Sample records for early drosophila melanogaster

  1. The developmental transcriptome of Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.

    of genes. Whereas, 20% of Drosophila genes are annotated as encoding alternatively spliced premRNAs, splice-junction microarray experiments indicate that this number is at least 40% (ref. 7). Determining the diversity of mRNAs generated by alternative promoters, alternative splicing and RNA editing will substantially increase the inferred protein repertoire. Non-coding RNA genes (ncRNAs) including short interfering RNAs (siRNAs) and microRNAS (miRNAs) (reviewed in ref. 10), and longer ncRNAs such as bxd (ref. 11) and rox (ref. 12), have important roles in gene regulation, whereas others such as small nucleolar RNAs (snoRNAs)and small nuclear RNAs (snRNAs) are important components of macromolecular machines such as the ribosome and spliceosome. The transcription and processing of these ncRNAs must also be fully documented and mapped. As part of the modENCODE project to annotate the functional elements of the D. melanogaster and Caenorhabditis elegans genomes, we used RNA-Seq and tiling microarrays to sample the Drosophila transcriptome at unprecedented depth throughout development from early embryo to ageing male and female adults. We report on a high-resolution view of the discovery, structure and dynamic expression of the D. melanogaster transcriptome.« less

  2. Drosophila melanogaster as a Model for Studying Aspergillus fumigatus

    PubMed Central

    AL-Maliki, Hadeel Saeed; Martinez, Suceti; Piszczatowski, Patrick

    2017-01-01

    Drosophila melanogaster is a useful model organism that offers essential insights into developmental and cellular processes shared with humans, which has been adapted for large scale analysis of medically important microbes and to test the toxicity of heavy metals, industrial solvents and other poisonous substances. We here give a brief review of the use of the Drosophila model in medical mycology, discuss the volatile organic compounds (VOCs) produced by the opportunistic human pathogen, Aspergillus fumigatus, and give a brief summary of what is known about the toxicity of some common fungal VOCs. Further, we discuss the use of VOC detection as an indirect indicator of fungal growth, including for early diagnosis of aspergillosis. Finally, we hypothesize that D. melanogaster has promise for investigating the role of VOCs synthesized by A. fumigatus as possible virulence factors. PMID:29371791

  3. Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity.

    PubMed

    Hateley, Shannon; Hosamani, Ravikumar; Bhardwaj, Shilpa R; Pachter, Lior; Bhattacharya, Sharmila

    2016-10-01

    Altered gravity can perturb normal development and induce corresponding changes in gene expression. Understanding this relationship between the physical environment and a biological response is important for NASA's space travel goals. We use RNA-Seq and qRT-PCR techniques to profile changes in early Drosophila melanogaster pupae exposed to chronic hypergravity (3g, or three times Earth's gravity). During the pupal stage, D. melanogaster rely upon gravitational cues for proper development. Assessing gene expression changes in the pupae under altered gravity conditions helps highlight gravity-dependent genetic pathways. A robust transcriptional response was observed in hypergravity-treated pupae compared to controls, with 1513 genes showing a significant (q<0.05) difference in gene expression. Five major biological processes were affected: ion transport, redox homeostasis, immune response, proteolysis, and cuticle development. This outlines the underlying molecular and biological changes occurring in Drosophila pupae in response to hypergravity; gravity is important for many biological processes on Earth. Published by Elsevier Inc.

  4. Behavioral Teratogenesis in Drosophila melanogaster.

    PubMed

    Mishra, Monalisa; Barik, Bedanta Kumar

    2018-01-01

    Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.

  5. Autophagy in Drosophila melanogaster.

    PubMed

    McPhee, Christina K; Baehrecke, Eric H

    2009-09-01

    Macroautophagy (autophagy) is a bulk cytoplasmic degradation process that is conserved from yeast to mammals. Autophagy is an important cellular response to starvation and stress, and plays critical roles in development, cell death, aging, immunity, and cancer. The fruit fly Drosophila melanogaster provides an excellent model system to study autophagy in vivo, in the context of a developing organism. Autophagy (atg) genes and their regulators are conserved in Drosophila, and autophagy is induced in response to nutrient starvation and hormones during development. In this review we provide an overview of how Drosophila research has contributed to our understanding of the role and regulation of autophagy in cell survival, growth, nutrient utilization, and cell death. Recent Drosophila research has also provided important mechanistic information about the role of autophagy in protein aggregation disorders, neurodegeneration, aging, and innate immunity. Differences in the role of autophagy in specific contexts and/or cell types suggest that there may be cell-context-specific regulators of autophagy, and studies in Drosophila are well-suited to yield discoveries about this specificity.

  6. The Drosophila melanogaster host model

    PubMed Central

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  7. The Drosophila melanogaster host model.

    PubMed

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  8. The Genetic Basis for Variation in Sensitivity to Lead Toxicity in Drosophila melanogaster.

    PubMed

    Zhou, Shanshan; Morozova, Tatiana V; Hussain, Yasmeen N; Luoma, Sarah E; McCoy, Lenovia; Yamamoto, Akihiko; Mackay, Trudy F C; Anholt, Robert R H

    2016-07-01

    Lead toxicity presents a worldwide health problem, especially due to its adverse effects on cognitive development in children. However, identifying genes that give rise to individual variation in susceptibility to lead toxicity is challenging in human populations. Our goal was to use Drosophila melanogaster to identify evolutionarily conserved candidate genes associated with individual variation in susceptibility to lead exposure. To identify candidate genes associated with variation in susceptibility to lead toxicity, we measured effects of lead exposure on development time, viability and adult activity in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association analyses to identify candidate genes. We used mutants to assess functional causality of candidate genes and constructed a genetic network associated with variation in sensitivity to lead exposure, on which we could superimpose human orthologs. We found substantial heritabilities for all three traits and identified candidate genes associated with variation in susceptibility to lead exposure for each phenotype. The genetic architectures that determine variation in sensitivity to lead exposure are highly polygenic. Gene ontology and network analyses showed enrichment of genes associated with early development and function of the nervous system. Drosophila melanogaster presents an advantageous model to study the genetic underpinnings of variation in susceptibility to lead toxicity. Evolutionary conservation of cellular pathways that respond to toxic exposure allows predictions regarding orthologous genes and pathways across phyla. Thus, studies in the D. melanogaster model system can identify candidate susceptibility genes to guide subsequent studies in human populations. Zhou S, Morozova TV, Hussain YN, Luoma SE, McCoy L, Yamamoto A, Mackay TF, Anholt RR. 2016. The genetic basis for variation in sensitivity to lead toxicity in Drosophila melanogaster. Environ Health

  9. The Genetic Basis for Variation in Sensitivity to Lead Toxicity in Drosophila melanogaster

    PubMed Central

    Zhou, Shanshan; Morozova, Tatiana V.; Hussain, Yasmeen N.; Luoma, Sarah E.; McCoy, Lenovia; Yamamoto, Akihiko; Mackay, Trudy F.C.; Anholt, Robert R.H.

    2016-01-01

    Background: Lead toxicity presents a worldwide health problem, especially due to its adverse effects on cognitive development in children. However, identifying genes that give rise to individual variation in susceptibility to lead toxicity is challenging in human populations. Objectives: Our goal was to use Drosophila melanogaster to identify evolutionarily conserved candidate genes associated with individual variation in susceptibility to lead exposure. Methods: To identify candidate genes associated with variation in susceptibility to lead toxicity, we measured effects of lead exposure on development time, viability and adult activity in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association analyses to identify candidate genes. We used mutants to assess functional causality of candidate genes and constructed a genetic network associated with variation in sensitivity to lead exposure, on which we could superimpose human orthologs. Results: We found substantial heritabilities for all three traits and identified candidate genes associated with variation in susceptibility to lead exposure for each phenotype. The genetic architectures that determine variation in sensitivity to lead exposure are highly polygenic. Gene ontology and network analyses showed enrichment of genes associated with early development and function of the nervous system. Conclusions: Drosophila melanogaster presents an advantageous model to study the genetic underpinnings of variation in susceptibility to lead toxicity. Evolutionary conservation of cellular pathways that respond to toxic exposure allows predictions regarding orthologous genes and pathways across phyla. Thus, studies in the D. melanogaster model system can identify candidate susceptibility genes to guide subsequent studies in human populations. Citation: Zhou S, Morozova TV, Hussain YN, Luoma SE, McCoy L, Yamamoto A, Mackay TF, Anholt RR. 2016. The genetic basis for variation in

  10. Birth of a new gene on the Y chromosome of Drosophila melanogaster

    PubMed Central

    Carvalho, Antonio Bernardo; Vicoso, Beatriz; Russo, Claudia A. M.; Swenor, Bonnielin; Clark, Andrew G.

    2015-01-01

    Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes. PMID:26385968

  11. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster

    PubMed Central

    MACHADO, HEATHER E.; BERGLAND, ALAN O.; O’BRIEN, KATHERINE R.; BEHRMAN, EMILY L.; SCHMIDT, PAUL S.; PETROV, DMITRI A.

    2016-01-01

    Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. PMID:26523848

  12. Analysis of the effects of early nutritional environment on inbreeding depression in Drosophila melanogaster.

    PubMed

    Valtonen, T M; Roff, D A; Rantala, M J

    2011-01-01

    The impact of nutritional deficiencies early in life in determining life-history variation in organisms is well recognized. The negative effects of inbreeding on fitness are also well known. Contrary to studies on vertebrates, studies on invertebrates are not consistent with the observation that inbreeding compromises resistance to parasites and pathogens. In this study, we investigated the effect of early nutrition on the magnitude of inbreeding depression in development time, adult body size and adult resistance to the bacterium Serratia marcescens in Drosophila melanogaster. We found that early nutritional environment had no effect on the magnitude of inbreeding depression in development time or adult body size but may have played a small role in adult resistance to the bacterial infection. Estimates of heritabilities for development time under the poor nutritional environment were larger than those measured under the standard nutritional conditions. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  13. The translation factors of Drosophila melanogaster.

    PubMed

    Marygold, Steven J; Attrill, Helen; Lasko, Paul

    2017-01-02

    Synthesis of polypeptides from mRNA (translation) is a fundamental cellular process that is coordinated and catalyzed by a set of canonical 'translation factors'. Surprisingly, the translation factors of Drosophila melanogaster have not yet been systematically identified, leading to inconsistencies in their nomenclature and shortcomings in functional (Gene Ontology, GO) annotations. Here, we describe the complete set of translation factors in D. melanogaster, applying nomenclature already in widespread use in other species, and revising their functional annotation. The collection comprises 43 initiation factors, 12 elongation factors, 3 release factors and 6 recycling factors, totaling 64 of which 55 are cytoplasmic and 9 are mitochondrial. We also provide an overview of notable findings and particular insights derived from Drosophila about these factors. This catalog, together with the incorporation of the improved nomenclature and GO annotation into FlyBase, will greatly facilitate access to information about the functional roles of these important proteins.

  14. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    PubMed Central

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A.; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E.

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  15. The digestive tract of Drosophila melanogaster.

    PubMed

    Lemaitre, Bruno; Miguel-Aliaga, Irene

    2013-01-01

    The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting from the ability to study the genetics of development, growth regulation, and physiology in the same organ. In this review, we summarize our knowledge of the Drosophila digestive tract, with an emphasis on the adult midgut and its functional underpinnings.

  16. Molecular Genetic Analysis of Ethanol Intoxication in Drosophila melanogaster.

    PubMed

    Heberlein, Ulrike; Wolf, Fred W; Rothenfluh, Adrian; Guarnieri, Douglas J

    2004-08-01

    Recently, the fruit fly Drosophila melanogaster has been introduced as a model system to study the molecular bases of a variety of ethanol-induced behaviors. It became immediately apparent that the behavioral changes elicited by acute ethanol exposure are remarkably similar in flies and mammals. Flies show signs of acute intoxication, which range from locomotor stimulation at low doses to complete sedation at higher doses and they develop tolerance upon intermittent ethanol exposure. Genetic screens for mutants with altered responsiveness to ethanol have been carried out and a few of the disrupted genes have been identified. This analysis, while still in its early stages, has already revealed some surprising molecular parallels with mammals. The availability of powerful tools for genetic manipulation in Drosophila, together with the high degree of conservation at the genomic level, make Drosophila a promising model organism to study the mechanism by which ethanol regulates behavior and the mechanisms underlying the organism's adaptation to long-term ethanol exposure.

  17. Ecdysteroid receptors in Drosophila melanogaster adult females

    USDA-ARS?s Scientific Manuscript database

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  18. Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy.

    PubMed

    Nezis, Ioannis P; Lamark, Trond; Velentzas, Athanassios D; Rusten, Tor Erik; Bjørkøy, Geir; Johansen, Terje; Papassideri, Issidora S; Stravopodis, Dimitrios J; Margaritis, Lukas H; Stenmark, Harald; Brech, Andreas

    2009-04-01

    Autophagy is a physiological and evolutionarily conserved process maintaining homeostatic functions, such as protein degradation and organelle turnover. Accumulating data provide evidence that autophagy also contributes to cell death under certain circumstances, but how this is achieved is not well known. Herein, we report that autophagy occurs during developmentally-induced cell death in the female germline, observed in the germarium and during middle developmental stages of oogenesis in Drosophila melanogaster. Degenerating germline cells exhibit caspase activation, chromatin condensation, DNA fragmentation and punctate staining of mCherry-DrAtg8a, a novel marker for monitoring autophagy in Drosophila. Genetic inhibition of autophagy, by removing atg1 or atg7 function, results in significant reduction of DNA fragmentation, suggesting that autophagy acts genetically upstream of DNA fragmentation in this tissue. This study provides new insights into the mechanisms that regulate cell death in vivo during development.

  19. The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster

    PubMed Central

    Webster, Claire L.; Waldron, Fergal M.; Robertson, Shaun; Crowson, Daisy; Ferrari, Giada; Quintana, Juan F.; Brouqui, Jean-Michel; Bayne, Elizabeth H.; Longdon, Ben; Buck, Amy H.; Lazzaro, Brian P.; Akorli, Jewelna; Haddrill, Penelope R.; Obbard, Darren J.

    2015-01-01

    Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont—which is known to be protective against virus infections in Drosophila—we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host–virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research. PMID:26172158

  20. Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults.

    PubMed

    Ahmad, Muhammad; Chaudhary, Safee Ullah; Afzal, Ahmed Jawaad; Tariq, Muhammad

    2015-09-24

    Drosophila melanogaster larvae are classified as herbivores and known to feed on non-carnivorous diet under normal conditions. However, when nutritionally challenged these larvae exhibit cannibalistic behaviour by consuming a diet composed of larger conspecifics. Herein, we report that cannibalism in Drosophila larvae is confined not only to scavenging on conspecifics that are larger in size, but also on their eggs. Moreover, such cannibalistic larvae develop as normally as those grown on standard cornmeal medium. When stressed, Drosophila melanogaster larvae can also consume a carnivorous diet derived from carcasses of organisms belonging to diverse taxonomic groups, including Musca domestica, Apis mellifera, and Lycosidae sp. While adults are ill-equipped to devour conspecific carcasses, they selectively oviposit on them and also consume damaged cadavers of conspecifics. Thus, our results suggest that nutritionally stressed Drosophila show distinct as well as unusual feeding behaviours that can be classified as detritivorous, cannibalistic and/or carnivorous.

  1. Neuronal Susceptibility to GRIM in Drosophila melanogaster Measures the Rate of Genetic Changes that Scale to Lifespan

    PubMed Central

    Bedoukian, Matthew A.; Rodriguez, Sarah M.; Cohen, Matthew B.; Duncan Smith, Stuart V.; Park, Jennifer

    2009-01-01

    Gene expression in Drosophila melanogaster changes significantly throughout life and some of these changes can be delayed by lowering ambient temperature and also by dietary restriction. These two interventions are known to slow the rate of aging as well as the accumulation of damage. It is unknown, however, whether gene expression changes that occur during development and early adult life make an animal more vulnerable to death. Here we develop a method capable of measuring the rate of programmed genetic changes during young adult life in Drosophila melanogaster and show that these changes can be delayed or accelerated in a manner that is predictive of longevity. We show that temperature shifts and dietary restriction, which slow the rate of aging in Drosophila melanogaster, extend the window of neuronal susceptibility to GRIM over-expression in a way that scales to lifespan. We propose that this susceptibility can be used to test compounds and genetic manipulations that alter the onset of senescence by changing the programmed timing of gene expression that correlates and may be causal to aging. PMID:19428445

  2. Can Drosophila melanogaster represent a model system for the detection of reproductive adverse drug reactions?

    PubMed

    Avanesian, Agnesa; Semnani, Sahar; Jafari, Mahtab

    2009-08-01

    Once a molecule is identified as a potential drug, the detection of adverse drug reactions is one of the key components of its development and the FDA approval process. We propose using Drosophila melanogaster to screen for reproductive adverse drug reactions in the early stages of drug development. Compared with other non-mammalian models, D. melanogaster has many similarities to the mammalian reproductive system, including putative sex hormones and conserved proteins involved in genitourinary development. Furthermore, the D. melanogaster model would present significant advantages in time efficiency and cost-effectiveness compared with mammalian models. We present data on methotrexate (MTX) reproductive adverse events in multiple animal models, including fruit flies, as proof-of-concept for the use of the D. melanogaster model.

  3. Drosophila melanogaster, a genetic model system for alcohol research.

    PubMed

    Guarnieri, Douglas J; Heberlein, Ulrike

    2003-01-01

    In its natural environment, which consists of fermenting plant materials, the fruit fly Drosophila melanogaster encounters high levels of ethanol. Flies are well equipped to deal with the toxic effects of ethanol; they use it as an energy source and for lipid biosynthesis. The primary ethanol-metabolizing pathway in flies involves the enzymes alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH); their role in adaptation to ethanol-rich environments has been studied extensively. The similarity between Drosophila and mammals is not restricted to the manner in which they metabolize ethanol; behaviors elicited by ethanol exposure are also remarkably similar in these organisms. Flies show signs of acute intoxication, which range from locomotor stimulation at low doses to complete sedation at higher doses, they develop tolerance upon intermittent ethanol exposure, and they appear to like ethanol, showing preference for ethanol-containing media. Molecular genetic analysis of ethanol-induced behaviors in Drosophila, while still in its early stages, has already revealed some surprising parallels with mammals. The availability of powerful tools for genetic manipulation in Drosophila, together with the high degree of conservation at the genomic level, make Drosophila a promising model organism to study the mechanism by which ethanol regulates behavior and the mechanisms underlying the organism's adaptation to long-term ethanol exposure.

  4. Pharmacodynamic study on insomnia-curing effects of Shuangxia Decoction in Drosophila melanogaster.

    PubMed

    Zhang, Zhi-Qian; Degejin; Geng, Di; Zhang, Qi; Tian, Yan; Xi, Yuan; Wang, Wen-Qi; Tang, Hua-Qi; Xu, Bing; Lin, Hong-Ying; Sun, Yi-Kun

    2016-09-01

    The present study aimed to establish a pharmacodynamic method using the pySolo software to explore the influence of freeze-dried powders of Shuangxia Decoction (SXD) on the sleep of normal Drosophila melanogaster and the Drosophila melanogaster whose sleep was divested by light. The dose-effect and the time-effect relationships of SXD on sleep were examined. The effect-onset concentration of SXD was 0.25%, the plateau appeared at the concentration of 2.5% and the total sleep time showed a downtrend when the concentration was greater than 2.5%. The sleep time was the longest on the fourth day after SXD was given. The fruit fly sleep deprivation model was repeated by light stimulation at night. The middle dosage group (2.5%) had the best insomnia-curing effect. In conclusion, using the pySolo software, an approach for the pharmacodynamics study was established with Drosophila melanogaster as a model organism to determine the insomnia-curing effects of the traditional Chinese medicine (TCM). Our results demonstrated the reliability of this method. The freeze-dried powders of SXD could effectively improve the sleep quality of Drosophila melanogaster. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  5. Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults

    PubMed Central

    Ahmad, Muhammad; Chaudhary, Safee Ullah; Afzal, Ahmed Jawaad; Tariq, Muhammad

    2015-01-01

    Drosophila melanogaster larvae are classified as herbivores and known to feed on non-carnivorous diet under normal conditions. However, when nutritionally challenged these larvae exhibit cannibalistic behaviour by consuming a diet composed of larger conspecifics. Herein, we report that cannibalism in Drosophila larvae is confined not only to scavenging on conspecifics that are larger in size, but also on their eggs. Moreover, such cannibalistic larvae develop as normally as those grown on standard cornmeal medium. When stressed, Drosophila melanogaster larvae can also consume a carnivorous diet derived from carcasses of organisms belonging to diverse taxonomic groups, including Musca domestica, Apis mellifera, and Lycosidae sp. While adults are ill-equipped to devour conspecific carcasses, they selectively oviposit on them and also consume damaged cadavers of conspecifics. Thus, our results suggest that nutritionally stressed Drosophila show distinct as well as unusual feeding behaviours that can be classified as detritivorous, cannibalistic and/or carnivorous. PMID:26399327

  6. Identification and characterization of novel natural pathogen of Drosophila melanogaster isolated from wild captured Drosophila spp.

    PubMed

    Singh, Karan; Zulkifli, Mohammad; Prasad, N G

    2016-12-01

    Drosophila melanogaster is an emerging model system for the study of evolutionary ecology of immunity. However, a large number of studies have used non natural pathogens as very few natural pathogens have been isolated and identified. Our aim was to isolate and characterize natural pathogen/s of D. melanogaster. A bacterial pathogen was isolated from wild caught Drosophila spp., identified as a new strain of Staphylococcus succinus subsp. succinus and named PK-1. This strain induced substantial mortality (36-62%) in adults of several laboratory populations of D. melanogaster. PK-1 grew rapidly within the body of the flies post infection and both males and females had roughly same number of colony forming units. Mortality was affected by mode of infection and dosage of the pathogen. However mating status of the host had no effect on mortality post infection. Given that there are very few known natural bacterial pathogens of D. melanogaster and that PK-1 can establish a sustained infection across various outbred and inbred populations of D. melanogaster this new isolate is a potential resource for future studies on immunity. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Multiscale diffusion in the mitotic Drosophila melanogaster syncytial blastoderm

    PubMed Central

    Daniels, Brian R.; Rikhy, Richa; Renz, Malte; Dobrowsky, Terrence M.; Lippincott-Schwartz, Jennifer

    2012-01-01

    Despite the fundamental importance of diffusion for embryonic morphogen gradient formation in the early Drosophila melanogaster embryo, there remains controversy regarding both the extent and the rate of diffusion of well-characterized morphogens. Furthermore, the recent observation of diffusional “compartmentalization” has suggested that diffusion may in fact be nonideal and mediated by an as-yet-unidentified mechanism. Here, we characterize the effects of the geometry of the early syncytial Drosophila embryo on the effective diffusivity of cytoplasmic proteins. Our results demonstrate that the presence of transient mitotic membrane furrows results in a multiscale diffusion effect that has a significant impact on effective diffusion rates across the embryo. Using a combination of live-cell experiments and computational modeling, we characterize these effects and relate effective bulk diffusion rates to instantaneous diffusion coefficients throughout the syncytial blastoderm nuclear cycle phase of the early embryo. This multiscale effect may be related to the effect of interphase nuclei on effective diffusion, and thus we propose that an as-yet-unidentified role of syncytial membrane furrows is to temporally regulate bulk embryonic diffusion rates to balance the multiscale effect of interphase nuclei, which ultimately stabilizes the shapes of various morphogen gradients. PMID:22592793

  8. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  9. The developmental basis for germline mosaicism in mouse and Drosophila melanogaster.

    PubMed

    Drost, J B; Lee, W R

    1998-01-01

    Data involving germline mosaics in Drosophila melanogaster and mouse are reconciled with developmental observations. Mutations that become fixed in the early embryo before separation of soma from the germline may, by the sampling process of development, continue as part of germline and/or differentiate into any somatic tissue. The cuticle of adult D. melanogaster, because of segmental development, can be used to estimate the proportion of mutant nuclei in the early embryo, but most somatic tissues and the germlines of both species continue from samples too small to be representative of the early embryo. Because of the small sample of cells/nuclei that remain in the germline after separation of soma in both species, mosaic germlines have percentages of mutant cells that vary widely, with a mean of 50% and an unusual platykurtic, flat-topped distribution. While the sampling process leads to similar statistical results for both species, their patterns of development are very different. In D. melanogaster the first differentiation is the separation of soma from germline with the germline continuing from a sample of only two to four nuclei, whereas the adult cuticle is a representative sample of cleavage nuclei. The presence of mosaicism in D. melanogaster germline is independent of mosaicism in the eye, head, and thorax. This independence was used to determine that mutations can occur at any of the early embryonic cell divisions and still average 50% mutant germ cells when the germline is mosaic; however, the later the mutation occurs, the higher the proportion of completely nonmutant germlines. In contrast to D. melanogaster, the first differentiation in the mouse does not separate soma from germline but produces the inner cell mass that is representative of the cleavage nuclei. Following formation of the primitive streak, the primordial germ cells develop at the base of the allantois and among a clonally related sample of cells, providing the same statistical

  10. Drosophila Melanogaster Mitochondrial DNA: Gene Organization and Evolutionary Considerations

    PubMed Central

    Garesse, R.

    1988-01-01

    The sequence of a 8351-nucleotide mitochondrial DNA (mtDNA) fragment has been obtained extending the knowledge of the Drosophila melanogaster mitochondrial genome to 90% of its coding region. The sequence encodes seven polypeptides, 12 tRNAs and the 3' end of the 16S rRNA and CO III genes. The gene organization is strictly conserved with respect to the Drosophila yakuba mitochondrial genome, and different from that found in mammals and Xenopus. The high A + T content of D. melanogaster mitochondrial DNA is reflected in a reiterative codon usage, with more than 90% of the codons ending in T or A, G + C rich codons being practically absent. The average level of homology between the D. melanogaster and D. yakuba sequences is very high (roughly 94%), although insertion and deletions have been detected in protein, tRNA and large ribosomal genes. The analysis of nucleotide changes reveals a similar frequency for transitions and transversions, and reflects a strong bias against G+C on both strands. The predominant type of transition is strand specific. PMID:3130291

  11. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology.

    PubMed

    Buchon, Nicolas; Silverman, Neal; Cherry, Sara

    2014-12-01

    Since the discovery of antimicrobial peptide responses 40 years ago, the fruit fly Drosophila melanogaster has proven to be a powerful model for the study of innate immunity. Early work focused on innate immune mechanisms of microbial recognition and subsequent nuclear factor-κB signal transduction. More recently, D. melanogaster has been used to understand how the immune response is regulated and coordinated at the level of the whole organism. For example, researchers have used this model in studies investigating interactions between the microbiota and the immune system at barrier epithelial surfaces that ensure proper nutritional and immune homeostasis both locally and systemically. In addition, studies in D. melanogaster have been pivotal in uncovering how the immune response is regulated by both endocrine and metabolic signalling systems, and how the immune response modifies these systems as part of a homeostatic circuit. In this Review, we briefly summarize microbial recognition and antiviral immunity in D. melanogaster, and we highlight recent studies that have explored the effects of organism-wide regulation of the immune response and, conversely, the effects of the immune response on organism physiology.

  12. Macrophages and cellular immunity in Drosophila melanogaster

    PubMed Central

    Gold, Katrina S.; Brückner, Katja

    2016-01-01

    The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life. PMID:27117654

  13. Drosophila Melanogaster as an Emerging Translational Model of Human Nephrolithiasis

    PubMed Central

    Miller, Joe; Chi, Thomas; Kapahi, Pankaj; Kahn, Arnold J.; Kim, Man Su; Hirata, Taku; Romero, Michael F.; Dow, Julian A.T.; Stoller, Marshall L.

    2013-01-01

    Purpose The limitations imposed by human clinical studies and mammalian models of nephrolithiasis have hampered the development of effective medical treatments and preventative measures for decades. The simple but elegant Drosophila melanogaster is emerging as a powerful translational model of human disease, including nephrolithiasis and may provide important information essential to our understanding of stone formation. We present the current state of research using D. melanogaster as a model of human nephrolithiasis. Materials and Methods A comprehensive review of the English language literature was performed using PUBMED. When necessary, authoritative texts on relevant subtopics were consulted. Results The genetic composition, anatomic structure and physiologic function of Drosophila Malpighian tubules are remarkably similar to those of the human nephron. The direct effects of dietary manipulation, environmental alteration, and genetic variation on stone formation can be observed and quantified in a matter of days. Several Drosophila models of human nephrolithiasis, including genetically linked and environmentally induced stones, have been developed. A model of calcium oxalate stone formation is among the most recent fly models of human nephrolithiasis. Conclusions The ability to readily manipulate and quantify stone formation in D. melanogaster models of human nephrolithiasis presents the urologic community with a unique opportunity to increase our understanding of this enigmatic disease. PMID:23500641

  14. Chemotherapy induced toxicity is highly heritable in Drosophila melanogaster

    PubMed Central

    Kislukhin, Galina; Murphy, Maura L.; Jafari, Mahtab; Long, Anthony D.

    2012-01-01

    Objectives Identifying the genes responsible for chemotherapy toxicity in Drosophila melanogaster may allow for the identification of human orthologs that similarly mediate toxicity in humans. In order to develop Drosophila melanogaster as a model of dissecting chemotoxicity, we first need to develop standardized high throughput toxicity assays and prove that inter-individual variation in toxicity as measured by such assays is highly heritable. Methods We developed a method for the oral delivery of commonly used chemotherapy drugs to Drosophila. Post-treatment female fecundity displayed a dose dependent response to varying levels of the chemotherapy drug delivered. We fixed the dose for each drug at a level that resulted in a 50% reduction in fecundity and used a paternal half-sibling heritability design to calculate the heritability attributable to chemotherapy toxicity assayed via a decrease in female fecundity. Chemotherapy agents tested were carboplatin, floxuridine, gemcitabine hydrochloride, methotrexate, mitomycin C, and topotecan hydrochloride. Results We found that six currently widely prescribed chemotherapeutic agents lowered fecundity in D. melanogaster in both a dose dependent and highly heritable manner. The following heritability estimates were found: carboplatin – 0.72, floxuridine – 0.52, gemcitabine hydrochloride – 0.72, methotrexate – 0.99, mitomycin C – 0.64, and topotecan hydrochloride – 0.63. Conclusions The high heritability estimates observed in this study, irrespective of the particular class of drug examined, suggest that human toxicity may also have a sizable genetic component. PMID:22336958

  15. Metabolome analysis of Drosophila melanogaster during embryogenesis.

    PubMed

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos' metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.

  16. Metabolome Analysis of Drosophila melanogaster during Embryogenesis

    PubMed Central

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos’ metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo. PMID:25121768

  17. Leigh syndrome in Drosophila melanogaster: morphological and biochemical characterization of Surf1 post-transcriptional silencing.

    PubMed

    Da-Rè, Caterina; von Stockum, Sophia; Biscontin, Alberto; Millino, Caterina; Cisotto, Paola; Zordan, Mauro A; Zeviani, Massimo; Bernardi, Paolo; De Pittà, Cristiano; Costa, Rodolfo

    2014-10-17

    Leigh Syndrome (LS) is the most common early-onset, progressive mitochondrial encephalopathy usually leading to early death. The single most prevalent cause of LS is occurrence of mutations in the SURF1 gene, and LS(Surf1) patients show a ubiquitous and specific decrease in the activity of mitochondrial respiratory chain complex IV (cytochrome c oxidase, COX). SURF1 encodes an inner membrane mitochondrial protein involved in COX assembly. We established a Drosophila melanogaster model of LS based on the post-transcriptional silencing of CG9943, the Drosophila homolog of SURF1. Knockdown of Surf1 was induced ubiquitously in larvae and adults, which led to lethality; in the mesodermal derivatives, which led to pupal lethality; or in the central nervous system, which allowed survival. A biochemical characterization was carried out in knockdown individuals, which revealed that larvae unexpectedly displayed defects in all complexes of the mitochondrial respiratory chain and in the F-ATP synthase, while adults had a COX-selective impairment. Silencing of Surf1 expression in Drosophila S2R(+) cells led to selective loss of COX activity associated with decreased oxygen consumption and respiratory reserve. We conclude that Surf1 is essential for COX activity and mitochondrial function in D. melanogaster, thus providing a new tool that may help clarify the pathogenic mechanisms of LS. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Macrophages and cellular immunity in Drosophila melanogaster.

    PubMed

    Gold, Katrina S; Brückner, Katja

    2015-12-01

    The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life. Copyright © 2016. Published by Elsevier Ltd.

  19. The recent spread of a vertically transmitted virus through populations of Drosophila melanogaster.

    PubMed

    Carpenter, Jennifer A; Obbard, Darren J; Maside, Xulio; Jiggins, Francis M

    2007-09-01

    The sigma virus is a vertically transmitted pathogen that commonly infects natural populations of Drosophila melanogaster. This virus is the only known host-specific pathogen of D. melanogaster, and so offers a unique opportunity to study the genetics of Drosophila-viral interactions in a natural system. To elucidate the population genetic processes that operate in sigma virus populations, we collected D. melanogaster from 10 populations across three continents. We found that the sigma virus had a prevalence of 0-15% in these populations. Compared to other RNA viruses, we found that levels of viral genetic diversity are very low across Europe and North America. Based on laboratory measurements of the viral substitution rate, we estimate that most European and North American viral isolates shared a common ancestor approximately 200 years ago. We suggest two explanations for this: the first is that D. melanogaster has recently acquired the sigma virus; the second is that a single viral type has recently swept through D. melanogaster populations. Furthermore, in contrast to Drosophila populations, we find that the sigma viral populations are highly structured. This is surprising for a vertically transmitted pathogen that has a similar migration rate to its host. We suggest that the low structure in the viral populations can be explained by the smaller effective population size of the virus.

  20. The fruit fly Drosophila melanogaster unfolds the secrets of innate immunity.

    PubMed

    Rämet, Mika

    2012-09-01

    In 2011, the Nobel Prize in Physiology and Medicine was rewarded, in part, for research on the Drosophila immune response. The research described the role of the Drosophila Toll receptor in antifungal resistance, and the subsequent characterization of Toll-like receptors in mammals reshaped our understanding of the immune system. This review summarizes the potential of the Drosophila model and describes the path that has lead Drosophila to become an important model to study immunity. Drosophila melanogaster has been one of the most fruitful models to study innate immunity. © 2012 The Author(s)/Acta Paediatrica © 2012 Foundation Acta Paediatrica.

  1. Female Drosophila melanogaster respond to song-amplitude modulations.

    PubMed

    Brüggemeier, Birgit; Porter, Mason A; Vigoreaux, Jim O; Goodwin, Stephen F

    2018-06-11

    Males in numerous animal species use mating songs to attract females and intimidate competitors. We demonstrate that modulations in song amplitude are behaviourally relevant in the fruit fly Drosophila We show that D rosophila melanogaster females prefer amplitude modulations that are typical of melanogaster song over other modulations, which suggests that amplitude modulations are processed auditorily by D. melanogaster Our work demonstrates that receivers can decode messages in amplitude modulations, complementing the recent finding that male flies actively control song amplitude. To describe amplitude modulations, we propose the concept of song amplitude structure (SAS) and discuss similarities and differences to amplitude modulation with distance (AMD).This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  2. Gene–environment interplay in Drosophila melanogaster: Chronic food deprivation in early life affects adult exploratory and fitness traits

    PubMed Central

    Burns, James Geoffrey; Svetec, Nicolas; Rowe, Locke; Mery, Frederic; Dolan, Michael J.; Boyce, W. Thomas; Sokolowski, Marla B.

    2012-01-01

    Early life adversity has known impacts on adult health and behavior, yet little is known about the gene–environment interactions (GEIs) that underlie these consequences. We used the fruit fly Drosophila melanogaster to show that chronic early nutritional adversity interacts with rover and sitter allelic variants of foraging (for) to affect adult exploratory behavior, a phenotype that is critical for foraging, and reproductive fitness. Chronic nutritional adversity during adulthood did not affect rover or sitter adult exploratory behavior; however, early nutritional adversity in the larval period increased sitter but not rover adult exploratory behavior. Increasing for gene expression in the mushroom bodies, an important center of integration in the fly brain, changed the amount of exploratory behavior exhibited by sitter adults when they did not experience early nutritional adversity but had no effect in sitters that experienced early nutritional adversity. Manipulation of the larval nutritional environment also affected adult reproductive output of sitters but not rovers, indicating GEIs on fitness itself. The natural for variants are an excellent model to examine how GEIs underlie the biological embedding of early experience. PMID:23045644

  3. Visual Place Learning in Drosophila melanogaster

    PubMed Central

    Ofstad, Tyler A.; Zuker, Charles S.; Reiser, Michael B.

    2011-01-01

    The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. While the impressive navigation abilities of ants, bees, wasps, and other insects clearly demonstrate that insects are capable of visual place learning1–4, little is known about the underlying neural circuits that mediate these behaviors. Drosophila melanogaster is a powerful model organism for dissecting the neural circuitry underlying complex behaviors, from sensory perception to learning and memory. Flies can identify and remember visual features such as size, color, and contour orientation5, 6. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place-learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and substantiate Drosophila as a powerful model for the study of spatial memories. PMID:21654803

  4. Immunological detection of phenylalanine hydroxylase protein in Drosophila melanogaster.

    PubMed Central

    Silva, F J; Bel, Y; Botella, L M; Cotton, R G; Ferré, J

    1992-01-01

    A monoclonal antibody raised against monkey liver phenylalanine hydroxylase (PAH) has been used to detect this protein in Drosophila melanogaster. A cross-reacting material (CRM) band of apparent molecular mass 50-52 kDa, equivalent to that deduced for the Drosophila melanogaster PAH protein based on the pah gene cDNA sequence, has been detected. This CRM was analysed throughout development and showed an equivalent pattern to that reported for PAH activity in this insect, with maxima at pupariation and at pharate adult formation. Distribution of this CRM in larval tissues, the haemolymph and the adult body is mainly restricted to the larval fat body and the adult head. Demonstration of this CRM as the PAH protein comes from the correlation between the decreased PAH enzyme activities of two mutant strains and their decreased amounts of CRM by Western blotting. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1417795

  5. Patterns of Nucleotide Diversity at the Regions Encompassing the Drosophila Insulin-Like Peptide (dilp) Genes: Demography vs. Positive Selection in Drosophila melanogaster

    PubMed Central

    Guirao-Rico, Sara; Aguadé, Montserrat

    2013-01-01

    In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events. PMID:23308258

  6. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research.

    PubMed

    Staats, Stefanie; Lüersen, Kai; Wagner, Anika E; Rimbach, Gerald

    2018-04-18

    Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.

  7. P element excision in drosophila melanogaster and related drosophilids

    USDA-ARS?s Scientific Manuscript database

    The frequency of P element excision and the structure of the resulting excision products were determined in three drosophilid species, Drosophila melanogaster, D. virilis, and Chymomyza procnemis. A transient P element mobility assay was conducted in the cells of developing insect embryos, but unlik...

  8. Development of three Drosophila melanogaster strains with different sensitivity to volatile anesthetics.

    PubMed

    Liu, Jin; Hu, Zhao-yang; Ye, Qi-quan; Dai, Shuo-hua

    2009-03-05

    The mechanisms of action for volatile anesthetics remain unknown for centuries partly owing to the insufficient or ineffective research models. We designed this study to develop three strains derived from a wild-type Drosophila melanogaster with different sensitivities to volatile anesthetics, which may ultimately facilitate molecular and genetic studies of the mechanism involved. Median effective doses (ED(50)) of sevoflurane in seven-day-old virgin female and male wild-type Drosophila melanogaster were determined. The sensitive males and females of percentile 6 - 10 were cultured for breeding sensitive offspring (S(1)). So did median ones of percentile 48 - 52 for breeding median offspring (M(1)), resistant ones of percentile 91 - 95 for breeding resistant offspring (R(1)). Process was repeated through 31 generations, in the 37th generation, S(37), M(37) and R(37) were used to determine ED(50) for enflurane, isoflurane, sevoflurane, desflurane, halothane, methoxyflurane, chloroform and trichloroethylene, then ED(50) values were correlated with minimum alveolar concentration (MAC) values in human. From a wild-type Drosophila melanogaster we were able to breed three strains with high, median and low sevoflurane requirements. The ratio of sevoflurane requirements of three strains were 1.20:1.00:0.53 for females and 1.22:1.00:0.72 for males. Strains sensitive, median and resistant to sevoflurane were also sensitive, median and resistant to other volatile anesthetics. For eight anesthetics, ED(50) values in three strains correlated directly with MAC values in human. Three Drosophila melanogaster strains with high, median and low sensitivity to volatile anesthetics, but with same hereditary background were developed. The ED(50) are directly correlated with MAC in human for eight volatile anesthetics.

  9. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster

    PubMed Central

    Schrider, Daniel R.; Hahn, Matthew W.; Begun, David J.

    2016-01-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster. In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. PMID:26809315

  10. UCP4C mediates uncoupled respiration in larvae of Drosophila melanogaster.

    PubMed

    Da-Ré, Caterina; De Pittà, Cristiano; Zordan, Mauro A; Teza, Giordano; Nestola, Fabrizio; Zeviani, Massimo; Costa, Rodolfo; Bernardi, Paolo

    2014-05-01

    Larvae of Drosophila melanogaster reared at 23°C and switched to 14°C for 1 h are 0.5°C warmer than the surrounding medium. In keeping with dissipation of energy, respiration of Drosophila melanogaster larvae cannot be decreased by the F-ATPase inhibitor oligomycin or stimulated by protonophore. Silencing of Ucp4C conferred sensitivity of respiration to oligomycin and uncoupler, and prevented larva-to-adult progression at 15°C but not 23°C. Uncoupled respiration of larval mitochondria required palmitate, was dependent on Ucp4C and was inhibited by guanosine diphosphate. UCP4C is required for development through the prepupal stages at low temperatures and may be an uncoupling protein.

  11. Life History Traits of an Extended Longevity Phenotype of Drosophila melanogaster.

    PubMed

    Deepashree, S; Shivanandappa, T; Ramesh, S R

    2017-01-01

    Aging or senescence is a complex biological phenomenon. Artificially selected Drosophila for extended longevity is one of the experimental models used to understand the mechanisms involved in aging and to test various theories. To examine the life history traits and biochemical defenses in relation to aging in an extended longevity phenotype of Drosophila melanogaster. Life history traits viz., survivability, fecundity, development time, dry weight, wing size, lipid content, starvation, desiccation and cold resistances, locomotory ability, antioxidant enzyme activities and reactive oxygen species level between control and selected lines of D. melanogaster were investigated. In our model of Drosophila, extended longevity is associated with no trade-off in fecundity and shows variable resistance to environmental stress such as starvation, cold and desiccation. Enhanced biochemical defense involving the antioxidant enzymes was positively correlated with longevity. Extended longevity phenotypes of Drosophila represent genomic plasticity associated with variable life history traits attributed to the genetic background of the progenitor population and the environment of selection. Oxidative stress resistance seems to be a significant factor in longevity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Optogenetic pacing in Drosophila melanogaster

    PubMed Central

    Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299

  13. Resources for Functional Genomics Studies in Drosophila melanogaster

    PubMed Central

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  14. Characterization of Autophagic Responses in Drosophila melanogaster.

    PubMed

    Xu, T; Kumar, S; Denton, D

    2017-01-01

    Drosophila is an excellent model system for studying autophagy during animal development due to the availability of genetic reagents and opportunity for in vivo cell biological analysis. The regulation and mechanism of autophagy are highly evolutionarily conserved and the role of autophagy has been characterized during various stages of Drosophila development as well as following starvation. Studies in Drosophila have revealed novel insights into the role of distinct components of the autophagy machinery. This chapter describes protocols for examining autophagy during Drosophila development. A crucial step in the induction of autophagy is the incorporation of Atg8a into the autophagosome. This can be measured as autophagic puncta using live fluorescent imaging, immunostaining, or immunoblot analysis of LC3/Atg8a processing. The level of autophagy can also be examined using other specific components of the autophagy pathway as markers detected by immunofluorescent imaging. Based on the distinct morphology of autophagy, it can also be examined by transmission electron microscopy. In addition, one of the advantages of using Drosophila as a model is the ability to undertake genetic analysis of individual components of the autophagy machinery. Current approaches that can be used to monitor autophagy, including the overall flux and individual steps in Drosophila melanogaster, will be discussed. © 2017 Elsevier Inc. All rights reserved.

  15. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster

    PubMed Central

    Dunn, Joshua G; Foo, Catherine K; Belletier, Nicolette G; Gavis, Elizabeth R; Weissman, Jonathan S

    2013-01-01

    Ribosomes can read through stop codons in a regulated manner, elongating rather than terminating the nascent peptide. Stop codon readthrough is essential to diverse viruses, and phylogenetically predicted to occur in a few hundred genes in Drosophila melanogaster, but the importance of regulated readthrough in eukaryotes remains largely unexplored. Here, we present a ribosome profiling assay (deep sequencing of ribosome-protected mRNA fragments) for Drosophila melanogaster, and provide the first genome-wide experimental analysis of readthrough. Readthrough is far more pervasive than expected: the vast majority of readthrough events evolved within D. melanogaster and were not predicted phylogenetically. The resulting C-terminal protein extensions show evidence of selection, contain functional subcellular localization signals, and their readthrough is regulated, arguing for their importance. We further demonstrate that readthrough occurs in yeast and humans. Readthrough thus provides general mechanisms both to regulate gene expression and function, and to add plasticity to the proteome during evolution. DOI: http://dx.doi.org/10.7554/eLife.01179.001 PMID:24302569

  16. Gut-associated microbes of Drosophila melanogaster

    PubMed Central

    Broderick, Nichole; Lemaitre, Bruno

    2012-01-01

    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  17. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.

    PubMed

    Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo

    2015-10-08

    Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p < 0.05). Some eggs displayed abnormal chorionic appendages, some larvae were large and red, and some adult flies showed wing abnormalities. Abnormal wing phenotypes of D. melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.

  18. Metallothionein Gene Duplications and Metal Tolerance in Natural Populations of Drosophila melanogaster

    PubMed Central

    Maroni, G.; Wise, J.; Young, J. E.; Otto, E.

    1987-01-01

    A search for duplications of the Drosophila melanogaster metallothionein gene (Mtn) yielded numerous examples of this type of chromosomal rearrangement. These duplications are distributed widely—we found them in samples from four continents, and they are functional—larvae carrying Mtn duplications produce more Mtn RNA and tolerate increased cadmium and copper concentrations. Six different duplication types were characterized by restriction-enzyme analyses using probes from the Mtn region. The restriction maps show that in four cases the sequences, ranging in size between 2.2 and 6.0 kb, are arranged as direct, tandem repeats; in two other cases, this basic pattern is modified by the insertion of a putative transposable element into one of the repeated units. Duplications of the D. melanogaster metallothionein gene such as those that we found in natural populations may represent early stages in the evolution of a gene family. PMID:2828157

  19. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knecht, Wolfgang; Mikkelsen, Nils Egil; Clausen, Anders Ranegaard

    2009-05-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.

  20. Copper homeostasis gene discovery in Drosophila melanogaster.

    PubMed

    Norgate, Melanie; Southon, Adam; Zou, Sige; Zhan, Ming; Sun, Yu; Batterham, Phil; Camakaris, James

    2007-06-01

    Recent studies have shown a high level of conservation between Drosophila melanogaster and mammalian copper homeostasis mechanisms. These studies have also demonstrated the efficiency with which this species can be used to characterize novel genes, at both the cellular and whole organism level. As a versatile and inexpensive model organism, Drosophila is also particularly useful for gene discovery applications and thus has the potential to be extremely useful in identifying novel copper homeostasis genes and putative disease genes. In order to assess the suitability of Drosophila for this purpose, three screening approaches have been investigated. These include an analysis of the global transcriptional response to copper in both adult flies and an embryonic cell line using DNA microarray analysis. Two mutagenesis-based screens were also utilized. Several candidate copper homeostasis genes have been identified through this work. In addition, the results of each screen were carefully analyzed to identify any factors influencing efficiency and sensitivity. These are discussed here with the aim of maximizing the efficiency of future screens and the most suitable approaches are outlined. Building on this information, there is great potential for the further use of Drosophila for copper homeostasis gene discovery.

  1. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection.

    PubMed

    Yadav, Shruti; Frazer, Joanna; Banga, Ashima; Pruitt, Katherine; Harsh, Sneh; Jaenike, John; Eleftherianos, Ioannis

    2018-01-01

    Associations between endosymbiotic bacteria and their hosts represent a complex ecosystem within organisms ranging from humans to protozoa. Drosophila species are known to naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role against certain microbial infections. Here, we investigated whether the presence or absence of endosymbionts affects the immune response of Drosophila melanogaster larvae to infection by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively). We find that the presence of Wolbachia alone or together with Spiroplasma promotes the survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiroplasma-free larvae infected with axenic compared to symbiotic nematodes, and they are also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with axenic nematodes. We further show that S. carpocapsae axenic nematode infection induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infection leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosymbionts. Finally, infection with either type of nematode alters the metabolic status and the fat body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endosymbionts. Our results suggest an interaction between Wolbachia endosymbionts with the immune response of D. melanogaster against infection with the entomopathogenic nematodes S. carpocapsae. Results from this study indicate a complex interplay between insect hosts, endosymbiotic microbes and pathogenic organisms.

  2. Predatory cannibalism in Drosophila melanogaster larvae.

    PubMed

    Vijendravarma, Roshan K; Narasimha, Sunitha; Kawecki, Tadeusz J

    2013-01-01

    Hunting live prey is risky and thought to require specialized adaptations. Therefore, observations of predatory cannibalism in otherwise non-carnivorous animals raise questions about its function, adaptive significance and evolutionary potential. Here we document predatory cannibalism on larger conspecifics in Drosophila melanogaster larvae and address its evolutionary significance. We found that under crowded laboratory conditions younger larvae regularly attack and consume 'wandering-stage' conspecifics, forming aggregations mediated by chemical cues from the attacked victim. Nutrition gained this way can be significant: an exclusively cannibalistic diet was sufficient for normal development from eggs to fertile adults. Cannibalistic diet also induced plasticity of larval mouth parts. Finally, during 118 generations of experimental evolution, replicated populations maintained under larval malnutrition evolved enhanced propensity towards cannibalism. These results suggest that, at least under laboratory conditions, predation on conspecifics in Drosophila is a functional, adaptive behaviour, which can rapidly evolve in response to nutritional conditions.

  3. Heterochromatin position effects on circularized sex chromosomes cause filicidal embryonic lethality in Drosophila melanogaster.

    PubMed

    Ferree, Patrick M; Gomez, Karina; Rominger, Peter; Howard, Dagnie; Kornfeld, Hannah; Barbash, Daniel A

    2014-04-01

    Some circularized X-Y chromosomes in Drosophila melanogaster are mitotically unstable and induce early embryonic lethality, but the genetic basis is unknown. Our experiments suggest that a large region of X-linked satellite DNA causes anaphase bridges and lethality when placed into a new heterochromatic environment within certain circularized X-Y chromosomes. These results reveal that repetitive sequences can be incompatible with one another in cis. The lethal phenotype also bears a remarkable resemblance to a case of interspecific hybrid lethality.

  4. Ethanol preference in Drosophila melanogaster is driven by its caloric value

    PubMed Central

    Pohl, Jascha B.; Baldwin, Brett A.; Dinh, Boingoc L.; Rahman, Pinkey; Smerek, Dustin; Prado, Francisco J.; Sherazee, Nyssa; Atkinson, Nigel S.

    2012-01-01

    Background Perhaps the most difficult thing to ascertain concerning the behavior of another animal is its motivation. The motivation underlying the preference of Drosophila melanogaster for ethanol-rich food has long been ascribed to its value as a food. A recently introduced idea is that, as in humans, the pharmacological effects of ethanol also motivate the fly to choose ethanol-rich food over non-alcoholic food. Methods Flies are given a choice between pipets that contain liquid food and liquid food supplemented with ethanol. In some experiments, carbohydrates are added to the non-ethanol-containing food to balance the calories for ethanol. Results We confirm that Drosophila melanogaster indeed prefer food that is supplemented with ethanol. However, if the alternative food choice is isocaloric, Drosophila melanogaster usually do not show any preference for a 10% ethanol solution. Even after ethanol preference has been established, it can be completely reversed if the alternative food is calorically supplemented. This occurs even when the carbohydrate solution used to balance calories is not gustatorily attractive. Furthermore, if the alternative food contains more calories than the ethanol food, the flies will prefer the non-ethanol food. We go on to show that during the preference assay that ethanol in the fly does not exceed 4 mM, which in mammals is a non-intoxicating dose. Conclusions We conclude that preference for ethanol in this assay arises not from the pharmacological effects of ethanol but rather because of its nutritive value. PMID:22551215

  5. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.

    PubMed

    Hodar, Christian; Zuñiga, Alejandro; Pulgar, Rodrigo; Travisany, Dante; Chacon, Carlos; Pino, Michael; Maass, Alejandro; Cambiazo, Verónica

    2014-02-10

    In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-β superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster.

    PubMed

    Schrider, Daniel R; Hahn, Matthew W; Begun, David J

    2016-05-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Editor's Highlight: Genetic Targets of Acute Toluene Inhalation in Drosophila melanogaster

    EPA Science Inventory

    Interpretation and use of data from high-throughput assays for chemical toxicity require links between effects at molecular targets and adverse outcomes in whole animals. The well-characterized genome of Drosophila melanogaster provides a potential model system by which phenotypi...

  8. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection

    PubMed Central

    Yadav, Shruti; Frazer, Joanna; Banga, Ashima; Pruitt, Katherine; Harsh, Sneh; Jaenike, John

    2018-01-01

    Associations between endosymbiotic bacteria and their hosts represent a complex ecosystem within organisms ranging from humans to protozoa. Drosophila species are known to naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role against certain microbial infections. Here, we investigated whether the presence or absence of endosymbionts affects the immune response of Drosophila melanogaster larvae to infection by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively). We find that the presence of Wolbachia alone or together with Spiroplasma promotes the survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiroplasma-free larvae infected with axenic compared to symbiotic nematodes, and they are also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with axenic nematodes. We further show that S. carpocapsae axenic nematode infection induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infection leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosymbionts. Finally, infection with either type of nematode alters the metabolic status and the fat body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endosymbionts. Our results suggest an interaction between Wolbachia endosymbionts with the immune response of D. melanogaster against infection with the entomopathogenic nematodes S. carpocapsae. Results from this study indicate a complex interplay between insect hosts, endosymbiotic microbes and pathogenic organisms. PMID:29466376

  9. Phylogenetic incongruence in the Drosophila melanogaster species group

    PubMed Central

    Wong, Alex; Jensen, Jeffrey D.; Pool, John E.; Aquadro, Charles F.

    2007-01-01

    Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) The node joining the D. erecta-D. orena, D. melanogaster-D. simulans, and D. yakuba-D. teissieri lineages, and (2) The node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta-D. orena and D. yakuba-D. teissieri. By contrast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations. Such lineage sorting may lead to biased estimation of tree topology and evolutionary rates, and may confound inferences of positive selection. PMID:17071113

  10. The epicurean fly: using Drosophila melanogaster to study metabolism.

    PubMed

    Bharucha, Kamal N

    2009-02-01

    In this review, the utility of Drosophila melanogaster as a model organism for research in metabolism will be demonstrated. Importantly, many metabolic pathways are conserved in both man and the fly. Recent work has highlighted that these conserved molecular pathways have the potential to give rise to similar phenotypes. For example, it has proven possible to generate obese and diabetic Drosophila; conversely, genetic manipulation can also generate lean and hypoglycemic phenotypes. From conserved circulating hormones to key enzymes, the fly is host to a variety of homologous, metabolically active signaling mechanisms. The world of Drosophila research has not only a rich history of developing techniques for exquisite genetic manipulation, but also continues to develop genetic methodologies at an exciting rate. Many of these techniques add to the cadre of experimental tools available for the use of the fly as a model organism for studying carbohydrate and lipid homeostasis. This review is written for the pediatric-scientist with little background in Drosophila, with the goal of relaying the potential of this model organism for contributing to a better understanding of diseases affecting today's children.

  11. Aging and CaMKII alter intracellular Ca2+ transients and heart rhythm in Drosophila melanogaster.

    PubMed

    Santalla, Manuela; Valverde, Carlos A; Harnichar, Ezequiel; Lacunza, Ezequiel; Aguilar-Fuentes, Javier; Mattiazzi, Alicia; Ferrero, Paola

    2014-01-01

    Aging is associated to disrupted contractility and rhythmicity, among other cardiovascular alterations. Drosophila melanogaster shows a pattern of aging similar to human beings and recapitulates the arrhythmogenic conditions found in the human heart. Moreover, the kinase CaMKII has been characterized as an important regulator of heart function and an arrhythmogenic molecule that participate in Ca2+ handling. Using a genetically engineered expressed Ca2+ indicator, we report changes in cardiac Ca2+ handling at two different ages. Aging prolonged relaxation, reduced spontaneous heart rate (HR) and increased the occurrence of arrhythmias, ectopic beats and asystoles. Alignment between Drosophila melanogaster and human CaMKII showed a high degree of conservation and indicates that relevant phosphorylation sites in humans are also present in the fruit fly. Inhibition of CaMKII by KN-93 (CaMKII-specific inhibitor), reduced HR without significant changes in other parameters. By contrast, overexpression of CaMKII increased HR and reduced arrhythmias. Moreover, it increased fluorescence amplitude, maximal rate of rise of fluorescence and reduced time to peak fluorescence. These results suggest that CaMKII in Drosophila melanogaster acts directly on heart function and that increasing CaMKII expression levels could be beneficial to improve contractility.

  12. Mutagenic Potential of Permethrin in the Drosophila Melanogaster Sex-Linked Recessive Lethal Test

    DTIC Science & Technology

    1988-08-01

    Bowling Green, Ohio. li l | i| i Mehr et al. -- 5 The diet was the standard medium consisting of cornmeal (NBCO Chemicals), unsulphured molasses...Ingredient Technology Corp.), yeast (Nabisco Brands, Inc.), and nutrient agar (Moorhead & Co., Inc.) used for colony rearing of Drosophila melanogaster. A...materials list and instructions for its preparation are contained in LAIR SOP-OP-STX-5 "Drosophila Media Preparation." Ether (J. T. Baker Chemical Co

  13. Three Strains of Pseudomonas fluorescens Exhibit Differential Toxicity Against Drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    Three strains of Pseudomonas fluorescens were tested for toxicity to Drosophila melanogaster in an insect feeding assay. Insect eggs were placed on the surface of a non-nutritive agar plate supplemented with a food source that was non-inoculated or inoculated with P. fluorescens Pf0-1, SBW25, or Pf-...

  14. Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle

    PubMed Central

    Gutzwiller, Florence; Carmo, Catarina R.; Miller, Danny E.; Rice, Danny W.; Newton, Irene L. G.; Hawley, R. Scott; Teixeira, Luis; Bergman, Casey M.

    2015-01-01

    Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome. PMID:26497146

  15. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions.

    PubMed

    Koyle, Melinda L; Veloz, Madeline; Judd, Alec M; Wong, Adam C-N; Newell, Peter D; Douglas, Angela E; Chaston, John M

    2016-07-30

    The influence of microbes on myriad animal traits and behaviors has been increasingly recognized in recent years. The fruit fly Drosophila melanogaster is a model for understanding microbial interactions with animal hosts, facilitated by approaches to rear large sample sizes of Drosophila under microorganism-free (axenic) conditions, or with defined microbial communities (gnotobiotic). This work outlines a method for collection of Drosophila embryos, hypochlorite dechorionation and sterilization, and transfer to sterile diet. Sterilized embryos are transferred to sterile diet in 50 ml centrifuge tubes, and developing larvae and adults remain free of any exogenous microbes until the vials are opened. Alternatively, flies with a defined microbiota can be reared by inoculating sterile diet and embryos with microbial species of interest. We describe the introduction of 4 bacterial species to establish a representative gnotobiotic microbiota in Drosophila. Finally, we describe approaches for confirming bacterial community composition, including testing if axenic Drosophila remain bacteria-free into adulthood.

  16. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps

    PubMed Central

    Xie, J; Butler, S; Sanchez, G; Mateos, M

    2014-01-01

    Maternally transmitted associations between endosymbiotic bacteria and insects are diverse and widespread in nature. Owing to imperfect vertical transmission, many heritable microbes have evolved compensational mechanisms to enhance their persistence in host lineages, such as manipulating host reproduction and conferring fitness benefits to host. Symbiont-mediated defense against natural enemies of hosts is increasingly recognized as an important mechanism by which endosymbionts enhance host fitness. Members of the genus Spiroplasma associated with distantly related Drosophila hosts are known to engage in either reproductive parasitism (i.e., male killing) or defense against natural enemies (the parasitic wasp Leptopilina heterotoma and a nematode). A male-killing strain of Spiroplasma (strain Melanogaster Sex Ratio Organism (MSRO)) co-occurs with Wolbachia (strain wMel) in certain wild populations of the model organism Drosophila melanogaster. We examined the effects of Spiroplasma MSRO and Wolbachia wMel on Drosophila survival against parasitism by two common wasps, Leptopilina heterotoma and Leptopilina boulardi, that differ in their host ranges and host evasion strategies. The results indicate that Spiroplasma MSRO prevents successful development of both wasps, and confers a small, albeit significant, increase in larva-to-adult survival of flies subjected to wasp attacks. We modeled the conditions under which defense can contribute to Spiroplasma persistence. Wolbachia also confers a weak, but significant, survival advantage to flies attacked by L. heterotoma. The host protective effects exhibited by Spiroplasma and Wolbachia are additive and may provide the conditions for such cotransmitted symbionts to become mutualists. Occurrence of Spiroplasma-mediated protection against distinct parasitoids in divergent Drosophila hosts suggests a general protection mechanism. PMID:24281548

  17. SOLO: a meiotic protein required for centromere cohesion, coorientation, and SMC1 localization in Drosophila melanogaster.

    PubMed

    Yan, Rihui; Thomas, Sharon E; Tsai, Jui-He; Yamada, Yukihiro; McKee, Bruce D

    2010-02-08

    Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.

  18. Effect of pineal tetrapeptide on antioxidant defense in Drosophila melanogaster.

    PubMed

    Khavinson, V K; Myl'nikov, S V

    2000-04-01

    Effects of synthetic pineal tetrapeptide L-Ala-L-Glu-L-Asp-L-Glu (Epithalon) on specific catalase activity and the content of conjugated hydroperoxides in highly inbred Drosophila melanogaster lines differing in reproductive functions were studied. It was shown that Epithalon is a potent modulator of the antioxidant defense, whose biological activity 1000-fold surpasses that of the complex pineal peptide preparation Epithalamin.

  19. Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster.

    PubMed

    Morris, Melanie; Shaw, Ariel; Lambert, Madison; Perry, Haley Halperin; Lowenstein, Eve; Valenzuela, David; Velazquez-Ulloa, Norma Andrea

    2018-06-14

    Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila

  20. Bowman-Birk inhibitor affects pathways associated with energy metabolism in Drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    Bowman-Birk inhibitor (BBI) is toxic when fed to certain insects, including the fruit fly, Drosophila melanogaster. Dietary BBI has been demonstrated to slow growth and increase insect mortality by inhibiting the digestive enzymes trypsin and chymotrypsin, resulting in a reduced supply of amino acid...

  1. Crystal structure of enolase from Drosophila melanogaster.

    PubMed

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  2. Mapping Second Chromosome Mutations to Defined Genomic Regions in Drosophila melanogaster

    PubMed Central

    Kahsai, Lily; Cook, Kevin R.

    2017-01-01

    Hundreds of Drosophila melanogaster stocks are currently maintained at the Bloomington Drosophila Stock Center with mutations that have not been associated with sequence-defined genes. They have been preserved because they have interesting loss-of-function phenotypes. The experimental value of these mutations would be increased by tying them to specific genomic intervals so that geneticists can more easily associate them with annotated genes. Here, we report the mapping of 85 second chromosome complementation groups in the Bloomington collection to specific, small clusters of contiguous genes or individual genes in the sequenced genome. This information should prove valuable to Drosophila geneticists interested in processes associated with particular phenotypes and those searching for mutations affecting specific sequence-defined genes. PMID:29066472

  3. Drosophila melanogaster: a fly through its history and current use.

    PubMed

    Stephenson, R; Metcalfe, N H

    2013-01-01

    Drosophila melanogaster, the common fruit fly, has been used as a model organism in both medical and scientific research for over a century. Work by Thomas Hunt Morgan (1866-1945) and his students at Columbia University at the beginning of the twentieth century led to great discoveries such as sex-linked inheritance and that ionising radiation causes mutations in genes. However, the use of Drosophila was not limited to genetic research. Experimentation with this model organism has also led to discoveries in neuroscience and neurodevelopment, including the basis of circadian rhythms. Its complex nervous system, conserved neurological function, and human disease-related loci allow Drosophila to be an ideal model organism for the study of neurodegenerative disease, for which it is used today, aiding research into diseases such as Alzheimer's and Parkinson's, which are becoming more prevalent in today's ageing population.

