Sample records for early earth differentiation

  1. Early Earth differentiation [rapid communication

    NASA Astrophysics Data System (ADS)

    Walter, Michael J.; Trønnes, Reidar G.

    2004-09-01

    The birth and infancy of Earth was a time of profound differentiation involving massive internal reorganization into core, mantle and proto-crust, all within a few hundred million years of solar system formation ( t0). Physical and isotopic evidence indicate that the formation of iron-rich cores generally occurred very early in planetesimals, the building blocks of proto-Earth, within about 3 million years of t0. The final stages of terrestrial planetary accretion involved violent and tremendously energetic giant impacts among core-segregated Mercury- to Mars-sized objects and planetary embryos. As a consequence of impact heating, the early Earth was at times partially or wholly molten, increasing the likelihood for high-pressure and high-temperature equilibration among core- and mantle-forming materials. The Earth's silicate mantle harmoniously possesses abundance levels of the siderophile elements Ni and Co that can be reconciled by equilibration between iron alloy and silicate at conditions comparable to those expected for a deep magma ocean. Solidification of a deep magma ocean possibly involved crystal-melt segregation at high pressures, but subsequent convective stirring of the mantle could have largely erased nascent layering. However, primitive upper mantle rocks apparently have some nonchondritic major and trace element refractory lithophile element ratios that can be plausibly linked to early mantle differentiation of ultra-high-pressure mantle phases. The geochemical effects of crystal fractionation in a deep magma ocean are partly constrained by high-pressure experimentation. Comparison between compositional models for the primitive convecting mantle and bulk silicate Earth generally allows, and possibly favors, 10-15% total fractionation of a deep mantle assemblage comprised predominantly of Mg-perovskite and with minor but geochemically important amounts of Ca-perovskite and ferropericlase. Long-term isolation of such a crystal pile is generally

  2. Early differentiation of the Earth and the Moon.

    PubMed

    Bourdon, Bernard; Touboul, Mathieu; Caro, Guillaume; Kleine, Thorsten

    2008-11-28

    We examine the implications of new 182W and 142Nd data for Mars and the Moon for the early evolution of the Earth. The similarity of 182W in the terrestrial and lunar mantles and their apparently differing Hf/W ratios indicate that the Moon-forming giant impact most probably took place more than 60Ma after the formation of calcium-aluminium-rich inclusions (4.568Gyr). This is not inconsistent with the apparent U-Pb age of the Earth. The new 142Nd data for Martian meteorites show that Mars probably has a super-chondritic Sm/Nd that could coincide with that of the Earth and the Moon. If this is interpreted by an early mantle differentiation event, this requires a buried enriched reservoir for the three objects. This is highly unlikely. For the Earth, we show, based on new mass-balance calculations for Nd isotopes, that the presence of a hidden reservoir is difficult to reconcile with the combined 142Nd-143Nd systematics of the Earth's mantle. We argue that a likely possibility is that the missing component was lost during or prior to accretion. Furthermore, the 142Nd data for the Moon that were used to argue for the solidification of the magma ocean at ca 200Myr are reinterpreted. Cumulate overturn, magma mixing and melting following lunar magma ocean crystallization at 50-100Myr could have yielded the 200Myr model age.

