and reservoir sedimentation: a case study in the Lago Loiza Basin, Puerto Rico

    USGS Publications Warehouse

    Gellis, A.C.; Webb, R.M.T.; McIntyre, S.C.; Wolfe, W.J.

    2006-01-01

     Lago Loíza impounded in 1953 to supply San Juan, Puerto Rico, with drinking water; by 1994, it had lost 47% of its capacity. To characterize sedimentation in Lago Loíza, a study combining land-use history, hillslope erosion rates, and subbasin sediment yields was conducted. Sedimentation rates during the early part of the reservoir’s operation (1953– 1963) were slightly higher than the rates during 1964–1990. In the early history of the reservoir, cropland comprised 48% of the basin and erosion rates were high. Following economic shifts during the 1960s, cropland was abandoned and replaced by forest, which increased from 7.6% in 1950 to 20.6% in 1987. These land-use changes follow a pattern similar to the northeastern United States. Population in the Lago Loíza Basin increased 77% from 1950 to 1990, and housing units increased 194%. Sheetwash erosion measured from 1991 to 1993 showed construction sites had the highest sediment concentration (61,400 ppm), followed by cropland (47,400 ppm), pasture (3510 ppm), and forest (2050 ppm). This study illustrates how a variety of tools and approaches can be used to understand the complex interaction between land use, upland erosion, fluvial sediment transport and storage, and reservoir sedimentation

  13. Neodymium and strontium isotopic dating of diagenesis and low-grade metamorphism of argillaceous sediments

    NASA Astrophysics Data System (ADS)

    Schaltegger, Urs; Stille, Peter; Rais, Naoual; Piqué, Alain; Clauer, Norbert

    1994-03-01

    The behaviour of the Rb-Sr and Sm-Nd isotopic systems with increasing degree of Hercynian metamorphic overprint was studied along a transect in Cambrian shales of northwestern Morocco. Clay fractions of < 0.2 to 2-6 μm size from five samples were investigated, representing a range from nonmetamorphic to epizonal metamorphic conditions. The samples were washed in cold l N HC1 prior to digestion to separate soluble/exchangeable Rb, Sr, Sm, and Nd from amounts of these elements fixed in the crystallographic sites of the minerals and to analyze both components separately. The results reveal that the Rb-Sr isotopic system is dominated by Sr hosted by clay mineral phases (both detrital and authigenic illite and chlorite) and carbonate-hosted soluble Sr. Isotopic homogenization of Sr occurred during Hercynian metamorphism, yielding ages between 309 and 349 Ma. The Sm-Nd isotopic system, on the other hand, is dominated by cogenetic apatite and Fe oxide/ hydroxide, both having high contents of leachable REEs. The leachates yield a Sm-Nd isochron age of 523 ± 72 Ma, indicating diagenetic equilibrium between apatite and Fe-oxide/hydroxide. Fine-grained clay fractions of < 0.2 μm size plot onto this reference line, suggesting isotopic equilibrium with the leachates. Size fractions > 0.2 μm show inheritance of a detrital Nd component. The study demonstrates that the diagenesis of the investigated argillaceous sediments can be dated by the Sm-Nd chronometer in authigenic cement phases. The isotopic system of these minerals (apatite, Fe hydroxide/oxide) was homogenized during authigenic mineral growth in a sediment that was flushed by diagenetic fluids and had abundant primary or secondary interconnected pore space. The Hercynian metamorphic overprint caused partial isotopic rehomogenization of the adsorbed and clay-hosted portion of the Sr as well as of the carbonate-hosted Sr. The Sm-Nd system in the cement phases survived this metamorphism. This results in decoupling of

  14. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  15. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits

    USGS Publications Warehouse

    Rehkamper, M.; Frank, M.; Hein, J.R.; Porcelli, D.; Halliday, A.; Ingri, J.; Liebetrau, V.

    2002-01-01

    Results are presented for the first in-depth investigation of TI isotope variations in marine materials. The TI isotopic measurements were conducted by multiple collector-inductively coupled plasma mass spectrometry for a comprehensive suite of hydrogenetic ferromanganese crusts, diagenetic Fe-Mn nodules, hydrothermal manganese deposits and seawater samples. The natural variability of TI isotope compositions in these samples exceeds the analytical reproducibility (?? 0.05???) by more than a factor of 40. Hydrogenetic Fe-Mn crusts have ??205TI of + 10 to + 14, whereas seawater is characterized by values as low as -8 (??205TI represents the deviation of the 205TI/203TI ratio of a sample from the NIST SRM 997 TI isotope standard in parts per 104). This ~ 2??? difference in isotope composition is thought to result from the isotope fractionation that accompanies the adsorption of TI onto ferromanganese particles. An equilibrium fractionation factor of ?? ~ 1.0021 is calculated for this process. Ferromanganese nodules and hydrothermal manganese deposits have variable TI isotope compositions that range between the values obtained for seawater and hydrogenetic Fe-Mn crusts. The variability in ??205TI in diagenetic nodules appears to be caused by the adsorption of TI from pore fluids, which act as a closed-system reservoir with a TI isotope composition that is inferred to be similar to seawater. Nodules with ??205TI values similar to seawater are found if the scavenging of TI is nearly quantitative. Hydrothermal manganese deposits display a positive correlation between ??205TI and Mn/Fe. This trend is thought to be due to the derivation of TI from distinct hydrothermal sources. Deposits with low Mn/Fe ratios and low ??205TI are produced by the adsorption of TI from fluids that are sampled close to hydrothermal sources. Such fluids have low Mn/Fe ratios and relatively high temperatures, such that only minor isotope fractionation occurs during adsorption. Hydrothermal

  16. The impact of sedimentary coatings on the diagenetic Nd flux

    NASA Astrophysics Data System (ADS)

    Abbott, April N.; Haley, Brian A.; McManus, James

    2016-09-01

    Because ocean circulation impacts global heat transport, understanding the relationship between deep ocean circulation and climate is important for predicting the ocean's role in climate change. A common approach to reconstruct ocean circulation patterns employs the neodymium isotope compositions of authigenic phases recovered from marine sediments. In this approach, mild chemical extractions of these phases is thought to yield information regarding the εNd of the bottom waters that are in contact with the underlying sediment package. However, recent pore fluid studies present evidence for neodymium cycling within the upper portions of the marine sediment package that drives a significant benthic flux of neodymium to the ocean. This internal sedimentary cycling has the potential to obfuscate any relationship between the neodymium signature recovered from the authigenic coating and the overlying neodymium signature of the seawater. For this manuscript, we present sedimentary leach results from three sites on the Oregon margin in the northeast Pacific Ocean. Our goal is to examine the potential mechanisms controlling the exchange of Nd between the sedimentary package and the overlying water column, as well as the relationship between the εNd composition of authigenic sedimentary coatings and that of the pore fluid. In our comparison of the neodymium concentrations and isotope compositions from the total sediment, sediment leachates, and pore fluid we find that the leachable components account for about half of the total solid-phase Nd, therefore representing a significant reservoir of reactive Nd within the sediment package. Based on these and other data, we propose that sediment diagenesis determines the εNd of the pore fluid, which in turn controls the εNd of the bottom water. Consistent with this notion, despite having 1 to 2 orders of magnitude greater Nd concentration than the bottom water, the pore fluid is still <0.001% of the total Nd reservoir in the

  17. Ferrimagnetic Iron Sulfide Formation and Methane Venting Across the Paleocene-Eocene Thermal Maximum in Shallow Marine Sediments, Ancient West Siberian Sea

    NASA Astrophysics Data System (ADS)

    Rudmin, Maxim; Roberts, Andrew P.; Horng, Chorng-Shern; Mazurov, Aleksey; Savinova, Olesya; Ruban, Aleksey; Kashapov, Roman; Veklich, Maxim

    2018-01-01

    Authigenesis of ferrimagnetic iron sulfide minerals (greigite and monoclinic pyrrhotite) occurred across the Paleocene-Eocene Thermal Maximum (PETM) within the Bakchar oolitic ironstone in southeastern Western Siberia. Co-occurrence of these minerals is associated with diagenetic environments that support anaerobic oxidation of methane, which has been validated by methane fluid inclusion analysis in the studied sediments. In modern settings, such ferrimagnetic iron sulfide formation is linked to upward methane diffusion in the presence of minor dissolved sulfide ions. The PETM was the most extreme Cenozoic global warming event and massive methane mobilization has been proposed as a major contributor to the globally observed warming and carbon isotope excursion associated with the PETM. The studied sediments provide rare direct evidence for methane mobilization during the PETM. Magnetic iron sulfide formation associated with methanogenesis in the studied sediments can be explained by enhanced local carbon burial across the PETM. While there is no strong evidence to link local methane venting with more widespread methane mobilization and global warming, the magnetic, petrographic, and geochemical approach used here is applicable to identifying authigenic minerals that provide telltale signatures of methane mobility that can be used to assess methane formation and mobilization through the PETM and other hyperthermal climatic events.

  18. Exploring the potential of hyper-spectral imaging for the biogeochemical analysis of varved lake sediments

    NASA Astrophysics Data System (ADS)

    Butz, Christoph; Grosjean, Martin; Enters, Dirk; Tylmann, Wojciech

    2014-05-01

    Varved lake sediments have successfully been used to make inferences about past environmental and climate conditions from annual to multi-millennial scales. Among other proxies, concentrations of sedimentary photopigments have been used for temperature reconstructions. However, obtaining well calibrated annually resolved records from sediments still remains challenging. Most laboratory methods used to analyse lake sediments require physical subsampling and are destructive in the process. Hence, temporal resolution and number of data are limited by the amount of material available in the core. Furthermore, for very low sediment accumulation rates annual subsampling is often very difficult or even impossible. To address these problems we explore hyper-spectral imaging as a new method to analyse lake sediments based on their reflectance spectra in the visible and near infrared spectrum. In contrast to other fast and non-destructive methods like X-ray fluorescence, VIS/NIR reflectance spectrometry distinguishes between biogeochemical substances rather than single elements. Rein (2003) has shown that VIS-RS can be used to detect relative concentrations of sedimentary photopigments (e.g. chlorins, carotenoids) and clay minerals. This study presents an advanced approach using a hyper-spectral camera and remote sensing techniques to infer climate proxy data from reflectance spectra of varved lake sediments. Hyper-spectral imaging allows analysing an entire sediment core in a single measurement, producing a spectral dataset with very high spatial (30x30µm/pixel) and spectral resolutions (~1nm) and a higher spectral range (400-1000nm) compared to previously used spectrophotometers. This allows the analysis of data time series at sub-varve scales or spatial mapping of sedimentary substances (e.g. chlorophyll-a and diagenetic products) at very high resolution. The method is demonstrated on varved lake sediments from northern Poland showing the change of the relative

  19. Polygenetic Karsted Hardground Omission Surfaces in Lower Silurian Neritic Limestones: a Signature of Early Paleozoic Calcite Seas

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Desrochers, André; Kyser, Kurt T.

    2015-04-01

    Exquisitely preserved and well-exposed rocky paleoshoreline omission surfaces in Lower Silurian Chicotte Formation limestones on Anticosti Island, Quebec, are interpreted to be the product of combined marine and meteoric diagenesis. The different omission features include; 1) planar erosional bedding tops, 2) scalloped erosional surfaces, 3) knobs, ridges, and swales at bedding contacts, and 4) paleoscarps. An interpretation is proposed that relates specific omission surface styles to different diagenetic-depositional processes that took place in separate terrestrial-peritidal-shallow neritic zones. Such processes were linked to fluctuations in relative sea level with specific zones of diagenesis such as; 1) karst corrosion, 2) peritidal erosion, 3) subtidal seawater flushing and cementation, and 4) shallow subtidal deposition. Most surfaces are interpreted to have been the result of initial extensive shallow-water synsedimentary lithification that were, as sea level fell, altered by exposure and subaerial corrosion, only to be buried by sediments as sea level rose again. This succession was repeated several times resulting in a suite of recurring polyphase omission surfaces through many meters of stratigraphic section. Synsedimentary cloudy marine cements are well preserved and are thus interpreted to have been calcitic originally. Aragonite components are rare and thought to have to have been dissolved just below the Silurian seafloor. Large molluscs that survived such seafloor removal were nonetheless leached and the resultant megamoulds were filled with synsedimentary calcite cement. These Silurian inner neritic-strandline omission surfaces are temporally unique. They are part of a suite of marine omission surfaces that are mostly found in early Paleozoic neritic carbonate sedimentary rocks. These karsted hardgrounds formed during a calcite-sea time of elevated marine carbonate saturation and extensive marine cement precipitation. The contemporaneous greenhouse

  20. Effect of salinity on metal mobility in Sečovlje salina sediment (northern Adriatic, Slovenia)

    NASA Astrophysics Data System (ADS)

    Kovač, N.; Ramšak, T.; Glavaš, N.; Dolenec, M.; Rogan Šmuc, N.

    2016-12-01

    ) decreasing trend in mud was observed at that time. These data contribute to the knowledge of natural healing muds and that of diagenetic processes on metals in hypersaline sediments.

  1. Toxicity of smelter slag-contaminated sediments from Upper Lake Roosevelt and associated metals to early life stage White Sturgeon (Acipenser transmontanus Richardson, 1836)

    USGS Publications Warehouse

    Little, E.E.; Calfee, R.D.; Linder, G.

    2014-01-01

    The toxicity of five smelter slag-contaminated sediments from the upper Columbia River and metals associated with those slags (cadmium, copper, zinc) was evaluated in 96-h exposures of White Sturgeon (Acipenser transmontanus Richardson, 1836) at 8 and 30 days post-hatch. Leachates prepared from slag-contaminated sediments were evaluated for toxicity. Leachates yielded a maximum aqueous copper concentration of 11.8 μg L−1 observed in sediment collected at Dead Man's Eddy (DME), the sampling site nearest the smelter. All leachates were nonlethal to sturgeon that were 8 day post-hatch (dph), but leachates from three of the five sediments were toxic to fish that were 30 dph, suggesting that the latter life stage is highly vulnerable to metals exposure. Fish maintained consistent and prolonged contact with sediments and did not avoid contaminated sediments when provided a choice between contaminated and uncontaminated sediments. White Sturgeon also failed to avoid aqueous copper (1.5–20 μg L−1). In water-only 96-h exposures of 35 dph sturgeon with the three metals, similar toxicity was observed during exposure to water spiked with copper alone and in combination with cadmium and zinc. Cadmium ranging from 3.2 to 41 μg L−1 or zinc ranging from 21 to 275 μg L−1 was not lethal, but induced adverse behavioral changes including a loss of equilibrium. These results suggest that metals associated with smelter slags may pose an increased exposure risk to early life stage sturgeon if fish occupy areas contaminated by slags.

  2. Wind Induced Sediment Resuspension in a Microtidal Estuary

    NASA Technical Reports Server (NTRS)

    Booth, J. G.; Miller, R. L.; McKee, B. A.; Leathers, R. A.

    1999-01-01

    Bottom sediment resuspension frequency, duration and extent (% of bottom sediments affected) were characterized for the fifteen month period from September 1995 to January 1997 for the Barataria Basin, LA. An empirical model of sediment resuspension as a function of wind speed, direction, fetch and water depth was derived from wave theory. Water column turbidity was examined by processing remotely sensed radiance information from visible and near-IR AVHRR imagery. Based on model predictions, wind induced resuspension occurred during all seasons of this study. Seasonal characteristics for resuspension reveal that late fall, winter and early spring are the periods of most frequent and intense resuspension. Model predictions of the critical wind speed required to induce resuspension indicate that winds of 4 m/s (averaged over all wind directions resuspend approximately 50% of bottom sediments in the water bodies examined. Winds of this magnitude (4 m/s) occurred for 80% of the time during the late fall, winter and early spring and for approximately 30% of the time during the summer. More than 50% of the bottom sedimets are resuspended throughout the year, indicating the importance of resuspension as a process affecting sediment and biogeochemical fluxes in the Barataria Basin.

  3. Compositions, ages, and diagenetic histories of the carbonate, sulfide, oxide, and phosphatic concretions at Gay Head, Massachusetts

    USGS Publications Warehouse

    Poppe, L.J.; Commeau, R.F.; O'Leary, Dennis W.

    1988-01-01

    The calcite/ankerite concretions were formed in a hot, seasonally arid, caliche-prone environment of early Raritan age; the pyrite, marcasite, and siderite concretions precipitated in sediments deposited in low-energy, marshy, estuarine environments of late Raritan age. The phosphate concretions formed in a middle to inner shelf environment. The goethite and lepidocrocite concretions are secondary oxidation or alteration products of the prexistent Cretaceous concretions that were excavated during the Pleistocene and incorporated into the glacial drift. -from Authors

  4. The Ree and ɛNd of 40-70 Ma old fish debris from the west-African platform

    NASA Astrophysics Data System (ADS)

    Grandjean, Patricia; Cappetta, Henri; Albarède, Francis

    1988-04-01

    REE concentrations and Nd isotopic compositions have been determined in Late Cretaceous-Early Cenozoic fish debris from West African and Israeli platform sediments and show a strong regional control independent of time, except for those from the Northern Morocco. It is suggested that, although diagenetic fluids do not contribute REE's directly to the phosphatic debris, they may significantly change the Ce anomaly and the ɛNd(T) value of the epicontinental seas, which, in turn, control the REE in marine phosphates. It is shown that, over the investigated period, the North Moroccan shelf seawater was progressively flushed by deep North-Atlantic water.

  5. The case for metamorphic base metal mineralization: pyrite chemical, Cu and S isotope data from the Cu-Zn deposit at Kupferberg in Bavaria, Germany

    NASA Astrophysics Data System (ADS)

    Höhn, S.; Frimmel, H. E.; Debaille, V.; Pašava, J.; Kuulmann, L.; Debouge, W.

    2017-12-01

    The stratiform Cu-Zn sulfide deposit at Kupferberg in Germany represents Bavaria's largest historic base metal producer. The deposit is hosted by Early Paleozoic volcano-sedimentary strata at the margin of a high-grade allochthonous metamorphic complex. The present paper reports on the first Cu and S isotope data as well as trace element analyses of pyrite from this unusual deposit. The new data point to syn-orogenic mineralization that was driven by metamorphic fluids during nappe emplacement. Primary Cu ore occurs as texturally late chalcopyrite within stratiform laminated pyrite in black shale in two different tectonostratigraphic units of very low and low metamorphic grade, respectively, that were juxtaposed during the Variscan orogeny. Trace element contents of different pyrite types suggest the presence of at least one hydrothermal pyrite generation (mean Co/Ni = 35), with the other pyrite types being syn-sedimentary/early diagenetic (mean Co/Ni = 3.7). Copper isotope analyses yielded a narrow δ65Cu range of -0.26 to 0.36‰ for all ore types suggesting a hypogene origin for the principal chalcopyrite mineralization. The ore lenses in the two different tectonostratigraphic units differ with regard to their δ34S values, but little difference exists between poorly and strongly mineralized domains within a given locality. A genetic model is proposed in which syn-sedimentary/early diagenetic pyrite with subordinate chalcopyrite and sphalerite formed in black shale beds in the two different stratigraphic units, followed by late-tectonic strata-internal, hydrothermal mobilization of Fe, Cu, and Zn during syn-orogenic thrusting, which concentrated especially Cu to ore grade. In agreement with this model, Cu distribution in stream sediments in this region shows distinct enrichments bound to the margin of the allochthonous complex. Thus, Kupferberg can be considered a rare example of a syn-orogenic Cu deposit with the Cu probably being derived from syn-sedimentary/early

  6. A manual to identify sources of fluvial sediment

    USGS Publications Warehouse

    Gellis, Allen C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph

    2016-01-01

    Sediment is an important pollutant of concern that can degrade and alter aquatic habitat. A sediment budget is an accounting of the sources, storage, and export of sediment over a defined spatial and temporal scale. This manual focuses on field approaches to estimate a sediment budget. We also highlight the sediment fingerprinting approach to attribute sediment to different watershed sources. Determining the sources and sinks of sediment is important in developing strategies to reduce sediment loads to water bodies impaired by sediment. Therefore, this manual can be used when developing a sediment TMDL requiring identification of sediment sources.The manual takes the user through the seven necessary steps to construct a sediment budget:Decision-making for watershed scale and time period of interestFamiliarization with the watershed by conducting a literature review, compiling background information and maps relevant to study questions, conducting a reconnaissance of the watershedDeveloping partnerships with landowners and jurisdictionsCharacterization of watershed geomorphic settingDevelopment of a sediment budget designData collectionInterpretation and construction of the sediment budgetGenerating products (maps, reports, and presentations) to communicate findings.Sediment budget construction begins with examining the question(s) being asked and whether a sediment budget is necessary to answer these question(s). If undertaking a sediment budget analysis is a viable option, the next step is to define the spatial scale of the watershed and the time scale needed to answer the question(s). Of course, we understand that monetary constraints play a big role in any decision.Early in the sediment budget development process, we suggest getting to know your watershed by conducting a reconnaissance and meeting with local stakeholders. The reconnaissance aids in understanding the geomorphic setting of the watershed and potential sources of sediment. Identifying the potential

  7. New insights into the mineralogy of the Atlantis II Deep metalliferous sediments, Red Sea

    NASA Astrophysics Data System (ADS)

    Laurila, Tea E.; Hannington, Mark D.; Leybourne, Matthew; Petersen, Sven; Devey, Colin W.; Garbe-Schönberg, Dieter

    2015-12-01

    The Atlantis II Deep of the Red Sea hosts the largest known hydrothermal ore deposit on the ocean floor and the only modern analog of brine pool-type metal deposition. The deposit consists mainly of chemical-clastic sediments with input from basin-scale hydrothermal and detrital sources. A characteristic feature is the millimeter-scale layering of the sediments, which bears a strong resemblance to banded iron formation (BIF). Quantitative assessment of the mineralogy based on relogging of archived cores, detailed petrography, and sequential leaching experiments shows that Fe-(oxy)hydroxides, hydrothermal carbonates, sulfides, and authigenic clays are the main "ore" minerals. Mn-oxides were mainly deposited when the brine pool was more oxidized than it is today, but detailed logging shows that Fe-deposition and Mn-deposition also alternated at the scale of individual laminae, reflecting short-term fluctuations in the Lower Brine. Previous studies underestimated the importance of nonsulfide metal-bearing components, which formed by metal adsorption onto poorly crystalline Si-Fe-OOH particles. During diagenesis, the crystallinity of all phases increased, and the fine layering of the sediment was enhanced. Within a few meters of burial (corresponding to a few thousand years of deposition), biogenic (Ca)-carbonate was dissolved, manganosiderite formed, and metals originally in poorly crystalline phases or in pore water were incorporated into diagenetic sulfides, clays, and Fe-oxides. Permeable layers with abundant radiolarian tests were the focus for late-stage hydrothermal alteration and replacement, including deposition of amorphous silica and enrichment in elements such as Ba and Au.

  8. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific

    USGS Publications Warehouse

    Hein, J.R.; Conrad, T.A.; Frank, M.; Christl, M.; Sager, W.W.

    2012-01-01

    A unique set of ferromanganese crusts and nodules collected from Shatsky Rise (SR), NW Pacific, were analyzed for mineralogical and chemical compositions, and dated using Be isotopes and cobalt chronometry. The composition of these midlatitude, deep-water deposits is markedly different from northwest-equatorial Pacific (PCZ) crusts, where most studies have been conducted. Crusts and nodules on SR formed in close proximity and some nodule deposits were cemented and overgrown by crusts, forming amalgamated deposits. The deep-water SR crusts are high in Cu, Li, and Th and low in Co, Te, and Tl concentrations compared to PCZ crusts. Thorium concentrations (ppm) are especially striking with a high of 152 (mean 56), compared to PCZ crusts (mean 11). The deep-water SR crusts show a diagenetic chemical signal, but not a diagenetic mineralogy, which together constrain the redox conditions to early oxic diagenesis. Diagenetic input to crusts is rare, but unequivocal in these deep-water crusts. Copper, Ni, and Li are strongly enriched in SR deep-water deposits, but only in layers older than about 3.4 Ma. Diagenetic reactions in the sediment and dissolution of biogenic calcite in the water column are the likely sources of these metals. The highest concentrations of Li are in crust layers that formed near the calcite compensation depth. The onset of Ni, Cu, and Li enrichment in the middle Miocene and cessation at about 3.4 Ma were accompanied by changes in the deep-water environment, especially composition and flow rates of water masses, and location of the carbonate compensation depth.

  9. Perspectives on geochemical proxies: The impact of model and parameter selection on the quantification of carbonate recrystallization rates

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Druhan, Jennifer L.; Fantle, Matthew S.

    2017-11-01

    Diagenetic reactions in marine sediments, such as the recrystallization of carbonates, can impact the accuracy of paleo-environmental and paleo-climatic reconstructions by geochemical proxies. The extent to which the recrystallization of carbonates affects the chemistry of sedimentary archives depends on the reaction rate, extent of isotopic disequilibrium, and duration of reaction. The reaction rate, which is obviously critical, can be constrained by the elemental and isotopic compositions of pore fluids. Such constraints are affected by assumptions regarding the temperature in the sedimentary column relative to the temperature of formation, the burial rate, pore fluid advection, the composition of the sediments (carbonate-rich versus siliciclastic), and the porosity of the sediment column. In this study, we use a steady-state analytical solution to the diagenetic equations to constrain depth-dependent reaction rates (and extents of recrystallization) based on the Ca isotopic compositions of pore fluids in sedimentary columns at multiple ocean drilling sites (Sites 807, 984, 1170, and 1171), which encompass a diverse range of sedimentary compositions and conditions. We find that carbonates in siliciclastic sediments are generally less altered by diagenesis than their carbonate-rich counterparts. The discrepancy in recrystallization rates between siliciclastic and carbonate-rich sedimentary sections is, however, significantly smaller than previously estimated, suggesting that siliciclastic archives are not immune to diagenetic effects. While we find that diagenesis can decouple contemporaneous proxies of sea surface temperature (Mg/Ca and δ18O), our calculations also reveal that δ18O-based temperature estimates are more robust in siliciclastic sections relative to carbonate-rich sections. Sensitivity tests of the calculated extent of recrystallization suggest that uncertainties in porosity and burial rate are generally the greatest sources of error to proxy

  10. Early cements versus pore-water chemical composition in the subsurface of the sabkha of Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Paul, Andreas; Yuan, Peng; Court, Wesley M.; Lokier, Stephen W.; Dutton, Kirsten E.; Van der Land, Cees; Lessa Andrade, Luiza; Sherry, Angela; Head, Ian M.

    2017-04-01

    The coastal sabkha of Abu Dhabi is a complex depositional system in an extremely arid climate. This depositional system is marked by the formation of primary carbonate and microbial deposits, and by the development of secondary evaporite and cement phases. A number of earlier studies have assessed the formation of these secondary phases, yet no research has established a relationship between lateral and vertical variations in the chemical composition of pore water and the nature of, in particular, the precipitating pore-filling cements, re-crystallisation features and dissolution. This study aims to establish an understanding of the environmental and sedimentary factors that control early post-depositional changes to sediment composition as a result of sediment - pore water interactions. A particular focus is to characterise changes in the chemistry of the pore water throughout a tidal cycle, aiming at understanding how the influx of 'fresh' lagoonal sea water influences the chemistry of the pore water, and which elements are replenished on a daily basis. The initial data presented here is based upon the relationship between the petrographic analysis of sediment samples and lateral and vertical variations in the chemistry of in-situ sampled pore water. The pore water is characterised with respect to pH, salinity, alkalinity, dissolved organic carbon, and the concentrations of a variety of common metallic and non-metallic elements, including (but not limited to) Ca, Fe, Mg, P, S and Sr. Initial results show that concentrations of Mg, P, and V, and the ratios Mg/Ca and Sr/Ca are highest at the seaward sampling locations. Contrastingly, individual concentrations for Ca, Sr, Fe, Si, and Cu are highest at the most landward locality. In particular the higher concentrations for Ca and Sr might indicate diagenetic processes and are thus enriched as a result of e.g. aragonite dissolution. A striking pattern in Mg concentrations show the highest values for this element

  11. The Amorphous Composition of Three Mudstone Samples from Gale Crater: Implications for Weathering and Diagenetic Processes on Mars

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, R. T.; Rampe, E. B.; Morris, R. V.; Bristow, T. F.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Morrison, S. M.; Sutter, B.; hide

    2017-01-01

    The Mars Science Laboratory rover, Curiosity, is exploring the lowermost formation of Gale crater's central mound. Within this formation, three samples named Marimba, Quela, and Sebina have been analyzed by the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS) to determine mineralogy and bulk elemental chemistry, respectively. Marimba and Quela were also analyzed by the SAM (Sample Analysis at Mars) instrument to characterize the type and abundance of volatile phases detected in evolved gas analyses (EGA). CheMin data show similar proportions of plagioclase, hematite, and Ca-sulfates along with a mixture of di- and trioctahedral smectites at abundances of approximately 28, approximately 16, and approximately 18 wt% for Marimba, Quela, and Sebina. Approximately 50 wt% of each mudstone is comprised of X-ray amorphous and trace crystalline phases present below the CheMin detection limit (approximately 1 wt%). APXS measurements reveal a distinct bulk elemental chemistry that cannot be attributed to the clay mineral variation alone indicating a variable amorphous phase assemblage exists among the three mudstones. To explore the amorphous component, the calculated amorphous composition and SAM EGA results are used to identify amorphous phases unique to each mudstone. For example, the amorphous fraction of Marimba has twice the FeO wt% compared to Quela and Sebina yet, SAM EGA data show no evidence for Fe-sulfates. These data imply that Fe must reside in alternate Fe-bearing amorphous phases (e.g., nanophase iron oxides, ferrihydrite, etc.). Constraining the composition, abundances, and proposed identity of the amorphous fraction provides an opportunity to speculate on the past physical, chemical, and/or diagenetic processes which produced such phases in addition to sediment sources, lake chemistry, and the broader geologic history of Gale crater.

  12. Early Diagenesis of Subseafloor Sandy Sediments Closely Related to Gas Hydrate Occurrences and Their Provenances in the Eastern Margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Sakai, H.; Horiuchi, S.; Matsumoto, R.

    2015-12-01

    A lot of effort have been put into recovering gas hydrate, methane induced carbonate, and associated sediments in order to develop the geologic model of gas hydrate accumulation and evaluate its possible environmental impact for the last glacial-interglacial cycles. Having investigated gas hydrate occurrences in the eastern margin of Japan Sea revealed wide distributions of chimney-shape gas hydrate concentrations beneath the seafloor, confirmed off Shimane and off Akita/Yamagata as well as off Joetsu (Niigata), which are quite different from the occurrences of pore space hydrate filling intergranular pore systems of sands recognized in Nankai Trough, Mallik and other sites. Many sediment samples have been obtained below from the Umitaka Spur, Joetsu Channel, Toyama Trough, Mogami Trough and Okushiri Ridge areas. Small amounts of sandy sediment have been retrieved as thin intercalations in Holocene and Pleistocene silty/muddy layers, where trace fossils and strong bioturbations are commonly observed. Sandy sediments consist of very fine- to fine-grained sand grains, and are sometimes tuffaceous. Pore-size distribution measurements and thin-section observations of these sands were carried out, which indicate that porosities of silty sediments are around 50 % but those of arenites range from 42 to 52 %, of which mean pore sizes and permeabilities are larger than those of silty sediments. These coarser sediments might have been transported approximately around 3 to 30 ka due to the tephra ages, where supplying sediments might be abundant due to sea level fluctuation during the Pleistocene ice age. Sandy sediments contain not only detrital quartz and feldspar but mafic minerals (pyroxene, amphibole and mica), contents of which may indicate their provenances. Silty/muddy sediments usually contain diatom tests, foraminifers and framboidal pyrites, and, in particular, the shapes of diatom are usually various, dominantly fragmental and infrequently preserved. It is

  13. D:L-Amino Acid Modeling Reveals Fast Microbial Turnover of Days to Months in the Subsurface Hydrothermal Sediment of Guaymas Basin.

    PubMed

    Møller, Mikkel H; Glombitza, Clemens; Lever, Mark A; Deng, Longhui; Morono, Yuki; Inagaki, Fumio; Doll, Mechthild; Su, Chin-Chia; Lomstein, Bente A

    2018-01-01

    We investigated the impact of temperature on the microbial turnover of organic matter (OM) in a hydrothermal vent system in Guaymas Basin, by calculating microbial bio- and necromass turnover times based on the culture-independent D:L-amino acid model. Sediments were recovered from two stations near hydrothermal mounds (<74°C) and from one cold station (<9°C). Cell abundance at the two hydrothermal stations dropped from 10 8 to 10 6 cells cm -3 within ∼5 m of sediment depth resulting in a 100-fold lower cell number at this depth than at the cold site where numbers remained constant at 10 8 cells cm -3 throughout the recovered sediment. There were strong indications that the drop in cell abundance was controlled by decreasing OM quality. The quality of the sedimentary OM was determined by the diagenetic indicators %T AA C (percentage of total organic carbon present as amino acid carbon), %T AA N (percentage of total nitrogen present as amino acid nitrogen), aspartic acid:β-alanine ratios, and glutamic acid:γ-amino butyric acid ratios. All parameters indicated that the OM became progressively degraded with increasing sediment depth, and the OM in the hydrothermal sediment was more degraded than in the uniformly cold sediment. Nonetheless, the small community of microorganisms in the hydrothermal sediment demonstrated short turnover times. The modeled turnover times of microbial bio- and necromass in the hydrothermal sediments were notably faster (biomass: days to months; necromass: up to a few hundred years) than in the cold sediments (biomass: tens of years; necromass: thousands of years), suggesting that temperature has a significant influence on the microbial turnover rates. We suggest that short biomass turnover times are necessary for maintance of essential cell funtions and to overcome potential damage caused by the increased temperature.The reduced OM quality at the hyrothemal sites might thus only allow for a small population size of microorganisms.

  14. Sulfur and iron cycling in deep-subsurface, coal bed-containing sediments off Shimokita (Japan)

    NASA Astrophysics Data System (ADS)

    Riedinger, N.; Smirnoff, M. N.; Gilhooly, W.; Phillips, S. C.; Lyons, T. W.; 337 Scientific Party, I.

    2013-12-01

    The main goal of IODP Expedition 337 was the identification and characterization of the deep coal bed biosphere and hydrocarbon system off the Shimokita Peninsula (Japan) in the northwestern Pacific using the D/V Chikyu. To accomplish this scientific objective, it was also necessary to investigate the inorganic biogeochemistry in order to identify possible electron acceptors and bio-essential nutrients. These biogeochemical parameters greatly influence both, the composition and abundance of microbial communities as well as the organic carbon cycle. In turn, the microbially mediated carbon cycle influences the diagenetic reactions in the subsurface, thus, altering geochemical and physical characteristics of the material. Here we present results from metal and sulfur geochemical analyses from the deep-subsurface sediments (about 1250 to 2466 mbsf) at Site C0020 off Shimokita. The measured concentrations of acid volatile sulfur (AVS) as well as chromium reducible sulfur (CRS) reflect the alteration of iron oxides to iron sulfides and indicate that the main sulfur-bearing phase in the investigated sediments is pyrite. Concentrations of intermediate sulfur species are minor and occur mainly in the coal-bearing interval. Our data show that the uppermost sediments contain higher amounts of pyrite (up to 1.2 wt.%) with an average of 0.5 wt.% compared to the deeper deposits (below about 1800 mbsf), which show an average of 0.16 wt.%. In contrast, iron oxide concentrations are highest in the deeper sediment sections (up to 0.4%), where pyrite concentrations are low. The alteration of iron oxides to sulfides in theses lower section was probably governed by the amount of available sulfide in the pore water. The occurrence of (bio-)reactive iron phases in these deeply buried sediments has implications for the deep biosphere as those minerals have the potential to serve as electron acceptors during burial, including reactions involving deep sourced electron donors, such as

  15. [Effects of sediment on the early settlement stage of Sargassum horneri on rocky subtidal reefs].

    PubMed

    Bi, Yuan-Xin; Zhang, Shou-Yu; Wu, Zu-Li

    2013-05-01

    By using sediment trap and suction pump to measure the relative sediment levels across different sites and water depths, and through the in situ measurements of Sargassum horneri density, this paper assessed the relationships between the distribution of S. horneri and the sediment levels and wave exposure on the rocky subtidal platforms around Gouqi Island, China. The laboratory-based experiments were also conducted to test the effects of different sediment levels on the attachment of S. horneri zygote and the survival rate of S. horneri germling after the attachment. S. horneri predominated at the sites with lesser sediment and wave exposure, but less distributed in the sites with high level sediment and wave-exposure. At different water depths, the distribution of S. horneri was negatively correlated with the amount of sediment. A medium dusting (dry mass 10.47 mg x cm(-2), approximate 0.543 mm deep) of sediment on the plate reduced the percentage of S. horneri zygotes attached to the substratum by 4.4%, and a heavy dusting (dry mass 13.96 mg x cm(-2), approximate 0.724 mm deep) of sediment on the plate completely prevented the attachment. One week after the settlement of the zygotes, there were 24% of the germlings still survived when the dry mass sediment coverage was 13.96 mg x cm(-2). However, when the dry mass sediment coverage was up to 34.9 mg x cm(-2) (approximate 1.81 mm deep), 100% of the germlings died. Overall, the distribution of S. horneri was not only related to sediment level, but also restricted by wave exposure to some extent. Sediment level was a critical factor affecting the distribution of S. horneri, particularly at its zygote attachment stage.

  16. Amyloplast Sedimentation Kinetics in Corn Roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Sack, F.

    1985-01-01

    Knowledge of the parameters of amyloplast sedimentation is crucial for an evaluation of proposed mechanisms of root graviperception. Early estimates of the rate of root amyloplast sedimentation were as low as 1.2 micron/min which may be too slow for many amyloplasts to reach the vicinity of the new lower wall within the presentation time. On this basis, Haberlandt's classical statolith hypothesis involving amyloplast stimulation of a sensitive surface near the new lower wall was questioned. The aim was to determine the kinetics of amyloplast sedimentation with reference to the presentation time in living and fixed corn rootcap cells as compared with coleoptiles of the same variety.

  17. Early diagenetic partial oxidation of organic matter and sulfides in the Middle Pennsylvanian (Desmoinesian) Excello Shale Member of the Fort Scott Limestone and equivalents, northern Midcontinent region, USA

    USGS Publications Warehouse

    Hatch, J.R.; Leventhal, M.S.

    1997-01-01

    A process of early diagenetic partial oxidation of organic matter and sulfides has altered the chemical composition of the Middle Pennsylvanian Excello Shale Member of the Fort Scott Limestone and equivalents in the northern Midcontinent region. This process was identified by comparison of organic carbon contents, Rock-Eval hydrogen indices, organic carbon ??13C and element compositions of core and surface mine samples of the Excello Shale Member with analyses of three other underlying and overlying organic-matter-rich marine shales (offshore shale lithofacies) from southern Iowa, northern Missouri, eastern Kansas and northeastern Oklahoma. The end product of the partial oxidation process is shale with relatively low contents of hydrogen-poor, C13-enriched organic matter, lower contents of sulfur and sulfide-forming elements, and relatively unchanged contents of phosphorus and many trace elements (e.g. Cr, Ni, and V). However, because of lower organic carbon contents, element/organic carbon ratios are greatly increased. The partial oxidation process apparently took place during subaerial exposure of the overlying marine carbonate member (Blackjack Creek Member of the Fort Scott Limestone) following a marine regression when meteoric waters percolated down to the level of the Excello muds allowing oxidation of organic matter and sulfides. This hypothesis is supported by earlier workers, who have identified meteoric carbonate cements within, and soil horizons at the top of the Blackjack Creek Member. The period of oxidation is constrained in that organic matter and sulfides in the Little Osage Shale Member of the Fort Scott Limestone and equivalents (immediately overlying the Blackjack Creek Member) appear unaltered. Similar alteration of other shales in the Middle and Upper Pennsylvanian sections may be local to regional in extent and would depend on the extent and duration of the marine regression and be influenced by local variations in permeability and topography

  18. Characteristics of sediment discharge in the subarctic Yukon River, Alaska

    USGS Publications Warehouse

    Chikita, K.A.; Kemnitz, R.; Kumai, R.

    2002-01-01

    The characteristics of sediment discharge in the Yukon River, Alaska were investigated by monitoring water discharge, water turbidity and water temperature. The river-transported sediment, 90 wt.% or more, consists of silt and clay (grain size ??? 62.5 ??m), which probably originated in the glacier-covered mountains mostly in the Alaska Range. For early June to late August 1999, we continuously measured water turbidity and temperature near the estuary and in the middle of Yukon River by using self-recording turbidimeters and temperature data loggers. The water turbidity (ppm) was converted to suspended sediment concentration (SSC; mg/l) of river water, using a relation between simultaneous turbidity and SSC at each of the two sites, and then, the suspended sediment discharge, approximately equal to water discharge times SSC, was numerically obtained every 1 or 2 h. It should be noted that the sediment discharge in the Yukon River is controlled by SSC rather than water discharge. As a result, a peak sediment discharge occurred in mid or late August by local sediment runoffs due to glacier-melt (or glacier-melt plus rainfall), while a peak water discharge was produced by snowmelt in late June or early July. Application of the "extended Shields diagram" indicates that almost all the river-transported sediments are under complete suspension. ?? 2002 Elsevier Science B.V. All rights reserved.