  4. The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population.

    PubMed

    Lack, Justin B; Cardeno, Charis M; Crepeau, Marc W; Taylor, William; Corbett-Detig, Russell B; Stevens, Kristian A; Langley, Charles H; Pool, John E

    2015-04-01

    Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets. Copyright © 2015 by the Genetics Society of America.

  5. The Fruit Fly Drosophila melanogaster as a Model for Aging Research.

    PubMed

    Brandt, Annely; Vilcinskas, Andreas

    2013-01-01

    : Average human life expectancy is increasing and so is the impact on society of aging and age-related diseases. Here we highlight recent advances in the diverse and multidisciplinary field of aging research, focusing on the fruit fly Drosophila melanogaster, an excellent model system in which to dissect the genetic and molecular basis of the aging processes. The conservation of human disease genes in D. melanogaster allows the functional analysis of orthologues implicated in human aging and age-related diseases. D. melanogaster models have been developed for a variety of age-related processes and disorders, including stem cell decline, Alzheimer's disease, and cardiovascular deterioration. Understanding the detailed molecular events involved in normal aging and age-related diseases could facilitate the development of strategies and treatments that reduce their impact, thus improving human health and increasing longevity.

  6. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    PubMed

    Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T

    2017-10-01

    Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  7. Viruslike particles in the tissues of normal and gamma-irradiated Drosophila melanogaster.

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Bensch, K. G.; Philpott, D. E.

    1972-01-01

    A new finding of viruslike particles in the salivary and accessory glands, muscles, and nerves of normal and gamma-irradiated Drosophila melanogaster is discussed. In morphology and size, the particles seemed identical to those described in earlier reports. On the basis of the available results, it cannot be affirmed that these particles infect only dividing cells, since they are found in all the Drosophila tissues so far examined. Their relation to the aging process is felt to be an interesting subject for further study.

  8. S Elements: A Family of Tc1-like Transposons in the Genome of Drosophila Melanogaster

    PubMed Central

    Merriman, P. J.; Grimes, C. D.; Ambroziak, J.; Hackett, D. A.; Skinner, P.; Simmons, M. J.

    1995-01-01

    The S elements form a diverse family of long-inverted-repeat transposons within the genome of Drosophila melanogaster. These elements vary in size and sequence, the longest consisting of 1736 bp with 234-bp inverted terminal repeats. The longest open reading frame in an intact S element could encode a 345-amino acid polypeptide. This polypeptide is homologous to the transposases of the mariner-Tc1 superfamily of transposable elements. S elements are ubiquitous in D. melanogaster populations and also appear to be present in the genomes of two sibling species; however, they seem to be absent from 17 other Drosophila species that were examined. Within D. melanogaster strains, there are, on average, 37.4 cytologically detectable S elements per diploid genome. These elements are scattered throughout the chromosomes, but several sites in both the euchromatin and β heterochromatin are consistently occupied. The discovery of an S-element-insertion mutation and a reversion of this mutation indicates that S elements are at least occasionally mobile in the D. melanogaster genome. These elements seem to insert at an AT dinucleotide within a short palindrome and apparently duplicate that dinucleotide upon insertion. PMID:8601484

  9. Optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.

  10. A Baculovirus Immediate-Early Gene, ie1, Promoter Drives Efficient Expression of a Transgene in Both Drosophila melanogaster and Bombyx mori

    PubMed Central

    Masumoto, Mika; Ohde, Takahiro; Shiomi, Kunihiro; Yaginuma, Toshinobu; Niimi, Teruyuki

    2012-01-01

    Many promoters have been used to drive expression of heterologous transgenes in insects. One major obstacle in the study of non-model insects is the dearth of useful promoters for analysis of gene function. Here, we investigated whether the promoter of the immediate-early gene, ie1, from the Bombyx mori nucleopolyhedrovirus (BmNPV) could be used to drive efficient transgene expression in a wide variety of insects. We used a piggyBac-based vector with a 3xP3-DsRed transformation marker to generate a reporter construct; this construct was used to determine the expression patterns driven by the BmNPV ie1 promoter; we performed a detailed investigation of the promoter in transgene expression pattern in Drosophila melanogaster and in B. mori. Drosophila and Bombyx belong to different insect orders (Diptera and Lepidoptera, respectively); however, and to our surprise, ie1 promoter-driven expression was evident in several tissues (e.g., prothoracic gland, midgut, and tracheole) in both insects. Furthermore, in both species, the ie1 promoter drove expression of the reporter gene from a relatively early embryonic stage, and strong ubiquitous ie1 promoter-driven expression continued throughout the larval, pupal, and adult stages by surface observation. Therefore, we suggest that the ie1 promoter can be used as an efficient expression driver in a diverse range of insect species. PMID:23152896

  11. Aging and CaMKII Alter Intracellular Ca2+ Transients and Heart Rhythm in Drosophila melanogaster

    PubMed Central

    Santalla, Manuela; Valverde, Carlos A.; Harnichar, Ezequiel; Lacunza, Ezequiel; Aguilar-Fuentes, Javier; Mattiazzi, Alicia; Ferrero, Paola

    2014-01-01

    Aging is associated to disrupted contractility and rhythmicity, among other cardiovascular alterations. Drosophila melanogaster shows a pattern of aging similar to human beings and recapitulates the arrhythmogenic conditions found in the human heart. Moreover, the kinase CaMKII has been characterized as an important regulator of heart function and an arrhythmogenic molecule that participate in Ca2+ handling. Using a genetically engineered expressed Ca2+ indicator, we report changes in cardiac Ca2+ handling at two different ages. Aging prolonged relaxation, reduced spontaneous heart rate (HR) and increased the occurrence of arrhythmias, ectopic beats and asystoles. Alignment between Drosophila melanogaster and human CaMKII showed a high degree of conservation and indicates that relevant phosphorylation sites in humans are also present in the fruit fly. Inhibition of CaMKII by KN-93 (CaMKII-specific inhibitor), reduced HR without significant changes in other parameters. By contrast, overexpression of CaMKII increased HR and reduced arrhythmias. Moreover, it increased fluorescence amplitude, maximal rate of rise of fluorescence and reduced time to peak fluorescence. These results suggest that CaMKII in Drosophila melanogaster acts directly on heart function and that increasing CaMKII expression levels could be beneficial to improve contractility. PMID:25003749

  12. Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster.

    PubMed

    Sharma, Anurag; Mishra, M; Shukla, A K; Kumar, R; Abdin, M Z; Chowdhuri, D Kar

    2012-06-30

    The effect of endosulfan (0.02-2.0μgmL(-1)) to Drosophila melanogaster (Oregon R(+)) at the cellular and organismal levels was examined. Third instar larvae of D. melanogaster and the strains transgenic for hsp70, hsp83 and hsp26 were exposed to endosulfan through food for 12-48h to examine the heat shock proteins (hsps), reactive oxygen species (ROS) generation, anti-oxidant stress markers and xenobiotic metabolism enzymes. We observed a concentration- and time-dependent significant induction of only small hsps (hsp23>hsp22) in the exposed organism in concurrence with a significant induction of ROS generation, oxidative stress and xenobiotic metabolism markers. Sub-organismal response was to be propagated towards organismal response, i.e., delay in the emergence of flies and decreased locomotor behaviour. Organisms with diminished locomotion also exhibited significantly lowered acetylcholinesterase activity. A significant positive correlation observed among ROS generation and different cellular endpoints (small hsps, oxidative stress markers, cytochrome P450 activities) in the exposed organism indicate a modulatory role of ROS in endosulfan-mediated cellular toxicity. The study thus suggests that the adverse effects of endosulfan in exposed Drosophila are manifested both at cellular and organismal levels and recommends Drosophila as an alternative animal model for screening the risk caused by environmental chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Mapping Linked Genes in "Drosophila Melanogaster" Using Data from the F2 Generation of a Dihybrid Cross

    ERIC Educational Resources Information Center

    Marshall, Pamela A.

    2008-01-01

    "Drosophila melanogaster" is a commonly utilized organism for testing hypotheses about inheritance of traits. Students in both high school and university labs study the genetics of inheritance by analyzing offspring of appropriate "Drosophila" crosses to determine inheritance patterns, including gene linkage. However, most genetics investigations…

  14. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    PubMed Central

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that span the genome. Most of these markers are single nucleotide polymorphisms and sequences for these variants are provided in an accessible format. The average density of the new markers is one per 225 kb on the autosomes and one per megabase on the X chromosome. We include in this survey a set of P-element strains that provide additional use for high-resolution mapping. We show one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community. PMID:11381036

  15. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed

    2001-04-16

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that have recently revolutionized human, mouse and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila using an STS-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that the genome. The majority of these markers are single nucleotide polymorphisms (SNPs) and sequences for these variants are provided in an accessible format. The average density of the new markersmore » is 1 marker per 225 kb on the autosomes and 1 marker per 1 Mb on the X chromosome. We include in this survey a set of P-element strains that provide additional utility for high-resolution mapping. We demonstrate one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community.« less

  16. Molecular Evolution of the Metallothionein Gene Mtn in the Melanogaster Species Group: Results from Drosophila Ananassae

    PubMed Central

    Stephan, W.; Rodriguez, V. S.; Zhou, B.; Parsch, J.

    1994-01-01

    Three distinctly different alleles of the metallothionein gene Mtn have been identified in natural Drosophila melanogaster populations: Mtn(.3), Mtn(1), and Dp(Mtn(1)), where the latter designates a tandem duplication of Mtn(1). In Drosophila simulans, only Mtn(.3)-type alleles have been found. It has been suggested that Mtn(.3) is the ancestral allele and demonstrated that a presumed two-step transition from Mtn(.3) to Mtn(1) to Dp(Mtn(1)) is accompanied by an approximate 5-fold increase in RNA levels. We analyzed the evolutionary genetics of the Mtn locus of Drosophila ananassae, a distant relative of D. melanogaster and D. simulans within the melanogaster species group. The Mtn gene of D. ananassae is most similar to Mtn(.3). (i) it is identical with Mtn(.3) at the amino acid level, but differs from Mtn(1) in its terminal codon; (ii) its 3' UTR contains a characteristic extra DNA segment of about 50 bp which is present in Mtn(.3), but lacking in Mtn(1); (iii) duplications of Mtn were not found in a worldwide sample of 110 wild D. ananassae chromosomes. However, the intron of the Mtn gene in D. ananassae is only 69 bp long, whereas the length of the Mtn(.3) and Mtn(1) introns is 265 bp; and it lacks a polypyrimidine stretch upstream of the 3' splice site in contrast to the much greater pyrimidine-richness found in the Mtn(.3) and Mtn(1) introns. A short intron (67 bp) was also identified in a D. pseudoobscura Mtn allele, suggesting that the short intron is the ancestral form and that the transition from the short to the long intron occurred within the melanogaster species group. We discuss the significance of this observation with regard to the recently proposed classification of D. melanogaster introns into two groups: short introns (<90 bp) which tend to lack polypyrimidine stretches, and longer ones which have strong 3' splice signals similar to mammalian introns. A database search revealed that this length dimorphism is an evolutionarily conserved feature of

  17. The Transcriptional Response of Drosophila melanogaster to Infection with the Sigma Virus (Rhabdoviridae)

    PubMed Central

    Baines, John F.; Roller, Julia; Saminadin-Peter, Sarah S.; Parsch, John; Jiggins, Francis M.

    2009-01-01

    Background Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. Principal Findings We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. Conclusions These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus. PMID:19718442

  18. The transcriptional response of Drosophila melanogaster to infection with the sigma virus (Rhabdoviridae).

    PubMed

    Carpenter, Jennifer; Hutter, Stephan; Baines, John F; Roller, Julia; Saminadin-Peter, Sarah S; Parsch, John; Jiggins, Francis M

    2009-08-31

    Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus.

  19. Dissecting genetic architecture of startle response in Drosophila melanogaster using multi-omics information.

    PubMed

    Xue, Angli; Wang, Hongcheng; Zhu, Jun

    2017-09-28

    Startle behavior is important for survival, and abnormal startle responses are related to several neurological diseases. Drosophila melanogaster provides a powerful system to investigate the genetic underpinnings of variation in startle behavior. Since mechanically induced, startle responses and environmental conditions can be readily quantified and precisely controlled. The 156 wild-derived fully sequenced lines of the Drosophila Genetic Reference Panel (DGRP) were used to identify SNPs and transcripts associated with variation in startle behavior. The results validated highly significant effects of 33 quantitative trait SNPs (QTSs) and 81 quantitative trait transcripts (QTTs) directly associated with phenotypic variation of startle response. We also detected QTT variation controlled by 20 QTSs (tQTSs) and 73 transcripts (tQTTs). Association mapping based on genomic and transcriptomic data enabled us to construct a complex genetic network that underlies variation in startle behavior. Based on principles of evolutionary conservation, human orthologous genes could be superimposed on this network. This study provided both genetic and biological insights into the variation of startle response behavior of Drosophila melanogaster, and highlighted the importance of genetic network to understand the genetic architecture of complex traits.

  20. Analysis of the hypoxia-sensing pathway in Drosophila melanogaster

    PubMed Central

    Arquier, Nathalie; Vigne, Paul; Duplan, Eric; Hsu, Tien; Therond, Pascal P.; Frelin, Christian; D'Angelo, Gisela

    2005-01-01

    The mechanism by which hypoxia induces gene transcription involves the inhibition of HIF-1α (hypoxia-inducible factor-1 α subunit) PHD (prolyl hydroxylase) activity, which prevents the VHL (von Hippel-Lindau)-dependent targeting of HIF-1α to the ubiquitin/proteasome pathway. HIF-1α thus accumulates and promotes gene transcription. In the present study, first we provide direct biochemical evidence for the presence of a conserved hypoxic signalling pathway in Drosophila melanogaster. An assay for 2-oxoglutarate-dependent dioxygenases was developed using Drosophila embryonic and larval homogenates as a source of enzyme. Drosophila PHD has a low substrate specificity and hydroxylates key proline residues in the ODD (oxygen-dependent degradation) domains of human HIF-1α and Similar, the Drosophila homologue of HIF-1α. The enzyme promotes human and Drosophila [35S]VHL binding to GST (glutathione S-transferase)–ODD-domain fusion protein. Hydroxylation is enhanced by proteasomal inhibitors and was ascertained using an anti-hydroxyproline antibody. Secondly, by using transgenic flies expressing a fusion protein that combined an ODD domain and the green fluorescent protein (ODD–GFP), we analysed the hypoxic cascade in different embryonic and larval tissues. Hypoxic accumulation of the reporter protein was observed in the whole tracheal tree, but not in the ectoderm. Hypoxic stabilization of ODD–GFP in the ectoderm was restored by inducing VHL expression in these cells. These results show that Drosophila tissues exhibit different sensitivities to hypoxia. PMID:16176182

  1. Drosophila melanogaster as a Model Organism of Brain Diseases

    PubMed Central

    Jeibmann, Astrid; Paulus, Werner

    2009-01-01

    Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches. PMID:19333415

  2. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster.

    PubMed

    Cheung, Samantha K; Scott, Kristin

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation.

  3. Drosophila melanogaster as a High-Throughput Model for Host-Microbiota Interactions.

    PubMed

    Trinder, Mark; Daisley, Brendan A; Dube, Josh S; Reid, Gregor

    2017-01-01

    Microbiota research often assumes that differences in abundance and identity of microorganisms have unique influences on host physiology. To test this concept mechanistically, germ-free mice are colonized with microbial communities to assess causation. Due to the cost, infrastructure challenges, and time-consuming nature of germ-free mouse models, an alternative approach is needed to investigate host-microbial interactions. Drosophila melanogaster (fruit flies) can be used as a high throughput in vivo screening model of host-microbiome interactions as they are affordable, convenient, and replicable. D. melanogaster were essential in discovering components of the innate immune response to pathogens. However, axenic D. melanogaster can easily be generated for microbiome studies without the need for ethical considerations. The simplified microbiota structure enables researchers to evaluate permutations of how each microbial species within the microbiota contribute to host phenotypes of interest. This enables the possibility of thorough strain-level analysis of host and microbial properties relevant to physiological outcomes. Moreover, a wide range of mutant D. melanogaster strains can be affordably obtained from public stock centers. Given this, D. melanogaster can be used to identify candidate mechanisms of host-microbe symbioses relevant to pathogen exclusion, innate immunity modulation, diet, xenobiotics, and probiotic/prebiotic properties in a high throughput manner. This perspective comments on the most promising areas of microbiota research that could immediately benefit from using the D. melanogaster model.

  4. Age-related Decline of Abiotic Stress Tolerance in Young Drosophila melanogaster Adults.

    PubMed

    Colinet, Hervé; Chertemps, Thomas; Boulogne, Isabelle; Siaussat, David

    2016-12-01

    Stress tolerance generally declines with age as a result of functional senescence. Age-dependent alteration of stress tolerance can also occur in early adult life. In Drosophila melanogaster, evidence of such a decline in young adults has only been reported for thermotolerance. It is not known whether early adult life entails a general stress tolerance reduction and whether the response is peculiar to thermal traits. The present work was designed to investigate whether newly eclosed D melanogaster adults present a high tolerance to a range of biotic and abiotic insults. We found that tolerance to most of the abiotic stressors tested (desiccation, paraquat, hydrogen peroxide, deltamethrin, and malathion) was high in newly eclosed adults before dramatically declining over the next days of adult life. No clear age-related pattern was found for resistance to biotic stress (septic or fungal infection) and starvation. These results suggest that newly eclosed adults present a culminating level of tolerance to extrinsic stress which is likely unrelated to immune process. We argue that stress tolerance variation at very young age is likely a residual attribute from the previous life stage (ontogenetic carryover) or a feature related to the posteclosion development. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Metabolomics with Nuclear Magnetic Resonance Spectroscopy in a Drosophila melanogaster Model of Surviving Sepsis

    PubMed Central

    Bakalov, Veli; Amathieu, Roland; Triba, Mohamed N.; Clément, Marie-Jeanne; Reyes Uribe, Laura; Le Moyec, Laurence; Kaynar, Ata Murat

    2016-01-01

    Patients surviving sepsis demonstrate sustained inflammation, which has been associated with long-term complications. One of the main mechanisms behind sustained inflammation is a metabolic switch in parenchymal and immune cells, thus understanding metabolic alterations after sepsis may provide important insights to the pathophysiology of sepsis recovery. In this study, we explored metabolomics in a novel Drosophila melanogaster model of surviving sepsis using Nuclear Magnetic Resonance (NMR), to determine metabolite profiles. We used a model of percutaneous infection in Drosophila melanogaster to mimic sepsis. We had three experimental groups: sepsis survivors (infected with Staphylococcus aureus and treated with oral linezolid), sham (pricked with an aseptic needle), and unmanipulated (positive control). We performed metabolic measurements seven days after sepsis. We then implemented metabolites detected in NMR spectra into the MetExplore web server in order to identify the metabolic pathway alterations in sepsis surviving Drosophila. Our NMR metabolomic approach in a Drosophila model of recovery from sepsis clearly distinguished between all three groups and showed two different metabolomic signatures of inflammation. Sham flies had decreased levels of maltose, alanine, and glutamine, while their level of choline was increased. Sepsis survivors had a metabolic signature characterized by decreased glucose, maltose, tyrosine, beta-alanine, acetate, glutamine, and succinate. PMID:28009836

  6. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    PubMed

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  7. Obesity-associated cardiac dysfunction in starvation-selected Drosophila melanogaster.

    PubMed

    Hardy, Christopher M; Birse, Ryan T; Wolf, Matthew J; Yu, Lin; Bodmer, Rolf; Gibbs, Allen G

    2015-09-15

    There is a clear link between obesity and cardiovascular disease, but the complexity of this interaction in mammals makes it difficult to study. Among the animal models used to investigate obesity-associated diseases, Drosophila melanogaster has emerged as an important platform of discovery. In the laboratory, Drosophila can be made obese through lipogenic diets, genetic manipulations, and adaptation to evolutionary stress. While dietary and genetic changes that cause obesity in flies have been demonstrated to induce heart dysfunction, there have been no reports investigating how obesity affects the heart in laboratory-evolved populations. Here, we studied replicated populations of Drosophila that had been selected for starvation resistance for over 65 generations. These populations evolved characteristics that closely resemble hallmarks of metabolic syndrome in mammals. We demonstrate that starvation-selected Drosophila have dilated hearts with impaired contractility. This phenotype appears to be correlated with large fat deposits along the dorsal cuticle, which alter the anatomical position of the heart. We demonstrate a strong relationship between fat storage and heart dysfunction, as dilation and reduced contractility can be rescued through prolonged fasting. Unlike other Drosophila obesity models, the starvation-selected lines do not exhibit excessive intracellular lipid deposition within the myocardium and rather store excess triglycerides in large lipid droplets within the fat body. Our findings provide a new model to investigate obesity-associated heart dysfunction. Copyright © 2015 the American Physiological Society.

  8. Drosophila melanogaster--the model organism of choice for the complex biology of multi-cellular organisms

    NASA Technical Reports Server (NTRS)

    Beckingham, Kathleen M.; Armstrong, J. Douglas; Texada, Michael J.; Munjaal, Ravi; Baker, Dean A.

    2005-01-01

    Drosophila melanogaster has been intensely studied for almost 100 years. The sophisticated array of genetic and molecular tools that have evolved for analysis of gene function in this organism are unique. Further, Drosophila is a complex multi-cellular organism in which many aspects of development and behavior parallel those in human beings. These combined advantages have permitted research in Drosophila to make seminal contributions to the understanding of fundamental biological processes and ensure that Drosophila will continue to provide unique insights in the genomic era. An overview of the genetic methodologies available in Drosophila is given here, together with examples of outstanding recent contributions of Drosophila to our understanding of cell and organismal biology. The growing contribution of Drosophila to our knowledge of gravity-related responses is addressed.

  9. Multiple capacitors for natural genetic variation in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2013-03-01

    Cryptic genetic variation (CGV) or a standing genetic variation that is not ordinarily expressed as a phenotype is released when the robustness of organisms is impaired under environmental or genetic perturbations. Evolutionary capacitors modulate the amount of genetic variation exposed to natural selection and hidden cryptically; they have a fundamental effect on the evolvability of traits on evolutionary timescales. In this study, I have demonstrated the effects of multiple genomic regions of Drosophila melanogaster on CGV in wing shape. I examined the effects of 61 genomic deficiencies on quantitative and qualitative natural genetic variation in the wing shape of D. melanogaster. I have identified 10 genomic deficiencies that do not encompass a known candidate evolutionary capacitor, Hsp90, exposing natural CGV differently depending on the location of the deficiencies in the genome. Furthermore, five genomic deficiencies uncovered qualitative CGV in wing morphology. These findings suggest that CGV in wing shape of wild-type D. melanogaster is regulated by multiple capacitors with divergent functions. Future analysis of genes encompassed by these genomic regions would help elucidate novel capacitor genes and better understand the general features of capacitors regarding natural genetic variation. © 2012 Blackwell Publishing Ltd.

  10. THE α-GLYCEROPHOSPHATE CYCLE IN DROSOPHILA MELANOGASTER

    PubMed Central

    O'Brien, Stephen J.; Shimada, Yoshio

    1974-01-01

    "Null" mutations previously isolated at the αGpdh-1 locus of Drosophila melanogaster, because of disruption of the energy-producing α-glycerophosphate cycle, severely restrict the flight ability and relative viability of affected individuals. Two "null" alleles, αGpdh-1 BO-1-4, and αGpdh-1 BO-1-5, when made hemizygous with a deficiency of the αGpdh-1 locus, Df(2L)GdhA, were rendered homozygous by recombination with and selective elimination of the Df(2L)GdhA chromosome. After over 25 generations, a homozygous αGpdh-1 BO-1-4 stock regained the ability to fly despite the continued absence of measurable αGPDH activity. Inter se heterozygotes of three noncomplementing αGpdh-1 "null" alleles and the "adapted" αGpdh-1 BO-1-4 homozygotes were examined for metabolic enzymatic activities related to the energy-producing and pyridine nucleotide-regulating functions of the α-glycerophosphate cycle in Drosophila. The enzyme functions tested included glyceraldehyde-3-phosphate dehydrogenase, cytoplasmic and soluble malate dehydrogenase, lactate dehydrogenase, mitochondrial NADH oxidation, oxidative phosphorylation, and respiratory control with the substrates α-glycerophosphate, succinate, and pyruvate. These activities in any of the mutant genotypes in early adult life were indistinguishable from those in the wild type. There was, however, a premature deterioration and atrophy of the ultrastructural integrity of flight muscle sarcosomes observed by electron microscopy in the "null" mutants. These observations were correlated with a decrease in state 3 mitochondrial oxidation with α-glycerophosphate, succinate, and pyruvate, as well as with loss of respiratory control in adults as early as 2 wk after eclosion. Such observations, which normally are seen in aged dipterans, were accompanied by premature mortality of the mutant heterozygotes. The adapted αGpdh-1 BO-1-4 was identical with wild type in each of the aging characters with the single exception of lowered rates

  11. Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster

    PubMed Central

    Kuo, Tsung-Han; Yew, Joanne Y.; Fedina, Tatyana Y.; Dreisewerd, Klaus; Dierick, Herman A.; Pletcher, Scott D.

    2012-01-01

    SUMMARY Attractiveness is a major component of sexual selection that is dependent on sexual characteristics, such as pheromone production, which often reflect an individual’s fitness and reproductive potential. Aging is a process that results in a steady decline in survival and reproductive output, yet little is known about its effect on specific aspects of attractiveness. In this report we asked how aging impacts pheromone production and sexual attractiveness in Drosophila melanogaster. Evidence suggests that key pheromones in Drosophila are produced as cuticular hydrocarbons (CHC), whose functions in attracting mates and influencing behavior have been widely studied. We employed gas chromatography/mass spectrometry and laser desorption/ionization mass spectrometry to show that the composition of D. melanogaster CHC is significantly affected by aging in both sexes and that these changes are robust to different genetic backgrounds. Aging affected the relative levels of many individual CHC, and it shifted overall hydrocarbon profiles to favor compounds with longer chain lengths. We also show that the observed aging-related changes in CHC profiles are responsible for a significant reduction in sexual attractiveness. These studies illuminate causal links among pheromones, aging and attractiveness and suggest that CHC production may be an honest indicator of animal health and fertility. PMID:22323204

  12. History and structure of sub-Saharan populations of Drosophila melanogaster.

    PubMed

    Pool, John E; Aquadro, Charles F

    2006-10-01

    Drosophila melanogaster is an important model organism in evolutionary genetics, yet little is known about the population structure and the demographic history of this species within sub-Saharan Africa, which is thought to contain its ancestral range. We surveyed nucleotide variation at four 1-kb fragments in 240 individual lines representing 21 sub-Saharan and 4 Palearctic population samples of D. melanogaster. In agreement with recent studies, we find a small but significant level of genetic differentiation within sub-Saharan Africa. A clear geographic pattern is observed, with eastern and western African populations composing two genetically distinct groups. This pattern may have resulted from a relatively recent establishment of D. melanogaster in western Africa. Eastern populations show greater evidence for long-term stability, consistent with the hypothesis that eastern Africa contains the ancestral range of the species. Three sub-Saharan populations show evidence for cosmopolitan introgression. Apart from those cases, the closest relationships between Palearctic and sub-Saharan populations involve a sample from the rift zone (Uganda), suggesting that the progenitors of Palearctic D. melanogaster might have come from this region. Finally, we find a large excess of singleton polymorphisms in the full data set, which is best explained by a combination of population growth and purifying selection.

  13. Unique transposon landscapes are pervasive across Drosophila melanogaster genomes

    PubMed Central

    Rahman, Reazur; Chirn, Gung-wei; Kanodia, Abhay; Sytnikova, Yuliya A.; Brembs, Björn; Bergman, Casey M.; Lau, Nelson C.

    2015-01-01

    To understand how transposon landscapes (TLs) vary across animal genomes, we describe a new method called the Transposon Insertion and Depletion AnaLyzer (TIDAL) and a database of >300 TLs in Drosophila melanogaster (TIDAL-Fly). Our analysis reveals pervasive TL diversity across cell lines and fly strains, even for identically named sub-strains from different laboratories such as the ISO1 strain used for the reference genome sequence. On average, >500 novel insertions exist in every lab strain, inbred strains of the Drosophila Genetic Reference Panel (DGRP), and fly isolates in the Drosophila Genome Nexus (DGN). A minority (<25%) of transposon families comprise the majority (>70%) of TL diversity across fly strains. A sharp contrast between insertion and depletion patterns indicates that many transposons are unique to the ISO1 reference genome sequence. Although TL diversity from fly strains reaches asymptotic limits with increasing sequencing depth, rampant TL diversity causes unsaturated detection of TLs in pools of flies. Finally, we show novel transposon insertions negatively correlate with Piwi-interacting RNA (piRNA) levels for most transposon families, except for the highly-abundant roo retrotransposon. Our study provides a useful resource for Drosophila geneticists to understand how transposons create extensive genomic diversity in fly cell lines and strains. PMID:26578579

  14. Spaceflight Causes Increased Virulence of Serratia Marcescens on a Drosophila Melanogaster Host

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Wade, William; Clemens-Grisham, Rachel; Hosamani, Ravikumar; Bhardwaj, Shilpa R.; Lera, Matthew P.; Gresser, Amy L.

    2015-01-01

    Drosophila melanogaster, or the fruit fly, has long been an important organism for Earth-based research, and is now increasingly utilized as a model system to understand the biological effects of spaceflight. Studies in Drosophila melanogaster have shown altered immune responses in 3rd instar larvae and adult males following spaceflight, changes similar to those observed in astronauts. In addition, spaceflight has also been shown to affect bacterial physiology, as evidenced by studies describing altered virulence of Salmonella typhimurium following spaceflight and variation in biofilm growth patterns for the opportunistic pathogen Pseudomonas aeruginosa during flight. We recently sent Serratia marcescens Db11, a Drosophila pathogen and an opportunistic human pathogen, to the ISS on SpaceX-5 (Fruit Fly Lab-01). S. marcescens samples were stored at 4degC for 24 days on-orbit and then allowed to grow for 120 hours at ambient station temperature before being returned to Earth. Upon return, bacteria were isolated and preserved in 50% glycerol or RNAlater. Storage, growth, and isolation for ground control samples were performed using the same procedures. Spaceflight and ground samples stored in 50% glycerol were diluted and injected into 5-7-day-old ground-born adult D. melanogaster. Lethality was significantly greater in flies injected with the spaceflight samples compared to those injected with ground bacterial samples. These results indicate a shift in the virulence profile of the spaceflight S. marcescens Db11 and will be further assessed with molecular biological analyses. Our findings strengthen the conclusion that spaceflight impacts the virulence of bacterial pathogens on model host organisms such as the fruit fly. This research was supported by NASA's ISS Program Office (ISSPO) and Space Life and Physical Sciences Research and Applications (SLPSRA).

  15. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes

    PubMed Central

    Venken, Koen J. T.; Schulze, Karen L.; Haelterman, Nele A.; Pan, Hongling; He, Yuchun; Evans-Holm, Martha; Carlson, Joseph W.; Levis, Robert W.; Spradling, Allan C.; Hoskins, Roger A.; Bellen, Hugo J.

    2011-01-01

    We demonstrate the versatility of a collection of insertions of the transposon Minos mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow+ marker flanked by two inverted bacteriophage ΦC31 attP sites. MiMIC integrates almost at random in the genome to create sites for DNA manipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp system. Insertions within coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the Drosophila melanogaster toolkit. PMID:21985007

  16. α-amanitin resistance in Drosophila melanogaster: A genome-wide association approach.

    PubMed

    Mitchell, Chelsea L; Latuszek, Catrina E; Vogel, Kara R; Greenlund, Ian M; Hobmeier, Rebecca E; Ingram, Olivia K; Dufek, Shannon R; Pecore, Jared L; Nip, Felicia R; Johnson, Zachary J; Ji, Xiaohui; Wei, Hairong; Gailing, Oliver; Werner, Thomas

    2017-01-01

    We investigated the mechanisms of mushroom toxin resistance in the Drosophila Genetic Reference Panel (DGRP) fly lines, using genome-wide association studies (GWAS). While Drosophila melanogaster avoids mushrooms in nature, some lines are surprisingly resistant to α-amanitin-a toxin found solely in mushrooms. This resistance may represent a pre-adaptation, which might enable this species to invade the mushroom niche in the future. Although our previous microarray study had strongly suggested that pesticide-metabolizing detoxification genes confer α-amanitin resistance in a Taiwanese D. melanogaster line Ama-KTT, none of the traditional detoxification genes were among the top candidate genes resulting from the GWAS in the current study. Instead, we identified Megalin, Tequila, and widerborst as candidate genes underlying the α-amanitin resistance phenotype in the North American DGRP lines, all three of which are connected to the Target of Rapamycin (TOR) pathway. Both widerborst and Tequila are upstream regulators of TOR, and TOR is a key regulator of autophagy and Megalin-mediated endocytosis. We suggest that endocytosis and autophagy of α-amanitin, followed by lysosomal degradation of the toxin, is one of the mechanisms that confer α-amanitin resistance in the DGRP lines.

  17. Live Imaging of Meiosis I in Late-Stage Drosophila melanogaster Oocytes.

    PubMed

    Hughes, Stacie E; Hawley, R Scott

    2017-01-01

    Drosophila melanogaster has been studied for a century as a genetic model to understand recombination, chromosome segregation, and the basic rules of inheritance. However, it has only been about 25 years since the events that occur during nuclear envelope breakdown, spindle assembly, and chromosome orientation during D. melanogaster female meiosis I were first visualized by fixed cytological methods (Theurkauf and Hawley, J Cell Biol 116:1167-1180, 1992). Although these fixed cytological studies revealed many important details about the events that occur during meiosis I, they failed to elucidate the timing or order of these events. The development of protocols for live imaging of meiotic events within the oocyte has enabled collection of real-time information on the kinetics and dynamics of spindle assembly, as well as the behavior of chromosomes during prometaphase I. Here, we describe a method to visualize spindle assembly and chromosome movement during meiosis I by injecting fluorescent dyes to label microtubules and DNA into stage 12-14 oocytes. This method enables the events during Drosophila female meiosis I, such as spindle assembly and chromosome movement, to be observed in vivo, regardless of genetic background, with exceptional spatial and temporal resolution.

  18. Genetics of Drosophila simulans male mating discrimination in crosses with D. melanogaster.

    PubMed

    Carracedo, M C; Asenjo, A; Casares, P

    2003-09-01

    The genetic bases of sexual isolation between Drosophila melanogaster and D. simulans have been mainly studied in females, and there is little information about the role of the males in interspecific mating discrimination. Using D. simulans synthetic lines with compound chromosomes from a population of the Seychelles Islands (high frequency of interspecific mating) and a multimarker strain (low frequency), we show that D. simulans males play an important role in discriminating D. melanogaster females. The genetics of male discrimination fits well with the inheritance mode of a single locus, dominant for sexual isolation, located in chromosome II near the net mutation (2L-0.0). The heterospecific mating success of the male was not related to his sexual vigor. The specific load of male cuticular hydrocarbons was counted as a possible source of discrimination used by the D. melanogaster female.

  19. Reproduction in Cage Populations of a Polymorphism Regularly Observed in the Natural Populations of DROSOPHILA MELANOGASTER in France

    PubMed Central

    Fleuriet, Annie

    1978-01-01

    Polymorphism for both alleles of a gene ref(2)P, which is a usual trait of French natural populations of Drosophila melanogaster , can be reproduced in experimental conditions. ref(2)P is a gene for resistance to the hereditary, noncontagious Rhabdovirus σ, responsible for CO2 sensitivity in Drosophila melanogaster . The equilibrium frequencies observed in cages are the same as in the wild, whether σ virus is present or not. The rapid rate of return to these equilibrium frequencies indicates that strong forces, which remain to be determined, are responsible for the maintenance of this polymorphism. PMID:17248817

  20. Reproduction in Cage Populations of a Polymorphism Regularly Observed in the Natural Populations of DROSOPHILA MELANOGASTER in France.

    PubMed

    Fleuriet, A

    1978-04-01

    Polymorphism for both alleles of a gene ref(2)P, which is a usual trait of French natural populations of Drosophila melanogaster , can be reproduced in experimental conditions. ref(2)P is a gene for resistance to the hereditary, noncontagious Rhabdovirus sigma, responsible for CO(2) sensitivity in Drosophila melanogaster . The equilibrium frequencies observed in cages are the same as in the wild, whether sigma virus is present or not. The rapid rate of return to these equilibrium frequencies indicates that strong forces, which remain to be determined, are responsible for the maintenance of this polymorphism.

  1. Effect of curcumin on aged Drosophila melanogaster: a pathway prediction analysis.

    PubMed

    Zhang, Zhi-guo; Niu, Xu-yan; Lu, Ai-ping; Xiao, Gary Guishan

    2015-02-01

    To re-analyze the data published in order to explore plausible biological pathways that can be used to explain the anti-aging effect of curcumin. Microarray data generated from other study aiming to investigate effect of curcumin on extending lifespan of Drosophila melanogaster were further used for pathway prediction analysis. The differentially expressed genes were identified by using GeneSpring GX with a criterion of 3.0-fold change. Two Cytoscape plugins including BisoGenet and molecular complex detection (MCODE) were used to establish the protein-protein interaction (PPI) network based upon differential genes in order to detect highly connected regions. The function annotation clustering tool of Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for pathway analysis. A total of 87 genes expressed differentially in D. melanogaster melanogaster treated with curcumin were identified, among which 50 were up-regulated significantly and 37 were remarkably down-regulated in D. melanogaster melanogaster treated with curcumin. Based upon these differential genes, PPI network was constructed with 1,082 nodes and 2,412 edges. Five highly connected regions in PPI networks were detected by MCODE algorithm, suggesting anti-aging effect of curcumin may be underlined through five different pathways including Notch signaling pathway, basal transcription factors, cell cycle regulation, ribosome, Wnt signaling pathway, and p53 pathway. Genes and their associated pathways in D. melanogaster melanogaster treated with anti-aging agent curcumin were identified using PPI network and MCODE algorithm, suggesting that curcumin may be developed as an alternative therapeutic medicine for treating aging-associated diseases.

  2. Use of spatial information and search strategies in a water maze analog in Drosophila melanogaster.

    PubMed

    Foucaud, Julien; Burns, James G; Mery, Frederic

    2010-12-03

    Learning the spatial organization of the environment is crucial to fitness in most animal species. Understanding proximate and ultimate factors underpinning spatial memory is thus a major goal in the study of animal behavior. Despite considerable interest in various aspects of its behavior and biology, the model species Drosophila melanogaster lacks a standardized apparatus to investigate spatial learning and memory. We propose here a novel apparatus, the heat maze, conceptually based on the Morris water maze used in rodents. Using the heat maze, we demonstrate that D. melanogaster flies are able to use either proximal or distal visual cues to increase their performance in navigating to a safe zone. We also show that flies are actively using the orientation of distal visual cues when relevant in targeting the safe zone, i.e., Drosophila display spatial learning. Parameter-based classification of search strategies demonstrated the progressive use of spatially precise search strategies during learning. We discuss the opportunity to unravel the mechanistic and evolutionary bases of spatial learning in Drosophila using the heat maze.

  3. The role of Rdl in resistance to phenylpyrazoles in Drosophila melanogaster.

    PubMed

    Remnant, Emily J; Morton, Craig J; Daborn, Phillip J; Lumb, Christopher; Yang, Ying Ting; Ng, Hooi Ling; Parker, Michael W; Batterham, Philip

    2014-11-01

    Extensive use of older generation insecticides may result in pre-existing cross-resistance to new chemical classes acting at the same target site. Phenylpyrazole insecticides block inhibitory neurotransmission in insects via their action on ligand-gated chloride channels (LGCCs). Phenylpyrazoles are broad-spectrum insecticides widely used in agriculture and domestic pest control. So far, all identified cases of target site resistance to phenylpyrazoles are based on mutations in the Rdl (Resistance to dieldrin) LGCC subunit, the major target site for cyclodiene insecticides. We examined the role that mutations in Rdl have on phenylpyrazole resistance in Drosophila melanogaster, exploring naturally occurring variation, and generating predicted resistance mutations by mutagenesis. Natural variation at the Rdl locus in inbred strains of D. melanogaster included gene duplication, and a line containing two Rdl mutations found in a highly resistant line of Drosophila simulans. These mutations had a moderate impact on survival following exposure to two phenylpyrazoles, fipronil and pyriprole. Homology modelling suggested that the Rdl chloride channel pore contains key residues for binding fipronil and pyriprole. Mutagenesis of these sites and assessment of resistance in vivo in transgenic lines showed that amino acid identity at the Ala(301) site influenced resistance levels, with glycine showing greater survival than serine replacement. We confirm that point mutations at the Rdl 301 site provide moderate resistance to phenylpyrazoles in D. melanogaster. We also emphasize the beneficial aspects of testing predicted mutations in a whole organism to validate a candidate gene approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Conditioning with compound stimuli in Drosophila melanogaster in the flight simulator.

    PubMed

    Brembs, B; Heisenberg, M

    2001-08-01

    Short-term memory in Drosophila melanogaster operant visual learning in the flight simulator is explored using patterns and colours as a compound stimulus. Presented together during training, the two stimuli accrue the same associative strength whether or not a prior training phase rendered one of the two stimuli a stronger predictor for the reinforcer than the other (no blocking). This result adds Drosophila to the list of other invertebrates that do not exhibit the robust vertebrate blocking phenomenon. Other forms of higher-order learning, however, were detected: a solid sensory preconditioning and a small second-order conditioning effect imply that associations between the two stimuli can be formed, even if the compound is not reinforced.

  5. Ferritin Is Required in Multiple Tissues during Drosophila melanogaster Development.

    PubMed

    González-Morales, Nicanor; Mendoza-Ortíz, Miguel Ángel; Blowes, Liisa M; Missirlis, Fanis; Riesgo-Escovar, Juan R

    2015-01-01

    In Drosophila melanogaster, iron is stored in the cellular endomembrane system inside a protein cage formed by 24 ferritin subunits of two types (Fer1HCH and Fer2LCH) in a 1:1 stoichiometry. In larvae, ferritin accumulates in the midgut, hemolymph, garland, pericardial cells and in the nervous system. Here we present analyses of embryonic phenotypes for mutations in Fer1HCH, Fer2LCH and in both genes simultaneously. Mutations in either gene or deletion of both genes results in a similar set of cuticular embryonic phenotypes, ranging from non-deposition of cuticle to defects associated with germ band retraction, dorsal closure and head involution. A fraction of ferritin mutants have embryonic nervous systems with ventral nerve cord disruptions, misguided axonal projections and brain malformations. Ferritin mutants die with ectopic apoptotic events. Furthermore, we show that ferritin maternal contribution, which varies reflecting the mother's iron stores, is used in early development. We also evaluated phenotypes arising from the blockage of COPII transport from the endoplasmic reticulum to the Golgi apparatus, feeding the secretory pathway, plus analysis of ectopically expressed and fluorescently marked Fer1HCH and Fer2LCH. Overall, our results are consistent with insect ferritin combining three functions: iron storage, intercellular iron transport, and protection from iron-induced oxidative stress. These functions are required in multiple tissues during Drosophila embryonic development.

  6. The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis.

    PubMed

    Hiraoka, Y; Dernburg, A F; Parmelee, S J; Rykowski, M C; Agard, D A; Sedat, J W

    1993-02-01

    We have determined the position within the nucleus of homologous sites of the histone gene cluster in Drosophila melanogaster using in situ hybridization and high-resolution, three-dimensional wide field fluorescence microscopy. A 4.8-kb biotinylated probe for the histone gene repeat, located approximately midway along the short arm of chromosome 2, was hybridized to whole-mount embryos in late syncytial and early cellular blastoderm stages. Our results show that the two homologous histone loci are distinct and separate through all stages of the cell cycle up to nuclear cycle 13. By dramatic contrast, the two homologous clusters were found to colocalize with high frequency during interphase of cycle 14. Concomitant with homolog pairing at cycle 14, both histone loci were also found to move from their position near the midline of the nucleus toward the apical side. This result suggests that coincident with the initiation of zygotic transcription, there is dramatic chromosome and nuclear reorganization between nuclear cycles 13 and 14.

  7. Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster.

    PubMed

    Inamdar, Arati A; Masurekar, Prakash; Bennett, Joan Wennstrom

    2010-10-01

    Many volatile organic compounds (VOCs) are found in indoor environment as products of microbial metabolism. In damp indoor environments, fungi are associated with poor air quality. Some epidemiological studies have suggested that microbial VOCs have a negative impact on human health. Our study was designed to provide a reductionist approach toward studying fungal VOC-mediated toxicity using the inexpensive model organism, Drosophila melanogaster, and pure chemical standards of several important fungal VOCs. Low concentrations of the following known fungal VOCs, 0.1% of 1-octen-3-ol and 0.5% of 2-octanone; 2,5 dimethylfuran; 3-octanol; and trans-2-octenal, caused locomotory defects and changes in green fluorescent protein (GFP)- and antigen-labeled dopaminergic neurons in adult D. melanogaster. Locomotory defects could be partially rescued with L-DOPA. Ingestion of the antioxidant, vitamin E, improved the survival span and delayed the VOC-mediated changes in dopaminergic neurons, indicating that the VOC-mediated toxicity was due, in part, to generation of reactive oxygen species.

  8. Extensive epistasis for olfactory behaviour, sleep and waking activity in Drosophila melanogaster.

    PubMed

    Swarup, Shilpa; Harbison, Susan T; Hahn, Lauren E; Morozova, Tatiana V; Yamamoto, Akihiko; Mackay, Trudy F C; Anholt, Robert R H

    2012-02-01

    Epistasis is an important feature of the genetic architecture of quantitative traits, but the dynamics of epistatic interactions in natural populations and the relationship between epistasis and pleiotropy remain poorly understood. Here, we studied the effects of epistatic modifiers that segregate in a wild-derived Drosophila melanogaster population on the mutational effects of P-element insertions in Semaphorin-5C (Sema-5c) and Calreticulin (Crc), pleiotropic genes that affect olfactory behaviour and startle behaviour and, in the case of Crc, sleep phenotypes. We introduced Canton-S B (CSB) third chromosomes with or without a P-element insertion at the Crc or Sema-5c locus in multiple wild-derived inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and assessed the effects of epistasis on the olfactory response to benzaldehyde and, for Crc, also on sleep. In each case, we found substantial epistasis and significant variation in the magnitude of epistasis. The predominant direction of epistatic effects was to suppress the mutant phenotype. These observations support a previous study on startle behaviour using the same D. melanogaster chromosome substitution lines, which concluded that suppressing epistasis may buffer the effects of new mutations. However, epistatic effects are not correlated among the different phenotypes. Thus, suppressing epistasis appears to be a pervasive general feature of natural populations to protect against the effects of new mutations, but different epistatic interactions modulate different phenotypes affected by mutations at the same pleiotropic gene.

  9. [Functional analysis of Grp and Iris, the gag and env domesticated errantivirus genes, in the Drosophila melanogaster genome].

    PubMed

    Makhnovskii, P A; Kuzmin, I V; Nefedova, L N; Kima, A I

    2016-01-01

    Drosophila melanogaster is the only invertebrate that contains endogenous retroviruses, which are called errantiviruses. Two domesticated genes, Grp and Iris, which originate from errantivirus gag and env, respectively, have been found in the D. melanogaster genome. The functions performed by the genes in Drosophila are still unclear. To identify the functions of domesticated gag and env in the D. melanogaster genome, expression of Iris and Grp was studied in strains differing by the presence or absence of the functional gypsy errantivirus. In addition, the expression levels were measured after injection of gram-positive and gram-negative bacteria, which activate different immune response pathways, and exposure to various abiotic stress factors. The presence of functional D. melanogaster retrovirus gypsy was found to increase the Grp expression level in somatic tissues of the carcass, while exerting no effect on the Iris expression level. Activation of the immune response in D. melanogaster by bacteria Bacillus cereus increased the Grp expression level and did not affect Iris expression. As for the effects of abiotic stress factors (oxidative stress, starvation, and heat and cold stress), the Grp expression level increased in response to starvation in D. melanogaster females, and the Iris expression level was downregulated in heat shock and oxidative stress. Based on the findings, Grp was assumed to play a direct role in the immune response in D. melanogaster; Iris is not involved in immune responses, but and apparently performs a cell function that is inhibited in stress.

  10. Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster.

    PubMed

    Khalil, Sarah; Jacobson, Eliana; Chambers, Moria C; Lazzaro, Brian P

    2015-05-13

    The fruit fly Drosophila melanogaster is one of the premier model organisms for studying the function and evolution of immune defense. Many aspects of innate immunity are conserved between insects and mammals, and since Drosophila can readily be genetically and experimentally manipulated, they are powerful for studying immune system function and the physiological consequences of disease. The procedure demonstrated here allows infection of flies by introduction of bacteria directly into the body cavity, bypassing epithelial barriers and more passive forms of defense and allowing focus on systemic infection. The procedure includes protocols for the measuring rates of host mortality, systemic pathogen load, and degree of induction of the host immune system. This infection procedure is inexpensive, robust and quantitatively repeatable, and can be used in studies of functional genetics, evolutionary life history, and physiology.

  11. Within-population Y-linked genetic variation for lifespan in Drosophila melanogaster.

    PubMed

    Griffin, R M; Le Gall, D; Schielzeth, H; Friberg, U

    2015-11-01

    The view that the Y chromosome is of little importance for phenotypic evolution stems from early studies of Drosophila melanogaster. This species' Y chromosome contains only 13 protein-coding genes, is almost entirely heterochromatic and is not necessary for male viability. Population genetic theory further suggests that non-neutral variation can only be maintained at the Y chromosome under special circumstances. Yet, recent studies suggest that the D. melanogaster Y chromosome trans-regulates hundreds to thousands of X and autosomal genes. This finding suggests that the Y chromosome may play a far more active role in adaptive evolution than has previously been assumed. To evaluate the potential for the Y chromosome to contribute to phenotypic evolution from standing genetic variation, we test for Y-linked variation in lifespan within a population of D. melanogaster. Assessing variation for lifespan provides a powerful test because lifespan (i) shows sexual dimorphism, which the Y is primarily predicted to contribute to, (ii) is influenced by many genes, which provides the Y with many potential regulatory targets and (iii) is sensitive to heterochromatin remodelling, a mechanism through which the Y chromosome is believed to regulate gene expression. Our results show a small but significant effect of the Y chromosome and thus suggest that the Y chromosome has the potential to respond to selection from standing genetic variation. Despite its small effect size, Y-linked variation may still be important, in particular when evolution of sexual dimorphism is genetically constrained elsewhere in the genome. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  12. Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster

    PubMed Central

    Song, Yun S.

    2012-01-01

    Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and

  13. Development of diet-induced insulin resistance in adult Drosophila melanogaster.

    PubMed

    Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N; Bauer, Johannes H

    2012-08-01

    The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson's Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. © 2012 Elsevier B.V. All rights reserved.

  14. Development of diet-induced insulin resistance in adult Drosophila melanogaster

    PubMed Central

    Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N.; Bauer, Johannes H.

    2013-01-01

    The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson’s Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. PMID:22542511

  15. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster.

    PubMed

    Chen, Ying; Dai, Hongzheng; Chen, Sidi; Zhang, Luoying; Long, Manyuan

    2011-04-26

    Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

  16. Highly Tissue Specific Expression of Sphinx Supports Its Male Courtship Related Role in Drosophila melanogaster

    PubMed Central

    Chen, Sidi; Zhang, Luoying; Long, Manyuan

    2011-01-01

    Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5′ flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes. PMID:21541324

  17. The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster.

    PubMed

    Ogueta, Maite; Cibik, Osman; Eltrop, Rouven; Schneider, Andrea; Scholz, Henrike

    2010-11-01

    Preference determines behavioral choices such as choosing among food sources and mates. One preference-affecting chemical is ethanol, which guides insects to fermenting fruits or leaves. Here, we show that adult Drosophila melanogaster prefer food containing up to 5% ethanol over food without ethanol and avoid food with high levels (23%) of ethanol. Although female and male flies behaved differently at ethanol-containing food sources, there was no sexual dimorphism in the preference for food containing modest ethanol levels. We also investigated whether Drosophila preference, sensitivity and tolerance to ethanol was related to the activity of alcohol dehydrogenase (Adh), the primary ethanol-metabolizing enzyme in D. melanogaster. Impaired Adh function reduced ethanol preference in both D. melanogaster and a related species, D. sechellia. Adh-impaired flies also displayed reduced aversion to high ethanol concentrations, increased sensitivity to the effects of ethanol on postural control, and negative tolerance/sensitization (i.e., a reduction of the increased resistance to ethanol's effects that normally occurs upon repeated exposure). These data strongly indicate a linkage between ethanol-induced behavior and ethanol metabolism in adult fruit flies: Adh deficiency resulted in reduced preference to low ethanol concentrations and reduced aversion to high ones, despite recovery from ethanol being strongly impaired.

  18. Lethality and Developmental Delay of Drosophila melanogaster Following Ingestion of Selected Pseudomonas fluorescens Strains

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens secretes antimicrobial compounds that promote plant health and provide protection from pathogens. We used a non-invasive feeding assay to study the toxicity of P. fluorescens strains Pf0-1, SBW25, and Pf-5 to Drosophila melanogaster. The three strains of P. fluorescens varie...

  19. Nanoliter hemolymph sampling and analysis of individual adult Drosophila melanogaster.

    PubMed

    Piyankarage, Sujeewa C; Featherstone, David E; Shippy, Scott A

    2012-05-15

    The fruit fly (Drosophila melanogaster) is an extensively used and powerful, genetic model organism. However, chemical studies using individual flies have been limited by the animal's small size. Introduced here is a method to sample nanoliter hemolymph volumes from individual adult fruit-flies for chemical analysis. The technique results in an ability to distinguish hemolymph chemical variations with developmental stage, fly sex, and sampling conditions. Also presented is the means for two-point monitoring of hemolymph composition for individual flies.

  20. OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites.

    PubMed

    Shazman, Shula; Lee, Hunjoong; Socol, Yakov; Mann, Richard S; Honig, Barry

    2014-01-01

    We present OnTheFly (http://bhapp.c2b2.columbia.edu/OnTheFly/index.php), a database comprising a systematic collection of transcription factors (TFs) of Drosophila melanogaster and their DNA-binding sites. TFs predicted in the Drosophila melanogaster genome are annotated and classified and their structures, obtained via experiment or homology models, are provided. All known preferred TF DNA-binding sites obtained from the B1H, DNase I and SELEX methodologies are presented. DNA shape parameters predicted for these sites are obtained from a high throughput server or from crystal structures of protein-DNA complexes where available. An important feature of the database is that all DNA-binding domains and their binding sites are fully annotated in a eukaryote using structural criteria and evolutionary homology. OnTheFly thus provides a comprehensive view of TFs and their binding sites that will be a valuable resource for deciphering non-coding regulatory DNA.

  1. Physiology declines prior to death in Drosophila melanogaster.

    PubMed

    Shahrestani, Parvin; Tran, Xuan; Mueller, Laurence D

    2012-10-01

    For a period of 6-15 days prior to death, the fecundity and virility of Drosophila melanogaster fall significantly below those of same-aged flies that are not near death. It is likely that other aspects of physiology may decline during this period. This study attempts to document changes in two physiological characteristics prior to death: desiccation resistance and time-in-motion. Using individual fecundity estimates and previously described models, it is possible to accurately predict which flies in a population are near death at any given age; these flies are said to be in the "death spiral". In this study of approximately 7,600 females, we used cohort mortality data and individual fecundity estimates to dichotomize each of five replicate populations of same-aged D. melanogaster into "death spiral" and "non-spiral" groups. We then compared these groups for two physiological characteristics that decline during aging. We describe the statistical properties of a new multivariate test statistic that allows us to compare the desiccation resistance and time-in-motion for two populations chosen on the basis of their fecundity. This multivariate representation of the desiccation resistance and time-in-motion of spiral and non-spiral females was shown to be significantly different with the spiral females characterized by lower desiccation resistance and time spent in motion. Our results suggest that D. melanogaster may be used as a model organism to study physiological changes that occur when death is imminent.

  2. Physiological, anatomical, and behavioral changes after acoustic trauma in Drosophila melanogaster

    PubMed Central

    Christie, Kevin W.; Sivan-Loukianova, Elena; Smith, Wesley C.; Aldrich, Benjamin T.; Schon, Michael A.; Roy, Madhuparna; Lear, Bridget C.; Eberl, Daniel F.

    2013-01-01

    Noise-induced hearing loss (NIHL) is a growing health issue, with costly treatment and lost quality of life. Here we establish Drosophila melanogaster as an inexpensive, flexible, and powerful genetic model system for NIHL. We exposed flies to acoustic trauma and quantified physiological and anatomical effects. Trauma significantly reduced sound-evoked potential (SEP) amplitudes and increased SEP latencies in control genotypes. SEP amplitude but not latency effects recovered after 7 d. Although trauma produced no gross morphological changes in the auditory organ (Johnston’s organ), mitochondrial cross-sectional area was reduced 7 d after exposure. In nervana 3 heterozygous flies, which slightly compromise ion homeostasis, trauma had exaggerated effects on SEP amplitude and mitochondrial morphology, suggesting a key role for ion homeostasis in resistance to acoustic trauma. Thus, Drosophila exhibit acoustic trauma effects resembling those found in vertebrates, including inducing metabolic stress in sensory cells. This report of noise trauma in Drosophila is a foundation for studying molecular and genetic sequelae of NIHL. PMID:24003166

  3. Differential gene expression related to Nora virus infection of Drosophila melanogaster

    PubMed Central

    Cordes, Ethan J.; Licking-Murray, Kellie D; Carlson, Kimberly A.

    2013-01-01

    Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. PMID:23603562

  4. Arm-Gal4 inheritance influences development and lifespan in Drosophila melanogaster.

    PubMed

    Slade, F A; Staveley, B E

    2015-10-19

    The UAS-Gal4 ectopic expression system is a widely used and highly valued tool that allows specific gene expression in Drosophila melanogaster. Yeast transcription factor Gal4 can be directed using D. melanogaster transcriptional control elements, and is often assumed to have little effect on the organism. By evaluation of the consequences of maternal and paternal inheritance of a Gal4 transgene under the transcriptional regulation of armadillo control elements (arm-Gal4), we demonstrated that Gal4 expression could be detrimental to development and longevity. Male progeny expressing arm-Gal4 in the presence of UAS-lacZ transgene had reduced numbers and size of ommatidia, compared to flies expressing UAS-lacZ transgene under the control of other Gal4 transgenes. Aged at 25°C, the median life span of male flies with maternally inherited elav-Gal4 was 70 days, without a responding transgene or with UAS-lacZ. The median life span of maternally inherited arm-Gal4 male flies without a responding transgene was 48 days, and 40 days with the UAS-lacZ transgene. A partial rescue of this phenotype was observed with the expression of UAS-lacZ under paternal arm-Gal4 control, having an average median lifespan of 60 days. This data suggests that arm-Gal4 has detrimental effects on Drosophila development and lifespan that are directly dependent upon parental inheritance, and that the benign responder and reporter gene UAS-lacZ may influence D. melanogaster development. These findings should be taken into consideration during the design and execution of UAS-Gal4 expression experiments.

  5. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster.

    PubMed

    Dembeck, Lauren M; Böröczky, Katalin; Huang, Wen; Schal, Coby; Anholt, Robert R H; Mackay, Trudy F C

    2015-11-14

    Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

  6. [Drosophila melanogaster as a model for studying the function of animal viral proteins].

    PubMed

    Omelianchuk, L V; Iudina, O S

    2011-07-01

    Studies in which Drosophila melanogaster individuals carrying transgenes of animal viruses were used to analyze the action of animal viral proteins on the cell are reviewed. The data presented suggest that host specificity of viruses is determined by their proteins responsible for the penetration of the virus into the cell, while viral proteins responsible for interactions with the host cell are much less host-specific. Due to this, the model of Drosophila with its developed system of searching for genetic interactions can be used to find intracellular targets for the action of viral proteins of the second group.

  7. Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venken, Koen J.T.; Carlson, Joseph W.; Schulze, Karen L.

    2009-04-21

    We constructed Drosophila melanogaster BAC libraries with 21-kb and 83-kb inserts in the P(acman) system. Clones representing 12-fold coverage and encompassing more than 95percent of annotated genes were mapped onto the reference genome. These clones can be integrated into predetermined attP sites in the genome using Phi C31 integrase to rescue mutations. They can be modified through recombineering, for example to incorporate protein tags and assess expression patterns.

  8. LARGE-SCALE ISOLATION AND FRACTIONATION OF ORGANS OF DROSOPHILA MELANOGASTER LARVAE

    PubMed Central

    Zweidler, Alfred; Cohen, Leonard H.

    1971-01-01

    Methods for the mass isolation of diverse organs from small animals are described. They involve novel devices: a mechanical dissecting system, a centrifugal agitator for the separation of fibrillar from globular particles, and a settling chamber for the fractionation at unit gravity of particles with sedimentation velocities above the useful range for centrifugation. The application of these methods to the isolation of polytene and nonpolytene nuclei from Drosophila melanogaster larvae is described. PMID:5000070

  9. Large-scale isolation and fractionation of organs of Drosophila melanogaster larvae.

    PubMed

    Zweidler, A; Cohen, L H

    1971-10-01

    Methods for the mass isolation of diverse organs from small animals are described. They involve novel devices: a mechanical dissecting system, a centrifugal agitator for the separation of fibrillar from globular particles, and a settling chamber for the fractionation at unit gravity of particles with sedimentation velocities above the useful range for centrifugation. The application of these methods to the isolation of polytene and nonpolytene nuclei from Drosophila melanogaster larvae is described.

  10. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster.

    PubMed

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A; Maltecca, Christian; Mackay, Trudy F C

    2015-05-06

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon.

  11. Frequent Replenishment Sustains the Beneficial Microbiome of Drosophila melanogaster

    PubMed Central

    Blum, Jessamina E.; Fischer, Caleb N.; Miles, Jessica; Handelsman, Jo

    2013-01-01

    ABSTRACT We report that establishment and maintenance of the Drosophila melanogaster microbiome depend on ingestion of bacteria. Frequent transfer of flies to sterile food prevented establishment of the microbiome in newly emerged flies and reduced the predominant members, Acetobacter and Lactobacillus spp., by 10- to 1,000-fold in older flies. Flies with a normal microbiome were less susceptible than germfree flies to infection by Serratia marcescens and Pseudomonas aeruginosa. Augmentation of the normal microbiome with higher populations of Lactobacillus plantarum, a Drosophila commensal and probiotic used in humans, further protected the fly from infection. Replenishment represents an unexplored strategy by which animals can sustain a gut microbial community. Moreover, the population behavior and health benefits of L. plantarum resemble features of certain probiotic bacteria administered to humans. As such, L. plantarum in the fly gut may serve as a simple model for dissecting the population dynamics and mode of action of probiotics in animal hosts. PMID:24194543

  12. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster

    PubMed Central

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A.; Maltecca, Christian; Mackay, Trudy F. C.

    2015-01-01

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon. PMID:25943032

  13. A pulsed magnetic stress applied to Drosophila melanogaster flies

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  14. Drosophila melanogaster White Mutant w 1118 Undergo Retinal Degeneration.

    PubMed

    Ferreiro, María José; Pérez, Coralia; Marchesano, Mariana; Ruiz, Santiago; Caputi, Angel; Aguilera, Pedro; Barrio, Rosa; Cantera, Rafael

    2017-01-01

    Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster , using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w 1118 strain undergo retinal degeneration. We observed also that w 1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white + in the white null background w 1118 . We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w 1118 strain as a wild-type control should be avoided.