  3. Isotopic constraints on the age and early differentiation of the Earth.

    PubMed

    McCulloch, M T

    1996-03-01

    The Earth's age and early differentiation history are re-evaluated using updated isotopic constraints. From the most primitive terrestrial Pb isotopic compositions found at Isua Greenland, and the Pilbara of Western Australia, combined with precise geochronology of these localities, an age 4.49 +/- 0.02 Ga is obtained. This is interpreted as the mean age of core formation as U/Pb is fractionated due to sequestering of Pb into the Earth's core. The long-lived Rb-Sr isotopic system provides constraints on the time interval for the accretion of the Earth as Rb underwent significant depletion by volatile loss during accretion of the Earth or its precursor planetesimals. A primitive measured 87Sr/86Sr initial ratio of 0.700502 +/- 10 has been obtained for an early Archean (3.46 Ga) barite from the Pilbara Block of Western Australia. Using conservative models for the evolution of Rb/Sr in the early Archean mantle allows an estimate to be placed on the Earth's initial Sr ratio at approximately 4.50 Ga, of 0.69940 +/- 10. This is significantly higher than that measured for the Moon (0.69900 +/- 2) or in the achondrite, Angra dos Reis (0.69894 +/- 2) and for a Rb/Sr ratio of approximately 1/2 of chondrites corresponds to a mean age for accretion of the Earth of 4.48 + /- 0.04 Ga. The now extinct 146Sm-142Nd (T1/2(146)=103 l0(6)yrs) combined with the long-lived 147Sm-143Nd isotopic systematics can also be used to provide limits on the time of early differentiation of the Earth. High precision analyses of the oldest (3.8-3.9 Ga) Archean gneisses from Greenland (Amitsoq and Akilia gneisses), and Canada (Acasta gneiss) do not show measurable (> +/- l0ppm) variations of 142Nd, in contrast to the 33 ppm 142Nd excess reported for an Archean sample. The general lack of 142Nd variations, combined with the presence of highly positive epsilon 143 values (+4.0) at 3.9 Ga, indicates that the record of large-scale Sm/Nd fractionation events was not preserved in the early-Earth from 4

  4. Effects of Earth's rotation on the early differentiation of a terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Hansen, Ulrich

    2015-11-01

    Similar to other terrestrial planets like Moon and Mars, Earth experienced a magma ocean period about 4.5 billion years ago. On Earth differentiation processes in the magma ocean set the initial conditions for core formation and mantle evolution. During the magma ocean period Earth was rotating significantly faster than today. Further, the viscosity of the magma was low, thus that planetary rotation potentially played an important role for differentiation. However, nearly all previous studies neglect rotational effects. All in all, our results suggest that planetary rotation plays an important role for magma ocean crystallization. We employ a 3-D numerical model to study crystal settling in a rotating and vigorously convecting early magma ocean. We show that crystal settling in a terrestrial magma ocean is crucially affected by latitude as well as by rotational strength and crystal density. Due to rotation an inhomogeneous accumulation of crystals during magma ocean solidification with a distinct crystal settling between pole and equator could occur. One could speculate that this may have potentially strong effects on the magma ocean solidification time and the early mantle composition. It could support the development of a basal magma ocean and the formation of anomalies at the core-mantle boundary in the equatorial region, reaching back to the time of magma ocean solidification.

  5. Early Planetary Differentiation: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    Jones, John H.

    2006-01-01

    We currently have extensive data for four different terrestrial bodies of the inner solar system: Earth, the Moon, Mars, and the Eucrite Parent Body [EPB]. All formed early cores; but all(?) have mantles with elevated concentrations of highly sidero-phile elements, suggestive of the addition of a late "veneer". Two appear to have undergone extensive differentiation consistent with a global magma ocean. One appears to be inconsistent with a simple model of "low-pressure" chondritic differentiation. Thus, there seems to be no single, simple paradigm for understand-ing early differentiation.

  6. Coupled 182W-142Nd constraint for early Earth differentiation

    PubMed Central

    Moynier, Frederic; Yin, Qing-Zhu; Irisawa, Keita; Boyet, Maud; Jacobsen, Benjamin; Rosing, Minik T.

    2010-01-01

    Recent high precision 142Nd isotope measurements showed that global silicate differentiation may have occurred as early as 30–75 Myr after the Solar System formation [Bennett V, et al. (2007) Science 318:1907–1910]. This time scale is almost contemporaneous with Earth’s core formation at ∼30 Myr [Yin Q, et al. (2002) Nature 418:949–952]. The 182Hf-182W system provides a powerful complement to the 142Nd results for early silicate differentiation, because both core formation and silicate differentiation fractionate Hf from W. Here we show that eleven terrestrial samples from diverse tectonic settings, including five early Archean samples from Isua, Greenland, of which three have been previously shown with 142Nd anomalies, all have a homogeneous W isotopic composition, which is ∼2ε-unit more radiogenic than the chondritic value. By using a 3-stage model calculation that describes the isotopic evolution in chondritic reservoir and core segregation, as well as silicate differentiation, we show that the W isotopic composition of terrestrial samples provides the most stringent time constraint for early core formation (27.5–38 Myr) followed by early terrestrial silicate differentiation (38–75 Myr) that is consistent with the terrestrial 142Nd anomalies. PMID:20534492

  7. Large-Scale Impact Cratering and Early Earth Evolution

    NASA Technical Reports Server (NTRS)

    Grieve, R. A. F.; Cintala, M. J.