  19. Petroleum system elements within the Late Cretaceous and Early Paleogene sediments of Nigeria's inland basins: An integrated sequence stratigraphic approach

    NASA Astrophysics Data System (ADS)

    Dim, Chidozie Izuchukwu Princeton; Onuoha, K. Mosto; Okeugo, Chukwudike Gabriel; Ozumba, Bertram Maduka

    2017-06-01

    Sequence stratigraphic studies have been carried out using subsurface well and 2D seismic data in the Late Cretaceous and Early Paleogene sediments of Anambra and proximal onshore section of Niger Delta Basin in the Southeastern Nigeria. The aim was to establish the stratigraphic framework for better understanding of the reservoir, source and seal rock presence and distribution in the basin. Thirteen stratigraphic bounding surfaces (consisting of six maximum flooding surfaces - MFSs and seven sequence boundaries - SBs) were recognized and calibrated using a newly modified chronostratigraphic chart. Stratigraphic surfaces were matched with corresponding foraminiferal and palynological biozones, aiding correlation across wells in this study. Well log sequence stratigraphic correlation reveals that stratal packages within the basin are segmented into six depositional sequences occurring from Late Cretaceous to Early Paleogene age. Generated gross depositional environment maps at various MFSs show that sediment packages deposited within shelfal to deep marine settings, reflect continuous rise and fall of sea levels within a regressive cycle. Each of these sequences consist of three system tracts (lowstand system tract - LST, transgressive system tract - TST and highstand system tract - HST) that are associated with mainly progradational and retrogradational sediment stacking patterns. Well correlation reveals that the sand and shale units of the LSTs, HSTs and TSTs, that constitute the reservoir and source/seal packages respectively are laterally continuous and thicken basinwards, due to structural influences. Result from interpretation of seismic section reveals the presence of hanging wall, footwall, horst block and collapsed crest structures. These structural features generally aid migration and offer entrapment mechanism for hydrocarbon accumulation. The combination of these reservoirs, sources, seals and trap elements form a good petroleum system that is viable

  20. Redox effects on the microbial degradation of refractory organic matter in marine sediments

    NASA Astrophysics Data System (ADS)

    Reimers, Clare E.; Alleau, Yvan; Bauer, James E.; Delaney, Jennifer; Girguis, Peter R.; Schrader, Paul S.; Stecher, Hilmar A.

    2013-11-01

    enrichment of Deltaproteobacteria on the sediment-hosted anodes over time. Many Deltaproteobacteria are capable of using electrodes as terminal electron acceptors to completely oxidize organic substrates. Notably, Deltaproteobacteria were not measurably enriched in the sediments adjacent to anodes, suggesting that - in these experiments - electron-shuttling bacterial networks did not radiate out away from the electrodes, affecting millimeters or centimeters of sediment. Rather, microbial phylotypes allied to the Clostridia appeared to dominate in the sediment amongst all treatments, and likely played essential roles in converting complex dissolved and particulate sources of OM to simple fermentation products. Thus, we advance that the rate at which fermentation products are generated and migrate to oxidation fronts is what limits the remineralization of OM in many subsurface sediments removed from molecular oxygen. This is a diagenetic scenario that is consistent with the discharging behavior of redox oscillating sediment MFCs. It is also compatible with hypotheses that molecular O2 - and not just the resulting elevated redox potential - may be required to effectively catalyze the degradation of refractory OM. Such decomposition reactions have been suggested to depend on substrate interactions with highly reactive oxygen-containing radicals and/or with specialized extracellular enzymes produced by aerobic prokaryotic or eukaryotic cells.

  1. Identifying early Earth microfossils in unsilicified sediments

    NASA Astrophysics Data System (ADS)

    Javaux, Emmanuelle J.; Asael, Dan; Bekker, Andrey; Debaille, Vinciane; Derenne, Sylvie; Hofmann, Axel; Mattielli, Nadine; Poulton, Simon

    2013-04-01

    The search for life on the early Earth or beyond Earth requires the definition of biosignatures, or "indices of life". These traditionally include fossil molecules, isotopic fractionations, biosedimentary structures and morphological fossils interpreted as remnants of life preserved in rocks. This research focuses on traces of life preserved in unsilicified siliciclastic sediments. Indeed, these deposits preserve well sedimentary structures indicative of past aqueous environments and organic matter, including the original organic walls of microscopic organisms. They also do not form in hydrothermal conditions which may be source of abiotic organics. At our knowledge, the only reported occurrence of microfossils preserved in unsilicified Archean sediments is a population of large organic-walled vesicles discovered in shales and siltstones of the 3.2 Ga Moodies Group, South Africa. (Javaux et al, Nature 2010). These have been interpreted as microfossils based on petrographic and geochemical evidence for their endogenicity and syngeneity, their carbonaceous composition, cellular morphology and ultrastructure, occurrence in populations, taphonomic features of soft wall deformation, and the geological context plausible for life, as well as lack of abiotic explanation falsifying a biological origin. Demonstrating that carbonaceous objects from Archaean rocks are truly old and truly biological is the subject of considerable debate. Abiotic processes are known to produce organics and isotopic signatures similar to life. Spheroidal pseudofossils may form as self-assembling vesicles from abiotic CM, e.g. in prebiotic chemistry experiments (Shoztak et al, 2001), from meteoritic lipids (Deamer et al, 2006), or hydrothermal fluids (Akashi et al, 1996); by artifact of maceration; by migration of abiotic or biotic CM along microfractures (VanZuilen et al, 2007) or along mineral casts (Brasier et al, 2005), or around silica spheres formed in silica-saturated water (Jones and

  2. Effects of lead-contaminated sediment on Rana sphenocephala tadpoles.

    PubMed

    Sparling, Donald W; Krest, Sherry; Ortiz-Santaliestra, Manuel

    2006-10-01

    We exposed larval southern leopard frogs (Rana sphenocephala) to lead-contaminated sediments to determine the lethal and sublethal effects of this metal. Tadpoles were laboratory-raised from early free-swimming stage through metamorphosis at lead concentrations of 45, 75, 180, 540, 2360, 3940, 5520, and 7580 mg/kg dry weight in sediment. Corresponding pore water lead concentrations were 123, 227, 589, 1833, 8121, 13,579, 19,038, and 24,427 microg/L. Tadpoles exposed to lead concentrations in sediment of 3940 mg/kg or higher died within 2 to 5 days of exposure. At lower concentrations, mortality through metamorphosis ranged from 3.5% at 45 mg/kg lead to 37% at 2360 mg/kg lead in sediment. The LC50 value for lead in sediment was 3728 mg/kg (95% CI = 1315 to 72,847 mg/kg), which corresponded to 12,539 microg/L lead in pore water (95% CI = 4000 to 35,200 microg/L). Early growth and development were depressed at 2,360 mg/kg lead in sediment (8100 microg/L in pore water) but differences were not evident by the time of metamorphosis. The most obvious effect of lead was its pronounced influence on skeletal development. Whereas tadpoles at 45 mg/kg lead in sediment did not display permanent abnormalities, skeletal malformations increased in frequency and severity at all higher lead concentrations. By 2360 mg/kg, 100% of surviving metamorphs displayed severe spinal problems, reduced femur and humerus lengths, deformed digits, and other bone malformations. Lead concentrations in tissues correlated positively with sediment and pore water concentrations.

  3. Effects of lead-contaminated sediment on Rana sphenocephala tadpoles

    USGS Publications Warehouse

    Sparling, D.W.; Krest, S.K.; Ortiz-Santaliestra, M.

    2006-01-01

    We exposed larval southern leopard frogs (Rana sphenocephala) to lead-contaminated sediments to determine the lethal and sublethal effects of this metal. Tadpoles were laboratory-raised from early free-swimming stage through metamorphosis at lead concentrations of 45, 75, 180, 540, 2360, 3940, 5520, and 7580 mg/kg dry weight in sediment. Corresponding pore water lead concentrations were 123, 227, 589, 1833, 8121, 13,579, 19,038, and 24,427 ug/L. Tadpoles exposed to lead concentrations in sediment of 3940 mg/kg or higher died within 2 to 5 days of exposure. At lower concentrations, mortality through metamorphosis ranged from 3.5% at 45 mg/kg lead to 37% at 2360 mg/kg lead in sediment. The LC50 value for lead in sediment was 3728 mg/kg (95% CI=1315 to 72,847 mg/kg), which corresponded to 12,539 ug/L lead in pore water (95% CI= 4000 to 35,200 ug/L). Early growth and development were depressed at 2,360 mg/kg lead in sediment (8100 ug/L in pore water) but differences were not evident by the time of metamorphosis. The most obvious effect of lead was its pronounced influence on skeletal development. Whereas tadpoles at 45 mg/kg lead in sediment did not display permanent abnormalities, skeletal malformations increased in frequency and severity at all higher lead concentrations. By 2360 mg/kg, 100% of surviving metamorphs displayed severe spinal problems, reduced femur and humerus lengths, deformed digits, and other bone malformations. Lead concentrations in tissues correlated positively with sediment and pore water concentrations.

  4. Sediment characteristics and sedimentation rates in Lake Michie, Durham County, North Carolina, 1990-92

    USGS Publications Warehouse

    Weaver, J.C.

    1994-01-01

    A reservoir sedimentation study was conducted at 508-acre Lake Michie, a municipal water-supply reservoir in northeastern Durham County, North Carolina, during 1990-92. The effects of sedimentation in Lake Michie were investigated, and current and historical rates of sedimentation were evaluated. Particle-size distributions of lake-bottom sediment indicate that, overall, Lake Michie is rich in silt and clay. Nearly all sand is deposited in the upstream region of the lake, and its percentage in the sediment decreases to less than 2 percent in the lower half of the lake. The average specific weight of lake-bottom sediment in Lake Michie is 73.6 pounds per cubic foot. The dry-weight percentage of total organic carbon in lake-bottom sediment ranges from 1.1 to 3.8 percent. Corresponding carbon-nitrogen ratios range form 8.6 to 17.6. Correlation of the total organic carbon percentages with carbon-nitrogen ratios indicates that plant and leaf debris are the primary sources of organic material in Lake Michie. Sedimentation rates were computed using comparisons of bathymetric volumes. Comparing the current and previous bathymetric volumes, the net amount of sediment deposited (trapped) in Lake Michie during 1926-92 is estimated to be about 2,541 acre-feet or slightly more than 20 percent of the original storage volume computed in 1935. Currently (1992), the average sedimentation rate is 38 acre-feet per year, down from 45.1 acre-feet per year in 1935. To confirm the evidence that sedimentation rates have decreased at Lake Michie since its construction in 1926, sediment accretion rates were computed using radionuclide profiles of lake-bottom sediment. Sediment accretion rates estimated from radiochemical analyses of Cesium-137 and lead-210 and radionuclides in the lake-bottom sediment indicate that rates were higher in the lake?s early years prior to 1962. Estimated suspended-sediment yields for inflow and outflow sites during 1983-91 indicate a suspended-sediment trap

  5. Geochemical interpretation of distribution of aromatic hydrocarbons in components of geologic environment of Pechora, Barents and Kara seas.

    NASA Astrophysics Data System (ADS)

    Kursheva, Anna; Petrova, Vera; Litvinenko, Ivan; Morgunova, Inna

    2017-04-01

    Information about the hydrocarbons content (including aromatic ones) in components of geologic environment allows to define common factors in distribution and correlation both nature and technogenic component, and also to reveal the sources of contamination. At that, it should be noted, that hydrocarbons are widely spread in lithosphere and create steady geochemical background, variations are caused here by specifics of initial organic matter, conditions of its accumulation and transformation. The basis of the study are the samples of sea water and deep sea sediments (more than 600 stations), collected in western sector of Arctic region (Pechora, Barents and Kara seas) during the scientific-research expeditions of FSBI "VNIIOkeangeologia" for the period 2000-2010. Total content of aromatic hydrocarbons was defined by spectrofluorometric method using analyzer «FLUORAT-Panorama-02». Certification of data was performed on representative samples based on contents and molecule structure of polycyclic aromatic hydrocarbons using GC-MS (Agilent 5973/6850 GC-MS System). Results of spectrofluorometric analysis of lipid fraction of organic matter of bottom sediments allowed to define specific parameters, which characterize various lithofacies groups of sediments. Thus, sandy residues are characterized by low level of aromatic hydrocarbons (ca. 4.3 μg/g) with prevalence of bi- and tri-aromatic compounds (λmax 270-310 nm). This correlates with low sorption capacity of coarse-grained sediments and absence of organic-mineral component, containing the breakdown products of initial organic matter. Tetra- and penta- aromatic structures prevail in clay sediments (ca. 13.0 μg/g), which are typical components of lipid fraction of organic matter of post sedimentation and early diagenetic stages of transformation. At that, changes of spectral characteristic of sediments in stratigraphic sequence completely reflect processes of diagenetic transformation of organic matter, including

  6. Phosphate mineral formation in Lake Baikal sediments and implications for paleoclimate

    NASA Astrophysics Data System (ADS)

    Fagel, N.; Alleman, L. Y.; André, L.; Cloots, R.; Hatert, F.; Juvigné, E.; Renson, V.

    2003-04-01

    The more than 20 million years old Lake Baikal sedimentary record provides a good climate archive. While most paleoclimate reconstructions are mainly based on biotic proxies, we tested in this study other minerogenic tracers. In particular, it was suggested that the formation of authigenic and/or diagenetic phosphate minerals in Baïkal sediments underlines transitions from glacial to interglacial periods (Deike et al., 1997). The phosphate mineral formation previously evidenced (Müller et al., 2002) may be sensitive to suspended sediment concentrations: glacial periods are characterised by high detrital discharge, interglacial intervals are marked by low detrital supply but high biogenic sedimentation. Phosphate minerals were observed in Baïkal sediments from recent to 65 kyr BP. Their abundance was related to the sedimentation rate, the phosphate enrichment layers being particularly common on low sedimentation site, i.e., the Academician Ridge. Major and trace elements have been analysed by ICP-AES and ICP-MS on four cores drilled on topographic hills, in the southern basin (Posolsky bank, CON01-604), in the central part (Academician Ridge, VER98-1-3 and VER98-1-14) and in the northern basin (Continent Ridge, CON01-603). The geochemical signature is consistent with the occurrence of Mn-Fe-phosphate minerals. For instance P2O5 reaches up to 3% wt. relative to a mean value of 0.3 in the background sediment, MnO2 presents an enrichment factor up to 6. There is no associated enrichment in any of the trace elements measured at the same levels. In the sediments, those P-Mn-Fe rich levels are related either to sparse millimetric dark concretions or to a layer (or a group of layers) defined by an alignment of numerous concretions but there is no so-called crusts. The concretions, isolated by >63 mm sieving, present a lamellar morphology. They are identified as Fe-phosphate phases with a variable proportion of Mn. The powder diffraction diagram is consistent with

  7. Study of Sound Attenuation in Sediments.

    DTIC Science & Technology

    1984-12-01

    acoustics of porous media by the Biot model . X is often referred to as the tortuosity of the frame, but it should not be confused with the hydraulic...measured in nepers/m. A. The Hamilton Model Hamilton has been investigating the acoustic properties of marine sediments since the early 1950s. 5- 6...Poisson’s ratios in marine sediments and rocks," J. Acoust . p Soc. Am. 66, 1093-1101 (1979). 10. E.L. Hamilton, "Geoacoustic modelling of the sea floor

  8. Authigenic rhodochrosite from a gas hydrate-bearing structure in Lake Baikal

    NASA Astrophysics Data System (ADS)

    Krylov, Alexey A.; Hachikubo, Akihiro; Minami, Hirotsugu; Pogodaeva, Tatyana V.; Zemskaya, Tamara I.; Krzhizhanovskaya, Mariya G.; Poort, Jeffrey; Khlystov, Oleg M.

    2018-02-01

    Early diagenetic carbonates are rare in Lake Baikal. Siderite (Fe carbonate) concretions in the sediments were discovered only recently. Here, we discuss the first finding of rhodochrosite concretions (Mn carbonate) discovered in the near-bottom sediments of the gas hydrate-bearing seepage structure St. Petersburg-2 in the deep water environment of the Central Baikal Basin. The crystal lattice of rhodochrosite contains iron and calcium substituting to manganese. Based on pore water geochemistry and of δ 13C values of rhodochrosite (- 23.3 and - 29.4‰), carbon dioxide (+ 3.8 to - 16.1‰) and methane (- 63.2 to - 67.8‰), we show that carbonate crystallization most likely occurred during microbial anaerobic oxidation of organic matter, and that part of the oxygen making up the rhodochrosite seems to be derived from the 18O-rich water released from dissociating gas hydrates.

  9. Climate variability and volcanic history of the Eastern Romanian Carpathians since early MIS 3 recorded in sediments from Mohoş crater

    NASA Astrophysics Data System (ADS)

    Bormann, M.; Veres, D.; Wulf, S.; Papadopoulou, M.; Panagiotopoulos, K.; Schaebitz, F.

    2015-12-01

    We present a 30m long sediment record covering the last ca. 50,000 years from the in-filled Mohoş crater (46°05' N; 25°55' E) located on Ciomadul volcano (Romania) that was retrieved in 2014. The record consists of bog and lacustrine sediments that are inter-bedded with tephra deposits. Ciomadul volcano, hosting the superimposed craters of Mohoş and Sf. Ana, is the youngest volcanic edifice in the Carpathian-Balkan region. Thus, tephra-analysis on the Mohoş sediments gives valuable insights into the volcanic history of that region, mainly arising from the younger crater of Sf Ana and several secondary domes. For investigations into the past climate history, the Mohoş sediment sequence has been analysed using a multi-proxy approach including geophysical, geochemical and sedimentological parameters. Multi-Sensor core logging and ITRAX X-ray fluorescence scanning have been performed at high-resolution, whereas grain size analysis, TOC and C/N ratios supplement the geophysical and geochemical data. Chronological control is based on radiocarbon and luminescence dating. We also present first results of the tephra-analysis on the Mohoş sediment record and their correlation to medium-distal pyroclastic deposits originating in this volcanic field. We further discuss responses of this mid-altitude site (1050 m a.s.l.) to past climate oscillations since early MIS 3. To date, the Mohoş core record provides the longest time series from the Carpathian region. This study is part of the Collaborative Research Centre 806 "Our Way To Europe; Culture-Environment Interaction and Human Mobility in the Late Quaternary" (www.sfb806.de); subproject B2.

  10. Terrestrial Fe-oxide Concretions and Mars Blueberries: Comparisons of Similar Advective and Diffusive Chemical Infiltration Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Chan, M. A.

    2006-12-01

    Abundant iron oxide concretions occurring in Navajo Sandstone of southern Utah and those discovered at Meridiani Planum, Mars share many common observable physical traits such as their spheriodal shapes, occurrence, and distribution patterns in sediments. Terrestrial concretions are products of interaction between oxygen-rich aquifer water and basin-derived reducing (iron-rich) water. Water-rock interaction simulations show that diffusion of oxygen and iron supplied by slow-moving water is a reasonable mechanism for producing observed concretion patterns. In short, southern Utah iron oxide concretions are results of Liesegang-type diffusive infiltration reactions in sediments. We propose that the formation of blueberry hematite concretions in Mars sediments followed a similar diagenetic mechanism where iron was derived from the alteration of volcanic substrate and oxygen was provided by the early Martian atmosphere. Although the terrestrial analog differs in the original host rock composition, both the terrestrial and Mars iron-oxide precipitation mechanisms utilize iron and oxygen interactions in sedimentary host rock with diffusive infiltration of solutes from two opposite sources. For the terrestrial model, slow advection of iron-rich water is an important factor that allowed pervasive and in places massive precipitation of iron-oxide concretions. In Mars, evaporative flux of water at the top of the sediment column may have produced a slow advective mass-transfer mechanism that provided a steady source and the right quantity of iron. The similarities of the terrestrial and Martian systems are demonstrated using a water-rock interaction simulator Sym.8, initially in one-dimensional systems. Boundary conditions such as oxygen content of water, partial pressure of oxygen, and supply rate of iron were varied. The results demonstrate the importance of slow advection of water and diffusive processes for producing diagenetic iron oxide concretions.

  11. Deriving sediment Interstitial Water Remediation Goals ...

    EPA Pesticide Factsheets

    Background/Objectives. Passive sampling is becoming a frequently used measurement technique at Superfund sites with contaminated sediments. Passive sampling measures the concentrations of freely dissolved chemicals (Cfrees) in the sediment interstitial water. The freely dissolved chemical is a good surrogate for and a very practical means for estimating the concentrations of bioavailable chemical in the sediments. Building from this approach, a methodology is proposed to derive sediment Interstitial Water Remediation Goals (IWRGs) for the protection of benthic organisms from direct toxicity using Cfrees measured with passive sampling.Approach/Activities. In the early 2000s, EPA developed and released Equilibrium Partitioning Sediment Benchmarks (ESBs) for a series of chemicals. ESBs are intended to be chemical concentrations below which unacceptable toxicity to benthic organisms does not occur. The ESBs (expressed with the units of ug/g OC) were derived using the equations:ESB= K_OC×FCV where K_OC=0.00028+0.983K_OWThe KOC is the organic carbon normalized sediment-water chemical partition coefficient, FCV is the Final Chronic Value from EPA’s ambient water quality criteria for the protection of aquatic life, and KOW is the n-octanol/water partition coefficient for the chemical. At a specific site, the remedial goal (CS:ESB µg/kg-dw) in sediment are then derived using the site-specific fraction of organic carbon in the sediment (fOC:SS) at the site:C_

  12. Chronic sublethal effects of San Francisco Bay sediments on nereis (neanthes) arenaceodentata; bioaccumulation from bedded sediments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, D.; Dillon, T.M.

    1993-09-01

    In previous studies with San Francisco Bay sediments, minimal chronic sublethal effects were detected (Miscellaneous Paper D-93-1 and another Miscellaneous Paper in preparation by Moore and Dillon). To ensure that the lack of effects was not due to a lack of contaminant uptake, a bioaccumulation experiment was conducted. Bioaccumulation from bedded sediments was evaluated following a 9-week exposure with the marine polychaete worm Nereis (Neanthes) arenaceodentata. Two sediments were evaluated, a contaminated San Francisco Bay test sediment and a clean control sediment from Sequim, WA. Animals were exposed as early juveniles through adulthood. Tissues were analyzed for metals, polyaromatic hydrocarbonsmore » (PAHs), polychlorinated biphenyls (PCBs), and pesticides. Worms exposed to the contaminated San Francisco Bay sediment had significantly higher tissue residues of silver (0.30 mg/kg dry weight) and tributyltin (0.298 mg/kg dry weight). Conversely, tissue residues of control animals were significantly higher in cadmium (0.67 mg/kg dry weight) and lead (1.89 mg/kg dry weight). Small Amounts (0.02 mg/kg dry weight) of aldrin and dieldrin were measured in worms exposed to the contaminated sediment, while dieldrin and 8-BHC were found in Bioaccumulation, Neanthes, Chronic sublethal, San Francisco Bay, Dredged, Material, Sediment.« less

  13. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J. R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  14. Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits

    NASA Astrophysics Data System (ADS)

    Smith, Abigail M.; Nelson, Campbell S.

    2003-10-01

    Cool-water shelf carbonates differ from tropical carbonates in their sources, modes, and rates of deposition, geochemistry, and diagenesis. Inorganic precipitation, marine cementation, and sediment accumulation rates are absent or slow in cool waters, so that temperate carbonates remain longer at or near the sea bed. Early sea-floor processes, occurring between biogenic calcification and ultimate deposition, thus take on an important role, and there is the potential for considerable taphonomic loss of skeletal information into the fossilised record of cool-water carbonate deposits. The physical breakdown processes of dissociation, breakage, and abrasion are mediated mainly by hydraulic regime, and are always destructive. Impact damage reduces the size of grains, removes structure and therefore information, and ultimately may transform skeletal material into anonymous particles. Abrasion is highly selective amongst and within taxa, their skeletal form and structure strongly influencing resistance to mechanical breakdown. Dissolution and precipitation are the end-members of a two-way chemical equilibrium operating in sea water. In cool waters, inorganic precipitation is rare. There is conflicting opinion about the importance of diagenetic dissolution of carbonate skeletons on the temperate sea floor, but test maceration and early loss of aragonite in particular are reported. Dissolution may relate to undersaturated acidic pore waters generated locally by a combination of microbial metabolisation of organic matter, strong bioturbation, and oxidation of solid phase sulphides immediately beneath the sea floor in otherwise very slowly accumulating skeletal deposits. Laboratory experiments demonstrate that surface-to-volume ratio and skeletal mineralogy are both important in determining skeletal resistance to dissolution. Biological processes on the sea floor include encrustation and bioerosion. Encrustation, a constructive process, may be periodic or seasonal, and can be

  15. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; DePaolo, Donald J.

    2011-11-01

    Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (δ 44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of δ 44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, δ 44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the δ 44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these

  16. Fine Sediment Effects on Brook Trout Eggs in Laboratory Streams

    Treesearch

    David G. Argent; Patricia A. Flebbe

    1999-01-01

    This study was designed to determine effects of different fine sediments (0.43-0.85 mm in diameter) on survival of brook trout (Salvelinus fontinalis) eggs during early developmental stages under laboratory conditions. Intragravel permeability and dissolved oxygen declined with increasing fine sediment amounts. Survival at each developmental stage...

  17. Aqueous Chemical Modeling of Sedimentation on Early Mars with Application to Surface-Atmosphere Evolution

    NASA Technical Reports Server (NTRS)

    Catling, David C.

    2004-01-01

    This project was to investigate models for aqueous sedimentation on early Mars from fluid evaporation. Results focused on three specific areas: (1) First, a fluid evaporation model incorporating iron minerals was developed to compute the evaporation of a likely solution on early Mars derived from the weathering of mafic rock. (2) Second, the fluid evaporation model was applied to salts within Martian meteorites, specifically salts in the nakhlites and ALH84001. Evaporation models were found to be consistent with the mineralogy of salt assemblages-anhydrite, gypsum, Fe-Mg-Ca carbonates, halite, clays-- and the concentric chemical fractionation of Ca-to Mg-rich carbonate rosettes in ALH84001. We made progress in further developing our models of fluid concentration by contributing to updating the FREZCHEM model. (3) Third, theoretical investigation was done to determine the thermodynamics and kinetics involved in the formation of gray, crystalline hematite. This mineral, of probable ancient aqueous origin, has been observed in several areas on the surface of Mars by the Thermal Emission Spectrometer on Mars Global Surveyor. The "Opportunity" Mars Exploration Rover has also detected gray hematite at its landing site in Meridiani Planum. We investigated how gray hematite can be formed via atmospheric oxidation, aqueous precipitation and subsequent diagenesis, or hydrothermal processes. We also studied the geomorphology of the Aram Chaos hematite region using Mars Orbiter Camera (MOC) images.

  18. Linking sediment structure, hydrological functioning and biogeochemical cycling in disturbed coastal saltmarshes and implications for vegetation development

    NASA Astrophysics Data System (ADS)

    Spencer, Kate; Harvey, Gemma; James, Tempest; Simon, Carr; Michelle, Morris

    2014-05-01

    with preferential horizontal flows. The undisturbed saltmarsh displayed typical vertical geochemical sediment profiles. However, in the restored sites total Fe and Mn are elevated at depth indicating an absence of diagenetic cycling, whilst porewater sulphate and nitrate increased at depth suggesting that vertical solute transport is impeded in restored sites. In surface sediments, though total Hg concentrations are similar, Hg methylation rates are significantly higher than in the undisturbed saltmarsh suggesting that surface anoxia and poor drainage may result in increased mobilization and bioavailability of Hg. These findings have implications for the wider biogeochemical ecosystem services offered by saltmarsh restoration and the water-logged, anoxic conditions produced are unsuitable for seedling germination and plant growth. This highlights the need for integrated understanding of physical and biogeochemical processes.

  19. Improved marine reservoir age estimation and palaeoclimate synchronisation of the early Holocene Levantine/NW-Arabian region based on identification of the S1 tephra in Dead Sea and Tayma palaeolake sediments

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Wulf, Sabine; Schwab, Markus J.; Serb, Johanna; Plessen, Birgit; Appelt, Oona; Brauer, Achim

    2017-04-01

    Due to a lack of tephras identified in marine and terrestrial palaeoclimate records from the Levantine-Arabian area, this region is still not sufficiently connected to the eastern Mediterranean tephrostratigraphical lattice. Here we report on the first finding of cryptotephra in the Holocene lacustrine sediment records of the Dead Sea and the Tayma palaeolake (NW Arabian Peninsula). The major elemental chemistry of the rhyolitic glass shards proves this tephra identical to the distal 'S1 tephra' identified in the Yammoûneh palaeolake, Lebanon (Develle et al, 2009), in a marine sediment record from the SE Levantine basin (Hamann et al., 2010) and in the Sodmein Cave archaeological site in Egypt (Barton et al., 2015). The 'S1 tephra', most likely corresponding to the early Holocene 'Dikkartın' dome eruption of the Erciyes Daǧ volcano in central Anatolia, Turkey, has been dated in the marine record at 8830 ± 140 cal yr BP. We present new age estimates of the 'S1 tephra' based on radiocarbon dating of terrestrial plant remains (Migowski et al., 2004) and pollen concentrates (Dinies et al., 2015), which reveal modelled ages of 8939 ± 83 cal yr BP in the Dead Sea sediments and 9041 ± 254 cal yr BP in Tayma. This allows the estimation of an early Holocene marine reservoir age of ca. 320 years in the SE Levantine Sea. The timing of the volcanic eruption during the early Holocene humid period, which led to the formation of sapropel S1 in the Mediterranean Sea, and the identification of the 'S1 tephra' more than 1200 km to the south are crucial for the synchronisation of marine and terrestrial palaeoclimate records in the eastern Mediterranean region. References: Barton et al., 2015. The role of cryptotephra in refining the chronology of Late Pleistocene human evolution and cultural change in North Africa. Quaternary Sci. Rev. 118, 151-169. Develle et al., 2009. Early Holocene volcanic ash fallout in the Yammoûneh lacustrine basin (Lebanon): Tephrochronological

  20. Jellyfish Lake, Palau: early diagenesis of organic matter in sediments of an anoxic marine lake

    USGS Publications Warehouse

    Orem, W.H.; Burnett, W.C.; Landing, W.M.; Lyons, W.B.; Showers, W.

    1991-01-01

    The major postdepositional change in the sedimentary organic matter is carbohydrate biodegradation. Lignin and aliphatic substances are preserved in the sediments. Dissolved organic matter in pore waters is primarily composed of carbohydrates, reflecting the degradation of sedimentary carbohydrates. Rate constants for organic carbon degradation and sulfate reduction in sediments of the lake are about 10?? lower than in other anoxic sediments. This may reflect the vascular plant source and partly degraded nature of the organic matter reaching the sediments of the lake. -from Authors

  1. Chemical composition of sediments from White Sea, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Gamza, Olga; Shevchenko, Vladimir; Novigatsky, Aleksandr

    2010-05-01

    300 m) with silles and elevations (<20 m), and also numerous islands. Thus variety of sediment composition is observed here - from rules and gravels to fine-grained clay silts [1]. The map of distribution of chemical elements was created by using bulk composition data with the help of program ArcView. Mn distribution in sedimentation mass is largely determed by influence of redox diagenesis. Reactive form of Mn dominates over less moving, litogenic form in sedimation mass of White Sea. Litogenic form remains in sediment, reactive form moves into silt near-bottom water, resulting Mn migration both in sediment and near-bottom layer of marine water. Mn oxidizes on the contact with oxygen of marine water and alters into insoluble form MnO2, causing Mn enrichment of surface layer of sediments. Highly movable silt deposit MnO2 and enriched by Mn suspension are moved by underflow and accumulate in bottom depressions and in central part of the sea, which is quite wide from both places of original sedimentation and run off sources [2]. Thus, the interrelation between granulometric composition of sediment and materials concentration can be shown by the example of Mn. Local conditions, leading to accumulation of clastic components, are: 1. Rise of content in sand owning to separation of heavy minerals 2. Rise of content in surface, mainly sandy clay sediments owning to presence of concretions 3. Rise of content in lower bunches roof owning to diagenetic contraction. Authors thank academic Lisitsyn for encourage, Andrey Apletalin for valuable help, and everybody, who helped in field and laboratory research of the White sea sediments. Work was being done under the auspices of Russian foundation of basic research (grants 09-05-10081, 09-05-00658 and 08-05-00860), RSA presidiums program of 17 fundamental researches (project 17.1). References: 1.Kuzmina T., Lein A., Lutchsheva L., Murdmaa I., Novigatsky A., Shevchenko V. Chemical composition of White Sea's sediments // Litology and

  2. Effect of biostimulation on the microbial community in PCB-contaminated sediments through periodic amendment of sediment with iron.

    PubMed

    Srinivasa Varadhan, A; Khodadoust, Amid P; Brenner, Richard C

    2011-10-01

    Reductive dehalogenation of polychlorinated biphenyls (PCBs) by indigenous dehalorespiring microorganisms in contaminated sediments may be enhanced via biostimulation by supplying hydrogen generated through the anaerobic corrosion of elemental iron added to the sediment. In this study, the effect of periodic amendment of sediment with various dosages of iron on the microbial community present in sediment was investigated using phospholipid fatty acid analysis (PLFA) over a period of 18 months. Three PCB-contaminated sediments (two freshwater lake sediments and one marine sediment) were used. Signature biomarker analysis of the microbial community present in all three sediments revealed the enrichment of Dehalococcoides species, the population of which was sustained for a longer period of time when the sediment microcosms were amended with the lower dosage of iron (0.01 g iron per g dry sediment) every 6 months as compared to the blank system (without iron). Lower microbial stress levels were reported for the system periodically amended with 0.01 g of iron per g dry sediment every 6 months, thus reducing the competition from other hydrogen-utilizing microorganisms like methanogens, iron reducers, and sulfate reducers. The concentration of hydrogen in the system was found to be an important factor influencing the shift in microbial communities in all sediments with time. Periodic amendment of sediment with larger dosages of iron every 3 months resulted in the early prevalence of Geobacteraceae and sulfate-reducing bacteria followed by methanogens. An average pH of 8.4 (range of 8.2-8.6) and an average hydrogen concentration of 0.75% (range of 0.3-1.2%) observed between 6 and 15 months of the study were found to be conducive to sustaining the population of Dehalococcoides species in the three sediments amended with 0.01 g iron per g dry sediment. Biostimulation of indigenous PCB dechlorinators by the periodic amendment of contaminated sediments with low dosages of

  3. Methane fluxes and their controlling processes in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Rehder, G. J.; Fossing, H.; Lapham, L.; Endler, R.; Spiess, V.; Bruchert, V.; Nguyen, T.; Gülzow, W.; Schneider von Deimling, J.; Conley, D. J.; Jorgensen, B.

    2010-12-01

    The Baltic Sea is an ideal natural laboratory to study the methane cycle in the framework of diagenetic processes. With its brackish character and a gradient from nearly marine to almost limnic conditions, a strong permanent haline stratification leading to large vertical redox gradients in the water column, and a sedimentation history which resulted in the deposition of organic-rich young post-glacial sediments over older glacial and post-glacial strata with very low organic content, the Baltic allows to study the role of a variety of key parameters for early diagenetic processes including the methane cycle. Within the BONUS + Project “Baltic Gas”, a 3.5 week scientific expedition of RV Maria S. Merian in August 2010 was dedicated to study the methane cycle in the various basins of the Baltic Sea, with strong emphasis on the metabolic reactions of early diagenesis and the occurrence of shallow gas deposits. Various subbottom profiling systems were used to map the thickness and structure of organic-rich deposits and build the base for a detailed coring program for biogeochemical analysis, including methane, sulfur compounds, iron, and other compounds. Methane gradients in connection with the information of the areal extend of organic-rich deposits are used to estimate the diffusive flux from the sediments into the water column and the rate of methane oxidation, with changing importance of sulfate as oxidant along the salinity gradient. On selected key stations, rate measurements of methanogenic and methanotrophic reactions were executed. The methane distribution in the water column was comprehensively assessed, revealing amongst other findings a drastic increase in bottom water methane concentration between the post bloom summer situation and the situation in the winter of 2009, in connection to the occurrence of a benthic nepheloid layer. Air-sea flux measurements were executed along the ship’s track comprising all major basins of the Baltic. The talk gives

  4. Sediment dispersal pattern in the Bay of Bengal - evidence for commencement of Bengal Fan sedimentation

    NASA Astrophysics Data System (ADS)

    Krishna, K. S.; Ismaiel, M.; Karlapati, S.; Gopala Rao, D.; Mishra, J.; D, S.

    2015-12-01

    The sediment succession in the Bay of Bengal records signatures corresponding to India-Asia collision, regional climate, and erosional processes of the Himalayan orogeny and the Indian subcontinent. The Bengal Fan - world's largest submarine fan - has been long studied to understand the link between the Himalayan tectonics and Asian monsoon climate, but early phase information of the Himalaya erosion is not retrieved from the Indian Ocean due to lack of deep-core samples. Therefore, the missing corresponding signals hampered the understanding of coupled processes between tectonics, climate and erosion. Seismic reflection profiles and industrial drill wells from the western Bay of Bengal show two different modes of sediment deposition: initially Indian peninsular rivers discharged sediments to the ocean at a rate ~20 m/m.y. until Oligocene-Miocene time (~23 Ma) with the exception of two fairly-enhanced sediment pulses from 65 to 54 and again from 34 to 23 Ma; since 23 Ma the Ganges and Brahmaputra rivers added huge volumes of sediments to the bay with variable rates range from 40 to >1000 m/m.y. Using seismic stratigraphic technique we found a distinct increase in sediment discharge (~140 m/m.y.) at 23 Ma is an important age marker for the onset of Bengal Fan sedimentation as a coupled connection between the Himalayan tectonics and Asian climate. Further rise in sedimentation rate during the period 6.8 - 0.8 Ma is surprisingly not in agreement with the decrease in sediment rate reported at ODP Leg 116 sites in the distal Bengal Fan, but coincident with the change in monsoon intensity. Here we provide well constrained ages for the growth of the Bengal Fan, which can serve as benchmark for interactions between the Himalayan exhumation and Asian climate.

  5. Geochemical and multi-isotopic (87Sr/86Sr, 143Nd/144Nd, 238U/235U) perspectives of sediment sources, depositional conditions, and diagenesis of the Marcellus Shale, Appalachian Basin, USA

    NASA Astrophysics Data System (ADS)

    Phan, Thai T.; Gardiner, James B.; Capo, Rosemary C.; Stewart, Brian W.

    2018-02-01

    We investigate sediment sources, depositional conditions and diagenetic processes affecting the Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, a major target of natural gas exploration. Multiple proxies, including trace metal contents, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U isotopes were applied to whole rock digestions and sequentially extracted fractions of the Marcellus shale and adjacent units from two locations in the Appalachian Basin. The narrow range of εNd values (from -7.8 to -6.4 at 390 Ma) is consistent with derivation of the clastic sedimentary component of the Marcellus Shale from a well-mixed source of fluvial and eolian material of the Grenville orogenic belt, and indicate minimal post-depositional alteration of the Sm-Nd system. While silicate minerals host >80% of the REE in the shale, data from sequentially extracted fractions reflect post-depositional modifications at the mineralogical scale, which is not observed in whole rock REE patterns. Limestone units thought to have formed under open ocean (oxic) conditions have δ238U values and REE patterns consistent with modern seawater. The δ238U values in whole rock shale and authigenic phases are greater than those of modern seawater and the upper crust. The δ238U values of reduced phases (the oxidizable fraction consisting of organics and sulfide minerals) are ∼0.6‰ greater than that of modern seawater. Bulk shale and carbonate cement extracted from the shale have similar δ238U values, and are greater than δ238U values of adjacent limestone units. We suggest these trends are due to the accumulation of chemically and, more likely, biologically reduced U from anoxic to euxinic bottom water as well as the influence of diagenetic reactions between pore fluids and surrounding sediment and organic matter during diagenesis and catagenesis.

  6. Open system sulphate reduction in a diagenetic environment - Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada

    NASA Astrophysics Data System (ADS)

    Magnall, J. M.; Gleeson, S. A.; Stern, R. A.; Newton, R. J.; Poulton, S. W.; Paradis, S.

    2016-05-01

    Highly positive δ34S values in sulphide minerals are a common feature of shale hosted massive sulphide deposits (SHMS). Often this is attributed to near quantitative consumption of seawater sulphate, and for Paleozoic strata of the Selwyn Basin (Canada), this is thought to occur during bacterial sulphate reduction (BSR) in a restricted, euxinic water column. In this study, we focus on drill-core samples of sulphide and barite mineralisation from two Late Devonian SHMS deposits (Tom and Jason, Macmillan Pass, Selwyn Basin), to evaluate this euxinic basin model. The paragenetic relationship between barite, pyrite and hydrothermal base metal sulphides has been determined using transmitted and reflected light microscopy, and backscatter electron imaging. This petrographic framework provides the context for in-situ isotopic microanalysis (secondary ion mass spectrometry; SIMS) of barite and pyrite. These data are supplemented by analyses of δ34S values for bulk rock pyrite (n = 37) from drill-core samples of un-mineralised (barren), siliceous mudstone, to provide a means by which to evaluate the mass balance of sulphur in the host rock. Three generations of barite have been identified, all of which pre-date hydrothermal input. Isotopically, the three generations of barite have overlapping distributions of δ34S and δ18O values (+22.5‰ to +33.0‰ and +16.4‰ to +18.3‰, respectively) and are consistent with an origin from modified Late Devonian seawater. Radiolarian tests, enriched in barium, are abundant within the siliceous mudstones, providing evidence that primary barium enrichment was associated with biologic activity. We therefore propose that barite formed following remobilisation of productivity-derived barium within the sediment, and precipitated within diagenetic pore fluids close to the sediment water interface. Two generations of pyrite are texturally associated with barite: framboidal pyrite (py-I), which has negative δ34S values (-23‰ to -28

  7. Analysis and Characterization of Organic Carbon in Early Holocene Wetland Paleosols using Ramped Pyrolysis 14C and Biomarkers

    NASA Astrophysics Data System (ADS)

    Vetter, L.; Schreiner, K. M.; Fernandez, A.; Rosenheim, B. E.; Tornqvist, T. E.