  15. FB-NOF is a non-autonomous transposable element, expressed in Drosophila melanogaster and present only in the melanogaster group.

    PubMed

    Badal, Martí; Xamena, Noel; Cabré, Oriol

    2013-09-10

    Most foldback elements are defective due to the lack of coding sequences but some are associated with coding sequences and may represent the entire element. This is the case of the NOF sequences found in the FB of Drosophila melanogaster, formerly considered as an autonomous TE and currently proposed as part of the so-called FB-NOF element, the transposon that would be complete and fully functional. NOF is always associated with FB and never seen apart from the FB inverted repeats (IR). This is the reason why the FB-NOF composite element can be considered the complete element. At least one of its ORFs encodes a protein that has always been considered its transposase, but no detailed studies have been carried out to verify this. In this work we test the hypothesis that FB-NOF is an active transposon nowadays. We search for its expression product, obtaining its cDNA, and propose the ORF and the sequence of its potential protein. We found that the NOF protein is not a transposase as it lacks any of the motifs of known transposases and also shows structural homology with hydrolases, therefore FB-NOF cannot belong to the superfamily MuDR/foldback, as up to now it has been classified, and can be considered as a non-autonomous transposable element. The alignment with the published genomes of 12 Drosophila species shows that NOF presence is restricted only to the 6 Drosophila species belonging to the melanogaster group. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. MicroRNA function in Drosophila melanogaster.

    PubMed

    Carthew, Richard W; Agbu, Pamela; Giri, Ritika

    2017-05-01

    Over the last decade, microRNAs have emerged as critical regulators in the expression and function of animal genomes. This review article discusses the relationship between microRNA-mediated regulation and the biology of the fruit fly Drosophila melanogaster. We focus on the roles that microRNAs play in tissue growth, germ cell development, hormone action, and the development and activity of the central nervous system. We also discuss the ways in which microRNAs affect robustness. Many gene regulatory networks are robust; they are relatively insensitive to the precise values of reaction constants and concentrations of molecules acting within the networks. MicroRNAs involved in robustness appear to be nonessential under uniform conditions used in conventional laboratory experiments. However, the robust functions of microRNAs can be revealed when environmental or genetic variation otherwise has an impact on developmental outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Establishing a system with Drosophila melanogaster (Diptera: Drosophilidae) to assess the non-target effects of gut-active insecticidal compounds.

    PubMed

    Haller, Simone; Meissle, Michael; Romeis, Jörg

    2016-12-01

    Potentially adverse effects on ecosystem functioning by the planting of insect-resistant, genetically engineered plants or by the direct application of insecticidal compounds are carefully evaluated in pre-market risk assessments. To date, few studies have assessed the potential risks of genetically engineered crops or insecticidal compounds on the survival and fitness of dipteran species, despite their important contribution to ecosystem services such as decomposition in agricultural systems. Therefore, we propose that Drosophila melanogaster Meigen (Drosophilidae) be used as a surrogate species for the order Diptera and for the functional guild of soil arthropod decomposers in pre-market risk assessments. We developed two assays to assess the toxicity of gut-active insecticidal compounds to D. melanogaster. One assay uses groups of fly larvae, and the other uses individuals. Cryolite, a mineral pesticide, proved to be an adequate positive control. The effects of cryolite on D. melanogaster larvae were comparable between the two assays. Statistical power analyses were used to define the number of replications required to identify different effect sizes between control and treatment groups. Finally, avidin, E-64, GNA, and SBTI were used as test compounds to validate the individual-based assay; only avidin adversely affected D. melanogaster. These results indicate that both D. melanogaster assays will be useful for early tier risk assessment concerning the effects of orally active compounds on non-target dipterans.

  18. Differential sexual survival of Drosophila melanogaster on copper sulfate.

    PubMed

    Balinski, Michael A; Woodruff, Ronny C

    2017-04-01

    Based on studies of the influence of X-chromosomes on the viability of Drosophila melanogaster exposed to cadmium, and on the role of X-linked genes on copper homeostasis, we examined the effect of copper sulfate (CuSO 4 ) on offspring viability using three independent, inbred D. melanogaster crosses (ensuring identical autosomes for males and females within each cross). Each cross was performed with attached X-chromosome females and males with a single X-chromosome. As female D. melanogaster have less metallothionein RNA expression than males, we predicted fewer female offspring than male offspring in crosses exposed to CuSO 4 , even though females have two copies of X-chromosome genes, possibly resulting in overdominant heterozygosity. In two of three crosses, CuSO 4 caused significantly higher numbers of male offspring compared to female offspring. We hypothesized that these gender-based viability differences to copper exposure are caused by X-chromosome ploidy and X-linked genetic variation affecting metallothionein expression. Observed differential offspring viability responses among crosses to copper exposure also showed that different genetic backgrounds (autosomal and/or X-chromosome) can result in significant differences in heavy metal and metallothionein regulation. These results suggest that the effect of copper on offspring viability depends on both genetic background and gender, as both factors can affect the regulation of metallothionein proteins as well as homeostasis of biologically necessary heavy metals.

  19. Geographical analysis of diapause inducibility in European Drosophila melanogaster populations.

    PubMed

    Pegoraro, Mirko; Zonato, Valeria; Tyler, Elizabeth R; Fedele, Giorgio; Kyriacou, Charalambos P; Tauber, Eran

    2017-04-01

    Seasonal overwintering in insects represents an adaptation to stressful environments and in European Drosophila melanogaster females, low temperatures and short photoperiods can induce an ovarian diapause. Diapause may represent a recent (<15Ky) adaptation to the colonisation of temperate Europe by D. melanogaster from tropical sub-Saharan Africa, because African D. melanogaster and the sibling species D. simulans, have been reported to fail to undergo diapause. Over the past few centuries, D. melanogaster have also invaded North America and Australia, and eastern populations on both continents show a predictable latitudinal cline in diapause induction. In Europe however, a new diapause-enhancing timeless allele, ls-tim, is observed at high levels in southern Italy (∼80%), where it appears to have arisen and has spread throughout the continent with a frequency of ∼20% in Scandinavia. Given the phenotype of ls-tim and its geographical distribution, we might predict that it would work against any latitudinal cline in diapause induction within Europe. Indeed we reveal that any latitudinal cline for diapause in Europe is very weak, as predicted by ls-tim frequencies. In contrast, we determine ls-tim frequencies in North America and observe that they would be expected to strengthen the latitudinal pattern of diapause. Our results reveal how a newly arisen mutation, can, via the stochastic nature of where it initially arose, blur an otherwise adaptive geographical pattern. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Wolbachia influences the maternal transmission of the gypsy endogenous retrovirus in Drosophila melanogaster.

    PubMed

    Touret, Franck; Guiguen, François; Terzian, Christophe

    2014-09-02

    The endosymbiotic bacteria of the genus Wolbachia are present in most insects and are maternally transmitted through the germline. Moreover, these intracellular bacteria exert antiviral activity against insect RNA viruses, as in Drosophila melanogaster, which could explain the prevalence of Wolbachia bacteria in natural populations. Wolbachia is maternally transmitted in D. melanogaster through a mechanism that involves distribution at the posterior pole of mature oocytes and then incorporation into the pole cells of the embryos. In parallel, maternal transmission of several endogenous retroviruses is well documented in D. melanogaster. Notably, gypsy retrovirus is expressed in permissive follicle cells and transferred to the oocyte and then to the offspring by integrating into their genomes. Here, we show that the presence of Wolbachia wMel reduces the rate of gypsy insertion into the ovo gene. However, the presence of Wolbachia does not modify the expression levels of gypsy RNA and envelope glycoprotein from either permissive or restrictive ovaries. Moreover, Wolbachia affects the pattern of distribution of the retroviral particles and the gypsy envelope protein in permissive follicle cells. Altogether, our results enlarge the knowledge of the antiviral activity of Wolbachia to include reducing the maternal transmission of endogenous retroviruses in D. melanogaster. Animals have established complex relationships with bacteria and viruses that spread horizontally among individuals or are vertically transmitted, i.e., from parents to offspring. It is well established that members of the genus Wolbachia, maternally inherited symbiotic bacteria present mainly in arthropods, reduce the replication of several RNA viruses transmitted horizontally. Here, we demonstrate for the first time that Wolbachia diminishes the maternal transmission of gypsy, an endogenous retrovirus in Drosophila melanogaster. We hypothesize that gypsy cannot efficiently integrate into the germ

  1. Comprehensively Surveying Structure and Function of RING Domains from Drosophila melanogaster

    PubMed Central

    Wu, Yuehao; Wan, Fusheng; Huang, Chunhong; Jie, Kemin

    2011-01-01

    Using a complete set of RING domains from Drosophila melanogaster, all the solved RING domains and cocrystal structures of RING-containing ubiquitin-ligases (RING-E3) and ubiquitin-conjugating enzyme (E2) pairs, we analyzed RING domains structures from their primary to quarternary structures. The results showed that: i) putative orthologs of RING domains between Drosophila melanogaster and the human largely occur (118/139, 84.9%); ii) of the 118 orthologous pairs from Drosophila melanogaster and the human, 117 pairs (117/118, 99.2%) were found to retain entirely uniform domain architectures, only Iap2/Diap2 experienced evolutionary expansion of domain architecture; iii) 4 evolutionary structurally conserved regions (SCRs) are responsible for homologous folding of RING domains at the superfamily level; iv) besides the conserved Cys/His chelating zinc ions, 6 equivalent residues (4 hydrophobic and 2 polar residues) in the SCRs possess good-consensus and conservation- these 4 SCRs function in the structural positioning of 6 equivalent residues as determinants for RING-E3 catalysis; v) members of these RING proteins located nucleus, multiple subcellular compartments, membrane protein and mitochondrion are respectively 42 (42/139, 30.2%), 71 (71/139, 51.1%), 22 (22/139, 15.8%) and 4 (4/139, 2.9%); vi) CG15104 (Topors) and CG1134 (Mul1) in C3HC4, and CG3929 (Deltex) in C3H2C3 seem to display broader E2s binding profiles than other RING-E3s; vii) analyzing intermolecular interfaces of E2/RING-E3 complexes indicate that residues directly interacting with E2s are all from the SCRs in RING domains. Of the 6 residues, 2 hydrophobic ones contribute to constructing the conserved hydrophobic core, while the 2 hydrophobic and 2 polar residues directly participate in E2/RING-E3 interactions. Based on sequence and structural data, SCRs, conserved equivalent residues and features of intermolecular interfaces were extracted, highlighting the presence of a nucleus for RING domain fold

  2. Trehalose as an indicator of desiccation stress in Drosophila melanogaster larvae: A potential marker of anhydrobiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorat, Leena J.; Gaikwad, Sushama M.; Nath, Bimalendu B., E-mail: bbnath@unipune.ac.in

    Highlights: Black-Right-Pointing-Pointer First report confirming anhydrobiosis in Drosophila melanogaster larvae. Black-Right-Pointing-Pointer Trehalose synthesis and accumulation in larvae that hydrolyzed on rehydration. Black-Right-Pointing-Pointer Trehalose synthesis in concert with the enzymes involved in trehalose metabolism. Black-Right-Pointing-Pointer Inhibition of trehalose hydrolysis in presence of a specific trehalase inhibitor. Black-Right-Pointing-Pointer Trehalose proposed as a reliable marker for biomonitoring of climate change studies. -- Abstract: In the current scenario of global climate change, desiccation is considered as one of the major environmental stressors for the biota exposed to altered levels of ambient temperature and humidity. Drosophila melanogaster, a cosmopolitan terrestrial insect has been chosen asmore » a humidity-sensitive bioindicator model for the present study since its habitat undergoes frequent stochastic and/or seasonally aggravated dehydration regimes. We report here for the first time the occurrence of anhydrobiosis in D. melanogaster larvae by subjecting them to desiccation stress under laboratory conditions. Larvae desiccated for ten hours at <5% relative humidity could enter anhydrobiosis and could revive upon rehydration followed by resumption of active metabolism. As revealed by FTIR and HPLC analyzes, our findings strongly indicated the synthesis and accumulation of trehalose in the desiccating larvae. Biochemical measurements pointed out the desiccation-responsive trehalose metabolic pathway that was found to be coordinated in concert with the enzymes trehalose 6-phosphate synthase and trehalase. Further, an inhibitor-based experimental approach using deoxynojirimycin, a specific trehalase inhibitor, demonstrated the pivotal role of trehalose in larval anhydrobiosis of D. melanogaster. We therefore propose trehalose as a potential marker for the assessment of anhydrobiosis in Drosophila. The present findings

  3. Retired flies, hidden plateaus, and the evolution of senescence in Drosophila melanogaster.

    PubMed

    Curtsinger, James W

    2016-06-01

    Late-life plateaus in age-specific mortality have been an evolutionary and biodemographic puzzle for decades. Although classic theory on the evolution of senescence predicts late-life walls of death, observations in experimental organisms document the opposite trend: a slowing in the rate of increase of mortality at advanced ages. Here, I analyze published life-history data on individual Drosophila melanogaster females and argue for a fundamental change in our understanding of mortality in this important model system. Mortality plateaus are not, as widely assumed, exclusive to late life, and are not explained by population heterogeneity-they are intimately connected to individual fecundity. Female flies begin adult life in the working stage, a period of active oviposition and low but accelerating mortality. Later they transition to the retired stage, a terminal period characterized by limited fecundity and relatively constant mortality. Because ages of transition differ between flies, age-synchronized cohorts contain a mix of working and retired flies. Early- and mid-life plateaus are obscured by the presence of working flies, but can be detected when cohorts are stratified by retirement status. Stage-specificity may be an important component of Drosophila life-history evolution. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. Factors affecting the frequency of infection by the sigma virus in experimental populations of Drosophila melanogaster.

    PubMed

    Fleuriet, A

    1982-01-01

    The experiments reported in this paper deal with the maintenance of the non contagious, hereditary virus sigma in populations of its host, Drosophila melanogaster. Evidence was previously provided of the existence of two viral Types I and II, depending on their sensitivity to the ref(2)Pp allele (the ref(2)P locus interferes with the multiplication of the virus in the fly). The viral Type I which is the most sensitive to the ref(2)Pp allele, is eliminated in the presence of this allele, even when most of the flies were originally infected in the population. On the contrary, the presence of the ref(2)Pp allele does not prevent a viral Type II, introduced in a population, from infecting most of the flies. The possibility that a change has occurred recently in French natural populations of Drosophila melanogaster is discussed.

  5. Developing a Drosophila Model of Schwannomatosis

    DTIC Science & Technology

    2013-02-01

    Drosophila melanogaster has become an important model system for cancer studies. Reduced redundancy in the Drosophila genome compared with that of...of high-resolution deletion coverage of the Drosophila melanogaster genome . Nat. Genet. 36, 288-292. Pastor-Pareja, J. C., Wu, M. and Xu. T. (2008...microarray analysis of the entire Drosophila melanogaster genome and compared gene expression profiles of wild type, dCap-D3 and rbf1 mutant

  6. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior

    PubMed Central

    Shorter, John; Couch, Charlene; Huang, Wen; Carbone, Mary Anna; Peiffer, Jason; Anholt, Robert R. H.; Mackay, Trudy F. C.

    2015-01-01

    Aggression is an evolutionarily conserved complex behavior essential for survival and the organization of social hierarchies. With the exception of genetic variants associated with bioamine signaling, which have been implicated in aggression in many species, the genetic basis of natural variation in aggression is largely unknown. Drosophila melanogaster is a favorable model system for exploring the genetic basis of natural variation in aggression. Here, we performed genome-wide association analyses using the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and replicate advanced intercross populations derived from the most and least aggressive DGRP lines. We identified genes that have been previously implicated in aggressive behavior as well as many novel loci, including gustatory receptor 63a (Gr63a), which encodes a subunit of the receptor for CO2, and genes associated with development and function of the nervous system. Although genes from the two association analyses were largely nonoverlapping, they mapped onto a genetic interaction network inferred from an analysis of pairwise epistasis in the DGRP. We used mutations and RNAi knock-down alleles to functionally validate 79% of the candidate genes and 75% of the candidate epistatic interactions tested. Epistasis for aggressive behavior causes cryptic genetic variation in the DGRP that is revealed by changing allele frequencies in the outbred populations derived from extreme DGRP lines. This phenomenon may pertain to other fitness traits and species, with implications for evolution, applied breeding, and human genetics. PMID:26100892

  7. RNomics in Drosophila melanogaster: identification of 66 candidates for novel non-messenger RNAs

    PubMed Central

    Yuan, Guozhong; Klämbt, Christian; Bachellerie, Jean-Pierre; Brosius, Jürgen; Hüttenhofer, Alexander

    2003-01-01

    By generating a specialised cDNA library from four different developmental stages of Drosophila melanogaster, we have identified 66 candidates for small non-messenger RNAs (snmRNAs) and have confirmed their expression by northern blot analysis. Thirteen of them were expressed at certain stages of D.melanogaster development, only. Thirty-five species belong to the class of small nucleolar RNAs (snoRNAs), divided into 15 members from the C/D subclass and 20 members from the H/ACA subclass, which mostly guide 2′-O-methylation and pseudouridylation, respectively, of rRNA and snRNAs. These also include two outstanding C/D snoRNAs, U3 and U14, both functioning as pre-rRNA chaperones. Surprisingly, the sequence of the Drosophila U14 snoRNA reflects a major change of function of this snoRNA in Diptera relative to yeast and vertebrates. Among the 22 snmRNAs lacking known sequence and structure motifs, five were located in intergenic regions, two in introns, five in untranslated regions of mRNAs, eight were derived from open reading frames, and two were transcribed opposite to an intron. Interestingly, detection of two RNA species from this group implies that certain snmRNA species are processed from alternatively spliced pre-mRNAs. Surprisingly, a few snmRNA sequences could not be found on the published D.melanogaster genome, which might suggest that more snmRNA genes (as well as mRNAs) are hidden in unsequenced regions of the genome. PMID:12736298

  8. The Drosophila melanogaster Eip74EF-PA transcription factor directly binds the sciarid BhC4-1 promoter.

    PubMed

    Frank, Henrique Oliveira; Sanchez, Danilo Garcia; de Freitas Oliveira, Lucas; Kobarg, Jörg; Monesi, Nadia

    2017-11-01

    The DNA puff BhC4-1 gene of Bradysia hygida (Diptera, Sciaridae) is amplified and expressed in the salivary glands at the end of the last larval instar. Even though there are no BhC4-1 orthologs in Drosophila melanogaster, the mechanisms that regulate BhC4-1 gene expression in B. hygida are for the most part conserved in D. melanogaster. The BhC4-1 promoter contains a 129bp (-186/-58) cis-regulatory module (CRM) that drives developmentally regulated expression in transgenic salivary glands at the onset of metamorphosis. Both in the sciarid and in transgenic D. melanogaster, BhC4-1 gene expression is induced by the increase in ecdysone titers that triggers metamorphosis. Genetic interaction experiments revealed that in the absence of the Eip74EF-PA early gene isoform BhC4-1-lacZ levels of expression in the salivary gland are severely reduced. Here we show that the overexpression of the Eip74EF-PA transcription factor is sufficient to anticipate BhC4-1-lacZ expression in transgenic D. melanogaster. Through yeast one-hybrid assays we confirm that the Eip74EF-PA transcription factor directly binds to the 129 bp sciarid CRM. Together, these results contribute to the characterization of an insect CRM and indicate that the ecdysone gene regulatory network that promotes metamorphosis is conserved between D. melanogaster and the sciarid B. hygida. © 2017 Wiley Periodicals, Inc.

  9. The Mosaic Ancestry of the Drosophila Genetic Reference Panel and the D. melanogaster Reference Genome Reveals a Network of Epistatic Fitness Interactions.

    PubMed

    Pool, John E

    2015-12-01

    North American populations of Drosophila melanogaster derive from both European and African source populations, but despite their importance for genetic research, patterns of ancestry along their genomes are largely undocumented. Here, I infer geographic ancestry along genomes of the Drosophila Genetic Reference Panel (DGRP) and the D. melanogaster reference genome, which may have implications for reference alignment, association mapping, and population genomic studies in Drosophila. Overall, the proportion of African ancestry was estimated to be 20% for the DGRP and 9% for the reference genome. Combining my estimate of admixture timing with historical records, I provide the first estimate of natural generation time for this species (approximately 15 generations per year). Ancestry levels were found to vary strikingly across the genome, with less African introgression on the X chromosome, in regions of high recombination, and at genes involved in specific processes (e.g., circadian rhythm). An important role for natural selection during the admixture process was further supported by evidence that many unlinked pairs of loci showed a deficiency of Africa-Europe allele combinations between them. Numerous epistatic fitness interactions may therefore exist between African and European genotypes, leading to ongoing selection against incompatible variants. By focusing on hubs in this network of fitness interactions, I identified a set of interacting loci that include genes with roles in sensation and neuropeptide/hormone reception. These findings suggest that admixed D. melanogaster samples could become an important study system for the genetics of early-stage isolation between populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Label-free in vivo imaging of Drosophila melanogaster by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Ying; Hovhannisyan, Vladimir; Wu, June-Tai; Lin, Sung-Jan; Lin, Chii-Wann; Chen, Jyh-Horng; Dong, Chen-Yuan

    2008-02-01

    The fruit fly Drosophila melanogaster is one of the most valuable organisms in genetic and developmental biology studies. Drosophila is a small organism with a short life cycle, and is inexpensive and easy to maintain. The entire genome of Drosophila has recently been sequenced (cite the reference). These advantages make fruit fly an attractive model organism for biomedical researches. Unlike humans, Drosophila can be subjected to genetic manipulation with relative ease. Originally, Drosophila was mostly used in classical genetics studies. In the model era of molecular biology, the fruit fly has become a model organ for developmental biology researches. In the past, numerous molecularly modified mutants with well defined genetic defects affecting different aspects of the developmental processes have been identified and studied. However, traditionally, the developmental defects of the mutant flies are mostly examined in isolated fixed tissues which preclude the observation of the dynamic interaction of the different cell types and the extracellular matrix. Therefore, the ability to image different organelles of the fruit fly without extrinsic labeling is invaluable for Drosophila biology. In this work, we successfully acquire in vivo images of both developing muscles and axons of motor neurons in the three larval stages by using the minimially invasive imaging modality of multiphoton (SHG) microscopy. We found that while SHG imaging is useful in revealing the muscular architecture of the developing larva, it is the autofluorescence signal that allows label-free imaging of various organelles to be achieved. Our results demonstrate that multiphoton imaging is a powerful technique for investigation the development of Drosophila.

  11. Characterization of Reproductive Dormancy in Male Drosophila melanogaster

    PubMed Central

    Kubrak, Olga I.; Kučerová, Lucie; Theopold, Ulrich; Nylin, Sören; Nässel, Dick R.

    2016-01-01

    Insects are known to respond to seasonal and adverse environmental changes by entering dormancy, also known as diapause. In some insect species, including Drosophila melanogaster, dormancy occurs in the adult organism and postpones reproduction. This adult dormancy has been studied in female flies where it is characterized by arrested development of ovaries, altered nutrient stores, lowered metabolism, increased stress and immune resistance and drastically extended lifespan. Male dormancy, however, has not been investigated in D. melanogaster, and its physiology is poorly known in most insects. Here we show that unmated 3–6 h old male flies placed at low temperature (11°C) and short photoperiod (10 Light:14 Dark) enter a state of dormancy with arrested spermatogenesis and development of testes and male accessory glands. Over 3 weeks of diapause we see a dynamic increase in stored carbohydrates and an initial increase and then a decrease in lipids. We also note an up-regulated expression of genes involved in metabolism, stress responses and innate immunity. Interestingly, we found that male flies that entered reproductive dormancy do not attempt to mate females kept under non-diapause conditions (25°C, 12L:12D), and conversely non-diapausing males do not mate females in dormancy. In summary, our study shows that male D. melanogaster can enter reproductive dormancy. However, our data suggest that dormant male flies deplete stored nutrients faster than females, studied earlier, and that males take longer to recover reproductive capacity after reintroduction to non-diapause conditions. PMID:27932997

  12. Male Mating Success: Preference or Prowess? Investigating Sexual Selection in the Laboratory Using "Drosophila melanogaster"

    ERIC Educational Resources Information Center

    Coleman, Seth; Jensen, Jeffrey

    2007-01-01

    Sexual selection is the primary force affecting the evolution of the elaborate sexual displays common in animals, yet sexual selection experiments are largely absent from introductory biology laboratories. Here we describe the rationale, methodology, and results of several experiments using "Drosophila melanogaster" to demonstrate sexual selection…

  13. Transcriptional Signatures in Response to Wheat Germ Agglutinin and Starvation in Drosophila melanogaster Larval Midgut

    USDA-ARS?s Scientific Manuscript database

    One function of plant lectins such as wheat germ agglutinin (WGA) is to serve as defenses against herbivorous insects. The midgut is one critical site affected by dietary lectins. We observed marked cellular, structural, and gene expression changes in the midguts of Drosophila melanogaster third-i...

  14. Characterization of the Fb-Nof Transposable Element of Drosophila Melanogaster

    PubMed Central

    Harden, N.; Ashburner, M.

    1990-01-01

    FB-NOF is a composite transposable element of Drosophila melanogaster. It is composed of foldback sequences, of variable length, which flank a 4-kb NOF sequence with 308-bp inverted repeat termini. The NOF sequence could potentially code for a 120-kD polypeptide. The FB-NOF element is responsible for unstable mutations of the white gene (w(c) and w(DZL)) and is associated with the large TEs of G. Ising. Although most strains of D. melanogaster have 20-30 sites of FB insertion, FB-NOF elements are usually rare, many strains lack this composite element or have only one copy of it. A few strains, including w(DZL) and Basc have many (8-21) copies of FB-NOF, and these show a tendency to insert at ``hot-spots.'' These strains also have an increased number of FB elements. The DNA sequence of the NOF region associated with TE146(Z) has been determined. PMID:2174013

  15. Mechanistic and Structural Analysis of Drosophila melanogaster Arylalkylamine N-Acetyltransferases

    PubMed Central

    2015-01-01

    Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the biosynthesis of melatonin and other N-acetylarylalkylamides from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified in D. melanogaster, in which AANATA differs from AANATB by the truncation of 35 amino acids from the N-terminus. We have expressed and purified both D. melanogaster AANAT variants (AANATA and AANATB) in Escherichia coli and used the purified enzymes to demonstrate that this N-terminal truncation does not affect the activity of the enzyme. Subsequent characterization of the kinetic and chemical mechanism of AANATA identified an ordered sequential mechanism, with acetyl-CoA binding first, followed by tyramine. We used a combination of pH–activity profiling and site-directed mutagenesis to study prospective residues believed to function in AANATA catalysis. These data led to an assignment of Glu-47 as the general base in catalysis with an apparent pKa of 7.0. Using the data generated for the kinetic mechanism, structure–function relationships, pH–rate profiles, and site-directed mutagenesis, we propose a chemical mechanism for AANATA. PMID:25406072

  16. Oxidation of a critical methionine modulates DNA binding of the Drosophila melanogaster high mobility group protein, HMG-D.

    PubMed

    Dow, L K; Changela, A; Hefner, H E; Churchill, M E

    1997-09-15

    HMG-D is a major high mobility group chromosomal protein present during early embryogenesis in Drosophila melanogaster. During overexpression and purification of HMG-D from E. coli, a key DNA binding residue, methionine 13, undergoes oxidation to methionine sulfoxide. Oxidation of this critical residue decreases the affinity of HMG-D for DNA by three-fold, altering the structure of the HMG-D-DNA complex without affecting the structure of the free protein. This work shows that minor modification of DNA intercalating residues may be used to fine tune the DNA binding affinity of HMG domain proteins.

  17. Reverse engineering the gap gene network of Drosophila melanogaster.

    PubMed

    Perkins, Theodore J; Jaeger, Johannes; Reinitz, John; Glass, Leon

    2006-05-01

    A fundamental problem in functional genomics is to determine the structure and dynamics of genetic networks based on expression data. We describe a new strategy for solving this problem and apply it to recently published data on early Drosophila melanogaster development. Our method is orders of magnitude faster than current fitting methods and allows us to fit different types of rules for expressing regulatory relationships. Specifically, we use our approach to fit models using a smooth nonlinear formalism for modeling gene regulation (gene circuits) as well as models using logical rules based on activation and repression thresholds for transcription factors. Our technique also allows us to infer regulatory relationships de novo or to test network structures suggested by the literature. We fit a series of models to test several outstanding questions about gap gene regulation, including regulation of and by hunchback and the role of autoactivation. Based on our modeling results and validation against the experimental literature, we propose a revised network structure for the gap gene system. Interestingly, some relationships in standard textbook models of gap gene regulation appear to be unnecessary for or even inconsistent with the details of gap gene expression during wild-type development.

  18. The Effects of Royal Jelly on Fitness Traits and Gene Expression in Drosophila melanogaster

    PubMed Central

    Shorter, John R.; Geisz, Matthew; Özsoy, Ergi; Magwire, Michael M.; Carbone, Mary Anna; Mackay, Trudy F. C.

    2015-01-01

    Royal Jelly (RJ) is a product made by honey bee workers and is required for queen differentiation and accompanying changes in queen body size, development time, lifespan and reproductive output relative to workers. Previous studies have reported similar changes in Drosophila melanogaster in response to RJ. Here, we quantified viability, development time, body size, productivity, lifespan and genome wide transcript abundance of D. melanogaster reared on standard culture medium supplemented with increasing concentrations of RJ. We found that lower concentrations of RJ do induce significant differences in body size in both sexes; higher concentrations reduce size, increase mortality, shorten lifespan and reduce productivity. Increased concentrations of RJ also consistently lengthened development time in both sexes. RJ is associated with changes in expression of 1,581 probe sets assessed using Affymetrix Drosophila 2.0 microarrays, which were enriched for genes associated with metabolism and amino acid degradation. The transcriptional changes are consistent with alterations in cellular processes to cope with excess nutrients provided by RJ, including biosynthesis and detoxification, which might contribute to accelerated senescence and reduced lifespan. PMID:26226016

  19. Structural insights into the neuroprotective-acting carbonyl reductase Sniffer of Drosophila melanogaster.

    PubMed

    Sgraja, Tanja; Ulschmid, Julia; Becker, Katja; Schneuwly, Stephan; Klebe, Gerhard; Reuter, Klaus; Heine, Andreas

    2004-10-01

    In vivo studies with the fruit-fly Drosophila melanogaster have shown that the Sniffer protein prevents age-dependent and oxidative stress-induced neurodegenerative processes. Sniffer is a NADPH-dependent carbonyl reductase belonging to the enzyme family of short-chain dehydrogenases/reductases (SDRs). The crystal structure of the homodimeric Sniffer protein from Drosophila melanogaster in complex with NADP+ has been determined by multiple-wavelength anomalous dispersion and refined to a resolution of 1.75 A. The observed fold represents a typical dinucleotide-binding domain as detected for other SDRs. With respect to the cofactor-binding site and the region referred to as substrate-binding loop, the Sniffer protein shows a striking similarity to the porcine carbonyl reductase (PTCR). This loop, in both Sniffer and PTCR, is substantially shortened compared to other SDRs. In most enzymes of the SDR family this loop adopts a well-defined conformation only after substrate binding and remains disordered in the absence of any bound ligands or even if only the dinucleotide cofactor is bound. In the structure of the Sniffer protein, however, the conformation of this loop is well defined, although no substrate is present. Molecular modeling studies provide an idea of how binding of substrate molecules to Sniffer could possibly occur.

  20. Differential gene expression related to Nora virus infection of Drosophila melanogaster.

    PubMed

    Cordes, Ethan J; Licking-Murray, Kellie D; Carlson, Kimberly A

    2013-08-01

    Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. Copyright © 2013. Published by Elsevier B.V.

  1. Natural variation in differentiated hemocytes is related to parasitoid resistance in Drosophila melanogaster.

    PubMed

    Gerritsma, Sylvia; Haan, Ammerins de; Zande, Louis van de; Wertheim, Bregje

    2013-02-01

    As a measure of parasitoid resistance, hemocyte load and encapsulation ability were measured in lines collected from natural populations of Drosophila melanogaster in Europe. Results show large geographic variation in resistance against the parasitoid wasp Asobara tabida among the field lines, but there was no clear correlation between resistance and total hemocyte load, neither before nor after parasitization. This was in contrast to the patterns that had been found in a comparison among species of Drosophila, where total hemocyte counts were positively correlated to encapsulation rates. This suggests that the mechanisms underlying between-species variation in parasitoid resistance do not extend to the natural variation that exists within a species. Although hemocyte counts did not correspond to encapsulation ability within D. melanogaster, the ratios of lamellocytes and crystal cells were very similar in lines with successful encapsulation responses. Apart from variation in the hemocytic response of the different hemocyte types, within-species variation was also observed for accurate targeting of the foreign body by the hemocytes. These results are discussed in the context of possible causes of variation in immune functions among natural populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Molecular Population Genetics of Sex Determination Genes: The Transformer Gene of Drosophila Melanogaster

    PubMed Central

    Walthour, C. S.; Schaeffer, S. W.

    1994-01-01

    The transformer locus (tra) produces an RNA processing protein that alternatively splices the doublesex pre-mRNA in the sex determination hierarchy of Drosophila melanogaster. Comparisons of the tra coding region among Drosophila species have revealed an unusually high degree of divergence in synonymous and nonsynonymous sites. In this study, we tested the hypothesis that the tra gene will be polymorphic in synonymous and nonsynonymous sites within species by investigating nucleotide sequence variation in eleven tra alleles within D. melanogaster. Of the 1063 nucleotides examined, two synonymous sites were polymorphic and no amino acid variation was detected. Three statistical tests were used to detect departures from an equilibrium neutral model. Two tests failed to reject a neutral model of molecular evolution because of low statisitical power associated with low levels of genetic variation (Tajima/Fu and Li). The Hudson, Kreitman, and Aguade test rejected a neutral model when the tra region was compared to the 5'-flanking region of alcohol dehydrogenase (Adh). The lack of variability in the tra gene is consistent with a recent selective sweep of a beneficial allele in or near the tra locus. PMID:8013913

  3. Heritability of Two Morphological Characters within and among Natural Populations of Drosophila melanogaster

    PubMed Central

    Coyne, Jerry A.; Beecham, Edward

    1987-01-01

    Heritabilities of wing length and abdominal bristle number, as well as genetic correlations between these characters, were determined within and among populations of Drosophila melanogaster in nature. Substantial "natural" heritabilities were found when wild-caught flies from one population were compared to their laboratory-reared offspring. Natural heritabilities of bristle number approximated those derived from laboratory-raised parents and offspring, but wing length heritability was significantly lower in nature than in the laboratory. Among-population heritabilities, estimated by regressing population means of wild-caught flies against those of their laboratory-reared descendants, were close to 0.5. The genetic differentiation of populations was clinal with latitude, and was accompanied by significant geographic differences in the norms of reaction to temperature. These clines are similar to those reported on other continents and in other Drosophila species, and are almost certainly caused by natural selection. Genetic regressions between the characters reveal that the cline in bristle number may be a correlated response to geographic selection on wing length, but not vice versa. Our results indicate that there is a sizable genetic component to phenotypic variation within and among populations of D. melanogaster in nature. PMID:3123311

  4. Presence of DNA methyltransferase activity and CpC methylation in Drosophila melanogaster.

    PubMed

    Panikar, Chitra S; Rajpathak, Shriram N; Abhyankar, Varada; Deshmukh, Saniya; Deobagkar, Deepti D

    2015-12-01

    Drosophila melanogaster lacks DNMT1/DNMT3 based methylation machinery. Despite recent reports confirming the presence of low DNA methylation in Drosophila; little is known about the methyltransferase. Therefore, in this study, we have aimed to investigate the possible functioning of DNA methyltransferase in Drosophila. The 14 K oligo microarray slide was incubated with native cell extract from adult Drosophila to check the presence of the methyltransferase activity. After incubation under appropriate conditions, the methylated oligo sequences were identified by the binding of anti 5-methylcytosine monoclonal antibody. The antibody bound to the methylated oligos was detected using Cy3 labeled secondary antibody. Methylation sensitive restriction enzyme mediated PCR was used to assess the methylation at a few selected loci identified on the array. It could be seen that a few of the total oligos got methylated under the assay conditions. Analysis of methylated oligo sequences provides evidence for the presence of de novo methyltransferase activity and allows identification of its sequence specificity in adult Drosophila. With the help of methylation sensitive enzymes we could detect presence of CpC methylation in the selected genomic regions. This study reports presence of an active DNA methyltransferase in adult Drosophila, which exhibits sequence specificity confirmed by presence of asymmetric methylation at corresponding sites in the genomic DNA. It also provides an innovative approach to investigate methylation specificity of a native methyltransferase.

  5. The Drosophila melanogaster Gut Microbiota Provisions Thiamine to Its Host

    PubMed Central

    2018-01-01

    ABSTRACT The microbiota of Drosophila melanogaster has a substantial impact on host physiology and nutrition. Some effects may involve vitamin provisioning, but the relationships between microbe-derived vitamins, diet, and host health remain to be established systematically. We explored the contribution of microbiota in supplying sufficient dietary thiamine (vitamin B1) to support D. melanogaster at different stages of its life cycle. Using chemically defined diets with different levels of available thiamine, we found that the interaction of thiamine concentration and microbiota did not affect the longevity of adult D. melanogaster. Likewise, this interplay did not have an impact on egg production. However, we determined that thiamine availability has a large impact on offspring development, as axenic offspring were unable to develop on a thiamine-free diet. Offspring survived on the diet only when the microbiota was present or added back, demonstrating that the microbiota was able to provide enough thiamine to support host development. Through gnotobiotic studies, we determined that Acetobacter pomorum, a common member of the microbiota, was able to rescue development of larvae raised on the no-thiamine diet. Further, it was the only microbiota member that produced measurable amounts of thiamine when grown on the thiamine-free fly medium. Its close relative Acetobacter pasteurianus also rescued larvae; however, a thiamine auxotrophic mutant strain was unable to support larval growth and development. The results demonstrate that the D. melanogaster microbiota functions to provision thiamine to its host in a low-thiamine environment. PMID:29511074

  6. The Transposable Element Mariner Mediates Germline Transformation in Drosophila Melanogaster

    PubMed Central

    Lidholm, D. A.; Lohe, A. R.; Hartl, D. L.

    1993-01-01

    A vector for germline transformation in Drosophila melanogaster was constructed using the transposable element mariner. The vector, denoted pMlwB, contains a mariner element disrupted by an insertion containing the wild-type white gene from D. melanogaster, the β-galactosidase gene from Escherichia coli and sequences that enable plasmid replication and selection in E. coli. The white gene is controlled by the promoter of the D. melanogaster gene for heat-shock protein 70, and the β-galactosidase gene is flanked upstream by the promoter of the transposable element P as well as that of mariner. The MlwB element was introduced into the germline of D. melanogaster by co-injection into embryos with an active mariner element, Mos1, which codes for a functional transposase and serves as a helper. Two independent germline insertions were isolated and characterized. The results show that the MlwB element inserted into the genome in a mariner-dependent manner with the termini of the inverted repeats inserted at a TA dinucleotide. Both insertions exhibit an unexpected degree of germline and somatic stability, even in the presence of an active mariner element in the genetic background. These results demonstrate that the mariner transposable element, which is small (1286 bp) and relatively homogeneous in size among different copies, is nevertheless capable of promoting the insertion of the large (13.2 kb) MlwB element. Because of the widespread phylogenetic distribution of mariner among insects, these results suggest that mariner might provide a wide hostrange transformation vector for insects. PMID:8394264

  7. fussel (fuss)--A negative regulator of BMP signaling in Drosophila melanogaster.

    PubMed

    Fischer, Susanne; Bayersdorfer, Florian; Harant, Eva; Reng, Renate; Arndt, Stephanie; Bosserhoff, Anja-Katrin; Schneuwly, Stephan

    2012-01-01

    The TGF-β/BMP signaling cascades control a wide range of developmental and physiological functions in vertebrates and invertebrates. In Drosophila melanogaster, members of this pathway can be divided into a Bone Morphogenic Protein (BMP) and an Activin-ß (Act-ß) branch, where Decapentaplegic (Dpp), a member of the BMP family has been most intensively studied. They differ in ligands, receptors and transmitting proteins, but also share some components, such as the Co-Smad Medea (Med). The essential role of Med is to form a complex with one of the two activating Smads, mothers against decapentaplegic (Mad) or dSmad, and to translocate together to the nucleus where they can function as transcriptional regulators of downstream target genes. This signaling cascade underlies different mechanisms of negative regulation, which can be exerted by inhibitory Smads, such as daughters against decapentaplegic (dad), but also by the Ski-Sno family. In this work we identified and functionally analyzed a new member of the Ski/Sno-family, fussel (fuss), the Drosophila homolog of the human functional suppressing element 15 (fussel-15). fuss codes for two differentially spliced transcripts with a neuronal expression pattern. The proteins are characterized by a Ski-Sno and a SAND homology domain. Overexpression studies and genetic interaction experiments clearly reveal an interaction of fuss with members of the BMP pathway, leading to a strong repression of BMP-signaling. The protein interacts directly with Medea and seems to reprogram the Smad pathway through its influence upon the formation of functional Mad/Medea complexes. This leads amongst others to a repression of downstream target genes of the Dpp pathway, such as optomotor blind (omb). Taken together we could show that fuss exerts a pivotal role as an antagonist of BMP signaling in Drosophila melanogaster.

  8. Female Drosophila melanogaster gene expression and mate choice: the X chromosome harbours candidate genes underlying sexual isolation.

    PubMed

    Bailey, Richard I; Innocenti, Paolo; Morrow, Edward H; Friberg, Urban; Qvarnström, Anna

    2011-02-28

    The evolution of female choice mechanisms favouring males of their own kind is considered a crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown. We used mate choice experiments and gene expression analysis of female Drosophila melanogaster to examine three key components influencing speciation. We show that the 1,498 genes in Zimbabwean female D. melanogaster whose expression levels differ when mating with more (Zimbabwean) versus less (Cosmopolitan strain) preferred males include many with high expression in the central nervous system and ovaries, are disproportionately X-linked and form a number of clusters with low recombination distance. Significant involvement of the brain and ovaries is consistent with the action of a combination of pre- and postcopulatory female choice mechanisms, while sex linkage and clustering of genes lead to high potential evolutionary rate and sheltering against the homogenizing effects of gene exchange between populations. Taken together our results imply favourable genomic conditions for the evolution of reproductive isolation through mate choice in Zimbabwean D. melanogaster and suggest that mate choice may, in general, act as an even more important engine of speciation than previously realized.

  9. Nutrition quality, body size and two components of mating behavior in Drosophila melanogaster.

    PubMed

    Pavković-Lucić, Sofija; Kekić, Vladimir

    2010-01-01

    Two components of mating behavior, mating latency and duration of copulation, were investigated in Drosophila melanogaster males from three different "nutritional" strains, reared for more than 35 generations on banana, tomato and cornmeal-agar-yeast substrates. Males from different strains did not differ according to mating latency and duration of copulation. Also, the sizes of males from different strains did not contribute to these behavioral traits.

  10. Drosophila melanogaster White Mutant w1118 Undergo Retinal Degeneration

    PubMed Central

    Ferreiro, María José; Pérez, Coralia; Marchesano, Mariana; Ruiz, Santiago; Caputi, Angel; Aguilera, Pedro; Barrio, Rosa; Cantera, Rafael

    2018-01-01

    Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster, using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w1118 strain undergo retinal degeneration. We observed also that w1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white+ in the white null background w1118. We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w1118 strain as a wild-type control should be avoided. PMID:29354028

  11. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components.

    PubMed

    Panchal, Komal; Tiwari, Anand K

    2017-05-01

    Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. [Late-replicating regions in salivary gland polytene chromosomes of Drosophila melanogaster].

    PubMed

    Kolesnikov, T D; Andreenkova, N G; Beliaeva, E S; Goncharov, F P; Zykova, T Iu; Boldyreva, L V; Pokholkova, g V; Zhimulev, I F

    2013-01-01

    About 240 specific regions that are replicated at the very end of the S-phase have been identified in D. melanogaster polytene chromosomes. These regions have a repressive chromatine state, low gene density, long intergenic distances and are enriched in tissue specific genes. In polytene chromosomes, about a quarter of these regions have no enough time to complete replication. As a result, underreplication zones represented by fewer DNA copy number, appear. We studied 60 chromosome regions that demonstrated the most pronounced under-replication. By comparing the location of these regions on a molecular map with syntenic blocks found earlier for Drosophila species by von Grotthuss et al., 2010, we have shown that across the genus Drosophila, these regions tend to have conserved gene order. This forces us to assume the existence of evolutionary mechanisms aimed at maintaining the integrity of these regions.

  13. The glutamate dehydrogenase GENE of Drosophila melanogaster: molecular analysis and expression.

    PubMed

    Papadopoulou, D; Louis, C

    2000-09-01

    Glutamate dehydrogenase is an enzyme that, in addition to its role in the energy metabolism in mitochondria, is involved in neuromuscular transmission. Here we present the structure and sequence of the Gdh gene of Drosophila melanogaster, as well as the analysis of its spatial and temporal pattern of expression. Unlike all other organisms analyzed so far, two forms of the enzyme, differing by the inclusion of 13 extra amino acids, are found in the fruitfly. We show the presence of Gdh mRNA in several tissues of the developing embryo, including the central nervous system, muscles and the alimentary tract. Moreover, we detect the localization of the Gdh protein in specific areas of the muscles, a fact that is consistent both with an involvement in energy metabolism and the role of glutamate as the major neuromuscular transmitter in Drosophila.

  14. Involvement of Redox State in the Aging of Drosophila melanogaster

    PubMed Central

    Radyuk, Svetlana N.; Sohal, Rajindar S.

    2013-01-01

    Abstract Significance: The main objective of this review was to provide an exposition of investigations, conducted in Drosophila melanogaster, on the role of reactive oxygen species and redox state in the aging process. While early transgenic studies did not clearly support the validity of the oxidative stress hypothesis of aging, predicated on the accumulation of structural damage, they spawned a broader search for redox-related effects that might impact the aging process. Recent Advances: Initial evidence implicating the thiol redox state as a possible causative factor in aging has been obtained in Drosophila. Overexpression of genes, such as GCL, G6PD, Prx2, and Prx5, which are involved in the maintenance of thiol redox homeostasis, has strong positive effects on longevity. Further, the depletion of peroxiredoxin activity in the mitochondria through the double knockdown of Prx5 and Prx3 not only results in a redox crisis but also elicits a rapid aging phenotype. Critical Issues: Herein, we summarize the present status of knowledge about the main components of the machinery controlling thiol redox homeostasis and describe how age-related redox fluctuations might impact aging more acutely through disruption of the redox-sensitive signaling mechanisms rather than via the simple accumulation of structural damage. Future Directions: Based on these initial insights into the plausible impact of redox fluctuations on redox signaling, future studies should focus on the pathways that have been explicitly implicated in aging, such as insulin signaling, TOR, and JNK/FOXO, with particular attention to elements that are redox sensitive. Antioxid. Redox Signal. 19, 788–803. PMID:23458359

  15. Analysis of Thioester-Containing Proteins during the Innate Immune Response of Drosophila melanogaster

    PubMed Central

    Bou Aoun, Richard; Hetru, Charles; Troxler, Laurent; Doucet, Daniel; Ferrandon, Dominique; Matt, Nicolas

    2010-01-01

    Thioester-containing proteins (TEPs) are conserved proteins among insects that are thought to be involved in innate immunity. In Drosophila, the Tep family is composed of 6 genes named Tep1–Tep6. In this study, we investigated the phylogeny, expression pattern and roles of these genes in the host defense of Drosophila. Protostomian Tep genes are clustered in 3 distinct branches, 1 of which is specific to mosquitoes. Most D. melanogaster Tep genes are expressed in hemocytes, can be induced in the fat body, and are expressed in specific regions of the hypodermis. This expression pattern is consistent with a role in innate immunity. However, we find that TEP1, TEP2, and TEP4 are not strictly required in the body cavity to fight several bacterial and fungal infections. One possibility is that Drosophila TEPs act redundantly or that their absence can be compensated by other components of the immune response. TEPs may thus provide a subtle selective advantage during evolution. Alternatively, they may be required in host defense against specific as yet unidentified natural pathogens of Drosophila. PMID:21063077

  16. The genetic basis of adaptive pigmentation variation in Drosophila melanogaster.

    PubMed

    Pool, John E; Aquadro, Charles F

    2007-07-01

    In a broad survey of Drosophila melanogaster population samples, levels of abdominal pigmentation were found to be highly variable and geographically differentiated. A strong positive correlation was found between dark pigmentation and high altitude, suggesting adaptation to specific environments. DNA sequence polymorphism at the candidate gene ebony revealed a clear association with the pigmentation of homozygous third chromosome lines. The darkest lines sequenced had nearly identical haplotypes spanning 14.5 kb upstream of the protein-coding exons of ebony. Thus, natural selection may have elevated the frequency of an allele that confers dark abdominal pigmentation by influencing the regulation of ebony.

  17. The genetic basis of adaptive pigmentation variation in Drosophila melanogaster

    PubMed Central

    Pool, John E.; Aquadro, Charles F.

    2009-01-01

    In a broad survey of Drosophila melanogaster population samples, levels of abdominal pigmentation were found to be highly variable and geographically differentiated. A strong positive correlation was found between dark pigmentation and high altitude, suggesting adaptation to specific environments. DNA sequence polymorphism at the candidate gene ebony revealed a clear association with the pigmentation of homozygous third chromosome lines. The darkest lines sequenced had nearly identical haplotypes spanning 14.5 kilobases upstream of the protein-coding exons of ebony. Thus, natural selection may have elevated the frequency of an allele that confers dark abdominal pigmentation by influencing the regulation of ebony. PMID:17614900

  18. Mdr65 decreases toxicity of multiple insecticides in Drosophila melanogaster.

    PubMed

    Sun, Haina; Buchon, Nicolas; Scott, Jeffrey G

    2017-10-01

    ABC transporters are ubiquitous membrane-bound proteins, present in both prokaryotes and eukaryotes. The major function of eukaryotic ABC transporters is to mediate the efflux of a variety of substrates (including xenobiotics) out of cells. ABC transporters have been widely investigated in humans, particularly for their involvement in multidrug resistance (MDR). Considerably less is known about their roles in transport and/or excretion in insects. ABC transporters are only known to function as exporters in insects. Drosophila melanogaster has 56 ABC transporter genes, including eight which are phylogenetically most similar to the human Mdr genes (ABCB1 clade). We investigated the role of ABC transporters in the ABCB1 clade in modulating the susceptibility to insecticides. We took advantage of the GAL4/UAS system in D. melanogaster to knockdown the expression levels of Mdr65, Mdr50, Mdr49 and ABCB6 using transgenic UAS-RNAi lines and conditional driver lines. The most notable effects were increased sensitivities to nine different insecticides by silencing of Mdr65. Furthermore, a null mutation of Mdr65 decreased the malathion, malaoxon and fipronil LC 50 values by a factor of 1.9, 2.1 and 3.9, respectively. Altogether, this data demonstrates the critical role of ABC transporters, particularly Mdr65, in altering the toxicity of specific, structurally diverse, insecticides in D. melanogaster. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chronic unpredictable mild stress-induced depressive-like behavior and dysregulation of brain levels of biogenic amines in Drosophila melanogaster.

    PubMed

    Araujo, Stífani Machado; Poetini, Marcia Rósula; Bortolotto, Vandreza Cardoso; de Freitas Couto, Shanda; Pinheiro, Franciane Cabral; Meichtry, Luana Barreto; de Almeida, Francielli Polet; Santos Musachio, Elize Aparecida; de Paula, Mariane Trindade; Prigol, Marina

    2018-05-24

    The etiopathogenesis of depression may involve repeated exposure to several unpredictable stressors. This study was conducted to investigate changes induced by chronic unpredictable mild stress (CUMS) and to assess behavioral and neurochemical changes that predict depressive-like behavior in Drosophila melanogaster. Male Drosophila melanogaster flies were exposed to CUMS with several stressors (cold, heat, starvation, and sleep deprivation) in an unpredictable and chronic manner for ten days. At the end of treatment, in vivo behavioral tests (open field, aggression, forced swimming, mating, light/dark box, male fertility evaluation, sucrose preference, weight evaluation) and ex vivo analyses (dopamine and serotonin levels) were performed. Using this CUMS model, we obtained results that contribute to the construction of a depressive model in Drosophila, where we reproduce some behavioral phenotypes corresponding to depressive symptoms, such as immobility in the forced swimming test, less exploration in the light/dark test, changes in mating behavior, changes in the aggressiveness test, reduced sucrose preference, and weight-loss, in addition to a significant reduction in the levels of serotonin and dopamine when compared to the control group. Fluoxetine was used in our study as a positive control to demonstrate that CUMS-induced depressive-like behaviors in flies can be reversed by antidepressants. In conclusion, male Drosophila melanogaster exposed to CUMS display a depressive-like phenotype, and, while this poses some limitations as an animal model for depression, it meets some of the criteria required to be a valid model, such as good face and construct validity. Copyright © 2018. Published by Elsevier B.V.

  20. Strain-specific and pooled genome sequences for populations of Drosophila melanogaster from three continents.

    PubMed

    Bergman, Casey M; Haddrill, Penelope R

    2015-01-01

    To contribute to our general understanding of the evolutionary forces that shape variation in genome sequences in nature, we have sequenced genomes from 50 isofemale lines and six pooled samples from populations of Drosophila melanogaster on three continents. Analysis of raw and reference-mapped reads indicates the quality of these genomic sequence data is very high. Comparison of the predicted and experimentally-determined Wolbachia infection status of these samples suggests that strain or sample swaps are unlikely to have occurred in the generation of these data. Genome sequences are freely available in the European Nucleotide Archive under accession ERP009059. Isofemale lines can be obtained from the Drosophila Species Stock Center.

  1. A single amino-acid substitution toggles chloride dependence of the alpha-amylase paralog amyrel in Drosophila melanogaster and Drosophila virilis species.

    PubMed

    Claisse, Gaëlle; Feller, Georges; Bonneau, Magalie; Da Lage, Jean-Luc

    2016-08-01

    In animals, most α-amylases are chloride-dependent enzymes. A chloride ion is required for allosteric activation and is coordinated by one asparagine and two arginine side chains. Whereas the asparagine and one arginine are strictly conserved, the main chloride binding arginine is replaced by a glutamine in some rare instances, resulting in the loss of chloride binding and activation. Amyrel is a distant paralogue of α-amylase in Diptera, which was not characterized biochemically to date. Amyrel shows both substitutions depending on the species. In Drosophila melanogaster, an arginine is present in the sequence but in Drosophila virilis, a glutamine occurs at this position. We have investigated basic enzymological parameters and the dependence to chloride of Amyrel of both species, produced in yeast, and in mutants substituting arginine to glutamine or glutamine to arginine. We found that the amylolytic activity of Amyrel is about thirty times weaker than the classical Drosophila α-amylase, and that the substitution of the arginine by a glutamine in D. melanogaster suppressed the chloride-dependence but was detrimental to activity. In contrast, changing the glutamine into an arginine rendered D. virilis Amyrel chloride-dependent, and interestingly, significantly increased its catalytic efficiency. These results show that the chloride ion is not mandatory for Amyrel but stimulates the reaction rate. The possible phylogenetic origin of the arginine/glutamine substitution is also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Drosophila melanogaster mounts a unique immune response to the Rhabdovirus sigma virus.

    PubMed

    Tsai, C W; McGraw, E A; Ammar, E-D; Dietzgen, R G; Hogenhout, S A

    2008-05-01

    Rhabdoviruses are important pathogens of humans, livestock, and plants that are often vectored by insects. Rhabdovirus particles have a characteristic bullet shape with a lipid envelope and surface-exposed transmembrane glycoproteins. Sigma virus (SIGMAV) is a member of the Rhabdoviridae and is a naturally occurring disease agent of Drosophila melanogaster. The infection is maintained in Drosophila populations through vertical transmission via germ cells. We report here the nature of the Drosophila innate immune response to SIGMAV infection as revealed by quantitative reverse transcription-PCR analysis of differentially expressed genes identified by microarray analysis. We have also compared and contrasted the immune response of the host with respect to two nonenveloped viruses, Drosophila C virus (DCV) and Drosophila X virus (DXV). We determined that SIGMAV infection upregulates expression of the peptidoglycan receptor protein genes PGRP-SB1 and PGRP-SD and the antimicrobial peptide (AMP) genes Diptericin-A, Attacin-A, Attacin-B, Cecropin-A1, and Drosocin. SIGMAV infection did not induce PGRP-SA and the AMP genes Drosomycin-B, Metchnikowin, and Defensin that are upregulated in DCV and/or DXV infections. Expression levels of the Toll and Imd signaling cascade genes are not significantly altered by SIGMAV infection. These results highlight shared and unique aspects of the Drosophila immune response to the three viruses and may shed light on the nature of the interaction with the host and the evolution of these associations.

  3. Drosophila melanogaster Mounts a Unique Immune Response to the Rhabdovirus Sigma virus▿

    PubMed Central

    Tsai, C. W.; McGraw, E. A.; Ammar, E.-D.; Dietzgen, R. G.; Hogenhout, S. A.

    2008-01-01

    Rhabdoviruses are important pathogens of humans, livestock, and plants that are often vectored by insects. Rhabdovirus particles have a characteristic bullet shape with a lipid envelope and surface-exposed transmembrane glycoproteins. Sigma virus (SIGMAV) is a member of the Rhabdoviridae and is a naturally occurring disease agent of Drosophila melanogaster. The infection is maintained in Drosophila populations through vertical transmission via germ cells. We report here the nature of the Drosophila innate immune response to SIGMAV infection as revealed by quantitative reverse transcription-PCR analysis of differentially expressed genes identified by microarray analysis. We have also compared and contrasted the immune response of the host with respect to two nonenveloped viruses, Drosophila C virus (DCV) and Drosophila X virus (DXV). We determined that SIGMAV infection upregulates expression of the peptidoglycan receptor protein genes PGRP-SB1 and PGRP-SD and the antimicrobial peptide (AMP) genes Diptericin-A, Attacin-A, Attacin-B, Cecropin-A1, and Drosocin. SIGMAV infection did not induce PGRP-SA and the AMP genes Drosomycin-B, Metchnikowin, and Defensin that are upregulated in DCV and/or DXV infections. Expression levels of the Toll and Imd signaling cascade genes are not significantly altered by SIGMAV infection. These results highlight shared and unique aspects of the Drosophila immune response to the three viruses and may shed light on the nature of the interaction with the host and the evolution of these associations. PMID:18378641

  4. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.

    PubMed

    Kis, Viktor; Barti, Benjámin; Lippai, Mónika; Sass, Miklós

    2015-01-01

    Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain's LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain.

  5. Nora Virus Transmission in "Drosophila Melanogaster": An Investigation to Teach Viral Infection and Prophylaxis to Biology Students

    ERIC Educational Resources Information Center

    Weatherred, Wayland; Carlson, Darby J.; Carlson, Kimberly A.

    2014-01-01

    Proper hand hygiene accompanied with environmental surface disinfection provides a comprehensive approach to control and prevent respiratory and gastrointestinal illness in schools, hospitals, work environments, and the home. The persistent non-pathogenic Nora virus common in "Drosophila melanogaster" provides a horizontally transmitted…

  6. Fruitless, doublesex and the genetics of social behavior in Drosophila melanogaster.

    PubMed

    Siwicki, Kathleen K; Kravitz, Edward A

    2009-04-01

    Two genes coding for transcription factors, fruitless and doublesex, have been suggested to play important roles in the regulation of sexually dimorphic patterns of social behavior in Drosophila melanogaster. The generalization that fruitless specified the development of the nervous system and doublesex specified non-neural tissues culminated with claims that fruitless was both necessary and sufficient to establish sex-specific patterns of behavior. Several recent articles refute this notion, however, demonstrating that at a minimum, both fruitless and doublesex are involved in establishing sexually dimorphic features of neural circuitry and behavior in fruit flies.

  7. Gene Model Annotations for Drosophila melanogaster: The Rule-Benders

    PubMed Central

    Crosby, Madeline A.; Gramates, L. Sian; dos Santos, Gilberto; Matthews, Beverley B.; St. Pierre, Susan E.; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Emmert, David B.; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads. PMID:26109356

  8. Neuroligins Nlg2 and Nlg4 Affect Social Behavior in Drosophila melanogaster.

    PubMed

    Corthals, Kristina; Heukamp, Alina Sophia; Kossen, Robert; Großhennig, Isabel; Hahn, Nina; Gras, Heribert; Göpfert, Martin C; Heinrich, Ralf; Geurten, Bart R H

    2017-01-01

    The genome of Drosophila melanogaster includes homologs to approximately one-third of the currently known human disease genes. Flies and humans share many biological processes, including the principles of information processing by excitable neurons, synaptic transmission, and the chemical signals involved in intercellular communication. Studies on the molecular and behavioral impact of genetic risk factors of human neuro-developmental disorders [autism spectrum disorders (ASDs), schizophrenia, attention deficit hyperactivity disorders, and Tourette syndrome] increasingly use the well-studied social behavior of D. melanogaster , an organism that is amenable to a large variety of genetic manipulations. Neuroligins (Nlgs) are a family of phylogenetically conserved postsynaptic adhesion molecules present (among others) in nematodes, insects, and mammals. Impaired function of Nlgs (particularly of Nlg 3 and 4) has been associated with ASDs in humans and impaired social and communication behavior in mice. Making use of a set of behavioral and social assays, we, here, analyzed the impact of two Drosophila Nlgs, Dnlg2 and Dnlg4, which are differentially expressed at excitatory and inhibitory central nervous synapses, respectively. Both Nlgs seem to be associated with diurnal activity and social behavior. Even though deficiencies in Dnlg2 and Dnlg4 appeared to have no effects on sensory or motor systems, they differentially impacted on social interactions, suggesting that social behavior is distinctly regulated by these Nlgs.

  9. Biogenesis of zinc storage granules in Drosophila melanogaster.

    PubMed

    Tejeda-Guzmán, Carlos; Rosas-Arellano, Abraham; Kroll, Thomas; Webb, Samuel M; Barajas-Aceves, Martha; Osorio, Beatriz; Missirlis, Fanis

    2018-03-19

    Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers. © 2018. Published by The Company of Biologists Ltd.

  10. Gene expression profiles of Drosophila melanogaster exposed to an insecticidal extract of Piper nigrum.

    PubMed

    Jensen, Helen R; Scott, Ian M; Sims, Steve; Trudeau, Vance L; Arnason, John Thor

    2006-02-22

    Black pepper, Piper nigrum L. (Piperaceae), has insecticidal properties and could potentially be utilized as an alternative to synthetic insecticides. Piperine extracted from P. nigrum has a biphasic effect upon cytochrome P450 monooxygenase activity with an initial suppression followed by induction. In this study, an ethyl acetate extract of P. nigrum seeds was tested for insecticidal activity toward adult Musca domestica and Drosophila melanogaster. The effect of this same P. nigrum extract upon differential gene expression in D. melanogaster was investigated using cDNA microarray analysis of 7380 genes. Treatment of D. melanogaster with P. nigrum extract led to a greater than 2-fold upregulation of transcription of the cytochrome P450 phase I metabolism genes Cyp 6a8, Cyp 9b2, and Cyp 12d1 as well as the glutathione-S-transferase phase II metabolism gene Gst-S1. These data suggests a complex effect of P. nigrum upon toxin metabolism.

  11. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  12. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity.

    PubMed

    Calap-Quintana, Pablo; González-Fernández, Javier; Sebastiá-Ortega, Noelia; Llorens, José Vicente; Moltó, María Dolores

    2017-07-06

    Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster . Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have many advantages in the laboratory, such as a short life cycle, easy handling and inexpensive maintenance. Furthermore, they can be raised in a large number. In addition, flies are greatly appreciated because they offer a considerable number of genetic tools to address some of the unresolved questions concerning disease pathology, which in turn could contribute to our understanding of the metal metabolism and homeostasis. This review recapitulates the metabolism of the principal transition metals, namely iron, zinc and copper, in Drosophila and the utility of this organism as an experimental model to explore the role of metal dyshomeostasis in different human diseases. Finally, a summary of the contribution of Drosophila as a model for testing metal toxicity is provided.