    1997-01-01

    The surface of the Moon attests to the importance of large-scale impact in its early crustal evolution. Previous models of the effects of a massive bombardment on terrestrial crustal evolution have relied on analogies with the Moon, with allowances for the presence of water and a thinner lithosphere. It is now apparent that strict lunar-terrestrial analogies are incorrect because of the "differential scaling" of crater dimensions and melt volumes with event size and planetary gravity. Impact melt volumes and "ancient cavity dimensions for specific impacts were modeled according to previous procedures. In the terrestrial case, the melt volume (V(sub m)) exceeds that of the transient cavity (V(sub tc)) at diameters > or = 400 km. This condition is reached on the Moon only with transient cavity diameters > or = 3000 km, equivalent to whole Moon melting. The melt volumes in these large impact events are minimum estimates, since, at these sizes, the higher temperature of the target rocks at depth will increase melt production. Using the modification-scaling relation of Croft, a transient cavity diameter of about 400 km in the terrestrial environment corresponds to an expected final impact "basin" diameter of about 900 km. Such a "basin" would be comparable in dimensions to the lunar basin Orientale. This 900-km "basin" on the early Earth, however, would not have had the appearance of Orientale. It would have been essentially a melt pool, and, morphologically, would have had more in common with the palimpsests structures on Callisto and Ganymede. With the terrestrial equivalents to the large multiring basins of the Moon being manifested as muted palimpsest-like structures filled with impact melt, it is unlikely they played a role in establishing the freeboard on the early Earth. The composition of the massive impact melt sheets (> 10 (exp 7) cu km) produced in "basin-forming" events on the early Earth would have most likely ranged from basaltic to more mafic for the

  8. Effects of differentiation on the geodynamics of the early Earth

    NASA Astrophysics Data System (ADS)

    Piccolo, Andrea; Kaus, Boris; White, Richard; Johnson, Tim

    2016-04-01

    Archean geodynamic processes are not well understood, but there is general agreement that the mantle potential temperature was higher than present, and that as a consequence significant amounts of melt were produced both in the mantle and any overlying crust. This has likely resulted in crustal differentiation. An early attempt to model the geodynamic effects of differentiation was made by Johnson et al. (2014), who used numerical modeling to investigate the crust production and recycling in conjunction with representative phase diagrams (based on the inferred chemical composition of the primary melt in accordance with the Archean temperature field). The results of the simulations show that the base of the over-thickened primary basaltic crust becomes gravitational unstable due to the mineral assemblage changes. This instability leads to the dripping of dense material into the mantle, which causes an asthenospheric return flow, local partial melting and new primary crust generation that is rapidly recycled in to mantle. Whereas they gave important insights, the previous simulations were simplified in a number of aspects: 1) the rheology employed was viscous, and both elasticity and pressure-dependent plasticity were not considered; 2) extracted mantle melts were 100% transformed into volcanic rocks, whereas on the present day Earth only about 20-30% are volcanic and the remainder is plutonic; 3) the effect of a free surface was not studied in a systematic manner. In order to better understand how these simplifications affect the geodynamic models, we here present additional simulations to study the effects of each of these parameters. Johnson, T.E., Brown, M., Kaus, B., and VanTongeren, J.A., 2014, Delamination and recycling of Archaean crust caused by gravitational instabilities: Nature Geoscience, v. 7, no. 1, p. 47-52, doi: 10.1038/NGEO2019.

  9. Evidence from coupled (Sm-147)-(Nd-143) and (Sm-146)-(Nd-142) systematics for very early (4.5-Gyr) differentiation of the earth's mantle

    NASA Technical Reports Server (NTRS)

    Harper, Charles L., Jr.; Jacobsen, Stein B.