    2014-12-01

    Radiocarbon analyses are a key tool for quantifying the dynamics of carbon cycling and storage in both modern soils and Quaternary paleosols. Frequently, bulk 14C dates of paleosol organic carbon provide ages older than the time of soil burial, and 14C dates of geochemical fractions such as alkali and acid extracts (operationally defined as humic acids) can provide anomalously old ages when compared to coeval plant macrofossil dates. Ramped pyrolysis radiocarbon analysis of sedimentary organic material has been employed as a tool for investigating 14C age spectra in sediments with multiple organic carbon sources. Here we combine ramped pyrolysis 14C analysis and biomarker analysis (lignin-phenols and other cupric oxide products) to provide information on the source and diagenetic state of the paleosol organic carbon. We apply these techniques to immature early Holocene brackish wetland entisols from three sediment cores in southeastern Louisiana, along with overlying basal peats. Surprisingly, we find narrow 14C age spectra across all thermal aliquots from both paleosols and peats. The weighted bulk 14C ages from paleosols and overlying peats are within analytical error, and are comparable to independently analyzed 14C AMS dates from charcoal fragments and other plant macrofossils from each peat bed. Our results suggest high turnover rates of carbon in soils relative to input of exogenous carbon sources. These data raise broader questions about processes within the active soil and during pedogenesis and burial of paleosols that can effectively homogenize radiocarbon content in soils across the thermochemical spectrum. The concurrence of paleosol and peat 14C ages also suggests that, in the absence of peats with identifiable plant macrofossils, ramped pyrolysis 14C analyses of paleosols may be used to provide ages for sea-level indicators.

  8. Effects of sediment-bound zinc contamination on early life stages of the mummichog (Fundulus heteroclitus L.) in the Christina watershed, Delaware, U.S.A.

    PubMed

    Guy, Christopher Paul; Pinkney, Alfred Eli; Taylor, Malcolm Herbert

    2006-05-01

    During the last century, the Christina River, the major estuarine river system in New Castle County (DE, USA), has received loadings of organic and inorganic chemicals, primarily from manufacturing facilities. Among the most abundant chemicals is zinc, which has accumulated in sediments at concentrations as high as 5,440 mg/kg. We studied the possible effects of zinc on early life stages of the mummichog (Fundulus heteroclitus), a resident species in the river and watershed. We conducted three different types of exposures. The first was a 96-h median lethal concentration (LC50) test with larvae exposed to waterborne zinc. The second was a larval exposure with zinc-spiked sediments (obtained from the relatively uncontaminated Magothy River in Anne Arundel County, MD, USA). The third was an embryo-larval exposure with Christina River sediments having a gradient of zinc concentrations. The average 96-h LC50 with newly hatched yolk sac larvae was 970 lig/L. In the larval tests, the average 7- and 21-d LC50s were 1154 and 1012 mg/kg, respectively. In the embryo-larval test, no significant difference was found in survival at concentrations between 38.8 and 1098 mg/kg. However, significant reductions were observed in condition factor at concentrations of 582, 799, and 1098 mg/kg. We calculated an average no-observed-effects concentration of 579 mg/kg and an average lowest-observed-effects concentration of 849 mg/kg for larval survival. Based on these results, we suggest that zinc in the Christina River may be affecting early life stages of the mummichog.

  9. From agricultural intensification to conservation: Sediment transport in the Raccoon River, Iowa, 1916-2009

    USGS Publications Warehouse

    Jones, C.S.; Schilling, K.E.

    2011-01-01

    Fluvial sediment is a ubiquitous pollutant that negatively aff ects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate longterm TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that eff orts to reduce sediment load from the watershed appear to be working. ?? 2011 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  10. Depositional Architecture of Late Cambrian-Early Ordovician Siliciclastic Barik Formation; Al Huqf Area, Oman

    NASA Astrophysics Data System (ADS)

    Abbasi, Iftikhar Ahmed

    2017-04-01

    Early Paleozoic siliciclastics sediments of the Haima Supergroup are subdivided into a number of formations and members based on lithological characteristics of various rock sequences. One of the distinct sandstone sequence, the Barik Formation (Late Cambrian-Early Ordovician) of the Andam Group is a major deep gas reservoir in central Oman. The sandstone bodies are prospective reservoir rocks while thick shale and clay interbeds act as effective seal. Part of the Barik Formation (lower and middle part) is exposed in isolated outcrops in Al Huqf area as interbedded multistoried sandstone, and green and red shale. The sandstone bodies are up to 2 meters thick and can be traced laterally for 300 m to over 1 km. Most of sandstone bodies show both lateral and vertical stacking. Two types of sandstone lithofacies are identified on the basis of field characteristics; a plane-bedded sandstone lithofacies capping thick red and green color shale beds, and a cross-bedded sandstone lithofacies overlying the plane-bedded sandstone defining coarsening upward sequences. The plane-bedded sandstone at places contains Cruziana ichnofacies and bivalve fragments indicating deposition by shoreface processes. Thick cross-bedded sandstone is interpreted to be deposited by the fluvial dominated deltaic processes. Load-casts, climbing ripples and flaser-bedding in siltstone and red shale indicate influence of tidal processes at times during the deposition of the formation. This paper summarizes results of a study carried out in Al Huqf area outcrops to analyze the characteristics of the sandstone-body geometry, internal architecture, provenance and diagenetic changes in the lower and middle part of the formation. The study shows build-up of a delta complex and its progradation over a broad, low-angle shelf where fluvial processes operate beside shoreface processes in a vegetation free setting. Keywords: Andam Group, Barik Formation, Ordovician sandstone, Al Huqf, Central Oman,

  11. Texture-specific Si isotope variations in Barberton Greenstone Belt cherts record low temperature fractionations in early Archean seawater

    NASA Astrophysics Data System (ADS)

    Stefurak, Elizabeth J. T.; Fischer, Woodward W.; Lowe, Donald R.

    2015-02-01

    Sedimentary cherts are unusually abundant in early Archean (pre-3.0 Ga) sequences, suggesting a silica cycle that was profoundly different than the modern system. Previously applied for the purpose of paleothermometry, Si isotopes in ancient cherts can offer broader insight into mass fluxes and mechanisms associated with silica concentration, precipitation, diagenesis, and metamorphism. Early Archean cherts contain a rich suite of sedimentological and petrographic textures that document a history of silica deposition, cementation, silicification, and recrystallization. To add a new layer of insight into the chemistry of early cherts, we have used wavelength-dispersive spectroscopy and then secondary ion mass spectrometry (SIMS) to produce elemental and Si and O isotope ratio data from banded black-and-white cherts from the Onverwacht Group of the Barberton Greenstone Belt, South Africa. This geochemical data is then interpreted in the framework of depositional and diagenetic timing of silica precipitation provided by geological observations. SIMS allows the comparison of Si and O isotope ratios of distinct silica phases, including black carbonaceous chert beds and bands (many including well-defined sedimentary grains), white relatively pure chert bands including primary silica granules, early cavity-filling cements, and later quartz-filled veins. Including all chert types and textures analyzed, the δ30Si dataset spans a range from -4.78‰ to +3.74‰, with overall mean 0.20‰, median 0.51‰, and standard deviation 1.30‰ (n = 1087). Most samples have broadly similar δ30Si distributions, but systematic texture-specific δ30Si differences are observed between white chert bands (mean +0.60‰, n = 750), which contain textures that represent primary and earliest diagenetic silica phases, and later cavity-filling cements (mean -1.41‰, n = 198). We observed variations at a ∼100 μm scale indicating a lack of Si isotope homogenization at this scale during

  12. Changes in Sediment Provenance to the Southeast Newfoundland Ridge from the late Eocene to the Early Oligocene; Northern Hemisphere Glaciation or Deep Water Circulation?

    NASA Astrophysics Data System (ADS)

    Scher, H. D.; Romans, B.; Moffett, Z. J.; Buckley, W. P.; Gibson, K.

    2013-12-01

    We report radiogenic isotope results from IODP Site U1411 (41° 37.10' N; 48° 59.98' W; 3300 m) on the Southeast Newfoundland Ridge (SENR) that span the Eocene Oligocene Transition (EOT). Neodymium (Nd) and strontium (Sr) isotope compositions of decarbonated and acid-reduced bulk sediments (i.e., the terrigenous fraction) are consistent with sources from ancient cratons on the Canadian, Greenland, and Fennoscandian shields. Down-core Nd isotope records were generated from the terrigenous fraction and fossil fish teeth at a resolution of 50 kyr spanning the late Eocene to the early Oligocene (ca. 37.5 to 32 Ma). The Nd isotope record of the terrigenous fraction reveals variability on two time scales. First, a long-term shift to less radiogenic ɛNd values occurs from the late Eocene to the early Oligocene. In the late Eocene the baseline ɛNd value is -14 and decreases to -18 in the early Oligocene. The main phase of the long-term shift begins after 34.6 Ma. Second, there are two short-lived excursions toward less radiogenic ɛNd values during the Eocene. Both excursions are on the order of 200 - 300 kyr and involve a shift from the late Eocene baseline ɛNd value of -14 to -18. The older excursion is from 37.3 to 37.0 Ma and the younger excursion from 36.2 to 36.0 Ma. The fossil fish tooth Nd isotope record indicates that the source of Nd to bottom waters at U1411 did not change over the investigated interval. Fossil fish tooth ɛNd values average -10.3 × 0.8 ɛNd (2σ, n=75). This level of ɛNd variability is very low compared to other Nd isotope records spanning the EOT. Both the long and short-term terrigenous ɛNd variability indicates changes in sediment provenance to the study site. A change in sediment provenance can be attributed to either 1) a change in the strength or position of the Deep Western Boundary Current that supplies sediment to the site or 2) an influx of sediment to the North Atlantic resulting from enhanced weathering/erosion on adjacent

  13. From the ocean to a salt marsh: towards understanding iron reduction processes with FORC-PCA.

    NASA Astrophysics Data System (ADS)

    Muraszko, J. R.; Lascu, I.; Collins, S. M.; Harrison, R. J.

    2017-12-01

    Biogenic magnetic minerals are a high fidelity recorder of climate change. Their sensitivity to sedimentary redox conditions and bottom water ventilation have the potential to provide useful insights into past diagenetic conditions. However, the mechanisms controlling preservation and dissolution of magnetosomes are not fully understood, thus undermining the reliability of the paleomagnetic records in marine environments. Recovering information about the diagenetic past of the sediment is a crucial challenge; specifically, the biogenic components need to be identified and unmixed from the bulk magnetic signal. We address the issue in this study by applying Principal Component Analysis on First Order Reversal Curve diagrams (FORC-PCA) in case studies of cores obtained from the Iberian Margin and the sedimentologically active coastal salt marshes of Norfolk. We demonstrate the applicability of FORC-PCA as a new environmental proxy, yielding a high resolution temporal marine record of environmental changes reflected in magnetic composition over the last 194 kyr. The strongest variations are observed in the microbially derived components, the bulk properties of the sediment being controlled by a low coercivity SP-SD component which is generally anticorrelated with the magnetosome signal. Supported by TEM studies, we suggest the prevalence of clusters of nano-particles of magnetite associated with iron reduction. To further investigate the mechanisms controlling these processes, the active sedimentary environment of Norfolk was chosen as a case study of early diagenesis controlled by strong vertical geochemical gradients.

  14. Paragenesis of the Morgan Creek Limestone, Late Cambrian, central Texas: Constraints on the formation of glauconite

    NASA Astrophysics Data System (ADS)

    Chafetz, Henry S.

    2007-06-01

    Deposition of the Morgan Creek Limestone, a member of the Cambrian Wilberns Formation, began a few meters above a disconformable surface and displays abundant indicators of accumulation in shallow marine to tidal flat environments. These indicators include: intercalation of a lithologic variety of thin beds (e.g. biosparites, biomicrites, oosparites, intrasparites), which display rapid vertical and lateral lithologic changes, numerous stromatolitic horizons, channels filled with graded oosparites and intrasparites that cut through micrite accumulations, and finely laminated (non-burrowed) siltstones. Glauconite is a ubiquitous minor constituent throughout in the form of pellets, replaced skeletal material and mica books, and, most informatively, as an authigenic precipitate in the form of fibroradiating rims on carbonate allochems and siliciclastic grains. Fibroradiating glauconite rims were disrupted and pushed away from the pelmatozoan nuclei on which they precipitated. Combined sedimentological and paragenetic constraints indicate that the glauconite was the earliest diagenetic event to affect these sediments and occurred essentially at the sediment-water interface within these relatively high-energy, shallow marine deposits. Precipitation of glauconite was closely followed by precipitation of carbonate cement as well as dissolution of aragonitic constituents. Later diagenetic processes included selective dolomitization and silicification. In modern seas glauconite is reported to form at and below mid-shelf water depths. Thus, the constraints pertaining to the origin of modern glauconite are not valid for Late Cambrian deposits and probably are also not applicable for Late Cretaceous through Early Paleogene glauconites.

  15. Authigenic carbonates from methane seeps of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Fouquet, Yves

    2007-06-01

    Submersible investigations with the ROV Victor 6000 of some pockmark structures on the seafloor of the Congo deep-sea fan have shown that they are active venting sites of methane-rich fluids, associated with abundant fauna and carbonate crusts. Moreover, methane hydrates have been observed both outcropping and deep in the sediments in the centre of the “Regab” giant pockmark. Authigenic carbonates, mostly calcite sometimes mixed with aragonite, are cementing the sedimentary matrix components and fauna; diatoms are abundant but only as moulds, indicating that biogenic silica dissolution occurred in situ synchronous with carbonate precipitation. The occurrence of diagenetic barite and pyrite in some carbonate crusts demonstrates that they can be formed either within the sulphate/methane transition zone or deeper in sulphate-depleted sediments. The oxygen isotopic compositions of the diagenetic carbonates (3.17 6.01‰ V-PDB) indicate that precipitation occurred with bottom seawater mixed with a variable contribution of water from gas hydrate decomposition. The very low carbon isotopic compositions of the diagenetic carbonates (-57.1 to -27.75‰ V-PDB) demonstrate that carbon derives mostly from the microbial oxidation of methane.

  16. Trends in streamflow, sedimentation, and sediment chemistry for the Wolf River, Menominee Indian Reservation, Wisconsin, 1850-1999

    USGS Publications Warehouse

    Fitzpatrick, Faith A.

    2005-01-01

    Historical trends in streamflow, sedimentation, and sediment chemistry of the Wolf River were examined for a 6-mile reach that flows through the southern part of the Menominee Indian Reservation and the northern part of Shawano County, Wis. Trends were examined in the context of effects from dams, climate, and land-cover change. Annual flood peaks and mean monthly flow for the Wolf River were examined for 1907-96 and compared to mean annual and mean monthly precipitation. Analysis of trends in sedimentation (from before about 1850 through 1999) involved collection of cores and elevation data along nine valley transects spanning the Wolf River channel, flood plain, and backwater and impounded areas; radioisotope analyses of impounded sediment cores; and analysis of General Land Office Survey Notes (1853-91). Trends in sediment chemistry were examined by analyzing samples from an impoundment core for minor and trace elements. Annual flood peaks for the Wolf River decreased during 1907-49 but increased during 1950-96, most likely reflecting general changes in upper-atmospheric circulation patterns from more zonal before 1950 to more meridional after 1950. The decrease in flood peaks during 1907-49 may also, in part, be due to forest regrowth. Mean monthly streamflow during 1912-96 increased for the months of February and March but decreased for June and July, suggesting that spring snowmelt occurs earlier in the season than it did in the past. Decreases in early summer flows may be a reflection earlier spring snowmelt and large rainstorms in early spring rather than early summer. These trends also may reflect upper-atmospheric circulation patterns. The Balsam Row Dam impoundment contains up to 10 feet of organic-rich silty clay and has lost much of its storage capacity. Fine sediment has accumulated for 1.8 miles upstream from the Balsam Row Dam. Historical average linear and mass sedimentation rates in the Balsam Row impoundment were 0.09 feet per year and 1

  17. Mixture design and treatment methods for recycling contaminated sediment.

    PubMed

    Wang, Lei; Kwok, June S H; Tsang, Daniel C W; Poon, Chi-Sun

    2015-01-01

    Conventional marine disposal of contaminated sediment presents significant financial and environmental burden. This study aimed to recycle the contaminated sediment by assessing the roles and integration of binder formulation, sediment pretreatment, curing method, and waste inclusion in stabilization/solidification. The results demonstrated that the 28-d compressive strength of sediment blocks produced with coal fly ash and lime partially replacing cement at a binder-to-sediment ratio of 3:7 could be used as fill materials for construction. The X-ray diffraction analysis revealed that hydration products (calcium hydroxide) were difficult to form at high sediment content. Thermal pretreatment of sediment removed 90% of indigenous organic matter, significantly increased the compressive strength, and enabled reuse as non-load-bearing masonry units. Besides, 2-h CO2 curing accelerated early-stage carbonation inside the porous structure, sequestered 5.6% of CO2 (by weight) in the sediment blocks, and acquired strength comparable to 7-d curing. Thermogravimetric analysis indicated substantial weight loss corresponding to decomposition of poorly and well crystalline calcium carbonate. Moreover, partial replacement of contaminated sediment by various granular waste materials notably augmented the strength of sediment blocks. The metal leachability of sediment blocks was minimal and acceptable for reuse. These results suggest that contaminated sediment should be viewed as useful resources. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Two-dimensional pH distributions and dynamics in bioturbated marine sediments

    NASA Astrophysics Data System (ADS)

    Zhu, Qingzhi; Aller, Robert C.; Fan, Yanzhen

    2006-10-01

    The seafloor is the site of intense biogeochemical and mineral dissolution-precipitation reactions which generate strong gradients in pH near the sediment-overlying water interface. These gradients are usually measured in one-dimension vertically with depth. Two-dimensional pH distributions in marine sediments were examined at high resolution (65 × 65 μm pixel) and analytical precision over areas of ˜150 to 225 cm 2 using a newly developed pH planar fluorosensor. Dramatic three-dimensional gradients, complex heterogeneity, and dynamic changes of pH occur in the surficial zone of deposits inhabited by macrofauna. pH can vary by ±2 units horizontally as well as vertically over millimeter scales. pH minima zones often form in association with redoxclines within a few millimeters of inner burrow walls, and become more pronounced with time if burrows remain stable and irrigated for extended periods. Microenvironmental pH minima also form locally around decaying biomass and relict burrow tracks, and dissipate with time (˜5 d). H + concentrations and fluxes in sandy mud show complex acid-base reaction distributions with net H + fluxes around burrows up to ˜12 nmol cm -2 d -1 and maximum net reaction rates varying between -90 (consumption) to 120 (production) μM d -1 (˜90 nmol cm -1 d -1 burrow length). Acid producing zones that surround irrigated burrows are largely balanced by acid titration zones along inner burrow walls and outer radial boundaries. The geometry and scaling of pH microenvironments are functions of diagenetic reaction rates and three-dimensional transport patterns determined by sediment properties, such as diffusive tortuosity, and by benthic community characteristics such as the abundance, mobility, and size of infauna. Previously, undocumented biogeochemical phenomena such as low pH regions associated with in-filled relict biogenic structures and burrowing tracks are readily demonstrated by two-dimensional and time-dependent images of pH and

  19. Sediment Sources, Depositional Environment, and Diagenetic Alteration of the Marcellus Shale, Appalachian Basin, USA: Nd, Sr, Li and U Isotopic Constraints

    NASA Astrophysics Data System (ADS)

    Phan, T. T.; Capo, R. C.; Gardiner, J. B.; Stewart, B. W.

    2017-12-01

    The organic-rich Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, is a major target of natural gas exploration. Constraints on local and regional sediment sources, depositional environments, and post-depositional processes are essential for understanding the evolution of the basin. In this study, multiple proxies, including trace metals, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U and Li isotopes were applied to bulk rocks and authigenic fractions of the Marcellus Shale and adjacent limestone/sandstone units from two locations separated by 400 km. The range of ɛNd values (-7.8 to -6.4 at 390 Ma) is consistent with a clastic sedimentary component derived from a well-mixed source of fluvial and eolian material of the Grenville orogenic belt. The Sm-Nd isotope system and bulk REE distributions appear to have been minimally affected by post-depositional processes, while the Rb-Sr isotope system shows evidence of limited post-depositional redistribution. While REE are primarily associated with silicate minerals (80-95%), REE patterns of sequentially extracted fractions reflect post-depositional alteration at the intergranular scale. Although the chemical index of alteration (CIA = 54 to 60) suggests the sediment source was not heavily weathered, Li isotope data are consistent with progressively increasing weathering of the source region during Marcellus Shale deposition. δ238U values in bulk shale and reduced phases (oxidizable fraction) are higher than those of modern seawater and upper crust. The isotopically heavy U accumulated in these authigenic phases can be explained by the precipitation of insoluble U in anoxic/euxinic bottom water. Unlike carbonate cement within the shale, the similarity between δ238U values and REE patterns of the limestone units and those of modern seawater indicates that the limestone formed under open ocean (oxic) conditions.

  20. Trace metal (Mg/Ca and Sr/Ca) analyses of single coccoliths by Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Prentice, Katy; Jones, Tom Dunkley; Lees, Jackie; Young, Jeremy; Bown, Paul; Langer, Gerald; Fearn, Sarah; EIMF

    2014-12-01

    Here we present the first multi-species comparison of modern and fossil coccolith trace metal data obtained from single liths. We present both trace metal analyses (Sr, Ca, Mg and Al) and distribution maps of individual Paleogene fossil coccoliths obtained by Secondary Ion Mass Spectrometry (SIMS). We use this data to determine the effects of variable coccolith preservation and diagenetic calcite overgrowths on the recorded concentrations of strontium and magnesium in coccolith calcite. The analysis of coccoliths from deep-ocean sediments spanning the Eocene/Oligocene transition demonstrates that primary coccolith calcite is resistant to the neomorphism that is common in planktonic foraminifera from similar depositional environments. Instead, where present, diagenetic calcite forms distinct overgrowths over primary coccolith calcite rather than replacing this calcite. Diagenetic overgrowths on coccoliths are easily distinguished in SIMS analyses on the basis of relatively higher Mg and lower Sr concentrations than co-occurring primary coccolith calcite. This interpretation is confirmed by the comparable SIMS analyses of modern cultured coccoliths of Coccolithus braarudii. Further, with diagenetic calcite overgrowth being the principle source of bias in coccolith-based geochemical records, we infer that lithologies with lower carbonate content, deposited below the palaeo-lysocline, are more likely to produce geochemical records dominated by primary coccolith calcite than carbonate-rich sediments where overgrowth is ubiquitous. The preservation of primary coccolith carbonate in low-carbonate lithologies thus provides a reliable geochemical archive where planktonic foraminifera are absent or have undergone neomorphism.

  1. Towards a High-resolution Time Scale for the Early Devonian

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; da Silva, A. C.

    2017-12-01

    High-resolution time scales are crucial to understand Earth's history in detail. The construction of a robust geological time scale, however, inevitably becomes increasingly harder further back in time. Uncertainties associated with anchor radiometric ages increase in size, not speaking of the mere presence of suitable datable strata. However, durations of stages can be tightly constrained by making use of cyclic expressions in sediments, an approach that revolutionized the Cenozoic time scale. When precisely determined durations are stitched together, ultimately, a very precise time scale is the result. For the Mesozoic and Paleozoic an astronomical solution as a tuning target is not available but the dominant periods of eccentricity, obliquity and precession are reasonably well constrained for the entire Phanerozoic which enables their detection by means of spectral analysis. Eccentricity is time-invariant and is used as the prime building block. Here we focus on the Early Devonian, on its lowermost three stages: the Lochkovian, Pragian and Emsian. The uncertainties on the Devonian stage boundaries are currently in the order of several millions of years. The preservation of climatic cycles in diagenetically or even anchimetamorphically affected successions, however, is essential. The fit of spectral peak ratios with those calculated for orbital cycles, is classically used as a strong argument for a preserved climatic signal. Here we use primarily the low field magnetic susceptibility (MS) as proxy parameter, supported by gamma-ray spectrometry to test for consistency. Continuous Wavelet Transform, Evolutive Harmonic Analysis, Multitaper Method, and Average Spectral Misfit are used to reach an optimal astronomical interpretation. We report on classic Early Devonian sections from the Czech Republic: the Pozar-CS (Lochkovian and Pragian), Pod Barrandovem (Pragian and Lower Emsian), and Zlichov (Middle-Upper Emsian). Also a Middle-Upper Emsian section from the US

  2. Testing the apatite depletion hypothesis for early Holocene ecosystem acidification using the lake sediment record at Krâkenes, Norway.

    NASA Astrophysics Data System (ADS)

    Thrasher, I. M.; Boyle, J. F.; Chiverrell, R. C.; Plater, A. J.

    2009-04-01

    Lakes created by retreating ice at the end of the last glaciation underwent rapid acidification during the first few thousand years of their existence, a phenomenon that has been attributed in part to progressive leaching of soil bases since it was discovered more than 80 years ago. Though a role for leaching is still acknowledged, the most recent studies see this as subordinate to the effects of biological and climatic changes initiated by deglaciation, chiefly primary vegetation succession and species immigration. However, we propose a simpler alternative explanation, based on the geochemical modelling of runoff acidity. This shows that the extent and timing of early Holocene lake acidification in eight published palaeoecological records can be explained by leaching of the calcium phosphate mineral apatite from the granitic till soils of their catchments, at a rate controlled by simple dissolution kinetic factors. If confirmed, this hypothesis has important implications for our understanding of long-term lake ecosystem development. Not only does it mean that the mechanism is inherently irreversible, in contrast to the alternative ecological and climatic mechanisms which are not. Also, it reinforces the view that long-term ecosystem modelling cannot safely neglect nutrient limitation, as is currently the practice in widely used global dynamic vegetation models. Here we present a NERC-funded programme of research that uses the sediment mineral record of Kråkenes (western Norway), the best studied early Holocene lake sediment sequence in the world, to provide a simple, critical and unambiguous test of this hypothesis.

  3. Analysing diagenetic effects of flood basalts on sedimentary basins during Gondwanan break-up: case studies from NW Namibia.

    NASA Astrophysics Data System (ADS)

    Thompson, G. A.; Jerram, D. A.; Harris, C.; Pearson, D. G.

    2003-04-01

    ABSTRACT The eruption of large volumes of lava associated with the break-up and dispersal of the Gondwana Supercontinent is a phenomenon that has been well documented in literature. The Etendeka Flood Basalt Province of NW Namibia is correlated with the Paraná Flood Basalt Province of South America and was extruded between 139Ma for the earliest flows and 130Ma for the most recent. The passive, inflated pahoehoe lava flows have preserved bedforms within sand dunes found in the Huab Basin without significant deformation. This allows the internal structures of the palaeo-dunes to be analysed with great accuracy; a phenomenon rarely seen within the geological record. The sediments directly beneath, and interbedded with, the Etendeka Flood Basalt are lithostratigraphically similar to those in the Kudu Gas Province, offshore Namibia, where gas-bearing aeolian sands are interspersed with lava flows. Research by the authors is focussed on the diagenetic effects, both direct and indirect, of the emplacement of the lava, and the associated sills and dykes, on the aeolian sands. Specific interests include: the compartmentalisation of the basin by sills/dykes/lava: how does this affect fluid flow paths? Diagenesis along hot contacts: is the dramatic reduction in porosity/permeability along such contacts the result of the igneous bodies alone or do they need ground water present? Can large igneous events trigger the movement of hot fluids through the basin and to what extent does this cause alteration to sediments? To address these issues we have identified a number of outcrop case studies within the Huab Basin in NW Namibia. Here, excellent 3 dimensional outcrop coupled with almost 100 percent exposure allows detailed sampling strategies to be employed on locations of interest. In some cases igneous dykes have acted as flow barriers to pore fluids and have therefore altered the type and degree of cementation either side of the dyke. Geochemical analysis of the cement can

  4. Calcium isotopes in fossil bones and teeth — Diagenetic versus biogenic origin

    NASA Astrophysics Data System (ADS)

    Heuser, Alexander; Tütken, Thomas; Gussone, Nikolaus; Galer, Stephen J. G.

    2011-06-01

    We present the first systematic study of Ca isotopes ( δ44/40Ca) in Late Triassic to Late Cretaceous dinosaur bones and teeth (enamel and dentin) from sympatric herbivorous and carnivorous dinosaurs. The samples derive from five different localities, and data from embedding sediments are also presented. Additional δ44/40Ca in skeletal tissues from modern reptiles and birds (avian dinosaurs) were measured for comparison in order to examine whether the original Ca isotopic composition in dinosaur skeletal apatite was preserved or might have changed during the diagenesis and fossilization process. δ44/40Ca of fossil skeletal tissues range from -1.62‰ ( Tyrannosaurus rex enamel) to +1.08‰ ( Brachiosaurus brancai bone), while values in modern archosaur bones and teeth range from -1.63‰ (caiman enamel) to -0.37‰ (ostrich bone). The average δ44/40Ca of the three types of fossil skeletal tissue analyzed - bone, dentin and enamel - show some systematic differences: while δ44/40Ca in bone exhibits the highest values, while δ44/40Ca in enamel has the lowest values, and dentin δ44/40Ca falls in between. Values of δ44/40Ca in the remains of herbivorous dinosaurs (0.1-1.1‰) are generally higher than those of bones of modern mammalian herbivores (-2.6‰ to -0.8‰) and from modern herbivorous archosaurs, which exhibit intermediate δ44/40Ca (-0.8‰ to -0.4‰). These systematic isotopic shifts may reflect physiological differences between dinosaurs, mammals and reptiles representing different taxonomic groups of vertebrates. Systematic offsets in skeletal apatite δ44/40Ca between herbivorous and carnivorous dinosaurs are not obvious, indicating a lack of a clear-cut Trophic Level Effect (TLE) shift between herbivores and carnivores in dinosaurs. This observation can be explained if the carnivorous dinosaurs in this study fed mainly on soft tissues from their prey and did not ingest hard (calcified) tissue to much extent. The most striking indication that the

  5. Are glendonites reliable indicators of cold conditions? Evidence from the Lower Cretaceous of Spitsbergen

    NASA Astrophysics Data System (ADS)

    Vickers, Madeleine; Price, Gregory; Watkinson, Matthew; Jerrett, Rhodri

    2017-04-01

    Glendonites are pseudomorphs after the mineral ikaite, and have been found in marine sediments throughout geological time. Ikaite is a metastable, hydrated form of calcium carbonate, which is only stable under specific conditions: between -2 and +5 °C, and with high alkalinity and phosphate concentrations. Glendonites are often associated with cold climates due to the strong temperature control on ikaite growth, and the coincidence in the geological record with episodes of global cooling. Glendonites are found in the Lower Cretaceous succession in Spitsbergen. During the Early Cretaceous, Spitsbergen was at a palaeolatitude of 60°N, and was part of a shallow epicontinental sea that formed during the Mesozoic as Atlantic rifting propagated northwards. Though the Early Cretaceous was generally characterised by greenhouse climate conditions, episodic cold snaps occurred during the Valanginian (the "Weissert Event") and during Aptian-Albian. Using high resolution carbon-isotope stratigraphy, we show that the first occurrences of glendonites are in the upper Lower Hauterivian and in the very upper Upper Hauterivian, stratigraphically higher than the Valanginian cooling event. Glendonites are also found in horizons in the Upper Aptian, coincident with the Aptian-Albian cold snap. Petrological analysis of the glendonite structure reveals differences between the Hauterivian and Aptian glendonites, with evidence for multiple diagenetic phases of growth in the Hauterivian glendonites, suggesting oscillating chemical conditions. This evidence suggests that local environmental conditions may have a stronger control on glendonite formation and preservation than global climate. We present a new model for ikaite growth and slow transformation to glendonite in marine sediments, which points to a more complex suite of diagenetic transformations than previously modelled. Furthermore, we critically assess whether such pseudomorphs after marine sedimentary ikaite may be indicators

  6. Estimated post-Messinian sediment supply and sedimentation rates on the Ebro continental margin, Spain

    USGS Publications Warehouse

    Nelson, C.H.

    1990-01-01

    Because of the extensive data base of seismic profiles, radiometric ages, and stratigraphic time markers such as the subaerial Messinian surface, sedimentation rates and Ebro River sediment discharge can be estimated for different periods and environments of the Ebro continental margin. New values for sediment discharge (i.e., 6.2 versus previous estimates of 2-3.5 million t/yr) for the Holocene highstand are more reliable but remain minimum estimates because a small proportion of Ebro sediment advected to the Balearic Rise and Abyssal Plain cannot be accounted for, especially during lowstands. The general highstand conditions of the Pliocene, which were similar to those of the Holocene, resulted in a low discharge of Ebro River sediment (ca. 6.5 million t/yr) and an even thickness of sediment across the margin that deposited at rates of about 24-40 cm/ky. In contrast, sediment supply increased two-three times during the Pleistocene, the margin prograded rapidly and deposition occurred at rates of 101-165 cm/ky on the outer shelf and slope, but basin floor rates remained anomalously low (21-26 cm/ky) because sediment was drained and broadly dispersed eastward in Valencia Trough. During the late Pleistocene rise of sea level, the main depocenters progressively shifted shoreward and sedimentation rates greatly decreased from 175 cm/ky on the upper slope during the early transgression to 106 cm/ky on the outer shelf and then to 63 cm/ky on the mid-shelf during the late transgression as the river sediment discharge dropped to half by Holocene time. Maximal sedimentation rates occurred in active depocenters of sediment dispersal such as the Holocene delta (370 cm/ky) or the youngest Pleistocene Oropesa channel-levee complex (705 cm/ky) where deposition rates increased by an order of magnitude or more compared to average Ebro shelf (38 cm/ky) or base-of-slope rates in the Pleistocene (21 cm/ky). The sedimentation rates verify the importance of sea-level control on the

  7. Lipidic biosignatures in diagenetically stabilized ironstones terraces of Rio Tinto, an acidic environment with analogies to Mars

    NASA Astrophysics Data System (ADS)

    Sánchez-García, L.; Carrizo, D.; Fernández-Remolar, D.; Parro, V.

    2017-09-01

    The characterization of extreme environments with analogies to Mars is important for understanding if/how life may have thrived in the Red Planet. Río Tinto in SW Spain is an extreme environment with constant acidic waters (mean pH of 2.3) and high concentration of heavy metals, which are direct consequence of the active metabolism of chemolithotrophic microorganisms thriving in the rich polymetallic sulfides present in the massive Iberian Pyritic Belt. Abundant minerals rich in ferric iron and sulfates, which result from the pyrite metabolism (e.g. jarosite, goethite, hematites, etc.) are of special interest for their potential for organics preservation [1]. Here, we investigate the occurrence and preservation of biological signatures in diagenetically stabilized ironstone deposits in Río Tinto, by using geolipidic markers.

  8. Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology

    USGS Publications Warehouse

    Dorsey, Rebecca J.; O’Connell, Brennan; McDougall-Reid, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between ~ 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at ~ 5.4–5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between ~ 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between ~ 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at ~ 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough.These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on

  9. Interannual variation in seasonal diatom dynamics - what information is preserved in an annual sediment record?

    NASA Astrophysics Data System (ADS)

    Maier, D. B.; Bigler, C.; Diehl, S.

    2017-12-01

    Diatom sediment assemblages are among the most important proxies for past climate and ecological condition reconstruction in aquatic environments, but the role of seasonality in the formation of diatom records is poorly understood. In this study we combine the diatom record of a varved sediment with year-round physico-chemical water column monitoring and the corresponding sequential sediment trap diatom record to disentangle the process information contained in a diatom sediment signal. The comparison of three consecutive annual diatom records indicates that the entire annual diatom sediment signal can be driven by winter air temperature induced timing of ice and snow melt and persistent under-ice stratification promoting an early diatom bloom under ice before spring lake over-turn. By contrast, in a year of late ice thinning when the chlorophyll a maximum occurred after spring lake over-turn, a more annually integrated diatom sediment signal was built buy a continuous diatom flux. The contrasting diatom records produced during years of different winter conditions have important implications for diatom based paleoecological reconstructions. Decadal records of sediment trap samples as well as long-term varved sediment records provide further support for the role of late winter and early spring weather conditions in determining sediment diatom assemblages.

  10. Seasonal variation of early diagenesis and greenhouse gas production in coastal sediments of Cadiz Bay: Influence of anthropogenic activities

    NASA Astrophysics Data System (ADS)

    Burgos, Macarena; Ortega, Teodora; Bohórquez, Julio; Corzo, Alfonso; Rabouille, Christophe; Forja, Jesús M.

    2018-01-01

    Greenhouse gas production in coastal sediments is closely associated with the early diagenesis processes of organic matter and nutrients. Discharges from anthropogenic activities, particularly agriculture, fish farming and waste-water treatment plants supply large amounts of organic matter and inorganic nutrients that affect mineralization processes. Three coastal systems of Cadiz Bay (SW Spain) (Guadalete River, Rio San Pedro Creek and Sancti Petri Channel) were chosen to determine the seasonal variation of organic matter mineralization. Two sampling stations were selected in each system; one in the outer part, close to the bay, and another more inland, close to a discharge point of effluent related to anthropogenic activities. Seasonal variation revealed that metabolic reactions were driven by the annual change of temperature in the outer station of the systems. In contrast, these reactions depended on the amount of organic matter reaching the sediments in the outermost part of the systems, which was higher during winter. Oxygen is consumed in the first 0.5 cm indicating that suboxic and anoxic processes, such as denitrification, sulfate reduction and methanogenesis are important in these sediments. Sulfate reduction seems to account for most of the mineralization of organic matter at the marine stations, while methanogenesis is the main pathway at the sole freshwater station of this study, located inside the estuary of the Guadalete River, because of the lack of sulfate as electron acceptor. Results point to denitrification being the principal process of N2O formation. Diffusive fluxes varied between 2.6 and 160 mmol m-2 d-1 for dissolved inorganic carbon (DIC); 0.9 and 164.3 mmol m-2 d-1 for TA; 0.8 and 17.4 μmol m-2 d-1 for N2O; and 0.1 μmol and 13.1 mmol m-2 d-1 for CH4, indicating that these sediments act as a source of greenhouse gases to the water column.

  11. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multivariate curve resolution: A promising analytical tool in (paleo)limnology.

    PubMed

    Tolu, Julie; Gerber, Lorenz; Boily, Jean-François; Bindler, Richard

    2015-06-23

    Molecular-level chemical information about organic matter (OM) in sediments helps to establish the sources of OM and the prevalent degradation/diagenetic processes, both essential for understanding the cycling of carbon (C) and of the elements associated with OM (toxic trace metals and nutrients) in lake ecosystems. Ideally, analytical methods for characterizing OM should allow high sample throughput, consume small amounts of sample and yield relevant chemical information, which are essential for multidisciplinary, high-temporal resolution and/or large spatial scale investigations. We have developed a high-throughput analytical method based on pyrolysis-gas chromatography/mass spectrometry and automated data processing to characterize sedimentary OM in sediments. Our method consumes 200 μg of freeze-dried and ground sediment sample. Pyrolysis was performed at 450°C, which was found to avoid degradation of specific biomarkers (e.g., lignin compounds, fresh carbohydrates/cellulose) compared to 650°C, which is in the range of temperatures commonly applied for environmental samples. The optimization was conducted using the top ten sediment samples of an annually resolved sediment record (containing 16-18% and 1.3-1.9% of total carbon and nitrogen, respectively). Several hundred pyrolytic compound peaks were detected of which over 200 were identified, which represent different classes of organic compounds (i.e., n-alkanes, n-alkenes, 2-ketones, carboxylic acids, carbohydrates, proteins, other N compounds, (methoxy)phenols, (poly)aromatics, chlorophyll and steroids/hopanoids). Technical reproducibility measured as relative standard deviation of the identified peaks in triplicate analyses was 5.5±4.3%, with 90% of the RSD values within 10% and 98% within 15%. Finally, a multivariate calibration model was calculated between the pyrolytic degradation compounds and the sediment depth (i.e., sediment age), which is a function of degradation processes and changes in OM

  12. Vendian microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, Svalbard

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.

    1992-01-01

    Sedimentary rocks of the Scotia Group, Prins Karls Forland, Svalbard, have been metamorphosed to lower greenschist facies. Yet Scotia chert nodules contain abundant organic-walled microfossils belonging to at least seventeen taxa. Their black colour indicates that the fossils underwent substantial thermal alteration. However, it is suggested that preservation in a matrix of early diagenetic silica shielded them from the most destructive mechanical and chemical effects of metamorphism. Microbial mats and large acanthomorphic acritarchs suggest a coastal marine depositional environment; the acritarchs further indicate an early Vendian age for the sediments. The Scotia fossils bear a close resemblance to assemblages described from the Doushantuo Formation, China and elsewhere, demonstrating the broad geographical distribution of biostratigraphically important Vendian taxa. Briareus and Echinosphaeridium are described as new genera; Briareus borealis is described as a new species, while Echinosphaeridium maximum is proposed as a new combination.

  13. Biostratigraphic interpretation for the cyclic sedimentation in northwestern Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekbali, A.O.; Cornell, W.C.