  13. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity

    PubMed Central

    Calap-Quintana, Pablo; González-Fernández, Javier; Sebastiá-Ortega, Noelia; Moltó, María Dolores

    2017-01-01

    Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster. Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have many advantages in the laboratory, such as a short life cycle, easy handling and inexpensive maintenance. Furthermore, they can be raised in a large number. In addition, flies are greatly appreciated because they offer a considerable number of genetic tools to address some of the unresolved questions concerning disease pathology, which in turn could contribute to our understanding of the metal metabolism and homeostasis. This review recapitulates the metabolism of the principal transition metals, namely iron, zinc and copper, in Drosophila and the utility of this organism as an experimental model to explore the role of metal dyshomeostasis in different human diseases. Finally, a summary of the contribution of Drosophila as a model for testing metal toxicity is provided. PMID:28684721

  14. Naltrexone Reverses Ethanol Preference and Protein Kinase C Activation in Drosophila melanogaster

    PubMed Central

    Koyyada, Rajeswari; Latchooman, Nilesh; Jonaitis, Julius; Ayoub, Samir S.; Corcoran, Olivia; Casalotti, Stefano O.

    2018-01-01

    Alcohol use disorder (AUD) is a major health, social and economic problem for which there are few effective treatments. The opiate antagonist naltrexone is currently prescribed clinically with mixed success. We have used naltrexone in an established behavioral assay (CAFE) in Drosophila melanogaster that measures the flies' preference for ethanol-containing food. We have confirmed that Drosophila exposed to ethanol develop a preference toward this drug and we demonstrate that naltrexone, in a dose dependant manner, reverses the ethanol-induced ethanol preference. This effect is not permanent, as preference for alcohol returns after discontinuing naltrexone. Additionally, naltrexone reduced the alcohol-induced increase in protein kinase C activity. These findings are of interest because they confirm that Drosophila is a useful model for studying human responses to addictive drugs. Additionally because of the lack of a closely conserved opiate system in insects, our results could either indicate that a functionally related system does exist in insects or that in insects, and potentially also in mammals, naltrexone binds to alternative sites. Identifying such sites could lead to improved treatment strategies for AUD. PMID:29593550

  15. Drosophila melanogaster as a model system for the evaluation of anti-aging compounds.

    PubMed

    Jafari, Mahtab

    2010-01-01

    Understanding the causes of aging is a complex problem due to the multiple factors that influence aging, which include genetics, environment, metabolism and reproduction, among others. These multiple factors create logistical difficulties in the evaluation of anti-aging agents. There is a need for good model systems to evaluate potential anti-aging compounds. The model systems used should represent the complexities of aging in humans, so that the findings may be extrapolated to human studies, but they should also present an opportunity to minimize the variables so that the experimental results can be accurately interpreted. In addition to positively affecting lifespan, the impact of the compound on the physiologic confounders of aging, including fecundity and the health span--the period of life where an organism is generally healthy and free from serious or chronic illness--of the model organism needs to be evaluated. Fecundity is considered a major confounder of aging in fruit flies. It is well established that female flies that are exposed to toxic substances typically reduce their dietary intake and their reproductive output and display an artifactual lifespan extension. As a result, drugs that achieve longevity benefits by reducing fecundity as a result of diminished food intake are probably not useful candidates for eventual treatment of aging in humans and should be eliminated during the screening process. Drosophila melanogaster provides a suitable model system for the screening of anti-aging compounds as D. melanogaster and humans have many conserved physiological and biological pathways. In this paper, I propose an algorithm to screen anti-aging compounds using Drosophila melanogaster as a model system.

  16. Rapid effects of humidity acclimation on stress resistance in Drosophila melanogaster.

    PubMed

    Aggarwal, Dau Dayal; Ranga, Poonam; Kalra, Bhawna; Parkash, Ravi; Rashkovetsky, Eugenia; Bantis, Leonidas E

    2013-09-01

    We tested the hypothesis whether developmental acclimation at ecologically relevant humidity regimes (40% and 75% RH) affects desiccation resistance of pre-adults (3rd instar larvae) and adults of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Additionally, we untangled whether drought (40% RH) acclimation affects cold-tolerance in the adults of D. melanogaster. We observed that low humidity (40% RH) acclimated individuals survived significantly longer (1.6-fold) under lethal levels of desiccation stress (0-5% RH) than their counter-replicates acclimated at 75% RH. In contrast to a faster duration of development of 1st and 2nd instar larvae, 3rd instar larvae showed a delayed development at 40% RH as compared to their counterparts grown at 75% RH. Rearing to low humidity conferred an increase in bulk water, hemolymph content and dehydration tolerance, consistent with increase in desiccation resistance for replicates grown at 40% as compared to their counterparts at 75% RH. Further, we found a trade-off between the levels of carbohydrates and body lipid reserves at 40% and 75% RH. Higher levels of carbohydrates sustained longer survival under desiccation stress for individuals developed at 40% RH than their congeners at 75% RH. However, the rate of carbohydrate utilization did not differ between the individuals reared at these contrasting humidity regimes. Interestingly, our results of accelerated failure time (AFT) models showed substantial decreased death rates at a series of low temperatures (0, -2, or -4°C) for replicates acclimated at 40% RH as compared to their counter-parts at 75% RH. Therefore, our findings indicate that development to low humidity conditions constrained on multiple physiological mechanisms of water-balance, and conferred cross-tolerance towards desiccation and cold stress in D. melanogaster. Finally, we suggest that the ability of generalist Drosophila species to tolerate fluctuations in humidity might aid in their existence and

  17. Parallel Geographic Variation in Drosophila melanogaster

    PubMed Central

    Reinhardt, Josie A.; Kolaczkowski, Bryan; Jones, Corbin D.; Begun, David J.; Kern, Andrew D.

    2014-01-01

    Drosophila melanogaster, an ancestrally African species, has recently spread throughout the world, associated with human activity. The species has served as the focus of many studies investigating local adaptation relating to latitudinal variation in non-African populations, especially those from the United States and Australia. These studies have documented the existence of shared, genetically determined phenotypic clines for several life history and morphological traits. However, there are no studies designed to formally address the degree of shared latitudinal differentiation at the genomic level. Here we present our comparative analysis of such differentiation. Not surprisingly, we find evidence of substantial, shared selection responses on the two continents, probably resulting from selection on standing ancestral variation. The polymorphic inversion In(3R)P has an important effect on this pattern, but considerable parallelism is also observed across the genome in regions not associated with inversion polymorphism. Interestingly, parallel latitudinal differentiation is observed even for variants that are not particularly strongly differentiated, which suggests that very large numbers of polymorphisms are targets of spatially varying selection in this species. PMID:24610860

  18. The developmental proteome of Drosophila melanogaster

    PubMed Central

    Casas-Vila, Nuria; Bluhm, Alina; Sayols, Sergi; Dinges, Nadja; Dejung, Mario; Altenhein, Tina; Kappei, Dennis; Altenhein, Benjamin; Roignant, Jean-Yves; Butter, Falk

    2017-01-01

    Drosophila melanogaster is a widely used genetic model organism in developmental biology. While this model organism has been intensively studied at the RNA level, a comprehensive proteomic study covering the complete life cycle is still missing. Here, we apply label-free quantitative proteomics to explore proteome remodeling across Drosophila’s life cycle, resulting in 7952 proteins, and provide a high temporal-resolved embryogenesis proteome of 5458 proteins. Our proteome data enabled us to monitor isoform-specific expression of 34 genes during development, to identify the pseudogene Cyp9f3Ψ as a protein-coding gene, and to obtain evidence of 268 small proteins. Moreover, the comparison with available transcriptomic data uncovered examples of poor correlation between mRNA and protein, underscoring the importance of proteomics to study developmental progression. Data integration of our embryogenesis proteome with tissue-specific data revealed spatial and temporal information for further functional studies of yet uncharacterized proteins. Overall, our high resolution proteomes provide a powerful resource and can be explored in detail in our interactive web interface. PMID:28381612

  19. Mutagenic Potential of: 4-Nitrophenyl Dimethyl Phosphinate (TA007) using the Sex-Linked Recessive Lethal Test in Drosophila melanogaster.

    DTIC Science & Technology

    1984-10-01

    Drosophila Stock Center, Bowling Green State University, Bowling Green, Ohio. Diet The diet was the standard medium consisting of cornmeal , unsulfured mol...isses, yeast, and nutrient agar used for colony rearing of D. melanogaster. A materials list and instructions for its preparation are contained in LAIR...SOP-OP-STX-5 Drosophila Media Preparation. Restraint Ether anesthesia was used for restraint of flies being collected for mating and for general

  20. Discovery of Supernumerary B Chromosomes in Drosophila melanogaster

    PubMed Central

    Bauerly, Elisabeth; Hughes, Stacie E.; Vietti, Dana R.; Miller, Danny E.; McDowell, William; Hawley, R. Scott

    2014-01-01

    B chromosomes are small, heterochromatic chromosomes that are transmitted in a non-Mendelian manner. We have identified a stock of Drosophila melanogaster that recently (within the last decade) acquired an average of 10 B chromosomes per fly. These B chromosomes are transmitted by both males and females and can be maintained for multiple generations in a wild-type genetic background despite the fact that they cause high levels of 4th chromosome meiotic nondisjunction in females. Most curiously, these B chromosomes are mitotically unstable, suggesting either the absence of critical chromosomal sites or the inability of the meiotic or mitotic systems to cope with many additional chromosomes. These B chromosomes also contain centromeres and are primarily composed of the heterochromatic AATAT satellite sequence. Although the AATAT sequence comprises the majority of the 4th chromosome heterochromatin, the B chromosomes lack most, if not all, 4th chromosome euchromatin. Presumably as a consequence of their heterochromatic content, these B chromosomes significantly modify position-effect variegation in two separate reporter systems, acting as enhancers of variegation in one case and suppressors in the other. The identification of B chromosomes in a genetically tractable organism like D. melanogaster will facilitate studies of chromosome evolution and the analysis of the mechanisms by which meiotic and mitotic processes cope with additional chromosomes. PMID:24478336

  1. Activity of cGMP-Dependent Protein Kinase (PKG) Affects Sucrose Responsiveness and Habituation in "Drosophila melanogaster"

    ERIC Educational Resources Information Center

    Scheiner, Ricarda; Sokolowski, Marla B.; Erber, Joachim

    2004-01-01

    The cGMP-dependent protein kinase (PKG) has many cellular functions in vertebrates and insects that affect complex behaviors such as locomotion and foraging. The "foraging" ("for") gene encodes a PKG in "Drosophila melanogaster." Here, we demonstrate a function for the "for" gene in sensory responsiveness and nonassociative learning. Larvae of the…

  2. Strain-specific and pooled genome sequences for populations of Drosophila melanogaster from three continents.

    PubMed Central

    Bergman, Casey M.; Haddrill, Penelope R.

    2015-01-01

    To contribute to our general understanding of the evolutionary forces that shape variation in genome sequences in nature, we have sequenced genomes from 50 isofemale lines and six pooled samples from populations of Drosophila melanogaster on three continents. Analysis of raw and reference-mapped reads indicates the quality of these genomic sequence data is very high. Comparison of the predicted and experimentally-determined Wolbachia infection status of these samples suggests that strain or sample swaps are unlikely to have occurred in the generation of these data. Genome sequences are freely available in the European Nucleotide Archive under accession ERP009059. Isofemale lines can be obtained from the Drosophila Species Stock Center. PMID:25717372

  3. Confocal Analysis of Nuclear Lamina Behavior during Male Meiosis and Spermatogenesis in Drosophila melanogaster.

    PubMed

    Fabbretti, Fabiana; Iannetti, Ilaria; Guglielmi, Loredana; Perconti, Susanna; Evangelistella, Chiara; Proietti De Santis, Luca; Bongiorni, Silvia; Prantera, Giorgio

    2016-01-01

    Lamin family proteins are structural components of a filamentous framework, the nuclear lamina (NL), underlying the inner membrane of nuclear envelope. The NL not only plays a role in nucleus mechanical support and nuclear shaping, but is also involved in many cellular processes including DNA replication, gene expression and chromatin positioning. Spermatogenesis is a very complex differentiation process in which each stage is characterized by nuclear architecture dramatic changes, from the early mitotic stage to the sperm differentiation final stage. Nevertheless, very few data are present in the literature on the NL behavior during this process. Here we show the first and complete description of NL behavior during meiosis and spermatogenesis in Drosophila melanogaster. By confocal imaging, we characterized the NL modifications from mitotic stages, through meiotic divisions to sperm differentiation with an anti-laminDm0 antibody against the major component of the Drosophila NL. We observed that continuous changes in the NL structure occurred in parallel with chromatin reorganization throughout the whole process and that meiotic divisions occurred in a closed context. Finally, we analyzed NL in solofuso meiotic mutant, where chromatin segregation is severely affected, and found the strict correlation between the presence of chromatin and that of NL.

  4. Confocal Analysis of Nuclear Lamina Behavior during Male Meiosis and Spermatogenesis in Drosophila melanogaster

    PubMed Central

    Fabbretti, Fabiana; Iannetti, Ilaria; Guglielmi, Loredana; Perconti, Susanna; Evangelistella, Chiara; Proietti De Santis, Luca; Bongiorni, Silvia; Prantera, Giorgio

    2016-01-01

    Lamin family proteins are structural components of a filamentous framework, the nuclear lamina (NL), underlying the inner membrane of nuclear envelope. The NL not only plays a role in nucleus mechanical support and nuclear shaping, but is also involved in many cellular processes including DNA replication, gene expression and chromatin positioning. Spermatogenesis is a very complex differentiation process in which each stage is characterized by nuclear architecture dramatic changes, from the early mitotic stage to the sperm differentiation final stage. Nevertheless, very few data are present in the literature on the NL behavior during this process. Here we show the first and complete description of NL behavior during meiosis and spermatogenesis in Drosophila melanogaster. By confocal imaging, we characterized the NL modifications from mitotic stages, through meiotic divisions to sperm differentiation with an anti-laminDm0 antibody against the major component of the Drosophila NL. We observed that continuous changes in the NL structure occurred in parallel with chromatin reorganization throughout the whole process and that meiotic divisions occurred in a closed context. Finally, we analyzed NL in solofuso meiotic mutant, where chromatin segregation is severely affected, and found the strict correlation between the presence of chromatin and that of NL. PMID:26963718

  5. Valeriana officinalis attenuates the rotenone-induced toxicity in Drosophila melanogaster.

    PubMed

    Sudati, Jéssie Haigert; Vieira, Francielli Araújo; Pavin, Sandra Sartoretto; Dias, Glaecir Roseni Mundstock; Seeger, Rodrigo Lopes; Golombieski, Ronaldo; Athayde, Margareth Linde; Soares, Félix Antunes; Rocha, João Batista Teixeira; Barbosa, Nilda Vargas

    2013-07-01

    In this study, we investigated the potential protective effects of Valeriana officinalis (V. officinalis) against the toxicity induced by rotenone in Drosophila melanogaster (D. melanogaster). Adult wild-type flies were concomitantly exposed to rotenone (500 μM) and V. officinalis aqueous extract (10mg/mL) in the food during 7 days. Rotenone-fed flies had a worse performance in the negative geotaxis assay (i.e. climbing capability) and open-field test (i.e. mobility time) as well as a higher incidence of mortality when compared to control group. V. officinalis treatment offered protection against these detrimental effects of rotenone. In contrast, the decreased number of crossings observed in the flies exposed to rotenone was not modified by V. officinalis. Rotenone toxicity was also associated with a marked decrease on the total-thiol content in the homogenates and cell viability of flies, which were reduced by V. officinalis treatment. Indeed, rotenone exposure caused a significant increase in the mRNA expression of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and also in the tyrosine hydroxylase (TH) gene. The expression of SOD and CAT mRNAs was normalized by V. officinalis treatment. Our results suggest that V. officinalis extract was effective in reducing the toxicity induced by rotenone in D. melanogaster as well as confirm the utility of this model to investigate potential therapeutic strategies on movement disorders, including Parkinson disease (PD). Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Genotoxicity of lapachol evaluated by wing spot test of Drosophila melanogaster

    PubMed Central

    2010-01-01

    This study investigated the genotoxicity of Lapachol (LAP) evaluated by wing spot test of Drosophila melanogaster in the descendants from standard (ST) and high bioactivation (HB) crosses. This assay detects the loss of heterozygosity of marker genes expressed phenotypically on the fly's wings. Drosophila has extensive genetic homology to mammals, which makes it a suitable model organism for genotoxic investigations. Three-day-old larvae from ST crosses (females flr3/TM3, Bds x males mwh/mwh), with basal levels of the cytochrome P450 and larvae of high metabolic bioactivity capacity (HB cross) (females ORR; flr3/TM3, Bds x males mwh/mwh), were used. The results showed that LAP is a promutagen, exhibiting genotoxic activity in larvae from the HB cross. In other words, an increase in the frequency of spots is exclusive of individuals with a high level of the cytochrome P450. The results also indicate that recombinogenicity is the main genotoxic event induced by LAP. PMID:21637432

  7. Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster.

    PubMed

    Charlu, Sandhya; Wisotsky, Zev; Medina, Adriana; Dahanukar, Anupama

    2013-01-01

    Drosophila melanogaster can taste various compounds and separate them into few basic categories such as sweet, bitter and salt taste. Here we investigate mechanisms underlying acid detection in Drosophila and report that the fly displays strong taste aversion to common carboxylic acids. We find that acid tastants act by the activation of a subset of bitter neurons and inhibition of sweet neurons. Bitter neurons begin to respond at pH 5 and show an increase in spike frequency as the extracellular pH drops, which does not rely on previously identified chemoreceptors. Notably, sweet neuron activity depends on the balance of sugar and acid tastant concentrations. This is independent of bitter neuron firing, and allows the fly to avoid acid-laced food sources even in the absence of functional bitter neurons. The two mechanisms may allow the fly to better evaluate the risk of ingesting acidic foods and modulate its feeding decisions accordingly.

  8. Developing a Drosophila Model of Schwannomatosis

    DTIC Science & Technology

    2012-08-01

    the entire Drosophila melanogaster genome and compared...et al., 2009; Hanahan and Weinberg, 2011). Over the last decade, the fruit fly Drosophila melanogaster has become an important model system for cancer...studies. Reduced redundancy in the Drosophila genome compared with that of humans, coupled with the ability to conduct large-scale genetic screens

  9. Effects of peptides on generation of reactive oxygen species in subcellular fractions of Drosophila melanogaster.

    PubMed

    Khavinson, V K; Myl'nikov, S V; Oparina, T I; Arutyunyan, A V

    2001-07-01

    We studied the effects of Epithalon (Ala-Glu-Asp-Gly) and Vilon (Lys-Glu) on free radical processes in highly inbred HA(+)line of Drosophila melanogaster. Vilon inhibited generation of reactive oxygen species in mitochondria, but stimulated this process in the cytosol. We found sex- and age-related differences in the generation of reactive oxygen species and cytosol antioxidant activity.

  10. Drosophila melanogaster as a Model Organism for Bluetongue Virus Replication and Tropism

    PubMed Central

    Shaw, Andrew E.; Veronesi, Eva; Maurin, Guillemette; Ftaich, Najate; Guiguen, Francois; Rixon, Frazer; Ratinier, Maxime; Mertens, Peter; Carpenter, Simon; Palmarini, Massimo; Terzian, Christophe

    2012-01-01

    Bluetongue virus (BTV) is the etiological agent of bluetongue (BT), a hemorrhagic disease of ruminants that can cause high levels of morbidity and mortality. BTV is an arbovirus transmitted between its ruminant hosts by Culicoides biting midges (Diptera: Ceratopogonidae). Recently, Europe has experienced some of the largest BT outbreaks ever recorded, including areas with no known history of the disease, leading to unprecedented economic and animal welfare issues. The current lack of genomic resources and genetic tools for Culicoides restricts any detailed study of the mechanisms involved in the virus-insect interactions. In contrast, the genome of the fruit fly (Drosophila melanogaster) has been successfully sequenced, and it is used extensively as a model of molecular pathways due to the existence of powerful genetic technology. In this study, D. melanogaster is investigated as a model for the replication and tropism of BTV. Using reverse genetics, a modified BTV-1 that expresses the fluorescent mCherry protein fused to the viral nonstructural protein NS3 (BTV-1/NS3mCherry) was generated. We demonstrate that BTV-1/NS3mCherry is not only replication competent as it retains many characteristics of the wild-type virus but also replicates efficiently in D. melanogaster after removal of the bacterial endosymbiont Wolbachia pipientis by antibiotic treatment. Furthermore, confocal microscopy shows that the tissue tropism of BTV-1/NS3mCherry in D. melanogaster resembles that described previously for BTV in Culicoides. Overall, the data presented in this study demonstrate the feasibility of using D. melanogaster as a genetic model to investigate BTV-insect interactions that cannot be otherwise addressed in vector species. PMID:22674991

  11. Validation of rearrangement break points identified by paired-end sequencing in natural populations of Drosophila melanogaster.

    PubMed

    Cridland, Julie M; Thornton, Kevin R

    2010-01-13

    Several recent studies have focused on the evolution of recently duplicated genes in Drosophila. Currently, however, little is known about the evolutionary forces acting upon duplications that are segregating in natural populations. We used a high-throughput, paired-end sequencing platform (Illumina) to identify structural variants in a population sample of African D. melanogaster. Polymerase chain reaction and sequencing confirmation of duplications detected by multiple, independent paired-ends showed that paired-end sequencing reliably uncovered the break points of structural rearrangements and allowed us to identify a number of tandem duplications segregating within a natural population. Our confirmation experiments show that rates of confirmation are very high, even at modest coverage. Our results also compare well with previous studies using microarrays (Emerson J, Cardoso-Moreira M, Borevitz JO, Long M. 2008. Natural selection shapes genome wide patterns of copy-number polymorphism in Drosophila melanogaster. Science. 320:1629-1631. and Dopman EB, Hartl DL. 2007. A portrait of copy-number polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A. 104:19920-19925.), which both gives us confidence in the results of this study as well as confirms previous microarray results.We were also able to identify whole-gene duplications, such as a novel duplication of Or22a, an olfactory receptor, and identify copy-number differences in genes previously known to be under positive selection, like Cyp6g1, which confers resistance to dichlorodiphenyltrichloroethane. Several "hot spots" of duplications were detected in this study, which indicate that particular regions of the genome may be more prone to generating duplications. Finally, population frequency analysis of confirmed events also showed an excess of rare variants in our population, which indicates that duplications segregating in the population may be deleterious and ultimately destined to be lost from the

  12. Transcription elongation rate has a tissue-specific impact on alternative cleavage and polyadenylation in Drosophila melanogaster.

    PubMed

    Liu, Xiaochuan; Freitas, Jaime; Zheng, Dinghai; Oliveira, Marta S; Hoque, Mainul; Martins, Torcato; Henriques, Telmo; Tian, Bin; Moreira, Alexandra

    2017-12-01

    Alternative polyadenylation (APA) is a mechanism that generates multiple mRNA isoforms with different 3'UTRs and/or coding sequences from a single gene. Here, using 3' region extraction and deep sequencing (3'READS), we have systematically mapped cleavage and polyadenylation sites (PASs) in Drosophila melanogaster , expanding the total repertoire of PASs previously identified for the species, especially those located in A-rich genomic sequences. Cis -element analysis revealed distinct sequence motifs around fly PASs when compared to mammalian ones, including the greater enrichment of upstream UAUA elements and the less prominent presence of downstream UGUG elements. We found that over 75% of mRNA genes in Drosophila melanogaster undergo APA. The head tissue tends to use distal PASs when compared to the body, leading to preferential expression of APA isoforms with long 3'UTRs as well as with distal terminal exons. The distance between the APA sites and intron location of PAS are important parameters for APA difference between body and head, suggesting distinct PAS selection contexts. APA analysis of the RpII215 C4 mutant strain, which harbors a mutant RNA polymerase II (RNAPII) with a slower elongation rate, revealed that a 50% decrease in transcriptional elongation rate leads to a mild trend of more usage of proximal, weaker PASs, both in 3'UTRs and in introns, consistent with the "first come, first served" model of APA regulation. However, this trend was not observed in the head, suggesting a different regulatory context in neuronal cells. Together, our data expand the PAS collection for Drosophila melanogaster and reveal a tissue-specific effect of APA regulation by RNAPII elongation rate. © 2017 Liu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Genome-Wide Gene Expression in relation to Age in Large Laboratory Cohorts of Drosophila melanogaster

    PubMed Central

    Carlson, Kimberly A.; Gardner, Kylee; Pashaj, Anjeza; Carlson, Darby J.; Yu, Fang; Eudy, James D.; Zhang, Chi; Harshman, Lawrence G.

    2015-01-01

    Aging is a complex process characterized by a steady decline in an organism's ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for microarray data method was used for the microarray analysis to adjust for the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age. PMID:26090231

  14. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps.

    PubMed

    Garud, Nandita R; Messer, Philipp W; Buzbas, Erkan O; Petrov, Dmitri A

    2015-02-01

    Adaptation from standing genetic variation or recurrent de novo mutation in large populations should commonly generate soft rather than hard selective sweeps. In contrast to a hard selective sweep, in which a single adaptive haplotype rises to high population frequency, in a soft selective sweep multiple adaptive haplotypes sweep through the population simultaneously, producing distinct patterns of genetic variation in the vicinity of the adaptive site. Current statistical methods were expressly designed to detect hard sweeps and most lack power to detect soft sweeps. This is particularly unfortunate for the study of adaptation in species such as Drosophila melanogaster, where all three confirmed cases of recent adaptation resulted in soft selective sweeps and where there is evidence that the effective population size relevant for recent and strong adaptation is large enough to generate soft sweeps even when adaptation requires mutation at a specific single site at a locus. Here, we develop a statistical test based on a measure of haplotype homozygosity (H12) that is capable of detecting both hard and soft sweeps with similar power. We use H12 to identify multiple genomic regions that have undergone recent and strong adaptation in a large population sample of fully sequenced Drosophila melanogaster strains from the Drosophila Genetic Reference Panel (DGRP). Visual inspection of the top 50 candidates reveals that in all cases multiple haplotypes are present at high frequencies, consistent with signatures of soft sweeps. We further develop a second haplotype homozygosity statistic (H2/H1) that, in combination with H12, is capable of differentiating hard from soft sweeps. Surprisingly, we find that the H12 and H2/H1 values for all top 50 peaks are much more easily generated by soft rather than hard sweeps. We discuss the implications of these results for the study of adaptation in Drosophila and in species with large census population sizes.

  15. Neuronal Cbl Controls Biosynthesis of Insulin-Like Peptides in Drosophila melanogaster

    PubMed Central

    Yu, Yue; Sun, Ying; He, Shengqi; Yan, Cheng; Rui, Liangyou; Li, Wenjun

    2012-01-01

    The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-like peptides (dILPs) in the brain. We found that dCbl was highly expressed in the brain and knockdown of the expression of dCbl specifically in neurons by RNA interference increased sensitivity to oxidative stress or starvation, decreased carbohydrate levels, and shortened life span. Insulin-producing neuron-specific knockdown of dCbl resulted in similar phenotypes. dCbl deficiency in either the brain or insulin-producing cells upregulated the expression of dilp genes, resulting in elevated activation of the dILP pathway, including phosphorylation of Drosophila Akt and Drosophila extracellular signal-regulated kinase (dERK). Genetic interaction analyses revealed that blocking Drosophila epidermal growth factor receptor (dEGFR)-dERK signaling in pan-neurons or insulin-producing cells by overexpressing a dominant-negative form of dEGFR abolished the effect of dCbl deficiency on the upregulation of dilp genes. Furthermore, knockdown of c-Cbl in INS-1 cells, a rat β-cell line, also increased insulin biosynthesis and glucose-stimulated secretion in an ERK-dependent manner. Collectively, these results suggest that neuronal dCbl regulates life span, stress responses, and metabolism by suppressing dILP production and the EGFR-ERK pathway mediates the dCbl action. Cbl suppression of insulin biosynthesis is evolutionarily conserved, raising the possibility that Cbl may similarly exert its physiological actions through regulating insulin production in β cells. PMID:22778134

  16. Pervasive and largely lineage-specific adaptive protein evolution in the dosage compensation complex of Drosophila melanogaster.

    PubMed

    Levine, Mia T; Holloway, Alisha K; Arshad, Umbreen; Begun, David J

    2007-11-01

    Dosage compensation refers to the equalization of X-linked gene transcription among heterogametic and homogametic sexes. In Drosophila, the dosage compensation complex (DCC) mediates the twofold hypertranscription of the single male X chromosome. Loss-of-function mutations at any DCC protein-coding gene are male lethal. Here we report a population genetic analysis suggesting that four of the five core DCC proteins--MSL1, MSL2, MSL3, and MOF--are evolving under positive selection in D. melanogaster. Within these four proteins, several domains that range in function from X chromosome localization to protein-protein interactions have elevated, D. melanogaster-specific, amino acid divergence.

  17. Influence of Quercetin in the Temporal Regulation of Redox Homeostasis in Drosophila melanogaster.

    PubMed

    Subramanian, Perumal; Kaliyamoorthy, Kanimozhi; Jayapalan, Jaime Jacqueline; Abdul-Rahman, Puteri Shafinaz; Haji Hashim, Onn

    2017-01-01

    Numerous biological processes are governed by the biological clock. Studies using Drosophila melanogaster (L.) are valuable that could be of importance for their effective applications on rodent studies. In this study, the beneficial role of quercetin (a flavonoid) on H2O2 induced stress in D. melanogaster was investigated. D. melanogaster flies were divided into four groups (group I - control, group II - H2O2 (acute exposure), group III - quercetin, and group IV - quercetin + H2O2 treated). Negative geotaxis assay, oxidative stress indicators (protein carbonyls, thiobarbituric reactive substances [TBARS]), and antioxidants (superoxide dismutase [SOD], catalase [CAT], glutathione-S-transferase [GST], glutathione peroxidase, and reduced glutathione [GSH]) were measured at 4 h intervals over 24 h and temporal expression of heat shock protein-70 (Hsp70), Upd1 (homolog of IL-6 in Drosophila), and nitric oxide synthase (Nos) was analyzed by Western blotting. Groups II and IV showed altered biochemical rhythms (compared with controls). Decreased mesor values of negative geotaxis, SOD, CAT, GST, and GSH were noticed in H2O2, increased mesor of oxidative stress indicators (TBARS and protein carbonyl content) and a reversibility of the rhythmic characteristics were conspicuous after quercetin treatment. The expression levels of Hsp70, Upd1, and Nos were noticeably maximum at 04:00. Significant elevation of expression by H2O2 was nearly normalized by quercetin treatment. The possible mechanism by which quercetin modulates oxidant-antioxidant imbalance under oxidative stress could be ascribed to the modulation of the rhythmic properties. Our results will be helpful to understand the molecular interlink between circadian rhythm and oxidative stress mechanism. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.

  18. Negative regulation of P element excision by the somatic product and terminal sequences of P in drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    A transient in vivo P element excision assay was used to test the regulatory properties of putative repressor-encoding plasmids in Drosophila melanogaster embryos. The somatic expression of an unmodified transposase transcription unit under the control of a heat shock gene promoter (phsn) effectivel...

  19. Anesthetic-resistant spontaneous mutant of Drosophila melanogaster: intensified response to /sup 60/Cobalt radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamo, S.; Nakashima-Tanaka, E.; Megumi, T.

    1985-02-25

    Accumulating evidence suggests that the extent of acute damage by ionizing irradiation is closely related to the state of membrane orderliness. Decreased orderliness apparently protects organisms from ionizing irradiation. Because anesthetics decrease membrane orderliness, anesthesia is expected to affect damages caused by ionizing irradiation. The present study compared the effects of /sup 60/Co irradiation on Drosophila melanogaster between an anesthetic-resistant spontaneous mutant and an anesthetic-sensitive strain. An anesthetic-resistant mutant strain, Eth-29, of Drosophila melanogaster has previously been established. Eth-29 is resistant to diethyl-ether, chloroform and halothane. The anesthetic-resistant strain was found to be radiosensitive when evaluated by survival at themore » eighth day after irradiation or by dyskinesia (knock-down) at the second day. The results indicate that anesthetic resistance may be related to an increase in orderliness. The findings in reciprocal crosses between Eth-29 and the control strain indicate that the mechanism of survival is different from that of knock-down. Presumably, knock-down is the direct sequela of irradiation, and the present result suggests that membrane damage may be involved in inducing knock-down. 18 references, 3 figures.« less

  20. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans.

    PubMed

    Bass, Timothy M; Weinkove, David; Houthoofd, Koen; Gems, David; Partridge, Linda

    2007-10-01

    It was recently reported that the plant polyphenol resveratrol, found, e.g., in grape berry skins, extended lifespan in the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. This lifespan extension was dependent on an NAD(+)-dependent histone deacetylase, Sir2 in Drosophila and SIR-2.1 in C. elegans. The extension of lifespan appeared to occur through a mechanism related to dietary restriction (DR), the reduction of available nutrients without causing malnutrition, an intervention that extends lifespan in diverse organisms from yeast to mammals. In Drosophila, lifespan extension by DR is associated with a reduction in fecundity. However, a slight increase in fecundity was reported upon treatment with resveratrol, suggesting a mode of action at least partially distinct from that of DR. To probe this mechanism further, we initiated a new study of the effects of resveratrol on Drosophila. We saw no significant effects on lifespan in seven independent trials. We analysed our resveratrol and found that its structure was normal, with no oxidative modifications. We therefore re-tested the effects of resveratrol in C. elegans, in both wild-type and sir-2.1 mutant worms. The results were variable, with resveratrol treatment resulting in slight increases in lifespan in some trials but not others, in both wild type and sir-2.1 mutant animals. We postulate that the effect of resveratrol upon lifespan in C. elegans could reflect induction of phase 2 drug detoxification or activation of AMP kinase.

  1. Noninvasive analysis of microbiome dynamics in the fruit fly Drosophila melanogaster.

    PubMed

    Fink, Christine; Staubach, Fabian; Kuenzel, Sven; Baines, John F; Roeder, Thomas

    2013-11-01

    The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations.

  2. Sexual Experience Enhances Drosophila melanogaster Male Mating Behavior and Success

    PubMed Central

    Saleem, Sehresh; Ruggles, Patrick H.; Abbott, Wiley K.; Carney, Ginger E.

    2014-01-01

    Competition for mates is a wide-spread phenomenon affecting individual reproductive success. The ability of animals to adjust their behaviors in response to changing social environment is important and well documented. Drosophila melanogaster males compete with one another for matings with females and modify their reproductive behaviors based on prior social interactions. However, it remains to be determined how male social experience that culminates in mating with a female impacts subsequent male reproductive behaviors and mating success. Here we show that sexual experience enhances future mating success. Previously mated D. melanogaster males adjust their courtship behaviors and out-compete sexually inexperienced males for copulations. Interestingly, courtship experience alone is not sufficient in providing this competitive advantage, indicating that copulation plays a role in reinforcing this social learning. We also show that females use their sense of hearing to preferentially mate with experienced males when given a choice. Our results demonstrate the ability of previously mated males to learn from their positive sexual experiences and adjust their behaviors to gain a mating advantage. These experienced-based changes in behavior reveal strategies that animals likely use to increase their fecundity in natural competitive environments. PMID:24805129

  3. Genetic control of cuticle formation during embryonic development of Drosophila melanogaster.

    PubMed Central

    Ostrowski, Stephen; Dierick, Herman A; Bejsovec, Amy

    2002-01-01

    The embryonic cuticle of Drosophila melanogaster is deposited by the epidermal epithelium during stage 16 of development. This tough, waterproof layer is essential for maintaining the structural integrity of the larval body. We have characterized mutations in a set of genes required for proper deposition and/or morphogenesis of the cuticle. Zygotic disruption of any one of these genes results in embryonic lethality. Mutant embryos are hyperactive within the eggshell, resulting in a high proportion reversed within the eggshell (the "retroactive" phenotype), and all show poor cuticle integrity when embryos are mechanically devitellinized. This last property results in embryonic cuticle preparations that appear grossly inflated compared to wild-type cuticles (the "blimp" phenotype). We find that one of these genes, krotzkopf verkehrt (kkv), encodes the Drosophila chitin synthase enzyme and that a closely linked gene, knickkopf (knk), encodes a novel protein that shows genetic interaction with the Drosophila E-cadherin, shotgun. We also demonstrate that two other known mutants, grainy head (grh) and retroactive (rtv), show the blimp phenotype when devitellinized, and we describe a new mutation, called zeppelin (zep), that shows the blimp phenotype but does not produce defects in the head cuticle as the other mutations do. PMID:12019232

  4. Larval exposure to azadirachtin affects fitness and oviposition site preference of Drosophila melanogaster.

    PubMed

    Bezzar-Bendjazia, Radia; Kilani-Morakchi, Samira; Aribi, Nadia

    2016-10-01

    Azadirachtin, a biorational insecticide, is one of the prominent biopesticide commercialized today and represent an alternative to conventional insecticides. The current study examined the lethal and sublethal effects of azadirachtin on Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae) as biological model. Various doses ranging from 0.1 to 2μg were applied topically on early third instar larvae and the cumulative mortality of immature stage was determined. In second series of experiments, azadirachtin was applied at its LD 25 (0.28μg) and LD 50 (0.67μg) and evaluated on fitness (development duration, fecundity, adult survival) and oviposition site preference with and without choice. Results showed that azadirachtin increased significantly at the two tested doses the duration of larval and pupal development. Moreover, azadirachtin treatment reduced significantly adult's survival of both sex as compared to control. In addition, azadirachtin affected fecundity of flies by a significant reduction of the number of eggs laid. Finally results showed that females present clear preference for oviposition in control medium. Pre-imaginal exposure (L3) to azadirachtin increased aversion to this substance suggesting a memorability of the learned avoidance. The results provide some evidence that larval exposure to azadirachtin altered adult oviposition preference as well as major fitness traits of D. melanogaster. Theses finding may reinforce behavioural avoidance of azadirachtin and contribute as repellent strategies in integrated pest management programmes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dietary intake of Curcuma longa and Emblica officinalis increases life span in Drosophila melanogaster.

    PubMed

    Rawal, Shilpa; Singh, Pavneet; Gupta, Ayush; Mohanty, Sujata

    2014-01-01

    Intake of food and nutrition plays a major role in affecting aging process and longevity. However, the precise mechanisms underlying the ageing process are still unclear. To this respect, diet has been considered to be a determinant of ageing process. In order to better illustrate this, we used Drosophila melanogaster as a model and fed them orally with different concentrations of two commonly used Indian medicinal plant products, Curcuma longa (rhizome) and Emblica officinalis (fruit). The results revealed significant increase in life span of Drosophila flies on exposure to both the plant products, more efficiently by C. Longa than by E. officinalis. In order to understand whether the increase in lifespan was due to high-antioxidant properties of these medicinal plants, we performed enzymatic assays to assess the SOD and catalase activities in case of both treated and control Drosophila flies. Interestingly, the results support the free radical theory of aging as both these plant derivatives show high reactive oxygen species (ROS) scavenging activities.

  6. Dietary Intake of Curcuma longa and Emblica officinalis Increases Life Span in Drosophila melanogaster

    PubMed Central

    Rawal, Shilpa; Singh, Pavneet; Gupta, Ayush; Mohanty, Sujata

    2014-01-01

    Intake of food and nutrition plays a major role in affecting aging process and longevity. However, the precise mechanisms underlying the ageing process are still unclear. To this respect, diet has been considered to be a determinant of ageing process. In order to better illustrate this, we used Drosophila melanogaster as a model and fed them orally with different concentrations of two commonly used Indian medicinal plant products, Curcuma longa (rhizome) and Emblica officinalis (fruit). The results revealed significant increase in life span of Drosophila flies on exposure to both the plant products, more efficiently by C. Longa than by E. officinalis. In order to understand whether the increase in lifespan was due to high-antioxidant properties of these medicinal plants, we performed enzymatic assays to assess the SOD and catalase activities in case of both treated and control Drosophila flies. Interestingly, the results support the free radical theory of aging as both these plant derivatives show high reactive oxygen species (ROS) scavenging activities. PMID:24967413

  7. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation.

    PubMed

    Honti, Viktor; Csordás, Gábor; Kurucz, Éva; Márkus, Róbert; Andó, István

    2014-01-01

    In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster

    PubMed Central

    Adrion, Jeffrey R.; Song, Michael J.; Schrider, Daniel R.; Hahn, Matthew W.

    2017-01-01

    Abstract Knowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D. melanogaster. We found a significant effect of background genotype on TE activity, with higher rates of insertions in one MA line. We also found significant rate heterogeneity between the chromosomes, with both insertion and deletion rates elevated on the X relative to the autosomes. Further, we identified significant associations between TE activity and chromatin state, and tested for associations between TE activity and other features of the local genomic environment such as TE content, exon content, GC content, and recombination rate. Our results provide the most detailed assessment of TE mobility in any organism to date, and provide a useful benchmark for both addressing theoretical predictions of TE dynamics and for exploring large-scale patterns of TE movement in D. melanogaster and other species. PMID:28338986

  9. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids.

    PubMed

    Chaplinska, Mariia; Gerritsma, Sylvia; Dini-Andreote, Francisco; Falcao Salles, Joana; Wertheim, Bregje

    2016-01-01

    In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome-in this case by controlled antibiotic administration-alters the hosts' resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced the hosts' resistance

  10. Assessing Pseudomonas virulence with a nonmammalian host: Drosophila melanogaster.

    PubMed

    Haller, Samantha; Limmer, Stefanie; Ferrandon, Dominique

    2014-01-01

    Drosophila melanogaster flies represent an interesting model to study host-pathogen interactions as: (1) they are cheap and easy to raise rapidly and do not bring up ethical issues, (2) available genetic tools are highly sophisticated, for instance allowing tissue-specific alteration of gene expression, e.g., of immune genes, (3) they have a relatively complex organization, with distinct digestive tract and body cavity in which local or systemic infections, respectively, take place, (4) a medium throughput can be achieved in genetic screens, for instance looking for Pseudomonas aeruginosa mutants with altered virulence. We present here the techniques used to investigate host-pathogen relationships, namely the two major models of infections as well as the relevant parameters used to monitor the infection (survival, bacterial titer, induction of host immune response).

  11. In vivo imaging of the Drosophila Melanogaster heart using a novel optical coherence tomography microscope

    NASA Astrophysics Data System (ADS)

    Izatt, Susan D.; Choma, Michael A.; Israel, Steven; Wessells, Robert J.; Bodmer, Rolf; Izatt, Joseph A.

    2005-03-01

    Real time in vivo optical coherence tomography (OCT) imaging of the adult fruit fly Drosophila melanogaster heart using a newly designed OCT microscope allows accurate assessment of cardiac anatomy and function. D. melanogaster has been used extensively in genetic research for over a century, but in vivo evaluation of the heart has been limited by available imaging technology. The ability to assess phenotypic changes with micrometer-scale resolution noninvasively in genetic models such as D. melanogaster is needed in the advancing fields of developmental biology and genetics. We have developed a dedicated small animal OCT imaging system incorporating a state-of-the-art, real time OCT scanner integrated into a standard stereo zoom microscope which allows for simultaneous OCT and video imaging. System capabilities include A-scan, B-scan, and M-scan imaging as well as automated 3D volumetric acquisition and visualization. Transverse and sagittal B-mode scans of the four chambered D. melanogaster heart have been obtained with the OCT microscope and are consistent with detailed anatomical studies from the literature. Further analysis by M-mode scanning is currently under way to assess cardiac function as a function of age and sex by determination of shortening fraction and ejection fraction. These studies create control cardiac data on the wild type D. melanogaster, allowing subsequent evaluation of phenotypic cardiac changes in this model after regulated genetic mutation.

  12. Over-Expression of Superoxide Dismutase Ameliorates Cr(VI) Induced Adverse Effects via Modulating Cellular Immune System of Drosophila melanogaster

    PubMed Central

    Pragya, Prakash; Shukla, Arvind Kumar; Murthy, Ramesh Chandra; Abdin, Malik Zainul; Kar Chowdhuri, Debapratim

    2014-01-01

    The evolutionarily conserved innate immune system plays critical role for maintaining the health of an organism. However, a number of environmental chemicals including metals are known to exert adverse effects on immune system. The present study assessed the in vivo effect of a major environmental chemical, Cr(VI), on cellular immune response using Drosophila melanogaster and subsequently the protective role of superoxide dismutase (SOD) based on the comparable performance of the tested anti-oxidant enzymes. The immuno-modulatory potential of Cr(VI) was demonstrated by observing a significant reduction in the total hemocyte count along with impaired phagocytic activity in exposed organism. Concurrently, a significant increase in the percentage of Annexin V-FITC positive cells, activation of DEVDase activity, generation of free radical species along with inhibition of anti-oxidant enzyme activities was observed in the hemocytes of exposed organism. In addition, we have shown that ONOO− is primarily responsible for Cr(VI) induced adverse effects on Drosophila hemocytes along with O2 −. While generation of O2 −/ONOO− in Cr(VI) exposed Drosophila hemocytes was found to be responsible for the suppression of Drosophila cellular immune response, Cr(VI) induced alteration was significantly reduced by the over-expression of sod in Drosophila hemocytes. Overall, our results suggest that manipulation of one of the anti-oxidant genes, sod, benefits the organism from Cr(VI) induced alteration in cellular immunity. Further, this study demonstrates the applicability of D. melanogaster to examine the possible effects of environmental chemicals on innate immunity which can be extrapolated to higher organisms due to evolutionary conservation of innate immune system between Drosophila and mammals. PMID:24505420

  13. Genetic Analysis of Aspartate Aminotransferase Isozymes from Hybrids between DROSOPHILA MELANOGASTER and DROSOPHILA SIMULANS and Mutagen-Induced Isozyme Variants

    PubMed Central

    Grell, E. H.

    1976-01-01

    The aspartate aminotransferases (designated GOT1 and GOT2) are two enzymes of Drosophila melanogaster for which naturally occurring electrophoretic variants were not found. There is an electrophoretic difference between D. melanogaster and D. simulans. Since the F 1 hybrid offspring of these species are sterile, a genetic analysis of the ordinary type cannot be done on differences between the two species. A method was devised to make "partial hybrids" in which one chromosome arm is homozygous for melanogaster genes in an otherwise hybrid background. By using this method, Got1 was localized to 2R and Got2 to 2L. Once a gene can be assigned to a chromosome, it may be followed in crossing schemes and mutations from mutagen treatments may be looked for. At the locus of Got1 a mutation with low activity was recovered and designated Got1lo. It was located at a genetic map position of 75 on 2R. A Got2 mutant with a greater migration to the anode was recovered and designated Got2 J. It was located at a genetic map position of 3.0, and in the salivary chromosome was between 22B1 and 22B4 inclusive. PMID:823072

  14. Physiological basis for low-temperature survival and storage of quiescent larvae of the fruit fly Drosophila melanogaster

    PubMed Central

    Koštál, Vladimír; Korbelová, Jaroslava; Štětina, Tomáš; Poupardin, Rodolphe; Colinet, Hervé; Zahradníčková, Helena; Opekarová, Iva; Moos, Martin; Šimek, Petr

    2016-01-01

    The cryopreservation techniques proposed for embryos of the fruit fly Drosophila melanogaster are not yet ready for practical use. Alternative methods for long-term storage of D. melanogaster strains, although urgently needed, do not exist. Herein, we describe a narrow interval of low temperatures under which the larvae of D. melanogaster can be stored in quiescence for up to two months. The development of larvae was arrested at the pre-wandering stage under fluctuating thermal regime (FTR), which simultaneously resulted in diminishing the accumulation of indirect chill injuries. Our physiological, metabolomic, and transcriptomic analyses revealed that compared to larvae stored at constant low temperatures, the larvae stored under FTR conditions were able to decrease the rates of depletion of energy substrates, exploited brief warm episodes of FTR for homeostatic control of metabolite levels, and more efficiently exerted protection against oxidative damage. PMID:27573891

  15. Drosophila melanogaster Natural Variation Affects Growth Dynamics of Infecting Listeria monocytogenes

    PubMed Central

    Hotson, Alejandra Guzmán; Schneider, David S.

    2015-01-01

    We find that in a Listeria monocytogenes/Drosophila melanogaster infection model, L. monocytogenes grows according to logistic kinetics, which means we can measure both a maximal growth rate and growth plateau for the microbe. Genetic variation of the host affects both of the pathogen growth parameters, and they can vary independently. Because growth rates and ceilings both correlate with host survival, both properties could drive evolution of the host. We find that growth rates and ceilings are sensitive to the initial infectious dose in a host genotype–dependent manner, implying that experimental results differ as we change the original challenge dose within a single strain of host. PMID:26438294

  16. An analysis of polygenes affecting wing shape on chromosome 2 in Drosophila melanogaster.

    PubMed Central

    Weber, K; Eisman, R; Higgins, S; Morey, L; Patty, A; Tausek, M; Zeng, Z B

    2001-01-01

    Genetic effects on an index of wing shape on chromosome 2 of Drosophila melanogaster were mapped using isogenic recombinants with transposable element markers. At least 10 genes with small additive effects are dispersed evenly along the chromosome. Many interactions exist, with only small net effects in homozygous recombinants and little effect on phenotypic variance. Heterozygous chromosome segments show almost no dominance. Pleiotropic effects on leg shape are only minor. At first view, wing shape genes form a rather homogeneous class, but certain complexities remain unresolved. PMID:11729152

  17. Straightforward assay for quantification of social avoidance in Drosophila melanogaster.

    PubMed

    Fernandez, Robert W; Nurilov, Marat; Feliciano, Omar; McDonald, Ian S; Simon, Anne F

    2014-12-13

    Drosophila melanogaster is an emerging model to study different aspects of social interactions. For example, flies avoid areas previously occupied by stressed conspecifics due to an odorant released during stress known as the Drosophila stress odorant (dSO). Through the use of the T-maze apparatus, one can quantify the avoidance of the dSO by responder flies in a very affordable and robust assay. Conditions necessary to obtain a strong performance are presented here. A stressful experience is necessary for the flies to emit dSO, as well as enough emitter flies to cause a robust avoidance response to the presence of dSO. Genetic background, but not their group size, strongly altered the avoidance of the dSO by the responder flies. Canton-S and Elwood display a higher performance in avoiding the dSO than Oregon and Samarkand strains. This behavioral assay will allow identification of mechanisms underlying this social behavior, and the assessment of the influence of genes and environmental conditions on both emission and avoidance of the dSO. Such an assay can be included in batteries of simple diagnostic tests used to identify social deficiencies of mutants or environmental conditions of interest.

  18. Taste and pheromone perception in the fruit fly Drosophila melanogaster.

    PubMed

    Ebbs, Michelle L; Amrein, Hubert

    2007-08-01

    Taste is an essential sense for detection of nutrient-rich food and avoidance of toxic substances. The Drosophila melanogaster gustatory system provides an excellent model to study taste perception and taste-elicited behaviors. "The fly" is unique in the animal kingdom with regard to available experimental tools, which include a wide repertoire of molecular-genetic analyses (i.e., efficient production of transgenics and gene knockouts), elegant behavioral assays, and the possibility to conduct electrophysiological investigations. In addition, fruit flies, like humans, recognize sugars as a food source, but avoid bitter tasting substances that are often toxic to insects and mammals alike. This paper will present recent research progress in the field of taste and contact pheromone perception in the fruit fly. First, we shall describe the anatomical properties of the Drosophila gustatory system and survey the family of taste receptors to provide an appropriate background. We shall then review taste and pheromone perception mainly from a molecular genetic perspective that includes behavioral, electrophysiological and imaging analyses of wild type flies and flies with genetically manipulated taste cells. Finally, we shall provide an outlook of taste research in this elegant model system for the next few years.

  19. Drosophila melanogaster as a model system of aluminum toxicity and aging.

    PubMed

    Kijak, Ewelina; Rosato, Ezio; Knapczyk, Katarzyna; Pyza, Elżbieta

    2014-04-01

    The aim of this study was to investigate the toxic effects of aluminum (Al) on the model organism-Drosophila melanogaster. The study is especially concerned with the effects of aluminum on the fruit fly's development, life span, and circadian rhythm in rest and activity. Flies were exposed to aluminum in concentrations from 40 to 280 mg/kg in rearing media or the flies were raised on control medium. Moreover, the life span of insects exposed to aluminum containing 40, 120, or 240 mg/kg of Al in the medium, only during their larval development, during the whole life cycle and only in their adult life was tested. To check if aluminum and aging cause changes in D. melanogaster behavior, the locomotor activity of flies at different ages was recorded. Results showed that aluminum is toxic in concentrations above 160 mg/kg in the rearing medium. Depending on Al concentration and time of exposure, the life span of the flies was shortened. At intermediate concentrations (120 mg/kg), however, Al had a stimulating effect on males increasing their life span and level of locomotor activity. At higher concentration the aluminum exposure increased or decreased the level of locomotor activity of D. melanogaster depending on age of flies. In addition, in the oldest insects reared on aluminum supplemented media and in mid-aged flies reared on the highest concentration of Al the daily rhythm of activity was disrupted. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  20. Global Transcriptional Profiling of Diapause and Climatic Adaptation in Drosophila melanogaster

    PubMed Central

    Zhao, Xiaqing; Bergland, Alan O.; Behrman, Emily L.; Gregory, Brian D.; Petrov, Dmitri A.; Schmidt, Paul S.

    2016-01-01

    Wild populations of the model organism Drosophila melanogaster experience highly heterogeneous environments over broad geographical ranges as well as over seasonal and annual timescales. Diapause is a primary adaptation to environmental heterogeneity, and in D. melanogaster the propensity to enter diapause varies predictably with latitude and season. Here we performed global transcriptomic profiling of naturally occurring variation in diapause expression elicited by short day photoperiod and moderately low temperature in two tissue types associated with neuroendocrine and endocrine signaling, heads, and ovaries. We show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. Differentially expressed genes and pathways are highly distinct in heads and ovaries, demonstrating that the diapause response is not uniform throughout the soma and suggesting that it may be comprised of functional modules associated with specific tissues. Genes downregulated in heads of diapausing flies are significantly enriched for clinally varying single nucleotide polymorphism (SNPs) and seasonally oscillating SNPs, consistent with the hypothesis that diapause is a driving phenotype of climatic adaptation. We also show that chromosome location-based coregulation of gene expression is present in the transcriptional regulation of diapause. Taken together, these results demonstrate that diapause is a complex phenotype actively regulated in multiple tissues, and support the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures. PMID:26568616

  1. Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble gamma-glutamyl transpeptidase.

    PubMed

    Walker, Michael J; Rylett, Caroline M; Keen, Jeff N; Audsley, Neil; Sajid, Mohammed; Shirras, Alan D; Isaac, R Elwyn

    2006-05-02

    In Drosophila melanogaster, the male seminal fluid contains proteins that are important for reproductive success. Many of these proteins are synthesised by the male accessory glands and are secreted into the accessory gland lumen, where they are stored until required. Previous studies on the identification of Drosophila accessory gland products have largely focused on characterisation of male-specific accessory gland cDNAs from D. melanogaster and, more recently, Drosophila simulans. In the present study, we have used a proteomics approach without any sex bias to identify proteins in D. melanogaster accessory gland secretions. Thirteen secreted accessory gland proteins, including seven new accessory gland proteins, were identified by 2D-gel electrophoresis combined with mass spectrometry of tryptic fragments. They included protein-folding and stress-response proteins, a hormone, a lipase, a serpin, a cysteine-rich protein and two peptidases, a pro-enzyme form of a cathepsin K-like cysteine peptidase and a gamma-glutamyl transpeptidase. Enzymatic studies established that accessory gland secretions contain a cysteine peptidase zymogen that can be activated at low pH. This peptidase may have a role in the processing of female and other male-derived proteins, but is unlikely to be involved in the processing of the sex peptide. gamma-Glutamyl transpeptidases are type II integral membrane proteins; however, the identified AG gamma-glutamyl transpeptidase (GGT-1) is unusual in that it is predicted to be a soluble secreted protein, a prediction that is supported by biochemical evidence. GGT-1 is possibly involved in maintaining a protective redox environment for sperm. The strong gamma-glutamyl transpeptidase activity found in the secretions provides an explanation for the observation that glutamic acid is the most abundant free amino acid in accessory gland secretions of D. melanogaster. We have applied biochemical approaches, not used previously, to characterise

  2. The Origin of the Second Centriole in the Zygote of Drosophila melanogaster

    PubMed Central

    Blachon, Stephanie; Khire, Atul; Avidor-Reiss, Tomer

    2014-01-01

    Centrosomes are composed of two centrioles surrounded by pericentriolar material (PCM). However, the sperm and the oocyte modify or lose their centrosomes. Consequently, how the zygote establishes its first centrosome, and in particular, the origin of the second zygotic centriole, is uncertain. Drosophila melanogaster spermatids contain a single centriole called the Giant Centriole (GC) and a Proximal centriole-like (PCL) structure whose function is unknown. We found that, like the centriole, the PCL loses its protein markers at the end of spermiogenesis. After fertilization, the first two centrioles are observed via the recruitment of the zygotic PCM proteins and are seen in asterless mutant embryos that cannot form centrioles. The zygote’s centriolar proteins label only the daughter centrioles of the first two centrioles. These observations demonstrate that the PCL is the origin for the second centriole in the Drosophila zygote and that a paternal centriole precursor, without centriolar proteins, is transmitted to the egg during fertilization. PMID:24532732

  3. Comparative analysis of Pdf-mediated circadian behaviors between Drosophila melanogaster and D. virilis.

    PubMed

    Bahn, Jae Hoon; Lee, Gyunghee; Park, Jae H

    2009-03-01

    A group of small ventrolateral neurons (s-LN(v)'s) are the principal pacemaker for circadian locomotor rhythmicity of Drosophila melanogaster, and the pigment-dispersing factor (Pdf) neuropeptide plays an essential role as a clock messenger within these neurons. In our comparative studies on Pdf-associated circadian rhythms, we found that daily locomotor activity patterns of D. virilis were significantly different from those of D. melanogaster. Activities of D. virilis adults were mainly restricted to the photophase under light:dark cycles and subsequently became arrhythmic or weakly rhythmic in constant conditions. Such activity patterns resemble those of Pdf(01) mutant of D. melanogaster. Intriguingly, endogenous D. virilis Pdf (DvPdf) expression was not detected in the s-LN(v)-like neurons in the adult brains, implying that the Pdf(01)-like behavioral phenotypes of D. virilis are attributed in part to the lack of DvPdf in the s-LN(v)-like neurons. Heterologous transgenic analysis showed that cis-regulatory elements of the DvPdf transgene are capable of directing their expression in all endogenous Pdf neurons including s-LN(v)'s, as well as in non-Pdf clock neurons (LN(d)'s and fifth s-LN(v)) in a D. melanogaster host. Together these findings suggest a significant difference in the regulatory mechanisms of Pdf transcription between the two species and such a difference is causally associated with species-specific establishment of daily locomotor activity patterns.

  4. Influence of non-steroidal anti-inflammatory drugs on Drosophila melanogaster longevity.

    PubMed

    Danilov, Anton; Shaposhnikov, Mikhail; Shevchenko, Oksana; Zemskaya, Nadezhda; Zhavoronkov, Alex; Moskalev, Alexey

    2015-08-14

    Most age-related diseases and aging itself are associated with chronic inflammation. Thus pharmacological inhibition of inflammatory processes may be effective antiaging strategy. In this study we demonstrated that treatment of Drosophila melanogaster with 10 non-steroidal anti-inflammatory drugs (NSAIDs: CAY10404, aspirin, APHS, SC-560, NS-398, SC-58125, valeroyl salicylate, trans-resveratrol, valdecoxib, licofelone) leads to extension of lifespan, delays age-dependent decline of locomotor activity and increases stress resistance. The effect of the lifespan increase was associated with decrease of fecundity. Depending on the concentration, NSAIDs demonstrated both anti- and pro-oxidant properties in Drosophila tissues. However, we failed to identify clear correlation between antioxidant properties of NSAIDs and their pro-longevity effects. The lifespan extending effects of APHS, SC-58125, valeroyl salicylate, trans-resveratrol, valdecoxib, and licofelone were more pronounced in males, valdecoxib and aspirin - in females. We demonstrated that lifespan extension effect of NSAIDs was abolished in flies with defective genes involved in Pkh2-ypk1-lem3-tat2 pathway.

  5. Polymorphism of the Hereditary Sigma Virus in Natural Populations of DROSOPHILA MELANOGASTER

    PubMed Central

    Fleuriet, Annie

    1980-01-01

    Previous studies have shown that, in natural French populations of Drosophila melanogaster, 10 to 20% of the flies are infected by the noncontagious, hereditary rhabdovirus sigma responsible for CO2 sensitivity. These populations are also polymorphic for two alleles [ref(2)Po and ref(2)Pp] of a gene for resistance to the sigma virus. Evidence is given here that two viral genetic types, differing in their response to the ref(2)Pp allele, are present in these populations of flies; the most common type is only slightly sensitive to the ref(2)Pp allele. PMID:17249047

  6. Polymorphism of the Hereditary Sigma Virus in Natural Populations of DROSOPHILA MELANOGASTER.

    PubMed

    Fleuriet, A

    1980-06-01

    Previous studies have shown that, in natural French populations of Drosophila melanogaster, 10 to 20% of the flies are infected by the noncontagious, hereditary rhabdovirus sigma responsible for CO(2) sensitivity. These populations are also polymorphic for two alleles [ref(2)P(o) and ref(2)P(p)] of a gene for resistance to the sigma virus. Evidence is given here that two viral genetic types, differing in their response to the ref(2)P(p) allele, are present in these populations of flies; the most common type is only slightly sensitive to the ref(2)P(p) allele.

  7. Amplification of the 1731 LTR retrotransposon in Drosophila melanogaster cultured cells: origin of neocopies and impact on the genome.

    PubMed

    Maisonhaute, Claude; Ogereau, David; Hua-Van, Aurélie; Capy, Pierre

    2007-05-15

    Transposable elements (TEs), represent a large fraction of the eukaryotic genome. In Drosophila melanogaster, about 20% of the genome corresponds to such middle repetitive DNA dispersed sequences. A fraction of TEs is composed of elements showing a retrovirus-like structure, the LTR-retrotransposons, the first TEs to be described in the Drosophila genome. Interestingly, in D. melanogaster embryonic immortal cell culture genomes the copy number of these LTR-retrotransposons was revealed to be higher than the copy number in the Drosophila genome, presumably as the result of transposition of some copies to new genomic locations [Potter, S.S., Brorein Jr., W.J., Dunsmuir, P., Rubin, G.M., 1979. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17, 415-427; Junakovic, N., Di Franco, C., Best-Belpomme, M., Echalier, G., 1988. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 97, 212-218]. This suggests that so many transpositions modified the genome organisation and consequently the expression of targeted genes. To understand what has directed the transposition of TEs in Drosophila cell culture genomes, a search to identify the newly transposed copies was undertaken using 1731, a LTR-retrotransposon. A comparison between 1731 full-length elements found in the fly sequenced genome (y(1); cn(1)bw(1), sp(1) stock) and 1731 full-length elements amplified by PCR in the two cell line was done. The resulting data provide evidence that all 1731 neocopies were derived from a single copy slightly active in the Drosophila genome and subsequently strongly activated in cultured cells; and that this active copy is related to a newly evolved genomic variant (Kalmykova, A.I., et al., 2004. Selective expansion of the newly evolved genomic variants of retrotransposon 1731 in the Drosophila genomes. Mol. Biol. Evol. 21, 2281-2289). Moreover, neocopies are shown to be inserted in different sets

  8. Genome sequence of the Drosophila melanogaster male-killing Spiroplasma strain MSRO endosymbiont.

    PubMed

    Paredes, Juan C; Herren, Jeremy K; Schüpfer, Fanny; Marin, Ray; Claverol, Stéphane; Kuo, Chih-Horng; Lemaitre, Bruno; Béven, Laure

    2015-03-31

    Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts. Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria

  9. Fine-structural changes in the midgut of old Drosophila melanogaster

    NASA Technical Reports Server (NTRS)

    Anton-Erxleben, F.; Miquel, J.; Philpott, D. E.

    1983-01-01

    Senescent fine-structural changes in the midgut of Drosophila melanogaster are investigated. A large number of midgut mitochondria in old flies exhibit nodular cristae and a tubular system located perpendicular to the normal cristae orientation. Anterior intestinal cells show a senescent accumulation of age pigment, either with a surrounding two-unit membrane or without any membrane. The predominant localization of enlarged mitochondria and pigment in the luminal gut region may be related to the polarized metabolism of the intestinal cells. Findings concur with previous observations of dense-body accumulations and support the theory that mitochondria are involved in the aging of fixed post-mitotic cells. Demonstrated by statistical analyses is that mitochondrial size increase is related to mitochondrial variation increase.