    1992-01-01

    Evidence for early differentiation of the earth's mantle is presented based on measurements of Nd-143/Nd-144 and Nd-142/Nd-144 ratios in an approximately 3.8 Gyr-old supracrustal rock from Isua, West Greenland. Coupled (Sm-146,147)-(Nd-142,143) systematics suggest that the fractionation of Sm/Nd took place 4.44-4.54 Gyr ago, due to extraction of a light rare earth element-enriched primordial crust.

  10. Development of the earth-moon system with implications for the geology of the early earth

    NASA Technical Reports Server (NTRS)

    Smith, J. V.

    1976-01-01

    Established facts regarding the basic features of the earth and the moon are reviewed, and some important problems involving the moon are discussed (extent of melting, time of crustal differentiation and nature of bombardment, bulk chemical composition, and nature and source of mare basins), with attention given to the various existing theories concerning these problems. Models of the development of the earth-moon system from the solar nebula are examined, with particular attention focused on those that use the concept of capture with disintegration. Impact processes in the early crust of the earth are briefly considered, with attention paid to Green's (1972) suggestion that Archaean greenstone belts may be the terrestrial equivalent of lunar maria.

  11. Early Earth(s) Across Time and Space

    NASA Astrophysics Data System (ADS)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  12. The (146,147)Sm-(142,143)Nd systematics of early terrestrial differentiation and the lost continents of the early Earth

    NASA Technical Reports Server (NTRS)

    Harper, Charles L., Jr.; Jacobsen, Stein B.

    1992-01-01

    The very early history of the Earth has been one of the great enduring puzzles in the history of geology. We report evidence which clearly can be described as a vestige of a beginning, because the evidence that we report cannot be interpreted in any other way except as a geochemical signal of processes active in the very early history of the Earth. The evidence itself is a very small anomaly in the abundance of SM-146. The primary aims of this study were to: (1) verify the existence of the 'lost continents' of the Hadean era; and (2) determine their mean age.

  13. Early Earth slab stagnation

    NASA Astrophysics Data System (ADS)

    Agrusta, R.; Van Hunen, J.

    2016-12-01

    At present day, the Earth's mantle exhibits a combination of stagnant and penetrating slabs within the transition zone, indicating a intermittent convection mode between layered and whole-mantle convection. Isoviscous thermal convection calculations show that in a hotter Earth, the natural mode of convection was dominated by double-layered convection, which may imply that slabs were more prone to stagnate in the transition zone. Today, slab penetration is to a large extent controlled by trench mobility for a plausible range of lower mantle viscosity and Clapeyron slope of the mantle phase transitions. Trench mobility is, in turn, governed by slab strength and density and upper plate forcing. In this study, we systematically investigate the slab-transition zone internation in the Early Earth, using 2D self-consistent numerical subduction models. Early Earth's higher mantle temperature facilitates decoupling between the plates and the underlying asthenosphere, and may result in slab sinking almost without trench retreat. Such behaviour together with a low resistance of a weak lower mantle may allow slabs to penetrate. The ability of slab to sink into the lower mantle throughout Earth's history may have important implications for Earth's evolution: it would provide efficient mass and heat flux through the transition zone therefore provide an efficient way to cool and mix the Earth's mantle.

  14. Atmospheres of partially differentiated super-Earth exoplanets

    NASA Astrophysics Data System (ADS)

    Schaefer, Laura; Sasselov, Dimitar

    2015-11-01

    Terrestrial exoplanets have been discovered in a range of sizes, densities and orbital locations that defy our expectations based upon the Solar System. Planets discovered to date with radii less than ~1.5-1.6 Earth radii all seem to fall on an iso-density curve with the Earth [1]. However, mass and radius determinations, which depend on the known properties of the host star, are not accurate enough to distinguish between a fully differentiated three-layer planet (core, mantle, ocean/atmosphere) and an incompletely differentiated planet [2]. Full differentiation of a planet will depend upon the conditions at the time of accretion, including the abundance of short-lived radioisotopes, which will vary from system to system, as well as the number of giant impacts the planet experiences. Furthermore, separation of metal and silicates at the much larger pressures found inside super-Earths will depend on how the chemistry of these materials change at high pressures. There are therefore hints emerging that not all super-Earths will be fully differentiated. Incomplete differentiation will result in a more reduced mantle oxidation state and may have implications for the composition of an outgassed atmosphere. Here we will present the first results from a chemical equilibrium model of the composition of such an outgassed atmosphere and discuss the possibility of distinguishing between fully and incompletely differentiated planets through atmospheric observations.[1] Rogers, L. 2015. ApJ, 801, 41. [2] Zeng, L. & Sasselov, D. 2013. PASP, 125, 227.