    1993-02-01

    Mesozoic sediments in western Libya are best exposed along the Jabal Nafusah escarpment. This northeast-southwest trending structure overlooks the Al Jifarah plain and extends more than 300 km westward to connect with a T-shaped anticlinorium in Algeria and Tunisia. The Al Aziziyan fault (normal, north side down) parallels the northern edge of the escarpment and marks its initial position. Alternate deposition of marine and continental sediments began in the Triassic before the formation of a major monocline in the Late Jurassic-Early Cretaceous time. Subsequent epiorogenic movements and isostatic adjustments initiated a westward sloping shelf along the southern edge of themore » Tethys. As a result, the eastern and central regions of western Libya were subjected to severe erosion and coalescing of unconformities towards the topographic highs, prior to the deposition of the overstepping Kiklah Formation. Geometrical and physical interpretation of the Mesozoic sediments in the region, combined with paleogeographic reconstruction indicate that the post-Hercynian epiorogenic adjustments and fluctuations of the Tethys resulted in local cyclic sedimentation. Accurate age assessment of the boundaries between the Jurassic-Early Cretaceous facies in northwestern Libya can be carried out on the basis of microfloral and faunal distribution and makes possible correlation of aquifers and probable oil-bearing sequences in western Libya.« less

  14. Deep Magnetic Diagenesis in Sediments: Progressive and Punctuated Processes.

    NASA Astrophysics Data System (ADS)

    Musgrave, R. J.; Kars, M. A. C.; Vega, M. E.

    2017-12-01

    Magnetic diagenesis in the tuffaceous muds, mudstones and volcaniclastic rocks cored at IODP Site U1437 is a product of progressive processes that continue throughout the 1800-m-thick sequence, punctuated by superimposed features corresponding to a series of influxes of fluids and concentrations of hydrocarbons. XRD, visual examination and SEM images indicate the presence of both magnetite and the magnetic sulfide greigite. Inferences from high values of saturation isothermal remanence normalised by magnetic susceptibility (SIRM/χ), distribution of hysteresis data near a diagenetic greigite curve on a Day plot, and 'humping' of low-temperature cycles of SIRM suggest that detrital magnetite and diagenetic greigite are both significant contributors to the magnetic assemblage, with greigite constituting a higher proportion in shallower samples. Progressive magnetic diagenesis is expressed as a continuing background decrease in SIRM/χ. FORC curves indicate an initial diagenetic growth of one or more higher-coercivity phases, followed downhole by increasing loss of all but low-coercivity material. The downhole pattern is consistent with progressive loss of fine-grained magnetite, initial authigenesis of greigite, and progressive pyritisation of the greigite. Some coarse-grained samples from the base of the sequence buck the trend, exhibiting SD behavior probably related to surviving magnetite inclusions in silicates. Shipboard fluid analysis revealed a complex profile of interstitial-water geochemistry, marked by several fluid influxes, including inputs of sulfate-rich water at about 275 and 460 meters below seafloor (mbsf). Methane concentrations, mostly low, markedly increase in the interval between 750 and 1460 mbsf, and ethane appears below an inferred fault at 1104 mbsf. Each of these fluid events is marked by offsets in the rock magnetic parameters SIRM/χ, S-0.3T, and DJH, representing repeated phases of late diagenetic growth of greigite in response to

  15. Recolonization of macrozoobenthos on defaunated sediments in a hypertrophic brackish lagoon: effects of sulfide removal and sediment grain size.

    PubMed

    Kanaya, Gen

    2014-04-01

    Influences of sediment types on recolonization of estuarine macrozoobenthos were tested using enclosures in a hypertrophic lagoon. Three types of azoic sediment, sand (S), sulfide-rich mud (M), and mud removed of sulfide through iron addition (MFe), were set in field for 35 days during a hypoxic period. A total of 14 taxa including opportunistic polychaetes and amphipods occurred. Infaunal community in S treatment was characterized by highest diversity, total density and biomass, and population density of five dominant taxa, while those parameters were lowest in M treatment. Sulfide removal in MFe treatment achieved much higher density, biomass, and population densities of several taxa in the sediment. Multivariate analyses demonstrated that the established community structure was unique to each treatment. These imply that dissolved sulfide level as well as sediment grain size is a key determinant for the community composition and recolonization speed of early colonists in estuarine soft-bottom habitats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluation of surficial sediment toxicity and sediment physico-chemical characteristics of representative sites in the Lagoon of Venice (Italy)

    NASA Astrophysics Data System (ADS)

    Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.

    2004-11-01

    Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.

  17. Rock Magnetic Investigation of Soils and Sediments Overlying the Hydrocarbon-Bearing Silurian Pinnacle Reefs in the Michigan Basin

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.; Tresnak, J. P.; Anderson, K. L.

    2017-12-01

    Hydrocarbon reservoirs may be associated with significant magnetic anomalies arguably caused by diagenetic alteration of iron-bearing minerals in hydrocarbon seepage environments. However, complete understanding of the physical mechanisms and pathways of hydrocarbon-induced magnetic alteration requires a robust and representative observational database. In order to facilitate the fundamental understanding of the magnetic signature of hydrocarbons, we conducted an investigation of the relationship between the hydrocarbon migration and magnetic properties of sediments overlaying the oil-bearing formations of the Silurian northern pinnacle reef belt of the Michigan Basin. Several hundreds of near-surface soil and sediment samples were collected across several long transects across the trend of the Niagaran Reef System and represented areas both over and away from known hydrocarbon sources. The samples were investigated by a variety of microscopy and rock magnetic methods. Our data indicate that the relationship between the hydrocarbon reservoirs and low-field magnetic susceptibility over the Niagaran pinnacle reef belt in the Michigan Basin is not straightforward. Both very high and very low susceptibility values have been observed within the extent of the reef belt in the studied area. The observed magnetic susceptibility anomalies may reflect the hydrological gradients in the uppermost glaciofluvial aquifer. However, a good correlation with the Devonian hydrocarbon reservoirs outside of the reef belt indicates a potential of the surface magnetic susceptibility method for hydrocarbon detection at a smaller scale.

  18. Observation of suspended sediments in Mobile Bay, Alabama from satellite

    USGS Publications Warehouse

    Stumpf, Richard P.

    1991-01-01

    As part of a comprehensive geologic study of coastal Alabama and Mississippi, the U.S. Geological Survey is investigating coastal sediment transport in Mobile Bay and the adjacent shelf. Satellite imagery from the NOAA AVHRR is being used to provide data on the variability of spatial patterns in the near-surface suspended sediment concentration. This imagery is processed using atmospheric corrections to remove haze and Rayleigh radiance in order to obtain water reflectances; the reflectances are than converted to approximate sediment concentrations using standard relationships between water reflectance and in situ sediment concentrations. A series of images from early 1990 shows rapid changes in sediment concentrations in response to high river flow of the Alabama-Tombigbee river system. During these times, suspended sediment tends to flow out Mobile Bay without mixing into the eastern lobe of the Bay (Bon Secour Bay). The sediment concentration field also appears to be disturbed by the main ship channel. The sediment plume extends more than 60 km offshore after the peak flow event. One wind event in December 1989 was identified as increasing sediment concentration in the Bay. It is not believed that such an event has been previously observed from satellite.

  19. Thermally Altered Silurian Cyanobacterial Mats: A Key to Earth's Oldest Fossils

    NASA Astrophysics Data System (ADS)

    Kazmierczak, Józef; Kremer, Barbara

    2009-10-01

    Diagenetic changes in thermally altered cyanobacterial mats from early Silurian black radiolarian cherts of southwestern Poland (Bardzkie Montains, Sudetes) have been studied. These early diagenetically silicified mats are composed of variously degraded remains of benthic microbes that resemble some modern chroococcalean and pleurocapsalean cyanobacteria. Two modes of degradational processes have been recognized in the studied mats: (i) early postmortem biodegradation and (ii) late diagenetic thermal or thermobaric degradation. The latter led to partial transformation of the fossilized organic remnants of cyanobacterial sheaths and capsules, which resulted in the formation of objects morphologically distant from the original microbiota but preserved features that allow for their identification as bona fide biogenic structures. Some of these thermally generated Silurian fossils are highly similar to the controversial microfossil-like carbonaceous structures described from the Early Archean Apex Chert of Australia. This similarity opens a promising way for credible recognition of remnants of cyanobacteria and similar microbiota in other thermally metamorphosed Archean sedimentary rocks

  20. Modeling sulfate reduction in methane hydrate-bearing continental margin sediments: Does a sulfate-methane transition require anaerobic oxidation of methane?

    USGS Publications Warehouse

    Malinverno, A.; Pohlman, J.W.

    2011-01-01

    The sulfate-methane transition (SMT), a biogeochemical zone where sulfate and methane are metabolized, is commonly observed at shallow depths (1-30 mbsf) in methane-bearing marine sediments. Two processes consume sulfate at and above the SMT, anaerobic oxidation of methane (AOM) and organoclastic sulfate reduction (OSR). Differentiating the relative contribution of each process is critical to estimate methane flux into the SMT, which, in turn, is necessary to predict deeper occurrences of gas hydrates in continental margin sediments. To evaluate the relative importance of these two sulfate reduction pathways, we developed a diagenetic model to compute the pore water concentrations of sulfate, methane, and dissolved inorganic carbon (DIC). By separately tracking DIC containing 12C and 13C, the model also computes ??13C-DIC values. The model reproduces common observations from methane-rich sediments: a well-defined SMT with no methane above and no sulfate below and a ??13C-DIC minimum at the SMT. The model also highlights the role of upward diffusing 13C-enriched DIC in contributing to the carbon isotope mass balance of DIC. A combination of OSR and AOM, each consuming similar amounts of sulfate, matches observations from Site U1325 (Integrated Ocean Drilling Program Expedition 311, northern Cascadia margin). Without AOM, methane diffuses above the SMT, which contradicts existing field data. The modeling results are generalized with a dimensional analysis to the range of SMT depths and sedimentation rates typical of continental margins. The modeling shows that AOM must be active to establish an SMT wherein methane is quantitatively consumed and the ??13C-DIC minimum occurs. The presence of an SMT generally requires active AOM. Copyright 2011 by the American Geophysical Union.

  1. Lithostratigraphy and microfacies analyses of the Lateglacial and early Holocene sediment record from Lake Haemelsee (Germany)

    NASA Astrophysics Data System (ADS)

    Haliuc, Aritina; Brauer, Achim; Dulski, Peter; Engels, Stefan; Lane, Christine

    2015-04-01

    Annually laminated sediments are unique continental archives holding essential paleoenvironmental and paleoclimatic information providing the opportunity (i) to evaluate the climate variability at inter-annual to decadal scale and (ii) to construct independent and reliable chronologies. Lake Haemelsee in northern Germany (19.5 m a.s.l) is a key site for tracing high-resolution climatic and environmental evolution in W Europe because of its partly varved sediments. Here, we apply lithostratigraphical, geochemical and micro-facies analyses for the bottom sediments (~1700 to 1300 cm sediment depth) in order to investigate the driving mechanisms, timing and amplitude of Lateglacial abrupt climate changes to the onset of the Holocene warming. Detailed investigation includes micro-facies analyses on petrographic thin sections combined with high-resolution µ-XRF element scanning on both fresh sediment core halves (200 µm resolution) and impregnated sediment blocks (50µm resolution). Based on these analyses, the sediment composite profile (378 cm) has been divided in ten lithozones, each exhibiting different sedimentation modes in response to regional and local climatic and environmental changes. Micro-facies analyses revealed that sediments consist of organic matter, siderite, calcite, clay/silt and sand. The basal sediments consist of glacio-fluvial material. Fine laminations are best preserved in lithozone 5 (1522-1573 cm), where minima in element proxies for detrital sediments (Ti, K, Si) and maxima in Fe and Mn indicate the prevalence of anoxic meromictic conditions. Three different varve facies types were distinguished: i) the clastic-organic varves are specific for the intervals 1571-1573 cm and 1536-1541 cm; ii) calcite/siderite-organic varves appear between 1568-1571 and 1541-1545 cm; iii) the siderite-organic varves are characteristic for the middle of the lithozone 5 spanning from 1545-1568 cm. These changes in varve facies reflect the complex answer of

  2. Formation and burial of pyrite and organic sulfur in mud sediments of the East China Sea inner shelf: Constraints from solid-phase sulfur speciation and stable sulfur isotope

    NASA Astrophysics Data System (ADS)

    Zhu, Mao-Xu; Shi, Xiao-Ning; Yang, Gui-Peng; Hao, Xiao-Chen

    2013-02-01

    Solid-phase sulfur speciation and stable sulfur isotopic compositions are used to elucidate the formation and burial of pyrite-sulfur (Spy) and organic sulfur (OS) at three selected sites in mud sediments of the East China Sea (ECS) inner shelf, and to infer potential factors influencing the preservation of Spy and OS in the sediments. Our results in combination with previous studies show that the overall reactivity of sedimentary organic matter (OM) is low, while OM at the site impacted by frequent algal-bloom events displays somewhat enhanced reactivity. We observed characteristically low contents of acid volatile sulfide (AVS) and Spy in the sediments, which can be attributed to low sulfate reduction rate due to high redox potential together with limited availability of labile OM. Several geochemical features, for example, persistent occurrence of S0, good coupling among the profiles of AVS, S0 and Spy, and large 34Spy depletion, all suggest that the polysulfide pathway and disproportionation are likely involved in the pyrite formation. Organic sulfur amounts in the sediments are at the lower end of OS contents reported in many other marine sediments around the world. The sources of OS are both biosynthetic and diagenetic, with the biosynthetic OS being the major share (59-73%). In one site studied (C702), enhanced accumulation of OS within the upper layers (14 cm) is believed to be associated with frequent algal-bloom events. Net burial fluxes of Spy and OS in the three sites studied range from 0.27 to 0.82 mmol/m2/d and from 0.22 to 0.74 mmol/m2/d, respectively. Sedimentation rate and algal-bloom events are two important factors influencing the spatial variability of Spy and OS burial fluxes in the whole shelf.

  3. Isotopic and chemical studies of early crustal metasedimentary rocks

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.

    1988-01-01

    The aim, within the bounds of the Early Crustal Genesis Project, was the isotopic and chemical study of selected early crustal meta-sedimentary rocks. Western Australia was chosen as the first field area to examine, as the Yilgarn and Pilbara Blocks comprise one of the largest and most varied Precambrian terranes. Furthermore, the Western Gneiss Terrane (on the western flank of the Yilgarn Block) and the Pilbara Block are both non-greenstone in character; these types of terrane were relatively neglected, but are of great significance in the understanding of early crustal meta-sediments. The meta-sediments of aluminous or peraluminous character, commonly also enriched in Mg and/or Fe relative to the more common pelitic meta-sediments, and at many locations, deficient in one or more of the elements Ca, N, and K, were initially chosen.

  4. Catchment sediment flux: a lake sediment perspective on the onset of the Anthropocene?

    NASA Astrophysics Data System (ADS)

    Chiverrell, Richard

    2014-05-01

    and widespread expansions of agriculture. In some cases the catchment responses, for example here detected via dry mass Zr concentrations, were substantial and outstrip later impacts driven by more intensive agriculture e.g. early Medieval, Norman Conquest and 19th century AD. These themes are developed in relation to the concept of an Anthropocene and wider European lake sediment record. References Brown AG, Tooth S, Chiverrell RC, Rose J, Thomas DSG, Wainwright J, Bullard JE, Thorndycraft VR, Aalto R, Downs P. 2013. The Anthropocene: is there a geomorphological case? Earth Surface Processes and Landforms 38: 431-434. Dearing JA, Jones RT. 2003. Coupling temporal and spatial dimensions of global sediment flux through lake and marine sediment records. Global and Planetary Change 39: 147-168. Sugita S. 2007. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17, 2: 229-241.

  5. Organic geochemistry and pore water chemistry of sediments from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Hatcher, P.G.; Simoneit, B.R.T.; MacKenzie, F.T.; Neumann, A.C.; Thorstenson, D.C.; Gerchakov, S.M.

    1982-01-01

    Mangrove Lake, Bermuda, is a small coastal, brackish-water lake that has accumulated 14 m of banded, gelatinous, sapropelic sediments in less than 104 yr. Stratigraphic evidence indicates that Mangrove Lake's sedimentary environment has undergone three major depositional changes (peat, freshwater gel, brackish-water gel) as a result of sea level changes. The deposits were examined geochemically in an effort to delineate sedimentological and diagenetic changes. Gas and pore water studies include measurements of sulfides, ammonia, methane, nitrogen gas, calcium, magnesium, chloride, alkalinity, and pH. Results indicate that sulfate reduction is complete, and some evidence is presented for bacterial denitrification and metal sulfide precipitation. The organic-rich sapropel is predominantly algal in origin, composed mostly of carbohydrates and insoluble macromolecular organic matter called humin with minor amounts of proteins, lipids, and humic acids. Carbohydrates and proteins undergo hydrolysis with depth in the marine sapropel but tend to be preserved in the freshwater sapropel. The humin, which has a predominantly aliphatic structure, increases linearly with depth and composes the greatest fraction of the organic matter. Humic acids are minor components and are more like polysaccharides than typical marine humic acids. Fatty acid distributions reveal that the lipids are of an algal and/or terrestrial plant source. Normal alkanes with a total concentration of 75 ppm exhibit two distribution maxima. One is centered about n-C22 with no odd/even predominance, suggestive of a degraded algal source. The other is centered at n-C31 with a distinct odd/even predominance indicative of a vascular plant origin. Stratigraphic changes in the sediment correlate to observed changes in the gas and pore water chemistry and the organic geochemistry. ?? 1982.

  6. Chronic sublethal effects of San Francisco Bay sediments on nereis (neanthes) arenaceodentata; effect of food ration on sediment toxicity. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, D.W.; Dillon, T.M.

    1993-09-01

    This report is designed to address concerns regarding the effect of food ration on toxicity during chronic sublethal sediment bioassays. To this end, a contaminated San Francisco Bay sediment and a clean control sediment were evaluated in a chronic sublethal test under a series of different food rations, with the marine polychaete worm Nereis (Neanthes) arenaceodentata. Animals were exposed from early juvenile stage through the onset of gametogenesis. Treatments were 2.OX, 1.OX, 0.5X, and 0.25X where X is the recommended food ration for laboratory cultures. Test end points were survival, growth, and reproduction. The contaminated sediment was a composite ofmore » several cores taken to project depth (38 ft (11.6 m) below mean low water mark) from an area in Oakland Inner Harbor known to be contaminated with polycyclic aromatic hydrocarbons and metals. Comparisons were made with a clean control sediment. The control sediment is used in the laboratory cultures of N. arenaceodentata and was collected from Sequim, WA. Mean percent survival of Neanthes was high (>90 percent) in both the contaminated and control sediment across all food ration treatments. Individual wet weights were significantly reduced with decreasing food ration in both contaminated and control sediments. Significant differences in wet weight between sediment types were observed at the 1.OX, 0.5X, and 0.25X rations. Reproduction (fecundity and emergent juvenile (EJ) production) was also Chronic sublethal, Neanthes, Dredged material, San Francisco Bay, Food ration, Sediment.« less

  7. Fine-grained rutile in the Gulf of Maine: Diagenetic origin, source rocks, and sedimentary environment of deposition

    USGS Publications Warehouse

    Valentine, P.C.; Commeau, J.A.

    1990-01-01

    The Gulf of Maine, an embayment of the New England margin, is floored by shallow, glacially scoured basins that are partly filled with late Pleistocene and Holocene silt and clay containing 0.7 to 1.0 wt percent TiO2 chiefly in the form of silt-size rutile. Much of the rutile in the Gulf of Maine mud probably formed diagenetically in poorly cemented Carboniferous and Triassic coarse-grained sedimentary rocks of Nova Scotia and New Brunswick after the dissolution of titanium-rich detrital minerals (ilmenite, ilmenomagnetite). The diagenesis of rutile in coarse sedimentary rocks (especially arkose and graywacke) followed by erosion, segregation, and deposition (and including recycling of fine-grained rutile from shales) can serve as a model for predicting and prospecting for unconsolidated deposits of fine-grained TiO2. -from Authors

  8. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania.

    PubMed

    Rossi, Robert J; Bain, Daniel J; Hillman, Aubrey L; Pompeani, David P; Finkenbinder, Matthew S; Abbott, Mark B

    2017-04-18

    Early industrial trace metal loadings are poorly characterized but potentially substantial sources of trace metals to the landscape. The magnitude of legacy contamination in southwestern Pennsylvania, the cradle of North American fossil fuel industrialization, is reconstructed from trace metal concentrations in a sediment core with proxies including major and trace metal chemistry, bulk density, and magnetic susceptibility. Trace metal chemistry in this sediment record reflects 19th and 20th century land use and industry. In particular, early 19th century arsenic loadings to the lake are elevated from pesticides used by early European settlers at a lakeside tannery. Later, sediment barium concentrations rise, likely reflecting the onset of acidic mine drainage from coal operations. Twentieth century zinc, cadmium, and lead concentrations are dominated by emissions from the nearby, infamous Donora Zinc Works yet record both the opening of a nearby coal-fired power plant and amendments to the Clean Air Act. The impact of early industry is substantial and rivals more recent metal fluxes, resulting in a significant potential source of contaminated sediments. Thus, modern assessments of trace metal contamination cannot ignore early industrial inputs, as the potential remobilization of legacy contamination would impact ecosystem and human health.

  9. Flashy Water and Sediment Delivery to Fluvial Megafan andFan Delta Systems on Opposing Shorelines of an Early Eocene Lake

    NASA Astrophysics Data System (ADS)

    Jones, E. R.; Plink-Bjorklund, P.

    2015-12-01

    Flashy delivery of water and sediment had distinct effects on the process of deposition in coeval fluvial megafan and fan delta deposits on opposing shorelines of a paleolake that occupied the Uinta Basin throughout the Eocene. The Tertiary Uinta Basin was an asymmetric continental interior basin with a steep northern margin, adjacent to the block uplift controlling basin subsidence, and a low gradient southern margin. A ~140 km wide fluvial megafan with catchments as far as ~750 km away occupied the southern margin of the lacustrine basin. Within this megafan system, fluvial deposits contain within-channel continental bioturbation and paleosol development on bar accretion surfaces that are evidence of prolonged periods of groundwater flow or channel abandonment. These are punctuated by channel fills exhibiting a suite of both high-deposition rate and upper flow regime sedimentary structures that were deposited by very rapid suspension-fallout during seasonal to episodic river flooding events. A series of small (~8 km wide) and proximally sourced fan deltas fed sediment into the steeper northern margin of the lacustrine basin. 35-50% of the deposits in the delta plain environment of these fan deltas are very sandy debris flows with as low as 5% clay and silt sized material. Detrital zircon geochronology shows that these fan deltas were tapping catchments where mostly unconsolidated Cretaceous sedimentary cover and thick Jurassic eolianites were being eroded. A combination of flashy precipitation, arid climate, catchments mantled by abundant loose sand-sized colluvium, and steep depositional gradients promoted generation of abundant very sandy (5-10% clay and silt sized material) debris flows. In this way, the Wasatch and Green River Formations in the Uinta Basin, Utah, U.S.A. gives us two very different examples of how routing flashy water and sediment delivery (associated with pulses of hyperthermal climate change during the Early Eocene) through different

  10. Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment

    NASA Astrophysics Data System (ADS)

    Veuger, Bart; van Oevelen, Dick; Middelburg, Jack J.

    2012-04-01

    The fate of microbial carbon, nitrogen, hydrolysable amino acids (HAAs), monosaccharides, and fatty acids in sediment was investigated experimentally. The microbial community of a tidal flat sediment was labeled with 13C-enriched glucose and 15N-enriched ammonium, and sediment was incubated for up to 371 days. Analysis of total concentrations and 13C- and 15N content of bulk sediment, hydrolysable amino acids (including D-alanine), monosaccharides, total fatty acids (TFAs), and phospholipid-derived fatty acids (PLFAs) allowed us to trace the fate of microbial biomass and -detritus and the major biochemical groups therein (proteins, carbohydrates, and lipids) over intermediate time scales (weeks-months). Moreover, the unidentified fraction of the labeled material (i.e. not analyzed as HAA, FA, or carbohydrate) provided information on the formation and fate of molecularly uncharacterizable organic matter. Loss of 13C and 15N from the sediment was slow (half live of 433 days) which may have been due to the permanently anoxic conditions in the experiment. Loss rates for the different biochemical groups were also low with the following order of loss rate constants: PLFA > TFA > HAA > monosaccharides. The unidentified 13C-pool was rapidly formed (within days) and then decreased relatively slowly, resulting in a gradual relative accumulation of this pool over time. Degradation and microbial reworking of the labeled material resulted in subtle, yet consistent, diagenetic changes within the different biochemical groups. In the HAA pool, glycine, lysine, and proline were lost relatively slowly (i.e. best preserved) while there was no accumulation of D-alanine relative to L-alanine, indicating no relative accumulation of bacterial macromolecules rich in D-alanine. In the fatty acid pool, there was very little difference between PLFAs and TFAs, indicating a very similar lability of these pools. Differences between individual fatty acids included a relatively slow loss of i15

  11. Patterns and trends in sediment toxicity in the San Francisco Estuary

    USGS Publications Warehouse

    Anderson, B.; Hunt, J.; Phillips, B.; Thompson, B.; Lowe, S.; Taberski, K.; Scott, Carr R.

    2007-01-01

    Widespread sediment toxicity has been documented throughout the San Francisco Estuary since the mid-1980s. Studies conducted in the early 1990s as part of the Bay Protection and Toxic Cleanup Program (BPTCP), and more recently as part of the Regional Monitoring Program (RMP) have continued to find sediment toxicity in the Estuary. Results of these studies have shown a number of sediment toxic hotspots located at selected sites in the margins of the Estuary. Recent RMP monitoring has indicated that the magnitude and frequency of sediment toxicity is greater in the winter wet season than in the summer dry season, which suggests stormwater inputs are associated with sediment toxicity. Additionally, spatial trends in sediment toxicity data indicate that toxic sediments are associated with inputs from urban creeks surrounding the Estuary, and from Central Valley rivers entering the northern Estuary via the Delta. Sediment toxicity has been correlated with a number of contaminants, including selected metals, PAHs and organochlorine pesticides. While toxicity identification evaluations (TIEs) suggest that metals are the primary cause of sediment toxicity to bivalve embryos; TIEs conducted with amphipods have been inconclusive. ?? 2006 Elsevier Inc. All rights reserved.

  12. Early Archaean collapse basins, a habitat for early bacterial life.

    NASA Astrophysics Data System (ADS)

    Nijman, W.

    For a better definition of the sedimentary environment in which early life may have flourished during the early Archaean, understanding of the basin geometry in terms of shape, depth, and fill is a prerequisite. The basin fill is the easiest to approach, namely from the well exposed, low-grade metamorphic 3.4 - 3.5 Ga rock successions in the greenstone belts of the east Pilbara (Coppin Gap Greenstone Belt and North Pole Dome) in West Australia and of the Barberton Greenstone Belt (Buck Ridge volcano-sedimentary complex) in South Africa. They consist of mafic to ultramafic volcanic rocks, largely pillow basalts, with distinct intercalations of intermediate to felsic intrusive and volcanic rocks and of silicious sediments. The, partly volcaniclastic, silicious sediments of the Buck Ridge and North Pole volcano-sedimentary complexes form a regressive-transgressive sequence. They were deposited close to base level, and experienced occasional emersion. Both North Pole Chert and the chert of the Kittys Gap volcano-sedimentary complex in the Coppin Gap Greenstone Belt preserve the flat-and-channel architecture of a shallow tidal environment. Thickness and facies distribution appear to be genetically linked to systems, i.e. arrays, of syn-depositionally active, extensional faults. Structures at the rear, front and bottoms of these fault arrays, and the fault vergence from the basin margin towards the centre characterize the basins as due to surficial crustal collapse. Observations in the Pilbara craton point to a non-linear plan view and persistence for the basin-defining fault patterns over up to 50 Ma, during which several of these fault arrays became superposed. The faults linked high-crustal level felsic intrusions within the overall mafic rock suite via porphyry pipes, black chert veins and inferred hydrothermal circulations with the overlying felsic lavas, and more importantly, with the cherty sediments. Where such veins surfaced, high-energy breccias, and in the

  13. Lu-Hf isotope systematics of fossil biogenic apatite and their effects on geochronology

    NASA Astrophysics Data System (ADS)

    Herwartz, Daniel; Münker, Carsten; Tütken, Thomas; Hoffmann, J. Elis; Wittke, Andreas; Barbier, Bruno

    2013-01-01

    matrices with low permeability (oil shale of Messel, Germany; Posidonienschiefer of Holzmaden, Germany). Materials analysed from these localities include bones, teeth, conodonts, as well as coproliths and diagenetic minerals (siderite, montgomeryite and messelite). Near-depositional Lu-Hf ages were obtained for a bony fish sample (Notelops brama) encapsulated in an early diagenetic carbonate concretion from the Early Cretaceous Santana Formation, Brazil and for conodonts from a Middle Devonian carbonate from the Eifel, Germany. Low 176Lu/177Hf ratios in all materials from the Middle Eocene Messel oil shale (e.g., bones, fish scales, sediment, siderite) result in poor age precision and an age that is near-depositional due to this large analytical error. In agreement with previous results, all other ages determined here for both bones and teeth are by far younger than respective chronostratigraphic ages. A model illustrating the behaviour of Lu and Hf over time, with respect to the fossilisation process is presented, which accounts both for the formation of a late diagenetic radiogenic Zr(Hf) phase and long term open system behaviour. The continuous Lu-Hf element exchange between the fossils and the embedding sediment is probably related to the nm-scale crystal size of fossil bones, dentine and also of enamel that generate large surface areas facilitating sorption/desorption processes and open system behaviour.

  14. Geochemistry of Early Frasnian (Late Devonian) pyrite-ammonoid level in the Kostomłoty Basin, Poland, and a new proxy parameter for assessing the relative amount of syngenetic and diagenetic pyrite

    NASA Astrophysics Data System (ADS)

    Pisarzowska, Agnieszka; Berner, Zsolt A.; Racki, Grzegorz

    2014-07-01

    Pyrite geochemistry (isotope and trace element composition, degree of pyritization, S/Corg ratio) was used in context of selected lithogeochemical parameters (major and trace elements, including sulphur, organic carbon, and δ13C of carbonate carbon) to constrain fluctuations in depositional conditions during the Early to Middle Frasnian carbon isotopic perturbation (punctata Event) in the Kostomłoty Basin, Poland. Based on the ratio between the sum of oxyanionic elements and transition metals in pyrite, a new proxy parameter (index of syngenetic pyrite, ISYP) is proposed for assessing the relative amount of syngenetic pyrite in a sample. The distribution of the ISYP along the Kostomłoty - Małe Górki section (upper Szydłówek to the basal Kostomłoty beds) is in concert with conclusions inferred from paleoecologic data and other geochemical parameters (degree of pyritization, S/Corg, δ34Spyrite). According to these, the lower segment of the Szydłówek Beds was deposited in a normally oxygenated environment, but undergoing increasing primary productivity in surface water, as indicated by an increase in δ13Ccarb and in Cu/Zr ratio in bulk rock, which triggered the periodic deposition of sediments slightly enriched in organic matter, notably within the pyrite-ammonoid level (= Goniatite Level). Fluctuating, but in general high S/Corg ratios, DOPR values and ISYP values suggest that during this time - against the background of a generally dysoxic environment - shorter or longer lasting episodes of more restricted (anoxic and possibly even euxinic) bottom water conditions developed. Low sedimentation rates enabled a continuous and practically unlimited supply of sulphate during bacterial sulphate reduction (BSR), which in turn led to a strong depletion of pyrite sulphur in 34S in this interval (constantly around -29‰). In contrast, below and above the Goniatite Level, higher δ34S values (up to + 3‰), are compatible with closed system conditions and higher

  15. Fluvial/lacustrine diagenesis: Significance for hydrocarbon production and entrapment in the carboniferous Albert Fm, Moncton basin, NB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, J.P.A.; Chowdhury, A.H.; Yu, H.

    1996-12-31

    The Carboniferous Horton Group Albert Formation sediments include lacustrine source-rock oil shales and fluvial porous reservoir sandstones. The petrography, stable isotopes, fluid inclusions, cathodoluminescence and mirror/trace element chemistry of these sandstones are used to establish the diagenetic history and controlling factors. Early diagenetic calcite, quartz and albite cements with minor chlorite and kaolinite are variably present and related to depositional mineralogy and lake levels winch controlled the porewater chemistry. Antitaxial veins occurring preferentially in shales are shown, from heavy {delta}C{sup 13} values and fluid inclusions, to be related to methanogenesis in overpressured zones at shallow depths. Later burial calcite andmore » extensive albitisation are related to mineral reactions during the phase of rapid subsidence at temperatures of 80{degrees} to 150{degrees} in the deepest segment of the basin, together with significant dissolution of carbonates and feldspars related mainly to organic acids generated by organic maturation processes. Mass balance calculations indicate that not enough organic matter was present to account for all the estimated secondary porosity and some evidence suggests that reactions between kaolinite and calcite/ankerite to produce chlorite, and mixed layer illite-smectite ordering reactions, produced significant secondary porosity. Burial history reconstructions and thermal modelling of the Albert Fm. sediments using Arrhenius type maturity models and reflectance and rock-eval data suggest locally variable maturation and reservoir production related to the locally different fault tectonic histories characteristic of strike-slip lacustrine segmented basins. The Horton depositional cycle was followed by major dextral transpression with local faulting and inversion and vein cementation.« less

  16. Fluvial/lacustrine diagenesis: Significance for hydrocarbon production and entrapment in the carboniferous Albert Fm, Moncton basin, NB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, J.P.A.; Chowdhury, A.H.; Yu, H.

    1996-01-01

    The Carboniferous Horton Group Albert Formation sediments include lacustrine source-rock oil shales and fluvial porous reservoir sandstones. The petrography, stable isotopes, fluid inclusions, cathodoluminescence and mirror/trace element chemistry of these sandstones are used to establish the diagenetic history and controlling factors. Early diagenetic calcite, quartz and albite cements with minor chlorite and kaolinite are variably present and related to depositional mineralogy and lake levels winch controlled the porewater chemistry. Antitaxial veins occurring preferentially in shales are shown, from heavy [delta]C[sup 13] values and fluid inclusions, to be related to methanogenesis in overpressured zones at shallow depths. Later burial calcite andmore » extensive albitisation are related to mineral reactions during the phase of rapid subsidence at temperatures of 80[degrees] to 150[degrees] in the deepest segment of the basin, together with significant dissolution of carbonates and feldspars related mainly to organic acids generated by organic maturation processes. Mass balance calculations indicate that not enough organic matter was present to account for all the estimated secondary porosity and some evidence suggests that reactions between kaolinite and calcite/ankerite to produce chlorite, and mixed layer illite-smectite ordering reactions, produced significant secondary porosity. Burial history reconstructions and thermal modelling of the Albert Fm. sediments using Arrhenius type maturity models and reflectance and rock-eval data suggest locally variable maturation and reservoir production related to the locally different fault tectonic histories characteristic of strike-slip lacustrine segmented basins. The Horton depositional cycle was followed by major dextral transpression with local faulting and inversion and vein cementation.« less

  17. Vertical distribution of major, minor and trace elements in sediments from mud volcanoes of the Gulf of Cadiz: evidence of Cd, As and Ba fronts in upper layers

    NASA Astrophysics Data System (ADS)

    Carvalho, Lina; Monteiro, Rui; Figueira, Paula; Mieiro, Cláudia; Almeida, Joana; Pereira, Eduarda; Magalhães, Vítor; Pinheiro, Luís; Vale, Carlos

    2018-01-01

    Mud volcanoes are feature of the coastal margins where anaerobic oxidation of methane triggers geochemical signals. Elemental composition, percentage of fine particles and loss on ignition were determined in sediment layers of eleven gravity cores retrieved from four mud volcanoes (Sagres, Bonjardim, Soloviev and Porto) and three undefined structures located on the deep Portuguese margin of the Gulf of Cadiz. Calcium was positively correlated to Sr and inversely to Al as well as to most of the trace elements. Vertical profiles of Ba, Cd and As concentrations, and their ratios to Al, in Porto and Soloviev showed pronounced enhancements in the top 50-cm depth. Sub-surface enhancements were less pronounced in other mud volcanoes and were absent in sediments from the structures. These profiles were interpreted as diagenetic enrichments related to the anaerobic oxidation of methane originated from upward methane-rich fluxes. The observed barium fronts were most likely caused by the presence of barite which precipitated at the sulphate-methane transition zone. Cd and As enrichments have probably resulted from successive dissolution/precipitation of sulphides in response to vertical shifts of redox boundaries.

  18. Structural-Diagenetic Controls on Fracture Opening in Tight Gas Sandstone Reservoirs, Alberta Foothills

    NASA Astrophysics Data System (ADS)

    Ukar, Estibalitz; Eichhubl, Peter; Fall, Andras; Hooker, John

    2013-04-01

    In tight gas reservoirs, understanding the characteristics, orientation and distribution of natural open fractures, and how these relate to the structural and stratigraphic setting are important for exploration and production. Outcrops provide the opportunity to sample fracture characteristics that would otherwise be unknown due to the limitations of sampling by cores and well logs. However, fractures in exhumed outcrops may not be representative of fractures in the reservoir because of differences in burial and exhumation history. Appropriate outcrop analogs of producing reservoirs with comparable geologic history, structural setting, fracture networks, and diagenetic attributes are desirable but rare. The Jurassic to Lower Cretaceous Nikanassin Formation from the Alberta Foothills produces gas at commercial rates where it contains a network of open fractures. Fractures from outcrops have the same diagenetic attributes as those observed in cores <100 km away, thus offering an ideal opportunity to 1) evaluate the distribution and characteristics of opening mode fractures relative to fold cores, hinges and limbs, 2) compare the distribution and attributes of fractures in outcrop vs. core samples, 3) estimate the timing of fracture formation relative to the evolution of the fold-and-thrust belt, and 4) estimate the degradation of fracture porosity due to postkinematic cementation. Cathodoluminescence images of cemented fractures in both outcrop and core samples reveal several generations of quartz and ankerite cement that is synkinematic and postkinematic relative to fracture opening. Crack-seal textures in synkinematic quartz are ubiquitous, and well-developed cement bridges abundant. Fracture porosity may be preserved in fractures wider than ~100 microns. 1-D scanlines in outcrop and core samples indicate fractures are most abundant within small parasitic folds within larger, tight, mesoscopic folds. Fracture intensity is lower away from parasitic folds; intensity

  19. Structural-Diagenetic Controls on Fracture Opening in Tight Gas Sandstone Reservoirs, Alberta Foothills

    NASA Astrophysics Data System (ADS)

    Ukar, E.; Eichhubl, P.; Fall, A.; Hooker, J. N.

    2012-12-01

    In tight gas reservoirs, understanding the characteristics, orientation and distribution of natural open fractures, and how these relate to the structural and stratigraphic setting are important for exploration and production. Outcrops provide the opportunity to sample fracture characteristics that would otherwise be unknown due to the limitations of sampling by cores and well logs. However, fractures in exhumed outcrops may not be representative of fractures in the reservoir because of differences in burial and exhumation history. Appropriate outcrop analogs of producing reservoirs with comparable geologic history, structural setting, fracture networks, and diagenetic attributes are desirable but rare. The Jurassic to Lower Cretaceous Nikanassin Formation from the Alberta Foothills produces gas at commercial rates where it contains a network of open fractures. Fractures from outcrops have the same diagenetic attributes as those observed in cores <100 km away, thus offering an ideal opportunity to 1) evaluate the distribution and characteristics of opening mode fractures relative to fold cores, hinges and limbs, 2) compare the distribution and attributes of fractures in outcrop vs. core samples, 3) estimate the timing of fracture formation relative to the evolution of the fold-and-thrust belt, and 4) estimate the degradation of fracture porosity due to postkinematic cementation. Cathodoluminescence images of cemented fractures in both outcrop and core samples reveal several generations of quartz and ankerite cement that is synkinematic and postkinematic relative to fracture opening. Crack-seal textures in synkinematic quartz are ubiquitous, and well-developed cement bridges abundant. Fracture porosity may be preserved in fractures wider than ~100 microns. 1-D scanlines in outcrop and core samples indicate fractures are most abundant within small parasitic folds within larger, tight, mesoscopic folds. Fracture intensity is lower away from parasitic folds; intensity

  20. Comparative geochemistry of Indian margin (Arabian Sea) sediments: Estuary to continental slope.

    NASA Astrophysics Data System (ADS)

    Cowie, Greg; Mowbray, Stephen; Kurian, Siby; Sarkar, Amit; White, Carol; Anderson, Amy; Vergnaud, Bianca; Johnstone, Gisele; Brear, Samuel; Woulds, Clare; Naqvi, Wajih; Kitazato, Hiroshi

    2014-05-01

    the shelf and below the OMZ. Diagenetic indices confirmed that lower C content below the OMZ is associated with greater extent of OM degradation, but that C-poor shelf sediments are not consistently more degraded than those within the OMZ. Together, results indicate that OM enrichment on the upper slope, where it occurs, can be explained by winnowing or other physical processes on the shelf combined with progressive OM degradation with increasing oxygen exposure below the OMZ. Reduced oxygen exposure may contribute to observed OM enrichment with the OMZ, but hydrodynamic processes are the overriding control on sediment OM distribution, even within the OMZ.