  10. Recognition and Detoxification of the Insecticide DDT by Drosophila melanogaster Glutathione S-Transferase D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, Wai Yee; Feil, Susanne C.; Ng, Hooi Ling

    2010-06-14

    GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 {angstrom} resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model ofmore » the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional {sup 1}H,{sup 15}N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.« less

  11. Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster.

    PubMed

    Montooth, Kristi L; Siebenthall, Kyle T; Clark, Andrew G

    2006-10-01

    Drosophila melanogaster has evolved the ability to tolerate and utilize high levels of ethanol and acetic acid encountered in its rotting-fruit niche. Investigation of this phenomenon has focused on ethanol catabolism, particularly by the enzyme alcohol dehydrogenase. Here we report that survival under ethanol and acetic acid stress in D. melanogaster from high- and low-latitude populations is an integrated consequence of toxin catabolism and alteration of physical properties of cellular membranes by ethanol. Metabolic detoxification contributed to differences in ethanol tolerance between populations and acclimation temperatures via changes in both alcohol dehydrogenase and acetyl-CoA synthetase mRNA expression and enzyme activity. Independent of changes in ethanol catabolism, rapid thermal shifts that change membrane fluidity had dramatic effects on ethanol tolerance. Cold temperature treatments upregulated phospholipid metabolism genes and enhanced acetic acid tolerance, consistent with the predicted effects of restoring membrane fluidity. Phospholipase D was expressed at high levels in all treatments that conferred enhanced ethanol tolerance, suggesting that this lipid-mediated signaling enzyme may enhance tolerance by sequestering ethanol in membranes as phophatidylethanol. These results reveal new candidate genes underlying toxin tolerance and membrane adaptation to temperature in Drosophila and provide insight into how interactions between these phenotypes may underlie the maintenance of latitudinal clines in ethanol tolerance.

  12. Functional analysis of iodotyrosine deiodinase from drosophila melanogaster

    PubMed Central

    Phatarphekar, Abhishek

    2016-01-01

    Abstract The flavoprotein iodotyrosine deiodinase (IYD) was first discovered in mammals through its ability to salvage iodide from mono‐ and diiodotyrosine, the by‐products of thyroid hormone synthesis. Genomic information indicates that invertebrates contain homologous enzymes although their iodide requirements are unknown. The catalytic domain of IYD from Drosophila melanogaster has now been cloned, expressed and characterized to determine the scope of its potential catalytic function as a model for organisms that are not associated with thyroid hormone production. Little discrimination between iodo‐, bromo‐, and chlorotyrosine was detected. Their affinity for IYD ranges from 0.46 to 0.62 μM (K d) and their efficiency of dehalogenation ranges from 2.4 – 9 x 103 M−1 s−1 (k cat/K m). These values fall within the variations described for IYDs from other organisms for which a physiological function has been confirmed. The relative contribution of three active site residues that coordinate to the amino acid substrates was subsequently determined by mutagenesis of IYD from Drosophila to refine future annotations of genomic and meta‐genomic data for dehalogenation of halotyrosines. Substitution of the active site glutamate to glutamine was most detrimental to catalysis. Alternative substitution of an active site lysine to glutamine affected substrate affinity to the greatest extent but only moderately affected catalytic turnover. Substitution of phenylalanine for an active site tyrosine was least perturbing for binding and catalysis. PMID:27643701

  13. A Drosophila melanogaster hobo-white + vector mediates low frequency gene transfer in D. vlrllls with full Interspecific white + complementation

    USDA-ARS?s Scientific Manuscript database

    Transformation of a Drosophila virilis white mutant host strain was attempted by using a hobo vector containing the D. melanogaster mini-white+ cassette (H[w+, hawN]) and an unmodified or heat shock regulated hobo transposase helper. Two transformant lines were recovered with the unmodified helper (...

  14. Long Oskar Controls Mitochondrial Inheritance in Drosophila melanogaster.

    PubMed

    Hurd, Thomas Ryan; Herrmann, Beate; Sauerwald, Julia; Sanny, Justina; Grosch, Markus; Lehmann, Ruth

    2016-12-05

    Inherited mtDNA mutations cause severe human disease. In most species, mitochondria are inherited maternally through mechanisms that are poorly understood. Genes that specifically control the inheritance of mitochondria in the germline are unknown. Here, we show that the long isoform of the protein Oskar regulates the maternal inheritance of mitochondria in Drosophila melanogaster. We show that, during oogenesis, mitochondria accumulate at the oocyte posterior, concurrent with the bulk streaming and churning of the oocyte cytoplasm. Long Oskar traps and maintains mitochondria at the posterior at the site of primordial germ cell (PGC) formation through an actin-dependent mechanism. Mutating long oskar strongly reduces the number of mtDNA molecules inherited by PGCs. Therefore, Long Oskar ensures germline transmission of mitochondria to the next generation. These results provide molecular insight into how mitochondria are passed from mother to offspring, as well as how they are positioned and asymmetrically partitioned within polarized cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Cyclooxygenase and lipoxygenase-like activity in Drosophila melanogaster.

    PubMed

    Pagés, M; Roselló, J; Casas, J; Gelpí, E; Gualde, N; Rigaud, M

    1986-11-01

    To determine the possible activity of cyclooxygenase and lipoxygenase like enzymes in Drosophila melanogaster, we have investigated whether fly homogenates can biosynthesize prostaglandins and HETEs. Incubation of fly extracts with AA yields a mixture of 15- 12- 9- and 8-HETE as detected by selected ion monitoring GC-MS. Also the combination of HPLC-RIA using a PGE antibody shows the presence of endogenous PGE2 immunoreactivity in the extracts (405 pg/g in males and 165 pg/g in females). We have also detected the presence of lipoxygenase like immunoreactivity in the reproductive male system by using immunocytochemical techniques in whole body sections of the fly as well as reactivity in the digestive system of both males and females. Finally, we have not been able to detect endogenous AA in the fly by GC-MS methods. However, estimates by GC-MS of the total body fatty acids indicate substantial amounts of potential AA precursors.

  16. Permutation Entropy Applied to Movement Behaviors of Drosophila Melanogaster

    NASA Astrophysics Data System (ADS)

    Liu, Yuedan; Chon, Tae-Soo; Baek, Hunki; Do, Younghae; Choi, Jin Hee; Chung, Yun Doo

    Movement of different strains in Drosophila melanogaster was continuously observed by using computer interfacing techniques and was analyzed by permutation entropy (PE) after exposure to toxic chemicals, toluene (0.1 mg/m3) and formaldehyde (0.01 mg/m3). The PE values based on one-dimensional time series position (vertical) data were variable according to internal constraint (i.e. strains) and accordingly increased in response to external constraint (i.e. chemicals) by reflecting diversity in movement patterns from both normal and intoxicated states. Cross-correlation function revealed temporal associations between the PE values and between the component movement patterns in different chemicals and strains through the period of intoxication. The entropy based on the order of position data could be a useful means for complexity measure in behavioral changes and for monitoring the impact of stressors in environment.

  17. Delimiting regulatory sequences of the Drosophila melanogaster Ddc gene.

    PubMed Central

    Hirsh, J; Morgan, B A; Scholnick, S B

    1986-01-01

    We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity. Images PMID:3099170

  18. Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster.

    PubMed

    Niveditha, S; Deepashree, S; Ramesh, S R; Shivanandappa, T

    2017-10-01

    Gender differences in lifespan and aging are known across species. Sex differences in longevity within a species can be useful to understand sex-specific aging. Drosophila melanogaster is a good model to study the problem of sex differences in longevity since females are longer lived than males. There is evidence that stress resistance influences longevity. The objective of this study was to investigate if there is a relationship between sex differences in longevity and oxidative stress resistance in D. melanogaster. We observed a progressive age-dependent decrease in the activity of SOD and catalase, major antioxidant enzymes involved in defense mechanisms against oxidative stress in parallel to the increased ROS levels over time. Longer-lived females showed lower ROS levels and higher antioxidant enzymes than males as a function of age. Using ethanol as a stressor, we have shown differential susceptibility of the sexes to ethanol wherein females exhibited higher resistance to ethanol-induced mortality and locomotor behavior compared to males. Our results show strong correlation between sex differences in oxidative stress resistance, antioxidant defenses and longevity. The study suggests that higher antioxidant defenses in females may confer resistance to oxidative stress, which could be a factor that influences sex-specific aging in D. melanogaster.

  19. FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster

    PubMed Central

    Robinson, Scott W.; Herzyk, Pawel; Dow, Julian A. T.; Leader, David P.

    2013-01-01

    The FlyAtlas resource contains data on the expression of the genes of Drosophila melanogaster in different tissues (currently 25—17 adult and 8 larval) obtained by hybridization of messenger RNA to Affymetrix Drosophila Genome 2 microarrays. The microarray probe sets cover 13 250 Drosophila genes, detecting 12 533 in an unambiguous manner. The data underlying the original web application (http://flyatlas.org) have been restructured into a relational database and a Java servlet written to provide a new web interface, FlyAtlas 2 (http://flyatlas.gla.ac.uk/), which allows several additional queries. Users can retrieve data for individual genes or for groups of genes belonging to the same or related ontological categories. Assistance in selecting valid search terms is provided by an Ajax ‘autosuggest’ facility that polls the database as the user types. Searches can also focus on particular tissues, and data can be retrieved for the most highly expressed genes, for genes of a particular category with above-average expression or for genes with the greatest difference in expression between the larval and adult stages. A novel facility allows the database to be queried with a specific gene to find other genes with a similar pattern of expression across the different tissues. PMID:23203866

  20. FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster.

    PubMed

    Robinson, Scott W; Herzyk, Pawel; Dow, Julian A T; Leader, David P

    2013-01-01

    The FlyAtlas resource contains data on the expression of the genes of Drosophila melanogaster in different tissues (currently 25-17 adult and 8 larval) obtained by hybridization of messenger RNA to Affymetrix Drosophila Genome 2 microarrays. The microarray probe sets cover 13,250 Drosophila genes, detecting 12,533 in an unambiguous manner. The data underlying the original web application (http://flyatlas.org) have been restructured into a relational database and a Java servlet written to provide a new web interface, FlyAtlas 2 (http://flyatlas.gla.ac.uk/), which allows several additional queries. Users can retrieve data for individual genes or for groups of genes belonging to the same or related ontological categories. Assistance in selecting valid search terms is provided by an Ajax 'autosuggest' facility that polls the database as the user types. Searches can also focus on particular tissues, and data can be retrieved for the most highly expressed genes, for genes of a particular category with above-average expression or for genes with the greatest difference in expression between the larval and adult stages. A novel facility allows the database to be queried with a specific gene to find other genes with a similar pattern of expression across the different tissues.

  1. Extraction of Hemocytes from Drosophila melanogaster Larvae for Microbial Infection and Analysis.

    PubMed

    Hiroyasu, Aoi; DeWitt, David C; Goodman, Alan G

    2018-05-24

    During the pathogenic infection of Drosophila melanogaster, hemocytes play an important role in the immune response throughout the infection. Thus, the goal of this protocol is to develop a method to visualize the pathogen invasion in a specific immune compartment of flies, namely hemocytes. Using the method presented here, up to 3 × 10 6 live hemocytes can be obtained from 200 Drosophila 3 rd instar larvae in 30 min for ex vivo infection. Alternatively, hemocytes can be infected in vivo through injection of 3 rd instar larvae followed by hemocyte extraction up to 24 h post-infection. These infected primary cells were fixed, stained, and imaged using confocal microscopy. Then, 3D representations were generated from the images to definitively show pathogen invasion. Additionally, high-quality RNA for qRT-PCR can be obtained for the detection of pathogen mRNA following infection, and sufficient protein can be extracted from these cells for Western blot analysis. Taken together, we present a method for definite reconciliation of pathogen invasion and confirmation of infection using bacterial and viral pathogen types and an efficient method for hemocyte extraction to obtain enough live hemocytes from Drosophila larvae for ex vivo and in vivo infection experiments.

  2. Hesperidin, a citrus bioflavonoid, alleviates trichloroethylene-induced oxidative stress in Drosophila melanogaster.

    PubMed

    Abolaji, Amos Olalekan; Babalola, Oluwatoyin Victoria; Adegoke, Abimbola Kehinde; Farombi, Ebenezer Olatunde

    2017-10-01

    Trichloroethylene (TCE) is a chlorinated organic pollutant of groundwater with diverse toxic effects in animals and humans. Here, we investigated the ameliorative role of hesperidin, a citrus bioflavonoid on TCE-induced toxicity in Drosophila melanogaster. Four groups of D. melanogaster (50 flies/vial, with 5 vials/group) were exposed to ethanol (2.5%, control), HSP (400mg/10g diet), TCE (10μM/10g diet) and TCE (10μM/10g diet)+HSP (400mg/10g diet) respectively in the diet for 5days. Then, selected oxidative stress and antioxidant markers were evaluated. The results showed that TCE significantly increased the level of reactive oxygen species (ROS) and inhibited catalase, glutathione S-transferase and acetylcholinesterase (AChE) activities with concurrent depletion of total thiol level. However, co-administration of TCE and hesperidin mitigated TCE-induced depletion of antioxidants, and restored ROS level and AChE activity in the flies (p<0.05). Overall, hesperidin offered protective potency on TCE-induced oxidative stress in the flies via anti-oxidative mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sperm production responds to perceived sperm competition risk in male Drosophila melanogaster.

    PubMed

    Moatt, Joshua P; Dytham, Calvin; Thom, Michael D F

    2014-05-28

    Postcopulatory sexual selection arising from female multiple mating leads to the evolution of ejaculates that maximize a male's reproductive success under sperm competition. Where the risk of sperm competition is variable, optimal fitness may be achieved by plastically altering ejaculate characteristics in response to the prevailing sperm competition environment. In the model species Drosophila melanogaster, males expecting to encounter sperm competition mate for longer and transfer more accessory proteins and sperm. Here we show that after being housed with a single rival for one week, the seminal vesicles of male D. melanogaster contain a significantly greater proportion of live sperm than those of males maintained alone, indicating adaptive adjustment of sperm quality in response to the perceived risk of sperm competition. This effect is due to an increase in the number of live sperm produced, indicating that males upregulate sperm production in response to the presence of rivals. Our data suggest that males show plasticity in the rate of spermatogenesis that is adaptive in the context of a fluctuating sperm competition environment. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. 1H, 15N, 13C resonance assignment of folded and 8 M urea-denatured state of SUMO from Drosophila melanogaster.

    PubMed

    Kumar, Dinesh; Kumar, Ashutosh; Misra, Jyoti Ranjan; Chugh, Jeetender; Sharma, Shilpy; Hosur, Ramakrishna V

    2008-06-01

    SUMO, an important post-translational modifier of variety of substrate proteins, regulates different cellular functions. Here, we report the NMR resonance assignment of the folded and 8 M urea-denatured state of SUMO from Drosophila melanogaster (dsmt3).

  5. Ethanol confers differential protection against generalist and specialist parasitoids of Drosophila melanogaster.

    PubMed

    Lynch, Zachary R; Schlenke, Todd A; Morran, Levi T; de Roode, Jacobus C

    2017-01-01

    As parasites coevolve with their hosts, they can evolve counter-defenses that render host immune responses ineffective. These counter-defenses are more likely to evolve in specialist parasites than generalist parasites; the latter face variable selection pressures between the different hosts they infect. Natural populations of the fruit fly Drosophila melanogaster are commonly threatened by endoparasitoid wasps in the genus Leptopilina, including the specialist L. boulardi and the generalist L. heterotoma, and both wasp species can incapacitate the cellular immune response of D. melanogaster larvae. Given that ethanol tolerance is high in D. melanogaster and stronger in the specialist wasp than the generalist, we tested whether fly larvae could use ethanol as an anti-parasite defense and whether its effectiveness would differ against the two wasp species. We found that fly larvae benefited from eating ethanol-containing food during exposure to L. heterotoma; we observed a two-fold decrease in parasitization intensity and a 24-fold increase in fly survival to adulthood. Although host ethanol consumption did not affect L. boulardi parasitization rates or intensities, it led to a modest increase in fly survival. Thus, ethanol conferred stronger protection against the generalist wasp than the specialist. We tested whether fly larvae can self-medicate by seeking ethanol-containing food after being attacked by wasps, but found no support for this hypothesis. We also allowed female flies to choose between control and ethanol-containing oviposition sites in the presence vs. absence of wasps and generally found significant preferences for ethanol regardless of wasp presence. Overall, our results suggest that D. melanogaster larvae obtain protection from certain parasitoid wasp species through their mothers' innate oviposition preferences for ethanol-containing food sources.

  6. Modeling glial contributions to seizures and epileptogenesis: cation-chloride cotransporters in Drosophila melanogaster.

    PubMed

    Rusan, Zeid M; Kingsford, Olivia A; Tanouye, Mark A

    2014-01-01

    Flies carrying a kcc loss-of-function mutation are more seizure-susceptible than wild-type flies. The kcc gene is the highly conserved Drosophila melanogaster ortholog of K+/Cl- cotransporter genes thought to be expressed in all animal cell types. Here, we examined the spatial and temporal requirements for kcc loss-of-function to modify seizure-susceptibility in flies. Targeted RNA interference (RNAi) of kcc in various sets of neurons was sufficient to induce severe seizure-sensitivity. Interestingly, kcc RNAi in glia was particularly effective in causing seizure-sensitivity. Knockdown of kcc in glia or neurons during development caused a reduction in seizure induction threshold, cell swelling, and brain volume increase in 24-48 hour old adult flies. Third instar larval peripheral nerves were enlarged when kcc RNAi was expressed in neurons or glia. Results suggest that a threshold of K+/Cl- cotransport dysfunction in the nervous system during development is an important determinant of seizure-susceptibility in Drosophila. The findings presented are the first attributing a causative role for glial cation-chloride cotransporters in seizures and epileptogenesis. The importance of elucidating glial cell contributions to seizure disorders and the utility of Drosophila models is discussed.

  7. Characterization and cloning of tripeptidyl peptidase II from the fruit fly, Drosophila melanogaster.

    PubMed

    Renn, S C; Tomkinson, B; Taghert, P H

    1998-07-24

    We describe the characterization, cloning, and genetic analysis of tripeptidyl peptidase II (TPP II) from Drosophila melanogaster. Mammalian TPP II removes N-terminal tripeptides, has wide distribution, and has been identified as the cholecystokinin-degrading peptidase in rat brain. Size exclusion and ion exchange chromatography produced a 70-fold purification of dTPP II activity from Drosophila tissue extracts. The substrate specificity and the inhibitor sensitivity of dTPP II is comparable to that of the human enzyme. In particular, dTPP II is sensitive to butabindide, a specific inhibitor of the rat cholecystokinin-inactivating activity. We isolated a 4309-base pair dTPP II cDNA which predicts a 1354-amino acid protein. The deduced human and Drosophila TPP II proteins display 38% overall identity. The catalytic triad, its spacing, and the sequences that surround it are highly conserved; the C-terminal end of dTPP II contains a 100-amino acid insert not found in the mammalian proteins. Recombinant dTPP II displays the predicted activity following expression in HEK cells. TPP II maps to cytological position 49F4-7; animals deficient for this interval show reduced TPP II activity.

  8. Resources for Biological Annotation of the Drosophila Genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald M. Rubin

    2005-08-08

    This project supported seed money for the development of cDNA and genetic resources to support studies of the Drosophila melanogaster genome. Key publications supported by this work that provide additional detail: (1) ''The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes''; and (2) ''The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes''.

  9. Targeted Lipidomics in Drosophila melanogaster Identifies Novel 2-Monoacylglycerols and N-acyl Amides

    PubMed Central

    Takacs, Sara M.; Stuart, Jordyn M.; Basnet, Arjun; Raboune, Siham; Widlanski, Theodore S.; Doherty, Patrick; Bradshaw, Heather B.

    2013-01-01

    Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling. PMID:23874457

  10. Duplication of Drosophila melanogaster mitochondrial EF-Tu: pre-adaptation to T-arm truncation and exclusion of bulky aminoacyl residues.

    PubMed

    Sato, Aya; Suematsu, Takuma; Aihara, Koh-Ki; Kita, Kiyoshi; Suzuki, Tsutomu; Watanabe, Kimitsuna; Ohtsuki, Takashi; Watanabe, Yoh-Ichi

    2017-03-07

    Translation elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA (aa-tRNA) to ribosomes in protein synthesis. EF-Tu generally recognizes aminoacyl moieties and acceptor- and T-stems of aa-tRNAs. However, nematode mitochondrial (mt) tRNAs frequently lack all or part of the T-arm that is recognized by canonical EF-Tu. We previously reported that two distinct EF-Tu species, EF-Tu1 and EF-Tu2, respectively, recognize mt tRNAs lacking T-arms and D-arms in the mitochondria of the chromadorean nematode Caenorhabditis elegans C. elegans EF-Tu2 specifically recognizes the seryl moiety of serylated D-armless tRNAs. Mitochondria of the enoplean nematode Trichinella possess three structural types of tRNAs: T-armless tRNAs, D-armless tRNAs, and cloverleaf tRNAs with a short T-arm. Trichinella mt EF-Tu1 binds to all three types and EF-Tu2 binds only to D-armless Ser-tRNAs, showing an evolutionary intermediate state from canonical EF-Tu to chromadorean nematode (e.g. C. elegans ) EF-Tu species. We report here that two EF-Tu species also participate in Drosophila melanogaster mitochondria. Both D. melanogaster EF-Tu1 and EF-Tu2 bound to cloverleaf and D-armless tRNAs. D. melanogaster EF-Tu1 has the ability to recognize T-armless tRNAs that do not evidently exist in D. melanogaster mitochondria, but do exist in related arthropod species. In addition, D. melanogaster EF-Tu2 preferentially bound to aa-tRNAs carrying small amino acids, but not to aa-tRNAs carrying bulky amino acids. These results suggest that the Drosophila mt translation system could be another intermediate state between the canonical and nematode mitochondria-type translation systems. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  11. DNA Sequence Variation at the Period Locus within and among Species of the Drosophila Melanogaster Complex

    PubMed Central

    Kliman, R. M.; Hey, J.

    1993-01-01

    A 1.9-kilobase region of the period locus was sequenced in six individuals of Drosophila melanogaster and from six individuals of each of three sibling species: Drosophila simulans, Drosophila sechellia and Drosophila mauritiana. Extensive genealogical analysis of 174 polymorphic sites reveals a complex history. It appears that D. simulans, as a large population still segregating very old lineages, gave rise to the island species D. mauritiana and D. sechellia. Rather than considering these speciation events as having produced ``sister'' taxa, it seems more appropriate to consider D. simulans a parent species to D. sechellia and D. mauritiana. The order, in time, of these two phylogenetic events remains unclear. D. mauritiana supports a large number of polymorphisms, many of which are shared with D. simulans, and so appears to have begun and persisted as a large population. In contrast, D. sechellia has very little variation and seems to have experienced a severe population bottleneck. Alternatively, the low variation in D. sechellia could be due to recent directional selection and genetic hitchhiking at or near the per locus. PMID:8436278

  12. Gamma radiation tolerance in different life stages of the fruit fly Drosophila melanogaster.

    PubMed

    Paithankar, Jagdish Gopal; Deeksha, K; Patil, Rajashekhar K

    2017-04-01

    Insects are known to have higher levels of radiation tolerance than mammals. The fruit fly Drosophila provides opportunities for genetic analysis of radiation tolerance in insects. A knowledge of stage-specific sensitivity is required to understand the mechanisms and test the existing hypothesis of insect radiation tolerance. Drosophila melanogaster were irradiated using gamma rays at different life stages. Irradiation doses were chosen to start from 100-2200 Gy with increments of 100 Gy, with a dose rate of 12.5 and 25 Gy/min. The threshold of mortality, LD 50 and LD 100 1 h post-irradiation was recorded for larvae and adults and 24 h post-irradiation for eggs and after 2-3 days for early and late pupae. Total antioxidant capacity for all the life stages was measured using the phosphomolybdenum method. Twenty-four hours post-irradiation, 100% mortality was recorded for eggs at 1000 Gy. One hour post irradiation 100% mortality was recorded at 1300 Gy for first instar larvae, 1700 Gy for second instar larvae, 1900 Gy for feeding third instar larvae and 2200 Gy for non-feeding third instar larvae. Post-irradiation complete failure of emergence (100% mortality) was observed at 130 Gy for early pupae and 1500 Gy for late pupae; 100% mortality was observed at 1500 Gy for adults. The values of LD 50 were recorded as 452 Gy for eggs, 1049 Gy for first instar larvae, 1350 Gy for second instar larvae, 1265 Gy for feeding third instar larvae, 1590 Gy for non-feeding third instar larvae, 50 Gy for early pupae, 969 Gy for late pupae, 1228 Gy for adult males and 1250 Gy for adult females. Early pupae were found to be prone to radiation, whereas the non-feeding third instar larvae were most resistant among all stages. The chromosome number being constant and total antioxidant capacity being nearly constant in all stages, we suggest that high rate of cell division during early pupae makes this stage sensitive to radiation.

  13. NECTARINE PROMOTES LONGEVITY IN DROSOPHILA MELANOGASTER

    PubMed Central

    Boyd, Olga; Weng, Peter; Sun, Xiaoping; Alberico, Thomas; Laslo, Mara; Obenland, David M.; Kern, Bradley; Zou, Sige

    2011-01-01

    Fruits containing high antioxidant capacities and other bioactivities are ideal for promoting longevity and healthspan. However, few fruits are known to improve the survival and healthspan in animals, let alone the underlying mechanisms. Here we investigate the effect of nectarine, a globally consumed fruit, on lifespan and healthspan in Drosophila melanogaster. Wild-type flies were fed the standard, dietary restriction (DR) or high fat diets supplemented with 0–4% nectarine extract. We measured lifespan, food intake, locomotor activity, fecundity, gene expression changes, and oxidative damage indicated by the level of 4-Hydroxynonenal-protein adduct in these flies. We also measured lifespan, locomotor activity and oxidative damage of sod1 mutant flies on the standard diet supplemented with 0–4% nectarine. Supplementation of 4% nectarine extended lifespan, increased fecundity and decreased expression of some metabolic genes, including a key gluconeogenesis gene PEPCK, and oxidative stress response genes, including peroxiredoxins, in female wild-type flies fed the standard, DR or high fat diet. Nectarine reduced oxidative damage in wild-type females fed the high fat diet. Moreover, nectarine improved the survival and reduced oxidative damage in female sod1 mutant flies. Together, these findings suggest that nectarine promotes longevity and healthspan partly through modulating glucose metabolism and reducing oxidative damage. PMID:21406223

  14. Experimental evolution of slowed cognitive aging in Drosophila melanogaster.

    PubMed

    Zwoinska, Martyna K; Maklakov, Alexei A; Kawecki, Tadeusz J; Hollis, Brian

    2017-03-01

    Reproductive output and cognitive performance decline in parallel during aging, but it is unknown whether this reflects a shared genetic architecture or merely the declining force of natural selection acting independently on both traits. We used experimental evolution in Drosophila melanogaster to test for the presence of genetic variation for slowed cognitive aging, and assess its independence from that responsible for other traits' decline with age. Replicate experimental populations experienced either joint selection on learning and reproduction at old age (Old + Learning), selection on late-life reproduction alone (Old), or a standard two-week culture regime (Young). Within 20 generations, the Old + Learning populations evolved a slower decline in learning with age than both the Old and Young populations, revealing genetic variation for cognitive aging. We found little evidence for a genetic correlation between cognitive and demographic aging: although the Old + Learning populations tended to show higher late-life fecundity than Old populations, they did not live longer. Likewise, selection for late reproduction alone did not result in improved late-life learning. Our results demonstrate that Drosophila harbor genetic variation for cognitive aging that is largely independent from genetic variation for demographic aging and suggest that these two aspects of aging may not necessarily follow the same trajectories. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  15. Detection of Volatile Indicators of Illicit Substances by the Olfactory Receptors of Drosophila melanogaster

    PubMed Central

    Marshall, Brenton; Warr, Coral G.

    2010-01-01

    Insects can detect a large range of odors with a numerically simple olfactory system that delivers high sensitivity and accurate discrimination. Therefore, insect olfactory receptors hold great promise as biosensors for detection of volatile organic chemicals in a range of applications. The array of olfactory receptor neurons of Drosophila melanogaster is rapidly becoming the best-characterized natural nose. We have investigated the suitability of Drosophila receptors as detectors for volatiles with applications in law enforcement, emergency response, and security. We first characterized responses of the majority of olfactory neuron types to a set of diagnostic odorants. Being thus able to correctly identify neurons, we then screened for responses from 38 different types of neurons to 35 agents. We identified 13 neuron types with responses to 13 agents. As individual Drosophila receptor genes have been mapped to neuron types, we can infer which genes confer responsiveness to the neurons. The responses were confirmed for one receptor by expressing it in a nonresponsive neuron. The fly olfactory system is mainly adapted to detect volatiles from fermenting fruits. However, our findings establish that volatiles associated with illicit substances, many of which are of nonnatural origin, are also detected by Drosophila receptors. PMID:20530374

  16. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    PubMed Central

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  17. Crystallization and preliminary X-ray data analysis of β-alanine synthase from Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundgren, Stina; Andersen, Birgit; Piškur, Jure

    2007-10-01

    β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine. Crystals of the recombinant enzyme from D. melanogaster belong to space group C2. Diffraction data to 3.3 Å resolution were collected and analyzed. β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine, which represents the main clearance route for the widely used anticancer drug 5-fluorouracil. Crystals of the recombinant enzyme from Drosophila melanogaster, which is closely related to the human enzyme, were obtained by the hanging-drop vapour-diffusion method. They diffracted to 3.3 Å at a synchrotron-radiation source, belong tomore » space group C2 (unit-cell parameters a = 278.9, b = 95.0, c = 199.3 Å, β = 125.8°) and contain 8–10 molecules per asymmetric unit.« less

  18. Regulation of Sleep by Insulin-like Peptide System in Drosophila melanogaster

    PubMed Central

    Cong, Xiaona; Wang, Haili; Liu, Zhenxing; He, Chunxia; An, Chunju; Zhao, Zhangwu

    2015-01-01

    Study Objectives: Most organisms have behavioral and physiological circadian rhythms, which are controlled by an endogenous clock. Although genetic analysis has revealed the intracellular mechanism of the circadian clock, the manner in which this clock communicates its temporal information to produce systemic regulation is still largely unknown. Design: Sleep behavior was measured using the Drosophila Activity Monitoring System (DAMS) monitor under a 12 h light:12 h dark cycle and constant darkness (DD), and 5 min without recorded activity were defined as a bout of sleep. Results: Here we show that Drosophila insulin-like peptides (DILPs) and their receptor (DInR) regulate sleep behavior. All mutants of the seven dilps and the mutant of their receptor exhibit decreases of total sleep except dilp4 mutants, whereas upregulation of DILP and DInR in the nervous system led to increased sleep. Histological analysis identified four previously unidentified neurons expressing DILP: D1, P1, L1, and L2, of which L1 and L2 belong to the LNd and LNv clock neurons that separately regulate different times of sleep. In addition, dilp2 levels significantly decrease when flies were fasted, which is consistent with a previous report that starvation inhibits sleep, further indicating that the dilp system is involved in sleep regulation. Conclusion: Taken together, the results indicate that the Drosophila insulin-like peptide system is a crucial regulator of sleep. Citation: Cong X, Wang H, Liu Z, He C, An C, Zhao Z. Regulation of sleep by insulin-like peptide system in Drosophila melanogaster. SLEEP 2015;38(7):1075–1083. PMID:25581915

  19. Quantifying variation in the ability of yeasts to attract Drosophila melanogaster.

    PubMed

    Palanca, Loida; Gaskett, Anne C; Günther, Catrin S; Newcomb, Richard D; Goddard, Matthew R

    2013-01-01

    Yeasts that invade and colonise fruit significantly enhance the volatile chemical diversity of this ecosystem. These modified bouquets are thought to be more attractive to Drosophila flies than the fruit alone, but the variance of attraction in natural yeast populations is uncharacterised. Here we investigate how a range of yeast isolates affect the attraction of female D. melanogaster to fruit in a simple two choice assay comparing yeast to sterile fruit. Of the 43 yeast isolates examined, 33 were attractive and seven repellent to the flies. The results of isolate-versus-isolate comparisons provided the same relative rankings. Attractiveness varied significantly by yeast, with the strongly fermenting Saccharomyces species generally being more attractive than the mostly respiring non-Saccharomyces species (P = 0.0035). Overall the habitat (fruit or other) from which the isolates were directly sampled did not explain attraction (P = 0.2352). However, yeasts isolated from fruit associated niches were more attractive than those from non-fruit associated niches (P = 0.0188) regardless of taxonomic positioning. These data suggest that while attractiveness is primarily correlated with phylogenetic status, the ability to attract Drosophila is a labile trait among yeasts that is potentially associated with those inhabiting fruit ecosystems. Preliminary analysis of the volatiles emitted by four yeast isolates in grape juice show the presence/absence of ethanol and acetic acid were not likely explanations for the observed variation in attraction. These data demonstrate variation among yeasts for their ability to attract Drosophila in a pattern that is consistent with the hypothesis that certain yeasts are manipulating fruit odours to mediate interactions with their Drosophila dispersal agent.

  20. Lack of Spontaneous Sister Chromatid Exchanges in Somatic Cells of DROSOPHILA MELANOGASTER

    PubMed Central

    Gatti, M.; Santini, G.; Pimpinelli, S.; Olivieri, G.

    1979-01-01

    Neural ganglia of wild type third-instar larvae of Drosophila melanogaster were incubated for 13 hours at various concentrations of BUdR (1, 3, 9, 27 µg/ml). Metaphases were collected with colchicine, stained with Hoechst 33258, and scored under a fluorescence microscope. Metaphases in which the sister chromatids were clearly differentiated were scored for the presence of sister-chromatid exchanges (SCEs). At the lowest concentration of BUdR (1 µg/ml), no SCEs were observed in either male or female neuroblasts. The SCEs were found at the higher concentrations of BUdR (3, 9 and 27 µg/ml) and with a greater frequency in females than in males. Therefore SCEs are not a spontaneous phenomenon in D. melanogaster, but are induced by BUdR incorporated in the DNA. A striking nonrandomness was found in the distribution of SCEs along the chromosomes. More than a third of the SCEs were clustered in the junctions between euchromatin and heterochromatin. The remaining SCEs were preferentially localized within the heterochromatic regions of the X chromosome and the autosomes and primarily on the entirely heterochromatic Y chromosome.—In order to find an alternative way of measuring the frequency of SCEs in Drosophila neuroblasts, the occurrence of double dicentric rings was studied in two stocks carrying monocentric ring-X chromosomes. One ring chromosome, C(1)TR 94–2, shows a rate of dicentric ring formation corresponding to the frequency of SCEs observed in the BUdR-labelled rod chromosomes. The other ring studied, R(1)2, exhibits a frequency of SCEs higher than that observed with both C(1)TR 94–2 and rod chromosomes. PMID:109350

  1. Microbiota-Mediated Modulation of Organophosphate Insecticide Toxicity by Species-Dependent Interactions with Lactobacilli in a Drosophila melanogaster Insect Model.

    PubMed

    Daisley, Brendan A; Trinder, Mark; McDowell, Tim W; Collins, Stephanie L; Sumarah, Mark W; Reid, Gregor

    2018-05-01

    Despite the benefits to the global food supply and agricultural economies, pesticides are believed to pose a threat to the health of both humans and wildlife. Chlorpyrifos (CP), a commonly used organophosphate insecticide, has poor target specificity and causes acute neurotoxicity in a wide range of species via the suppression of acetylcholinesterase. This effect is exacerbated 10- to 100-fold by chlorpyrifos oxon (CPO), a principal metabolite of CP. Since many animal-associated symbiont microorganisms are known to hydrolyze CP into CPO, we used a Drosophila melanogaster insect model to investigate the hypothesis that indigenous and probiotic bacteria could affect CP metabolism and toxicity. Antibiotic-treated and germfree D. melanogaster insects lived significantly longer than their conventionally reared counterparts when exposed to 10 μM CP. Drosophila melanogaster gut-derived Lactobacillus plantarum , but not Acetobacter indonesiensis , was shown to metabolize CP. Liquid chromatography tandem-mass spectrometry confirmed that the L. plantarum isolate preferentially metabolized CP into CPO when grown in CP-spiked culture medium. Further experiments showed that monoassociating germfree D. melanogaster with the L. plantarum isolate could reestablish a conventional-like sensitivity to CP. Interestingly, supplementation with the human probiotic Lactobacillus rhamnosus GG (a strain that binds but does not metabolize CP) significantly increased the survival of the CP-exposed germfree D. melanogaster This suggests strain-specific differences in CP metabolism may exist among lactobacilli and emphasizes the need for further investigation. In summary, these results suggest that (i) CPO formation by the gut microbiota can have biologically relevant consequences for the host, and (ii) probiotic lactobacilli may be beneficial in reducing in vivo CP toxicity. IMPORTANCE An understudied area of research is how the microbiota (microorganisms living in/on an animal) affects the

  2. Circadian Rhythms and Sleep in Drosophila melanogaster

    PubMed Central

    Dubowy, Christine; Sehgal, Amita

    2017-01-01

    The advantages of the model organism Drosophila melanogaster, including low genetic redundancy, functional simplicity, and the ability to conduct large-scale genetic screens, have been essential for understanding the molecular nature of circadian (∼24 hr) rhythms, and continue to be valuable in discovering novel regulators of circadian rhythms and sleep. In this review, we discuss the current understanding of these interrelated biological processes in Drosophila and the wider implications of this research. Clock genes period and timeless were first discovered in large-scale Drosophila genetic screens developed in the 1970s. Feedback of period and timeless on their own transcription forms the core of the molecular clock, and accurately timed expression, localization, post-transcriptional modification, and function of these genes is thought to be critical for maintaining the circadian cycle. Regulators, including several phosphatases and kinases, act on different steps of this feedback loop to ensure strong and accurately timed rhythms. Approximately 150 neurons in the fly brain that contain the core components of the molecular clock act together to translate this intracellular cycling into rhythmic behavior. We discuss how different groups of clock neurons serve different functions in allowing clocks to entrain to environmental cues, driving behavioral outputs at different times of day, and allowing flexible behavioral responses in different environmental conditions. The neuropeptide PDF provides an important signal thought to synchronize clock neurons, although the details of how PDF accomplishes this function are still being explored. Secreted signals from clock neurons also influence rhythms in other tissues. SLEEP is, in part, regulated by the circadian clock, which ensures appropriate timing of sleep, but the amount and quality of sleep are also determined by other mechanisms that ensure a homeostatic balance between sleep and wake. Flies have been useful

  3. Biogenesis of Golgi Stacks in Imaginal Discs of Drosophila melanogaster

    PubMed Central

    Kondylis, Vangelis; Goulding, Sarah E.; Dunne, Jonathan C.; Rabouille, Catherine

    2001-01-01

    We provide a detailed description of Golgi stack biogenesis that takes place in vivo during one of the morphogenetic events in the lifespan of Drosophila melanogaster. In early third-instar larvae, small clusters consisting mostly of vesicles and tubules were present in epithelial imaginal disk cells. As larvae progressed through mid- and late-third instar, these larval clusters became larger but also increasingly formed cisternae, some of which were stacked. In white pupae, the typical Golgi stack was observed. We show that larval clusters are Golgi stack precursors by 1) localizing various Golgi-specific markers to the larval clusters by electron and immunofluorescence confocal microscopy, 2) driving this conversion in wild-type larvae incubated at 37°C for 2 h, and 3) showing that this conversion does not take place in an NSF1 mutant (comt 17). The biological significance of this conversion became clear when we found that the steroid hormone 20-hydroxyecdysone (ecdysone) is critically involved in this conversion. In its absence, Golgi stack biogenesis did not occur and the larval clusters remained unaltered. We showed that dGM130 and sec23p expression increases approximately three- and fivefold, respectively, when discs are exposed to ecdysone in vivo and in vitro. Taken together, these results suggest that we have developed an in vivo system to study the ecdysone-triggered Golgi stack biogenesis. PMID:11514618

  4. Drosophila melanogaster cellular repressor of E1A-stimulated genes is a lysosomal protein essential for fly development

    PubMed Central

    Kowalewski-Nimmerfall, Elisabeth; Schähs, Philipp; Maresch, Daniel; Rendic, Dubravko; Krämer, Helmut; Mach, Lukas

    2014-01-01

    Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be substantially reduced by RNAi-mediated silencing of cathepsin L. In contrast to mammalian cells, lysosomal delivery of dCREG does not depend on its carbohydrate moiety. Furthermore, depletion of the putative D. melanogaster lysosomal sorting receptor lysosomal enzyme receptor protein did not compromise cellular retention of dCREG. We also investigated the developmental consequences of dCREG ablation in whole D. melanogaster flies. Ubiquitous depletion of dCREG proved lethal at the late pupal stage once a knock-down efficiency of > 95% was achieved. These results demonstrate that dCREG is essential for proper completion of fly development. PMID:25173815

  5. Drosophila melanogaster cellular repressor of E1A-stimulated genes is a lysosomal protein essential for fly development.

    PubMed

    Kowalewski-Nimmerfall, Elisabeth; Schähs, Philipp; Maresch, Daniel; Rendic, Dubravko; Krämer, Helmut; Mach, Lukas

    2014-12-01

    Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be substantially reduced by RNAi-mediated silencing of cathepsin L. In contrast to mammalian cells, lysosomal delivery of dCREG does not depend on its carbohydrate moiety. Furthermore, depletion of the putative D. melanogaster lysosomal sorting receptor lysosomal enzyme receptor protein did not compromise cellular retention of dCREG. We also investigated the developmental consequences of dCREG ablation in whole D. melanogaster flies. Ubiquitous depletion of dCREG proved lethal at the late pupal stage once a knock-down efficiency of >95% was achieved. These results demonstrate that dCREG is essential for proper completion of fly development. Copyright © 2014. Published by Elsevier B.V.

  6. Drosophila melanogaster (fruit fly) locomotion during a sounding rocket flight

    NASA Astrophysics Data System (ADS)

    Miller, Mark S.; Keller, Tony S.

    2008-05-01

    The locomotor activity of young Drosophila melanogaster (fruit fly) was studied during a Nike-Orion sounding rocket flight, which included a short-duration microgravity exposure. An infrared monitoring system was used to determine the activity level, instantaneous velocity, and continuous velocity of 240 (120 male, 120 female) fruit flies. Individual flies were placed in chambers that limit their motion to walking. Chambers were oriented both vertically and horizontally with respect to the rocket's longitudinal axis. Significant changes in Drosophila locomotion patterns were observed throughout the sounding rocket flight, including launch, microgravity exposure, payload re-entry, and after ocean impact. During the microgravity portion of the flight (3.8 min), large increases in all locomotion measurements for both sexes were observed, with some measurements doubling compared to pad (1 G) data. Initial effects of microgravity were probably delayed due to large accelerations from the payload despining immediately before entering microgravity. The results indicate that short-duration microgravity exposure has a large effect on locomotor activity for both males and females, at least for a short period of time. The locomotion increases may explain the increased male aging observed during long-duration exposure to microgravity. Studies focusing on long-duration microgravity exposure are needed to confirm these findings, and the relationship of increased aging and locomotion.

  7. Flamenco, a gene controlling the gypsy retrovirus of drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prud`homme, N.; Gans, M.; Masson, M.

    1995-02-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is table and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovo{sup D1} female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovo{sup D1} reversion assay, canmore » be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy. 40 refs., 10 figs., 6 tabs.« less

  8. Methods for quantifying simple gravity sensing in Drosophila melanogaster.

    PubMed

    Inagaki, Hidehiko K; Kamikouchi, Azusa; Ito, Kei

    2010-01-01

    Perception of gravity is essential for animals: most animals possess specific sense organs to detect the direction of the gravitational force. Little is known, however, about the molecular and neural mechanisms underlying their behavioral responses to gravity. Drosophila melanogaster, having a rather simple nervous system and a large variety of molecular genetic tools available, serves as an ideal model for analyzing the mechanisms underlying gravity sensing. Here we describe an assay to measure simple gravity responses of flies behaviorally. This method can be applied for screening genetic mutants of gravity perception. Furthermore, in combination with recent genetic techniques to silence or activate selective sets of neurons, it serves as a powerful tool to systematically identify neural substrates required for the proper behavioral responses to gravity. The assay requires 10 min to perform, and two experiments can be performed simultaneously, enabling 12 experiments per hour.

  9. Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along a microclimatic contrast in “Evolution Canyon,” Israel

    PubMed Central

    Michalak, Pawel; Minkov, Irina; Helin, Amanda; Lerman, Daniel N.; Bettencourt, Brian R.; Feder, Martin E.; Korol, Abraham B.; Nevo, Eviatar

    2001-01-01

    Substantial genetic differentiation, as great as among species, exists between populations of Drosophila melanogaster inhabiting opposite slopes of a small canyon. Previous work has shown that prezygotic sexual isolation and numerous differences in stress-related phenotypes have evolved between D. melanogaster populations in “Evolution Canyon,” Israel, in which slopes 100–400 m apart differ dramatically in aridity, solar radiation, and associated vegetation. Because the canyon's width is well within flies' dispersal capabilities, we examined genetic changes associated with local adaptation and incipient speciation in the absence of geographical isolation. Here we report remarkable genetic differentiation of microsatellites and divergence in the regulatory region of hsp70Ba which encodes the major inducible heat shock protein of Drosophila, in the two populations. Additionally, an analysis of microsatellites suggests a limited exchange of migrants and lack of recent population bottlenecks. We hypothesize that adaptation to the contrasting microclimates overwhelms gene flow and is responsible for the genetic and phenotypic divergence between the populations. PMID:11687637

  10. Effects of high-LET particles /A-40/ on the brain of Drosophila melanogaster

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Herman, M. M.; Benton, E. V.; Welch, G.

    1976-01-01

    To investigate the effects of galactic heavy particles on nervous tissue, Drosophila melanogaster flies were exposed to A-40 from the Super-HILAC accelerator at the Lawrence Berkeley Laboratory. The energy of the particles reaching the Drosophila neurons was 4.8 MeV/nucleon, and the fluence ranged from 60,000 to 80 million particles/sq cm. Thirty-five days after irradiation at the higher fluences, extensive tissue fragmentation and cysts were found. At fluences as low as one hit/two cell bodies (about 5 million) and one hit/90 cell bodies (about 90,000 particles/sq cm or 21 rad average dose) swelling of neuronal cytoplasm and focally fragmented membranes were noted; at fluences ranging from one hit/six to one hit/135 cell bodies, there was frequently a marked increase in glial lamellae around nerve-cell processes, which often had degenerative features. These findings support the view that single hits by heavy particles may injure nervous tissue.

  11. Measurement of lifespan in Drosophila melanogaster.

    PubMed

    Linford, Nancy J; Bilgir, Ceyda; Ro, Jennifer; Pletcher, Scott D

    2013-01-07

    Aging is a phenomenon that results in steady physiological deterioration in nearly all organisms in which it has been examined, leading to reduced physical performance and increased risk of disease. Individual aging is manifest at the population level as an increase in age-dependent mortality, which is often measured in the laboratory by observing lifespan in large cohorts of age-matched individuals. Experiments that seek to quantify the extent to which genetic or environmental manipulations impact lifespan in simple model organisms have been remarkably successful for understanding the aspects of aging that are conserved across taxa and for inspiring new strategies for extending lifespan and preventing age-associated disease in mammals. The vinegar fly, Drosophila melanogaster, is an attractive model organism for studying the mechanisms of aging due to its relatively short lifespan, convenient husbandry, and facile genetics. However, demographic measures of aging, including age-specific survival and mortality, are extraordinarily susceptible to even minor variations in experimental design and environment, and the maintenance of strict laboratory practices for the duration of aging experiments is required. These considerations, together with the need to practice careful control of genetic background, are essential for generating robust measurements. Indeed, there are many notable controversies surrounding inference from longevity experiments in yeast, worms, flies and mice that have been traced to environmental or genetic artifacts(1-4). In this protocol, we describe a set of procedures that have been optimized over many years of measuring longevity in Drosophila using laboratory vials. We also describe the use of the dLife software, which was developed by our laboratory and is available for download (http://sitemaker.umich.edu/pletcherlab/software). dLife accelerates throughput and promotes good practices by incorporating optimal experimental design, simplifying

  12. Sisters Unbound Is Required for Meiotic Centromeric Cohesion in Drosophila melanogaster

    PubMed Central

    Krishnan, Badri; Thomas, Sharon E.; Yan, Rihui; Yamada, Hirotsugu; Zhulin, Igor B.; McKee, Bruce D.

    2014-01-01

    Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein. PMID:25194162

  13. Retention of Ejaculate by Drosophila melanogaster Females Requires the Male-Derived Mating Plug Protein PEBme.

    PubMed

    Avila, Frank W; Cohen, Allie B; Ameerudeen, Fatima S; Duneau, David; Suresh, Shruthi; Mattei, Alexandra L; Wolfner, Mariana F

    2015-08-01

    Within the mated reproductive tracts of females of many taxa, seminal fluid proteins (SFPs) coagulate into a structure known as the mating plug (MP). MPs have diverse roles, including preventing female remating, altering female receptivity postmating, and being necessary for mated females to successfully store sperm. The Drosophila melanogaster MP, which is maintained in the mated female for several hours postmating, is comprised of a posterior MP (PMP) that forms quickly after mating begins and an anterior MP (AMP) that forms later. The PMP is composed of seminal proteins from the ejaculatory bulb (EB) of the male reproductive tract. To examine the role of the PMP protein PEBme in D. melanogaster reproduction, we identified an EB GAL4 driver and used it to target PEBme for RNA interference (RNAi) knockdown. PEBme knockdown in males compromised PMP coagulation in their mates and resulted in a significant reduction in female fertility, adversely affecting postmating uterine conformation, sperm storage, mating refractoriness, egg laying, and progeny generation. These defects resulted from the inability of females to retain the ejaculate in their reproductive tracts after mating. The uncoagulated MP impaired uncoupling by the knockdown male, and when he ultimately uncoupled, the ejaculate was often pulled out of the female. Thus, PEBme and MP coagulation are required for optimal fertility in D. melanogaster. Given the importance of the PMP for fertility, we identified additional MP proteins by mass spectrometry and found fertility functions for two of them. Our results highlight the importance of the MP and the proteins that comprise it in reproduction and suggest that in Drosophila the PMP is required to retain the ejaculate within the female reproductive tract, ensuring the storage of sperm by mated females. Copyright © 2015 by the Genetics Society of America.

  14. Rates and Genomic Consequences of Spontaneous Mutational Events in Drosophila melanogaster

    PubMed Central

    Schrider, Daniel R.; Houle, David; Lynch, Michael; Hahn, Matthew W.

    2013-01-01

    Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise. PMID:23733788

  15. Variable sexually dimorphic gene expression in laboratory strains of Drosophila melanogaster.

    PubMed

    Baker, Dean A; Meadows, Lisa A; Wang, Jing; Dow, Julian At; Russell, Steven

    2007-12-10

    Wild-type laboratory strains of model organisms are typically kept in isolation for many years, with the action of genetic drift and selection on mutational variation causing lineages to diverge with time. Natural populations from which such strains are established, show that gender-specific interactions in particular drive many aspects of sequence level and transcriptional level variation. Here, our goal was to identify genes that display transcriptional variation between laboratory strains of Drosophila melanogaster, and to explore evidence of gender-biased interactions underlying that variability. Transcriptional variation among the laboratory genotypes studied occurs more frequently in males than in females. Qualitative differences are also apparent to suggest that genes within particular functional classes disproportionately display variation in gene expression. Our analysis indicates that genes with reproductive functions are most often divergent between genotypes in both sexes, however a large proportion of female variation can also be attributed to genes without expression in the ovaries. The present study clearly shows that transcriptional variation between common laboratory strains of Drosophila can differ dramatically due to sexual dimorphism. Much of this variation reflects sex-specific challenges associated with divergent physiological trade-offs, morphology and regulatory pathways operating within males and females.

  16. Coevolution between Male and Female Genitalia in the Drosophila melanogaster Species Subgroup

    PubMed Central

    Yassin, Amir; Orgogozo, Virginie

    2013-01-01

    In contrast to male genitalia that typically exhibit patterns of rapid and divergent evolution among internally fertilizing animals, female genitalia have been less well studied and are generally thought to evolve slowly among closely-related species. As a result, few cases of male-female genital coevolution have been documented. In Drosophila, female copulatory structures have been claimed to be mostly invariant compared to male structures. Here, we re-examined male and female genitalia in the nine species of the D. melanogaster subgroup. We describe several new species-specific female genital structures that appear to coevolve with male genital structures, and provide evidence that the coevolving structures contact each other during copulation. Several female structures might be defensive shields against apparently harmful male structures, such as cercal teeth, phallic hooks and spines. Evidence for male-female morphological coevolution in Drosophila has previously been shown at the post-copulatory level (e.g., sperm length and sperm storage organ size), and our results provide support for male-female coevolution at the copulatory level. PMID:23451172

  17. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus

    PubMed Central

    Li-Byarlay, Hongmei; Pittendrigh, Barry R.; Murdock, Larry L.

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant–insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  18. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus.

    PubMed

    Li-Byarlay, Hongmei; Pittendrigh, Barry R; Murdock, Larry L

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology.

  19. Population Genomics of Inversion Polymorphisms in Drosophila melanogaster

    PubMed Central

    Corbett-Detig, Russell B.; Hartl, Daniel L.

    2012-01-01

    Chromosomal inversions have been an enduring interest of population geneticists since their discovery in Drosophila melanogaster. Numerous lines of evidence suggest powerful selective pressures govern the distributions of polymorphic inversions, and these observations have spurred the development of many explanatory models. However, due to a paucity of nucleotide data, little progress has been made towards investigating selective hypotheses or towards inferring the genealogical histories of inversions, which can inform models of inversion evolution and suggest selective mechanisms. Here, we utilize population genomic data to address persisting gaps in our knowledge of D. melanogaster's inversions. We develop a method, termed Reference-Assisted Reassembly, to assemble unbiased, highly accurate sequences near inversion breakpoints, which we use to estimate the age and the geographic origins of polymorphic inversions. We find that inversions are young, and most are African in origin, which is consistent with the demography of the species. The data suggest that inversions interact with polymorphism not only in breakpoint regions but also chromosome-wide. Inversions remain differentiated at low levels from standard haplotypes even in regions that are distant from breakpoints. Although genetic exchange appears fairly extensive, we identify numerous regions that are qualitatively consistent with selective hypotheses. Finally, we show that In(1)Be, which we estimate to be ∼60 years old (95% CI 5.9 to 372.8 years), has likely achieved high frequency via sex-ratio segregation distortion in males. With deeper sampling, it will be possible to build on our inferences of inversion histories to rigorously test selective models—particularly those that postulate that inversions achieve a selective advantage through the maintenance of co-adapted allele complexes. PMID:23284285

  20. Ethanol confers differential protection against generalist and specialist parasitoids of Drosophila melanogaster

    PubMed Central

    Schlenke, Todd A.; Morran, Levi T.; de Roode, Jacobus C.

    2017-01-01

    As parasites coevolve with their hosts, they can evolve counter-defenses that render host immune responses ineffective. These counter-defenses are more likely to evolve in specialist parasites than generalist parasites; the latter face variable selection pressures between the different hosts they infect. Natural populations of the fruit fly Drosophila melanogaster are commonly threatened by endoparasitoid wasps in the genus Leptopilina, including the specialist L. boulardi and the generalist L. heterotoma, and both wasp species can incapacitate the cellular immune response of D. melanogaster larvae. Given that ethanol tolerance is high in D. melanogaster and stronger in the specialist wasp than the generalist, we tested whether fly larvae could use ethanol as an anti-parasite defense and whether its effectiveness would differ against the two wasp species. We found that fly larvae benefited from eating ethanol-containing food during exposure to L. heterotoma; we observed a two-fold decrease in parasitization intensity and a 24-fold increase in fly survival to adulthood. Although host ethanol consumption did not affect L. boulardi parasitization rates or intensities, it led to a modest increase in fly survival. Thus, ethanol conferred stronger protection against the generalist wasp than the specialist. We tested whether fly larvae can self-medicate by seeking ethanol-containing food after being attacked by wasps, but found no support for this hypothesis. We also allowed female flies to choose between control and ethanol-containing oviposition sites in the presence vs. absence of wasps and generally found significant preferences for ethanol regardless of wasp presence. Overall, our results suggest that D. melanogaster larvae obtain protection from certain parasitoid wasp species through their mothers’ innate oviposition preferences for ethanol-containing food sources. PMID:28700600

  1. Comparative Analysis of Drosophila melanogaster Gut Microbiota with Respect to Host Strain, Sex, and Age.

    PubMed

    Han, Gangsik; Lee, Hyo Jung; Jeong, Sang Eun; Jeon, Che Ok; Hyun, Seogang

    2017-07-01

    Microbiota has a significant impact on the health of the host individual. The complexity of the interactions between mammalian hosts and their microbiota highlights the value of using Drosophila melanogaster as a model organism, because of its relatively simple microbial community and ease of physiological and genetic manipulation. However, highly variable and sometimes inconsistent results regarding the microbiota of D. melanogaster have been reported for host samples collected from different geographical locations; discrepancies that may be because of the inherent physiological conditions of the D. melanogaster host. Here, we conducted a comparative analysis of the gut microbiota of two D. melanogaster laboratory strains, w 1118 and Canton S, with respect to the sex and age of the host, by pyrosequencing of the 16S rRNA gene. In addition to the widespread and abundant commensal bacterial genera Lactobacillus and Acetobacter, we identified Enterococcus and Leuconostoc as major host-strain-specific bacterial genera. The relative proportions of these bacterial genera, and those of the species within each, were found to differ markedly with respect to strain, sex, and age of the host, even though host individuals were reared under the same nutritional conditions. By using various bioinformatic tools, we uncovered several characteristic features of microbiota corresponding to specific categories of the flies: host-sex-bias association of specific bacteria, age-dependent alteration of microbiota across host species and sex, and uniqueness of the microbiota of female w 1118 flies. Our results, thus, help to further our understanding of host-microbe interactions in the D. melanogaster model.

  2. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases

    PubMed Central

    Koon, Alex C.; Chan, Ho Yin Edwin

    2017-01-01

    For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development. PMID:28377694

  3. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas protegens strain Pf-5 is a soil bacterium that was first described for its activity in biological control of plant diseases and has since been shown to be lethal to certain insects. Among these is the fruit fly Drosophila melanogaster, a well-established model organism for studies evalu...

  4. Downregulation of dTps1 in Drosophila melanogaster larvae confirms involvement of trehalose in redox regulation following desiccation.

    PubMed

    Thorat, Leena; Mani, Krishna-Priya; Thangaraj, Pradeep; Chatterjee, Suvro; Nath, Bimalendu B

    2016-03-01

    As a survival strategy to environmental water deficits, desiccation-tolerant organisms are commonly known for their ability to recruit stress-protective biomolecules such as trehalose. We have previously reported the pivotal role of trehalose in larval desiccation tolerance in Drosophila melanogaster. Trehalose has emerged as a versatile molecule, serving mainly as energy source in insects and also being a stress protectant. While several recent reports have revealed the unconventional role of trehalose in scavenging reactive oxygen species in yeast and plants, this aspect has not received much attention in animals. We examined the status of desiccation-induced generation of reactive oxygen species in D. melanogaster larvae and the possible involvement of trehalose in ameliorating the harmful consequences thereof. Insect trehalose synthesis is governed by the enzyme trehalose 6-phosphate synthase 1 (TPS1). Using the ubiquitous da-GAL4-driven expression of the dTps1-RNAi transgene, we generated dTps1-downregulated Drosophila larvae possessing depleted levels of dTps1 transcripts. This resulted in the inability of the larvae for trehalose synthesis, thereby allowing us to elucidate the significance of trehalose in the regulation of desiccation-responsive redox homeostasis. Furthermore, the results from molecular genetics studies, biochemical assays, electron spin resonance analyses and a simple, non-invasive method of whole larval live imaging suggested that trehalose in collaboration with superoxide dismutase (SOD) is involved in the maintenance of redox state in D. melanogaster.

  5. Flying the fly: long-range flight behavior of Drosophila melanogaster to attractive odors.

    PubMed

    Becher, Paul G; Bengtsson, Marie; Hansson, Bill S; Witzgall, Peter

    2010-06-01

    The fruit fly, Drosophila melanogaster Meigen (Diptera: Drosophilidae), is a model for how animals sense, discriminate, and respond to chemical signals. However, with D. melanogaster our knowledge of the behavioral activity of olfactory receptor ligands has relied largely on close-range attraction, rather than on long-range orientation behavior. We developed a flight assay to relate chemosensory perception to behavior. Headspace volatiles from vinegar attracted 62% of assayed flies during a 15-min experimental period. Flies responded irrespective of age, sex, and mating state, provided they had been starved. To identify behaviorally relevant chemicals from vinegar, we compared the responses to vinegar and synthetic chemicals. Stimuli were applied by a piezoelectric sprayer at known and constant release rates. Re-vaporized methanol extracts of Super Q-trapped vinegar volatiles attracted as many flies as vinegar. The main volatile component of vinegar, acetic acid, elicited significant attraction as a single compound. Two other vinegar volatiles, 2-phenyl ethanol and acetoin, produced a synergistic effect when added to acetic acid. Geosmin, a microbiological off-flavor, diminished attraction to vinegar. This wind tunnel assay based on a conspicuous and unambiguous behavioral response provides the necessary resolution for the investigation of physiologically and ecologically relevant odors and will become an essential tool for the functional analysis of the D. melanogaster olfactory system.

  6. Unusual Variability of the Drosophila Melanogaster Ref(2)p Protein Which Controls the Multiplication of Sigma Rhabdovirus

    PubMed Central

    Dru, P.; Bras, F.; Dezelee, S.; Gay, P.; Petitjean, A. M.; Pierre-Deneubourg, A.; Teninges, D.; Contamine, D.

    1993-01-01

    The ref(2)P gene of Drosophila melanogaster was identified by the discovery of two alleles, P(o) and P(p), respectively, permissive and restrictive for sigma rhabdovirus multiplication. A surprising variability of this gene was first noticed by the observation of size differences between the transcripts of permissive and restrictive alleles. In this paper, another restrictive allele, P(n), clearly distinct from P(p), is described: it exhibits a weaker antiviral effect than P(p) and differs from P(p) by its molecular structure. Five types of alleles were distinguished on the basis of their molecular structure, as revealed by S1 nuclease analysis of 17 D. melanogaster strains; three alleles were permissive and two restrictive. Comparison of the sequences of four haplotypes revealed numerous point mutations, two deletions (21 and 24 bp) and a complex event involving a 3-bp deletion, all affected the coding region. The unusual variability of the ref(2)P locus was confirmed by the high ratio of amino acid replacements to synonymous mutations (7:1), as compared to that of other genes, such as the Adh (2:42). Nevertheless, nucleotide sequence comparison with the Drosophila erecta ref(2)P gene shows that selective pressures are exerted to maintain the existence of a functional protein. The effects of this high variability on the ref(2)P protein are discussed in relation to its specific antiviral properties and to its function in D. melanogaster, where it is required for male fertility. PMID:8462852

  7. Differential Microbial Diversity in Drosophila melanogaster: Are Fruit Flies Potential Vectors of Opportunistic Pathogens?

    PubMed Central

    Maldonado-Morales, Génesis; Bayman, Paul

    2017-01-01

    Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet many aspects regarding its microbial community and interactions with pathogens remain unclear. In this study wild D. melanogaster were collected from tropical fruits in Puerto Rico to test how the microbiota is distributed and to compare the culturable diversity of fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria. The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum candidum, Klebsiella oxytoca, Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D. melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health. PMID:29234354

  8. Increased production of piRNAs from euchromatic clusters and genes in Anopheles gambiae compared with Drosophila melanogaster.