  15. Precambrian Time - The Story of the Early Earth

    USGS Publications Warehouse

    Lindsey, D.A.

    2007-01-01

    The Precambrian is the least-understood part of Earth history, yet it is arguably the most important. Precambrian time spans almost nine-tenths of Earth history, from the formation of the Earth to the dawn of the Cambrian Period. It represents time so vast and long ago that it challenges all comprehension. The Precambrian is the time of big questions. How old is the Earth? How old are the oldest rocks and continents? What was the early Earth like? What was the early atmosphere like? When did life appear, and what did it look like? And, how do we know this? In recent years, remarkable progress has been made in understanding the early evolution of the Earth and life itself. Yet, the scientific story of the early Earth is still a work in progress, humankind's latest attempt to understand the planet. Like previous attempts, it too will change as we learn more about the Earth. Read on to discover what we know now, in the early 21st century.

  16. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth.

    PubMed

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-04-28

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The (176)Lu-(176)Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day (176)Hf/(177)Hf and (176)Lu/(177)Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess (176)Hf due to the accelerated decay of (176)Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu-Hf system. Herein we report the first, to our knowledge, high-precision Lu-Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial (176)Hf/(177)Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess (176)Hf and accurately represent the Lu-Hf system of the bulk Earth ((176)Hf/(177)Hf = 0.282793 ± 0.000011; (176)Lu/(177)Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago.

  17. Meteorite zircon constraints on the bulk Lu−Hf isotope composition and early differentiation of the Earth

    PubMed Central

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-01-01

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The 176Lu−176Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day 176Hf/177Hf and 176Lu/177Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess 176Hf due to the accelerated decay of 176Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu−Hf system. Herein we report the first, to our knowledge, high-precision Lu−Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial 176Hf/177Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess 176Hf and accurately represent the Lu−Hf system of the bulk Earth (176Hf/177Hf = 0.282793 ± 0.000011; 176Lu/177Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago. PMID:25870298

  18. A new model for early Earth: heat-pipe cooling

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Moore, W. B.

    2013-12-01

    In the study of heat transport and lithospheric dynamics of early Earth, current models depend upon plate tectonic and vertical tectonic concepts. Plate tectonic models adequately account for regions with diverse lithologies juxtaposed along ancient shear zones, as seen at the famous Eoarchean Isua supracrustal belt of West Greenland. Vertical tectonic models to date have involved volcanism, sub- and intra-lithospheric diapirism, and sagduction, and can explain the geology of the best-preserved low-grade ancient terranes, such as the Paleoarchean Barberton and Pilbara greenstone belts. However, these models do not offer a globally-complete framework consistent with the geologic record. Plate tectonics models suggest that paired metamorphic belts and passive margins are among the most likely features to be preserved, but the early rock record shows no evidence of these terranes. Existing vertical tectonics models account for the >300 million years of semi-continuous volcanism and diapirism at Barberton and Pilbara, but when they explain the shearing record at Isua, they typically invoke some horizontal motion that cannot be differentiated from plate motion and is not a salient feature of the lengthy Barberton and Pilbara records. Despite the strengths of these models, substantial uncertainty remains about how early Earth evolved from magma ocean to plate tectonics. We have developed a new model, based on numerical simulations and analysis of the geologic record, that provides a coherent, global geodynamic framework for Earth's evolution from magma ocean to subduction tectonics. We hypothesize that heat-pipe cooling offers a viable mechanism for the lithospheric dynamics of early Earth. Our numerical simulations of heat-pipe cooling on early Earth indicate that a cold, thick, single-plate lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downward. The constant resurfacing and downward advection caused compression as the