  1. Heavy metal distributions in Peru Basin surface sediments in relation to historic, present and disturbed redox environments

    NASA Astrophysics Data System (ADS)

    Koschinsky, Andrea

    Heavy metal distributions in deep-sea surface sediments and pore water profiles from five areas in the Peru Basin were investigated with respect to the redox environment and diagenetic processes in these areas. The 10-20-cm-thick Mn oxide-rich and minor metal-rich top layer is underlain by an increase in dissolved Mn and Ni concentrations resulting from the reduction of the MnO 2 phase below the oxic zone. The mobilised associated metals like Co, Zn and Cu are partly immobilised by sorption on clay, organic or Fe compounds in the post-oxic environment. Enrichment of dissolved Cu, Zn, Ni, Co, Pb, Cd, Fe and V within the upper 1-5 cm of the oxic zone can be attributed to the degradation of organic matter. In a core from one area at around 22-25 cm depth, striking enrichments of these metals in dissolved and solid forms were observed. Offset distributions between oxygen penetration and Mn reduction and the thickness of the Mn oxide-rich layer indicate fluctuations of the Mn redox boundary on a short-term time scale. Within the objectives of the German ATESEPP research programme, the effect of an industrial impact such as manganese nodule mining on the heavy metal cycle in the surface sediment was considered. If the oxic surface were to be removed or disturbed, oxygen would penetrate deep into the formerly suboxic sediment and precipitate Mn 2+ and metals like Ni and Co which are preferably scavenged by MnO 2. The solid enrichments of Cd, V, and other metals formed in post-oxic environments would move downward with the new redox boundary until a new equilibrium between oxygen diffusion and consumption is reached.

  2. Ice rafting of fine-grained sediment, a sorting and transport mechanism, Beaufort Sea, Alaska.

    USGS Publications Warehouse

    Barnes, P.W.; Reimnitz, E.; Fox, D.

    1982-01-01

    The presence of turbid, sediment-rich fast ice in the Arctic is a major factor affecting transport of fine-grained sediment. Observers have documented the widespread, sporadic occurrence of sediment- rich fast ice in both the Beaufort and Bering Seas. The occurrence of sediment in only the upper part of the seasonal fast ice indicates that sediment-rich ice forms early during ice growth. The most likely mechanism requires resuspension of nearshore bottom sediment during storms, accompanied by formation of frazil ice and subsequent lateral advection before the fast ice is stabilized. We estimate that the sediment incorporated in the Beaufort ice canopy formed a significant proportion of the seasonal influx of terrigenous fine-grained sediment. The dominance of fine-grained sediment suggests that in the Arctic and sub-Arctic these size fractions may be ice rafted in greater volumes than the coarse fraction of traditionally recognized ice-rafted sediment. -from Authors

  3. High resolution chronology of late Cretaceous-early Tertiary events determined from 21,000 yr orbital-climatic cycles in marine sediments

    NASA Technical Reports Server (NTRS)

    Herbert, Timothy D.; Dhondt, Steven

    1988-01-01

    A number of South Atlantic sites cored by the Deep Sea Drilling Project (DSDP) recovered late Cretaceous and early Tertiary sediments with alternating light-dark, high-low carbonate content. The sedimentary oscillations were turned into time series by digitizing color photographs of core segments at a resolution of about 5 points/cm. Spectral analysis of these records indicates prominent periodicity at 25 to 35 cm in the Cretaceous intervals, and about 15 cm in the early Tertiary sediments. The absolute period of the cycles that is determined from paleomagnetic calibration at two sites is 20,000 to 25,000 yr, and almost certainly corresponds to the period of the earth's precessional cycle. These sequences therefore contain an internal chronometer to measure events across the K/T extinction boundary at this scale of resolution. The orbital metronome was used to address several related questions: the position of the K/T boundary within magnetic chron 29R, the fluxes of biogenic and detrital material to the deep sea immediately before and after the K/T event, the duration of the Sr anomaly, and the level of background climatic variability in the latest Cretaceous time. The carbonate/color cycles that were analyzed contain primary records of ocean carbonate productivity and chemistry, as evidenced by bioturbational mixing of adjacent beds and the weak lithification of the rhythmic sequences. It was concluded that sedimentary sequences that contain orbital cyclicity are capable of providing resolution of dramatic events in earth history with much greater precision than obtainable through radiometric methods. The data show no evidence for a gradual climatic deterioration prior to the K/T extinction event, and argue for a geologically rapid revolution at this horizon.

  4. Early diagenesis and organic matter preservation--A molecular stable isotope perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macko, S.A.; Engel, M.H.; Qian, Y.

    1992-01-01

    Through new developments in stable isotope capability, gas chromatography coupled to a stable isotope ratio mass spectrometer (GC/IRMS), the molecular pathways of the diagenetic reactions can be observed on the components themselves. The authors report the results of laboratory-controlled degradation experiments of fresh organic substrates. Isotopically resolvable materials were used. Seagrass showed slight enrichments in [delta]N-15 with little change in [delta]C-13 following four weeks of decomposition. During that period the identifiable amino acid content decreased by approx. 50% for each amino acid. Mixtures of marine sediment with the same seagrass showed enrichments in nitrogen with associated depletions in carbon isotopicmore » compositions over the same time span. Control experiments on the sediments without added fresh seagrass showed no change in isotopic content. These changes are attributed to hydrolysis, deamination and decarboxylation reactions. Isotopic fractionations of similar size and direction have been observed in laboratory studies on peptide hydrolysis and natural samples of particulate organic materials. At the molecular level, using GC/IRMS, certain amino acids are seen to decrease in C-13 content while others become increasingly enriched in C-13. Similar reactions are seen in carbohydrates. The molecular isotope approach indicates that the process of diagenesis and preservation is significantly more complex than simple breakdown and loss. A large portion of the organic matter eventually preserved in organic-rich deposits can be attributed to new production in the deposit.« less

  5. Are the Element Budget and the Occurrence of Polymetallic Nodules influenced by Fluids Circulating through the Oceanic Crust or/and Sediments?

    NASA Astrophysics Data System (ADS)

    Heller, C.; Kuhn, T.

    2016-12-01

    Hydrothermal fluids can extract significant amounts of heat from oceanic lithosphere by lateral fluid flow through permeable basaltic crust of an age of up to 65 Ma. Fluid recharge and discharge occur at basement outcrops in between impermeable pelagic sediments. Recharge of oxic seawater causes upward oxygen diffusion into sediments overlying the permeable basalt in areas proximal to recharge sites. It is suggested that this oxygen have a strong impact on sediments and Mn nodules during fluid exposure time. The aim of this study is to investigate if and how fluid flow through oceanic crust influence the distribution and element budget of the Mn nodules. For that purpose, Mn nodules were examined which were collected during the research cruise SO240 in the equatorial NE Pacific at sites with and without faults in the upper basement and overlying sediments. Faults are thought to be preferred fluid pathways. Nodules were found on the sediment surface as well as in the sediment and consist of different nm- to µm-thick, dense and porous layers. The geochemical composition of bulk nodules and single nodule layers were determined by XRF, ICP-MS/OES and by high resolution analyses with EMPA and LA-ICP-MS. Dense layers have low Mn/Fe ratios (<4) and high concentrations of Co, Zr and REY, while porous layers are characterized by high Mn/Fe ratios (> 10) and high Ni+Cu and Li concentrations (Koschinsky et al., 2010; Kuhn et al., 2010). The different compositions depends on different formation processes of the layers. Dense layers are formed by element precipitation from oxygen rich seawater and/or pore water and are called hydrogenetic, while porous layers were formed by precipitation from almost oxygen-free (suboxic) pore water (Burns & Burns, 1978; Glasby, 2006) and are called diagenetic (Halbach et al., 1988). Preliminary results show that there are significant differences between the geochemical composition of nodules grown at sediment surface and those found within

  6. A Paleomagnetic and Diagenetic Study of the Woodford Shale, Oklahoma, U.S.A.: The Timing of Hydrothermal Alteration

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Elmore, R. D.

    2017-12-01

    An oriented Woodford Shale core from the Ardmore Basin near the Ouachita thrust zone (Core B) was sampled to identify diagenetic events and interpret their origin, and to test if a magnetization was present that can be used to date the altering event(s). The shale is extensively altered, exhibiting a complex paragenesis with multiple fractures and brecciated intervals. Multiple hydrothermal minerals, including biotite, magnesite, norsethite, witherite, gorceixite, potassium feldspar, sphalerite, chalcopyrite, and saddle dolomite, are present in and around fractures and in the matrix. Vitrinite and bitumen reflectance measurements indicate VRo values of 1.82% ( 230°C). Two other Woodford Shale cores (A and C) from the Anadarko Basin also contain hydrothermal minerals. Vitrinite and bitumen reflectance data reveal trends between thermal maturity and the level of hydrothermal alteration, with Core A (0.80% VRo ( 125°C) displaying the lowest alteration, and Core C ( 1.5% VRo ( 210°C) displaying intermediate alteration compared to core B. Paleomagnetic analysis of Core B reveals the presence of a characteristic remanent magnetization (ChRM) with south-southeasterly declinations and shallow inclinations that is unblocked by 450°C and is interpreted to reside in magnetite. This ChRM is interpreted to be either a chemical remanent magnetization (CRM) or a thermochemical remanent magnetization (TCRM) acquired during the Late Permian based on the pole position. The presence of specimens with the CRM/TCRM in altered rock and high thermal maturities suggests that this CRM/TCRM originated from alteration by hydrothermal fluids. These results suggest that the Woodford Shale evolved into an open diagenetic system. In addition to causing heightened thermal maturities, these hydrothermal fluids both increased porosity through dissolution and decreased porosity through precipitation of minerals. The Late Permian timing agrees with the dating of hydrothermal alteration found

  7. Interstitial solutions and diagenesis in deeply buried marine sediments: results from the Deep Sea Drilling Project

    USGS Publications Warehouse

    Sayles, F.L.; Manheim, F.T.

    1975-01-01

    Through the Deep Sea Drilling Project samples of interstitial solutions of deeply buried marine sediments throughout the World Ocean have been obtained and analyzed. The studies have shown that in all but the most slowly deposited sediments pore fluids exhibit changes in composition upon burial. These changes can be grouped into a few consistent patterns that facilitate identification of the diagenetic reactions occurring in the sediments. Pelagic clays and slowly deposited (<1 cm/103yr) biogenic sediments are the only types that exhibit little evidence of reaction in the pore waters. In most biogenic sediments sea water undergoes considerable alteration. In sediments deposited at rates up to a few cm/103 yr the changes chiefly involve gains of Ca2+ and Sr2+ and losses of Mg2+ which balance the Ca2+ enrichment. The Ca-Mg substitution may often reach 30 mM/kg while Sr2+ may be enriched 15-fold over sea water. These changes reflect recrystallization of biogenic calcite and the substitution of Mg2+ for Ca2+ during this reaction. The Ca-Mg-carbonate formed is most likely a dolomitic phase. A related but more complex pattern is found in carbonate sediments deposited at somewhat greater rates. Ca2+ and Sr2+ enrichment is again characteristic, but Mg2+ losses exceed Ca2+ gains with the excess being balanced by SO4post staggered2- losses. The data indicate that the reactions are similar to those noted above, except that the Ca2+ released is not kept in solution but is precipitated by the HCO3post staggered- produced in SO4post staggered2- reduction. In both these types of pore waters Na+ is usually conservative, but K+ depletions are frequent. In several partly consolidated sediment sections approaching igneous basement contact, very marked interstitial calcium enrichment has been found (to 5.5 g/kg). These phenomena are marked by pronounced depletion in Na+, Si and CO2, and slight enhancement in Cl-. The changes are attributed to exchange of Na+ for Ca2+ in silicate

  8. Identifying sediment sources in the sediment TMDL process

    USGS Publications Warehouse

    Gellis, Allen C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.; Landy, R.B.; Gorman Sanisaca, Lillian E.

    2015-01-01

    Sediment is an important pollutant contributing to aquatic-habitat degradation in many waterways of the United States. This paper discusses the application of sediment budgets in conjunction with sediment fingerprinting as tools to determine the sources of sediment in impaired waterways. These approaches complement monitoring, assessment, and modeling of sediment erosion, transport, and storage in watersheds. Combining the sediment fingerprinting and sediment budget approaches can help determine specific adaptive management plans and techniques applied to targeting hot spots or areas of high erosion.

  9. Impacts of toxic thresholds of sediment-associated contaminants to robust redhorse (Moxostoma robustum) in the Lower Oconee River

    USGS Publications Warehouse

    Lasier, P.; Winger, P.; Bogenrieder, K.; Shelton, J.

    2000-01-01

    The robust redhorse is a ?Species-at-Risk? in the lower Oconee River, GA. The population is composed of aging adults with little natural recruitment. Factors contributing to the loss of early-life stages are unknown, but contaminants associated with fine sediments may play a role. The objectives of this study were to determine toxicities of sediments and pore waters from the Oconee River to early-life stages of robust redhorse and to establish toxic thresholds of metals (Cd, Cu, Mn, Zn) and ammonia, elements potentially threatening this species. Depositional sediments were collected from the only known spawning site and three sites downstream of major tributaries. Sediment pore waters were extracted in the laboratory from all sites and in situ at two sites. Toxicity tests with sediments, pore waters and metal solutions were initiated with eggs, yolk-sac fry and swim-up fry to determine effects on the life stage initially exposed as well as effects manifested in later developmental stages. Survival and growth were test endpoints, and toxicity was observed in both sediments and pore waters. Although the yolk- sac stage was the most sensitive across all tests, sediment toxicity was elicited only in tests initiated with eggs that developed through the yolk-sac stage. Toxicity appeared to be due to Mn in sediment and pore water exposures, but was more prevalent in pore waters. Sediment handling and the associated effects on redox potential contributed to the elevated concentrations of Mn in pore waters. Pore waters extracted in situ had significantly less Mn and were less toxic than laboratory-extracted pore waters. These data suggest that sediment-associated Mn may impact early-life stages of robust redhorse in the Oconee River.

  10. Wildfire impacts on stream sedimentation: re-visiting the Boulder Creek Burn in Little Granite Creek, Wyoming, USA

    Treesearch

    Sandra Ryan; Kathleen Dwire

    2012-01-01

    In this study of a burned watershed in northwestern Wyoming, USA, sedimentation impacts following a moderately-sized fire (Boulder Creek burn, 2000) were evaluated against sediment loads estimated for the period prior to burning. Early observations of suspended sediment yield showed substantially elevated loads (5x) the first year post-fire (2001), followed by less...

  11. The use of strontium and barium analyses for the reconstruction of the diet of the early medieval coastal population of Gdańsk (Poland): A preliminary study.

    PubMed

    Szostek, Krzysztof; Głab, Henryk; Pudło, Aleksandra

    2009-01-01

    Barium and strontium analyses yield an important perspective on temporal shifts in diet in relation to social and environmental circumstances. This research focuses on reconstructing dietary strategies of individuals in the early medieval (12-13th century) population of Gdańsk on the coast of the Baltic Sea. To describe these strategies where seafood rich in minerals was included in the diet, levels of strontium, barium, calcium and phosphorus were measured in first permanent molars of adult men and women whose remains were excavated from the churchyard in the city centre. Faunal remains from the excavation were analysed as an environmental background with respect to the content of the above-mentioned elements. The impact of diagenesis on the odontological material under study was also determined by an analysis of the soil derived from the grave and non-grave surroundings. For verification of diagenetic processes, the calcium/phosphorus index was used. Strontium, calcium, phosphorus and barium levels were determined with the spectrophotometric method using the latest generation plasma spectrophotometer Elan 6100 ICP-MS. From the results of the analysis of taphonomic parameters such as the soil pH, potential ion exchange in the grave surroundings and the Ca/P ratio, it can be inferred that diagenetic factors had little impact on the studied material. From this pilot study we can conclude that in the early Middle Ages in the Baltic Sea basin, seafood was included in the diet from early childhood and at the same time the diet contained calcium-rich milk products (also rich in minerals). The lack of sex differences may indicate the absence of a sex-specific nutritional strategy in childhood and early adolescence.

  12. The dynamics of fine-grain sediment dredged from Santa Cruz Harbor

    USGS Publications Warehouse

    Storlazzi, Curt D.; Conaway, Christopher H.; Presto, M. Katherine; Logan, Joshua B.; Cronin, Katherine; van Ormondt, Maarten; Lescinski, Jamie; Harden, E. Lynne; Lacy, Jessica R.; Tonnon, Pieter K.

    2011-01-01

    In the fall and early winter of 2009, a demonstration project was done at Santa Cruz Harbor, California, to determine if 450 m3/day of predominantly (71 percent) mud-sized sediment could be dredged from the inner portion of the harbor and discharged to the coastal ocean without significant impacts to the beach and inner shelf. During the project, more than 7600 m3 of sediment (~5400 m3 of fine-grain material) was dredged during 17 days and discharged approximately 60 m offshore of the harbor at a depth of 2 m on the inner shelf. The U.S. Geological Survey's Pacific Coastal and Marine Science Center was funded by the U.S. Army Corps of Engineers and the Santa Cruz Port District to do an integrated mapping and process study to investigate the fate of the mud-sized sediment dredged from the inner portion of Santa Cruz Harbor and to determine if any of the fine-grain material settled out on the shoreline and/or inner shelf during the fall and early winter of 2009. This was done by collecting highresolution oceanographic and sediment geochemical measurements along the shoreline and on the continental shelf of northern Monterey Bay to monitor the fine-grain sediment dredged from Santa Cruz Harbor and discharged onto the inner shelf. These in place measurements, in conjunction with beach, water column, and seabed surveys, were used as boundary and calibration information for a three-dimensional numerical circulation and sediment dynamics model to better understand the fate of the fine-grain sediment dredged from Santa Cruz Harbor and the potential consequences of disposing this type of material on the beach and on the northern Monterey Bay continental shelf.

  13. Origin of limestone-marlstone cycles: Astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous Western Interior Seaway, USA

    NASA Astrophysics Data System (ADS)

    Eldrett, James S.; Ma, Chao; Bergman, Steven C.; Ozkan, Aysen; Minisini, Daniel; Lutz, Brendan; Jackett, Sarah-Jane; Macaulay, Calum; Kelly, Amy E.

    2015-08-01

    We present an integrated multidisciplinary study of limestone-marlstone couplets from a continuously cored section including parts of the upper Buda Limestone, the entire Eagle Ford Group (Boquillas Formation) and lower Austin Chalk from the Shell Iona-1 research borehole (Texas, USA), which provides a >8 million year (myr) distal, clastic sediment-starved, intrashelf basin record of the early Cenomanian to the earliest Coniacian Stages. Results show that despite variable yet minimal diagenetic overprints, several unambiguous primary environmental signals are preserved and support greater water-mass ventilation and current activity promoting increased silica/carbonate productivity during the deposition of limestone beds compared to deposition of marlstone beds which reflect greater organic matter productivity and preservation. Furthermore, our astronomical analyses demonstrate that the limestone-marlstone couplets in the Iona-1 core reflect climatic forcing driven by solar insolation resulting from integrated Milankovitch periodicities. In particular, we propose that obliquity and precession forcing on the latitudinal distribution of solar insolation may have been responsible for the observed lithological and environmental variations through the Cenomanian, Turonian and Coniacian in this mid-latitude epicontinental sea setting. Our data also suggests that rhythmic lithological alternations deposited in Greenhouse periods, in general, may simply reflect climate-driven cycles related to Earth-Sun dynamics without the need to invoke significant sea-level variations.

  14. Palaeogeography of late Cambrian to early Ordovician sediments in the Amadeus Basin, central Australia

    NASA Astrophysics Data System (ADS)

    Gorter, John D.

    The depositional history of 6 sequences encompassing 18 parasequence of the Late Cambrian to Early Ordovician age in the Amadeus Basin is presented in a seried of generalized paleogeographic maps. As some of the parasequence sets are known to host large deposits of oil and gas, a thorough understanding of the potential reservoir-source rock combinations in the Amadeus Basin is essential for the discovery of further oil and gas reserves in this vast, under-explored basin. The best reservoir rocks in the Pacoota Sandstone are concentrated above the major sequence boundary between the Wallaby and Tempe Vale sequences on the Central Ridge. Poorer reservoirs occur within other sequences (e.g., parasequence set 3 and 13). Parasequence set 3 reservoirs, localized on the Central Ridge, are generally poor but owe their reservoir character to weathering at the pre-Tempe Vale sequence unconformity. Parasequence set 13 reservoirs are also concenterated along the Central Ridge, where small-scale shoaling clastic cycles are better developed. Basal Stairway Sandstone reservoirs in the Mereenie area on the Central Ridge are generally very poor, due to the cementation of the clean sandstone, but should improve to the southwest due to lesser burial-induced silicification. The source potential of the major Arenig organic-rich sediments is concentrated in the transitional zone between parasequence sets 15 and 16. East of West Waterhouse 1 well, these parasequence sets have been eroded and there is no remaining source potential. The transitional source-rich zone is better developed on the Central Ridge than in the Missionary Plain Trough. The Central Ridge is therefore of prime importance in the localization of both reservoir and source rocks in the Late Cambrian and Early Ordovician section of the Amadeus Basin.

  15. Non-linearities in Holocene floodplain sediment storage

    NASA Astrophysics Data System (ADS)

    Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten

    2013-04-01

    Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows

  16. Tracking sediment through the Holocene: Determining anthropogenic contributions to a sediment-rich agricultural system, north-central USA

    NASA Astrophysics Data System (ADS)

    Gran, Karen; Belmont, Patrick; Finnegan, Noah

    2013-04-01

    than modern near-channel erosion rates. Notably, depositional records from a naturally-dammed lake downstream on the upper Mississippi River show a more dramatic 10-fold increase in deposition rates from pre-agricultural times to the present. Sediment fingerprinting shows that pre-agriculture sediment loads were dominated by near-channel sediment sources. As deposition rates rose in the late 1800s and early 1900s, the sources shifted increasingly to agricultural soil erosion. In the past few decades, deposition rates have remained high, but sediment fingerprinting indicates yet another significant shift back to near-channel sources. On-going changes in basin hydrology, from both installation of agricultural drainage systems and on-going climate change have put more water in the rivers, increasing rates of near-channel bank and bluff erosion. This most recent shift in sediment sources has significant implications for turbidity management in the Minnesota River basin.

  17. The measurement of total sediment load in alluvial streams

    USGS Publications Warehouse

    Benedict, P.C.; Matejka, D.Q.; McNown, John S.; Boyer, M.C.

    1953-01-01

    The measurement of the total sediment load transported by streams that flow in alluvial channels has been a perplexing problem to engineers and geologists for over a century. Until the last decade the development of equipment to measure bed load and suspended load was carried on almost independently, and without primary consideration of the fundamental laws governing the transportation of fluvial sediments. French investigators during the nineteenth century described methods of measurement and a mathematical approach for computing the rate of bed-load movement. The comprehensive laboratory investigations by Gilbert early in this century provided data that are still being used for studies of sediment transport. Detailed laboratory investigations of bed-load movement conducted during the last two decades by a number of investigators have resulted in the development of additional mathematical formulas for computing rates of bed-load movement. Likewise, studies of turbulent flow have provided the turbulence suspension theory for suspended sediment as it is known today.

  18. Archean sedimentary styles and early crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1986-01-01

    The distinctions between and implications of early and late Archean sedimentary styles are presented. Early Archean greenstone belts, such as the Barberton of South Africa and those in the eastern Pilbar Block of Australia are characterized by fresh or slightly reworked pyroclastic debris, orthochemical sediments such as carbonates, evaporites, and silica, and biogenic deposits including cherts and stromatolitic units. Terrigenous deposits are rare, and it is suggested that early Archean sediments were deposited on shallow simatic platforms, with little or no components derived from sialic sources. In contrast, late Archean greenstone belts in the Canadian Shield and the Yilgarn Block of Australia contain coarse terrigenous clastic rocks including conglomerate, sandstone, and shale derived largely from sialic basement. Deposition appears to have taken place in deepwater, tectonically unstable environments. These observations are interpreted to indicate that the early Archean greenstone belts formed as anorogenic, shallow water, simatic platforms, with little or no underlying or adjacent continental crust, an environment similar to modern oceanic islands formed over hot spots.

  19. Mixed siliciclastic and carbonate sedimentation within Spar Mountain Member of Ste. Genevieve Limestone, Hamilton County, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, M.J.; Pryor, W.A.

    1985-02-01

    The Spar Mountain Member of the Ste. Genevieve Limestone (middle Mississippian) in Hamilton County, Illinois, consists of 40-60 ft (12-18 m) of interbedded limestones, shales, and sandstones. Five cores and 1400 electric logs were used to delineate two shallowing-upward carbonate cycles and 2 major clastic pulses within the Spar Mountain. Eight lithofacies representing 6 depositional environments were identified. They are: (A) echinoderm-brachiopod dolostone to packstone (outer ramp), (B) ooid-peloidal grainstone (intermediate ramp), (C) skeletal grainstone (intermediate ramp), (D) ooid-molluscan-intraclastic wackestone to grainstone (inner ramp), (E) pelletal-skeletal wackestone (inner ramp), (F) quartzarenite (channelized nearshore), (G) quartz-sublithic arenite to wacke (delta platform),more » and (H) quartz mudstone (prodelta, delta platform). Deposition occurred on a southwest-dipping carbonate ramp, with siliciclastic sediments originating from the northeast. The sequence of facies and their inferred depositional environments record 2 major progradational episodes. Oolitic facies are interpreted to be of tidal-bar belt origin and quartzarenite facies are interpreted to be of delta-distributary channel origin. Their distribution is partially controlled by antecedent and syndepositional topography. Many of these paleotopographic highes are positive features today and yield pinch-out stratigraphic relationships. Paleogeographic reconstructions demonstrate that the primary control on facies distribution was the position of the delta proper along strike. However, depositional topography also influenced sedimentation, particularly in the sand-sized fraction. Using this concept, better prediction of underlying porous buildups (ooid shoals) is possible if thickness of the overlying siliciclastic is known. Within buildups, a complex diagenetic history complicates the distribution of porosity.« less

  20. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Bain, D.; Hillman, A. L.; Pompeani, D. P.; Abbott, M. B.

    2015-12-01

    The remobilization of legacy contamination stored in floodplain sediments remains a threat to ecosystem and human health, particularly with potential changes in global precipitation patterns and flooding regimes. Vehicular and industrial emissions are often the dominant, recognized source of anthropogenic trace metal loadings to ecosystems today. However, loadings from early industrial activities are poorly characterized and potential sources of trace metal inputs. While potential trace metal contamination from these activities is recognized (e.g., the historical use of lead arsenate as a pesticide), the magnitude and distribution of legacy contamination is often unknown. This presentation reconstructs a lake sediment record of trace metal inputs from an oxbow lake in Southwestern Pennsylvania. Sediment cores were analyzed for major and trace metal chemistry, carbon to nitrogen ratios, bulk density, and magnetic susceptibility. Sediment trace metal chemistry in this approximately 250 year record (180 cm) record changes in land use and industry both in the 19th century and the 20th century. Of particular interest is early 19th century loadings of arsenic and calcium to the lake, likely attributable to pesticides and lime used in tanning processes near the lake. After this period of tanning dominated inputs, sediment barium concentrations rise, likely reflecting the onset of coal mining operations and resulting discharge of acid mine drainage to surface waters. In the 20th century portion of our record (70 -20 cm), patterns in sediment zinc, cadmium, and lead concentrations are dominated by the opening and closing of the nearby Donora Zinc Works and the American Steel & Wire Works, infamous facilities in the history of air quality regulation. The most recent sediment chemistry records periods include the enactment of air pollution legislation (~ 35 cm), and the phase out of tetraethyl leaded gasoline (~30 cm). Our study documents the impact of early industry in the

  1. Discriminating between natural and anthropogenic features of the sedimentary record in the coastal Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Trefry, J. H.; Trocine, R. P.; Fox, A. L.; Fox, S. L.; Durell, G.; Kasper, J.

    2016-02-01

    The coastal Beaufort Sea is at a crossroads with respect to the impacts of human activities. Accurate discrimination of regional and global anthropogenic impacts, versus those due to natural physical and biogeochemical processes, is an important tool for managing environmental issues in the Arctic. We have investigated several natural and anthropogenic features in age-dated sediment cores from the coastal Beaufort Sea. For example, Hg enrichment (by 20 to >50% or +20 to 40 ng/g) was identified in some surface sediments using Hg/Al ratios in cores from nearshore, outer shelf and slope environments. Nearshore Hg anomalies, although quite limited in number, have been linked to drilling fluids deposited during oil and gas exploration in the 1980s. In contrast, similar offshore Hg anomalies are likely due to natural sediment diagenesis as previously noted by others in the deeper Arctic Ocean. We also found Ba enrichment in surface sediments that can be best explained by the deposition of natural, Ba-rich suspended particles from the Colville River; yet, Ba enrichment can sometimes be explained by the presence of drilling fluids in sediments near historic drilling sites. Human induced diagenetic changes are likely to follow current increases in river runoff and coastal erosion. Higher deposition rates for sediment and organic carbon in the coastal Beaufort Sea may create future anomalies for As, Cd and other metals. For example, metal anomalies can presently be found in older subsurface sediments where a layer of carbon-rich sediment was previously deposited. Correct identification of natural versus anthropogenic forcing factors that lead to distinct diagenetic features in the sedimentary record will help us to identify problem areas and make informed regulatory decisions.

  2. Extracting a Detailed Magnetostratigraphy From Weakly Magnetized, Oligocene to Early Miocene Sediment Drifts Recovered at IODP Site U1406 (Newfoundland Margin, Northwest Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    van Peer, Tim E.; Xuan, Chuang; Lippert, Peter C.; Liebrand, Diederik; Agnini, Claudia; Wilson, Paul A.

    2017-11-01

    Fine-grained magnetic particles in deep-sea sediments often statistically align with the ambient magnetic field during (and shortly after) deposition and can therefore record geomagnetic reversals. Correlation of these reversals to a geomagnetic polarity time scale is an important geochronological tool that facilitates precise stratigraphic correlation and dating of geological records globally. Sediments often carry a remanence strong enough for confident identification of polarity reversals, but in some cases a low signal-to-noise ratio prevents the construction of a reliable and robust magnetostratigraphy. Here we implement a data-filtering protocol, which can be integrated with the UPmag software package, to automatically reduce the maximum angular deviation and statistically mask noisy data and outliers deemed unsuitable for magnetostratigraphic interpretation. This protocol thus extracts a clearer signal from weakly magnetized sediments recovered at Integrated Ocean Drilling Program (IODP) Expedition 342 Site U1406 (Newfoundland margin, northwest Atlantic Ocean). The resulting magnetostratigraphy, in combination with shipboard and shore-based biostratigraphy, provides an age model for the study interval from IODP Site U1406 between Chrons C6Ar and C9n (˜21-27 Ma). We identify rarely observed geomagnetic directional changes within Chrons C6Br, C7r, and C7Ar, and perhaps within Subchron C8n.1n. Our magnetostratigraphy dates three intervals of unusual stratigraphic behavior within the sediment drifts at IODP Site U1406 on the Newfoundland margin. These lithostratigraphic changes are broadly concurrent with the coldest climatic phases of the middle Oligocene to early Miocene and we hypothesize that they reflect changes in bottom water circulation.

  3. From rifting to orogeny; using sediments to unlock the secrets of the Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Vincent, Stephen; Guo, Li; Lavrishchev, Vladimir; Maynard, James; Harland, Melise

    2017-04-01

    The western Greater Caucasus formed by the tectonic inversion of the western strand of the Greater Caucasus Basin, a Mesozoic rift that opened at the southern margin of Laurasia. Facies analysis has identified fault-bounded regions of basinal, turbiditic and hemipelagic sediments. These are flanked by areas of marginal, shallow marine sediments to the north and south. Subsidence analysis derived from lithology, thickness and palaeowater depth data indicates that the main phase of rifting occurred during the Aalenian to Bajocian synchronous with that in the eastern Alborz and, possibly, the South Caspian Basin. Secondary episodes of subsidence during the late Tithonian to Berriasian and Hauterivian to early Aptian are tentatively linked to initial rifting within the western, and possibly eastern, Black Sea, and during the late Campanian to Danian to the opening of the eastern Black Sea. Initial uplift, subaerial exposure and sediment derivation from the western Greater Caucasus occurred at the Eocene-Oligocene transition. Oligocene and younger sediments on the southern margin of the former basin were derived from the inverting basin and uplifted parts of its northern margin, indicating that the western Greater Caucasus Basin had closed by this time. The previous rift flanks were converted to flexural basins that accumulated thick, typically hemipelagic and turbiditic sediments in the early, underfilled, stage of their development. A predominance of pollen representing a montane forest environment (dominated by Pinacean pollen) within these sediments suggests that the uplifting Caucasian hinterland had a paleoaltitude of around 2 km from Early Oligocene time. The closure of the western Greater Caucasus Basin and significant uplift of the range at c. 34 Ma is earlier than stated in many studies and needs to be incorporated into geodynamic models for the Arabia-Eurasia region.

  4. Geochemistry of Fine-grained Sediments and Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Lyons, T. W.

    2003-12-01

    The nature of detrital sedimentary (siliciclastic) rocks is determined by geological processes that occur in the four main Earth surface environments encountered over the sediment's history from source to final sink: (i) the site of sediment production (provenance), where interactions among bedrock geology, tectonic uplift, and climate control weathering and erosion processes; (ii) the transport path, where the medium of transport, gradient, and distance to the depositional basin may modify the texture and composition of weathered material; (iii) the site of deposition, where a suite of physical, chemical, and biological processes control the nature of sediment accumulation and early burial modification; and (iv) the conditions of later burial, where diagenetic processes may further alter the texture and composition of buried sediments. Many of these geological processes leave characteristic geochemical signatures, making detrital sedimentary rocks one of the most important archives of geochemical data available for reconstructions of ancient Earth surface environments. Although documentation of geochemical data has long been a part of the study of sedimentation (e.g., Twenhofel, 1926, 1950; Pettijohn, 1949; Trask, 1955), the development and application of geochemical methods specific to sedimentary geological problems blossomed in the period following the Second World War ( Degens, 1965; Garrels and Mackenzie, 1971) and culminated in recent years, as reflected by the publication of various texts on marine geochemistry (e.g., Chester, 1990, 2000), biogeochemistry (e.g., Schlesinger, 1991; Libes, 1992), and organic geochemistry (e.g., Tissot and Welte, 1984; Engel and Macko, 1993).Coincident with the growth of these subdisciplines a new focus has emerged in the geological sciences broadly represented under the title of "Earth System Science" (e.g., Kump et al., 1999). Geochemistry has played the central role in this revolution (e.g., Berner, 1980; Garrels and Lerman

  5. Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium

    PubMed Central

    Ma, Jia; Metrick, Michael; Ghirlando, Rodolfo; Zhao, Huaying; Schuck, Peter

    2015-01-01

    Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) is a gold standard for the rigorous determination of macromolecular buoyant molar masses and the thermodynamic study of reversible interactions in solution. A significant experimental drawback is the long time required to attain SE, which is usually on the order of days. We have developed a method for time-optimized SE (toSE) with defined time-varying centrifugal fields that allow SE to be attained in a significantly (up to 10-fold) shorter time than is usually required. To achieve this, numerical Lamm equation solutions for sedimentation in time-varying fields are computed based on initial estimates of macromolecular transport properties. A parameterized rotor-speed schedule is optimized with the goal of achieving a minimal time to equilibrium while limiting transient sample preconcentration at the base of the solution column. The resulting rotor-speed schedule may include multiple over- and underspeeding phases, balancing the formation of gradients from strong sedimentation fluxes with periods of high diffusional transport. The computation is carried out in a new software program called TOSE, which also facilitates convenient experimental implementation. Further, we extend AUC data analysis to sedimentation processes in such time-varying centrifugal fields. Due to the initially high centrifugal fields in toSE and the resulting strong migration, it is possible to extract sedimentation coefficient distributions from the early data. This can provide better estimates of the size of macromolecular complexes and report on sample homogeneity early on, which may be used to further refine the prediction of the rotor-speed schedule. In this manner, the toSE experiment can be adapted in real time to the system under study, maximizing both the information content and the time efficiency of SE experiments. PMID:26287634

  6. Removal of organic contaminant toxicity from sediments - Early work toward development of a toxicity identification evaluation (TIE) method

    USGS Publications Warehouse

    Lebo, J.A.; Huckins, J.N.; Petty, J.D.; Ho, K.T.

    1999-01-01

    Work was performed to determine the feasibility of selectively detoxifying organic contaminants in sediments. The results of this research will be used to aid in the development of a scheme for whole-sediment toxicity identification evaluations (TIEs). The context in which the method will be used inherently restricts the treatments to which the sediments can be subjected: Sediments cannot be significantly altered physically or chemically and the presence and bioavailabilities of other toxicants must not be changed. The methodological problem is daunting because of the requirement that the detoxification method be relatively fast and convenient together with the stipulation that only innocuous and minimally invasive treatments be used. Some of the experiments described here dealt with degrees of decontamination (i.e., detoxification as predicted from instrumental measurements) of spiked sediments rather than with degrees of detoxification as gauged by toxicity tests (e.g., 48-h toxicity tests with amphipods). Although the larger TIE scheme itself is mostly outside the scope of this paper, theoretical aspects of bioavailability and of the desorption of organic contaminants from sediments are discussed.

  7. Detection of diagenetic processes in bones: the case of Arkoudospilia cave, N. Greece

    NASA Astrophysics Data System (ADS)

    Zisi, Nikoleta; Dotsika, Elissavet; Tsoukala, Evangelia; Psomiadis, David

    2010-05-01

    Diagenesis of bone material over geological time is a highly complex phenomenon involving the physical, chemical, histological and mechanical alterations that occur at different time scales from the time of death to present and depend on the local geochemical conditions. The significance of diagenesis and the information that can provide its decoding, led to its study by a variety of physicochemical techniques. Despite serious research efforts, a detailed scenario of bone diagenesis remains elusive. The δ18O of the carbonate material of hydroxyapatite of the bones is though to be a good indicator of the δ18O of the local water precipitation and therefore can be used for palaeoclimatic reconstraction, while δ13C is used for definition of palaeodiet habits. The study of isotopic composition requires the detection of the diagenetic degree, because both δ18O and δ13C can be contaminated by these processes. Stable carbon and oxygen isotope values (δ13C, δ18O) were obtained for structural carbonate in the hydroxy-apatite of bear bones from Arkoudospilia Cave, Pella, N. Greece. The age range of the fossil layers is from 32ka BP to a maximum of 38ka BP (radiocarbon dating). The findings belong to Ursus ingressus, an extinct cave bear. The difficulty in studying an extinct species lies to the fact that it cannot be easily correlated with a present one, so it is impossible to determine the diagenesis by the analytical deviation. However, in order to include the environmental and climatic differences of the past and modern bear habitats, the isotopic composition of the water should be also included in the study. Cave bears are considered to be endemic in Europe. The shortage of data in literature concerning cave bears isotopic analyses in combination with the burden of the difficulties in spotting and sampling such rare materials makes difficult to compare the results of a study. The diet and the physiology of this species are not well known. However the morphology of

  8. Paleomagnetism and environmental magnetism of GLAD800 sediment cores from Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Heil, C.W.; King, J.W.; Rosenbaum, J.G.; Reynolds, R.L.; Colman, Steven M.

    2009-01-01

    A ???220,000-year record recovered in a 120-m-long sediment core from Bear Lake, Utah and Idaho, provides an opportunity to reconstruct climate change in the Great Basin and compare it with global climate records. Paleomagnetic data exhibit a geomagnetic feature that possibly occurred during the Laschamp excursion (ca. 40 ka). Although the feature does not exhibit excursional behavior (???40?? departure from the expected value), it might provide an additional age constraint for the sequence. Temporal changes in salinity, which are likely related to changes in freshwater input (mainly through the Bear River) or evaporation, are indicated by variations in mineral magnetic properties. These changes are represented by intervals with preserved detrital Fe-oxide minerals and with varying degrees of diagenetic alteration, including sulfidization. On the basis of these changes, the Bear Lake sequence is divided into seven mineral magnetic zones. The differing magnetic mineralogies among these zones reflect changes in deposition, preservation, and formation of magnetic phases related to factors such as lake level, river input, and water chemistry. The occurrence of greigite and pyrite in the lake sediments corresponds to periods of higher salinity. Pyrite is most abundant in intervals of highest salinity, suggesting that the extent of sulfidization is limited by the availability of SO42-. During MIS 2 (zone II), Bear Lake transgressed to capture the Bear River, resulting in deposition of glacially derived hematite-rich detritus from the Uinta Mountains. Millennial-scale variations in the hematite content of Bear Lake sediments during the last glacial maximum (zone II) resemble Dansgaard-Oeschger (D-O) oscillations and Heinrich events (within dating uncertainties), suggesting that the influence of millennial-scale climate oscillations can extend beyond the North Atlantic and influence climate of the Great Basin. The magnetic mineralogy of zones IV-VII (MIS 5, 6, and 7

  9. The Geologic Signature of Anaerobic Oxidation of Methane (Invited)

    NASA Astrophysics Data System (ADS)

    Ussler, W.; Paull, C. K.

    2010-12-01

    authigenic carbonates may be appear in the geologic record. Based on the stochiometry of the AOM reaction [CH4 + SO4= → HCO3- + HS-], HCO3- and HS- should occur in a 1:1 molar ratio in sediment pore water. Methane-derived carbonates are common in methane-rich sediments and methane venting areas, however the corresponding amount of HS- precipitated as iron monosulfides (FeS) is not. The prediction, based on their molecular weights and densities, is that the volume ratio of authigenic carbonate to FeS should be 2:1. However, in anoxic Black Sea sediments, where a high degree of preservation would be expected, the authigenic carbonate to FeS ratio is ~50:1. Massive accumulations of FeS associated with authigenic carbonates have not been observed. There are a number of fates for the HS- produced by AOM: (1) HS- is oxidized in situ adding sulfate back to the pore water pool; (2) HS- selectively diffuses (relative to HCO3-) towards the seafloor and is oxidized in the benthic water column; or (3) FeS precipitates, but is oxidized when authigenic carbonates are exhumed leaving a vuggy texture. None of these explanations are entirely satisfactory for the early diagenetic loss of HS- from sediments, but strongly suggest that massive accumulations of FeS derived from AOM will not be found in the geologic record.