    PubMed

    George, Phillip; Jensen, Silke; Pogorelcnik, Romain; Lee, Jiyoung; Xing, Yi; Brasset, Emilie; Vaury, Chantal; Sharakhov, Igor V

    2015-01-01

    Specific genomic loci, termed Piwi-interacting RNA (piRNA) clusters, manufacture piRNAs that serve as guides for the inactivation of complementary transposable elements (TEs). The piRNA pathway has been accurately detailed in Drosophila melanogaster, while it remains poorly examined in other insects. This pathway is increasingly recognized as critical for germline development and reproduction. Understanding of the piRNA functions in mosquitoes could offer an opportunity for disease vector control by the reduction of their reproductive potential. To analyze the similarities and differences in this pathway between Drosophila and mosquito, we performed an in-depth analysis of the genomic loci producing piRNAs and their targets in the African malaria vector Anopheles gambiae. We identified 187 piRNA clusters in the An. gambiae genome and 155 piRNA clusters in the D. melanogaster genome. We demonstrate that many more piRNA clusters in the mosquito compared with the fruit fly are uni-directionally transcribed and are located outside pericentromeric heterochromatin. About 11 % of the An. gambiae piRNA population map to gene transcripts. This is a noticeable increase compared with the ~6 % of the piRNA population mapped to genes in D. melanogaster. A subset of the piRNA-enriched genes in An. gambiae has functions related to reproduction and development. At least 24 and 65 % of the mapped piRNAs correspond to genomic TE sequences in An. gambiae and D. melanogaster, respectively. DNA transposons and non-LTR retrotransposons are more abundant in An. gambiae, while LTR retrotransposons are more abundant in D. melanogaster. Yet, piRNAs predominantly target LTR retrotransposons in both species, which may point to a distinct feature of these elements compared to the other classes of TEs concerning their silencing by the piRNA pathway. Here, we demonstrate that piRNA-producing loci have more ubiquitous distribution in the An. gambiae genome than in the genome of D

  9. Comparative study on the larvicidal activity of drimane sesquiterpenes and nordrimane compounds against Drosophila melanogaster til-til.

    PubMed

    Montenegro, Ivan; Pino, Luis; Werner, Enrique; Madrid, Alejandro; Espinoza, Luis; Moreno, Luis; Villena, Joan; Cuellar, Mauricio

    2013-04-10

    Natural compounds from Drimys winteri Forst and derivatives exhibited larvicidal effects against Drosophila melanogaster til-til. The most active compound was isodrimenin (4). The highest lethal concentration to the larvae of D. melanogaster was 4.5 ± 0.8 mg/L. At very low concentrations drimenol (1), confertifolin (3), and drimanol (5) displayed antifeedant and larvae growth regulatory activity. The antifeedant results of nordrimanic and drimanic compounds were better in first instar larvae. The EC₅₀ value of polygodial (2) was 60.0 ± 4.2 mg/L; of diol 15 45.0 ± 2.8 mg/L, and of diol 17 36.9 ± 3.7 mg/L, while the new nordrimane compound 12 presented a value of 83.2 ± 3.5 mg/L.

  10. Parallel trait adaptation across opposing thermal environments in experimental Drosophila melanogaster populations

    PubMed Central

    Tobler, Ray; Hermisson, Joachim; Schlötterer, Christian

    2015-01-01

    Thermal stress is a pervasive selective agent in natural populations that impacts organismal growth, survival, and reproduction. Drosophila melanogaster exhibits a variety of putatively adaptive phenotypic responses to thermal stress in natural and experimental settings; however, accompanying assessments of fitness are typically lacking. Here, we quantify changes in fitness and known thermal tolerance traits in replicated experimental D. melanogaster populations following more than 40 generations of evolution to either cyclic cold or hot temperatures. By evaluating fitness for both evolved populations alongside a reconstituted starting population, we show that the evolved populations were the best adapted within their respective thermal environments. More strikingly, the evolved populations exhibited increased fitness in both environments and improved resistance to both acute heat and cold stress. This unexpected parallel response appeared to be an adaptation to the rapid temperature changes that drove the cycling thermal regimes, as parallel fitness changes were not observed when tested in a constant thermal environment. Our results add to a small, but growing group of studies that demonstrate the importance of fluctuating temperature changes for thermal adaptation and highlight the need for additional work in this area. PMID:26080903

  11. Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence.

    PubMed

    Chen, Hanqing; Wang, Bing; Feng, Weiyue; Du, Wei; Ouyang, Hong; Chai, Zhifang; Bi, Xiaolin

    2015-05-01

    The potential impacts of nanomaterials (NMs) on fetal development have attracted great concerns because of the increased potential exposure to NMs during pregnancy. Drosophila melanogaster oogenesis and developmental transitions may provide an attractive system to study the biological and environmental effects of NMs on the embryonic development. In this study, the effects of three types of magnetite (Fe3O4) nanoparticles (MNPs): UN-MNPs (pristine), CA-MNPs (citric acid modified) and APTS-MNPs (3-aminopropyltriethoxylsilane coated) on the development of Drosophila at 300 and 600 μg/g dosage were studied. The uptake of MNPs by female and male flies caused obvious reduction in the female fecundity, and the developmental delay at the egg-pupae and pupae-adult transitions, especially in those treated by the positive APTS-MNPs. Further investigation demonstrates that the parental uptake of MNPs disturbs the oogenesis period, induces ovarian defect, reduces the length of eggs, decreases the number of nurse cells and delays egg chamber development, which may contribute to the decrease of fecundity of female Drosophila and the development delay of their offspring. Using the synchrotron radiation-based micro-X-ray fluorescence (SR-μXRF), the dyshomeostasis of trace elements such as Fe, Ca and Cu along the anterior-posterior axis of the fertilized eggs was found, which may be an important reason for the development delay of Drosophila.

  12. Genome-wide analysis of promoter architecture in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskins, Roger A.; Landolin, Jane M.; Brown, James B.

    2010-10-20

    Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLMRACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysismore » indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.« less

  13. Molecular Population Genetics of the Alcohol Dehydrogenase Gene Region of DROSOPHILA MELANOGASTER

    PubMed Central

    Aquadro, Charles F.; Desse, Susan F.; Bland, Molly M.; Langley, Charles H.; Laurie-Ahlberg, Cathy C.

    1986-01-01

    Variation in the DNA restriction map of a 13-kb region of chromosome II including the alcohol dehydrogenase structural gene (Adh) was examined in Drosophila melanogaster from natural populations. Detailed analysis of 48 D. melanogaster lines representing four eastern United States populations revealed extensive DNA sequence variation due to base substitutions, insertions and deletions. Cloning of this region from several lines allowed characterization of length variation as due to unique sequence insertions or deletions [nine sizes; 21–200 base pairs (bp)] or transposable element insertions (several sizes, 340 bp to 10.2 kb, representing four different elements). Despite this extensive variation in sequences flanking the Adh gene, only one length polymorphism is clearly associated with altered Adh expression (a copia element approximately 250 bp 5' to the distal transcript start site). Nonetheless, the frequency spectra of transposable elements within and between Drosophila species suggests they are slightly deleterious. Strong nonrandom associations are observed among Adh region sequence variants, ADH allozyme (Fast vs. Slow), ADH enzyme activity and the chromosome inversion ln(2L) t. Phylogenetic analysis of restriction map haplotypes suggest that the major twofold component of ADH activity variation (high vs. low, typical of Fast and Slow allozymes, respectively) is due to sequence variation tightly linked to and possibly distinct from that underlying the allozyme difference. The patterns of nucleotide and haplotype variation for Fast and Slow allozyme lines are consistent with the recent increase in frequency and spread of the Fast haplotype associated with high ADH activity. These data emphasize the important role of evolutionary history and strong nonrandom associations among tightly linked sequence variation as determinants of the patterns of variation observed in natural populations. PMID:3026893

  14. Intraspecific competition favours niche width expansion in Drosophila melanogaster.

    PubMed

    Bolnick, D I

    2001-03-22

    Ecologists have proposed that when interspecific competition is reduced, competition within a species becomes a potent evolutionary force leading to rapid diversification. This view reflects the observation that populations invading species-poor communities frequently evolve broader niches. Niche expansion can be associated with an increase in phenotypic variance (known as character release), with the evolution of polymorphisms, or with divergence into many species using distinct resources (adaptive radiation). The relationship between intraspecific competition and diversification is known from theory, and has been used as the foundation for some models of speciation. However, there has been little empirical proof that niches evolve in response to intraspecific competition. To test this hypothesis, I introduced cadmium-intolerant Drosophila melanogaster populations to environments containing both cadmium-free and cadmium-laced resources. Here I show that populations experiencing high competition adapted to cadmium more rapidly than low competition populations. This provides experimental confirmation that competition in a population can drive niche expansion onto new resources for which competition is less severe.

  15. Evolution under monogamy feminizes gene expression in Drosophila melanogaster.

    PubMed

    Hollis, Brian; Houle, David; Yan, Zheng; Kawecki, Tadeusz J; Keller, Laurent

    2014-03-18

    Many genes have evolved sexually dimorphic expression as a consequence of divergent selection on males and females. However, because the sexes share a genome, the extent to which evolution can shape gene expression independently in each sex is controversial. Here, we use experimental evolution to reveal suboptimal sex-specific expression for much of the genome. By enforcing a monogamous mating system in populations of Drosophila melanogaster for over 100 generations, we eliminated major components of selection on males: female choice and male-male competition. If gene expression is subject to sexually antagonistic selection, relaxed selection on males should cause evolution towards female optima. Monogamous males and females show this pattern of feminization in both the whole-body and head transcriptomes. Genes with male-biased expression patterns evolved decreased expression under monogamy, while genes with female-biased expression evolved increased expression, relative to polygamous populations. Our results demonstrate persistent and widespread evolutionary tension between male and female adaptation.

  16. Assessment of virulence diversity of methicillin-resistant Staphylococcus aureus strains with a Drosophila melanogaster infection model.

    PubMed

    Wu, Kaiyu; Conly, John; Surette, Michael; Sibley, Christopher; Elsayed, Sameer; Zhang, Kunyan

    2012-11-23

    Staphylococcus aureus strains with distinct genetic backgrounds have shown different virulence in animal models as well as associations with different clinical outcomes, such as causing infection in the hospital or the community. With S. aureus strains carrying diverse genetic backgrounds that have been demonstrated by gene typing and genomic sequences, it is difficult to compare these strains using mammalian models. Invertebrate host models provide a useful alternative approach for studying bacterial pathogenesis in mammals since they have conserved innate immune systems of biological defense. Here, we employed Drosophila melanogaster as a host model for studying the virulence of S. aureus strains. Community-associated methicillin-resistant S. aureus (CA-MRSA) strains USA300, USA400 and CMRSA2 were more virulent than a hospital-associated (HA)-MRSA strain (CMRSA6) and a colonization strain (M92) in the D. melanogaster model. These results correlate with bacterial virulence in the Caenorhabditis elegans host model as well as human clinical data. Moreover, MRSA killing activities in the D. melanogaster model are associated with bacterial replication within the flies. Different MRSA strains induced similar host responses in D. melanogaster, but demonstrated differential expression of common bacterial virulence factors, which may account for the different killing activities in the model. In addition, hemolysin α, an important virulence factor produced by S. aureus in human infections is postulated to play a role in the fly killing. Our results demonstrate that the D. melanogaster model is potentially useful for studying S. aureus pathogenicity. Different MRSA strains demonstrated diverse virulence in the D. melanogaster model, which may be the result of differing expression of bacterial virulence factors in vivo.

  17. The influence of the hot water extract from shiitake medicinal mushroom, Lentinus edodes (higher Basidiomycetes) on the food intake, life span, and age-related locomotor activity of Drosophila melanogaster.

    PubMed

    Matjuskova, Natalya; Azena, Elena; Serstnova, Ksenija; Muiznieks, Indrikis

    2014-01-01

    Shiitake medicinal mushroom, Lentinus edodes, is among the most widely cultivated edible mushrooms in the world and is a well-studied source of nutrients and biologically active compounds. We have studied the influence of the dietary supplement of the polysaccharides containing a hot water extract of the mushroom L. edodes on the fruit fly Drosophila melanogaster in terms of food intake, body weight, life span, and age-related locomotor activity. L. edodes extract, when added to the D. melanogaster feeding substrate at a 0.003-0.030% concentration (calculated for the dry weight of the polysaccharide fraction) did not influence food intake or body weight of the flies. It increased the life span and locomotor activities of male flies but was associated with early mortality and decreased locomotor activity of female flies. We conclude that the observed anti-aging effects of L. edodes extracts in the male D. melanogaster are not the result of dietary restriction. We propose that D. melanogaster is a suitable model organism for researching the molecular basis of the anti-aging effect of the shiitake mushroom extracts and sex linkage of these effects.

  18. Molecular Structure and Transformation of the Glucose Dehydrogenase Gene in Drosophila Melanogaster

    PubMed Central

    Whetten, R.; Organ, E.; Krasney, P.; Cox-Foster, D.; Cavener, D.

    1988-01-01

    We have precisely mapped and sequenced the three 5' exons of the Drosophila melanogaster Gld gene and have identified the start sites for transcription and translation. The first exon is composed of 335 nucleotides and does not contain any putative translation start codons. The second exon is separated from the first exon by 8 kb and contains the Gld translation start codon. The inferred amino acid sequence of the amino terminus contains two unusual features: three tandem repeats of serine-alanine, and a relatively high density of cysteine residues. P element-mediated transformation experiments demonstrated that a 17.5-kb genomic fragment contains the functional and regulatory components of the Gld gene. PMID:3143620

  19. Rex and a Suppressor of Rex Are Repeated Neomorphic Loci in the Drosophila Melanogaster Ribosomal DNA

    PubMed Central

    Rasooly, R. S.; Robbins, L. G.

    1991-01-01

    The Rex locus of Drosophila melanogaster induces a high frequency of mitotic exchange between two separated ribosomal DNA arrays on a single chromosome. The exchanges take place in the progeny of Rex mothers and occur very early, before the third mitotic division. A number of common laboratory stocks have also been found to carry dominant suppressors of Rex (Su(Rex)). Rex was mapped to the X centric heterochromatin, proximal to su(f), by genetic and molecular analysis of two spontaneous recombinants. Using deficiencies and duplications of the heterochromatin, both Rex and one Su(Rex) were shown to behave as neomorphs. Rex-induced exchange in a target chromosome bearing both Rex and Su(Rex) was then used to map these functions to the bb locus itself. Molecular analysis of the recombinants, using length variants of the ribosomal DNA intergenic spacer as genetic markers, mapped Su(Rex) and Rex within the bb locus and demonstrated that both are repeated elements. PMID:1936953

  20. Nutritional supplement chromium picolinate generates chromosomal aberrations and impedes progeny development in Drosophila melanogaster.

    PubMed

    Stallings, Dontarie M; Hepburn, Dion D D; Hannah, Meredith; Vincent, John B; O'Donnell, Janis

    2006-11-07

    Chromium picolinate, [Cr(pic)(3)], is a popular nutritional supplement found in a variety of consumer products. Despite its popularity, safety concerns over its use have arisen. The supplement has been shown to generate clastogenic damage, mitochondrial damage, oxidative damage, and mutagenic effects in cultured cells and oxidative DNA damage and lipid peroxidation in rats. Recently [Cr(pic)(3)] has been demonstrated to generate heritable genetic change and delays in progeny development in Drosophila melanogaster. Based on the damage to chromosomes of cultured cells and of animal models, similar chromosome damage appeared to be a likely source of the mutagenic effects of the supplement in Drosophila. The current three-part study examines the effects of several chromium-containing supplements and their components on hatching and eclosion rates and success of development of first generation progeny of adult Drosophila fed food containing these compounds. It further examines the effects of the compounds on longevity of virgin male and female adults. Finally, the chromosomes in the salivary glands of Drosophila late in the third instar larval stage, which were the progeny of Drosophila whose diets were supplemented with nutritional levels of [Cr(pic)(3)], are shown to contain on average over one chromosomal aberration per two identifiable chromosomal arms. No aberrations were observed in chromosomes of progeny of untreated flies. The results suggest that human consumption of the supplement should be a matter of concern and continued investigation to provide insight into the requirements of chromium-containing supplements to give rise to genotoxic effects.

  1. Drosophila melanogaster virgins are more likely to mate with strangers than familiar flies.

    PubMed

    Odeen, Anders; Moray, Clea M

    2008-03-01

    Recent evidence shows that females of many species can discriminate against males and/or male phenotypes they have mated with previously. However, these studies have not tested whether actual mating is necessary to induce the avoidance behaviour. A preference for strangers may have evolved because it avoids multiple matings with similar genotypes. Alternatively, there may be selection against mating with familiar individuals directly. By choosing its first mate among unfamiliar individuals (which are less likely close relatives than are those encountered early in life), a virgin might disentangle some of the potential benefits of avoiding genetic incompatibility and inbreeding in the offspring from the costs of remating. In this study, we test whether Drosophila melanogaster flies bias their mate choice towards strangers according to previous, non-copulatory, experience. Based on 173 trials over 12 weeks, virgin females presented with two virgin males were 59% more likely to mate with a novel male than the one which she had been housed with for 8 h the day before. Hence we present the first report showing that a dipteran can distinguish between previously encountered and not previously encountered conspecifics.

  2. Drosophila melanogaster virgins are more likely to mate with strangers than familiar flies

    NASA Astrophysics Data System (ADS)

    Ödeen, Anders; Moray, Clea M.

    2008-03-01

    Recent evidence shows that females of many species can discriminate against males and/or male phenotypes they have mated with previously. However, these studies have not tested whether actual mating is necessary to induce the avoidance behaviour. A preference for strangers may have evolved because it avoids multiple matings with similar genotypes. Alternatively, there may be selection against mating with familiar individuals directly. By choosing its first mate among unfamiliar individuals (which are less likely close relatives than are those encountered early in life), a virgin might disentangle some of the potential benefits of avoiding genetic incompatibility and inbreeding in the offspring from the costs of remating. In this study, we test whether Drosophila melanogaster flies bias their mate choice towards strangers according to previous, non-copulatory, experience. Based on 173 trials over 12 weeks, virgin females presented with two virgin males were 59% more likely to mate with a novel male than the one which she had been housed with for 8 h the day before. Hence we present the first report showing that a dipteran can distinguish between previously encountered and not previously encountered conspecifics.

  3. Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation

    PubMed Central

    Schultz, Sebastian Wolfgang; Nilsson, K. Peter R.; Westermark, Gunilla Torstensdotter

    2011-01-01

    Background Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes. IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular mechanisms are involved in amyloidogenesis and induction of cell death. Methodology/Principal Findings We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC155,Gal4 showed a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to consist of 15.8 nm thick pentagonal rod-like structures. Conclusions/Significance These findings point to a potential for Drosophila melanogaster to serve as a model system for studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology. PMID:21695120

  4. Long-Term Resistance of Drosophila melanogaster to the Mushroom Toxin Alpha-Amanitin.

    PubMed

    Mitchell, Chelsea L; Yeager, Roger D; Johnson, Zachary J; D'Annunzio, Stephanie E; Vogel, Kara R; Werner, Thomas

    2015-01-01

    Insect resistance to toxins exerts not only a great impact on our economy, but also on the ecology of many species. Resistance to one toxin is often associated with cross-resistance to other, sometimes unrelated, chemicals. In this study, we investigated mushroom toxin resistance in the fruit fly Drosophila melanogaster (Meigen). This fruit fly species does not feed on mushrooms in nature and may thus have evolved cross-resistance to α-amanitin, the principal toxin of deadly poisonous mushrooms, due to previous pesticide exposure. The three Asian D. melanogaster stocks used in this study, Ama-KTT, Ama-MI, and Ama-KLM, acquired α-amanitin resistance at least five decades ago in their natural habitats in Taiwan, India, and Malaysia, respectively. Here we show that all three stocks have not lost the resistance phenotype despite the absence of selective pressure over the past half century. In response to α-amanitin in the larval food, several signs of developmental retardation become apparent in a concentration-dependent manner: higher pre-adult mortality, prolonged larva-to-adult developmental time, decreased adult body size, and reduced adult longevity. In contrast, female fecundity nearly doubles in response to higher α-amanitin concentrations. Our results suggest that α-amanitin resistance has no fitness cost, which could explain why the resistance has persisted in all three stocks over the past five decades. If pesticides caused α-amanitin resistance in D. melanogaster, their use may go far beyond their intended effects and have long-lasting effects on ecosystems.

  5. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster.

    PubMed

    Hunter, Chad M; Huang, Wen; Mackay, Trudy F C; Singh, Nadia D

    2016-04-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.

  6. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster

    PubMed Central

    Lattao, Ramona; Kovács, Levente; Glover, David M.

    2017-01-01

    Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila. Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster, highlighting their contributions to different aspects of development and cell division. PMID:28476861

  7. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster.

    PubMed

    Lattao, Ramona; Kovács, Levente; Glover, David M

    2017-05-01

    Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster , highlighting their contributions to different aspects of development and cell division. Copyright © 2017 Lattao et al.

  8. Experimental evolution under hyper-promiscuity in Drosophila melanogaster.

    PubMed

    Perry, Jennifer C; Joag, Richa; Hosken, David J; Wedell, Nina; Radwan, Jacek; Wigby, Stuart

    2016-06-16

    The number of partners that individuals mate with over their lifetime is a defining feature of mating systems, and variation in mate number is thought to be a major driver of sexual evolution. Although previous research has investigated the evolutionary consequences of reductions in the number of mates, we know little about the costs and benefits of increased numbers of mates. Here, we use a genetic manipulation of mating frequency in Drosophila melanogaster to create a novel, highly promiscuous mating system. We generated D. melanogaster populations in which flies were deficient for the sex peptide receptor (SPR) gene - resulting in SPR- females that mated more frequently - and genetically-matched control populations, and allowed them to evolve for 55 generations. At several time-points during this experimental evolution, we assayed behavioural, morphological and transcriptional reproductive phenotypes expected to evolve in response to increased population mating frequencies. We found that males from the high mating frequency SPR- populations evolved decreased ability to inhibit the receptivity of their mates and decreased copulation duration, in line with predictions of decreased per-mating investment with increased sperm competition. Unexpectedly, SPR- population males also evolved weakly increased sex peptide (SP) gene expression. Males from SPR- populations initially (i.e., before experimental evolution) exhibited more frequent courtship and faster time until mating relative to controls, but over evolutionary time these differences diminished or reversed. In response to experimentally increased mating frequency, SPR- males evolved behavioural responses consistent with decreased male post-copulatory investment at each mating and decreased overall pre-copulatory performance. The trend towards increased SP gene expression might plausibly relate to functional differences in the two domains of the SP protein. Our study highlights the utility of genetic

  9. Methylmercury Exposure Induces Sexual Dysfunction in Male and Female Drosophila Melanogaster.

    PubMed

    Chauhan, Ved; Srikumar, Syian; Aamer, Sarah; Pandareesh, Mirazkar D; Chauhan, Abha

    2017-09-24

    Mercury, an environmental health hazard, is a neurotoxic heavy metal. In this study, the effect of methylmercury (MeHg) exposure was analyzed on sexual behavior in Drosophila melanogaster (fruit fly), because neurons play a vital role in sexual functions. The virgin male and female flies were fed a diet mixed with different concentrations of MeHg (28.25, 56.5, 113, 226, and 339 µM) for four days, and the effect of MeHg on copulation of these flies was studied. While male and female control flies (no MeHg) and flies fed with lower concentrations of MeHg (28.25, 56.5 µM) copulated in a normal manner, male and female flies exposed to higher concentrations of MeHg (113, 226, and 339 µM) did not copulate. When male flies exposed to higher concentrations of MeHg were allowed to copulate with control female flies, only male flies fed with 113 µM MeHg were able to copulate. On the other hand, when female flies exposed to higher concentrations of MeHg were allowed to copulate with control male flies, none of the flies could copulate. After introduction of male and female flies in the copulation chamber, duration of wing flapping by male flies decreased in a MeHg-concentration-dependent manner from 101 ± 24 seconds (control) to 100.7 ± 18, 96 ±12, 59 ± 44, 31 ± 15, and 3.7 ± 2.7 seconds at 28.25, 56.5, 113, 226, and 339 µM MeHg, respectively. On the other hand, grooming in male and female flies increased in a MeHg-concentration-dependent manner. These findings suggest that MeHg exposure causes sexual dysfunction in male and female Drosophila melanogaster . Further studies showed that MeHg exposure increased oxidative stress and decreased triglyceride levels in a concentration-dependent manner in both male and female flies, suggesting that MeHg-induced oxidative stress and decreased triglyceride levels may partly contribute to sexual dysfunction in fruit flies.

  10. Sexual selection, sexual isolation and pheromones in Drosophila melanogaster strains after long-term maintaining on different diets.

    PubMed

    Trajković, Jelena; Miličić, Dragana; Savić, Tatjana; Pavković-Lučić, Sofija

    2017-07-01

    Evolution of reproductive isolation may be a consequence of a variety of signals used in courtship and mate preferences. Pheromones play an important role in both sexual selection and sexual isolation. The abundance of pheromones in Drosophila melanogaster may depend on different environmental factors, including diet. The aim of this study was to ascertain to which degree principal pheromones affect sexual selection in D. melanogaster. We used D. melanogaster strains reared for 14 years on four substrates: standard cornmeal substrate and those containing tomato, banana and carrot. We have previously determined that long-term maintaining of these dietary strains resulted in differences in their cuticular hydrocarbons profile (CHs). In this work, we have tested the level of sexual selection and sexual isolation between aforementioned strains. We found that the high levels of cis-vaccenyl acetate, 7-pentacosene and 7,11-nonacosadiene in the strain reared on a substrate containing carrot affected the individual attractiveness and influenced sexual isolation between flies of this strain and flies reared on a substrate containing banana. Based on these results, long-term different diets, may contribute, to sexual behaviour of D. melanogaster via the effects of principal pheromones. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Identification and partial characterization of the enzyme of omega: one of five putative DPP IV genes in Drosophila melanogaster

    PubMed Central

    Chihara, Carol J.; Song, Chunyan; LaMonte, Greg; Fetalvero, Kristina; Hinchman, Kristy; Phan, Helen; Pineda, Mario; Robinson, Kelly; Schneider, Gregory P.

    2005-01-01

    The omega (ome) gene product is a modifier of larval cuticle protein 5 and its alleles (and duplicates) in the third instar of Drosophila melanogaster. Using deletion mapping the locus mapped to 70F-71A on the left arm of chromosome 3. A homozygote null mutant (ome 1) shows a pleiotropic phenotype that affected the size, developmental time of the flies, and the fertility (or perhaps the behavior) of homozygous mutant males. The omega gene was verified as producing a dipeptidyl peptidase IV (DPPIV) by genetic analysis, substrate specificity and pH optimum. The identity of the gene was confirmed as CG32145 (cytology 70F4) in the Celera Database (Berkeley Drosophila Genome Project), which is consistent with its deletion map position. The genomic structure of the gene is described and the decrease in DPPIV activity in the mutant ome1 is shown to be due to the gene CG32145 (omega). The D. melanogaster omega DPPIV enzyme was partially purified and characterized. The exons of the ome1 mutant were sequenced and a base substitution mutation in exon 4 was identified that would yield a truncated protein caused by a stop codon. A preliminary study of the compartmentalization of the omega DPPIV enzyme in several organs is also reported. Abbreviations: DPPIV dipeptidyl peptidase IV LCP5 & LCP6 third instar larval cuticle proteins 5 & 6 ome & ome1 omega locus name (CG32145) and mutant allele in D. melanogaster pNA paranotroanilide PMID:17119608

  12. Edin Expression in the Fat Body Is Required in the Defense Against Parasitic Wasps in Drosophila melanogaster.

    PubMed

    Vanha-Aho, Leena-Maija; Anderl, Ines; Vesala, Laura; Hultmark, Dan; Valanne, Susanna; Rämet, Mika

    2015-05-01

    The cellular immune response against parasitoid wasps in Drosophila involves the activation, mobilization, proliferation and differentiation of different blood cell types. Here, we have assessed the role of Edin (elevated during infection) in the immune response against the parasitoid wasp Leptopilina boulardi in Drosophila melanogaster larvae. The expression of edin was induced within hours after a wasp infection in larval fat bodies. Using tissue-specific RNAi, we show that Edin is an important determinant of the encapsulation response. Although edin expression in the fat body was required for the larvae to mount a normal encapsulation response, it was dispensable in hemocytes. Edin expression in the fat body was not required for lamellocyte differentiation, but it was needed for the increase in plasmatocyte numbers and for the release of sessile hemocytes into the hemolymph. We conclude that edin expression in the fat body affects the outcome of a wasp infection by regulating the increase of plasmatocyte numbers and the mobilization of sessile hemocytes in Drosophila larvae.

  13. Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster

    PubMed Central

    Mendes, César S; Bartos, Imre; Akay, Turgay; Márka, Szabolcs; Mann, Richard S

    2013-01-01

    Coordinated walking in vertebrates and multi-legged invertebrates such as Drosophila melanogaster requires a complex neural network coupled to sensory feedback. An understanding of this network will benefit from systems such as Drosophila that have the ability to genetically manipulate neural activities. However, the fly's small size makes it challenging to analyze walking in this system. In order to overcome this limitation, we developed an optical method coupled with high-speed imaging that allows the tracking and quantification of gait parameters in freely walking flies with high temporal and spatial resolution. Using this method, we present a comprehensive description of many locomotion parameters, such as gait, tarsal positioning, and intersegmental and left-right coordination for wild type fruit flies. Surprisingly, we find that inactivation of sensory neurons in the fly's legs, to block proprioceptive feedback, led to deficient step precision, but interleg coordination and the ability to execute a tripod gait were unaffected. DOI: http://dx.doi.org/10.7554/eLife.00231.001 PMID:23326642

  14. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster

    PubMed Central

    Mouchel-Vielh, Emmanuèle; De Castro, Sandra; Peronnet, Frédérique

    2016-01-01

    Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to

  15. Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster

    PubMed Central

    Kumita, Janet R.; Helmfors, Linda; Williams, Jocy; Luheshi, Leila M.; Menzer, Linda; Dumoulin, Mireille; Lomas, David A.; Crowther, Damian C.; Dobson, Christopher M.; Brorsson, Ann-Christin

    2012-01-01

    We have created a Drosophila model of lysozyme amyloidosis to investigate the in vivo behavior of disease-associated variants. To achieve this objective, wild-type (WT) protein and the amyloidogenic variants F57I and D67H were expressed in Drosophila melanogaster using the UAS-gal4 system and both the ubiquitous and retinal expression drivers Act5C-gal4 and gmr-gal4. The nontransgenic w1118 Drosophila line was used as a control throughout. We utilized ELISA experiments to probe lysozyme protein levels, scanning electron microscopy for eye phenotype classification, and immunohistochemistry to detect the unfolded protein response (UPR) activation. We observed that expressing the destabilized F57I and D67H lysozymes triggers UPR activation, resulting in degradation of these variants, whereas the WT lysozyme is secreted into the fly hemolymph. Indeed, the level of WT was up to 17 times more abundant than the variant proteins. In addition, the F57I variant gave rise to a significant disruption of the eye development, and this correlated to pronounced UPR activation. These results support the concept that the onset of familial amyloid disease is linked to an inability of the UPR to degrade completely the amyloidogenic lysozymes prior to secretion, resulting in secretion of these destabilized variants, thereby leading to deposition and associated organ damage.—Kumita, J. R., Helmfors, L., Williams, J., Luheshi, L. M., Menzer, L., Dumoulin, M., Lomas, D. A., Crowther, D. C., Dobson, C. M., Brorsson, A.-C. Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster. PMID:21965601

  16. Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery

    PubMed Central

    Pandey, Udai Bhan

    2011-01-01

    The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process. PMID:21415126

  17. Allelic asymmetry of the Lethal hybrid rescue (Lhr) gene expression in the hybrid between Drosophila melanogaster and D. simulans: confirmation by using genetic variations of D. melanogaster.

    PubMed

    Shirata, Mika; Araye, Quenta; Maehara, Kazunori; Enya, Sora; Takano-Shimizu, Toshiyuki; Sawamura, Kyoichi

    2014-02-01

    In the cross between Drosophila melanogaster females and D. simulans males, hybrid males die at the late larval stage, and the sibling females also die at later stages at high temperatures. Removing the D. simulans allele of the Lethal hybrid rescue gene (Lhr (sim) ) improves the hybrid incompatibility phenotypes. However, the loss-of-function mutation of Lhr (sim) (Lhr (sim0) ) does not rescue the hybrid males in crosses with several D. melanogaster strains. We first describe the genetic factor possessed by the D. melanogaster strains. It has been suggested that removing the D. melanogaster allele of Lhr (Lhr (mel) ), that is Lhr (mel0) , does not have the hybrid male rescue effect, contrasting to Lhr (sim0) . Because the expression level of the Lhr gene is known to be Lhr (sim) > Lhr (mel) in the hybrid, Lhr (mel0) may not lead to enough of a reduction in total Lhr expression. Then, there is a possibility that the D. melanogaster factor changes the expression level to Lhr (sim) < Lhr (mel) . But in fact, the expression level was Lhr (sim) > Lhr (mel) in the hybrid irrespectively of the presence of the factor. At last, we showed that Lhr (mel0) slightly improves the viability of hybrid females, which was not realized previously. All of the present results are consistent with the allelic asymmetry model of the Lhr gene expression in the hybrid.

  18. Parasite-specific immune response in adult Drosophila melanogaster: a genomic study

    PubMed Central

    Roxström-Lindquist, Katarina; Terenius, Olle; Faye, Ingrid

    2004-01-01

    Insects of the order Diptera are vectors for parasitic diseases such as malaria, sleeping sickness and leishmania. In the search for genes encoding proteins involved in the antiparasitic response, we have used the protozoan parasite Octosporea muscaedomesticae for oral infections of adult Drosophila melanogaster. To identify parasite-specific response molecules, other flies were exposed to virus, bacteria or fungi in parallel. Analysis of gene expression patterns after 24 h of microbial challenge, using Affymetrix oligonucleotide microarrays, revealed a high degree of microbe specificity. Many serine proteases, key intermediates in the induction of insect immune responses, were uniquely expressed following infection of the different organisms. Several lysozyme genes were induced in response to Octosporea infection, while in other treatments they were not induced or downregulated. This suggests that lysozymes are important in antiparasitic defence. PMID:14749722

  19. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster

    PubMed Central

    Wang, Wen; Brunet, Frédéric G.; Nevo, Eviatar; Long, Manyuan

    2002-01-01

    Non-protein-coding RNA genes play an important role in various biological processes. How new RNA genes originated and whether this process is controlled by similar evolutionary mechanisms for the origin of protein-coding genes remains unclear. A young chimeric RNA gene that we term sphinx (spx) provides the first insight into the early stage of evolution of RNA genes. spx originated as an insertion of a retroposed sequence of the ATP synthase chain F gene at the cytological region 60DB since the divergence of Drosophila melanogaster from its sibling species 2–3 million years ago. This retrosequence, which is located at 102F on the fourth chromosome, recruited a nearby exon and intron, thereby evolving a chimeric gene structure. This molecular process suggests that the mechanism of exon shuffling, which can generate protein-coding genes, also plays a role in the origin of RNA genes. The subsequent evolutionary process of spx has been associated with a high nucleotide substitution rate, possibly driven by a continuous positive Darwinian selection for a novel function, as is shown in its sex- and development-specific alternative splicing. To test whether spx has adapted to different environments, we investigated its population genetic structure in the unique “Evolution Canyon” in Israel, revealing a similar haplotype structure in spx, and thus similar evolutionary forces operating on spx between environments. PMID:11904380

  20. Optogenetic pacing in Drosophila models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Penghe; Li, Airong; Men, Jing; Tans, Rudolph E.; Zhou, Chao

    2017-02-01

    The Drosophila melanogaster shares many similarities with vertebrates in heart development. Comparison of heart structural and functional characteristic between male and female Drosophila melanogaster at different developmental stages is helpful to understand heart morphogenesis and function for different genders. And also, it opens up the possibility to uncover the role of sex-related genes in heart development. In this longitudinal study, we cultured and tracked dozens of individually labeled flies throughout their lifecycle. The heart characteristic was measured at different developmental stages during culturing. The gender of each individual fly was determined by adult stage so that the collected data of early stages could be classified to male or female group. We adapted a high-speed optical coherence microscopy (OCM) system with axial and transverse resolution of 2um and 4um, respectively, to perform non-invasive M-mode imaging at a frame rate of 132Hz in Drosophila heart at third instar larva, early pupa and adult stage. Based on those GPU processed M-mode OCM images, we segmented the fly heart region and then quantified the cardiac structural and functional parameters such as heart rate, heart chamber size and so on. Despite large variances of wild type Drosophila in terms of some cardiac characteristic, our results suggest that the heart rate is lower for male flies than for female flies, especially at third instar larva stage. The end diastolic area (EDA) and end systolic area (ESA) of the heart are both slightly larger in female flies than in male flies at larva and adult stage. In summary, we showed gender differences of wild type drosophila in heart functional and structural characteristic.

  1. Divergence of water balance mechanisms in two sibling species (Drosophila simulans and D. melanogaster): effects of growth temperatures.

    PubMed

    Parkash, Ravi; Aggarwal, Dau Dayal; Singh, Divya; Lambhod, Chanderkala; Ranga, Poonam

    2013-04-01

    Drosophila simulans is more abundant under colder and drier montane habitats in the western Himalayas as compared to its sibling D. melanogaster but the mechanistic bases of such climatic adaptations are largely unknown. Previous studies have described D. simulans as a desiccation sensitive species which is inconsistent with its occurrence in temperate regions. We tested the hypothesis whether developmental plasticity of cuticular traits confers adaptive changes in water balance-related traits in the sibling species D. simulans and D. melanogaster. Our results are interesting in several respects. First, D. simulans grown at 15 °C possesses a high level of desiccation resistance in larvae (~39 h) and in adults (~86 h) whereas the corresponding values are quite low at 25 °C (larvae ~7 h; adults ~13 h). Interestingly, cuticular lipid mass was threefold higher in D. simulans grown at 15 °C as compared with 25 °C while there was no change in cuticular lipid mass in D. melanogaster. Second, developmental plasticity of body melanisation was evident in both species. Drosophila simulans showed higher melanisation at 15 °C as compared with D. melanogaster while the reverse trend was observed at 25 °C. Third, changes in water balance-related traits (bulk water, hemolymph and dehydration tolerance) showed superiority of D. simulans at 15 °C but of D. melanogaster at 25 °C growth temperature. Rate of carbohydrate utilization under desiccation stress did not differ at 15 °C in both the species. Fourth, effects of developmental plasticity on cuticular traits correspond with changes in the cuticular water loss i.e. water loss rates were higher at 25 °C as compared with 15 °C. Thus, D. simulans grown under cooler temperature was more desiccation tolerant than D. melanogaster. Finally, desiccation acclimation capacity of larvae and adults is higher for D. simulans reared at 15 °C but quite low at 25 °C. Thus, D. simulans and D. melanogaster have evolved different

  2. Cardiac optogenetic pacing in drosophila melanogaster using red-shifted opsins (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2017-02-01

    Electrical pacing is the current gold standard for investigation of mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, this method requires an invasive surgical procedure to implant the pacing electrodes. Recently, optogenetic pacing has been developed as an alternative, non-invasive method for heartbeat pacing in animals. It induces heartbeats by shining pulsed light on transgene-generated microbial opsins which in turn activate light gated ion channels in animal hearts. However, commonly used opsins, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we expressed recently engineered red-shifted opsins, ReaChR and CsChrimson, in the heart of a well-developed animal model, Drosophila melanogaster, for the first time. Optogenetic pacing was successfully conducted in both ReaChR and CsChrimson flies at their larval, pupal, and adult stages using 617 nm excitation light pulse, enabling a much deeper tissue penetration compared to blue stimulation light. A customized high speed and ultrahigh resolution OCM system was used to non-invasively monitor the heartbeat pacing in Drosophila. Compared to previous studies on optogenetic pacing of Drosophila, higher penetration depth of optogenetic excitation light was achieved in opaque late pupal flies. Lower stimulating power density is needed for excitation at each developmental stage of both groups, which improves the safety of this technique for heart rhythm studies.

  3. The Drosophila melanogaster homolog of UBE3A is not imprinted in neurons.

    PubMed

    Hope, Kevin A; LeDoux, Mark S; Reiter, Lawrence T

    2016-09-01

    In mammals, expression of UBE3A is epigenetically regulated in neurons and expression is restricted to the maternal copy of UBE3A. A recent report claimed that Drosophila melanogaster UBE3A homolog (Dube3a) is preferentially expressed from the maternal allele in fly brain, inferring an imprinting mechanism. However, complex epigenetic regulatory features of the mammalian imprinting center are not present in Drosophila, and allele specific expression of Dube3a has not been documented. We used behavioral and electrophysiological analysis of the Dube3a loss-of-function allele (Dube3a 15b ) to investigate Dube3a imprinting in fly neurons. We found that motor impairment (climbing ability) and a newly-characterized defect in synaptic transmission are independent of parental inheritance of the Dube3a 15b allele. Furthermore, expression analysis of coding single nucleotide polymorphisms (SNPs) in Dube3a did not reveal allele specific expression differences among reciprocal crosses. These data indicate that Dube3a is neither imprinted nor preferentially expressed from the maternal allele in fly neurons.

  4. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis.

    PubMed

    Hou, Ying-Chen Claire; Chittaranjan, Suganthi; Barbosa, Sharon González; McCall, Kimberly; Gorski, Sharon M

    2008-09-22

    A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death-related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes--death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53-as well as Ras-Raf-mitogen activated protein kinase signaling pathway components had a role in autophagy regulation in D. melanogaster cultured cells. During D. melanogaster oogenesis, we found that autophagy is induced at two nutrient status checkpoints: germarium and mid-oogenesis. At these two stages, the effector caspase Dcp-1 and the inhibitor of apoptosis protein Bruce function to regulate both autophagy and starvation-induced cell death. Mutations in Atg1 and Atg7 resulted in reduced DNA fragmentation in degenerating midstage egg chambers but did not appear to affect nuclear condensation, which indicates that autophagy contributes in part to cell death in the ovary. Our study provides new insights into the molecular mechanisms that coordinately regulate autophagic and apoptotic events in vivo.

  5. Drosophila melanogaster Hedgehog cooperates with Frazzled to guide axons through a non-canonical signalling pathway.

    PubMed

    Ricolo, Delia; Butí, Elisenda; Araújo, Sofia J

    2015-08-01

    We report that the morphogen Hedgehog (Hh) is an axonal chemoattractant in the midline of Drosophila melanogaster embryos. Hh is present in the ventral nerve cord during axonal guidance and overexpression of hh in the midline causes ectopic midline crossing of FasII-positive axonal tracts. In addition, we show that Hh influences axonal guidance via a non-canonical signalling pathway dependent on Ptc. Our results reveal that the Hh pathway cooperates with the Netrin/Frazzled pathway to guide axons through the midline in invertebrates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Increase in viability due to the accumulation of X chromosome mutations in Drosophila melanogaster males.

    PubMed

    Woodruff, Ronny C; Balinski, Michael A

    2018-05-09

    To increase our understanding of the role of new X-chromosome mutations in adaptive evolution, single-X Drosophila melanogaster males were mated with attached-X chromosome females, allowing the male X chromosome to accumulate mutations over 28 generations. Contrary to our hypothesis that male viability would decrease over time, due to the accumulation and expression of X-linked recessive deleterious mutations in hemizygous males, viability significantly increased. This increase may be attributed to germinal selection and to new X-linked beneficial or compensatory mutations, possibly supporting the faster-X hypothesis.

  7. In vivo 3D PIXE-micron-CT imaging of Drosophila melanogaster using a contrast agent

    NASA Astrophysics Data System (ADS)

    Matsuyama, Shigeo; Hamada, Naoki; Ishii, Keizo; Nozawa, Yuichiro; Ohkura, Satoru; Terakawa, Atsuki; Hatori, Yoshinobu; Fujiki, Kota; Fujiwara, Mitsuhiro; Toyama, Sho

    2015-04-01

    In this study, we developed a three-dimensional (3D) computed tomography (CT) in vivo imaging system for imaging small insects with micrometer resolution. The 3D CT imaging system, referred to as 3D PIXE-micron-CT (PIXEμCT), uses characteristic X-rays produced by ion microbeam bombardment of a metal target. PIXEμCT was used to observe the body organs and internal structure of a living Drosophila melanogaster. Although the organs of the thorax were clearly imaged, the digestive organs in the abdominal cavity could not be clearly discerned initially, with the exception of the rectum and the Malpighian tubule. To enhance the abdominal images, a barium sulfate powder radiocontrast agent was added. For the first time, 3D images of the ventriculus of a living D. melanogaster were obtained. Our results showed that PIXEμCT can provide in vivo 3D-CT images that reflect correctly the structure of individual living organs, which is expected to be very useful in biological research.

  8. L-arginine enhances immunity to parasitoids in Drosophila melanogaster and increases NO production in lamellocytes.

    PubMed

    Kraaijeveld, Alex R; Elrayes, Naji P; Schuppe, Hansjürgen; Newland, Philip L

    2011-08-01

    Drosophila melanogaster was used as a model system to explore the link between nutrition and immunity, and to investigate the role of nitric oxide (NO) in enhancing immunity following dietary enhancement with L-arginine. First, we show that adding L-arginine to the food medium increases the ability of D. melanogaster larvae to encapsulate the eggs of the parasitoid Asobara tabida. Secondly, we show that the increase in immunity is specific to L-arginine, and not to an enhanced calorific content, and that immunity decreases when larvae are fed food with added L-NAME, an inhibitor of nitric oxide synthase. Finally, we show that parasitised larvae fed L-arginine have increased haemocyte numbers, and that the lamellocytes (haemocytes which play a key role in encapsulation) show evidence of an increased production of NO. These results suggest that NO plays a key role in immunity and that the effect of NO is mostly targeted via the lamellocytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Sexual isolation between Drosophila melanogaster, D. simulans and D. mauritiana: sex and species specific discrimination.

    PubMed

    Carracedo, M C; Suarez, C; Casares, P

    2000-01-01

    The sexual isolation among the related species Drosophila melanogaster, D. simulans and D. mauritiana is asymmetrical. While D. mauritiana males mate well with both D. melanogaster and D. simulans females, females of D. mauritiana discriminate strongly against males of these two species. Similarly, D. simulans males mate with D. melanogaster females but the reciprocal cross is difficult. Interspecific crosses between several populations of the three species were performed to determine if (i) males and females of the same species share a common sexual isolation genetic system, and (ii) males (or females) use the same genetic system to discriminate against females (or males) of the other two species. Results indicate that although differences in male and female isolation depend on the populations tested, the isolation behaviour between a pair of species is highly correlated despite the variations. However, the rank order of the isolation level along the populations was not correlated in both sexes, which suggests that different genes act in male and female sexual isolation. Neither for males nor for females, the isolation behaviour of one species was paralleled in the other two species, which indicates that the genetic systems involved in this trait are species-pair specific. The implications of these results are discussed.

  10. Aging Studies in Drosophila melanogaster

    PubMed Central

    Sun, Yaning; Yolitz, Jason; Wang, Cecilia; Spangler, Edward; Zhan, Ming; Zou, Sige

    2015-01-01

    Summary Drosophila is a genetically tractable system ideal for investigating the mechanisms of aging and developing interventions for promoting healthy aging. Here we describe methods commonly used in Drosophila aging research. These include basic approaches for preparation of diets and measurements of lifespan, food intake and reproductive output. We also describe some commonly used assays to measure changes in physiological and behavioral functions of Drosophila in aging, such as stress resistance and locomotor activity. PMID:23929099

  11. miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.

    PubMed

    Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei

    2017-01-01

    MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.

  12. Beadex Function in the Motor Neurons Is Essential for Female Reproduction in Drosophila melanogaster

    PubMed Central

    Kairamkonda, Subhash; Nongthomba, Upendra

    2014-01-01

    Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the role of Beadex, a transcription co-activator, in Drosophila female reproduction was assessed by generation of mutant and knock down studies. Null allele of Beadex was generated by transposase induced excision of P-element present within an intron of Beadex gene. The mutant showed highly compromised reproductive abilities as evaluated by reduced fecundity and fertility, abnormal oviposition and more importantly, the failure of sperm release from storage organs. However, no defect was found in the overall ovariole development. Tissue specific, targeted knock down of Beadex indicated that its function in neurons is important for efficient female reproduction, since its neuronal knock down led to compromised female reproductive abilities, similar to Beadex null females. Further, different neuronal class specific knock down studies revealed that Beadex function is required in motor neurons for normal fecundity and fertility of females. Thus, the present study attributes a novel and essential role for Beadex in female reproduction through neurons. PMID:25396431

  13. Size relationships of different body parts in the three dipteran species Drosophila melanogaster, Ceratitis capitata and Musca domestica.

    PubMed

    Siomava, Natalia; Wimmer, Ernst A; Posnien, Nico

    2016-06-01

    Body size is an integral feature of an organism that influences many aspects of life such as fecundity, life span and mating success. Size of individual organs and the entire body size represent quantitative traits with a large reaction norm, which are influenced by various environmental factors. In the model system Drosophila melanogaster, pupal size and adult traits, such as tibia and thorax length or wing size, accurately estimate the overall body size. However, it is unclear whether these traits can be used in other flies. Therefore, we studied changes in size of pupae and adult organs in response to different rearing temperatures and densities for D. melanogaster, Ceratitis capitata and Musca domestica. We confirm a clear sexual size dimorphism (SSD) for Drosophila and show that the SSD is less uniform in the other species. Moreover, the size response to changing growth conditions is sex dependent. Comparison of static and evolutionary allometries of the studied traits revealed that response to the same environmental variable is genotype specific but has similarities between species of the same order. We conclude that the value of adult traits as estimators of the absolute body size may differ among species and the use of a single trait may result in wrong assumptions. Therefore, we suggest using a body size coefficient computed from several individual measurements. Our data is of special importance for monitoring activities of natural populations of the three dipteran flies, since they are harmful species causing economical damage (Drosophila, Ceratitis) or transferring diseases (Musca).

  14. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model.

    PubMed

    Alaraby, Mohamed; Annangi, Balasubramanyam; Hernández, Alba; Creus, Amadeu; Marcos, Ricard

    2015-10-15

    This study planned to determine the range of biological effects associated with ZnO-NP exposure using Drosophila melanogaster as an in vivo model. In addition, ZnCl2 was used to determine the potential role of Zn ions alone. Toxicity, internalization through the intestinal barrier, gene expression changes, ROS production, and genotoxicity were the end-points evaluated. No toxicity or oxidative stress induction was observed in D. melanogaster larvae, whether using ZnO-NPs or ZnCl2. Internalization of ZnO-NPs through the intestinal barrier was observed. No significant changes in the frequency of mutant clones (wing-spot test) or percentage of DNA in tail (comet assay) were observed although significant changes in Hsp70 and p53 gene expression were detected. Our study shows that ZnO-NPs do not induce toxicity or genotoxicity in D. melanogaster, although uptake occurs and altered gene expression is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster.

    PubMed

    Ahamed, Maqusood; Posgai, Ryan; Gorey, Timothy J; Nielsen, Mark; Hussain, Saber M; Rowe, John J

    2010-02-01

    Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 microg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity. Copyright 2009 Elsevier Inc. All rights reserved.

  16. The selfish Segregation Distorter gene complex of Drosophila melanogaster.

    PubMed

    Larracuente, Amanda M; Presgraves, Daven C

    2012-09-01

    Segregation Distorter (SD) is an autosomal meiotic drive gene complex found worldwide in natural populations of Drosophila melanogaster. During spermatogenesis, SD induces dysfunction of SD(+) spermatids so that SD/SD(+) males sire almost exclusively SD-bearing progeny rather than the expected 1:1 Mendelian ratio. SD is thus evolutionarily "selfish," enhancing its own transmission at the expense of its bearers. Here we review the molecular and evolutionary genetics of SD. Genetic analyses show that the SD is a multilocus gene complex involving two key loci--the driver, Segregation distorter (Sd), and the target of drive, Responder (Rsp)--and at least three upward modifiers of distortion. Molecular analyses show that Sd encodes a truncated duplication of the gene RanGAP, whereas Rsp is a large pericentromeric block of satellite DNA. The Sd-RanGAP protein is enzymatically wild type but mislocalized within cells and, for reasons that remain unclear, appears to disrupt the histone-to-protamine transition in drive-sensitive spermatids bearing many Rsp satellite repeats but not drive-insensitive spermatids bearing few or no Rsp satellite repeats. Evolutionary analyses show that the Sd-RanGAP duplication arose recently within the D. melanogaster lineage, exploiting the preexisting and considerably older Rsp satellite locus. Once established, the SD haplotype collected enhancers of distortion and suppressors of recombination. Further dissection of the molecular genetic and cellular basis of SD-mediated distortion seems likely to provide insights into several important areas currently understudied, including the genetic control of spermatogenesis, the maintenance and evolution of satellite DNAs, the possible roles of small interfering RNAs in the germline, and the molecular population genetics of the interaction of genetic linkage and natural selection.

  17. TGF-β signaling regulates resistance to parasitic nematode infection in Drosophila melanogaster.

    PubMed

    Eleftherianos, Ioannis; Castillo, Julio Cesar; Patrnogic, Jelena

    2016-12-01

    Over the past decade important advances have been made in the field of innate immunity; however, our appreciation of the signaling pathways and molecules that participate in host immune responses to parasitic nematode infections lags behind that of responses to microbial challenges. Here we have examined the regulation and immune activity of Transforming Growth Factor-beta (TGF-β) signaling in the model host Drosophila melanogaster upon infection with the nematode parasites Heterorhabditis gerrardi and H. bacteriophora containing their mutualistic bacteria Photorhabdus. We have found that the genes encoding the Activin and Bone Morphogenic Protein (BMP) ligands Dawdle (Daw) and Decapentaplegic (Dpp) are transcriptionally induced in flies responding to infection with the nematode parasites, containing or lacking their associated bacteria. We also show that deficient Daw or Dpp regulates the survival of D. melanogaster adults to the pathogens, whereas inactivation of Daw reduces the persistence of the nematodes in the mutant flies. These findings demonstrate a novel role for the TGF-β signaling pathways in the host anti-nematode immune response. Understanding the molecular mechanisms of host anti-nematode processes will potentially lead to the development of novel means for the efficient control of parasitic nematodes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Parallel trait adaptation across opposing thermal environments in experimental Drosophila melanogaster populations.

    PubMed

    Tobler, Ray; Hermisson, Joachim; Schlötterer, Christian

    2015-07-01

    Thermal stress is a pervasive selective agent in natural populations that impacts organismal growth, survival, and reproduction. Drosophila melanogaster exhibits a variety of putatively adaptive phenotypic responses to thermal stress in natural and experimental settings; however, accompanying assessments of fitness are typically lacking. Here, we quantify changes in fitness and known thermal tolerance traits in replicated experimental D. melanogaster populations following more than 40 generations of evolution to either cyclic cold or hot temperatures. By evaluating fitness for both evolved populations alongside a reconstituted starting population, we show that the evolved populations were the best adapted within their respective thermal environments. More strikingly, the evolved populations exhibited increased fitness in both environments and improved resistance to both acute heat and cold stress. This unexpected parallel response appeared to be an adaptation to the rapid temperature changes that drove the cycling thermal regimes, as parallel fitness changes were not observed when tested in a constant thermal environment. Our results add to a small, but growing group of studies that demonstrate the importance of fluctuating temperature changes for thermal adaptation and highlight the need for additional work in this area. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  19. Male Killing Spiroplasma Preferentially Disrupts Neural Development in the Drosophila melanogaster Embryo

    PubMed Central

    Martin, Jennifer; Chong, Trisha; Ferree, Patrick M.

    2013-01-01

    Male killing bacteria such as Spiroplasma are widespread pathogens of numerous arthropods including Drosophila melanogaster. These maternally transmitted bacteria can bias host sex ratios toward the female sex in order to ‘selfishly’ enhance bacterial transmission. However, little is known about the specific means by which these pathogens disrupt host development in order to kill males. Here we show that a male-killing Spiroplasma strain severely disrupts nervous tissue development in male but not female D. melanogaster embryos. The neuroblasts, or neuron progenitors, form properly and their daughter cells differentiate into neurons of the ventral nerve chord. However, the neurons fail to pack together properly and they produce highly abnormal axons. In contrast, non-neural tissue, such as mesoderm, and body segmentation appear normal during this time, although the entire male embryo becomes highly abnormal during later stages. Finally, we found that Spiroplasma is altogether absent from the neural tissue but localizes within the gut and the epithelium immediately surrounding the neural tissue, suggesting that the bacterium secretes a toxin that affects neural tissue development across tissue boundaries. Together these findings demonstrate the unique ability of this insect pathogen to preferentially affect development of a specific embryonic tissue to induce male killing. PMID:24236124

  20. The FBXO7 homologue nutcracker and binding partner PI31 in Drosophila melanogaster models of Parkinson's disease.

    PubMed

    Merzetti, Eric M; Dolomount, Lindsay A; Staveley, Brian E

    2017-01-01

    Parkinsonian-pyramidal syndrome (PPS) is an early onset form of Parkinson's disease (PD) that shows degeneration of the extrapyramidal region of the brain to result in a severe form of PD. The toxic protein build-up has been implicated in the onset of PPS. Protein removal is mediated by an intracellular proteasome complex: an E3 ubiquitin ligase, the targeting component, is essential for function. FBXO7 encodes the F-box component of the SCF E3 ubiquitin ligase linked to familial forms of PPS. The Drosophila melanogaster homologue nutcracker (ntc) and a binding partner, PI31, have been shown to be active in proteasome function. We show that altered expression of either ntc or PI31 in dopaminergic neurons leads to a decrease in longevity and locomotor ability, phenotypes both associated with models of PD. Furthermore, expression of ntc-RNAi in an established α-synuclein-dependent model of PD rescues the phenotypes of diminished longevity and locomotor control.

  1. The Combined Effect of Methyl- and Ethyl-Paraben on Lifespan and Preadult Development Period of Drosophila melanogaster (Diptera: Drosophilidae)

    PubMed Central

    Chen, Qi; Pan, Chenguang; Li, Yajuan; Zhang, Min; Gu, Wei

    2016-01-01

    Parabens are widely used as preservative substances in foods, pharmaceuticals, industrial products, and cosmetics. But several studies have cautioned that parabens have estrogenic or endocrine-disrupting properties. Drosophila melanogaster is an ideal model in vivo to detect the toxic effects of chemistry. The study was designed to assess the potential additive toxic effects of methylparaben (MP) and ethylparaben (EP) mixture (MP + EP) on lifespan and preadult development period in D. melanogaster. The data revealed that the MP + EP can reduce the longevity of flies compared with the control group, consistent with a significant reduction in malondialdehyde levels and an increase in superoxide dismutase activities. Furthermore, MP + EP may have a greater toxic effect on longevity of flies than separate using with the same concentration. Additionally, parabens had a nonmonotonic dose–response effect on D. melanogaster preadult development period, showing that MP + EP delayed preadult development period compared with control group while individual MP or EP significantly shortened (P < 0.01) at low concentration (300 mg/l). In conclusion, MP + EP had the potential additive toxicity on lifespan and preadult development period for D. melanogaster. PMID:28076277

  2. Inhibition of Atg6 and Pi3K59F autophagy genes in neurons decreases lifespan and locomotor ability in Drosophila melanogaster.

    PubMed

    M'Angale, P G; Staveley, B E

    2016-10-24

    Autophagy is a cellular mechanism implicated in the pathology of Parkinson's disease. The proteins Atg6 (Beclin 1) and Pi3K59F are involved in autophagosome formation, a key step in the initiation of autophagy. We first used the GMR-Gal4 driver to determine the effect of reducing the expression of the genes encoding these proteins on the developing Drosophila melanogaster eye. Subsequently, we inhibited their expression in D. melanogaster neurons under the direction of a Dopa decarboxylase (Ddc) transgene, and examined the effects on longevity and motor function. Decreased longevity coupled with an age-dependent loss of climbing ability was observed. In addition, we investigated the roles of these genes in the well-studied α-synuclein-induced Drosophila model of Parkinson's disease. In this context, lowered expression of Atg6 or Pi3K59F in Ddc-Gal4-expressing neurons results in decreased longevity and associated age-dependent loss of locomotor ability. Inhibition of Atg6 or Pi3K59F together with overexpression of the sole pro-survival Bcl-2 Drosophila homolog Buffy in Ddc-Gal4-expressing neurons resulted in further decrease in the survival and climbing ability of Atg6-RNAi flies, whereas these measures were ameliorated in Pi3K59F-RNAi flies.

  3. Gonadal Mosaicism Induced by Chemical Treatment of Sperm in Drosophila melanogaster

    PubMed Central

    Lindsley, Dan L.; Hardy, Robert W.; Ripoll, Pedro; Lindsley, Dart

    2016-01-01

    Accurate interpretation of forward genetic screens of chromosomes exposed in mature spermatozoa to a mutagenic chemical requires understanding—incomplete to date—of how exposed chromosomes and their replicas proceed through early development stages from the fertilized ovum to establishment of the germline of the treated male’s offspring. We describe a model for early embryonic development and establishment of the germline of Drosophila melanogaster and a model-validating experiment. Our model proposes that, barring repair, DNA strands modified by treatment with alkylating agents are stable and mutagenic. Each replication of an alkylated strand can result in misreplication and a mutant-bearing daughter nucleus. Daughter nuclei thenceforth replicate faithfully and their descendants comprise the embryonic syncytium. Of the 256 nuclei present after the eighth division, several migrate into the polar plasm at the posterior end of the embryo to found the germline. Based upon distribution of descendants of the alkylated strands, the misreplication rate, and the number of nuclei selected as germline progenitors, the frequency of gonadal mosaicism is predictable. Experimentally, we tracked chromosomes 2 and 3 from EMS-treated sperm through a number of generations, to characterize autosomal recessive lethal mutations and infer gonadal genetic content of the sons of treated males. Over 50% of 106 sons bore germlines that were singly, doubly, or triply mosaic for chromosome 2 or chromosome 3. These findings were consistent with our model, assuming a rate of misreplication between 0.65 and 0.80 at each replication of an alkylated strand. Crossing treated males to mismatch-repair-deficient females had no apparent effect on mutation rate. PMID:26163187

  4. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster

    PubMed Central

    Hunter, Chad M.; Huang, Wen; Mackay, Trudy F. C.; Singh, Nadia D.

    2016-01-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait. PMID:27035832

  5. Genome-wide association studies reveal a simple genetic basis of resistance to naturally coevolving viruses in Drosophila melanogaster.

    PubMed

    Magwire, Michael M; Fabian, Daniel K; Schweyen, Hannah; Cao, Chuan; Longdon, Ben; Bayer, Florian; Jiggins, Francis M

    2012-01-01

    Variation in susceptibility to infectious disease often has a substantial genetic component in animal and plant populations. We have used genome-wide association studies (GWAS) in Drosophila melanogaster to identify the genetic basis of variation in susceptibility to viral infection. We found that there is substantially more genetic variation in susceptibility to two viruses that naturally infect D. melanogaster (DCV and DMelSV) than to two viruses isolated from other insects (FHV and DAffSV). Furthermore, this increased variation is caused by a small number of common polymorphisms that have a major effect on resistance and can individually explain up to 47% of the heritability in disease susceptibility. For two of these polymorphisms, it has previously been shown that they have been driven to a high frequency by natural selection. An advantage of GWAS in Drosophila is that the results can be confirmed experimentally. We verified that a gene called pastrel--which was previously not known to have an antiviral function--is associated with DCV-resistance by knocking down its expression by RNAi. Our data suggest that selection for resistance to infectious disease can increase genetic variation by increasing the frequency of major-effect alleles, and this has resulted in a simple genetic basis to variation in virus resistance.

  6. Ameliorative effects of gallic acid, quercetin and limonene on urethane-induced genotoxicity and oxidative stress in Drosophila melanogaster.