  10. Linking microbial assemblages to paleoenvironmental conditions from the Holocene and Last Glacial Maximum times in Laguna Potrok Aike sediments, Argentina

    NASA Astrophysics Data System (ADS)

    Vuillemin, Aurele; Ariztegui, Daniel; Leavitt, Peter R.; Bunting, Lynda

    2014-05-01

    subsaline conditions producing methane with a high potential of organic matter degradation. In contrast, sediments rich in volcanic detritus from the Last Glacial Maximum showed a substantial presence of lithotrophic microorganisms and sulphate-reducing bacteria mediating authigenic minerals. Together, these features suggested that microbial communities developed in response to climatic control of lake and catchment productivity at the time of sediment deposition. Prevailing climatic conditions exerted a hierarchical control on the microbial composition of lake sediments by regulating the influx of organic and inorganic material to the lake basin, which in turn determined water column chemistry, production and sedimentation of particulate material, resulting in the different niches sheltering these microbial assemblages. Moreover, it demonstrated that environmental DNA can constitute sedimentary archives of phylogenetic diversity and diagenetic processes over tens of millennia.

  11. Early Cretaceous to Paleocene North American Drainage Reorganization and Sediment Routing from Detrital Zircons: Significance to the Alberta Oil Sands and Gulf of Mexico Petroleum Provinces

    NASA Astrophysics Data System (ADS)

    Blum, M. D.

    2014-12-01

    Detrital zircons (DZs) represent a powerful tool for reconstructing continental paleodrainage. This paper uses new DZ data from Lower Cretaceous strata of the Alberta foreland basin, and Upper Cretaceous and Cenozoic strata of the Gulf of Mexico passive margin, to reconstruct paleodrainage and sediment routing, and illustrate significance to giant hydrocarbon systems. DZ populations from the Lower Cretaceous Mannville Group of Alberta and Saskatchewan infer a continental-scale river system that routed sediment from the eastern 2/3rds of North America to the Boreal Sea. Aptian McMurray Formation fluvial sands were derived from a drainage sourced in the Appalachians that was similar in scale to the modern Amazon. Albian fluvial sandstones of the Clearwater and Grand Rapids Formations were derived from the same Appalachian-sourced drainage area, which had expanded to include tributaries from the Cordilleran arc of the northwest US and southwest Canada. DZ populations from the Gulf of Mexico coastal plain complement this view, showing that only the southern US and Appalachian-Ouachita cordillera was integrated with the Gulf through the Late Cretaceous. However, by the Paleocene, drainage from the US Western Cordillera to the Appalachians had been routed to the Gulf of Mexico, establishing the template for sediment routing that persists today. The paleodrainage reorganization and changes in sediment routing described above played key roles in establishment of the Alberta oil sands and Gulf of Mexico as giant petroleum provinces. Early Cretaceous routing of a continental-scale fluvial system to the Alberta foreland provided large and contiguous fluvial point-bar sand bodies that became economically viable reservoirs, whereas mid- to late Cretaceous drainage reorganization routed greatly increased sediment loads to the Gulf of Mexico, which loaded the shelf, matured source rocks, and drove the gravitational and salt tectonics that helped establish the working hydrocarbon

  12. Palaeomagnetism and geochemistry of Early Palaeozoic rocks of the Barrandian (Teplé-Barrandian Unit, Bohemian Massif): palaeotectonic implications

    NASA Astrophysics Data System (ADS)

    Patočka, F.; Pruner, P.; Štorch, P.

    The Barrandian area (the Teplá-Barrandian unit, Bohemian Massif) provided palaeomagnetic results on Early Palaeozoic rocks and chemical data on siliciclastic sediments of both Middle Cambrian and Early Ordovician to Middle Devonian sedimentary sequences; an outcoming interpretation defined source areas of clastic material and palaeotectonic settings of the siliciclastic rock deposition. The siliciclastic rocks of the earliest Palaeozoic sedimentation cycle, deposited in the Cambrian Příbram-Jince Basin of the Barrandian, were derived from an early Cadomian volcanic island arc developed on Neoproterozoic oceanic lithosphere and accreted to a Cadomian active margin of northwestern Gondwana. Inversion of relief terminated the Cambrian sedimentation, and a successory Prague Basin subsided nearby since Tremadocian. Source area of the Ordovician and Early Silurian shallow-marine siliciclastic sediments corresponded to progressively dissected crust of continental arc/active continental margin type of Cadomian age. Since Late Ordovician onwards both synsedimentary within-plate basic volcanics and older sediments had been contributing in recognizable proportions to the siliciclastic rocks. The siliciclastic sedimentation was replaced by deposition of carbonate rocks throughout late Early Silurian to Early Devonian period of withdrawal of the Cadomian clastic material source. Above the carbonates an early Givetian flysch-like siliciclastic suite completed sedimentation in the Barrandian. In times between Middle Cambrian and Early/Middle Devonian boundary interval an extensional tectonic setting prevailed in the Teplá-Barrandian unit. The extensional regime was related to Early Palaeozoic large-scale fragmentation of the Cadomian belt of northwestern Gondwana and origin of Armorican microcontinent assemblage. The Teplá-Barrandian unit was also engaged in a peri-equatorially oriented drift of Armorican microcontinent assemblage throughout the Early Palaeozoic: respective

  13. Sediment deposition in the White River Reservoir, northwestern Wisconsin

    USGS Publications Warehouse

    Batten, W.G.; Hindall, S.M.

    1980-01-01

    The history of deposition in the White River Reservoir was reconstructed from a study of sediment in the reservoir. Suspended-sediment concentrations, particle size, and streamflow characteristics were measured at gaging stations upstream and downstream from the reservoir from November 1975 through September 1977. Characteristics of the sediments were determined from borings and samples taken while the reservoir was drained in September 1976. The sediment surface and the pre-reservoir topography were mapped. Sediment thickness ranged from less than 1 foot near the shore to more than 20 feet in the old stream channel. The original reservoir capacity and the volume of deposited sediment were calculated to be 815 acre-feet and 487 acre-feet, respectively. Sediment size ranged from clay and silt in the pool area to large cobbles and boulders at the upstream end of the reservoir. Analyses of all samples averaged 43 percent sand, 40 percent silt, and 17 percent clay, and particle size typically increased upstream. Cobbles, boulders, and gravel deposits were not sampled. The average density of the deposited sediment was about 80 pounds per cubic foot for the entire reservoir. The reservoir was able to trap about 80 percent of the sediment entering from upstream, early in its history. This trap efficiency has declined as the reservoir filled with sediment. Today (1976), it traps only sand and silt-sized sediment, or only about 20 percent of the sediment entering from upstream. Data collected during this study indicate that essentially all of the clay-sized sediment (<0.062 mm) passes through the reservoir. The gross rate of deposition was 7.0 acre-feet per year over the reservoir history, 1907-76. Rates during 1907-63 and 1963-76 were 7.4 and 5.7 acre-feet per year, respectively, determined by the cesium-137 method. Based on scant data, the average annual sediment yield of the total 279 square mile drainage area above the gaging station at the powerhouse was about 50 tons

  14. Search for Martian fossil communities: Science strategies, sediment sites, and sample handling

    NASA Technical Reports Server (NTRS)

    Desmarais, David J.

    1988-01-01

    The strategy for locating and sampling possible fossilized Martian organisms benefits from our experience with fossil microbial ecosystems on Earth. Evidence of early life is typically preserved as stromatolites in carbonates and cherts, and as microfossils in cherts, carbonates and shales. Stromatolites, which are laminated flat or domal structures built by microbial communities, are very likely the oldest and most widespread relics of early life. These communities flourished in supratidal to subtidal coastal benthic environments, wherever sunlight was available and where incoming sediments were insufficient to bury the communities before they became established. A logical site for such communities on Mars might be those areas in an ancient lake bed which were furthest from sediment input, but were still sufficiently shallow to have received sunlight. Therefore, although some sites within Valles Marineris might have contained ponded water, the possibly abundant sediment inputs might have overwhelmed stromatolite-like communities. Localized depressions which acted as catchment basins for ancient branched valley systems might be superior sites. Perhaps such depressions received drainage which, because of the relatively modest water discharges implied for these streams, was relatively low in transported sediment. Multiple streams converging on a single basin might have been able to maintain a shallow water environment for extended periods of time.

  15. Combining Textural Techniques to Explore Effects of Diagenesis and Low-grade Metamorphism on Iron Mineralogy and Iron Speciation

    NASA Astrophysics Data System (ADS)

    Slotznick, S. P.; Webb, S.; Eiler, J. M.; Kirschvink, J. L.; Fischer, W. W.

    2016-12-01

    Iron chemistry and mineralogy in the sedimentary rocks provide a valuable tool for studying paleoenvironmental conditions due to the fact that iron atoms can take on either the +II or +III valence state under geological redox conditions. One method utilizing this redox chemistry is `iron speciation', a bulk chemical sequential extraction technique that maps proportions of iron species to redox conditions empirically calibrated from modern sediments. However, all Precambrian and many Phanerozoic rocks have experienced post-depositional processes; it is vital to explore their effects on iron mineralogy and speciation. We combined light and electron microscopy, magnetic microscopy, (synchrotron-based) microprobe x-ray spectroscopy, and rock magnetic measurements in order to deconvolve secondary overprints from primary phases and provide quantitative measurement of iron minerals. These techniques were applied to excellently-preserved shale and siltstone samples of the 1.4 Ga lower Belt Supergroup, Montana and Idaho, USA, spanning a metamorphic gradient from sub-biotite to garnet zone. Previously measured Silurian-Devonian shales, sandstones, and carbonates in Maine and Vermont, USA spanning from the chlorite to kyanite zone provided additional well-constrained, quantitative data for comparison and to extend our analysis. In all of the studied samples, pyrrhotite formation occurred at the sub-biotite or sub-chlorite zone. Pyrrhotite was interpreted to form from pyrite and/or other iron phases based on lithology; these reactions can affect the paleoredox proxy. Iron carbonates can also severely influence iron speciation results since they often form in anoxic pore fluids during diagenesis; textural analyses of the Belt Supergroup samples highlighted that iron-bearing carbonates were early diagenetic cements or later diagenetic overprints. The inclusion of iron from diagenetic minerals during iron speciation analyses will skew results by providing a view of pore

  16. Coastal circulation and sediment dynamics in Hanalei Bay, Kaua'i, Hawaii: Part II: tracking recent fluvial sedimentation; isotope stratigraphy obtained in Summer 2005

    USGS Publications Warehouse

    Draut, Amy E.; Field, Michael E.; Bothner, Michael H.; Logan, Joshua B.; Casso, Michael A.; Baldwin, Sandra M.; Storlazzi, Curt D.

    2006-01-01

    collected again at the same sites discussed here during early and late summer 2006. If possible, additional sites will be sampled in the Black Hole depocenter near the river mouth. Major floods in winter and spring 2006 are expected to leave a significant new sediment signal in the bay that should be detected in summer 2006.

  17. Phorbin steryl esters in Black Sea sediment traps and sediments: A preliminary evaluation of their paleooceanographic potential

    NASA Astrophysics Data System (ADS)

    King, Linda L.; Repeta, Daniel J.

    1994-10-01

    The distributions of pyropheophorbide- a steryl esters in one-year deployments of sediment traps at two locations in the Black Sea are described. In nearly all our trap samples, phorbin steryl esters (PSEs) contribute a significant portion of the total phorbin flux. The relative abundances of sterols esterified to pyropheophorbide- a varied throughout the year, and we suggest these changes result from the observed seasonal variation of phytoplankton species in the overlying water column. The distribution of free sterols in a one-year composite sediment trap sample closely approximates the distribution of sterols derived from the hydrolysis of sedimentary PSEs collected at an adjacent site. From these results, we suggest that the distribution of sedimentary PSE sterols provides a record of sterol deposition to the sediment-water interface. Esterification of sterols to pyropheophorbide- a apparently prevents the preferential removal of 4-desmethyl sterols relative to 4-methyl sterols, and the reduction of stenols to stanols during degradation. Analysis of PSEs in a gravity core covering the last 8-10 Kyr shows that the abundance and distribution of PSEs change with downcore variations in sedimentology. Detailed analysis of PSEs in sediments may, therefore, provide a means to evaluate paleooceanographic changes in phytoplankton community structure and sterol early diagenesis. The synthesis, NMR, CI-MS, and visible spectroscopic properties of four abundant PSEs found in the Black Sea are also described.

  18. SEDIMENT REMOVAL

    EPA Science Inventory

    When properly conducted, sediment removal is an effective lake management technique. This chapter describes: (1) purposes of sediment removal, (2) environmental concerns, (3) appropriate depth of sediment removal, (4) sediment removal techniques, (5) suitable lake conditions, (6)...

  19. A new model of the formation of Pennsylvanian iron carbonate concretions hosting exceptional soft-bodied fossils in Mazon Creek, Illinois.

    PubMed

    Cotroneo, S; Schiffbauer, J D; McCoy, V E; Wortmann, U G; Darroch, S A F; Peng, Y; Laflamme, M

    2016-11-01

    Preservation of Pennsylvanian-aged (307 Ma) soft-bodied fossils from Mazon Creek, Illinois, USA, is attributed to the formation of siderite concretions, which encapsulate the remains of terrestrial, freshwater, and marine flora and fauna. The narrow range of positive δ 34 S values from pyrite in individual concretions suggests microenvironmentally limited ambient sulfate, which may have been rapidly exhausted by sulfate-reducing bacteria. Tissue of the decaying carcass was rapidly encased by early diagenetic pyrite and siderite produced within the sulfate reduction and methanogenic zones of the sediment, with continuation of the latter resulting in concretion cementation. Cross-sectional isotopic analyses (δ 13 C and δ 18 O) and mineralogical characterization of the concretions point to initiation of preservation in high porosity proto-concretions during the early phases of microbially induced decay. The proto-concretion was cemented prior to compaction of the sediments by siderite as a result of methanogenic production of 13 C-rich bicarbonate-which varies both between Essex and Braidwood concretions and between fossiliferous and unfossiliferous concretions. This work provides the first detailed geochemical study of the Mazon Creek siderite concretions and identifies the range of conditions allowing for exceptional soft-tissue fossil formation as seen at Mazon Creek. © 2016 John Wiley & Sons Ltd.

  20. Distribution of radionuclides in Dardanelle Reservoir sediments.

    PubMed

    Forgy, J R; Epperson, C E; Swindle, D L

    1984-02-01

    Natural and reactor-discharged gamma-ray emitting radionuclides were measured in Dardanelle Reservoir surface sediments taken near the Arkansas Nuclear One Power Plant site. Samples represented several water depths and particle sizes, at 33 locations, in a field survey conducted in early September 1980. Radionuclide contents of dry sediments ranged as follows: natural radioactivity (40K as well as uranium and thorium decay products) 661-1210 Bq/kg; and reactor discharged radioactivity (137Cs, 134Cs, 60Co,, 58Co, 54Mn), no detectable activity to 237 Bq/kg. In general, radionuclide contents were positively correlated with decreasing sediment particle size. The average external whole-body and skin doses from all measurable reactor-discharged radionuclides were calculated according to the mathematical formula for determining external dose from sediment given by the U.S. Nuclear Regulatory Commission (NRC). Inside the discharge embayment near the reactor discharge canal, the doses were 1.7 X 10(-3) mSv/yr to the whole body and 2.0 X 10(-3) mSv/yr to the skin. Outside this area, the doses were 0.15 X 10(-3) and 0.18 X 10(-3) mSv/yr to the whole body and skin, respectively.

  1. The relation between the age of the subconducting slab and the recycling of sediments into the mantle

    NASA Technical Reports Server (NTRS)

    Abbott, D.; Hoffman, S.

    1985-01-01

    The recycling of sediments into the mantle has become an important issue because recent papers have suggested that the geochemical inverse models of the evolution of radiogenic isotope abundances over the history of the Earth have nonunique solutions. Both the recycling of continent-derived sediments into the mantle and mixing in the mantle could produce similar geochemical effects in the mean isotopic ratios of new igneous material emplaced in continents. Recent models of Archaean heat flow and of plate tectonics during early Earth history have demonstrated that higher internal heat production of the early Earth was mainly dissipated through a higher creation rate of oceanic lithosphere. If the seafloor creation rate was higher on the early Earth, then the residence time of any one piece of oceanic lithosphere on the surface would have been shorter. It is possible that a higher rate of recycling of oceanic lithosphere into the mantle could have resulted in some transport of sediment into the mantle.

  2. Geochemical and Visual Indicators of Hydrothermal Fluid Flow through a Sediment-Hosted Volcanic Ridge in the Central Bransfield Basin (Antarctica)

    PubMed Central

    Aquilina, Alfred; Connelly, Douglas P.; Copley, Jon T.; Green, Darryl R. H.; Hawkes, Jeffrey A.; Hepburn, Laura E.; Huvenne, Veerle A. I.; Marsh, Leigh; Mills, Rachel A.; Tyler, Paul A.

    2013-01-01

    In the austral summer of 2011 we undertook an investigation of three volcanic highs in the Central Bransfield Basin, Antarctica, in search of hydrothermal activity and associated fauna to assess changes since previous surveys and to evaluate the extent of hydrothermalism in this basin. At Hook Ridge, a submarine volcanic edifice at the eastern end of the basin, anomalies in water column redox potential (Eh) were detected close to the seafloor, unaccompanied by temperature or turbidity anomalies, indicating low-temperature hydrothermal discharge. Seepage was manifested as shimmering water emanating from the sediment and from mineralised structures on the seafloor; recognisable vent endemic fauna were not observed. Pore fluids extracted from Hook Ridge sediment were depleted in chloride, sulfate and magnesium by up to 8% relative to seawater, enriched in lithium, boron and calcium, and had a distinct strontium isotope composition (87Sr/86Sr  = 0.708776 at core base) compared with modern seawater (87Sr/86Sr ≈0.70918), indicating advection of hydrothermal fluid through sediment at this site. Biogeochemical zonation of redox active species implies significant moderation of the hydrothermal fluid with in situ diagenetic processes. At Middle Sister, the central ridge of the Three Sisters complex located about 100 km southwest of Hook Ridge, small water column Eh anomalies were detected but visual observations of the seafloor and pore fluid profiles provided no evidence of active hydrothermal circulation. At The Axe, located about 50 km southwest of Three Sisters, no water column anomalies in Eh, temperature or turbidity were detected. These observations demonstrate that the temperature anomalies observed in previous surveys are episodic features, and suggest that hydrothermal circulation in the Bransfield Strait is ephemeral in nature and therefore may not support vent biota. PMID:23359806

  3. Sedimentation in the Kane fracture zone, western North Atlantic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaroslow, G.E.

    1991-03-01

    The Kane fracture zone, a deep narrow trough in oceanic crust, has provided an ideal depocenter for reservation on the seismic stratigraphic record of the North Atlantic basin. The acoustic stratigraphy in single-channel and multichannel seismic reflection profiles crossing the Kane fracture zone in the western North Atlantic has been examined in order to scrutinize age processes within a fracture zone. Maps of total sediment thickness have provided insight into overall sediment distribution and the influence of topography on sedimentation. Eight reflectors have been traced and correlated with lithostratigraphy at Deep Sea Drilling Project (DSDP) sites. The Bermuda Rise, amore » prominent topographic feature, has had a profound effect on the distribution of sediments within the fracture zone. Since late Eocene, the rise has blocked transport by turbidity currents of terrigenous sediments to distal portions of the fracture valley. A 1,000-m-thick turbidite pond within the fracture zone east of the Bermuda Rise has been determined to have been derived from local sources. Within the ponded sequence a seismic discontinuity is estimated to be early Oligocene and postdates the emergence of the Bermuda Rise, adding an independent age constraint on the development of the rise. The pond terminates against a structural dam at 55{degree}20W, east of which the fracture zone is essentially sediment starved.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goni, M.A.; Hedges, J.I.

    Whole green, litter, and sedimentary fir, hemlock, and cedar needles and bulk sediments collected from the Dabob Bay region in Washington state were analyzed for their cutin-derived CuO reaction products. Cutin acids accounted for {approximately}3% of tissue C in green needles, {approximately}4% in needle litter, 0.5-1.5% in sedimentary needles, and about 0.1% of the organic carbon (OC) in bulk sediments. Approximately 80% of the original cutin acids in fresh green needles were lost from the deepest ({approximately}100 years old) sedimentary tissues. Cutin was more reactive than lignin and polysaccharides, but more stable than the cyclitol components of the same needles.more » Comparative diagenetic losses of the individual cutin acids were not uniform and suggest that additional hydroxy groups and the presence of C double bonds both increase overall reactivity. Diagenetically induced changes in the various cutin parameters used to characterize nonwoody vascular plant tissues were not large enough to confuse degraded conifer tissues with other cutin sources. Based on these trends, the finely disseminated cutin-bearing tissues in Dabob Bay sediments appear to be comprised approximately of equal amounts of highly degraded fir/hemlock and cedar needle fragments. According to this estimate, nonwoody vascular plant debris accounted for roughly 15% of the total organic matter present in these sediments.« less

  5. Tracking Changes in Iron Mineralogy Through Time in Gale Crater and Terrestrial Analogues

    NASA Astrophysics Data System (ADS)

    Sheppard, R.; Milliken, R.; Russell, J. M.

    2017-12-01

    Iron and other redox-sensitive elements measured in ancient mudstones of Gale Crater, Mars by the Curiosity rover can provide information on past climate and interactions between water and the early atmosphere. Preserved ferrous mineralogy can constrain lake bottom water conditions and potentially the relative position of the oxycline and/or shoreline through the stratigraphic section. Multiple oxidation states in a given assemblage may also indicate a potential energy source for microbes. The X-ray amorphous fraction of all rocks measured in Gale Crater to date is also enigmatic: it can constitute up to 50 wt% of the sediment but the precise composition and formation conditions are unknown. Features similar to those in the martian mudstones are seen in sediments from the terrestrial redox-stratified Lake Towuti, including alternating ferrous and ferric mineralogy and an abundant Fe-rich X-ray amorphous phase. To constrain conditions in the water column and early diagenetic processes, we present trends in chemistry and mineralogy for sediment acquired from soils in the mafic/ultramafic catchment and lake bottom/core samples. The soils contain high abundances of crystalline Fe-oxides (e.g. magnetite, goethite, hematite), whereas sediment from the very surface of the lake bottom maintain high Fe but not in crystalline form based on XRD. This suggests Fe is being rapidly cycled to form amorphous phases after entering the lake. Sequential extractions to isolate highly reactive iron (e.g. ferrihydrite) will be used to confirm the relative abundance of poorly crystalline phases in catchment versus lake sediment. Sediments from a 150 m core representing 1 Myr lake history also maintain high Fe content and distinct alternating bands of red and green sediment, but there are no crystalline Fe-oxides discernible in XRD data. The process(es) and timescale for this switching is not yet known, but understanding the conditions that allow ferrous vs. ferric iron to form, and what

  6. Relationship between karstification and burial dolomitization in Permian platform carbonates (Lower Khuff - Oman)

    NASA Astrophysics Data System (ADS)

    Beckert, Julia; Vandeginste, Veerle; John, Cédric M.

    2016-08-01

    Large breccia fabrics associated with karst constitute an important structure in massive limestone successions. The dimensions and shapes of breccia structures are controlled by the initial fracture pattern of the limestone and preferential pathways of the karstifying fluids, but subsequently breccia fabrics can also govern the migration of later fluids. Therefore, breccias are highly relevant features to capture for reservoir characterisation. Outcrop analogues for Lower Khuff units in the Middle East present in the Central Oman Mountains reveal brecciated fabrics up to 10s of metres in diameter. These brecciated units are closely associated with dolomite bodies of late diagenetic origin. Based on an integrated set of data, the breccias are interpreted as collapsed karst cavities either formed by meteoric or hypogenic fluids. The exact origin of the fluids could not be constrained due to an overprint by later dolomitizing fluids. Based on the composition of the clasts and matrix in the breccias, two dolomitization events are interpreted to have affected the succession, one prior to (early diagenetic [ED] dolomite) and one after brecciation (late diagenetic [DT2] dolomite). Dolomite of shallow burial origin (ED dolomite) was only observed as clasts within breccia and is much more frequent than late diagenetic (medium to deep burial) dolomite clasts. Thus, the timing of the brecciation and collapse is assumed to postdate shallow burial early diagenetic dolomitization. Late diagenetic replacive dolomite (DT2 dolomite) forms 90% of the matrix in the breccia fabrics with the exception of a small area that was not affected by dolomitization, but is rarely present as clasts. Stable isotope measurements [δ18O: - 2.5‰ to - 6‰ VPDB and δ13C: 2.9‰ to 4.8‰ VPDB] suggest a burial origin for the late diagenetic dolomite potentially with the participation of hydrothermal fluids. The dolomitized matrix indicates a migration of late dolomitizing fluids subsequent to or

  7. Holocene sedimentation in Richardson Bay, California

    USGS Publications Warehouse

    Connor, Cathy L.

    1983-01-01

    Examination of foraminifers, diatoms, ostracodes, clay mineralogy, and sediment-size variation from 9 borehole sites along the salt-marsh margins of Richardson Bay reveals a record of gradual infilling of fine-grained estuarine sediments. Over the past 10,000 years this area was transformed from a V-shaped Pleistocene stream valley to a flat-floored arm of the San Francisco Bay estuary. A radiocarbon date obtained from a basal peat overlying nonmarine alluvial sand near the town of Mill Valley indicates that stable salt-marsh vegetation was present in the northwestern arm of Richardson Bay 4600?165 years ago and agrees within error limits with a Holocene sea-level curve developed by Atwater, Hedel, and Helley in 1977 for southern San Francisco Bay. The average sedimentation rate over the last 4600 years is estimated to be 0.2 cm/yr for the inner part of the bay. Comparison of early maps with updated versions as well as studies of marsh plant zonations in disturbed and nondisturbed areas shows that almost half of the marsh in Richardson Bay has been leveed or filled since 1899.

  8. Reconstruction of the sediment flow regime in a semi-arid Mediterranean catchment using check dam sediment information.

    NASA Astrophysics Data System (ADS)

    Bussi, G.; Rodríguez, X.; Francés, F.; Benito, G.; Sánchez-Moya, Y.; Sopeña, A.

    2012-04-01

    When using hydrological and sedimentological models, lack of historical records is often one of the main problems to face, since observed data are essential for model validation. If gauged data are poor or absent, a source of additional proxy data may be the slack-water deposits accumulated in check dams. The aim of this work is to present the result of the reconstruction of the recent hydrological and sediment yield regime of a semi-arid Mediterranean catchment (Rambla del Poyo, Spain, 184 square km) by coupling palaeoflood techniques with a distributed hydrological and sediment cycle model, using as proxy data the sandy slack-water deposits accumulated upstream a small check dam (reservoir volume 2,500 square m) located in the headwater basin (drainage area 13 square km). The solid volume trapped into the reservoir has been estimated using differential GPS data and an interpolation technique. Afterwards, the total solid volume has been disaggregated into various layers (flood units), by means of a stratigraphical description of a depositional sequence in a 3.5 m trench made across the reservoir sediment deposit, taking care of identifying all flood units; the separation between flood units is indicated by a break in deposition. The sedimentary sequence shows evidence of 15 flood events that occurred after the dam construction (early '90). Not all events until the present are included; for the last ones, the stream velocity and energy conditions for generating slack-water deposits were not fulfilled due to the reservoir filling. The volume of each flood unit has been estimated making the hypothesis that layers have a simple pyramidal shape (or wedge); every volume represents an estimation of the sediments trapped into the reservoir corresponding to each flood event. The obtained results have been compared with the results of modeling a 20 year time series (1990 - 2009) with the distributed conceptual hydrological and sediment yield model TETIS-SED, in order to

  9. Fly Ash as a Time Marker for Anthropocene Alluvial Sedimentation

    NASA Astrophysics Data System (ADS)

    Bettis, E. A., III; Grimley, D. A.; Anders, A. M.; Bates, B.; Hannan, E.

    2014-12-01

    Human land use has transformed the landscapes, ecosystems and hydrology of the North American Midcontinent. One widespread impact of this transformation is increased runoff and accelerated soil erosion, which, along with direct human channel modifications and artificial drainage, have dramatically altered hydrologic and ecological conditions in streams and rivers with far-reaching results. A legacy of this change in streams and rivers is preserved on floodplains throughout the region in sediment known as post-settlement alluvium (PSA). Documenting the spatial and temporal pattern of historic floodplain sedimentation in the drainage network is part of a larger effort to understand decadal and century-scale sediment routing through the drainage system and the role of floodplain sedimentation in carbon sequestration. Fly ash, a product of high-temperature coal combustion, began to accumulate on the landscape in the early historic period (c.a.1840-1850 in Iowa and Illinois) as coal-burning technology such as steam engines came into use after 1850; prior to which no source of fly ash was present. Release of fly ash from coal burning in power plants and steam locomotives likely peaked in the early-mid 20th century. Fly ash particles (~ 1 to 10 % magnetic) are identified by their spheroidal shape and range in size from coarse clay to silt (~1-63µ). By identifying the percentage of fly ash spheroids in the magnetic separate (10 - 60µ size range) of a soil or sediment profile, the pre-fly ash Historic surface could be discerned. Application of this technique in selected localities in eastern Iowa (Clear Creek drainage) and central Illinois (Sangamon River drainage) resulted in successful demarcation of the PSA contact in areas where the boundary was physically evident. Bolstered by this success we were able to confidently demark the PSA contact in other settings where the boundary was not as physically evident. This relatively easy to implement, inexpensive tool will

  10. Depositional setting and early diagenesis of the dinosaur eggshell-bearing Aren Fm at Bastus, Late Campanian, south-central Pyrenees

    NASA Astrophysics Data System (ADS)

    Díaz-Molina, Margarita; Kälin, Otto; Benito, M. Isabel; Lopez-Martinez, Nieves; Vicens, Enric

    2007-07-01

    The Late Cretaceous Aren Fm exposed north of Bastus in the Tremp Basin (south-central Pyrenees) preserves an excellent record of dinosaur eggs laid in a marine littoral setting. Different from other cases reported in literature, at the Bastus site the preferential nesting ground was original beach sand. The coastal deposits of Aren Fm can be grouped into four facies assemblages, representing respectively shoreface, beachface, beach ridge plain and backbarrier lagoon environments. Shoreface deposits include fine- to coarse-grained hybrid arenites and subordinate quartz-dominated conglomerates with ripple structures of wave and wave-current origin. Beachface deposits are mainly storm beach conglomerates, but parallel-laminated foreshore arenites locally occur. Backbarrier lagoon deposits comprise of washover sandy conglomerates that grade laterally into sandy lime mudstones, biomicrites and marls. Beach ridge sediment, wherein the bulk of dinosaur eggs and eggshell debris occurs, predominantly is a reddish hybrid arenite that has undergone a complex early diagenetic evolution, including marine and meteoric cementation followed by soil development. The reddish arenites overlie wave-dominated shoreface deposits and in places pass laterally into lagoonal deposits. They originally formed shore ridges, that became stabilized during progradational episodes by pedogenesis (beach ridge, sensu [Otvos, E.G., 2000. Beach ridges—definitions and significance. Geomorphology 32, 83-108.]), which also affected the dinosaur eggs. The eggshell-bearing beach ridge arenites are typically preserved at the top of parasequences forming the systems tracts of a third-order sequence. Thick packages of this facies resulted from aggradation of barrier/beach ridge deposits, whose preservation below surfaces of transgressive erosion was favoured by incipient lithification.

  11. Channel response to sediment release: insights from a paired analysis of dam removal

    USGS Publications Warehouse

    Collins, Mathias J.; Snyder, Noah P.; Boardman, Graham; Banks, William S.; Andrews, Mary; Baker, Matthew E.; Conlon, Maricate; Gellis, Allen; McClain, Serena; Miller, Andrew; Wilcock, Peter

    2017-01-01

    Dam removals with unmanaged sediment releases are good opportunities to learn about channel response to abruptly increased bed material supply. Understanding these events is important because they affect aquatic habitats and human uses of floodplains. A longstanding paradigm in geomorphology holds that response rates to landscape disturbance exponentially decay through time. However, a previous study of the Merrimack Village Dam (MVD) removal on the Souhegan River in New Hampshire, USA, showed that an exponential function poorly described the early geomorphic response. Erosion of impounded sediments there was two-phased. We had an opportunity to quantitatively test the two-phase response model proposed for MVD by extending the record there and comparing it with data from the Simkins Dam removal on the Patapsco River in Maryland, USA. The watershed sizes are the same order of magnitude (102 km2), and at both sites low-head dams were removed (~3–4 m) and ~65 000 m3 of sand-sized sediments were discharged to low-gradient reaches. Analyzing four years of repeat morphometry and sediment surveys at the Simkins site, as well as continuous discharge and turbidity data, we observed the two-phase erosion response described for MVD. In the early phase, approximately 50% of the impounded sediment at Simkins was eroded rapidly during modest flows. After incision to base level and widening, a second phase began when further erosion depended on floods large enough to go over bank and access impounded sediments more distant from the newly-formed channel. Fitting functional forms to the data for both sites, we found that two-phase exponential models with changing decay constants fit the erosion data better than single-phase models. Valley width influences the two-phase erosion responses upstream, but downstream responses appear more closely related to local gradient, sediment re-supply from the upstream impoundments, and base flows.

  12. The usefulness of a sediment bioassay with the gastropod Nassarius reticulatus in tributyltin monitoring programs.

    PubMed

    Laranjeiro, Filipe; Pérez, Sara; Navarro, Patricia; Carrero, José Antonio; Beiras, Ricardo

    2015-11-01

    Despite the use of tributyltin (TBT) had been banned worldwide in 2008 there is still evidence of its deleterious presence in environment. We evaluate the usefulness of a 28days sediment bioassay with Nassarius reticulatus females to monitor TBT pollution, using imposex as endpoint. In addition, butyltins were determined in sediments and tissues, and, whenever posible, imposex was assessed in native N. reticulatus at the same sites where sediments were sampled. In the bioassay, a significant increase in imposex parameters was obtained with three sediments (Vi2, Vi3, and Vi4). No correlation was found between this and TBT concentrations in sediment although good correlations were obtained for TBT in tissues, putting in evidence TBT bioavailability in sediment. A significant decrease in imposex from 2008 to 2013 in native snails was only observed at sites that did not cause any effect in the bioassay. In contrast, imposex levels in 2013 were kept as high as 2008 in one of the sites where a significant imposex increase in the bioassay was observed. The bioassay proves thus to be a practical and ecological relevant tool, as: (i) it can be conducted in sites with no native populations of snails, (ii) it provides early identification of polluted sites, anticipating future imposex levels or early identification of recovering, and (iii) it yields information on the bioavailable fraction of the TBT in the sediment. Therefore, this tool can be of extreme usefulness under the scope of recent European legislative frameworks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Origin and timing of Dauphiné twins in quartz cement in fractured sandstones from diagenetic environments: Insight from fluid inclusions

    NASA Astrophysics Data System (ADS)

    Fall, András; Ukar, Estibalitz; Laubach, Stephen E.

    2016-09-01

    Electron backscattered diffraction techniques (EBSD) show that Dauphiné twins in quartz are widespread in many tectonometamorphic environments. Our study documents that under diagenetic temperatures (< 200 °C) and burial depths < 5 km Dauphiné twins are common in isolated fracture quartz deposits spanning between fracture walls (i.e., quartz bridges) in low-porosity quartz-cemented sandstones. Using examples from East Texas and Colorado cores, we show that twins are associated with crack-seal microstructure and fluid inclusions. Fracture wall-parallel and wall-normal inclusion trails contain coexisting aqueous and hydrocarbon gas inclusions, so homogenization temperatures of aqueous inclusions record true trapping temperatures. Inclusions in alignments normal to fracture walls are large and irregularly shaped compared to those aligned parallel to walls, but both show similar liquid-to-vapor ratios. Stacking transmitted light images with scanning electron microscope cathodoluminescence (SEM-CL) and EBSD images demonstrates that Dauphiné twin boundaries are localized along wall-normal inclusion trails. Trapping temperatures for wall-normal inclusion trails are usually higher than those aligned parallel to the fracture wall. Wall-normal fluid inclusion assemblage temperatures typically match the highest temperatures of wall-parallel assemblages trapped during sequential widening, but not necessarily the most recent. In context of burial histories for these samples, this temperature pattern implies that wall-normal assemblages form at discrete times during or after crack-seal fracture widening. Localization in isolated, potentially high-stress quartz deposits in fractures is compatible with a mechanical origin for these Dauphiné twins. Punctuated temperature values and discrepant sizes and shapes of inclusions in wall-normal trails implies that twinning is a by-product of the formation of the wall-normal inclusion assemblages. The association of Dauphiné twins

  14. Sediment-transport characteristics of Cane Creek, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Carey, W.P.

    1993-01-01

    An investigation of the sediment-transport characteristics of Cane Creek in Lauderdale County, Tennessee, was conducted from 1985-88 to evaluate the potential for channel erosion induced by modifications (realignment and enlargement) and the potential ability of different flows to move bed and bank stabilizing material. Frequently occurring flows in Cane Creek are capable of moving sand-size material (0.0625 - 4.0 millimeters). During floods that equal or exceed the 2-year flood, Cane Creek is capable of moving very coarse gravel (32 - 64 millimeters). Boundary-shear values at bridges, where flow contractions occur, correspond to critical diameters in excess of 100 millimeters. Thus, the areas near bridges, where channel stability is most critical, are the areas where erosive power is greatest. Deepening and widening of Cane Creek has exposed large areas of channel boundary that are a significant source of raindrop-detached sediment during the early stages of a storm before stream flow increases signifi- cantly. This causes suspended-sediment concentration to peak while the flow hydrograph is just beginning to rise. For basins like Cane Creek, where runoff events commonly last less than a day and where variation in discharge and sediment concentrations are large, an estimate of sediment yield based on periodic observations of instantaneous values is subject to considerable uncertainty.

  15. Low sediment loads affect survival of coral recruits: the first weeks are crucial

    NASA Astrophysics Data System (ADS)

    Moeller, Mareen; Nietzer, Samuel; Schils, Tom; Schupp, Peter J.

    2017-03-01

    Increased sedimentation due to anthropogenic activities is a threat to many nearshore coral reefs. The effects on adult corals have been studied extensively and are well known. Studies about the impact of sedimentation on the early life stages of scleractinian corals, however, are rare although recruitment is essential for conserving and restoring coral reefs. Laboratory and in situ experiments with recruits of different age classes focused on the broadcast-spawning species Acropora hyacinthus and the brooding coral Leptastrea purpurea. Recruits were exposed to different sediment loads over three to five weeks. Applied sediment loads were more than one order of magnitude lower than those known to affect survival of adult coral colonies. Growth and survival of newly settled recruits were negatively affected by sediment loads that had no effect on the growth and survival of one-month-old recruits. All experiments indicated that newly settled coral recruits are most sensitive to sedimentation within the first two to four weeks post settlement. The co-occurrence of moderate sedimentation events during and immediately after periods of coral spawning can therefore reduce recruitment success substantially. These findings provide new information to develop comprehensive sediment management plans for the conservation and recovery of coral reefs affected by chronic or acute sedimentation events.

  16. Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources

    DOE PAGES

    Mangold, N.; Thompson, L. M.; Forni, O.; ...

    2016-03-16

    The Curiosity rover has analyzed various detrital sedimentary rocks at Gale Crater, among which fluvial and lacustrine rocks are predominant. Conglomerates correspond both to the coarsest sediments analyzed and the least modified by chemical alteration, enabling us to link their chemistry to that of source rocks on the Gale Crater rims. Here, we report the results of six conglomerate targets analyzed by Alpha-Particle X-ray Spectrometer and 40 analyzed by ChemCam. The bulk chemistry derived by both instruments suggests two distinct end-members for the conglomerate compositions. The first group (Darwin type) is typical of conglomerates analyzed before sol 540; it hasmore » a felsic alkali-rich composition, with a Na 2O/K 2O > 5. The second group (Kimberley type) is typical of conglomerates analyzed between sols 540 and 670 in the vicinity of the Kimberley waypoint; it has an alkali-rich potassic composition with Na 2O/K 2O < 2. The variety of chemistry and igneous textures (when identifiable) of individual clasts suggest that each conglomerate type is a mixture of multiple source rocks. Conglomerate compositions are in agreement with most of the felsic alkali-rich float rock compositions analyzed in the hummocky plains. The average composition of conglomerates can be taken as a proxy of the average igneous crust composition at Gale Crater. Finally, the differences between the composition of conglomerates and that of finer-grained detrital sediments analyzed by the rover suggest modifications by diagenetic processes (especially for Mg enrichments in fine-grained rocks), physical sorting, and mixing with finer-grained material of different composition.« less

  17. Effect of vegetation construction on runoff and sediment yield and runoff erosion ability on slope surface

    NASA Astrophysics Data System (ADS)

    Yang, Chun Xia; Xiao, PeiQing; Li, Li; Jiao, Peng

    2018-06-01

    Land consolidation measures affected the underlying surface erosion environment during the early stage of vegetation construction, and then had an impact on rainfall infiltration, erosion and sediment yield. This paper adopted the field simulated rainfall experiments to analyze the function that pockets site preparation measures affected on rainfall infiltration, runoff sediment yield and runoff erosion ability. The results showed that, the measures can delay the rainfall runoff formation time of the slope by 3'17" and 1'04" respectively. Compared with the same condition of the bare land and natural grassland. The rainfall infiltration coefficient each increased by 76.47% and 14.49%, and infiltration rate increased by 0.26 mm/min and 0.11mm/min respectively; The amount of runoff and sediment yield were reduced because of the pockets site preparation. The amount of runoff reducing rate were 33.51% and 30.49%, and sediment reduction rate were 81.35% and 65.66%, The sediment concentration was decreased by 71.99% and 50.58%; Runoff velocity of bare slope and natural grassland slope decreased by 38.12% and 34.59% respectively after pockets site preparation . The runoff erosion rate decreased by 67.92% and 79.68% respectively. The results will have a great significance for recognizing the effect of water and sediment reduction about vegetation and the existence of its plowing measures at the early period of restoration.

  18. Temporal changes in Ce-anomalies in biogenic apatite from the Upper Cretaceous-Lower Eocene phosphate beds of Morocco. Is there a link to global paleoceanography?

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Ulianov, A.

    2012-12-01

    Shallow marine phosphorites are widespread along the western coast of Morocco. These sediments were deposited in three, first order transgressive-regressive cycles during the late Cretaceous-early Eocene. The layers are exceptionally rich in marine vertebrate fossils and three periods - Maastrichtian, Danian-Thanetian and Ypresian - can be distinguished by the especially abundant selachian fauna. A comprehensive geochemical study is carried out on these biogenic apatite fossils, and here we present trace element data analyzed on enameloid and dentin of shark teeth, coprolites, and bones coming from the Ouled Abdoun and Ganntour Basins. A clear separation is apparent between enameloid and the other archives in terms of the former has lower Cu, Ba, rare earth elements (REE) and U, and higher Zn and Sr concentrations. The REE and U in phosphatic fossils originate almost entirely from early diagenetic pore fluid and thus they can be used as a fingerprint of burial conditions. The above observed differences in the trace element concentrations relate to the originally different structure of these fossils, which means the better crystallized and denser enameloid interacted less with the burial fluid than the other remains. All the fossils revealed very similar shale normalized REE patterns, with negative Ce-anomaly and heavy REE enrichment, which mimics the REE distribution of typical modern seawater. This would indicate that the early diagenetic pore fluid was dominated by seawater, when these fossils gained their REE composition. However, the patterns show small differences with lower La/Sm, and higher La/Yb and Sm/Yb ratios in the coprolites, dentine and bones, which would appear as slight flattening of the patterns on the heavy REE end. This signifies again that these latter archives are more susceptible to interaction with the pore fluid. In contrast, the Ce-anomaly does not vary among the different remains and the values are very similar in a given layer. However

  19. Coastal sedimentation

    NASA Technical Reports Server (NTRS)

    Schubel, J. R.

    1980-01-01

    Several important coastal sedimentation problems are identified. Application of existing or anticipated remote sensing techniques to examine these problems is considered. Specifically, coastal fine particle sediment systems, floods and hy hurricanes and sedimentation f of coastal systems, routes and rates of sediment transport on continental shelves, and dredging and dredged material disposal are discussed.

  20. Suspended sediment and sediment-associated contaminants in San Francisco Bay.

    PubMed

    Schoellhamer, David H; Mumley, Thomas E; Leatherbarrow, Jon E

    2007-09-01

    Water-quality managers desire information on the temporal and spatial variability of contaminant concentrations and the magnitudes of watershed and bed-sediment loads in San Francisco Bay. To help provide this information, the Regional Monitoring Program for Trace Substances in the San Francisco Estuary (RMP) takes advantage of the association of many contaminants with sediment particles by continuously measuring suspended-sediment concentration (SSC), which is an accurate, less costly, and more easily measured surrogate for several trace metals and organic contaminants. Continuous time series of SSC are collected at several sites in the Bay. Although semidiurnal and diurnal tidal fluctuations are present, most of the variability of SSC occurs at fortnightly, monthly, and semiannual tidal time scales. A seasonal cycle of sediment inflow, wind-wave resuspension, and winnowing of fine sediment also is observed. SSC and, thus, sediment-associated contaminants tend to be greater in shallower water, at the landward ends of the Bay, and in several localized estuarine turbidity maxima. Although understanding of sediment transport has improved in the first 10 years of the RMP, determining a simple mass budget of sediment or associated contaminants is confounded by uncertainties regarding sediment flux at boundaries, change in bed-sediment storage, and appropriate modeling techniques. Nevertheless, management of sediment-associated contaminants has improved greatly. Better understanding of sediment and sediment-associated contaminants in the Bay is of great interest to evaluate the value of control actions taken and the need for additional controls.

  1. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars.

    PubMed

    Squyres, S W; Grotzinger, J P; Arvidson, R E; Bell, J F; Calvin, W; Christensen, P R; Clark, B C; Crisp, J A; Farrand, W H; Herkenhoff, K E; Johnson, J R; Klingelhöfer, G; Knoll, A H; McLennan, S M; McSween, H Y; Morris, R V; Rice, J W; Rieder, R; Soderblom, L A

    2004-12-03

    Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.

  2. Temperature and composition of carbonate cements record early structural control on cementation in a nascent deformation band fault zone: Moab Fault, Utah, USA

    NASA Astrophysics Data System (ADS)

    Hodson, Keith R.; Crider, Juliet G.; Huntington, Katharine W.

    2016-10-01

    Fluid-driven cementation and diagenesis within fault zones can influence host rock permeability and rheology, affecting subsequent fluid migration and rock strength. However, there are few constraints on the feedbacks between diagenetic conditions and structural deformation. We investigate the cementation history of a fault-intersection zone on the Moab Fault, a well-studied fault system within the exhumed reservoir rocks of the Paradox Basin, Utah, USA. The fault zone hosts brittle structures recording different stages of deformation, including joints and two types of deformation bands. Using stable isotopes of carbon and oxygen, clumped isotope thermometry, and cathodoluminescence, we identify distinct source fluid compositions for the carbonate cements within the fault damage zone. Each source fluid is associated with different carbonate precipitation temperatures, luminescence characteristics, and styles of structural deformation. Luminescent carbonates appear to be derived from meteoric waters mixing with an organic-rich or magmatic carbon source. These cements have warm precipitation temperatures and are closely associated with jointing, capitalizing on increases in permeability associated with fracturing during faulting and subsequent exhumation. Earlier-formed non-luminescent carbonates have source fluid compositions similar to marine waters, low precipitation temperatures, and are closely associated with deformation bands. The deformation bands formed at shallow depths very early in the burial history, preconditioning the rock for fracturing and associated increases in permeability. Carbonate clumped isotope temperatures allow us to associate structural and diagenetic features with burial history, revealing that structural controls on fluid distribution are established early in the evolution of the host rock and fault zone, before the onset of major displacement.

  3. Toxicity of contaminated sediments in dilution series with control sediments

    USGS Publications Warehouse

    Nelson, M.K.; Landrum, P.F.; Burton, G.A.; Klaine, S.J.; Crecelius, E.A.; Byl, T.D.; Gossiaux, Duane C.; Tsymbal, V.N.; Cleveland, L.; Ingersoll, Christopher G.; Sasson-Brickson, G.

    1993-01-01

    The use of dilutions has been the foundation of our approach for assessing contaminated water, and accordingly, it may be important to establish similar or parallel approaches for sediment dilutions. Test organism responses to dilution gradients can identify the degree of necessary sediment alteration to reduce the toxicity. Using whole sediment dilutions to represent the complex interactions of in situ sediments can identify the toxicity, but the selection of the appropriate diluent for the contaminated sediment may affect the results and conclusions drawn. Contaminated whole sediments were examined to evaluate the toxicity of dilutions of sediments with a diversity of test organisms. Dilutions of the contaminated sediments were prepared with differing diluents that varied in organic carbon content, particle size distribution, and volatile solids. Studies were conducted using four macroinvertebrates and a vascular, rooted plant. Responses by some test organisms followed a sigmoidal dose-response curve, but others followed a U-shaped curve. Initial dilutions reduced toxicity as expected, but further dilution resulted in an increase in toxicity. The type of diluent used was an important factor in assessing the sediment toxicity, because the control soil reduced toxicity more effectively than sand as a diluent of the same sediment. Using sediment chemical and physical characteristics as an indicator of sediment dilution may not be as useful as chemical analysis of contaminants, but warrants further investigation.

  4. Phorbin steryl esters in Black Sea sediment traps and sediments: A preliminary evaluation of their paleooceanographic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, L.L.; Repeta, D.J.

    1994-10-01

    The distributions of pyropheophorbide-a steryl esters in one-year deployments of sediment traps at two locations in the Black Sea are described. In nearly all trap samples, phorbin steryl esters (PSEs) contribute a significant portion of the total phorbin flux. The relative abundances of sterols esterified to pyropheophorbide-a varied throughout the year, and the authors suggest these changes result from the observed seasonal variation of phytoplankton species in the overlying water column. The distribution of free sterols in a one-year composite sediment trap sample closely approximates the distribution of sterols derived from the hydrolysis of sedimentary PSEs collected at an adjacentmore » site. From these results, they suggest that the distribution of sedimentary PSE sterols provides a record of sterol deposition to the sediment-water interface. Esterification of sterols to pyropheophorbide-a apparently prevents the preferential removal of 4-desmethyl sterols relative to 4-methyl sterols, and the reduction of stenols to stanols during degradation. Analysis of PSEs in a gravity core covering the last 8-10 Kyr shows that the abundance and distribution of PSEs change with downcore variations in sedimentology. Detailed analysis of PSEs in sediments may, therefore, provide a means to evaluate paleooceanographic changes in phytoplankton community structure and sterol early diagenesis. The synthesis, NMR, CI-MS, and visible spectroscopic properties of four abundance PSEs found in the Black Sea are also described.« less

  5. Authigenic minerals related to carbon and sulfur biogeochemical cycling from deep-sea active methane seeps offshore South-West Africa

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Blanc-Valleron, M.; Demange, J.; Boudouma, O.; Pape, T.; Himmler, T.; Fekete, N.; Spiess, V.

    2011-12-01

    The South-West African continental margin is well known for occurrences of active methane-rich fluid seeps that are associated with seafloor pockmarks in a broad range of water depths, from the shelf to the deep basins. High gas flares in the water column, luxurious oases of benthic fauna, gas hydrate accumulations and diagenetic carbonate crusts have been observed at these seeps. During the M76/3a expedition of R/V METEOR (summer 2008) gravity cores recovered abundant authigenic carbonate concretions from five pockmarks of the South-West African margin including previously studied sites (Hydrate Hole, Worm Hole, Regab Pockmark) and two sites (Deep Hole, Baboon Cluster) newly discovered during the cruise. Carbonate concretions were mostly associated to sediments settled by seep-associated benthic macrofauna and bearing shallow gas hydrates. We present new results of the comprehensive analysis of the mineralogy and isotope geochemistry of the diagenetic carbonates sampled in the five pockmarks. The mineralogy of authigenic carbonates is dominated by magnesian calcite and aragonite, associated occasionally with dolomite. The oxygen and carbon isotopic compositions of authigenic carbonates (+2.4 < δ18O % V-PDB < +6.2 ; -61.0 < δ13C % V-PDB < -40.1) indicate that microbial anaerobic oxidation of methane (AOM) was the main process controling carbonate precipitation within sub-seafloor sediments deposited from the glacial-time up to the present. The frequent occurrence of diagenetic gypsum crystals within the sediments demonstrates that bio-irrigation with oxygenated bottom water by the burrowing activity of benthic fauna caused the secondary oxidation of reduced sulfur (hydrogen sulfide and pyrite) that was produced by sulfate reducting bacteria as a by-product of AOM; during the sulfide oxidation process, the released acidity induced the partial dissolution of carbonates. Our results demonstrate also the strong link that existed between the carbon and sulfur cycles

  6. Organic carbon accumulation and reactivity in central Swedish lakes during the Holocene

    NASA Astrophysics Data System (ADS)

    Chmiel, H.; Kokic, J.; Niggemann, J.; Dittmar, T.; Sobek, S.

    2012-04-01

    Sedimentation and burial of particulate organic carbon (POC), received from terrestrial sources and from lake internal primary production, are responsible for the progressive accumulation and long-term storage of organic matter in lake basins. For lakes in the boreal zone of central Sweden it can be presumed, that the onset of POC accumulation occurred during the early Holocene (˜8000 BP.) after the retreat of the Scandinavian ice sheet. In this study we investigated carbon mass accumulation rates (CMARs), as well as sources and reactivity of deposited organic material, for seven lakes in central Sweden (60°N, 15°E), in order to obtain a detailed temporal resolution of carbon burial and preservation in boreal lakes. Sediment long-cores were sampled in March 2011 from the ice, and CMARs were calculated from water contents, dry bulk densities, carbon contents and radiocarbon (14C) ages of the depth profiles. To indicate the sources of the organic material and characterize its diagenetic state, we determined carbon-nitrogen ratios (C/N) as well as amounts and compositions of lignin phenols. The transitions from organic rich sediment layers to glacial till deposits were found to be in sediment depths of ˜3 m in each lake. POC contents were on average highest (25-34 wt. % C), in small lakes (≤ 0.07 km2) and lowest (10-18 wt. % C) in the larger lakes (≥ 165 km2). The CMARs over the Holocene showed significant variations and were on average lower in the early Holocene, compared to recent accumulation rates. C/N values and the composition of lignin phenols further provided indications of important changes in organic matter source and reactivity over the Holocene. In summary, our data suggest that boreal lake sediments were a significantly stronger sink for organic carbon during the last ~150 years than during earlier periods of the Holocene.

  7. The Application of 238U/235U as a Redox-Proxy for Past Ocean Chemistry

    NASA Astrophysics Data System (ADS)

    Andersen, M. B.; Westermann, S.; Bahniuk, A.; Vasconcelos, C.; McKenzie, J. A.; Föllmi, K. B.; Vance, D.

    2014-12-01

    The recent discovery of significant variation in 238U/235U caused by redox change at the surface Earth has led to its use to extract information on the oxygenation state of ancient oceans from marine sediments [e.g. 1]. Recent studies have focused on improving the understanding of the 238U/235U signature in modern marine carbonates [2] and black shales [3] to improve the robustness of this tracer. To further advance its use we have focused on improving our understanding of 238U/235U systematics in modern dolomite, another commonly occurring rock-type in the geological record, before turning to 238U/235U signatures in ancient sediments. The measured dolomite samples, precipitated in modern environments of coastal hypersaline lagoons in Brazil, all exhibit 238U/235U values that deviate from the seawater composition [3]. Observed values are both lighter (ca. 130 ppm; as also observed in dolomite from tidal-ponds on Bahamas [2]) and heavier (50-180 ppm). These distinct 238U/235U values for different dolomite-precipitates likely attest to the particular formation style, as well as early diagenetic processes. We use such modern settings to discuss the utility of 238U/235U in ancient sediments, the singularity of any observed 238U/235U signal, its relation to global ocean chemistry and potential diagenetic overprinting. These constraints are then used to evaluate a well-preserved marine carbonate section [4] and published black shale 238U/235U data [1], both deposited during the Oceanic Anoxic Event 2 (93 Ma). We discuss the capabilities of both the carbonate and black shale section for retaining information on the 238U/235U composition in the ocean during OAE 2. [1] Montoya-Pino et al. (2010) Geology, 38, 315-318 [2] Romaniello et al. (2013) 362, 305-316 [3] Andersen et al. (2014) EPSL, 400, 184-194 [4] Westermann et al. (2010) Cret. Res., 31, 500-514

  8. A multi-proxy study of sedimentary humic substances in the salt marsh of the Changjiang Estuary, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoling; Du, Jinzhou; Zhao, Xin; Wu, Wangsuo; Peng, Bo; Zhang, Jing

    2014-12-01

    To better understand the origin, composition, and reactivity of sedimentary humic substances (HSs) in salt marshes in the Changjiang Estuary, HS samples were isolated from a sediment core that was collected from the Eastern Chongming salt marsh. Chemical and spectroscopic methods were used to analyze the features of these HSs. The results indicate that the studied HSs in the salt marsh sediments are mainly terrestrial-derived and that the sedimentary organic matter (SOM) in the top layer may contain more organic matter from marine sources and/or autochthonous materials due to the dramatic decreasing of the sediment supply as a result of damming. The degradation of labile carbohydrates and proteins and the preservation of refractory lignin components dominate the early diagenetic reactions of SOM in the salt marsh area. The average contents of the carboxylic groups in FAs and HAs are 11.64 ± 1.08 and 7.13 ± 0.16 meq/gC, and those of phenolic groups are 1.95 ± 0.13 and 2.40 ± 0.44 meq/gC, respectively. The content of carboxylic groups increased with increasing depth, while there were no obvious changes in the content of phenolic groups. The average concentration of total proton-binding sites is approximately 12.5 μmol/g sediment for the studied HSs. These values may provide insight into the migration and fate of HS-bound contaminants in sediments and the overlying sea water in the salt marsh areas of the Changjiang Estuary.

  9. Cyclic Sediment Trading Between Channel and River Bed Sediments

    NASA Astrophysics Data System (ADS)

    Haddadchi, A.

    2015-12-01

    Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (<10 μm), silts (10-63 μm), and fine sands (63-212 μm). The contribution of the initial soil/rock type sources to river bed and alluvial sediments at each sampling site was identical for all three different size fractions, but varied along the stream. Combining these findings it is concluded that proximal alluvial stores dominated the supply of sediment to the river at each location, with this being particularly evident at the catchment outlet. Identical contribution of rock type sources to both river bed and alluvial pockets together with the dominant erosion being from channel banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.

  10. Influence of sediment storage on downstream delivery of contaminated sediment

    USGS Publications Warehouse

    Malmon, Daniel V.; Reneau, Steven L.; Dunne, Thomas; Katzman, Danny; Drakos, Paul G.

    2005-01-01

    Sediment storage in alluvial valleys can strongly modulate the downstream migration of sediment and associated contaminants through landscapes. Traditional methods for routing contaminated sediment through valleys focus on in‐channel sediment transport but ignore the influence of sediment exchanges with temporary sediment storage reservoirs outside the channel, such as floodplains. In theory, probabilistic analysis of particle trajectories through valleys offers a useful strategy for quantifying the influence of sediment storage on the downstream movement of contaminated sediment. This paper describes a field application and test of this theory, using 137Cs as a sediment tracer over 45 years (1952–1997), downstream of a historical effluent outfall at the Los Alamos National Laboratory (LANL), New Mexico. The theory is parameterized using a sediment budget based on field data and an estimate of the 137Cs release history at the upstream boundary. The uncalibrated model reasonably replicates the approximate magnitude and spatial distribution of channel‐ and floodplain‐stored 137Cs measured in an independent field study. Model runs quantify the role of sediment storage in the long‐term migration of a pulse of contaminated sediment, quantify the downstream impact of upstream mitigation, and mathematically decompose the future 137Cs flux near the LANL property boundary to evaluate the relative contributions of various upstream contaminant sources. The fate of many sediment‐bound contaminants is determined by the relative timescales of contaminant degradation and particle residence time in different types of sedimentary environments. The theory provides a viable approach for quantifying the long‐term movement of contaminated sediment through valleys.

  11. Suspended sediment and sediment-associated contaminants in San Francisco Bay

    USGS Publications Warehouse

    Schoellhamer, D.H.; Mumley, T.E.; Leatherbarrow, J.E.

    2007-01-01

    Water-quality managers desire information on the temporal and spatial variability of contaminant concentrations and the magnitudes of watershed and bed-sediment loads in San Francisco Bay. To help provide this information, the Regional Monitoring Program for Trace Substances in the San Francisco Estuary (RMP) takes advantage of the association of many contaminants with sediment particles by continuously measuring suspended-sediment concentration (SSC), which is an accurate, less costly, and more easily measured surrogate for several trace metals and organic contaminants. Continuous time series of SSC are collected at several sites in the Bay. Although semidiurnal and diurnal tidal fluctuations are present, most of the variability of SSC occurs at fortnightly, monthly, and semiannual tidal time scales. A seasonal cycle of sediment inflow, wind-wave resuspension, and winnowing of fine sediment also is observed. SSC and, thus, sediment-associated contaminants tend to be greater in shallower water, at the landward ends of the Bay, and in several localized estuarine turbidity maxima. Although understanding of sediment transport has improved in the first 10 years of the RMP, determining a simple mass budget of sediment or associated contaminants is confounded by uncertainties regarding sediment flux at boundaries, change in bed-sediment storage, and appropriate modeling techniques. Nevertheless, management of sediment-associated contaminants has improved greatly. Better understanding of sediment and sediment-associated contaminants in the Bay is of great interest to evaluate the value of control actions taken and the need for additional controls. ?? 2007 Elsevier Inc. All rights reserved.

  12. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Zhiyong; Sun, Xiaoming; Strauss, Harald; Lu, Yang; Gong, Junli; Xu, Li; Lu, Hongfeng; Teichert, Barbara M. A.; Peckmann, Jörn

    2017-08-01

    Multiple sulfur isotope signatures and secondary ion mass spectroscopy (SIMS) sulfur isotope compositions of pyrite from two seafloor sites (DH-CL11 and HD109) in seepage areas of the South China Sea were measured in order to study isotope effects of sulfate-driven anaerobic oxidation of methane (SO4-AOM). The multiple sulfur isotopes of pyrite reveal variable ranges for both sites (δ34S: between -44.1‰ and -2.9‰ for DH-CL11 and between -43.8‰ and -1.6‰ for HD109; Δ33S: between 0.02‰ and 0.17‰ for DH-CL11 and between -0.03‰ and 0.14‰ for HD109). SIMS analysis reveals an extreme variability of δ34S values (between -50.3‰ and -2.7‰ in DH-CL11; between -50.1 and 52.4‰ in HD109) for three types of pyrite: (1) framboids, (2) zoned aggregates with radial overgrowth surrounding a framboidal core, and (3) euhedral pyrite crystals. The synchronous changes of geochemical proxies (sulfate and methane concentrations, δ34Ssulfate and δ18Osulfate, δ34Spyrite, and pyrite content) at the sulfate-methane transition zone (SMTZ) at site DH-CL11 are interpreted to be induced by SO4-AOM under steady state conditions. In contrast, pyrite content and δ34S value fluctuations throughout core HD109 suggest that the sediment at this site was affected by multiple pyritization events during diagenesis. Multiple sulfur isotope signatures of early diagenetic pyrite (i.e., with low and high δ34S values, the latter above 315 cmbsf in DH-CL11; above 70 cmbsf in HD109) in the upper sediment column suggest that organoclastic sulfate reduction (OSR) and sulfur disproportionation generated the observed isotopic signatures. In contrast to the early diagenetic 34S depleted framboids, the higher SIMS δ34S values of overgrowth and euhedral crystals suggest a late diagenetic 34S enriched pool of dissolved sulfide derived from SO4-AOM at the current and paleo-SMTZs. Interestingly, pyrite resulting from SO4-AOM in the SMTZ at site DH-CL11 reveals a distinct pattern with higher

  13. Thermal stability of ladderane lipids as determined by hydrous pyrolysis

    USGS Publications Warehouse

    Jaeschke, A.; Lewan, M.D.; Hopmans, E.C.; Schouten, S.; Sinninghe, Damste J.S.

    2008-01-01

    Anaerobic ammonium oxidation (anammox) has been recognized as a major process resulting in loss of fixed inorganic nitrogen in the marine environment. Ladderane lipids, membrane lipids unique to anammox bacteria, have been used as markers for the detection of anammox in marine settings. However, the fate of ladderane lipids after sediment burial and maturation is unknown. In this study, anammox bacterial cell material was artificially matured by hydrous pyrolysis at constant temperatures ranging from 120 to 365 ??C for 72 h to study the stability of ladderane lipids during progressive dia- and catagenesis. HPLC-MS/MS analysis revealed that structural alterations of ladderane lipids already occurred at 120 ??C. At temperatures >140 ??C, ladderane lipids were absent and only more thermally stable products could be detected, i.e., ladderane derivatives in which some of the cyclobutane rings were opened. These diagenetic products of ladderane lipids were still detectable up to temperatures of 260 ??C using GC-MS. Thus, ladderane lipids are unlikely to occur in ancient sediments and sedimentary rocks, but specific diagenetic products of ladderane lipids will likely be present in sediments and sedimentary rocks of relatively low maturity (i.e., C31 hopane 22S/(22S + 22R) ratio 0.5). ?? 2008 Elsevier Ltd.

  14. Influence of sediment presence on freshwater mussel thermal tolerance

    USGS Publications Warehouse

    Archambault, Jennifer M.; Cope, W. Gregory; Kwak, Thomas J.

    2014-01-01

    Median lethal temperature (LT50) data from water-only exposures with the early life stages of freshwater mussels suggest that some species may be living near their upper thermal tolerances. However, evaluation of thermal sensitivity has never been conducted in sediment. Mussels live most of their lives burrowed in sediment, so understanding the effect of sediment on thermal sensitivity is a necessary step in evaluating the effectiveness of the water-only standard method, on which the regulatory framework for potential thermal criteria currently is based, as a test of thermal sensitivity. We developed a method for testing thermal sensitivity of juvenile mussels in sediment and used the method to assess thermal tolerance of 4 species across a range of temperatures common during summer. Stream beds may provide a thermal refuge in the wild, but we hypothesized that the presence of sediment alone does not alter thermal sensitivity. We also evaluated the effects of 2 temperature acclimation levels (22 and 27°C) and 2 water levels (watered and dewatered treatments). We then compared results from the sediment tests to those conducted using the water-only standard methods. We also conducted water-only LT tests with mussel larvae (glochidia) for comparison with the juvenile life stage. We found few consistent differences in thermal tolerance between sediment and water-only treatments, between acclimation temperatures, between waterlevel treatments, among species, or between juvenile and glochidial life stages (LT50 range = 33.3-37.2°C; mean = 35.6°C), supporting our hypothesis that the presence of sediment alone does not alter thermal sensitivity. The method we developed has potential for evaluating the role of other stressors (e.g., contaminants) in a more natural and complex environment.

  15. Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Mueller, Karl; O'Day, Peggy

    2016-04-02

    Objectives of the project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses tested: - Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments frommore » the same formations. - Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media. - Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling capabilities developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering. Experimental design: Hypotheses were tested by comparing (with a similar set of techniques) the geochemical transformations and

  16. Sediment acoustic index method for computing continuous suspended-sediment concentrations

    USGS Publications Warehouse

    Landers, Mark N.; Straub, Timothy D.; Wood, Molly S.; Domanski, Marian M.

    2016-07-11

    Once developed, sediment acoustic index ratings must be validated with additional suspended-sediment samples, beyond the period of record used in the rating development, to verify that the regression model continues to adequately represent sediment conditions within the stream. Changes in ADVM configuration or installation, or replacement with another ADVM, may require development of a new rating. The best practices described in this report can be used to develop continuous estimates of suspended-sediment concentration and load using sediment acoustic surrogates to enable more informed and accurate responses to diverse sedimentation issues.

  17. Interstitial Water Geochemistry and Low Temperature Alteration in Volcaniclastic Sediments from the Amami Sankaku Basin at IODP Site U1438 (Expedition 351)

    NASA Astrophysics Data System (ADS)

    Loudin, L. C.; Yogodzinski, G. M.; Sena, C.; van der Land, C.; Zhang, Z.; Marsaglia, K. M.; Meffre, S.

    2014-12-01

    Interstitial water (IW) geochemistry provides insight into the diagenetic transformation of sediment to rock by component dissolution/alteration and precipitation of new mineral phases as pore-filling cements, as well as providing insight into ion exchange reactions with secondary minerals. At Site U1438, 67 IW samples were collected within a ~950 m section of volcaniclastic sediments. These were analyzed for pH as well as major and trace elements. The corresponding host sediments were mineralogically characterized by XRD and petrographic observations. Three alteration zones are inferred: 1) the upper alteration zone (~0-300 mbsf) characterized by maximum IW concentrations of Si (790.1 μM), Sr (138.5 μM) and Mn (279.5 μM), consistent with volcanic glass and siliceous microfossil dissolution, enhanced reduction of Mn oxides, and carbonate recrystallization. Maximum concentrations in Li and B coupled with the lowest pH (6.7) imply that Li and B are released into the IW due to silicate dissolution and clay desorption. 2) At intermediate depths (~300 to ~550 mbsf) Mg, K, Sr, Si, Mn, Li, and B are at concentration minima, possibly due to growth of authigenic minerals. B and Li minimum concentrations occur at high pH (~9) suggesting that these elements are preferentially removed from high pH waters during the precipitation of clay mineral and zeolite cements in primary and secondary (dissolution) pores. The mineralogy of these phases is confirmed by XRD data, and their pore-filling nature is seen in thin sections of the coarser lithologies. 3) The deep alteration zone (>~550m) is characterized by an increase in B, Li, Sr and Ca. At ~650 mbsf, Ca becomes the dominant cation in solution consistent with either mineral interaction with the IW, or diffusive input from underlying igneous basement (~1400 mbsf).

  18. Origin and Timing of Dauphiné Twins Using Fluid Inclusions in Quartz-Cement Fractures in Sandstones from Diagenetic Environments

    NASA Astrophysics Data System (ADS)

    Fall, A.; Ukar, E.; Laubach, S.

    2016-12-01

    Dauphiné twins in quartz are widespread in many tectonometamorphic environments. Under diagenetic temperatures (<200°C) and burial depths less than 5 km Dauphiné twins are also common in isolated fracture quartz deposits spanning between fracture walls in low-porosity quartz-cemented sandstones. The twin boundaries coincide with fracture wall-normal fluid inclusion trails. The association of Dauphiné twins and fluid inclusion trails from which temperature and possibly timing can be inferred provides a way to research mechanism and timing of twinning, and potentially the magnitude of paleostrain and stress in some diagenetic settings. Using examples from East Texas and Colorado cores, we show that twins are associated with crack-seal microstructure and fluid inclusions. Fracture wall-parallel and wall-normal inclusion trails contain coexisting aqueous and hydrocarbon gas inclusions, so homogenization temperatures of aqueous inclusions, ranging from 130°C to 159°C in the East Texas Basin, and from 162°C to 176°C in the Piceance Basin, record true trapping temperatures. Inclusions in wall-normal trails are large and irregularly shaped compared to those in wall-parallel trails, but both show similar liquid-to-vapor ratios. Trapping temperatures for wall-normal inclusion trails are usually higher than those in the wall-parallel trails. Wall-normal fluid inclusion assemblage temperatures typically match the highest temperatures of wall-parallel assemblages trapped during sequential widening, but not necessarily the most recent. In context of burial histories for these samples, this temperature pattern implies that wall-normal assemblages form at discrete times during or after crack-seal fracture widening. Stacking transmitted light images with scanning electron microscope cathodoluminescence (SEM-CL) and electron backscattered diffraction (EBSD) images demonstrates that the twin boundaries are localized along wall-normal inclusion trails. Localization in isolated

  19. Exobiology site selection for future Mars missions: Martian paleolake sediments and terrestrial analogs

    NASA Technical Reports Server (NTRS)

    Wharton, Robert A., Jr.

    1989-01-01

    This research was conducted to establish the scientific framework for the exobiological study of sediments on Mars and to encourage the selection of these sedimentary deposits as sampling sites for future Mars missions. A study was completed on the Antarctic Dry Valley Lakes (terrestrial analogs of the purported Martian paleolakes) and their sediments that allowed the development of quantitative models relating environmental factors to the nature of the biological community and sediment forming processes. The publications presented include: (1) Diversity of micro-fungi isolated in an Antarctic dry valley; (2) Lake Hoare, Antarctica--sedimentation through a thick perennial ice cover; (3) The possibility of life on Mars during a water-rich past; (4) An Antarctic research outpost as a model for planetary exploration; (5) Early Martian environments--the Antarctic and other terrestrial analogs; (6) Lipophilic pigments from the benthos of a perennially ice-covered Antarctic lake; and (7) Perennially ice-covered Lake Hoare, Antarctica--physical environment, biology, and sedimentation.

  20. Seasonal sediment dynamics shape temperate bedrock reef communities

    USGS Publications Warehouse

    Figurski, Jared D.; Freiwald, Jan; Lonhart, Steve I.; Storlazzi, Curt

    2016-01-01

    Mobilized seafloor sediment can impact benthic reef communities through burial, scour, and turbidity. These processes are ubiquitous in coastal oceans and, through their influence on the survival, fitness, and interactions of species, can alter the structure and function of benthic communities. In northern Monterey Bay, California, USA, as much as 30% of the seafloor is buried or exposed seasonally, making this an ideal location to test how subtidal temperate rocky reef communities vary in the presence and absence of chronic sediment-based disturbances. Designated dynamic plots were naturally inundated by sediment in summer (50 to 100% cover) and swept clean in winter, whereas designated stable plots remained free of sediment during our study. Multivariate analyses indicated significant differences in the structure of sessile and mobile communities between dynamic and stable reef habitats. For sessile species, community structure in disturbed plots was less variable in space and time than in stable plots due to the maintenance of an early successional state. In contrast, community structure of mobile species varied more in disturbed plots than in stable plots, reflecting how mobile species distribute in response to sediment dynamics. Some species were found only in these disturbed areas, suggesting that the spatial mosaic of disturbance could increase regional diversity. We discuss how the relative ability of species to tolerate disturbance at different life history stages and their ability to colonize habitat translate into community-level differences among habitats, and how this response varies between mobile and sessile communities.

  1. Natural flows of H2-rich fluids in the ophiolites of Oman and the Philippines: Tectonic control of migration pathways and associated diagenetic processes

    NASA Astrophysics Data System (ADS)

    Deville, E. P.; Prinzhofer, A.; Vacquand, C.; Chavagnac, V.; Monnin, C.; Ceuleneer, G.; Arcilla, C. A.

    2009-12-01

    We compare the geological environments of sites of emission of natural hydrogen in the Oman ophiolite and the Zambales ophiolite (Luzon, Philippines). The genesis of natural H2 results from the interaction between ultrabasic rocks and aqueous solutions circulating in deep fracture networks, by oxidation of metals (Fe2+, Mn2+) and reduction of water, probably under high temperature conditions. This process generates very reducing conditions capable of destabilizing other molecules (notably reduction of deep CO2 being transformed into CH4 by Fisher-Tropsch type reactions). Nitrogen is also commonly associated to the H2-rich fluids. H2 flows are associated with the expulsion of hyperalkaline waters rich in ions OH- and Ca2+ and characterized by high pH (between 11 and 12). Most alkaline springs are found in the vicinity of major faults and/or lithological discontinuities like the basal thrust plane of the ophiolites and the peridotite-gabbro contact (Moho). Within the fracture networks, gas and water separate probably at shallow depth, i.e. close to the top of the upper aquifer level. Locally high flows of gas migrate vertically through fracture pathways and they are able to inflame spontaneously on the surface. Aqueous fluids tends to migrate laterally in the fracture network toward the creeks where most of the hyperalkaline springs are found. This water circulation induces a chain of diagenetic reactions starting in the fracture systems and continuing at the surface where it leads to the precipitation of calcite, aragonite, brucite and more rarely portlandite. This chain of diagenetic reactions is associated with the capture of the atmospheric CO2 during the precipitation of carbonates.

  2. Early Miocene sequence development across the New Jersey margin

    USGS Publications Warehouse

    Monteverde, D.H.; Mountain, Gregory S.; Miller, K.G.

    2008-01-01

    Sequence stratigraphy provides an understanding of the interplay between eustasy, sediment supply and accommodation in the sedimentary construction of passive margins. We used this approach to follow the early to middle Miocene growth of the New Jersey margin and analyse the connection between relative changes of sea level and variable sediment supply. Eleven candidate sequence boundaries were traced in high-resolution multi-channel seismic profiles across the inner margin and matched to geophysical log signatures and lithologic changes in ODP Leg 150X onshore coreholes. Chronologies at these drill sites were then used to assign ages to the intervening seismic sequences. We conclude that the regional and global correlation of early Miocene sequences suggests a dominant role of global sea-level change but margin progradation was controlled by localized sediment contribution and that local conditions played a large role in sequence formation and preservation. Lowstand deposits were regionally restricted and their locations point to both single and multiple sediment sources. The distribution of highstand deposits, by contrast, documents redistribution by along shelf currents. We find no evidence that sea level fell below the elevation of the clinoform rollover, and the existence of extensive lowstand deposits seaward of this inflection point indicates efficient cross-shelf sediment transport mechanisms despite the apparent lack of well-developed fluvial drainage. ?? 2008 The Authors. Journal compilation ?? 2008 Blackwell Publishing.

  3. Pin stripe lamination: A distinctive feature of modern and ancient eolian sediments

    USGS Publications Warehouse

    Fryberger, S.G.; Schenk, C.J.

    1988-01-01

    Pin stripe laminations are a distinctive feature of modern and ancient eolian sediments. In sets of eolian ripple (or translatent) strata they represent deposition of silt and very fine sand in the troughs of the advancing wind ripples. In sets of avalanche strata they probably result from the downward settling of fine sand and silt within the moving avalanche to the interface of moving and unmoving sands. Wind tunnel experiments suggest that pin stripe laminations can also form in grainfall deposits. The textural segregation associated with deposition of the fine layers in most cases leads to early cementation along and near the finest sand and silt comprising the pin stripe lamination. The pin stripe effect seen in outcrops is usually due to resistance to weathering along such cemented zones. The cementation of the pin stripe laminations can occur early in the history of diagenesis and thus may provide clues to the post-depositional history of the rock. Pin stripe laminations in many instances represent the sequestering of the small population of ultrafine sediment present in most eolian depositional systems. They may prove useful in the recognition of ancient eolian sediments. ?? 1988.

  4. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation

    NASA Astrophysics Data System (ADS)

    Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin

    2016-10-01

    Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.

  5. Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning

    PubMed Central

    Van Colen, Carl; Rossi, Francesca; Montserrat, Francesc; Andersson, Maria G. I.; Gribsholt, Britta; Herman, Peter M. J.; Degraer, Steven; Vincx, Magda; Ysebaert, Tom; Middelburg, Jack J.

    2012-01-01

    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning. PMID:23185440

  6. Sediment traps for measuring onslope surface sediment movement

    Treesearch

    Wade G. Wells; Peter M. Wohlgemuth

    1987-01-01

    Two types of small (30-cm aperture) sheet metal sediment traps were developed to monitor onslope surface sediment transport. Traditionally, sediment traps and erosion pins have been used to measure the onslope movement of surficial soil material. While pins may be appropriate for documenting landscape denudation, traps are more suitable for monitoring downslope...

  7. LAND TREATMENT OF MILWAUKEE HARBOR SEDIMENTS CONTAMINATED WITH PAHS AND PCBS

    EPA Science Inventory

    Sediments dredged in the maintenance of navigation channels often contain concentrations of PCBs and PAHs that necessitate placement in confined disposal facilities (CDFs). For the Great Lakes especially, the majority of CDFs were constructed in the 1970s or early 1980s and have ...

  8. East Louisiana continental shelf sediments: a product of delta reworking

    USGS Publications Warehouse

    Brooks, Gregg R.; Kingdinger, Jack L.; Penland, Shea; Williams, S. Jeffress

    1995-01-01

    Data from 77 vibracores were integrated with 6,700 line-km of high- resolution seismic reflection profiles collected off the eastern Louisiana coast in the region of the St. Bernard Delta, the first of the Holocene highstand deltas of the Mississippi River. Seismic fades and sediment facies were integrated in order to establish the stratigraphic details within this relict delta. Results provide a regional geologic framework from which comparisons can be made with other areas. Holocene deposits in the study area overlie a heavily dissected surface interpreted to represent a lowstand erosional surface. Resting on this surface is a thin unit of relatively clean, quartz sand interpreted to have been deposited during early transgression. This unit is overlain by sediments of the St. Bernard Delta, a seaward-prograding, coarsening-upward wedge of sands and muds that contain vertically-stacked units of deltaic succession. Two or more prograding units separated by an unconformity, delineated from regional seismic profiles, may represent laterally shifting subdelta lobes. Surficial sediments consist of a thin unit of sands and muds derived from and reflecting the individual subenvirons of the underlying delta. Holocene inner-shelf development off eastern Louisiana has been controlled by relative sea-level rise and sediment supply. Sediment supply and deposition are a product of delta progradation and delta-lobe switching. The modern shelf configuration and surficial sediment distribution patterns reflect reworking of underlying deltaic deposits. The lack of modern sediment input helps to maintain the imprint of this ancient delta on the modern shelf surface.

  9. The contribution of sediment from forested areas of the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Gellis, A.; Brakebill, J.

    2012-12-01

    Fine-grained sediment is a major pollutant in the Chesapeake Bay and its receiving waters. Sediment budget studies have been conducted in small basins draining to the Bay over the last decade to understand the important sources of fine-grained sediment, quantify erosion rates, and determine sediment yields. Sediment budget approaches include modeling (SPARROW), sediment fingerprinting, and quantifying upland rates of erosion (Cesium-137). SPARROW model results indicate that forests deliver between 2 to 8% of the total sediment to the Bay. Sediment-fingerprinting results from small watershed studies indicate that forests contribute between 13 to 29 % of the sediment. The Cesium-137 technique was used to quantify soil redistribution (erosion and deposition) rates for forested areas in the Linganore Creek (146 km2) watershed which drains the Piedmont Physiographic Province. Average forest erosion rates measured in 2009 for Linganore Creek using Cesium-137 were 2.6 t/ha/yr. With 27% of the Linganore Creek watershed in forest, over 10,300 may be eroded off of forested lands which is more than the average annual suspended-sediment load (8,050 Mg/yr) in Linganore Creek, indicating that much of the eroded forest sediment goes in storage. Most of the forested areas in the Chesapeake Bay watershed were cut down for agriculture between the time of European colonization and the early 20th Century. In the late 20th century forested lands show an increase in areal extent. Although studies have not been conducted to understand why these secondary growth forests are eroding, it may involve that these forests have not fully recovered from deforestation. Soil profiles are thin, and runoff and sediment relations may have been altered, leading to high rates of erosion.