    PubMed

    Nagpal, Isha; Abraham, Suresh K

    2017-05-01

    The main objective of our present work was to ascertain the efficacy of Drosophila melanogaster model for assessing antigenotoxic and antioxidant effects of dietary phytochemicals gallic acid (GA), quercetin (QC) and limonene (Lim) against urethane (URE), a genotoxic environmental carcinogen. Oregon-K (ORK) adult male flies were fed GA, QC and Lim in combination with URE (20 mM) in 10% sucrose for 72 h. Third instar larvae were fed instant medium containing the above phytochemicals and URE for 24 h. Sex-linked recessive lethal (SLRL) test and assays for estimating glutathione content (GSH), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and lipid peroxidation (MDA content) were performed. Adult feeding experiments demonstrated that co-treatment of flies with URE and the test phytochemicals has significantly decreased the frequencies of SLRL mutations in all the germ cell stages when compared to that with URE alone. Larval feeding experiments also showed a similar pattern. The above results correlate well with antioxidative potentials of the test agents where we observed the elevated enzymatic levels with a significant reduction in MDA level in Drosophila larvae. The results further suggest that the dietary phytochemicals have an antioxidant and antimutagenic property which can be assessed using D. melanogaster.

  7. Linearity versus Nonlinearity of Offspring-Parent Regression: An Experimental Study of Drosophila Melanogaster

    PubMed Central

    Gimelfarb, A.; Willis, J. H.

    1994-01-01

    An experiment was conducted to investigate the offspring-parent regression for three quantitative traits (weight, abdominal bristles and wing length) in Drosophila melanogaster. Linear and polynomial models were fitted for the regressions of a character in offspring on both parents. It is demonstrated that responses by the characters to selection predicted by the nonlinear regressions may differ substantially from those predicted by the linear regressions. This is true even, and especially, if selection is weak. The realized heritability for a character under selection is shown to be determined not only by the offspring-parent regression but also by the distribution of the character and by the form and strength of selection. PMID:7828818

  8. The route of infection determines Wolbachia antibacterial protection in Drosophila.

    PubMed

    Gupta, Vanika; Vasanthakrishnan, Radhakrishnan B; Siva-Jothy, Jonathon; Monteith, Katy M; Brown, Sam P; Vale, Pedro F

    2017-06-14

    Bacterial symbionts are widespread among metazoans and provide a range of beneficial functions. Wolbachia -mediated protection against viral infection has been extensively demonstrated in Drosophila. In mosquitoes that are artificially transinfected with Drosophila melanogaster Wolbachia (wMel), protection from both viral and bacterial infections has been demonstrated. However, no evidence for Wolbachia -mediated antibacterial protection has been demonstrated in Drosophila to date. Here, we show that the route of infection is key for Wolbachia -mediated antibacterial protection. Drosophila melanogaster carrying Wolbachia showed reduced mortality during enteric-but not systemic-infection with the opportunist pathogen Pseudomonas aeruginosa Wolbachia -mediated protection was more pronounced in male flies and is associated with increased early expression of the antimicrobial peptide Attacin A , and also increased expression of a reactive oxygen species detoxification gene ( Gst D8 ). These results highlight that the route of infection is important for symbiont-mediated protection from infection, that Wolbachia can protect hosts by eliciting a combination of resistance and disease tolerance mechanisms, and that these effects are sexually dimorphic. We discuss the importance of using ecologically relevant routes of infection to gain a better understanding of symbiont-mediated protection. © 2017 The Authors.

  9. Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing.

    PubMed

    Lopez, Wilfredo; Page, Alexis M; Carlson, Darby J; Ericson, Brad L; Cserhati, Matyas F; Guda, Chittibabu; Carlson, Kimberly A

    2018-01-01

    Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster . The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways.

  10. The evolution of small insertions and deletions in the coding genes of Drosophila melanogaster.

    PubMed

    Chong, Zechen; Zhai, Weiwei; Li, Chunyan; Gao, Min; Gong, Qiang; Ruan, Jue; Li, Juan; Jiang, Lan; Lv, Xuemei; Hungate, Eric; Wu, Chung-I

    2013-12-01

    Studies of protein evolution have focused on amino acid substitutions with much less systematic analysis on insertion and deletions (indels) in protein coding genes. We hence surveyed 7,500 genes between Drosophila melanogaster and D. simulans, using D. yakuba as an outgroup for this purpose. The evolutionary rate of coding indels is indeed low, at only 3% of that of nonsynonymous substitutions. As coding indels follow a geometric distribution in size and tend to fall in low-complexity regions of proteins, it is unclear whether selection or mutation underlies this low rate. To resolve the issue, we collected genomic sequences from an isogenic African line of D. melanogaster (ZS30) at a high coverage of 70× and analyzed indel polymorphism between ZS30 and the reference genome. In comparing polymorphism and divergence, we found that the divergence to polymorphism ratio (i.e., fixation index) for smaller indels (size ≤ 10 bp) is very similar to that for synonymous changes, suggesting that most of the within-species polymorphism and between-species divergence for indels are selectively neutral. Interestingly, deletions of larger sizes (size ≥ 11 bp and ≤ 30 bp) have a much higher fixation index than synonymous mutations and 44.4% of fixed middle-sized deletions are estimated to be adaptive. To our surprise, this pattern is not found for insertions. Protein indel evolution appear to be in a dynamic flux of neutrally driven expansion (insertions) together with adaptive-driven contraction (deletions), and these observations provide important insights for understanding the fitness of new mutations as well as the evolutionary driving forces for genomic evolution in Drosophila species.

  11. Antimutagenic evaluation of traditional medicinal plants from South America Peumus boldus and Cryptocarya alba using Drosophila melanogaster.

    PubMed

    Carmona, Erico R; Reyes-Díaz, Marjorie; Parodi, Jorge; Inostroza-Blancheteau, Claudio

    2017-01-01

    Peumus boldus Mol. ("Boldo") and Cryptocarya alba Mol. Looser ("Peumo") are medicinal shrubs with wide geographical distribution in South America. Their leaves and fruits are commonly used in traditional medicine because they exhibit natural medicinal properties for treatment of liver disorders and rheumatism. However, there are no apparent data regarding potential protective effects on cellular genetic components. In order to examine potential mutagenic and/or antimutagenic effects of these medicinal plants, the Drosophila melanogaster (D. melanogaster) wing-spot test was employed. This assay detects a wide range of mutational events, including point mutations, deletions, certain types of chromosomal aberrations (nondisjunction), and mitotic recombination. Qualitative and quantitative analyses of phenolic and anthocyanin compounds were carried out using biochemical and high-performance liquid chromatography methodologies. In addition, the antioxidant capacity of P. boldus and C. alba leaf extracts was also analyzed. P. boldus and C. alba extracts did not induce significant mutagenic effects in the D. melanogaster model. However, simultaneous treatment of extracts concurrently with the mutagen ethyl methane sulphonate showed a decrease of mutant spots in somatic cells of D. melanogaster, indicating desmutagenic effects in this in vivo model. Flavonoids and anthocyanins were detected predominantly in the extracts, and these compounds exerted significant antioxidant capacity. The observed antimutagenic effects may be related to the presence of phytochemicals with high antioxidant capacity, such as flavonoids and antohocyanins, in the extracts.

  12. Automated identification of social interaction criteria in Drosophila melanogaster.

    PubMed

    Schneider, J; Levine, J D

    2014-10-01

    The study of social behaviour within groups has relied on fixed definitions of an 'interaction'. Criteria used in these definitions often involve a subjectively defined cut-off value for proximity, orientation and time (e.g. courtship, aggression and social interaction networks) and the same numerical values for these criteria are applied to all of the treatment groups within an experiment. One universal definition of an interaction could misidentify interactions within groups that differ in life histories, study treatments and/or genetic mutations. Here, we present an automated method for determining the values of interaction criteria using a pre-defined rule set rather than pre-defined values. We use this approach and show changing social behaviours in different manipulations of Drosophila melanogaster. We also show that chemosensory cues are an important modality of social spacing and interaction. This method will allow a more robust analysis of the properties of interacting groups, while helping us understand how specific groups regulate their social interaction space. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Nuclear location of a chromatin insulator in Drosophila melanogaster.

    PubMed

    Xu, Qinghao; Li, Mo; Adams, Jessica; Cai, Haini N

    2004-03-01

    Chromatin-related functions are associated with spatial organization in the nucleus. We have investigated the relationship between the enhancer-blocking activity and subnuclear localization of the Drosophila melanogaster suHw insulator. Using fluorescent in situ hybridization, we observed that genomic loci containing the gypsy retrotransposon were distributed closer to the nuclear periphery than regions without the gypsy retrotransposon. However, transgenes containing a functional 340 bp suHw insulator did not exhibit such biased distribution towards the nuclear periphery, which suggests that the suHw insulator sequence is not responsible for the peripheral localization of the gypsy retrotransposon. Antibody stains showed that the two proteins essential for the suHw insulator activity, SUHW and MOD(MDG4), are not restricted to the nuclear periphery. The enhancer-blocking activity of suHw remained intact under the heat shock conditions, which was shown to disrupt the association of gypsy, SUHW and MOD(MDG4) with the nuclear periphery. Our results indicate that the suHw insulator can function in the nuclear interior, possibly through local interactions with chromatin components or other nuclear structures.

  14. Genetic Architecture of Natural Variation Underlying Adult Foraging Behavior That Is Essential for Survival of Drosophila melanogaster.

    PubMed

    Lee, Yuh Chwen G; Yang, Qian; Chi, Wanhao; Turkson, Susie A; Du, Wei A; Kemkemer, Claus; Zeng, Zhao-Bang; Long, Manyuan; Zhuang, Xiaoxi

    2017-05-01

    Foraging behavior is critical for the fitness of individuals. However, the genetic basis of variation in foraging behavior and the evolutionary forces underlying such natural variation have rarely been investigated. We developed a systematic approach to assay the variation in survival rate in a foraging environment for adult flies derived from a wild Drosophila melanogaster population. Despite being such an essential trait, there is substantial variation of foraging behavior among D. melanogaster strains. Importantly, we provided the first evaluation of the potential caveats of using inbred Drosophila strains to perform genome-wide association studies on life-history traits, and concluded that inbreeding depression is unlikely a major contributor for the observed large variation in adult foraging behavior. We found that adult foraging behavior has a strong genetic component and, unlike larval foraging behavior, depends on multiple loci. Identified candidate genes are enriched in those with high expression in adult heads and, demonstrated by expression knock down assay, are involved in maintaining normal functions of the nervous system. Our study not only identified candidate genes for foraging behavior that is relevant to individual fitness, but also shed light on the initial stage underlying the evolution of the behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. [Ecological and biological characteristics of Drosophila melanogaster features depending on the dose of electromagnetic radiation of various types].

    PubMed

    Babkina, V V; Chernova, G V; Allenova, E A; Endebera, O P; Naumkina, E N

    2013-01-01

    Biological effects of exposure to red light (lambda = 660 +/- 10 nm) on the viability and morphophysiological characteristics of Drosophila melanogaster have been studied. The ability of this physical agent to modify these features is shown. The degree of expression and impact of biological effects depend on the dose, functional and genetic status of the organism. The study of the life expectancy of the exposed to EHF and white light D. melanogaster has revealed that expression of the features depends on the radiation doses, genotype, sex, the nature of the position of wings and lighting conditions. It has been found that the dark mode (24 h-night) is more favorable than the artificial lighting. Individuals with the left wing at the top are more sensitive to the external factors.

  16. Genome-wide sequencing and an open reading frame analysis of dichlorodiphenyltrichloroethane (DDT) susceptible (91-C) and resistant (91-R) Drosophila melanogaster laboratory populations

    USDA-ARS?s Scientific Manuscript database

    The Drosophila melanogaster 91-R and 91-C strains are of common origin, however, 91-R has been intensely selected for dichlorodiphenyltrichloroethane (DDT) resistance over six decades while 91-C has been maintained as the non-selected control strain. These fly strains represent a unique genetic res...

  17. CK2(beta)tes gene encodes a testis-specific isoform of the regulatory subunit of casein kinase 2 in Drosophila melanogaster.

    PubMed

    Kalmykova, Alla I; Shevelyov, Yuri Y; Polesskaya, Oksana O; Dobritsa, Anna A; Evstafieva, Alexandra G; Boldyreff, Brigitte; Issinger, Olaf-Georg; Gvozdev, Vladimir A

    2002-03-01

    An earlier described CK2(beta)tes gene of Drosophila melanogaster is shown to encode a male germline specific isoform of regulatory beta subunit of casein kinase 2. Western-analysis using anti-CK2(beta)tes Ig revealed CK2(beta)tes protein in Drosophila testes extract. Expression of a CK2(beta)tes-beta-galactosidase fusion protein driven by the CK2(beta)tes promoter was found in transgenic flies at postmitotic stages of spermatogenesis. Examination of biochemical characteristics of a recombinant CK2(beta)tes protein expressed in Escherichia coli revealed properties similar to those of CK2beta: (a) CK2(beta)tes protein stimulates CK2alpha catalytic activity toward synthetic peptide; (b) it inhibits phosphorylation of calmodulin and mediates stimulation of CK2alpha by polylysine; (c) it is able to form (CK2(beta)tes)2 dimers, as well as (CK2alpha)2(CK2(beta)tes)2 tetramers. Using the yeast two-hybrid system and coimmunoprecipitation analysis of protein extract from Drosophila testes, we demonstrated an association between CK2(beta)tes and CK2alpha. Northern-analysis has shown that another regulatory (beta') subunit found recently in D. melanogaster genome is also testis-specific. Thus, we describe the first example of two tissue-specific regulatory subunits of CK2 which might serve to provide CK2 substrate recognition during spermatogenesis.

  18. Dominant lethal mutations in Drosophila melanogaster natural populations flown on board ISS.

    NASA Astrophysics Data System (ADS)

    Larina, Olga; Bekker, Anna

    The resistance to mutagenic impacts represents an important issue of manned space missions. However the reasons of its individual variability as well as the factors which could induce mutations in space flight are not fully understood. Drosophila studies accomplished by several research teams at real space flights, revealed pronounced increase of mutations in somatic and reproductive cells, nonetheless, quite an opposite spaceflight effects also occurred, i.e., mei-41 laboratory strain showed postflight mutation rates lower than that in ground control. In order to monitor the influence of space flight on the mutational process, 4 series of space experiment with D. melanogaster wild type populations were performed at International Space Station (ISS). The appliance “Drosophila-2” used for breeding of drosophila in spaceflight conditions, enabled to conduct synchronous studies with two samples of fly populations. First instar drosophila larvae were placed into the experimental appliance 12 hours before the start of transport spacecraft. The duration of experiments was 7.9 through 19.7 days. In 19.7-day experiment, two generations of the flies were raised during the space flight, and then delivered to the earth. The frequency of dominant lethal mutations (DLM) was evaluated as the percentage of embryonic death in the progeny of experimental drosophila samples. DLM tests in VV-09 and Chas-09 natural populations, performed after the exposure to 10.9-day flight, showed the increase of DLM rate in Chas-09 (0.077 in flight series vs. 0.43 in earth-based control) while post-flight DLM value in VV-09 did not diverge from on-earth sample (0.025 and 0.027 correspondingly). The same results for VV-09 were obtained after the 14.7-day and 7.9-day flights with the only exception: 7.9-day flight experiment employed DLM measurements in two VV-09 spaceflight samples, differing by the age of the flies, and the above DLM rates were detected in “younger” VV-09 sample only. DLM

  19. The ribosomal protein genes and Minute loci of Drosophila melanogaster

    PubMed Central

    Marygold, Steven J; Roote, John; Reuter, Gunter; Lambertsson, Andrew; Ashburner, Michael; Millburn, Gillian H; Harrison, Paul M; Yu, Zhan; Kenmochi, Naoya; Kaufman, Thomas C; Leevers, Sally J; Cook, Kevin R

    2007-01-01

    Background Mutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the 'Minute' syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes. Results We combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci. Conclusion This work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome. PMID:17927810

  20. Transmission efficiency of the sigma virus in natural populations of its host, Drosophila melanogaster.

    PubMed

    Fleuriet, A

    1982-01-01

    A study of the viral samples collected in French natural populations of Drosophila melanogaster since 1969, indicates that natural populations include, as expected, both stabilized and non stabilized infected individuals. In agreement with previous observations made on other characters of the virus, the viral samples collected appear to be homogeneous for the efficiency of the hereditary transmission. However, this efficiency is greater than the average value observed with virus perpetuated in infected laboratory fly strains. One sample collected in Gabon and three in the U.S.A. appear to differ from the French samples for one at least of the traits studied in these experiments.

  1. Characterization of the effect of Cr(VI) on humoral innate immunity using Drosophila melanogaster.

    PubMed

    Pragya, P; Shukla, A K; Murthy, R C; Abdin, M Z; Kar Chowdhuri, D

    2015-11-01

    With the advancement of human race, different anthropogenic activities have heaped the environment with chemicals that can cause alteration in the immune system of exposed organism. As a first line of barrier, the evolutionary conserved innate immunity is crucial for the health of an organism. However, there is paucity of information regarding in vivo assessment of the effect of environmental chemicals on innate immunity. Therefore, we examined the effect of a widely used environmental chemical, Cr(VI), on humoral innate immune response using Drosophila melanogaster. The adverse effect of Cr(VI) on host humoral response was characterized by decreased gene expression of antimicrobial peptides (AMPs) in the exposed organism. Concurrently, a significantly decreased transcription of humoral pathway receptors (Toll and PGRP) and triglyceride level along with inhibition of antioxidant enzyme activities were observed in exposed organism. This in turn weakened the immune response of exposed organism that was manifested by their reduced resistance against bacterial infection. In addition, overexpression of the components of humoral immunity particularly Diptericin benefits Drosophila from Cr(VI)-induced humoral immune-suppressive effect. To our knowledge, this is the first report regarding negative impact of an environmental chemical on humoral innate immune response of Drosophila along with subsequent protection by AMPs, which may provide novel insight into host-chemical interactions. Also, our data validate the utility and sensitivity of Drosophila as a model that could be used for screening the possible risk of environmental chemicals on innate immunity with minimum ethical concern that can be further extrapolated to higher organisms. © 2014 Wiley Periodicals, Inc.

  2. Ferritin Assembly in Enterocytes of Drosophila melanogaster

    PubMed Central

    Rosas-Arellano, Abraham; Vásquez-Procopio, Johana; Gambis, Alexis; Blowes, Liisa M.; Steller, Hermann; Mollereau, Bertrand; Missirlis, Fanis

    2016-01-01

    Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated. PMID:26861293

  3. Conditions Affecting Social Space in Drosophila melanogaster.

    PubMed

    McNeil, Alison R; Jolley, Sam N; Akinleye, Adesanya A; Nurilov, Marat; Rouzyi, Zulekha; Milunovich, Austin J; Chambers, Moria C; Simon, Anne F

    2015-11-05

    The social space assay described here can be used to quantify social interactions of Drosophila melanogaster - or other small insects - in a straightforward manner. As we previously demonstrated (1), in a two-dimensional chamber, we first force the flies to form a tight group, subsequently allowing them to take their preferred distance from each other. After the flies have settled, we measure the distance to the closest neighbor (or social space), processing a static picture with free online software (ImageJ). The analysis of the distance to the closest neighbor allows researchers to determine the effects of genetic and environmental factors on social interaction, while controlling for potential confounding factors. Diverse factors such as climbing ability, time of day, sex, and number of flies, can modify social spacing of flies. We thus propose a series of experimental controls to mitigate these confounding effects. This assay can be used for at least two purposes. First, researchers can determine how their favorite environmental shift (such as isolation, temperature, stress or toxins) will impact social spacing (1,2). Second, researchers can dissect the genetic and neural underpinnings of this basic form of social behavior (1,3). Specifically, we used it as a diagnostic tool to study the role of orthologous genes thought to be involved in social behavior in other organisms, such as candidate genes for autism in humans (4).

  4. Cytosine DNA Methylation Is Found in Drosophila melanogaster but Absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Other Yeast Species

    PubMed Central

    2014-01-01

    The methylation of cytosine to 5-methylcytosine (5-meC) is an important epigenetic DNA modification in many bacteria, plants, and mammals, but its relevance for important model organisms, including Caenorhabditis elegans and Drosophila melanogaster, is still equivocal. By reporting the presence of 5-meC in a broad variety of wild, laboratory, and industrial yeasts, a recent study also challenged the dogma about the absence of DNA methylation in yeast species. We would like to bring to attention that the protocol used for gas chromatography/mass spectrometry involved hydrolysis of the DNA preparations. As this process separates cytosine and 5-meC from the sugar phosphate backbone, this method is unable to distinguish DNA- from RNA-derived 5-meC. We employed an alternative LC–MS/MS protocol where by targeting 5-methyldeoxycytidine moieties after enzymatic digestion, only 5-meC specifically derived from DNA is quantified. This technique unambiguously identified cytosine DNA methylation in Arabidopsis thaliana (14.0% of cytosines methylated), Mus musculus (7.6%), and Escherichia coli (2.3%). Despite achieving a detection limit at 250 attomoles (corresponding to <0.00002 methylated cytosines per nonmethylated cytosine), we could not confirm any cytosine DNA methylation in laboratory and industrial strains of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Saccharomyces boulardii, Saccharomyces paradoxus, or Pichia pastoris. The protocol however unequivocally confirmed DNA methylation in adult Drosophila melanogaster at a value (0.034%) that is up to 2 orders of magnitude below the detection limit of bisulphite sequencing. Thus, 5-meC is a rare DNA modification in drosophila but absent in yeast. PMID:24640988

  5. Identifying behavioral circuits in Drosophila melanogaster: moving targets in a flying insect.

    PubMed

    Griffith, Leslie C

    2012-08-01

    Drosophila melanogaster has historically been the premier model system for understanding the molecular and genetic bases of complex behaviors. In the last decade technical advances, in the form of new genetic tools and electrophysiological and optical methods, have allowed investigators to begin to dissect the neuronal circuits that generate behavior in the adult. The blossoming of circuit analysis in this organism has also reinforced our appreciation of the inadequacy of wiring diagrams for specifying complex behavior. Neuromodulation and neuronal plasticity act to reconfigure circuits on both short and long time scales. These processes act on the connectome, providing context by integrating external and internal cues that are relevant for behavioral choices. New approaches in the fly are providing insight into these basic principles of circuit function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effects of mobile phone radiation on reproduction and development in Drosophila melanogaster.

    PubMed

    Weisbrot, David; Lin, Hana; Ye, Lin; Blank, Martin; Goodman, Reba

    2003-05-01

    In this report we examined the effects of a discontinuous radio frequency (RF) signal produced by a GSM multiband mobile phone (900/1,900 MHz; SAR approximately 1.4 W/kg) on Drosophila melanogaster, during the 10-day developmental period from egg laying through pupation. As found earlier with low frequency exposures, the non-thermal radiation from the GSM mobile phone increased numbers of offspring, elevated hsp70 levels, increased serum response element (SRE) DNA-binding and induced the phosphorylation of the nuclear transcription factor, ELK-1. The rapid induction of hsp70 within minutes, by a non-thermal stress, together with identified components of signal transduction pathways, provide sensitive and reliable biomarkers that could serve as the basis for realistic mobile phone safety guidelines. Copyright 2003 Wiley-Liss, Inc.

  7. Paraquat-induced ultrastructural changes and DNA damage in the nervous system is mediated via oxidative-stress-induced cytotoxicity in Drosophila melanogaster.

    PubMed

    Mehdi, Syed Hassan; Qamar, Ayesha

    2013-08-01

    Paraquat (PQ), a quaternary nitrogen herbicide, is commonly used as a pesticide despite of its high toxicity. Our study evaluated the effect of subchronic PQ exposure on the neuropathology, genotoxicity, and antioxidant activity on the nervous tissue of Drosophila melanogaster. We also explored the behavioral effect of PQ on D. melanogaster. Furthermore, we attempted to validate the mechanism by evaluating PQ-induced cytotoxicity on the D-Mel2 cell lines. The fruit fly D. melanogaster serves as a feasible model to understand the mechanism of neurodegenerative diseases. Our study shows a dose-dependent PQ-induced neuropathology in the brain tissue of D. melanogaster as evidenced by hematoxylin and eosin staining, silver nitrate staining, and transmission electron microscopy. Electron microscopic study of D. melanogaster brain tissue exhibited vacuolar degeneration and significant neuronal damage across the nervous tissue structure in comparison with control. Our findings also indicate a dose-dependent locomotor impairment and decreased superoxide dismutase (SOD) specific activity in PQ-treated D. melanogaster. These PQ-induced neuroanatomical changes and decreased SOD specific activity showed a significant association with oxidative DNA damage as observed by alkaline comet assay. Additionally, we show, for the first time, a dose-dependent PQ-induced cytotoxicity in the D-Mel2 cells suggesting loss of neuronal cell viability via cytotoxic damage. Our data suggest that PQ exposure results in neurodegeneration in D. melanogaster and that fruit fly is a suitable in vivo model for correlating the neuroanatomical changes with neurotoxic damages to nervous system.

  8. DNA damage protective effect of honey-sweetened cashew apple nectar in Drosophila melanogaster

    PubMed Central

    da Silva, Robson Alves; Dihl, Rafael Rodrigues; Dias, Lucas Pinheiro; Costa, Maiane Papke; de Abreu, Bianca Regina Ribas; Cunha, Kênya Silva; Lehmann, Mauricio

    2016-01-01

    Abstract Fruits and derivatives, such as juices, are complex mixtures of chemicals, some of which may have mutagenic and/or carcinogenic potential, while others may have antimutagenic and/or anticancer activities. The modulating effects of honey-sweetened cashew apple nectar (HSCAN), on somatic mutation and recombination induced by ethyl methanesulfonate (EMS) and mitomycin C (MMC) were evaluated with the wing spot test in Drosophila melanogaster using co- and post-treatment protocols. Additionally, the antimutagenic activity of two HSCAN components, cashew apple pulp and honey, in MMC-induced DNA damage was also investigated. HSCAN reduced the mutagenic activity of both EMS and MMC in the co-treatment protocol, but had a co-mutagenic effect when post-administered. Similar results were also observed with honey on MMC mutagenic activity. Cashew apple pulp was effective in exerting protective or enhancing effects on the MMC mutagenicity, depending on the administration protocol and concentration used. Overall, these results indicate that HSCAN, cashew apple and honey seem capable of modulating not only the events that precede the induced DNA damages, but also the Drosophila DNA repair processes involved in the correction of EMS and MMC-induced damages. PMID:27560988

  9. NF-κB/Rel Proteins and the Humoral Immune Responses of Drosophila melanogaster

    PubMed Central

    Ganesan, Sandhya; Aggarwal, Kamna; Paquette, Nicholas; Silverman, Neal

    2011-01-01

    Nuclear Factor-κB (NF-κB)/Rel transcription factors form an integral part of innate immune defenses and are conserved throughout the animal kingdom. Studying the function, mechanism of activation and regulation of these factors is crucial for understanding host responses to microbial infections. The fruit fly Drosophila melanogaster has proved to be a valuable model system to study these evolutionarily conserved NF-κB mediated immune responses. Drosophila combats pathogens through humoral and cellular immune responses. These humoral responses are well characterized and are marked by the robust production of a battery of anti-microbial peptides. Two NF-κB signaling pathways, the Toll and the IMD pathways, are responsible for the induction of these antimicrobial peptides. Signal transduction in these pathways is strikingly similar to that in mammalian TLR pathways. In this chapter, we discuss in detail the molecular mechanisms of microbial recognition, signal transduction and NF-κB regulation, in both the Toll and the IMD pathways. Similarities and differences relative to their mammalian counterparts are discussed, and recent advances in our understanding of the intricate regulatory networks in these NF-κB signaling pathways are also highlighted. PMID:20852987

  10. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses

    NASA Astrophysics Data System (ADS)

    Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee

    2017-06-01

    We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening.

  11. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jian-Ching; Rebrin, Igor; Klichko, Vladimir

    2010-10-08

    Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-,more » and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.« less

  12. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses

    PubMed Central

    Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee

    2017-01-01

    We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening. PMID:28621308

  13. Hormetic efficacy of rutin to promote longevity in Drosophila melanogaster.

    PubMed

    Chattopadhyay, Debarati; Chitnis, Atith; Talekar, Aishwarya; Mulay, Prajakta; Makkar, Manyata; James, Joel; Thirumurugan, Kavitha

    2017-06-01

    Hormetins are compounds that mediate hormesis by being beneficial at low doses but detrimental at high doses. Recent studies have highlighted that many compounds that extended lifespan in model organisms did so by mediating hormesis. Rutin is a glycosylate conjugate of quercetin and rutinose and is abundant in citrus fruits and buckwheat seeds. Rutin possess ROS scavenging, anti-cancer, cardio-protective, skin-regenerative and neuro-protective properties. Drosophila melanogaster is an attractive model organism for longevity studies owing to its homology of organ and cellular-pathways with mammals. In this study, we aimed to understand the effect of rutin on extending longevity in Drosophila melanogaster. Male and female flies were administered with a range of rutin doses (100-800 µM) to analyse whether rutin mediated lifespan-extension by hormesis. Effect of rutin on physiological parameters like food intake, fecundity, climbing activity, development and resistance to various stresses was also studied. Lifespan assays showed that rutin at 200 and 400 µM significantly extended median lifespan in both male and female flies beyond which flies exhibited drastically reduced longevity. Increase in survival at 400 µM was associated with reduced food intake and fecundity. Flies exhibited improved climbing capability with both 200 and 400 µM rutin. Flies fed with 100 and 200 µM rutin exhibited enhanced survival upon exposure to oxidative stress with 400 µM rutin exhibiting no improvement in median lifespan following oxidative stress. Analysis of endogenous peroxide upon treatment with rutin (100-400 µM) with or without 5% H 2 O 2 showed elevated levels of endogenous peroxide with 400 µM rutin whereas no increase in hydrogen peroxide level was observed with rutin at 100 and 200 µM. Finally, gene expression studies in male flies revealed that rutin treatment at 200 and/or 400 µM elevated transcript levels of dFoxO, MnSod, Cat, dTsc1, dTsc2, Thor, dAtg1, d

  14. The Complex Contributions of Genetics and Nutrition to Immunity in Drosophila melanogaster

    PubMed Central

    Unckless, Robert L.; Rottschaefer, Susan M.; Lazzaro, Brian P.

    2015-01-01

    Both malnutrition and undernutrition can lead to compromised immune defense in a diversity of animals, and “nutritional immunology” has been suggested as a means of understanding immunity and determining strategies for fighting infection. The genetic basis for the effects of diet on immunity, however, has been largely unknown. In the present study, we have conducted genome-wide association mapping in Drosophila melanogaster to identify the genetic basis for individual variation in resistance, and for variation in immunological sensitivity to diet (genotype-by-environment interaction, or GxE). D. melanogaster were reared for several generations on either high-glucose or low-glucose diets and then infected with Providencia rettgeri, a natural bacterial pathogen of D. melanogaster. Systemic pathogen load was measured at the peak of infection intensity, and several indicators of nutritional status were taken from uninfected flies reared on each diet. We find that dietary glucose level significantly alters the quality of immune defense, with elevated dietary glucose resulting in higher pathogen loads. The quality of immune defense is genetically variable within the sampled population, and we find genetic variation for immunological sensitivity to dietary glucose (genotype-by-diet interaction). Immune defense was genetically correlated with indicators of metabolic status in flies reared on the high-glucose diet, and we identified multiple genes that explain variation in immune defense, including several that have not been previously implicated in immune response but which are confirmed to alter pathogen load after RNAi knockdown. Our findings emphasize the importance of dietary composition to immune defense and reveal genes outside the conventional “immune system” that can be important in determining susceptibility to infection. Functional variation in these genes is segregating in a natural population, providing the substrate for evolutionary response to

  15. Involvement of oxidative stress in 4-vinylcyclohexene-induced toxicity in Drosophila melanogaster.

    PubMed

    Abolaji, Amos Olalekan; Kamdem, Jean Paul; Lugokenski, Thiago Henrique; Nascimento, Thallita Kalar; Waczuk, Emily Pansera; Farombi, Ebenezer Olatunde; Loreto, Élgion Lúcio da Silva; Rocha, João Batista Teixeira

    2014-06-01

    4-Vinylcyclohexene (VCH) is a dimer of 1,3-butadiene produced as a by-product of pesticides, plastic, rubber, flame retardants, and tire production. Although, several studies have reported the ovotoxicity of VCH, information on a possible involvement of oxidative stress in the toxicity of this occupational chemical is scarce. Hence, this study was carried out to investigate further possible mechanisms of toxicity of VCH with a specific emphasis on oxidative stress using a Drosophila melanogaster model. D. melanogaster (both genders) of 1 to 3 days old were exposed to different concentrations of VCH (10 µM-1 mM) in the diet for 5 days. Subsequently, the survival and negative geotaxis assays and the quantification of reactive oxygen species (ROS) generation were determined. In addition, we evaluated RT-PCR expressions of selected oxidative stress and antioxidant mRNA genes (HSP27, 70, and 83, SOD, Nrf-2, MAPK2, and catalase). Furthermore, catalase, glutathione-S-transferase (GST), delta aminolevulinic acid dehydratase (δ-ALA-D), and acetylcholinesterase (AChE) activities were determined. VCH exposure impaired negative geotaxic behavior and induced the mRNA of SOD, Nrf-2, and MAPK2 genes expressions. There were increases in catalase and ROS production, as well as inhibitions of GST, δ-ALA-D, and AChE activities (P<0.05). Our results suggest that the VCH mechanism of toxicity is associated with oxidative damage, as evidenced by the alteration in the oxidative stress-antioxidant balance, and possible neurotoxic consequences due to decreased AChE activity, and impairments in negative geotaxic behavior. Thus, we conclude that D. melanogaster is a useful model for investigating the toxicity of VCH exposure, and here, we have provided further insights on the mechanism of VCH-induced toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster.

    PubMed

    Unckless, Robert L; Rottschaefer, Susan M; Lazzaro, Brian P

    2015-03-01

    Both malnutrition and undernutrition can lead to compromised immune defense in a diversity of animals, and "nutritional immunology" has been suggested as a means of understanding immunity and determining strategies for fighting infection. The genetic basis for the effects of diet on immunity, however, has been largely unknown. In the present study, we have conducted genome-wide association mapping in Drosophila melanogaster to identify the genetic basis for individual variation in resistance, and for variation in immunological sensitivity to diet (genotype-by-environment interaction, or GxE). D. melanogaster were reared for several generations on either high-glucose or low-glucose diets and then infected with Providencia rettgeri, a natural bacterial pathogen of D. melanogaster. Systemic pathogen load was measured at the peak of infection intensity, and several indicators of nutritional status were taken from uninfected flies reared on each diet. We find that dietary glucose level significantly alters the quality of immune defense, with elevated dietary glucose resulting in higher pathogen loads. The quality of immune defense is genetically variable within the sampled population, and we find genetic variation for immunological sensitivity to dietary glucose (genotype-by-diet interaction). Immune defense was genetically correlated with indicators of metabolic status in flies reared on the high-glucose diet, and we identified multiple genes that explain variation in immune defense, including several that have not been previously implicated in immune response but which are confirmed to alter pathogen load after RNAi knockdown. Our findings emphasize the importance of dietary composition to immune defense and reveal genes outside the conventional "immune system" that can be important in determining susceptibility to infection. Functional variation in these genes is segregating in a natural population, providing the substrate for evolutionary response to pathogen

  17. Timed Knickkopf function is essential for wing cuticle formation in Drosophila melanogaster.

    PubMed

    Li, Kaixia; Zhang, Xubo; Zuo, Ying; Liu, Weimin; Zhang, Jianzhen; Moussian, Bernard

    2017-10-01

    The insect cuticle is an extracellular matrix that consists of the polysaccharide chitin, proteins, lipids and organic molecules that are arranged in distinct horizontal layers. In Drosophila melanogaster, these layers are not formed sequentially, but, at least partially, at the same time. Timing of the underlying molecular mechanisms is conceivably crucial for cuticle formation. To study this issue, we determined the time period during which the function of Knickkopf (Knk), a key factor of chitin organization, is required for wing cuticle differentiation in D. melanogaster. Although knk is expressed throughout metamorphosis, we demonstrate that its expression 30 h prior and 48 h after pupariation is essential for correct wing cuticle formation. In other words, expression beyond this period is futile. Importantly, manipulation of Knk expression during this time causes wing bending suggesting an effect of Knk amounts on the physical properties of the wing cuticle. Manipulation of Knk expression also interferes with the structure and function of the cuticle surface. First, we show that the shape of surface nano-structures depends on the expression levels of knk. Second, we find that cuticle impermeability is compromised in wings with reduced knk expression. In summary, despite the extended supply of Knk during metamorphosis, controlled amounts of Knk are important for correct wing cuticle differentiation and function in a concise period of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Combined Effect of Methyl- and Ethyl-Paraben on Lifespan and Preadult Development Period of Drosophila melanogaster (Diptera: Drosophilidae).

    PubMed

    Chen, Qi; Pan, Chenguang; Li, Yajuan; Zhang, Min; Gu, Wei

    2016-01-01

    Parabens are widely used as preservative substances in foods, pharmaceuticals, industrial products, and cosmetics. But several studies have cautioned that parabens have estrogenic or endocrine-disrupting properties. Drosophila melanogaster is an ideal model in vivo to detect the toxic effects of chemistry. The study was designed to assess the potential additive toxic effects of methylparaben (MP) and ethylparaben (EP) mixture (MP + EP) on lifespan and preadult development period in D. melanogaster The data revealed that the MP + EP can reduce the longevity of flies compared with the control group, consistent with a significant reduction in malondialdehyde levels and an increase in superoxide dismutase activities. Furthermore, MP + EP may have a greater toxic effect on longevity of flies than separate using with the same concentration. Additionally, parabens had a nonmonotonic dose-response effect on D. melanogaster preadult development period, showing that MP + EP delayed preadult development period compared with control group while individual MP or EP significantly shortened (P < 0.01) at low concentration (300 mg/l). In conclusion, MP + EP had the potential additive toxicity on lifespan and preadult development period for D. melanogaster. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  19. Effects of artichoke (Cynara scolymus) leaf and bloom head extracts on chemically induced DNA lesions in Drosophila melanogaster.

    PubMed

    Jacociunas, Laura Vicedo; Dihl, Rafael Rodrigues; Lehmann, Mauricio; de Barros Falcão Ferraz, Alexandre; Richter, Marc François; da Silva, Juliana; de Andrade, Heloísa Helena Rodrigues

    2014-03-01

    The genotoxicity of bloom head (BHE) and leaf (LE) extracts from artichoke (Cynara scolymus L.), and their ability to modulate the mutagenicity and recombinogenicity of two alkylating agents (ethyl methanesulfonate - EMS and mitomycin C - MMC) and the intercalating agent bleomycin (BLM), were examined using the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Neither the mutagenicity nor the recombinogenicity of BLM or MMC was modified by co- or post-treatment with BHE or LE. In contrast, co-treatment with BHE significantly enhanced the EMS-induced genotoxicity involving mutagenic and/or recombinant events. Co-treatment with LE did not alter the genotoxicity of EMS whereas post-treatment with the highest dose of LE significantly increased this genotoxicity. This enhancement included a synergistic increase restricted to somatic recombination. These results show that artichoke extracts promote homologous recombination in proliferative cells of D. melanogaster.

  20. Transcriptional profiling of human breast cancer cells cultured under microgravity conditions revealed the key role of genetic gravity sensors previously detected in Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Lavan, David; Diego Orihuela-Tacuri, M.; Sanabria, Gabriela

    2016-07-01

    Currently, studies in Drosophila melanogaster has shown emerging evidence that microgravity stimuli can be detected at the genetic level. Analysis of the transcriptome in the pupal stage of the fruit flies under microgravity conditions versus ground controls has suggested the presence of a few candidate genes as "gravity sensors" which are experimentally validated. Additionally, several studies have shown that microgravity causes inhibitory effects in different types of cancer cells, although the genes involved and responsible for these effects are still unknown. Here, we demonstrate that the genes suggested as the sensors of gravitational waves in Drosophila melanogaster and their human counterpart (orthologous genes) are highly involved in carcinogenesis, proliferation, anti-apoptotic signals, invasiveness, and metastatic potential of breast cancer cell tumors. The transcriptome analyses suggested that the observed inhibitory effect in cancer cells could be due to changes in the genetic expression of these candidates. These results encourage the possibility of new therapeutic targets managed together and not in isolation.

  1. Growth inhibition and differences in protein profiles in azadirachtin-treated Drosophila melanogaster larvae.

    PubMed

    Wang, Hao; Lai, Duo; Yuan, Mei; Xu, Hanhong

    2014-04-01

    Azadirachtin A is a very effective biopesticide widely used in insect pest control. It has strong antifeeding and growth inhibitory activity against most insects, however, its mode of action is still unclear. Proteomic experiments using 2DE indicate significant effects of Azadirachtin A on the amount of proteins related to growth inhibition in Drosophila melanogaster larvae. Twenty-one spots with different intensity in azadirachtin-treated larvae were identified. These proteins are involved in cytoskeletal organization, transcription and translation, hormonal regulation, and energy metabolism. Protein network analysis reveals heat shock protein 23 to be a potential target of azadirachtin. These results provide new insights into understanding the mechanism of growth inhibition in insects in response to azadirachtin. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Demography of Genotypes: Failure of the Limited Life-Span Paradigm in Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Curtsinger, James W.; Fukui, Hidenori H.; Townsend, David R.; Vaupel, James W.

    1992-10-01

    Experimental systems that are amenable to genetic manipulation can be used to address fundamental questions about genetic and nongenetic determinants of longevity. Analysis of large cohorts of ten genotypes of Drosophila melanogaster raised under conditions that favored extended survival has revealed variation between genotypes in both the slope and location of age-specific mortality curves. More detailed examination of a single genotype showed that the mortality trajectory was best fit by a two-stage Gompertz model, with no age-specific increase in mortality rates beyond 30 days after emergence. These results are contrary to the limited life-span paradigm, which postulates well-defined, genotype-specific limits on life-span and brief periods of intense and rapidly accelerating mortality rates at the oldest ages.

  3. Select Neuropeptides and their G-Protein Coupled Receptors in Caenorhabditis Elegans and Drosophila Melanogaster

    PubMed Central

    Bendena, William G.; Campbell, Jason; Zara, Lian; Tobe, Stephen S.; Chin-Sang, Ian D.

    2012-01-01

    The G-protein coupled receptor (GPCR) family is comprised of seven transmembrane domain proteins and play important roles in nerve transmission, locomotion, proliferation and development, sensory perception, metabolism, and neuromodulation. GPCR research has been targeted by drug developers as a consequence of the wide variety of critical physiological functions regulated by this protein family. Neuropeptide GPCRs are the least characterized of the GPCR family as genetic systems to characterize their functions have lagged behind GPCR gene discovery. Drosophila melanogaster and Caenorhabditis elegans are genetic model organisms that have proved useful in characterizing neuropeptide GPCRs. The strength of a genetic approach leads to an appreciation of the behavioral plasticity that can result from subtle alterations in GPCRs or regulatory proteins in the pathways that GPCRs control. Many of these invertebrate neuropeptides, GPCRs, and signaling pathway components serve as models for mammalian counterparts as they have conserved sequences and function. This review provides an overview of the methods to match neuropeptides to their cognate receptor and a state of the art account of neuropeptide GPCRs that have been characterized in D. melanogaster and C. elegans and the behaviors that have been uncovered through genetic manipulation. PMID:22908006

  4. Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing

    PubMed Central

    Lopez, Wilfredo; Page, Alexis M.; Carlson, Darby J.; Ericson, Brad L.; Cserhati, Matyas F.; Guda, Chittibabu; Carlson, Kimberly A.

    2018-01-01

    Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster. The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways. PMID:29707694

  5. Toxicity assessment of sodium fluoride in Drosophila melanogaster after chronic sub-lethal exposure.

    PubMed

    Dutta, Moumita; Rajak, Prem; Khatun, Salma; Roy, Sumedha

    2017-01-01

    Sodium fluoride (NaF), one of the most frequently used fluoride compound is composed of Na + and F - . Apart from its use in water fluoridation, NaF also acts as a major component for different dental products like toothpastes, gels and mouth rinses etc. The present study was carried out to explore the toxic impact of chronic NaF exposure on a non-target organism, Drosophila melanogaster. The larvae exposed to different concentrations of NaF through food showed a significant increase in HSP70 expression both qualitatively and quantitatively. The altered tail length and tail intensity in Comet assay validate the increased DNA damage in treated larvae. The activity of AChE, oxidative stress marker enzymes, phase I and phase II detoxifying enzymes were found to be significantly inhibited in the treated larvae when compared to control though there was no evidence of dose dependent change in each case. The alterations in the mentioned parameters can be due to increased body Fluoride ion (F - ) concentration since the analysis with ion electrode analyzer revealed that F - concentration increased significantly with NaF treatment. Hence, the results suggest that D. melanogaster manifest prominent toxic response when subjected to chronic exposure to sub-lethal NaF concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Partial Functional Diversification of Drosophila melanogaster Septin Genes Sep2 and Sep5.

    PubMed

    O'Neill, Ryan S; Clark, Denise V

    2016-07-07

    The septin family of hetero-oligomeric complex-forming proteins can be divided into subgroups, and subgroup members are interchangeable at specific positions in the septin complex. Drosophila melanogaster has five septin genes, including the two SEPT6 subgroup members Sep2 and Sep5 We previously found that Sep2 has a unique function in oogenesis, which is not performed by Sep5 Here, we find that Sep2 is uniquely required for follicle cell encapsulation of female germline cysts, and that Sep2 and Sep5 are redundant for follicle cell proliferation. The five D. melanogaster septins localize similarly in oogenesis, including as rings flanking the germline ring canals. Pnut fails to localize in Sep5; Sep2 double mutant follicle cells, indicating that septin complexes fail to form in the absence of both Sep2 and Sep5. We also find that mutations in septins enhance the mutant phenotype of bazooka, a key component in the establishment of cell polarity, suggesting a link between septin function and cell polarity. Overall, this work suggests that Sep5 has undergone partial loss of ancestral protein function, and demonstrates redundant and unique functions of septins. Copyright © 2016 O'Neill and Clark.

  7. A comparison of Frost expression among species and life stages of Drosophila.

    PubMed

    Bing, X; Zhang, J; Sinclair, Brent J

    2012-02-01

    Frost (Fst) is a gene associated with cold exposure in Drosophila melanogaster. We used real-time PCR to assess whether cold exposure induces expression of Fst in 10 different life stages of D. melanogaster, and adults of seven other Drosophila species. We exposed groups of individuals to 0 °C (2 h), followed by 1 h recovery (22 °C). Frost was significantly upregulated in response to cold in eggs, third instar larvae, and 2- and 5-day-old male and female adults in D. melanogaster. Life stages in which cold did not upregulate Fst had high constitutive expression. Frost is located on the opposite strand of an intron of Diuretic hormone (DH), but cold exposure did not upregulate DH. Frost orthologues were identified in six other species within the Melanogaster group (Drosophila sechellia, Drosophila simulans, Drosophila yakuba, Drosophila erecta, Drosophila ananassae and Drosophila mauritiana). Frost orthologues were upregulated in response to cold exposure in both sexes in adults of all of these species. The predicted structure of a putative Frost consensus protein shows highly conserved tandem repeats of motifs involved in cell signalling (PEST and TRAF2), suggesting that Fst might encode an adaptor protein involved in acute stress or apoptosis signalling in vivo. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  8. Mapping Simple Repeated DNA Sequences in Heterochromatin of Drosophila Melanogaster

    PubMed Central

    Lohe, A. R.; Hilliker, A. J.; Roberts, P. A.

    1993-01-01

    Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin. PMID:8375654

  9. Sequential en-face optical coherence tomography imaging and monitoring of Drosophila Melanogaster larval heart

    NASA Astrophysics Data System (ADS)

    Bradu, A.; Ma, Lisha; Bloor, J.; Podoleanu, A. GH.

    2009-02-01

    This article demonstrates two modalities to acquire information on cardiac function in larval Drosophila Melanogaster: in-vivo imaging and heartbeat monitoring. To achieve these goals a dedicated imaging instrument able to provide simultaneous en-face Optical Coherence Tomography (OCT) and Laser Scanning Confocal Microscopy (LSCM) images has been developed. With this dual imaging system, the heart can easily be located and visualised within the specimen and the change of the heart shape in a cardiac cycle monitored. The system can easily be switched to a stethoscopic regime, simply by interrupting the scanning of the light beam across the sample, after selecting the point of interest in the imaging regime. Here we have used targeted gene expression to knockdown the myospheroid (mys) gene in the larval heart using a specific RNAi construct. By knocking down a β integrin subunit encoded by mys we have recorded an enlarged heart chamber in both diastolic and systolic states. Also, the fraction of reduction of the chamber diameter was smaller in the knockdown heart. These phenotypic differences indicate that impaired cardiac contractility occurs in the heart where the integrin gene express level is reduced. As far as we are aware, this is for the first time when it is shown in Drosophila that integrins have a direct relationship to a dilated heart defect, and conseqThis article demonstrates two modalities to acquire information on cardiac function in larval Drosophila Melanogaster: in-vivo imaging and heartbeat monitoring. To achieve these goals a dedicated imaging instrument able to provide simultaneous en-face Optical Coherence Tomography (OCT) and Laser Scanning Confocal Microscopy (LSCM) images has been developed. With this dual imaging system, the heart can easily be located and visualised within the specimen and the change of the heart shape in a cardiac cycle monitored. The system can easily be switched to a stethoscopic regime, simply by interrupting the

  10. dTULP, the Drosophila melanogaster Homolog of Tubby, Regulates Transient Receptor Potential Channel Localization in Cilia

    PubMed Central

    Shim, Jaewon; Han, Woongsu; Lee, Jinu; Bae, Yong Chul; Chung, Yun Doo; Kim, Chul Hoon; Moon, Seok Jun

    2013-01-01

    Mechanically gated ion channels convert sound into an electrical signal for the sense of hearing. In Drosophila melanogaster, several transient receptor potential (TRP) channels have been implicated to be involved in this process. TRPN (NompC) and TRPV (Inactive) channels are localized in the distal and proximal ciliary zones of auditory receptor neurons, respectively. This segregated ciliary localization suggests distinct roles in auditory transduction. However, the regulation of this localization is not fully understood. Here we show that the Drosophila Tubby homolog, King tubby (hereafter called dTULP) regulates ciliary localization of TRPs. dTULP-deficient flies show uncoordinated movement and complete loss of sound-evoked action potentials. Inactive and NompC are mislocalized in the cilia of auditory receptor neurons in the dTulp mutants, indicating that dTULP is required for proper cilia membrane protein localization. This is the first demonstration that dTULP regulates TRP channel localization in cilia, and suggests that dTULP is a protein that regulates ciliary neurosensory functions. PMID:24068974

  11. Balancing selection on immunity genes: review of the current literature and new analysis in Drosophila melanogaster.

    PubMed

    Croze, Myriam; Živković, Daniel; Stephan, Wolfgang; Hutter, Stephan

    2016-08-01

    Balancing selection has been widely assumed to be an important evolutionary force, yet even today little is known about its abundance and its impact on the patterns of genetic diversity. Several studies have shown examples of balancing selection in humans, plants or parasites, and many genes under balancing selection are involved in immunity. It has been proposed that host-parasite coevolution is one of the main forces driving immune genes to evolve under balancing selection. In this paper, we review the literature on balancing selection on immunity genes in several organisms, including Drosophila. Furthermore, we performed a genome scan for balancing selection in an African population of Drosophila melanogaster using coalescent simulations of a demographic model with and without selection. We find very few genes under balancing selection and only one novel candidate gene related to immunity. Finally, we discuss the possible causes of the low number of genes under balancing selection. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  12. Nucleosomal chromatin in the mature sperm of Drosophila melanogaster.

    PubMed

    Elnfati, Abdul Hakim; Iles, David; Miller, David

    2016-03-01

    During spermiogenesis in mammals and many other vertebrate classes, histone-containing nucleosomes are replaced by protamine toroids, which can repackage chromatin at a 10 to 20-fold higher density than in a typical somatic nucleus. However, recent evidence suggests that sperm of many species, including human and mouse retain a small compartment of nucleosomal chromatin, particularly near genes important for embryogenesis. As in mammals, spermiogenesis in the fruit fly, Drosophila melanogaster has also been shown to undergo a programmed substitution of nucleosomes with protamine-like proteins. Using chromatin immunoprecipitation (ChIP) and whole-genome tiling array hybridization (ChIP-chip), supported by immunocytochemical evidence, we show that in a manner analogous to nucleosomal chromatin retention in mammalian spermatozoa, distinct domains packaged by the canonical histones H2A, H2B, H3 and H4 are present in the fly sperm nucleus. We also find evidence for the retention of nucleosomes with specific histone H3 trimethylation marks characteristic of chromatin repression (H3K9me3, H3K27me3) and active transcription (H3K36me3). Raw and processed data from the experiments are available at GEO, accession GSE52165.

  13. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster

    PubMed Central

    Menger, Katja E.; James, Andrew M.; Cochemé, Helena M.; Harbour, Michael E.; Chouchani, Edward T.; Ding, Shujing; Fearnley, Ian M.; Partridge, Linda; Murphy, Michael P.

    2015-01-01

    Summary Altering the redox state of cysteine residues on protein surfaces is an important response to environmental challenges. Although aging and fasting alter many redox processes, the role of cysteine residues is uncertain. To address this, we used a redox proteomic technique, oxidative isotope-coded affinity tags (OxICAT), to assess cysteine-residue redox changes in Drosophila melanogaster during aging and fasting. This approach enabled us to simultaneously identify and quantify the redox state of several hundred cysteine residues in vivo. Cysteine residues within young flies had a bimodal distribution with peaks at ∼10% and ∼85% reversibly oxidized. Surprisingly, these cysteine residues did not become more oxidized with age. In contrast, 24 hr of fasting dramatically oxidized cysteine residues that were reduced under fed conditions while also reducing cysteine residues that were initially oxidized. We conclude that fasting, but not aging, dramatically alters cysteine-residue redox status in D. melanogaster. PMID:26095360

  14. Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster

    PubMed Central

    Hughes, Stacie E.; Miller, Danny E.; Miller, Angela L.; Hawley, R. Scott

    2018-01-01

    A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over. PMID:29487146

  15. Differential transcription of cytochrome P450s and glutathione S transferases in DDT-susceptible and resistant Drosophila melanogaster strains in response to DDT and oxidative stress

    USDA-ARS?s Scientific Manuscript database

    Metabolic DDT resistance in Drosophila melanogaster has previously been associated with constitutive over-transcription of cytochrome P450s. Increased P450 activity has also been associated with increased oxidative stress. In contrast, over-transcription of glutathione S transferases (GSTs) has been...

  16. Interspecies Interactions Determine the Impact of the Gut Microbiota on Nutrient Allocation in Drosophila melanogaster

    PubMed Central

    Douglas, Angela E.

    2014-01-01

    The animal gut is perpetually exposed to microorganisms, and this microbiota affects development, nutrient allocation, and immune homeostasis. A major challenge is to understand the contribution of individual microbial species and interactions among species in shaping these microbe-dependent traits. Using the Drosophila melanogaster gut microbiota, we tested whether microbe-dependent performance and nutritional traits of Drosophila are functionally modular, i.e., whether the impact of each microbial taxon on host traits is independent of the presence of other microbial taxa. Gnotobiotic flies were constructed with one or a set of five of the Acetobacter and Lactobacillus species which dominate the gut microbiota of conventional flies (Drosophila with untreated microbiota). Axenic (microbiota-free) flies exhibited prolonged development time and elevated glucose and triglyceride contents. The low glucose content of conventional flies was recapitulated in gnotobiotic Drosophila flies colonized with any of the 5 bacterial taxa tested. In contrast, the development rates and triglyceride levels in monocolonized flies varied depending on the taxon present: Acetobacter species supported the largest reductions, while most Lactobacillus species had no effect. Only flies with both Acetobacter and Lactobacillus had triglyceride contents restored to the level in conventional flies. This could be attributed to two processes: Lactobacillus-mediated promotion of Acetobacter abundance in the fly and a significant negative correlation between fly triglyceride content and Acetobacter abundance. We conclude that the microbial basis of host traits varies in both specificity and modularity; microbe-mediated reduction in glucose is relatively nonspecific and modular, while triglyceride content is influenced by interactions among microbes. PMID:24242251

  17. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans

    PubMed Central

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J.

    2015-01-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3’ UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes. PMID:25950438

  18. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans.

    PubMed

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J

    2015-05-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3' UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes.

  19. Insights into DDT Resistance from the Drosophila melanogaster Genetic Reference Panel

    PubMed Central

    Schmidt, Joshua M.; Battlay, Paul; Gledhill-Smith, Rebecca S.; Good, Robert T.; Lumb, Chris; Fournier-Level, Alexandre; Robin, Charles

    2017-01-01

    Insecticide resistance is considered a classic model of microevolution, where a strong selective agent is applied to a large natural population, resulting in a change in frequency of alleles that confer resistance. While many insecticide resistance variants have been characterized at the gene level, they are typically single genes of large effect identified in highly resistant pest species. In contrast, multiple variants have been implicated in DDT resistance in Drosophila melanogaster; however, only the Cyp6g1 locus has previously been shown to be relevant to field populations. Here we use genome-wide association studies (GWAS) to identify DDT-associated polygenes and use selective sweep analyses to assess their adaptive significance. We identify and verify two candidate DDT resistance loci. A largely uncharacterized gene, CG10737, has a function in muscles that ameliorates the effects of DDT, while a putative detoxifying P450, Cyp6w1, shows compelling evidence of positive selection. PMID:28935691

  20. The evolution of Drosophila melanogaster as a model for alcohol research.

    PubMed

    Devineni, Anita V; Heberlein, Ulrike

    2013-07-08

    Animal models have been widely used to gain insight into the mechanisms underlying the acute and long-term effects of alcohol exposure. The fruit fly Drosophila melanogaster encounters ethanol in its natural habitat and possesses many adaptations that allow it to survive and thrive in ethanol-rich environments. Several assays to study ethanol-related behaviors in flies, ranging from acute intoxication to self-administration and reward, have been developed in the past 20 years. These assays have provided the basis for studying the physiological and behavioral effects of ethanol and for identifying genes mediating these effects. In this review we describe the ecological relationship between flies and ethanol, the effects of ethanol on fly development and behavior, the use of flies as a model for alcohol addiction, and the interaction between ethanol and social behavior. We discuss these advances in the context of their utility to help decipher the mechanisms underlying the diverse effects of ethanol, including those that mediate ethanol dependence and addiction in humans.

  1. Insights into DDT Resistance from the Drosophila melanogaster Genetic Reference Panel.

    PubMed

    Schmidt, Joshua M; Battlay, Paul; Gledhill-Smith, Rebecca S; Good, Robert T; Lumb, Chris; Fournier-Level, Alexandre; Robin, Charles

    2017-11-01

    Insecticide resistance is considered a classic model of microevolution, where a strong selective agent is applied to a large natural population, resulting in a change in frequency of alleles that confer resistance. While many insecticide resistance variants have been characterized at the gene level, they are typically single genes of large effect identified in highly resistant pest species. In contrast, multiple variants have been implicated in DDT resistance in Drosophila melanogaster ; however, only the Cyp6g1 locus has previously been shown to be relevant to field populations. Here we use genome-wide association studies (GWAS) to identify DDT-associated polygenes and use selective sweep analyses to assess their adaptive significance. We identify and verify two candidate DDT resistance loci. A largely uncharacterized gene, CG10737 , has a function in muscles that ameliorates the effects of DDT, while a putative detoxifying P450, Cyp6w1 , shows compelling evidence of positive selection. Copyright © 2017 by the Genetics Society of America.

  2. Seminal Fluid Regulation of Female Sexual Attractiveness in Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Tram, Uyen; Wolfner, Mariana F.

    1998-03-01

    Finding a willing and suitable mate is critical for sexual reproduction. Visual, auditory, and chemical cues aid in locating and/or attracting partners. After mating, females from many insect species become less attractive. This is caused by changes in the quantity and/or quality of pheromones synthesized by the female and to changes in the female's behavior. For example, female insects may stop releasing pheromones, assume a mate refusal posture, or move less in response to males. Many postmating changes in female insects are triggered by seminal fluid proteins from the male's accessory gland proteins (Acps) and by sperm. To determine the role of seminal fluid components in mediating changes in attractiveness, we measured the attractiveness of Drosophila melanogaster females that had been mated to genetically altered males that lack sperm and/or Acps. We found that the drop in female attractiveness occurs in two phases. A short-term drop in attractiveness is triggered independent of the receipt of sperm and Acps. Maintenance of lowered attractiveness is dependent upon sperm.

  3. Evolution of the Drosophila melanogaster-sigma virus system in natural populations from Languedoc (southern France).

    PubMed

    Fleuriet, A; Periquet, G

    1993-01-01

    An analysis of natural populations of Drosophila melanogaster in a southern French region (Languedoc) was started in 1983, concerning two non Mendelian systems: the P-M system of transposable elements and the sigma virus. This virus is not contagious, but only transmitted through gametes; it is usually present in a minority of individuals in natural populations. The first data collected revealed unexpectedly clear and fast-evolving phenomena; they also gave evidence of some interesting correlations between the two systems. This paper presents all the results gathered from 1983 to 1991 in the Drosophila-sigma system. Striking correlations were observed for three interconnected parameters: frequency of infected flies, frequency of an allele of the fly giving resistance to the virus, and adaptation of the virus to this allele. This adaptation consisted of a qualitative step (change of viral type) followed by quantitative variation (better adaptation to the allele). This analysis also showed, firstly, that the evolution of natural populations differs completely in Languedoc from the rest of France; secondly, that three geographical zones where selective forces worked differently persisted over time in Languedoc.

  4. Little effect of HSP90 inhibition on the quantitative wing traits variation in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2017-02-01

    Drosophila wings have been a model system to study the effect of HSP90 on quantitative trait variation. The effect of HSP90 inhibition on environmental buffering of wing morphology varies among studies while the genetic buffering effect of it was examined in only one study and was not detected. Variable results so far might show that the genetic background influences the environmental and genetic buffering effect of HSP90. In the previous studies, the number of the genetic backgrounds used is limited. To examine the effect of HSP90 inhibition with a larger number of genetic backgrounds than the previous studies, 20 wild-type strains of Drosophila melanogaster were used in this study. Here I investigated the effect of HSP90 inhibition on the environmental buffering of wing shape and size by assessing within-individual and among-individual variations, and as a result, I found little or very weak effects on environmental and genetic buffering. The current results suggest that the role of HSP90 as a global regulator of environmental and genetic buffering is limited at least in quantitative traits.

  5. Effects of artichoke (Cynara scolymus) leaf and bloom head extracts on chemically induced DNA lesions in Drosophila melanogaster

    PubMed Central

    Jacociunas, Laura Vicedo; Dihl, Rafael Rodrigues; Lehmann, Mauricio; de Barros Falcão Ferraz, Alexandre; Richter, Marc François; da Silva, Juliana; de Andrade, Heloísa Helena Rodrigues

    2014-01-01

    The genotoxicity of bloom head (BHE) and leaf (LE) extracts from artichoke (Cynara scolymus L.), and their ability to modulate the mutagenicity and recombinogenicity of two alkylating agents (ethyl methanesulfonate – EMS and mitomycin C – MMC) and the intercalating agent bleomycin (BLM), were examined using the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Neither the mutagenicity nor the recombinogenicity of BLM or MMC was modified by co- or post-treatment with BHE or LE. In contrast, co-treatment with BHE significantly enhanced the EMS-induced genotoxicity involving mutagenic and/or recombinant events. Co-treatment with LE did not alter the genotoxicity of EMS whereas post-treatment with the highest dose of LE significantly increased this genotoxicity. This enhancement included a synergistic increase restricted to somatic recombination. These results show that artichoke extracts promote homologous recombination in proliferative cells of D. melanogaster. PMID:24688296

  6. The three-dimensional genome organization of Drosophila melanogaster through data integration.

    PubMed

    Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank

    2017-07-31

    Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.

  7. The Interaction of Two Complex Loci, Zeste and Bithorax in DROSOPHILA MELANOGASTER

    PubMed Central

    Kaufman, T. C.; Tasaka, S. E.; Suzuki, D. T.