  10. Miocene mass-transport sediments, Troodos Massif, Cyprus

    USGS Publications Warehouse

    Lord, A.R.; Harrison, R.W.; BouDagher-Fadel, M.; Stone, B.D.; Varol, O.

    2009-01-01

    Sediment mass-transport layers of submarine origin on the northern and southern flanks of the Troodos ophiolitic massif are dated biostratigraphically as early Miocene and late Miocene, respectively and therefore represent different seismogenic events in the uplift and erosional history of the Troodos terrane. Analysis of such events has potential for documenting Miocene seismic and uplift events regionally in the context of changing stress field directions and plate vectors through time. ?? 2009 The Geologists' Association.

  11. Sediment supply versus local hydraulic controls on sediment transport and storage in a river with large sediment loads

    USGS Publications Warehouse

    Dean, David; Topping, David; Schmidt, John C.; Griffiths, Ronald; Sabol, Thomas

    2016-01-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, undergoes rapid geomorphic changes as a result of its large sediment supply and variable hydrology; thus, it is a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling alluvial channel change. We analyzed a suite of sediment transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically based analyses suggest that channel change in the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by substantial deposition of sediment supplied to the Rio Grande during tributary-sourced flash floods. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem have the capacity to enlarge the Rio Grande, and these floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment transport analyses show that the locations and rates of sand erosion and deposition during long-duration floods are most strongly controlled by spatial changes in flow strength, largely through changes in channel slope. However, spatial differences in the in-channel sediment supply regulate sediment evacuation or accumulation over time in long reaches (greater than a kilometer).

  12. Volume change associated with formation and dissociation of hydrate in sediment

    USGS Publications Warehouse

    Ruppel, Carolyn D.; Lee, J.Y.; Santamarina, J. Carlos

    2017-01-01

    Gas hydrate formation and dissociation in sediments are accompanied by changes in the bulk volume of the sediment and can lead to changes in sediment properties, loss of integrity for boreholes, and possibly regional subsidence of the ground surface over areas where methane might be produced from gas hydrate in the future. Experiments on sand, silts, and clay subject to different effective stress and containing different saturations of hydrate formed from dissolved phase tetrahydrofuran are used to systematically investigate the impact of gas hydrate formation and dissociation on bulk sediment volume. Volume changes in low specific surface sediments (i.e., having a rigid sediment skeleton like sand) are much lower than those measured in high specific surface sediments (e.g., clay). Early hydrate formation is accompanied by contraction for all soils and most stress states in part because growing gas hydrate crystals buckle skeletal force chains. Dilation can occur at high hydrate saturations. Hydrate dissociation under drained, zero lateral strain conditions is always associated with some contraction, regardless of soil type, effective stress level, or hydrate saturation. Changes in void ratio during formation-dissociation decrease at high effective stress levels. The volumetric strain during dissociation under zero lateral strain scales with hydrate saturation and sediment compressibility. The volumetric strain during dissociation under high shear is a function of the initial volume average void ratio and the stress-dependent critical state void ratio of the sediment. Other contributions to volume reduction upon hydrate dissociation are related to segregated hydrate in lenses and nodules. For natural gas hydrates, some conditions (e.g., gas production driven by depressurization) might contribute to additional volume reduction by increasing the effective stress.

  13. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  14. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE PAGES

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; ...

    2015-10-07

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  15. Generation of sedimentary fabrics and facies by repetitive excavation and storm infilling of burrow networks Holocene of south Florida and Caicos Platform, B. W. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedesco, L.P.; Wanless, H.R.

    Excavation of deep, open burrow networks and subsequent infilling with sediment from the surface produces an entirely new sedimentary deposit and results in obliteration to severe diagenetic transformation of precursor depositional facies. Repetitive excavation and infilling is responsible for creating the preserved depositional facies of many marine deposits. Excavating burrowers occur from intertidal to abyssal depths, and are important throughout the Phanerozoic. The repetitive coupling of deep, open burrow excavation with subsequent storm sediment infilling of open burrow networks is a gradual process that ultimately results in the loss of the original deposit and the generation of new lithologies, fabricsmore » and facies. The new lithologies are produced in the subsurface and possess fabrics, textures and skeletal assemblages that are not a direct reflection of either precursor facies or the surficial depositional conditions. Sedimentary facies generated by repetitive burrow excavation and infilling commonly are massively bedded and generally are mottled skeletal packstones. Skeletal grains usually are well-preserved and coarser components are concentrated in burrow networks, pockets and patches. The coarse skeletal components of burrow-generated facies are a mixture of coarse bioclasts from the precursor facies and both the coarse and fine skeletal material introduced from the sediment surface. Many so-called bioturbated or massive facies may, in fact, be primary depositional facies generated in the subsurface and represent severe diagenetic transformation of originally deposited sequences. In addition, mudstones and wackestones mottled with packstone patches may record storm sedimentation.« less

  16. Temporal Geochemical Variations in Glass and Minerals from Early Oligocene to Miocene Volcanic Sediments, DSDP Site 296, Kyushu Palau Ridge: Is There a Geochemical Signal for Arc Rifting?

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, R.; Samajpati, E.

    2015-12-01

    Volcaniclastic sediments and sedimentary rocks from DSDP Site 296, located within a basin at the crest of the northern Kyushu Palau ridge (KPR), record the latter part of the first stage of Izu Bonin Mariana (IBM) arc evolution, up to the cessation of volcanism caused by arc rifting and opening of the Shikoku basin. The lower section consists of early to late Oligocene coarse volcaniclastic sedimentary rocks, and is overlain by late Oligocene to Pleistocene nannofossil chalks and oozes with volcanic sand and ash-rich layers. We have studied the chemical composition of pyroxene, feldspar and glass grains separated from the coarse volcaniclastic rocks at depths from 435 to 1082 meters below sea floor, and of glass shards in layers in the overlying sediments of late Oligocene to early Miocene age. Overall, pyroxene and feldspar compositions show little systematic variation with depth in the core, although for pyroxene, highest En and highest Al2O3 contents are found in the interval from 600-900 meters bsf. An contents in feldspars show a bimodal distribution throughout the core, with most values > 90 or in the range 60-70, with more abundant intermediate compositions in the 600-900 meter interval. Compositions of glass shards vary widely, from basalt to rhyolite, and from low K, light rare earth (LREE)-depleted to high K, strongly LREE-enriched character, without systematic variation with depth in the core. However, all cores sampled from early Oligocene to early Miocene contain relatively low K basalt and basaltic andesite glass. Like the pyroxenes, a wider range of compositions is found in glass from the 600 to 900 mbsf interval. The Site 296 sequence overlaps in age with the uppermost sedimentary section of recently drilled IODP Site 1438, located 230 km to the southwest in the Amami Sankaku basin, thus the two sites may contain volcanic debris shed from contemporaneous sections of the KPR.

  17. Aquatic Sediments.

    ERIC Educational Resources Information Center

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  18. Sediment Toxicity Testing

    EPA Science Inventory

    Sediment toxicity testing has become a fundamental component of regulatory frameworks for assessing the risks posed by contaminated sediments and for development of chemical sediment quality guidelines. Over the past two decades, sediment toxicity testing methods have advanced co...

  19. The occurrence and origin of celestite in the Abolfares region, Iran: Implications for Sr-mineralization in Zagros fold belt (ZFB)

    NASA Astrophysics Data System (ADS)

    Pourkaseb, Houshang; Zarasvandi, Alireza; Rezaei, Mohsen; Mahdavi, Reyhaneh; Ghanavati, Fatemeh

    2017-10-01

    The major celestite deposits in Zagros Fold belt are associated with coastal marine carbonate and evaporate sediments of Oligo-Miocene Asmari and Lower Miocene Ghachsaran Formations. In the Abolfares region, celestite mineralization is extended in the western limb of Bangestan anticline in the carbonates of Early Miocene (middle part of Asmari Formation), underlying by dolomitic carbonates of Burdigalian. From bottom to top three main types of mineralization can be distinguished in the study area: (1) layer texture resulting from replacement of algal limestone by celestite minerals with some parts showing idiomorphic crystals (geodes) along the walls of the cavities, (2) celestite occurrence as irregular massive shape interconnected small crystals and nodules, and (3) celestite mineralization associated with steeply dipping veins and open space fracture fillings, resulting from late-stage epigenetic processes. Highlightly, the ore-hosting carbonate rocks were deposited in an intertidal - supratidal protected setting with hypersaline conditions, in accordance with other celestite deposits of the Zagros Fold belt. The abundance of diagenetic crystallization rhythmites, carbonate and anhydrite inclusions as confirmed by Laser Raman spectroscopy analysis, high Sr/Ba values (average; 8726.1) and strong negative correlations between SO3 vs CaO (R2 = 0.98), SrO vs CaO (R2 = 0.96) with positive correlations between Ba vs SrO (R2 = 0.54) and SO3 vs SrO (R2 = 0.98) highlight the role of high Sr late-diagenetic brines in replacement of carbonates with celestite minerals. It seems that the inception of compressional folding during or soon after the deposition of the Asmari Formation in the carbonate platform at the margin of NW-trending basin in the foreland of the Zagros orogenic belt lead to the upward refluxing of penetrated high-Sr diagenetic brines and celestite mineralization.

  20. Provenance of Cretaceous-Pliocene Clastic Sediments in the Tachira Saddle, Western Venezuela, and Implications for Sediment Dispersal Patterns in the Northern Andes

    NASA Astrophysics Data System (ADS)

    Gomez, Ali Ricardo

    Northwestern South America is highly deformed due to the transpressive plate boundary associated with complex interactions between the Caribbean plate, the South American plate, the Nazca plate and the Panama arc. Previous studies suggest that the Cenozoic uplift of the Merida Andes and Eastern Cordillera of Colombia affected sediment dispersal patterns in the region, shifting from a Paleocene foreland basin configuration to the modern isolated basins. Well-exposed Cretaceous to Pliocene strata in the Tachira Saddle provides a unique opportunity to test proposed sediment dispersal patterns in the region. U-Pb detrital zircon geochronology and supplementary XRD heavy mineral data are used together to document the provenance of the Tachira Saddle sediments and refine the sediment dispersal patterns in the region. Results from the U-Pb detrital zircon geochronology show that there are six age groups recorded in these samples. Two groups are related to the Precambrian Guyana shield terranes and Putumayo basement in the Eastern Cordillera, and four groups are related to different magmatic episodes occurring during the Andean orogenic process. The transition between the Cretaceous passive margin and the Paleocene foreland basin and the initial uplift of the Eastern Cordillera and the uplift of the Merida Andes by the Early Miocene were also recorded in the Tachira saddle detrital zircon signature.

  1. Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47°N, 20°W

    NASA Astrophysics Data System (ADS)

    Pfannkuche, O.

    The benthic response to the sedimentation of particulate organic matter (POM) was investigated during 1985-1990 at 47°N, 20°W (BIOTRANS station). The first noticeable annual sedimentation of phytodetritus, as indicated by chlorophyll a concentrations in the sediment, occurred as early as late April-early May. Maximum amounts were found in June-July. Two different sedimentation pulses to the sea bed are described that demonstrate interannual variation: the occurrence of salp faecal pellets early in the year 1988 and the massive fall out of a plankton bloom in summer 1986, which deposited approximately 15 mmol C m -2. The benthic reaction to POM pulses was quite diverse. The mega-, macro- and meiobenthos showed no change in biomass, whereas bacterial biomass doubled between March and July. This corresponds to a seasonal maximum of total adenylate biomass. The relative abundance of Foraminifera among the meiobenthos increased during the summer. Benthic activity (ATP, ratio ATP/ETSA), as well as in situ sediment community oxygen consumption rates (SCOC), showed distinct seasonal maxima in July-August of 0.75 mmol C m -2 day -1. Based on SCOC and the carbon demand for growth, a benthic carbon consumption of 0.94 mmol C m -2 day -1 was estimated. This represents about 1.1% of spring bloom primary production and 9.6% of the export flux beneath the 150 m layer, measured during the North Atlantic Bloom Experiment. Bacteria and protozoans colonizing the epibenthic phytodetrital layer were responsible for 60-80% of the seasonal increase in SCOC. The strong reaction of the smaller benthic size groups (bacteria, protozoans) to POM pulses stresses their particular importance for sediment-water interface flux rates.

  2. Stratification, Sediment Transport, and the Early Wet Surface of Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Grotzinger, J. P.; Athena Science Team

    2004-12-01

    Several stratification styles are present in the outcrops investigated by the Opportunity rover at Meridiani Planum. These include planar lamination, low-angle cross-stratification, cross-bedding, ripple cross-lamination, and crinkly and undulatory lamination. Planar lamination and low angle stratification are well-developed in several locations, particularly at Slickrock and Shoemakers Patio in Eagle crater and at Karatepe in Endurance crater. MI images at Slickrock show "pinstripe" lamination where individual laminae can be single-grain thick layers, suggestive of eolian sedimentation. At Shoemaker's Patio, a single cross-bed set with thickness of 5-7 cm is preserved. At Burn's Cliff, in Endurance crater, a single cross-bed set of up to several meters thickness is preserved. In contrast, ripple cross-lamination with festoon geometry is present at several locations within Eagle crater including Last Chance, the Dells, and in an isolated rock (Scoop) on the southwest rim of the crater. Ripple cross-laminae sets are 0.8 to 1.7 cm thick. In the case of Scoop, the sets are possibly climbing. Grain size appears to range from 0.1 to 0.8 mm in diameter. The cross-bedding preserved at Eagle crater suggests both eolian and subaqeous environments. The set at Shoemaker's patio represents deposition from either subaerial or subaqeous dunes. The thicker, meter-scale set at Burns Cliff is most consistent with transport by eolian dunes. In contrast, the small-scale festoon cross-laminae at Eagle crater are indicative of sediment transport in subaqueous ripples. The reconstructed size of former bedforms is inferred to be only a few cm, and therefore inconsistent with eolian dunes which commonly have significantly larger minimum amplitudes. Yet the cross-lamination is significantly larger and of differing geometry from the climbing translatent cross-strata produced by wind ripples. Thus, the size of bedforms that produced the cm-scale cross-laminae preserved at Eagle crater occupy

  3. Targeting sediment management strategies using sediment quantification and fingerprinting methods

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.

    2016-04-01

    Cost-effective sediment management is required to reduce excessive delivery of fine sediment due to intensive land uses such as agriculture, resulting in the degradation of aquatic ecosystems. Prioritising measures to mitigate dominant sediment sources is, however, challenging, as sediment loss risk is spatially and temporally variable between and within catchments. Fluctuations in sediment supply from potential sources result from variations in land uses resulting in increased erodibility where ground cover is low (e.g., cultivated, poached and compacted soils), and physical catchment characteristics controlling hydrological connectivity and transport pathways (surface and/or sub-surface). Sediment fingerprinting is an evidence-based management tool to identify sources of in-stream sediments at the catchment scale. Potential sediment sources are related to a river sediment sample, comprising a mixture of source sediments, using natural physico-chemical characteristics (or 'tracers'), and contributions are statistically un-mixed. Suspended sediment data were collected over two years at the outlet of three intensive agricultural catchments (approximately 10 km2) in Ireland. Dominant catchment characteristics were grassland on poorly-drained soils, arable on well-drained soils and arable on moderately-drained soils. High-resolution (10-min) calibrated turbidity-based suspended sediment and discharge data were combined to quantify yield. In-stream sediment samples (for fingerprinting analysis) were collected at six to twelve week intervals, using time-integrated sediment samplers. Potential sources, including stream channel banks, ditches, arable and grassland field topsoils, damaged road verges and tracks were sampled, oven-dried (<40oC) and sieved (125 microns). Soil and sediment samples were analysed for mineral magnetics, geochemistry and radionuclide tracers, particle size distribution and soil organic carbon. Tracer data were corrected to account for particle

  4. Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size-classes of modern marine sediments from the Washington coast

    NASA Astrophysics Data System (ADS)

    Keil, Richard G.; Tsamakis, Elizabeth; Giddings, J. Calvin; Hedges, John I.

    1998-04-01

    In order to examine relationships of organic matter source, composition, and diagenesis with particle size and mineralogy in modern marine depositional regimes, sediments from the continental shelf and slope along the Northwest Pacific rim (Washington coast, USA) were sorted into hydrodynamic size fractions (sand: >250, 63-250 μm; silt: 35-63, 17-35, 8-17, 3-8 μm; and clay-sized: 1-3, 0.5-1, <0.5 μm). The size fractions were then density fractionated to separate distinct organic debris from mineral-associated organic matter, and the various separates were analyzed for their amino acid, aldose, and lignin compositions. The composition of organic matter in the separates changes markedly as a function of particle size and density. Large compositional differences were observed between the clay-sized fractions (dominated mineralogically by smectites), the sand-sized mineral-associated isolates (quartz-rich), and floated coarse organic matter (dominated by vascular plant debris). Organic matter intimately associated with the clay-sized fractions shows the most extensive diagenetic alteration, as reflected in high abundances of nonprotein amino acids (especially β-alanine), elevated lignin phenol acid/aldehyde ratios, and high relative concentrations of the deoxyhexoses fucose and rhamnose. Organic matter in the silt fractions, though degraded, is not as diagenetically altered as in the clay fractions. Enrichment of pollen grains in the silt-size material is reflected by high cinnamic acid to ferulic acid lignin phenol ratios. The highest pollen biochemical signal is observed in the silt fractions of the deepest station (1835 m), where pollen abundances are also highest. Organic matter tightly bound in the silt and sand-sized fractions are enriched in aldoses and show indications of enhanced microbial biomass as reflected by high weight percentages of ribose. Distinct organic debris was composed of relatively unaltered vascular plant remains as reflected by high

  5. Effects of sediment cover on survival and development of white sturgeon embryos

    USGS Publications Warehouse

    Kock, T.J.; Congleton, J.L.; Anders, P.J.

    2006-01-01

    A simple, inexpensive apparatus (embryo incubation unit [EIU]) was developed and used to assess the relationship between sediment cover (Kootenai River sediments, 97% by weight in the 0.83-mm- to 1.0-mm-diameter range) and survival of white sturgeon Acipenser transmontanus embryos in the laboratory. An apparatus-testing trial assessed the effects of two sediment depths (5 and 20 mm), three EIU ventilation hole sizes (4.8, 6.8, and 9.5 mm) providing three levels of intrasediment flow, and EIU location (upstream or downstream in laboratory troughs) on embryo survival at two above-substrate flow velocities (0.05 and 0.15 m/s). A second trial assessed the effects of sediment cover duration (5-mm sediment cover for 4, 7, 9, 11, or 14 d, with a ventilation hole size of 9.5 mm and a flow velocity of 0.17 m/s) on mean embryo survival and larval length and weight. In the apparatus-testing trial, embryo survival was reduced (P < 0.0001) to 0-5% under sediment covers of either 5 or 20 mm in both the higher-flow and lower-flow troughs; survival in control EIUs without sediments exceeded 80%. Survival was not significantly affected by ventilation hole size but was weakly affected by EIU location. In the second trial, embryo survival was negatively correlated (P = 0.001) with increasing duration of sediment cover and was significantly higher for embryos covered for 4 d (50% survival) or 7 d (30% survival) than for those covered for 9, 11, or 14 d (15-20% survival). Sediment cover also delayed hatch timing (P < 0.0001) and decreased mean larval length (P < 0.0001). Our results suggest that sediment cover may be an important early life stage mortality factor in rivers where white sturgeon spawn over fine-sediment substrates. ?? Copyright by the American Fisheries Society 2006.

  6. Early- to Mid-Holocene hydroclimate shifts in tropical East Africa: the multi-proxy sediment record from Lake Rutundu, Kenya

    NASA Astrophysics Data System (ADS)

    De Cort, Gijs; Creutz, Mike; Barao, Lucia; Conley, Daniel; Haug, Gerald; Bodé, Samuel; Blaauw, Maarten; Engstrom, Dan; Verschuren, Dirk

    2015-04-01

    Following the generally arid conditions of the Last Glacial Maximum (LGM), a large part of the African continent experienced the Early to Mid-Holocene as a much more humid period than today. This so-called African Humid Period (AHP) coincided with high summertime insolation over the Northern Hemisphere subtropics, causing invigorated monsoons to create moist conditions over the northern parts of the continent. Similarly, equatorial and even low-latitude southeastern Africa experienced a wetter climate due to the post-glacial increase in atmospheric greenhouse gasses ultimately leading to altered Atlantic and Indian Ocean monsoon dynamics. The timing and abruptness of the onset and ending of the AHP in the different regions of the continent have been the subject of major discussion. On the other hand, shorter-lived climate fluctuations within the AHP have received much less attention, due to a scarcity of well-dated, high-resolution African paleoclimate records spanning the entire Holocene. In this study we used the sediment record of Lake Rutundu, a high-altitude crater lake on Mount Kenya, to document multidecadal to millennial-scale hydroclimate variability on the East African equator from the LGM to the present. A multiproxy approach combining core-surface scanning techniques (magnetic susceptibility, X-ray fluorescence) and close-interval bulk-sediment analyses (organic matter and biogenic Si content, grain size, organic δ15N and δ13C) resulted in a high-resolution record firmly anchored in time by an age model based on 210Pb dating and sixteen calibrated radiocarbon ages. This new Lake Rutundu hydroclimate record confirms that moister conditions following the LGM returned to East Africa ca.16 kyr BP, and it contains a perfectly timed Younger Dryas episode (12.8-11.5 kyr BP) of intermittent drought. We find that the Early- to Mid-Holocene period, which in African records is often described as uniformly wet, was in fact punctuated by three distinct, century

  7. Effects of fine sediment, hyporheic flow, and spawning site characteristics on survival and development of bull trout embryos

    USGS Publications Warehouse

    Bowerman, Tracy; Neilson, Bethany; Budy, Phaedra

    2014-01-01

    Successful spawning is imperative for the persistence of salmonid populations, but relatively little research has been conducted to evaluate factors affecting early life-stage survival for bull trout (Salvelinus confluentus), a threatened char. We conducted a field experiment to assess the relationship between site-specific environmental factors and bull trout embryo survival and fry emergence timing. Survival from egg to hatch was negatively related to percent fine sediment (<1 mm) in the redd and positively related to the strength of downwelling at spawning sites. Survival of eggs to fry emergence was also negatively related to fine sediment, and the best statistical models included additional variables that described the rate of downwelling and intragravel flow within the incubation environment. Fry emerged at an earlier stage in development from redds with high percentages of fine sediment. Increased hydraulic conductivity via redd construction and selection of spawning sites with strong downwelling appear to enhance hyporheic flow rates and bull trout egg survival, but early life-stage success may ultimately be limited by intrusion of fine sediment into the incubation environment.

  8. A Novel Early Warning System Based on a Sediment Microbial Fuel Cell for In Situ and Real Time Hexavalent Chromium Detection in Industrial Wastewater.

    PubMed

    Zhao, Shuai; Liu, Pu; Niu, Yongyan; Chen, Zhengjun; Khan, Aman; Zhang, Pengyun; Li, Xiangkai

    2018-02-22

    Hexavalent chromium (Cr(VI)) is a well-known toxic heavy metal in industrial wastewater, but in situ and real time monitoring cannot be achieved by current methods used during industrial wastewater treatment processes. In this study, a Sediment Microbial Fuel Cell (SMFC) was used as a biosensor for in situ real-time monitoring of Cr(VI), which was the organic substrate is oxidized in the anode and Cr(VI) is reduced at the cathode simultaneously. The pH 6.4 and temperature 25 °C were optimal conditions for the operation. Under the optimal conditions, linearity (R² = 0.9935) of the generated voltage was observed in the Cr(VI) concentration range from 0.2 to 0.7 mg/L. The system showed high specificity for Cr(VI), as other co-existing ions such as Cu 2+ , Zn 2+ , and Pb 2+ did not interfere with Cr(VI) detection. In addition, when the sediment MFC-based biosensor was applied for measuring Cr(VI) in actual wastewater samples, a low deviation (<8%) was obtained, which indicated its potential as a reliable biosensor device. MiSeq sequencing results showed that electrochemically active bacteria ( Geobacter and Pseudomonas ) were enriched at least two-fold on the biofilm of the anode in the biosensor as compared to the SMFC without Cr(VI). Cyclic voltammetry curves indicated that a pair of oxidation/reduction peaks appeared at -111 mV and 581 mV, respectively. These results demonstrated that the proposed sediment microbial fuel cell-based biosensor can be applied as an early warning device for real time in situ detection of Cr(VI) in industrial wastewaters.

  9. A Novel Early Warning System Based on a Sediment Microbial Fuel Cell for In Situ and Real Time Hexavalent Chromium Detection in Industrial Wastewater

    PubMed Central

    Zhao, Shuai; Liu, Pu; Niu, Yongyan; Chen, Zhengjun; Khan, Aman; Zhang, Pengyun; Li, Xiangkai

    2018-01-01

    Hexavalent chromium (Cr(VI)) is a well-known toxic heavy metal in industrial wastewater, but in situ and real time monitoring cannot be achieved by current methods used during industrial wastewater treatment processes. In this study, a Sediment Microbial Fuel Cell (SMFC) was used as a biosensor for in situ real-time monitoring of Cr(VI), which was the organic substrate is oxidized in the anode and Cr(VI) is reduced at the cathode simultaneously. The pH 6.4 and temperature 25 °C were optimal conditions for the operation. Under the optimal conditions, linearity (R2 = 0.9935) of the generated voltage was observed in the Cr(VI) concentration range from 0.2 to 0.7 mg/L. The system showed high specificity for Cr(VI), as other co-existing ions such as Cu2+, Zn2+, and Pb2+ did not interfere with Cr(VI) detection. In addition, when the sediment MFC-based biosensor was applied for measuring Cr(VI) in actual wastewater samples, a low deviation (<8%) was obtained, which indicated its potential as a reliable biosensor device. MiSeq sequencing results showed that electrochemically active bacteria (Geobacter and Pseudomonas) were enriched at least two-fold on the biofilm of the anode in the biosensor as compared to the SMFC without Cr(VI). Cyclic voltammetry curves indicated that a pair of oxidation/reduction peaks appeared at −111 mV and 581 mV, respectively. These results demonstrated that the proposed sediment microbial fuel cell-based biosensor can be applied as an early warning device for real time in situ detection of Cr(VI) in industrial wastewaters. PMID:29470394

  10. Depositional environment, sand provenance, and diagenesis of the Basal Salina Formation (lower Eocene), northwestern Peru

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Carozzi, A. V.

    The Basal Salina Formation is a lower Eocene transgressive sequence consisting of interbedded shales, siltstones, and conglomeratic sandstones. This formation occurs in the Talara basin of northwestern Peru and is one of a series of complexly faulted hydrocarbon-producing formations within this extensional forearc basin. These sediments were probably deposited in a fan-delta complex that developed along the ancestral Amotape Mountains during the early Eocene. Most of the sediment was derived from the low-grade metamorphic and plutonic rocks that comprise the Amotape Mountains, and their sedimentary cover. Detrital modes of these sandstones reflect the complex tectonic history of the area, rather than the overall forearc setting. Unlike most forearc sediments, these are highly quartzose, with only minor percentages of volcanic detritus. This sand is variably indurated and cemented by chlorite, quartz, calcite, and kaolinite. Clay-mineral matrix assemblages show gradational changes with depth, from primarily detrital kaolinite to diagenetic chlorite and mixed-layered illite/smectite. Basal Salina sandstones exhibit a paragenetic sequence that may be tied to early meteoric influx or late-stage influx of thermally driven brines associated with hydrocarbon migration. Much of the porosity is secondary, resulting from a first-stage dissolution of silicic constituents (volcanic lithic fragments, feldspar, and fibrous quartz) and a later dissolution of surrounding carbonate cement. Types of pores include skeletal grains, grain molds, elongate pores, and fracture porosity. Measured porosity values range up to 24% and coarser samples tend to be more porous. Permeability is enhanced by fractures and deterred by clay-mineral cements and alteration residues.

  11. Sediment Buffering and Transport in the Holocene Indus River System

    NASA Astrophysics Data System (ADS)

    Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.

    2009-12-01

    Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.

  12. Sediment Relative Paleointensity Record With Slow-sedimentation Rates: Implication For a Chronological Tool In The Slow-sedimentation Sequence

    NASA Astrophysics Data System (ADS)

    Kanamatsu, T.

    2006-12-01

    Usefulness of paleointensity records with high-sedimentation rates in stratigraphic correlation have been proved (e.g. Stoner et al., 1998, Laj et al., 2000, Stoner et al., 2000), because the sediment geomagnetic paleointensity data makes possible the fine time correlation between cores on the older sediment than the range of AMS 14C. As father application of the sediment paleointensity for chronological tool, we examined the paleointensity record of much slower sedimentation rate. The paleointensity record of the slower sedimentation sequence is supposed to show the convoluted record by the filtering effect of the post- depositional remanent magnetization, then a unique and different pattern depending on the sedimentation rate (e.g. Guyodo and Channell, 2002). We studied the record of the cores obtained from the West Philippine Sea Basin (Water depth ca. 5000 to 6000 m). The analyses of paleomagnetic direction proved that the cores contain Jaramillo and Olduvai Events. The sedimentation rates of cores estimated from magnetostratigraphy are less than 1cm/kyr (0.6-0.4 cm/kyr). Proxy of paleointensity (NRM20mT/ARM20mT) applied to cores reveals the variations in the records are dominate in c.a. 100 ky cycle. Comparing to other published paleointensity record, it is clear that the record includes ca.100-ky cycle in spite of slower sedimentation rates, although other high frequency records were not identified. It is suggests that geomagnetic events of a few to several kys are recordable in the sediment. The paleointensity in the slow-sedimentation record is still useful for the age control utilizing the lower frequency signal, especially for investigating of less age information sequence such as the deep sea sediment below CCD, but not for fine correlation by high frequency data.

  13. Sedimentology, petrography and early diagenesis of a travertine-colluvium succession from Chusang (southern Tibet)

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Meyer, Michael C.; Hoffmann, Dirk L.

    2016-08-01

    The Chusang travertine is situated in southern Tibet at an altitude of ~ 4200 m asl. in a cold-arid, periglacial environment and is characterized by interbedding of hydrothermal carbonate with colluvium. Here we present sedimentological and petrographical data to elucidate the depositional environment and sedimentary processes responsible for hydrothermal carbonate precipitation and early diagenetic alteration as well as clastic sediment accumulation and provide initial 230Th/U ages to constrain the time-depth of this travertine-colluvium succession. Three main travertine lithofacies have been identified: 1) a dense laminated lithofacies, 2) a porous layered lithofacies and 3) an intraclastic lithofacies that results from erosion of pre-existing hot spring carbonate. The colluvium is composed of cohesive debris flow layers that derived from mass-wasting events from the adjacent hillslopes. Micro-fabric analyses suggest that dense laminated travertine forms via rapid calcite precipitation from hot spring water seasonally subjected to severe winter cooling, while porous layered travertine results from seasonal dilution of hot spring water with rain water during the summer monsoon months, which in turn stimulates biological productivity and gives rise to a porous summer layer. Early diagenesis in the form of recrystallization and extensive formation of pore cements is common in the Chusang travertine, but never eradicates the original crystal fabrics completely. The sedimentary architecture of the deposit is conditioned by (i) the gently dipping (~ 10°) pre-existing terrain on which hot spring water is discharged from multiple travertine mounds causing laterally extensive travertine sheets to precipitate, and (ii) the adjacent much steeper (up to 30°) periglacial hillslopes that are the source area of repeated debris flows that accumulate on the travertine surface. The resulting travertine-colluvium succession has a total thickness of ~ 24 m and 230Th/U dating

  14. Geochemical control on the reduction of U(VI) to mononuclear U(IV) species in lacustrine sediments

    NASA Astrophysics Data System (ADS)

    Stetten, L.; Mangeret, A.; Brest, J.; Seder-Colomina, M.; Le Pape, P.; Ikogou, M.; Zeyen, N.; Thouvenot, A.; Julien, A.; Alcalde, G.; Reyss, J. L.; Bombled, B.; Rabouille, C.; Olivi, L.; Proux, O.; Cazala, C.; Morin, G.

    2018-02-01

    Contaminated systems in which uranium (U) concentrations slightly exceed the geochemical background are of particular interest to identify natural processes governing U trapping and accumulation in Earth's surface environments. For this purpose, we examined the role of early diagenesis on the evolution of U speciation and mobility in sediments from an artificial lake located downstream from a former mining site. Sediment and pore water chemistry together with U and Fe solid state speciation were analyzed in sediment cores sampled down to 50 cm depth at four locations in the lake. These organic-rich sediments (∼12% organic C) exhibited U concentrations in the 40-80 mg kg-1 range. The sediment columns were anoxic 2-3 mm below the sediment-water interface and pore waters pH was circumneutral. Pore water chemistry profiles showed that organic carbon mineralization was associated with Fe and Mn reduction and was correlated with a decrease in dissolved U concentration with depth. Immobilization of U in the sediment was correlated with the reduction of U(VI) to U(IV) at depth, as shown by U LIII-edge XANES spectroscopic analysis. XANES and EXAFS spectroscopy at the Fe K-edge showed the reduction of structural Fe(III) to Fe(II) in phyllosilicate minerals with depth, coincident with U(VI) to U(IV) reduction. Thermodynamic modeling suggests that Fe(II) could act as a major reducing agent for U(VI) during early diagenesis of these sediments, leading to complete U reduction below ∼30 cm depth. Shell-by-shell and Cauchy-Wavelet analysis of U LIII-EXAFS spectra indicates that U(VI) and U(IV) are mainly present as mononuclear species bound to C, P or Si ligands. Chemical extractions confirmed that ∼60-80% of U was present as non-crystalline species, which emphasizes that such species should be considered when evaluating the fate of U in lacustrine environments and the efficiency of sediment remediation strategies.

  15. A novel overall approach for sediment-related disaster prevention in urban areas, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Dongyeob; Lee, Changwoo; Woo, Choongshik; Jeong, Seonhwan

    2015-04-01

    In South Korea, we had 140 landslides around Mt. Umyeon of Seoul city on July 27, 2011, which caused 16 deaths and more than 150 house damages. These landslides were triggered by a severe rainfall event with the total amount of 365 mm, equivalent to a 100-year-recurrence interval event. The landslide disaster in Mt. Umyeon is the first sediment-related disaster posing the significant serious damages to urban areas in South Korea which requires overall reconsideration about prevention, warning, countermeasure and rehabilitation to sediment-related disasters in urban areas. To meet such demands of society, the Korea Forest Research Institute (KFRI), competent to the sediment-related disasters research, is committed to conducting on a research project of development of a prevention system for sediment-related disasters in urban areas including non-structural countermeasures such as construction of landslide early warning system and structural ones such as development of urban-typed debris flow barriers. Of these countermeasures, a proto-type of landslide early warning system consisting of a variety of sensors such as soil moisture content sensor and tensiometer has been tested in-situ in a point view of system performance maintenance. We have also tried to find the threshold of the sensors by slope failure experiments. Meanwhile, two types of debris flow barriers for urban areas were developed and their functioning abilities have been tested by both of flume test and computational structure analysis. We hope these research results would mitigate potential damages efficiently by sediment-related disasters in urban areas.

  16. Perfluoroalkyl substances and extractable organic fluorine in surface sediments and cores from Lake Ontario.

    PubMed

    Yeung, Leo W Y; De Silva, Amila O; Loi, Eva I H; Marvin, Chris H; Taniyasu, Sachi; Yamashita, Nobuyoshi; Mabury, Scott A; Muir, Derek C G; Lam, Paul K S

    2013-09-01

    Fourteen perfluoroalkyl substances (PFASs) including short-chain perfluorocarboxylates (PFCAs, C4-C6) and perfluoroalkane sulfonates (PFSAs, C4 and C6) were measured in surface sediment samples from 26 stations collected in 2008 and sediment core samples from three stations (Niagara, Mississauga, and Rochester basins) collected in 2006 in Lake Ontario. Perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluoroundecanoate (PFUnDA) were detected in all 26 surface sediment samples, whereas perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonamide (FOSA), perfluorododecanoate (PFDoDA) and perfluorobutanoate (PFBA) were detected in over 70% of the surface sediment samples. PFOS was detected in all of the sediment core samples (range: 0.492-30.1ngg(-1) d.w.) over the period 1952-2005. The C8 to C11 PFCAs, FOSA, and PFBA increased in early 1970s. An overall increasing trend in sediment PFAS concentrations/fluxes from older to more recently deposited sediments was evident in the three sediment cores. The known PFCAs and PFSAs accounted for 2-44% of the anionic fraction of the extractable organic fluorine in surface sediment, suggesting that a large proportion of fluorine in this fraction remained unknown. Sediment core samples collected from Niagara basin showed an increase in unidentified organic fluorine in recent years (1995-2006). These results suggest that the use and manufacture of fluorinated organic compounds other than known PFCAs and PFSAs has diversified and increased. © 2013.

  17. Quantifying trail erosion and stream sedimentation with sediment tracers

    Treesearch

    Mark S. Riedel

    2006-01-01

    Abstract--The impacts of forest disturbance and roads on stream sedimentation have been rigorously investigated and documented. While historical research on turbidity and suspended sediments has been thorough, studies of stream bed sedimentation have typically relied on semi-quantitative measures such as embeddedness or marginal pool depth. To directly quantify the...

  18. Diagenetic changes in Concholepas concholepas shells (Gastropoda, Muricidae) in the hyper-arid conditions of Northern Chile - implications for palaeoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Guzmán, N.; Dauphin, Y.; Cuif, J. P.; Denis, A.; Ortlieb, L.

    2009-02-01

    Variations in the chemical composition of fossil biogenic carbonates, and in particular of mollusc shells, have been used in a range of palaeoenvironmental reconstructions. It is of primary importance, therefore, to detect and understand the diagenetic processes that may modify the original chemical signature. This microstructural and biogeochemical study focuses on modern and fossil (Holocene and Pleistocene) shells of a littoral gastropod of Northern Chile, and on the characterization of mineral component transformations at the nanometric scale and concomitant intracrystalline organic compound modifications. The inner aragonite layer of the shell exhibits more complex deteriorations than the calcite layer. This preliminary study confirms that physical and chemical alterations of various components of mollusc shell biocrystals are complex and might manifest in different ways even within a single individual. The single criterion of determining the mineralogical composition to verify the conservation state of shell samples is insufficient.

  19. Diagenetic changes in Concholepas concholepas shells (Gastropoda, Muricidae) in the hyper-arid conditions of Northern Chile - implications for palaeoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Guzman, N.; Dauphin, Y.; Cuif, J. P.; Denis, A.; Ortlieb, L.

    2008-02-01

    Variations on chemical composition in fossil biogenic carbonates, and in particular of mollusk shells, have been used in a range of palaeoenvironmental reconstructions. Therefore, it is of primary importance to detect and understand the diagenetic processes that may modify the original chemical signature. This microstructural and biogeochemical study focuses on modern and fossil (Pleistocene and Holocene) shells of a littoral gastropod of Northern Chile, and on the characterization of mineral component transformations at the nanometric scale and concomitant intracrystalline organic compound modifications. The inner aragonite layer of the shell exhibits more complex deteriorations than the calcite layer. This preliminary study confirms that physical and chemical alterations of various components of mollusk shell biocrystals are complex and might manifest in different ways even within a single individual. The single criterion of determining the mineralogical composition to attest shell sample conservation state should not be considered as sufficient.

  20. Combining sediment fingerprinting and a conceptual model for erosion and sediment transfer to explore sediment sources in an Alpine catchment

    NASA Astrophysics Data System (ADS)

    Costa, A.; Stutenbecker, L.; Anghileri, D.; Bakker, M.; Lane, S. N.; Molnar, P.; Schlunegger, F.

    2017-12-01

    In Alpine basins, sediment production and transfer is increasingly affected by climate change and human activities, specifically hydropower exploitation. Changes in sediment sources and pathways significantly influence basin management, biodiversity and landscape evolution. We explore the dynamics of sediment sources in a partially glaciated and highly regulated Alpine basin, the Borgne basin, by combining geochemical fingerprinting with the modelling of erosion and sediment transfer. The Borgne basin in southwest Switzerland is composed of three main litho-tectonic units, which we characterised following a tributary-sampling approach from lithologically characteristic sub-basins. We analysed bulk geochemistry using lithium borate fusion coupled with ICP-ES, and we used it to discriminate the three lithologic sources using statistical methods. Finally, we applied a mixing model to estimate the relative contributions of the three sources to the sediment sampled at the outlet. We combine results of the sediment fingerprinting with simulations of a spatially distributed conceptual model for erosion and transport of fine sediment. The model expresses sediment erosion by differentiating the contributions of erosional processes driven by erosive rainfall, snowmelt, and icemelt. Soil erodibility is accounted for as function of land-use and sediment fluxes are linearly convoluted to the outlet by sediment transfer rates for hillslope and river cells, which are a function of sediment connectivity. Sediment connectivity is estimated on the basis of topographic-hydraulic connectivity, flow duration associated with hydropower flow abstraction and permanent storage in hydropower reservoirs. Sediment fingerprinting at the outlet of the Borgne shows a consistent dominance (68-89%) of material derived from the uppermost, highly glaciated reaches, while contributions of the lower part (10-25%) and middle part (1-16%), where rainfall erosion is predominant, are minor. This result is