    1973-01-01

    It has been found that certain alleles of the zeste locus (za 1-1.0) have no phenotype of their own, but interact with certain alleles at the bithorax locus (bx 3-58.8). This interaction takes the form of an enhancement of the homeotic bx phenotype to a more extreme form—i.e., the metathorax is transformed into mesothorax in varying degrees depending on the bx allele used. This enhancement is somewhat reminiscent of the transvection effect described by Lewis (1954). The characterization of the interaction thus far has shown that the enhancement only effects bx alleles which arise spontaneously, whereas the origin of the za allele is unimportant. The gene claret nondisjunctional was used for the production of gynandromorphs which showed that the enhancing ability of za, like the eye pigment change caused by z, is autonomous. The enhancement of one specific allele (bx34e), which is temperature-sensitive, has allowed a delineation of the temperature-sensitive period of the bithorax locus to a period extending from the middle of the second larval instar to the middle of the third larval instar. These results, as well as those of other enhancer and suppressor systems in Drosophila, have revealed the possibility of the involvement of heterocyclic compounds in the control of cell determination and fate in Drosophila melanogaster. PMID:4203579

  8. Whole genome resequencing of a laboratory-adapted Drosophila melanogaster population sample

    PubMed Central

    Gilks, William P.; Pennell, Tanya M.; Flis, Ilona; Webster, Matthew T.; Morrow, Edward H.

    2016-01-01

    As part of a study into the molecular genetics of sexually dimorphic complex traits, we used high-throughput sequencing to obtain data on genomic variation in an outbred laboratory-adapted fruit fly ( Drosophila melanogaster) population. We successfully resequenced the whole genome of 220 hemiclonal females that were heterozygous for the same Berkeley reference line genome (BDGP6/dm6), and a unique haplotype from the outbred base population (LH M). The use of a static and known genetic background enabled us to obtain sequences from whole-genome phased haplotypes. We used a BWA-Picard-GATK pipeline for mapping sequence reads to the dm6 reference genome assembly, at a median depth-of coverage of 31X, and have made the resulting data publicly-available in the NCBI Short Read Archive (Accession number SRP058502). We used Haplotype Caller to discover and genotype 1,726,931 small genomic variants (SNPs and indels, <200bp). Additionally we detected and genotyped 167 large structural variants (1-100Kb in size) using GenomeStrip/2.0. Sequence and genotype data are publicly-available at the corresponding NCBI databases: Short Read Archive, dbSNP and dbVar (BioProject PRJNA282591). We have also released the unfiltered genotype data, and the code and logs for data processing and summary statistics ( https://zenodo.org/communities/sussex_drosophila_sequencing/). PMID:27928499

  9. Mitochondrial impacts of insecticidal formate esters in insecticide-resistant and insecticide-susceptible Drosophila melanogaster.

    PubMed

    Song, Cheol; Scharf, Michael E

    2009-06-01

    Previous research on insecticidal formate esters in flies and mosquitoes has documented toxicity profiles, metabolism characteristics and neurological impacts. The research presented here investigated mitochondrial impacts of insecticidal formate esters and their hydrolyzed metabolite formic acid in the model dipteran insect Drosophila melanogaster Meig. These studies compared two Drosophila strains: an insecticide-susceptible strain (Canton-S) and a strain resistant by cytochrome P450 overexpression (Hikone-R). In initial studies investigating inhibition of mitochondrial cytochrome c oxidase, two proven insecticidal materials (hydramethylnon and sodium cyanide) caused significant inhibition. However, for insecticidal formate esters and formic acid, no significant inhibition was identified in either fly strain. Mitochondrial impacts of formate esters were then investigated further by tracking toxicant-induced cytochrome c release from mitochondria into the cytoplasm, a biomarker of apoptosis and neurological dysfunction. Formic acid and three positive control treatments (rotenone, antimycin A and sodium cyanide) induced cytochrome c release, verifying that formic acid is capable of causing mitochondrial disruption. However, when comparing formate ester hydrolysis and cytochrome c release between Drosophila strains, formic acid liberation was only weakly correlated with cytochrome c release in the susceptible Canton-S strain (r(2) = 0.70). The resistant Hikone-R strain showed no correlation (r(2) < 0.0001) between formate ester hydrolysis and cytochrome c release. The findings of this study provide confirmation of mitochondrial impacts by insecticidal formate esters and suggest links between mitochondrial disruption, respiratory inhibition, apoptosis and formate-ester-induced neurotoxicity.

  10. Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group

    PubMed Central

    Lavagnino, Nicolás; Serra, François; Arbiza, Leonardo; Dopazo, Hernán; Hasson, Esteban

    2012-01-01

    Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of olfactory behavior in Drosophila including an extended set of genes known to affect olfactory behavior. We took advantage of the recent burst of whole genome sequences and the development of powerful statistical tools to analyze genomic data and test evolutionary and functional hypotheses of olfactory genes in the six species of the Drosophila melanogaster species group for which whole genome sequences are available. Our study reveals widespread purifying selection and limited incidence of positive selection on olfactory genes. We show that the pace of evolution of olfactory genes is mostly independent of the life cycle stage, and of the number of life cycle stages, in which they participate in olfaction. However, we detected a relationship between evolutionary rates and the position that the gene products occupy in the olfactory system, genes occupying central positions tend to be more constrained than peripheral genes. Finally, we demonstrate that specialization to one host does not seem to be associated with bursts of adaptive evolution in olfactory genes in D. sechellia and D. erecta, the two specialists species analyzed, but rather different lineages have idiosyncratic evolutionary histories in which both historical and ecological factors have been involved. PMID:22346339

  11. Snipper, an Eri1 homologue, affects histone mRNA abundance and is crucial for normal Drosophila melanogaster development.

    PubMed

    Alexiadis, Anastasios; Delidakis, Christos; Kalantidis, Kriton

    2017-07-01

    The conserved 3'-5' RNA exonuclease ERI1 is implicated in RNA interference inhibition, 5.8S rRNA maturation and histone mRNA maturation and turnover. The single ERI1 homologue in Drosophila melanogaster Snipper (Snp) is a 3'-5' exonuclease, but its in vivo function remains elusive. Here, we report Snp requirement for normal Drosophila development, since its perturbation leads to larval arrest and tissue-specific downregulation results in abnormal tissue development. Additionally, Snp directly interacts with histone mRNA, and its depletion results in drastic reduction in histone transcript levels. We propose that Snp protects the 3'-ends of histone mRNAs and upon its absence, histone transcripts are readily degraded. This in turn may lead to cell cycle delay or arrest, causing growth arrest and developmental perturbations. © 2017 Federation of European Biochemical Societies.

  12. Selective sweep analysis in the genomes of the 91-R and 91-C Drosophila melanogaster strains reveals few of the ‘usual suspects’ in Dichlorodiphenyltrichloroethane (DDT) resistance

    USDA-ARS?s Scientific Manuscript database

    Adaptation of insect phenotypes for survival after exposure to xenobiotics can result from selection at multiple loci with additive genetic effects. A high level dichlorodiphenyltrichloroethane (DDT) resistance phenotype in the Drosophila melanogaster strain 91-R has resulted due to continuous labo...

  13. Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in Drosophila melanogaster

    PubMed Central

    Kolly, Sylvain; van der Meer, Jan R.; Kawecki, Tadeusz J.

    2017-01-01

    ABSTRACT Numerous studies have shown that animal nutrition is tightly linked to gut microbiota, especially under nutritional stress. In Drosophila melanogaster, microbiota are known to promote juvenile growth, development, and survival on poor diets, mainly through enhanced digestion leading to changes in hormonal signaling. Here, we show that this reliance on microbiota is greatly reduced in replicated Drosophila populations that became genetically adapted to a poor larval diet in the course of over 170 generations of experimental evolution. Protein and polysaccharide digestion in these poor-diet-adapted populations became much less dependent on colonization with microbiota. This was accompanied by changes in expression levels of dFOXO transcription factor, a key regulator of cell growth and survival, and many of its targets. These evolutionary changes in the expression of dFOXO targets to a large degree mimic the response of the same genes to microbiota, suggesting that the evolutionary adaptation to poor diet acted on mechanisms that normally mediate the response to microbiota. Our study suggests that some metazoans have retained the evolutionary potential to adapt their physiology such that association with microbiota may become optional rather than essential. PMID:29066546

  14. VARIATIONS AT A QUANTITATIVE TRAIT LOCUS (QTL) AFFECT DEVELOPMENT OF BEHAVIOR IN LEAD-EXPOSED DROSOPHILA MELANOGASTER

    PubMed Central

    Hirsch, Helmut V. B.; Possidente, Debra; Averill, Sarah; Despain, Tamira Palmetto; Buytkins, Joel; Thomas, Valerie; Goebel, W. Paul; Shipp-Hilts, Asante; Wilson, Diane; Hollocher, Kurt; Possidente, Bernard; Lnenicka, Greg; Ruden, Douglas M.

    2009-01-01

    We developed Drosophila melanogaster as a model to study correlated behavioral, neuronal and genetic effects of the neurotoxin lead, known to affect cognitive and behavioral development in children. We showed that, as in vertebrates, lead affects both synaptic development and complex behaviors (courtship, fecundity, locomotor activity) in Drosophila. By assessing differential behavioral responses to developmental lead exposure among recombinant inbred Drosophila lines (RI), derived from parental lines Oregon R and Russian 2b, we have now identified a genotype by environment interaction (GEI) for a behavioral trait affected by lead. Drosophila Activity Monitors (TriKinetics, Waltham, MA), which measure activity by counting the number of times a single fly in a small glass tube walks through an infrared beam aimed at the middle of the tube, were used to measure activity of flies, reared from eggs to 4 days of adult age on either control or lead-contaminated medium, from each of 75 RI lines. We observed a significant statistical association between the effect of lead on average daytime activity across lines and one marker locus, 30AB, on chromosome 2; we define this as a Quantitative Trait Locus (QTL) associated with behavioral effects of developmental lead exposure. When 30AB was from Russian 2b, lead significantly increased locomotor activity, whereas, when 30AB was from Oregon R, lead decreased it. 30AB contains about 125 genes among which are likely “candidate genes” for the observed lead-dependent behavioral changes. Drosophila are thus a useful, underutilized model for studying behavioral, synaptic and genetic changes following chronic exposure to lead or other neurotoxins during development. PMID:19428504

  15. Polymorphism at the ref(2)P locus in Drosophila melanogaster: preliminary experiments concerning the selection mechanisms involved in its maintenance.

    PubMed

    Fleuriet, A

    1981-02-01

    It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition.

  16. Monitoring the effects of a lepidopteran insecticide, Flubendiamide, on the biology of a non-target dipteran insect, Drosophila melanogaster.

    PubMed

    Sarkar, Saurabh; Roy, Sumedha

    2017-10-13

    Various organisms are adversely affected when subjected to chronic fluoride exposure. This highly electronegative ion present in several insecticide formulations is found to be lethal to target pests. In the present study, Drosophila melanogaster is treated with sub-lethal concentrations of a diamide insecticide formulation, Flubendiamide. Chronic exposure to the diamide (0.5-100 μg/mL) was found to be responsible for increase in fluoride ion concentration in larval as well as adult body fluid. Interestingly, 100 μg/mL Flubendiamide exposure resulted in 107 and 298% increase in fluoride ion concentration whereas only 23 and 52% of Flubendiamide concentration increase in larval and adult body fluid, respectively. Further, in this study, selected life cycle parameters like larval duration, pupal duration and emergence time showed minimal changes, whereas percentage of emergence and fecundity revealed significant treatment-associated variation. It can be noted that nearly 79% reduction in fecundity was observed with 100 μg/mL Flubendiamide exposure. The variations in these parameters indicate probable involvement of fluoride ion in detectable alterations in the biology of the non-target model insect, D. melanogaster. Furthermore, the outcomes of life cycle study suggest change in resource allocation pattern in the treated flies. The altered resource allocation might have been sufficient to resist changes in selective life cycle parameters, but it could not defend the changes in fecundity. The significant alterations indicate a definite trade-off pattern, where the treated individuals happen to compromise. Thus, survival is apparently taking an upper hand in comparison to reproductive ability in response to Flubendiamide exposure. Graphical abstract The figure demonstrates increase in Fluoride and Flubendiamide concentrations in Drosophila melanogaster after chronic sub-lethal exposure to Flubendiamide. Treatment-induced alterations in larval and pupal duration

  17. Gene duplication in the major insecticide target site, Rdl, in Drosophila melanogaster

    PubMed Central

    Remnant, Emily J.; Good, Robert T.; Schmidt, Joshua M.; Lumb, Christopher; Robin, Charles; Daborn, Phillip J.; Batterham, Philip

    2013-01-01

    The Resistance to Dieldrin gene, Rdl, encodes a GABA-gated chloride channel subunit that is targeted by cyclodiene and phenylpyrazole insecticides. The gene was first characterized in Drosophila melanogaster by genetic mapping of resistance to the cyclodiene dieldrin. The 4,000-fold resistance observed was due to a single amino acid replacement, Ala301 to Ser. The equivalent change was subsequently identified in Rdl orthologs of a large range of resistant insect species. Here, we report identification of a duplication at the Rdl locus in D. melanogaster. The 113-kb duplication contains one WT copy of Rdl and a second copy with two point mutations: an Ala301 to Ser resistance mutation and Met360 to Ile replacement. Individuals with this duplication exhibit intermediate dieldrin resistance compared with single copy Ser301 homozygotes, reduced temperature sensitivity, and altered RNA editing associated with the resistant allele. Ectopic recombination between Roo transposable elements is involved in generating this genomic rearrangement. The duplication phenotypes were confirmed by construction of a transgenic, artificial duplication integrating the 55.7-kb Rdl locus with a Ser301 change into an Ala301 background. Gene duplications can contribute significantly to the evolution of insecticide resistance, most commonly by increasing the amount of gene product produced. Here however, duplication of the Rdl target site creates permanent heterozygosity, providing unique potential for adaptive mutations to accrue in one copy, without abolishing the endogenous role of an essential gene. PMID:23959864

  18. The fruit fly Drosophila melanogaster as an innovative preclinical ADME model for solute carrier membrane transporters, with consequences for pharmacology and drug therapy.

    PubMed

    Wang, Yiwen; Moussian, Bernard; Schaeffeler, Elke; Schwab, Matthias; Nies, Anne T

    2018-06-08

    Solute carrier membrane transporters (SLCs) control cell exposure to small-molecule drugs, thereby contributing to drug efficacy and failure and/or adverse effects. Moreover, SLCs are genetically linked to various diseases. Hence, in-depth knowledge of SLC function is fundamental for a better understanding of disease pathophysiology and the drug development process. Given that the model organism Drosophila melanogaster (fruit fly) expresses SLCs, such as for the excretion of endogenous and toxic compounds by the hindgut and Malpighian tubules, equivalent to human intestine and kidney, this system appears to be a promising preclinical model to use to study human SLCs. Here, we systematically compare current knowledge of SLCs in Drosophila and humans and describe the Drosophila model as an innovative tool for drug development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.

    PubMed

    Sarangi, Manaswini; Nagarajan, Archana; Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh

    2016-09-01

    Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies.We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we

  20. Transcription Start Site Evolution in Drosophila

    PubMed Central

    Main, Bradley J.; Smith, Andrew D.; Jang, Hyosik; Nuzhdin, Sergey V.

    2013-01-01

    Transcription start site (TSS) evolution remains largely undescribed in Drosophila, likely due to limited annotations in non-melanogaster species. In this study, we introduce a concise new method that selectively sequences from the 5′-end of mRNA and used it to identify TSS in four Drosophila species, including Drosophila melanogaster, D. simulans, D. sechellia, and D. pseudoobscura. For verification, we compared our results in D. melanogaster with known annotations, published 5′-rapid amplification of cDNA ends data, and with RNAseq from the same mRNA pool. Then, we paired 2,849 D. melanogaster TSS with its closest equivalent TSS in each species (likely to be its true ortholog) using the available multiple sequence alignments. Most of the D. melanogaster TSSs were successfully paired with an ortholog in each species (83%, 86%, and 55% for D. simulans, D. sechellia, and D. pseudoobscura, respectively). On the basis of the number and distribution of reads mapped at each TSS, we also estimated promoter-specific expression (PSE) and TSS peak shape, respectively. Among paired TSS orthologs, the location and promoter activity were largely conserved. TSS location appears important as PSE, and TSS peak shape was more frequently divergent among TSS that had moved. Unpaired TSS were surprisingly common in D. pseudoobscura. An increased mutation rate upstream of TSS might explain this pattern. We found an enrichment of ribosomal protein genes among diverged TSS, suggesting that TSS evolution is not uniform across the genome. PMID:23649539

  1. The Release 6 reference sequence of the Drosophila melanogaster genome

    DOE PAGES

    Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.; ...

    2015-01-14

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy andmore » middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.« less

  2. The Release 6 reference sequence of the Drosophila melanogaster genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy andmore » middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.« less

  3. An integrated optical coherence microscopy imaging and optical stimulation system for optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.

  4. In vitro evidence for the participation of Drosophila melanogaster sperm β-N-acetylglucosaminidases in the interactions with glycans carrying terminal N-acetylglucosamine residues on the egg's envelopes.

    PubMed

    Intra, Jari; Veltri, Concetta; De Caro, Daniela; Perotti, Maria Elisa; Pasini, Maria Enrica

    2017-09-01

    Fertilization is a complex and multiphasic process, consisting of several steps, where egg-coating envelope's glycoproteins and sperm surface receptors play a critical role. Sperm-associated β-N-acetylglucosaminidases, also known as hexosaminidases, have been identified in a variety of organisms. Previously, two isoforms of hexosaminidases, named here DmHEXA and DmHEXB, were found as intrinsic proteins in the sperm plasma membrane of Drosophila melanogaster. In the present work, we carried out different approaches using solid-phase assays in order to analyze the oligosaccharide recognition ability of D. melanogaster sperm hexosaminidases to interact with well-defined carbohydrate chains that might functionally mimic egg glycoconjugates. Our results showed that Drosophila hexosaminidases prefer glycans carrying terminal β-N-acetylglucosamine, but not core β-N-acetylglucosamine residues. The capacity of sperm β-N-acetylhexosaminidases to bind micropylar chorion and vitelline envelope was examined in vitro assays. Binding was completely blocked when β-N-acetylhexosaminidases were preincubated with the glycoproteins ovalbumin and transferrin, and the monosaccharide β-N-acetylglucosamine. Overall, these data support the hypothesis of the potential role of these glycosidases in sperm-egg interactions in Drosophila. © 2017 Wiley Periodicals, Inc.

  5. Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model

    PubMed Central

    Limmer, Stefanie; Haller, Samantha; Drenkard, Eliana; Lee, Janice; Yu, Shen; Kocks, Christine; Ausubel, Frederick M.; Ferrandon, Dominique

    2011-01-01

    An in-depth mechanistic understanding of microbial infection necessitates a molecular dissection of host–pathogen relationships. Both Drosophila melanogaster and Pseudomonas aeruginosa have been intensively studied. Here, we analyze the infection of D. melanogaster by P. aeruginosa by using mutants in both host and pathogen. We show that orally ingested P. aeruginosa crosses the intestinal barrier and then proliferates in the hemolymph, thereby causing the infected flies to die of bacteremia. Host defenses against ingested P. aeruginosa included an immune deficiency (IMD) response in the intestinal epithelium, systemic Toll and IMD pathway responses, and a cellular immune response controlling bacteria in the hemocoel. Although the observed cellular and intestinal immune responses appeared to act throughout the course of the infection, there was a late onset of the systemic IMD and Toll responses. In this oral infection model, P. aeruginosa PA14 did not require its type III secretion system or other well-studied virulence factors such as the two-component response regulator GacA or the protease AprA for virulence. In contrast, the quorum-sensing transcription factor RhlR, but surprisingly not LasR, played a key role in counteracting the cellular immune response against PA14, possibly at an early stage when only a few bacteria are present in the hemocoel. These results illustrate the power of studying infection from the dual perspective of host and pathogen by revealing that RhlR plays a more complex role during pathogenesis than previously appreciated. PMID:21987808

  6. Role of Bacopa monnieri in the temporal regulation of oxidative stress in clock mutant (cryb) of Drosophila melanogaster.

    PubMed

    Subramanian, Perumal; Prasanna, Vinoth; Jayapalan, Jaime Jacqueline; Abdul Rahman, Puteri Shafinaz; Hashim, Onn Haji

    2014-06-01

    Accruing evidences imply that circadian organization of biochemical, endocrinological, cellular and physiological processes contribute to wellness of organisms and in the development of pathologies such as malignancy, sleep and endocrine disorders. Oxidative stress is known to mediate a number of diseases and it is notable to comprehend the orchestration of circadian clock of a model organism of circadian biology, Drosophila melanogaster, under oxidative stress. We investigated the nexus between circadian clock and oxidative stress susceptibility by exposing D. melanogaster to hydrogen peroxide (H2O2) or rotenone; the reversibility of rhythms following exposure to Bacopa monnieri extract (ayurvedic medicine rich in antioxidants) was also investigated. Abolishment of 24h rhythms in physiological response (negative geotaxis), oxidative stress markers (protein carbonyl and thiobarbituric acid reactive substances) and antioxidants (superoxide dismutase, catalase, glutathione-S-transferase and reduced glutathione) were observed under oxidative stress. Furthermore, abolishment of per mRNA rhythm in H2O2 treated wild type flies and augmented susceptibility to oxidative stress in clock mutant (cry(b)) flies connotes the role of circadian clock in reactive oxygen species (ROS) homeostasis. Significant reversibility of rhythms was noted following B. monnieri treatment in wild type flies than cry(b) flies. Our experimental approach revealed a relationship involving oxidative stress and circadian clock in fruit fly and the utility of Drosophila model in screening putative antioxidative phytomedicines prior to their use in mammalian systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. larvalign: Aligning Gene Expression Patterns from the Larval Brain of Drosophila melanogaster.

    PubMed

    Muenzing, Sascha E A; Strauch, Martin; Truman, James W; Bühler, Katja; Thum, Andreas S; Merhof, Dorit

    2018-01-01

    The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.

  8. The Molecular Structure of Te146 and Its Derivatives in Drosophila Melanogaster

    PubMed Central

    Lovering, R.; Harden, N.; Ashburner, M.

    1991-01-01

    TE146 is a giant transposon of Drosophila melanogaster. It carries two copies of the white and roughest genes, normally found on the X chromosome. The structure of this transposon has been studied at the molecular level. TE146 may transpose to new chromosome positions, excise and be lost from the genome or undergo internal rearrangements. The termini of TE146 are foldback DNA elements (FB); the transposon also carries two internal FB elements. Loss or internal rearrangement of TE146 involves recombination between different FB elements. These events have been mapped molecularly, by taking advantage of the fact that the FB sequences are composed largely of a regular 155-bp repeat sequence that is cut by the restriction enzyme TaqI, and are shown to be nonrandom. We suggest that these FB-FB exchange events occur by mitotic sister-chromatid exchange in the premeiotic germ line. PMID:1649070

  9. Mating experience and food deprivation modulate odor preference and dispersal in Drosophila melanogaster males

    PubMed Central

    Wang, Shu-Ping; Guo, Wei-Yan; Muhammad, Shahid Arain; Chen, Rui-Rui; Mu, Li-Li; Li, Guo-Qing

    2014-01-01

    Abstract Rotting fruits offer all of the known resources required for the livelihood of Drosophila melanogaster Meigen (Diptera: Drosophilidae). During fruit fermentation, carbohydrates and proteins are decomposed to produce volatile alcohols and amines, respectively. It is hypothesized that D. melanogaster adults can detect these chemical cues at a distance to identify and locate the decaying fruits. In the present paper, we compared the olfactory responses and movement of male flies varying in mating status and nutritional state to methanol, ethanol, and ammonia sources using a glass Y-tube olfactometer. In general, ethanol vapor at low to moderate concentrations repelled more hungry mated males than satiated ones. In contrast, methanol showed little difference in the attractiveness to males at different nutritional states and mating status. Moreover, ammonia attracted more hungry mated males. The attractiveness increased almost linearly with ammonia concentration from lowest to highest. When ammonia and artificial diet were put together in the odor arm, the responses of male flies to mixed odor mimicked the response to ammonia. Furthermore, odorant concentration, mating status, and nutritional state affected the flies’ dispersal. Mated and starved males dispersed at a higher rate than virgin and satiated ones. Thus, our results showed that starved, mated males increased dispersal and preferred ammonia that originated from protein. PMID:25368075

  10. Nucleotide variation at the dopa decarboxylase (Ddc) gene in natural populations of Drosophila melanogaster.

    PubMed

    Tatarenkov, Andrey; Ayala, Francisco J

    2007-08-01

    We studied nucleotide sequence variation at the gene coding for dopa decarboxylase (Ddc) in seven populations of Drosophila melanogaster. Strength and pattern of linkage disequilibrium are somewhat distinct in the extensively sampled Spanish and Raleigh populations. In the Spanish population, a few sites are in strong positive association, whereas a large number of sites in the Raleigh population are associated nonrandomly but the association is not strong. Linkage disequilibrium analysis shows presence of two groups of haplotypes in the populations, each of which is fairly diverged, suggesting epistasis or inversion polymorphism. There is evidence of two forms of natural selection acting on Ddc. The McDonald-Kreitman test indicates a deficit of fixed amino acid differences between D. melanogaster and D. simulans, which may be due to negative selection. An excess of derived alleles at high frequency, significant according to the H-test, is consistent with the effect of hitchhiking. The hitchhiking may have been caused by directional selection downstream of the locus studied, as suggested by a gradual decrease of the polymorphism-to-divergence ratio. Altogether, the Ddc locus exhibits a complicated pattern of variation apparently due to several evolutionary forces. Such a complex pattern may be a result of an unusually high density of functionally important genes.

  11. Environmental Presence of Hexavalent but Not Trivalent Chromium Causes Neurotoxicity in Exposed Drosophila melanogaster.

    PubMed

    Singh, Pallavi; Chowdhuri, D Kar

    2017-07-01

    A number of environmental chemicals are known to cause neurotoxicity to exposed organisms. Chromium (Cr), one of the major elements in earth's crust, is a priority environmental chemical depending on its valence state, and limited information is available on its neurotoxic potential. We, therefore, explored the neurotoxic potential of environmentally present trivalent- (Cr(III)) and hexavalent-Cr (Cr(VI)) on tested brain cell types in a genetically tractable organism Drosophila melanogaster along with its organismal response. Third instar larvae of w 1118 were fed environmentally relevant concentrations (5.0-20.0 μg/ml) of Cr(III)- or Cr(VI)-salt-mixed food for 24 and 48 h, and their exposure effects were examined in different brain cells of exposed organism. A significant reduction in the number of neuronal cells was observed in organism that were fed Cr(VI)- but not Cr(III)-salt-mixed food. Interestingly, glial cells were not affected by Cr(III) or Cr(VI) exposure. The tested cholinergic and dopaminergic neuronal cells were affected by Cr(VI) only with the later by 20.0 μg/ml Cr(VI) exposure after 48 h. The locomotor activity was significantly affected by Cr(VI) in exposed organism. Concomitantly, a significant increase in the level of reactive oxygen species (ROS) coupled with increased oxidative stress led to apoptotic cell death in the tested brain cells of Cr(VI)-exposed Drosophila, which were reversed by vitamin C supplementation. Conclusively, the present study provides evidence of environmental Cr(VI)-induced adversities on the brain of exposed Drosophila along with behavioral deficit which would likely to have relevance in humans and recommends Drosophila as a model for neurotoxicity.

  12. Key Odorants Regulate Food Attraction in Drosophila melanogaster

    PubMed Central

    Giang, Thomas; He, Jianzheng; Belaidi, Safaa; Scholz, Henrike

    2017-01-01

    In insects, the search for food is highly dependent on olfactory sensory input. Here, we investigated whether a single key odorant within an odor blend or the complexity of the odor blend influences the attraction of Drosophila melanogaster to a food source. A key odorant is defined as an odorant that elicits a difference in the behavioral response when two similar complex odor blends are offered. To validate that the observed behavioral responses were elicited by olfactory stimuli, we used olfactory co-receptor Orco mutants. We show that within a food odor blend, ethanol functions as a key odorant. In addition to ethanol other odorants might serve as key odorants at specific concentrations. However, not all odorants are key odorants. The intensity of the odor background influences the attractiveness of the key odorants. Increased complexity is only more attractive in a concentration-dependent range for single compounds in a blend. Orco is necessary to discriminate between two similarly attractive odorants when offered as single odorants and in food odor blends, supporting the importance of single odorant recognition in odor blends. These data strongly indicate that flies use more than one strategy to navigate to a food odor source, depending on the availability of key odorants in the odor blend and the alternative odor offered. PMID:28928642

  13. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive.

    PubMed

    Larracuente, Amanda M

    2014-11-25

    Satellite DNA can make up a substantial fraction of eukaryotic genomes and has roles in genome structure and chromosome segregation. The rapid evolution of satellite DNA can contribute to genomic instability and genetic incompatibilities between species. Despite its ubiquity and its contribution to genome evolution, we currently know little about the dynamics of satellite DNA evolution. The Responder (Rsp) satellite DNA family is found in the pericentric heterochromatin of chromosome 2 of Drosophila melanogaster. Rsp is well-known for being the target of Segregation Distorter (SD)- an autosomal meiotic drive system in D. melanogaster. I present an evolutionary genetic analysis of the Rsp family of repeats in D. melanogaster and its closely-related species in the melanogaster group (D. simulans, D. sechellia, D. mauritiana, D. erecta, and D. yakuba) using a combination of available BAC sequences, whole genome shotgun Sanger reads, Illumina short read deep sequencing, and fluorescence in situ hybridization. I show that Rsp repeats have euchromatic locations throughout the D. melanogaster genome, that Rsp arrays show evidence for concerted evolution, and that Rsp repeats exist outside of D. melanogaster, in the melanogaster group. The repeats in these species are considerably diverged at the sequence level compared to D. melanogaster, and have a strikingly different genomic distribution, even between closely-related sister taxa. The genomic organization of the Rsp repeat in the D. melanogaster genome is complex-it exists of large blocks of tandem repeats in the heterochromatin and small blocks of tandem repeats in the euchromatin. My discovery of heterochromatic Rsp-like sequences outside of D. melanogaster suggests that SD evolved after its target satellite and that the evolution of the Rsp satellite family is highly dynamic over a short evolutionary time scale (<240,000 years).

  14. Protective effects of tea polyphenols and β-carotene against γ-radiation induced mutation and oxidative stress in Drosophila melanogaster.

    PubMed

    Nagpal, Isha; Abraham, Suresh K

    2017-01-01

    The commonly consumed antioxidants β-carotene and tea polyphenols were used to assess their protective effects against γ-radiation induced sex-linked recessive lethal (SLRL) mutation and oxidative stress in Drosophila melanogaster . Third instar larvae and adult males of wild-type Oregon-K (ORK) were fed on test agents for 24 and 72 h respectively before exposure to 10Gy γ-irradiation. The treated/control flies were used to assess the induction of SLRLs. We also evaluated antioxidant properties of these phytochemicals in the third instar larvae. Different stages of spermatogenesis in adult males showed a decrease in γ-radiation induced SLRL frequencies upon co-treatment with test agents. A similar trend was observed in larvae. Furthermore, a significant increase in antioxidant enzymatic activities with a decrease in malondialdehyde content was observed. β-carotene and tea polyphenols have exerted antigenotoxic and antioxidant effects in Drosophila . This study demonstrated the suitability of Drosophila as an alternative to mammalian testing for evaluating the antigenotoxic and antioxidant activity of natural products.

  15. Genotoxicity and apoptosis in Drosophila melanogaster exposed to benzene, toluene and xylene: Attenuation by quercetin and curcumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mahendra P.; Mishra, M.; Sharma, A.

    2011-05-15

    Monocyclic aromatic hydrocarbons (MAHs) such as benzene, toluene and xylene are being extensively used for various industrial and household purposes. Exposure to these hydrocarbons, occupationally or non-occupationally, is harmful to organisms including human. Several studies tested for toxicity of benzene, toluene and xylene, and interestingly, only a few studies looked into the attenuation. We used Drosophila model to test the genotoxic and apoptotic potential of these compounds and subsequently evaluated the efficiency of two phytochemicals, namely, quercetin and curcumin in attenuating test chemical induced toxicity. We exposed third instar larvae of wild type Drosophila melanogaster (Oregon R{sup +}) to 1.0-100.0more » mM benzene, toluene or xylene, individually, for 12, 24 and 48 h and examined their apoptotic and genotoxic potential. We observed significantly (P < 0.001) increased apoptotic markers and genotoxicity in a concentration- and time-dependent manner in organisms exposed to benzene, toluene or xylene. We also observed significantly (P < 0.001) increased cytochrome P450 activity in larvae exposed to test chemicals and this was significantly reduced in the presence of 3',4'-dimethoxyflavone, a known Aryl hydrocarbon receptor (AhR) blocker. Interestingly, we observed a significant reduction in cytochrome P450 activity, GST levels, oxidative stress parameters, genotoxic and apoptotic endpoints when organisms were exposed simultaneously to test chemical along with quercetin or curcumin. The study further suggests the suitability of D. melanogaster as an alternate animal model for toxicological studies involving benzene, toluene and xylene and its potential in studying the protective role(s) of phytochemicals.« less

  16. Viability, Longevity, and Egg Production of Drosophila melanogaster Are Regulated by the miR-282 microRNA

    PubMed Central

    Vilmos, Péter; Bujna, Ágnes; Szuperák, Milán; Havelda, Zoltán; Várallyay, Éva; Szabad, János; Kucerova, Lucie; Somogyi, Kálmán; Kristó, Ildikó; Lukácsovich, Tamás; Jankovics, Ferenc; Henn, László; Erdélyi, Miklós

    2013-01-01

    The first microRNAs were discovered some 20 years ago, but only a small fraction of the microRNA-encoding genes have been described in detail yet. Here we report the molecular analysis of a computationally predicted Drosophila melanogaster microRNA gene, mir-282. We show that the mir-282 gene is the source of a 4.9-kb-long primary transcript with a 5′ cap and a 3′-poly(A) sequence and a mature microRNA of ∼25 bp. Our data strongly suggest the existence of an independent mir-282 gene conserved in holometabolic insects. We give evidence that the mir-282 locus encodes a functional transcript that influences viability, longevity, and egg production in Drosophila. We identify the nervous system-specific adenylate cyclase (rutabaga) as a target of miR-282 and assume that one of the main functions of mir-282 is the regulation of adenylate cyclase activity in the nervous system during metamorphosis. PMID:23852386

  17. The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster.

    PubMed

    Sano, Hiroko; Nakamura, Akira; Texada, Michael J; Truman, James W; Ishimoto, Hiroshi; Kamikouchi, Azusa; Nibu, Yutaka; Kume, Kazuhiko; Ida, Takanori; Kojima, Masayasu

    2015-05-01

    The coordination of growth with nutritional status is essential for proper development and physiology. Nutritional information is mostly perceived by peripheral organs before being relayed to the brain, which modulates physiological responses. Hormonal signaling ensures this organ-to-organ communication, and the failure of endocrine regulation in humans can cause diseases including obesity and diabetes. In Drosophila melanogaster, the fat body (adipose tissue) has been suggested to play an important role in coupling growth with nutritional status. Here, we show that the peripheral tissue-derived peptide hormone CCHamide-2 (CCHa2) acts as a nutrient-dependent regulator of Drosophila insulin-like peptides (Dilps). A BAC-based transgenic reporter revealed strong expression of CCHa2 receptor (CCHa2-R) in insulin-producing cells (IPCs) in the brain. Calcium imaging of brain explants and IPC-specific CCHa2-R knockdown demonstrated that peripheral-tissue derived CCHa2 directly activates IPCs. Interestingly, genetic disruption of either CCHa2 or CCHa2-R caused almost identical defects in larval growth and developmental timing. Consistent with these phenotypes, the expression of dilp5, and the release of both Dilp2 and Dilp5, were severely reduced. Furthermore, transcription of CCHa2 is altered in response to nutritional levels, particularly of glucose. These findings demonstrate that CCHa2 and CCHa2-R form a direct link between peripheral tissues and the brain, and that this pathway is essential for the coordination of systemic growth with nutritional availability. A mammalian homologue of CCHa2-R, Bombesin receptor subtype-3 (Brs3), is an orphan receptor that is expressed in the islet β-cells; however, the role of Brs3 in insulin regulation remains elusive. Our genetic approach in Drosophila melanogaster provides the first evidence, to our knowledge, that bombesin receptor signaling with its endogenous ligand promotes insulin production.

  18. Deep Conservation of Genes Required for Both Drosophila melanogaster and Caenorhabditis elegans Sleep Includes a Role for Dopaminergic Signaling

    PubMed Central

    Singh, Komudi; Ju, Jennifer Y.; Walsh, Melissa B.; DiIorio, Michael A.; Hart, Anne C.

    2014-01-01

    Objectives: Cross-species conservation of sleep-like behaviors predicts the presence of conserved molecular mechanisms underlying sleep. However, limited experimental evidence of conservation exists. Here, this prediction is tested directly. Measurements and Results: During lethargus, Caenorhabditis elegans spontaneously sleep in short bouts that are interspersed with bouts of spontaneous locomotion. We identified 26 genes required for Drosophila melanogaster sleep. Twenty orthologous C. elegans genes were selected based on similarity. Their effect on C. elegans sleep and arousal during the last larval lethargus was assessed. The 20 most similar genes altered both the quantity of sleep and arousal thresholds. In 18 cases, the direction of change was concordant with Drosophila studies published previously. Additionally, we delineated a conserved genetic pathway by which dopamine regulates sleep and arousal. In C. elegans neurons, G-alpha S, adenylyl cyclase, and protein kinase A act downstream of D1 dopamine receptors to regulate these behaviors. Finally, a quantitative analysis of genes examined herein revealed that C. elegans arousal thresholds were directly correlated with amount of sleep during lethargus. However, bout duration varies little and was not correlated with arousal thresholds. Conclusions: The comprehensive analysis presented here suggests that conserved genes and pathways are required for sleep in invertebrates and, likely, across the entire animal kingdom. The genetic pathway delineated in this study implicates G-alpha S and previously known genes downstream of dopamine signaling in sleep. Quantitative analysis of various components of quiescence suggests that interdependent or identical cellular and molecular mechanisms are likely to regulate both arousal and sleep entry. Citation: Singh K, Ju JY, Walsh MB, Dilorio MA, Hart AC. Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for

  19. Editor's Highlight: Genetic Targets of Acute Toluene Inhalation in Drosophila melanogaster.

    PubMed

    Bushnell, Philip J; Ward, William O; Morozova, Tatiana V; Oshiro, Wendy M; Lin, Mimi T; Judson, Richard S; Hester, Susan D; McKee, John M; Higuchi, Mark

    2017-03-01

    Interpretation and use of data from high-throughput assays for chemical toxicity require links between effects at molecular targets and adverse outcomes in whole animals. The well-characterized genome of Drosophila melanogaster provides a potential model system by which phenotypic responses to chemicals can be mapped to genes associated with those responses, which may in turn suggest adverse outcome pathways associated with those genes. To determine the utility of this approach, we used the Drosophila Genetics Reference Panel (DGRP), a collection of ∼200 homozygous lines of fruit flies whose genomes have been sequenced. We quantified toluene-induced suppression of motor activity in 123 lines of these flies during exposure to toluene, a volatile organic compound known to induce narcosis in mammals via its effects on neuronal ion channels. We then applied genome-wide association analyses on this effect of toluene using the DGRP web portal (http://dgrp2.gnets.ncsu.edu), which identified polymorphisms in candidate genes associated with the variation in response to toluene exposure. We tested ∼2 million variants and found 82 polymorphisms located in or near 66 candidate genes that were associated with phenotypic variation for sensitivity to toluene at P < 5 × 10-5, and human orthologs for 52 of these candidate Drosophila genes. None of these orthologs are known to be involved in canonical pathways for mammalian neuronal ion channels, including GABA, glutamate, dopamine, glycine, serotonin, and voltage sensitive calcium channels. Thus this analysis did not reveal a genetic signature consistent with processes previously shown to be involved in toluene-induced narcosis in mammals. The list of the human orthologs included Gene Ontology terms associated with signaling, nervous system development and embryonic morphogenesis; these orthologs may provide insight into potential new pathways that could mediate the narcotic effects of toluene. Published by Oxford

  20. High resolution structure of cleaved Serpin 42 Da from Drosophila melanogaster.

    PubMed

    Ellisdon, Andrew M; Zhang, Qingwei; Henstridge, Michelle A; Johnson, Travis K; Warr, Coral G; Law, Ruby Hp; Whisstock, James C

    2014-04-24

    The Drosophila melanogaster Serpin 42 Da gene (previously Serpin 4) encodes a serine protease inhibitor that is capable of remarkable functional diversity through the alternative splicing of four different reactive centre loop exons. Eight protein isoforms of Serpin 42 Da have been identified to date, targeting the protease inhibitor to both different proteases and cellular locations. Biochemical and genetic studies suggest that Serpin 42 Da inhibits target proteases through the classical serpin 'suicide' inhibition mechanism, however the crystal structure of a representative Serpin 42 Da isoform remains to be determined. We report two high-resolution crystal structures of Serpin 42 Da representing the A/B isoforms in the cleaved conformation, belonging to two different space-groups and diffracting to 1.7 Å and 1.8 Å. Structural analysis reveals the archetypal serpin fold, with the major elements of secondary structure displaying significant homology to the vertebrate serpin, neuroserpin. Key residues known to have central roles in the serpin inhibitory mechanism are conserved in both the hinge and shutter regions of Serpin 42 Da. Furthermore, these structures identify important conserved interactions that appear to be of crucial importance in allowing the Serpin 42 Da fold to act as a versatile template for multiple reactive centre loops that have different sequences and protease specificities. In combination with previous biochemical and genetic studies, these structures confirm for the first time that the Serpin 42 Da isoforms are typical inhibitory serpin family members with the conserved serpin fold and inhibitory mechanism. Additionally, these data reveal the remarkable structural plasticity of serpins, whereby the basic fold is harnessed as a template for inhibition of a large spectrum of proteases by reactive centre loop exon 'switching'. This is the first structure of a Drosophila serpin reported to date, and will provide a platform for future mutational

  1. Spontaneous locomotor activity and life span. A test of the rate of living theory in Drosophila melanogaster.

    PubMed

    Lints, F A; Le Bourg, E; Lints, C V

    1984-01-01

    The spontaneous locomotor activity and life span of approximately 600 individuals of both sexes and of three widely different genotypes of Drosophila melanogaster have been measured. Neither at the individual nor at the populational level could a significant correlation between spontaneous locomotor activity and life span be found. The results are discussed in relation with Pearl's [The rate of living, London University Press, London 1928] rate of living theory. That theory has been tested in relation with environmental temperature, oxygen consumption and activity. It is shown that the theory has received no definite confirmation until now.

  2. Cytogenetic Analysis of Chromosome 3 in DROSOPHILA MELANOGASTER: Mapping of the Proximal Portion of the Right Arm

    PubMed Central

    Duncan, Ian W.; Kaufman, Thomas C.

    1975-01-01

    In order to define more precisely the most proximal portion of chromosome 3R in Drosophila melanogaster, several new chromosome aberrations involving this region have been recovered and analyzed. These new arrangements were recovered as induced reversions of two dominant mutations, AntpNs and dsxD, located in the region of interest. The results of the analysis have allowed the localization of several existing mutations, have further elucidated the complex homoeotic locus which resides in this region, and have confirmed the efficacy of this type of screen in the analysis of specific chromosome regions. PMID:811500

  3. Definition of a RACK1 Interaction Network in Drosophila melanogaster Using SWATH-MS.

    PubMed

    Kuhn, Lauriane; Majzoub, Karim; Einhorn, Evelyne; Chicher, Johana; Pompon, Julien; Imler, Jean-Luc; Hammann, Philippe; Meignin, Carine

    2017-07-05

    Receptor for Activated protein C kinase 1 (RACK1) is a scaffold protein that has been found in association with several signaling complexes, and with the 40S subunit of the ribosome. Using the model organism Drosophila melanogaster , we recently showed that RACK1 is required at the ribosome for internal ribosome entry site (IRES)-mediated translation of viruses. Here, we report a proteomic characterization of the interactome of RACK1 in Drosophila S2 cells. We carried out Label-Free quantitation using both Data-Dependent and Data-Independent Acquisition (DDA and DIA, respectively) and observed a significant advantage for the Sequential Window Acquisition of all THeoretical fragment-ion spectra (SWATH) method, both in terms of identification of interactants and quantification of low abundance proteins. These data represent the first SWATH spectral library available for Drosophila and will be a useful resource for the community. A total of 52 interacting proteins were identified, including several molecules involved in translation such as structural components of the ribosome, factors regulating translation initiation or elongation, and RNA binding proteins. Among these 52 proteins, 15 were identified as partners by the SWATH strategy only. Interestingly, these 15 proteins are significantly enriched for the functions translation and nucleic acid binding. This enrichment reflects the engagement of RACK1 at the ribosome and highlights the added value of SWATH analysis. A functional screen did not reveal any protein sharing the interesting properties of RACK1, which is required for IRES-dependent translation and not essential for cell viability. Intriguingly however, 10 of the RACK1 partners identified restrict replication of Cricket paralysis virus (CrPV), an IRES-containing virus. Copyright © 2017 Kuhn et al.

  4. Polymorphism at the REF(2)P Locus in DROSOPHILA MELANOGASTER: Preliminary Experiments concerning the Selection Mechanisms Involved in Its Maintenance

    PubMed Central

    Fleuriet, Annie

    1981-01-01

    It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition. PMID:6791986

  5. Mortality from desiccation contributes to a genotype–temperature interaction for cold survival in Drosophila melanogaster

    PubMed Central

    Kobey, Robert L.; Montooth, Kristi L.

    2013-01-01

    SUMMARY Survival at cold temperatures is a complex trait, primarily because of the fact that the physiological cause of injury may differ across degrees of cold exposure experienced within the lifetime of an ectothermic individual. In order to better understand how chill-sensitive insects experience and adapt to low temperatures, we investigated the physiological basis for cold survival across a range of temperature exposures from −4 to 6°C in five genetic lines of the fruit fly Drosophila melanogaster. Genetic effects on cold survival were temperature dependent and resulted in a significant genotype–temperature interaction for survival across cold temperature exposures that differ by as little as 2°C. We investigated desiccation as a potential mechanism of injury across these temperature exposures. Flies were dehydrated following exposures near 6°C, whereas flies were not dehydrated following exposures near −4°C. Furthermore, decreasing humidity during cold exposure decreased survival, and increasing humidity during cold exposure increased survival at 6°C, but not at −4°C. These results support the conclusion that in D. melanogaster there are multiple physiological mechanisms of cold-induced mortality across relatively small differences in temperature, and that desiccation contributes to mortality for exposures near 6°C but not for subzero temperatures. Because D. melanogaster has recently expanded its range from tropical to temperate latitudes, the complex physiologies underlying cold tolerance are likely to be important traits in the recent evolutionary history of this fruit fly. PMID:23197100

  6. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster.

    PubMed

    Robertson, Hugh M; Warr, Coral G; Carlson, John R

    2003-11-25

    The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods.

  7. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster

    PubMed Central

    Robertson, Hugh M.; Warr, Coral G.; Carlson, John R.

    2003-01-01

    The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods. PMID:14608037

  8. Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster.

    PubMed

    Slattery, Matthew; Ma, Lijia; Spokony, Rebecca F; Arthur, Robert K; Kheradpour, Pouya; Kundaje, Anshul; Nègre, Nicolas; Crofts, Alex; Ptashkin, Ryan; Zieba, Jennifer; Ostapenko, Alexander; Suchy, Sarah; Victorsen, Alec; Jameel, Nader; Grundstad, A Jason; Gao, Wenxuan; Moran, Jennifer R; Rehm, E Jay; Grossman, Robert L; Kellis, Manolis; White, Kevin P

    2014-07-01

    Annotation of regulatory elements and identification of the transcription-related factors (TRFs) targeting these elements are key steps in understanding how cells interpret their genetic blueprint and their environment during development, and how that process goes awry in the case of disease. One goal of the modENCODE (model organism ENCyclopedia of DNA Elements) Project is to survey a diverse sampling of TRFs, both DNA-binding and non-DNA-binding factors, to provide a framework for the subsequent study of the mechanisms by which transcriptional regulators target the genome. Here we provide an updated map of the Drosophila melanogaster regulatory genome based on the location of 84 TRFs at various stages of development. This regulatory map reveals a variety of genomic targeting patterns, including factors with strong preferences toward proximal promoter binding, factors that target intergenic and intronic DNA, and factors with distinct chromatin state preferences. The data also highlight the stringency of the Polycomb regulatory network, and show association of the Trithorax-like (Trl) protein with hotspots of DNA binding throughout development. Furthermore, the data identify more than 5800 instances in which TRFs target DNA regions with demonstrated enhancer activity. Regions of high TRF co-occupancy are more likely to be associated with open enhancers used across cell types, while lower TRF occupancy regions are associated with complex enhancers that are also regulated at the epigenetic level. Together these data serve as a resource for the research community in the continued effort to dissect transcriptional regulatory mechanisms directing Drosophila development. © 2014 Slattery et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Signaling Pathways Involved in 1-Octen-3-ol-Mediated Neurotoxicity in Drosophila melanogaster: Implication in Parkinson’s Disease

    PubMed Central

    Masurekar, Prakash; Hossain, Muhammad; Richardson, Jason R.; Bennett, Joan W.

    2014-01-01

    Previously, we have pioneered Drosophila melanogaster as a reductionist model to show that 1-octen-3-ol, a musty-smelling volatile compound emitted by fungi and other organisms, causes loss of dopaminergic neurons and Parkinson’s disease-like symptoms in flies. Using our in vivo Drosophila system, the modulatory roles of important signaling pathways—JNK, Akt and the caspase-3-dependent apoptotic pathway were investigated in the context of 1-octen-3-ol-induced dopamine neurotoxicity. When heterozygous flies carrying mutant alleles for these proteins were exposed to 0.5 ppm of 1-octen-3-ol, they had shorter survival times than wild-type Drosophila. The overexpressed levels of wild-type JNK and Akt, (UAS-bsk and UAS-Akt) with TH-GAL4 and elav-GAL4 drivers improved the survival duration of exposed flies compared with controls. Thus, we found that Akt and JNK both protect against loss of dopamine activity associated with 1-octen-3-ol exposure, indicating the pro-survival role of these signaling pathways. Further, 1-octen-3-ol exposure was associated with activation of caspase 3, a hallmark for apoptosis. PMID:23959949

  10. The Deadbeat Paternal Effect of Uncapped Sperm Telomeres on Cell Cycle Progression and Chromosome Behavior in Drosophila melanogaster

    PubMed Central

    Yamaki, Takuo; Yasuda, Glenn K.; Wakimoto, Barbara T.

    2016-01-01

    Telomere-capping complexes (TCCs) protect the ends of linear chromosomes from illegitimate repair and end-to-end fusions and are required for genome stability. The identity and assembly of TCC components have been extensively studied, but whether TCCs require active maintenance in nondividing cells remains an open question. Here we show that Drosophila melanogaster requires Deadbeat (Ddbt), a sperm nuclear basic protein (SNBP) that is recruited to the telomere by the TCC and is required for TCC maintenance during genome-wide chromatin remodeling, which transforms spermatids to mature sperm. Ddbt-deficient males produce sperm lacking TCCs. Their offspring delay the initiation of anaphase as early as cycle 1 but progress through the first two cycles. Persistence of uncapped paternal chromosomes induces arrest at or around cycle 3. This early arrest can be rescued by selective elimination of paternal chromosomes and production of gynogenetic haploid or haploid mosaics. Progression past cycle 3 can also occur if embryos have reduced levels of the maternally provided checkpoint kinase Chk2. The findings provide insights into how telomere integrity affects the regulation of the earliest embryonic cell cycles. They also suggest that other SNBPs, including those in humans, may have analogous roles and manifest as paternal effects on embryo quality. PMID:27029731

  11. An automated method to assay locomotor activity in third instar Drosophila melanogaster larvae.

    PubMed

    Graham, Stephanie; Rogers, Ryan P; Alper, Richard H

    2016-01-01

    The purpose of these studies was to describe a novel application of an automated data acquisition/data reduction system, DanioVision™ by Noldus. DanioVision™ has the ability to detect changes in locomotor activity in third instar Drosophila melanogaster larvae. The noncompetitive GABAA receptor antagonist picrotoxin (PTX), was used as a pharmacologic agent to decrease locomotor activity. Two strains of Drosophila were used in these studies; wild-type flies and flies with a mutation in the Rdl gene (Rdl(MD-RR)). Rdl(MD-RR)Drosophila are naturally occurring mutants that express an aberrant form of the GABAA receptor, which has a lower affinity for PTX, but not GABA itself. Larvae, extracted from food in 20% sucrose, were randomly placed into vials containing vehicle or PTX (0.03-3mM). After incubation of 2-24h, individual larvae were put in each well of a 6-well culture plate previously coated with 2% agar, the plate was then placed in the DanioVision™ apparatus. The activity of individual larva was recorded for 5 min, digitized and analyzed using Ethovision® XT software. Incubation of third instar wild-type larvae in 1mM PTX for 4 or 24h decreased activity; whereas, a 2h incubation in PTX was without effect. PTX caused a concentration-dependent decrease in activity as demonstrated by consistently reduced locomotor activity with 1.0 and 3.0mM: 0.3mM resulted in variable decreases in locomotor activity and 0.03 mM yielded no effect. By contrast, PTX did not affect activity in Rdl(MD-RR) larvae even at the highest concentration, 3.0mM. Using an automated data acquisition system, it was found that PTX decreases activity in third instar Drosophila larvae due to a selective blockade of the GABAA receptor. The method will reduce the likelihood of human error and bias, as well as increase the speed and ease of data collection and analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Yolk proteins in the male reproductive system of the fruit fly Drosophila melanogaster: spatial and temporal patterns of expression.

    PubMed

    Majewska, Magdalena M; Suszczynska, Agnieszka; Kotwica-Rolinska, Joanna; Czerwik, Tomasz; Paterczyk, Bohdan; Polanska, Marta A; Bernatowicz, Piotr; Bebas, Piotr

    2014-04-01

    In insects, spermatozoa develop in the testes as clones of single spermatogonia covered by specialized somatic cyst cells (cc). Upon completion of spermatogenesis, spermatozoa are released to the vas deferens, while the cc remain in the testes and die. In the fruit fly Drosophila melanogaster, the released spermatozoa first reach the seminal vesicles (SV), the organ where post-testicular maturation begins. Here, we demonstrate the temporal (restricted to the evening and early night hours) accumulation of membranous vesicles containing proteins in the SV lumen of D. melanogaster. When SV vesicles were isolated from the semen and co-incubated with testis-derived spermatozoa in vitro, their contents bound to the spermatozoa along their tails. The proteins of the SV vesicles were then characterized using 2-D electrophoresis. We identified a prominent protein spot of around 45-47 kDa, which disappears from the SV vesicles in the night, i.e. shortly after they appear in the SV lumen. Sequencing of peptides derived from this spot by mass spectrometry revealed identity with three yolk proteins (YP1-3). This unexpected result was confirmed by western blotting, which demonstrated that SV vesicles contain proteins that are immunoreactive with an antibody against D. melanogaster YP1-3. The expression of all yp genes was shown to be a unique feature of testis tissues. Using RNA probes we found that their transcripts localize exclusively to the cc that cover fully developed spermatozoa in the distal part of each testis. Temporally, the expression of yp genes was found to be restricted to a short period during the day and is followed by the evening accumulation of YP proteins in the cc. Immunohistochemical staining confirmed that cc are the source of SV vesicles containing YPs that are released into the SV lumen. These vesicles interact with spermatozoa and as a result, YPs become extrinsic proteins of the sperm membrane. Thus, we describe for the first time the expression of

  13. More than Meets the Eye: A Primer for "Timing of Locomotor Recovery from Anoxia Modulated by the white Gene in Drosophila melanogaster".

    PubMed

    Hersh, Bradley M

    2016-12-01

    SummaryA single gene might have several functions within an organism, and so mutational loss of that gene has multiple effects across different physiological systems in the organism. Though the white gene in Drosophila melanogaster was identified originally for its effect on fly eye color, an article by Xiao and Robertson in the June 2016 issue of GENETICS describes a function for the white gene in the response of Drosophila to oxygen deprivation. This Primer article provides background information on the white gene, the phenomenon of pleiotropy, and the molecular and genetic approaches used in the study to demonstrate a new behavioral function for the white gene. Copyright © 2016 by the Genetics Society of America.

  14. Characterization of CG6178 gene product with high sequence similarity to firefly luciferase in Drosophila melanogaster.

    PubMed

    Oba, Yuichi; Ojika, Makoto; Inouye, Satoshi

    2004-03-31

    This is the first identification of a long-chain fatty acyl-CoA synthetase in Drosophila by enzymatic characterization. The gene product of CG6178 (CG6178) in Drosophila melanogaster genome, which has a high sequence similarity to firefly luciferase, has been expressed and characterized. CG6178 showed long-chain fatty acyl-CoA synthetic activity in the presence of ATP, CoA and Mg(2+), suggesting a fatty acyl adenylate is an intermediate. Recently, it was revealed that firefly luciferase has two catalytic functions, monooxygenase (luciferase) and AMP-mediated CoA ligase (fatty acyl-CoA synthetase). However, unlike firefly luciferase, CG6178 did not show luminescence activity in the presence of firefly luciferin, ATP, CoA and Mg(2+). The enzymatic properties of CG6178 including substrate specificity, pH dependency and optimal temperature were close to those of firefly luciferase and rat fatty acyl-CoA synthetase. Further, phylogenic analyses strongly suggest that the firefly luciferase gene may have evolved from a fatty acyl-CoA synthetase gene as a common ancestral gene.

  15. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis.

    PubMed

    Nezis, Ioannis P; Shravage, Bhupendra V; Sagona, Antonia P; Lamark, Trond; Bjørkøy, Geir; Johansen, Terje; Rusten, Tor Erik; Brech, Andreas; Baehrecke, Eric H; Stenmark, Harald

    2010-08-23

    Autophagy is an evolutionarily conserved pathway responsible for degradation of cytoplasmic material via the lysosome. Although autophagy has been reported to contribute to cell death, the underlying mechanisms remain largely unknown. In this study, we show that autophagy controls DNA fragmentation during late oogenesis in Drosophila melanogaster. Inhibition of autophagy by genetically removing the function of the autophagy genes atg1, atg13, and vps34 resulted in late stage egg chambers that contained persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. The Drosophila inhibitor of apoptosis (IAP) dBruce was found to colocalize with the autophagic marker GFP-Atg8a and accumulated in autophagy mutants. Nurse cells lacking Atg1 or Vps34 in addition to dBruce contained persisting nurse cell nuclei with fragmented DNA. This indicates that autophagic degradation of dBruce controls DNA fragmentation in nurse cells. Our results reveal autophagic degradation of an IAP as a novel mechanism of triggering cell death and thereby provide a mechanistic link between autophagy and cell death.

  16. Synaptic Spinules in the Olfactory Circuit of Drosophila melanogaster

    PubMed Central

    Gruber, Lydia; Rybak, Jürgen; Hansson, Bill S.; Cantera, Rafael

    2018-01-01

    Here we report on ultrastructural features of brain synapses in the fly Drosophila melanogaster and outline a perspective for the study of their functional significance. Images taken with the aid of focused ion beam-scanning electron microscopy (EM) at 20 nm intervals across olfactory glomerulus DA2 revealed that some synaptic boutons are penetrated by protrusions emanating from other neurons. Similar structures in the brain of mammals are known as synaptic spinules. A survey with transmission EM (TEM) disclosed that these structures are frequent throughout the antennal lobe. Detailed neuronal tracings revealed that spinules are formed by all three major types of neurons innervating glomerulus DA2 but the olfactory sensory neurons (OSNs) receive significantly more spinules than other olfactory neurons. Double-membrane vesicles (DMVs) that appear to represent material that has pinched-off from spinules are also most abundant in presynaptic boutons of OSNs. Inside the host neuron, a close association was observed between spinules, the endoplasmic reticulum (ER) and mitochondria. We propose that by releasing material into the host neuron, through a process triggered by synaptic activity and analogous to axonal pruning, synaptic spinules could function as a mechanism for synapse tagging, synaptic remodeling and neural plasticity. Future directions of experimental work to investigate this theory are proposed. PMID:29636666

  17. Synaptic Spinules in the Olfactory Circuit of Drosophila melanogaster.

    PubMed

    Gruber, Lydia; Rybak, Jürgen; Hansson, Bill S; Cantera, Rafael

    2018-01-01

    Here we report on ultrastructural features of brain synapses in the fly Drosophila melanogaster and outline a perspective for the study of their functional significance. Images taken with the aid of focused ion beam-scanning electron microscopy (EM) at 20 nm intervals across olfactory glomerulus DA2 revealed that some synaptic boutons are penetrated by protrusions emanating from other neurons. Similar structures in the brain of mammals are known as synaptic spinules. A survey with transmission EM (TEM) disclosed that these structures are frequent throughout the antennal lobe. Detailed neuronal tracings revealed that spinules are formed by all three major types of neurons innervating glomerulus DA2 but the olfactory sensory neurons (OSNs) receive significantly more spinules than other olfactory neurons. Double-membrane vesicles (DMVs) that appear to represent material that has pinched-off from spinules are also most abundant in presynaptic boutons of OSNs. Inside the host neuron, a close association was observed between spinules, the endoplasmic reticulum (ER) and mitochondria. We propose that by releasing material into the host neuron, through a process triggered by synaptic activity and analogous to axonal pruning, synaptic spinules could function as a mechanism for synapse tagging, synaptic remodeling and neural plasticity. Future directions of experimental work to investigate this theory are proposed.

  18. Ontogeny of flight initiation in the fly Drosophila melanogaster: implications for the giant fibre system.

    PubMed

    Hammond, Sarah; O'Shea, Michael

    2007-11-01

    There are two modes of flight initiation in Drosophila melanogaster-escape and voluntary. Although the circuitry underlying escape is accounted for by the Giant fibre (GF) system, the system underlying voluntary flight initiation is unknown. The GF system is functionally complete before the adult fly ecloses, but immature adults initially fail to react to a stimulus known to reliably evoke escape in mature adults. This suggests that escape in early adulthood, approximately 2-h post-eclosion, is not automatically triggered by the hard-wired GF system. Indeed, we reveal that escape behaviour displays a staged emergence during the first hour post-eclosion, suggesting that the GF system is subject to declining levels of suppression. Voluntary flight initiations are not observed at all during the period when the GF system is released from its suppression, nor indeed for some time after. We addressed the question whether voluntary flight initiation requires the GF system by observing take-off in Shak-B ( 2 ) mutant flies, in which the GF system is defunct. While the escape response is severely impaired in these mutants, they displayed normal voluntary flight initiation. Thus, the escape mechanism is subject to developmental modulation following eclosion and the GF system does not underlie voluntary flight.

  19. [Study of the functional role of mutation in the guinea pig-adapted Ebola virus genome on a Drosophila melanogaster model].

    PubMed

    Shelemba-Chepurnova, A A; Omel'ianchuk, L V; Chepurnov, A A

    2011-01-01

    Ebola virus virulence in guinea pigs, which appears through virus adaptation to this animal host, correlates with substitutions in the gene encoding vp24 protein. In particular, the substitution His-->Tyr186 was found when obtaining strain 8 ms. An attempt was made to clarify the functional role of this substitution in a transgenic fruit fly model. Using the drosophila transformation technique provided transgenic strains that contained genomic insertions of wild-type Ebola virus vp24 gene and the mutant gene with the His-->Tyr substitution at the above position. Thus, the drosophila strains carrying the sequences encoding for the vp24 proteins of Ebola virus Zaire and 8 ms in pUAST vector were obtained. This makes it possible to study the expression of transgenic constructs in various D. melanogaster organs and tissues.

  20. [Influence of tissue-specific superoxide dismutase genes expression in brain cells on Drosophila melanogaster sensitivity to oxidative stress and viability].

    PubMed

    Vitushynska, M V; Matiytsiv, N P; Chernyk, Y

    2015-01-01

    The study has shown that both functional gene knockout Sodl and Sod2 and their overexpression in neurons and glial tissue increase the sensitivity of Drosophila melanogaster to oxidative stress (OS) conditions. The lowest survival rate was only 20.5% in insects with Sod2 knockout in neurons. Comparative analysis of the survival curves showed that adults with altered tissue-specific expression of the studied genes had reduced average and maximum life span. Under OS conditions induced by 5% hydrogen peroxide the life spans of wild type Oregon R and transgenic insects were significantly reduced. Altered Sod gene expression in glial tissue leads to degenerative changes in Drosophila brain at the young age. During the aging of insects and the action of pro-oxidants increasing of neurodegenerative phenotype is observed.