  19. Physical conditions on the early Earth.

    PubMed

    Lunine, Jonathan I

    2006-10-29

    The formation of the Earth as a planet was a large stochastic process in which the rapid assembly of asteroidal-to-Mars-sized bodies was followed by a more extended period of growth through collisions of these objects, facilitated by the gravitational perturbations associated with Jupiter. The Earth's inventory of water and organic molecules may have come from diverse sources, not more than 10% roughly from comets, the rest from asteroidal precursors to chondritic bodies and possibly objects near Earth's orbit for which no representative class of meteorites exists today in laboratory collections. The final assembly of the Earth included a catastrophic impact with a Mars-sized body, ejecting mantle and crustal material to form the Moon, and also devolatilizing part of the Earth. A magma ocean and steam atmosphere (possibly with silica vapour) existed briefly in this period, but terrestrial surface waters were below the critical point within 100 million years after Earth's formation, and liquid water existed continuously on the surface within a few hundred million years. Organic material delivered by comets and asteroids would have survived, in part, this violent early period, but frequent impacts of remaining debris probably prevented the continuous habitability of the Earth for one to several hundred million years. Planetary analogues to or records of this early time when life began include Io (heat flow), Titan (organic chemistry) and Venus (remnant early granites).

  20. An Impaired View of Earth's Early History

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Kemp, A. I.; Bauer, A.; Bowring, S. A.; Fisher, C.

    2014-12-01

    The Hf and Nd isotope records of Earth's early history are sparse, difficult to interpret, and controversial, much like the few remnants of crust older than 4 Ga. New analytical techniques have been brought to bear on this problem but despite this recent work­-or, perhaps, because of it-the record is no clearer than it was 15 years ago. Several studies, based on highly variable calculated initial isotopic compositions, have argued for highly heterogeneous crust and mantle reservoirs in the early Earth1,2 and an ultra-depleted Eoarchean mantle3. These data come mostly from two sources: Hf-Nd isotope analyses of ultramafic rocks and Hf isotope analyses of zircons by solution or laser ablation. An important question for understanding the chemical evolution of the early Earth is: Do these data offer a unique window into the early Earth or are they artefacts not representative of crust/mantle evolution, giving an impaired view of the Earth's early history? In complex samples, measured isotopic compositions can result from open-system behavior in easily altered ultramafic compositions, in multicomponent, polymetamorphic gneisses, or in zircons with multiple generations of growth. Perhaps most importantly, accurate age assignment is often lacking, compromised, or impossible in these rocks, making calculation of initial epsilon Hf and Nd values ambiguous at best. In order to gain insight into crust mantle evolution in the early Earth we need, above all, a robust and unambiguous isotopic record to work with. This can be achieved by integrating zircon U-Pb and Hf and whole-rock Hf and Nd isotope compositions in relatively undisturbed igneous rocks with well-constrained ages. When this approach is used apparent isotopic heterogeneity decreases and a simpler model for crust-mantle evolution in the early Earth emerges. Careful screening of geological relationships, petrology, and geochemistry of samples from the early Earth should be done before interpreting isotopic data

  1. Isotopes as clues to the origin and earliest differentiation history of the Earth.

    PubMed

    Jacobsen, Stein B; Ranen, Michael C; Petaev, Michael I; Remo, John L; O'Connell, Richard J; Sasselov, Dimitar D

    2008-11-28

    Measurable variations in (182)W/(183)W, (142)Nd/(144)Nd, (129)Xe/(130)Xe and (136)XePu/(130)Xe in the Earth and meteorites provide a record of accretion and formation of the core, early crust and atmosphere. These variations are due to the decay of the now extinct nuclides (182)Hf, (146)Sm, (129)I and (244)Pu. The (l82)Hf-(182)W system is the best accretion and core-formation chronometer, which yields a mean time of Earth's formation of 10Myr, and a total time scale of 30Myr. New laser shock data at conditions comparable with those in the Earth's deep mantle subsequent to the giant Moon-forming impact suggest that metal-silicate equilibration was rapid enough for the Hf-W chronometer to reliably record this time scale. The coupled (146)Sm-(147)Sm chronometer is the best system for determining the initial silicate differentiation (magma ocean crystallization and proto-crust formation), which took place at ca 4.47Ga or perhaps even earlier. The presence of a large (129)Xe excess in the deep Earth is consistent with a very early atmosphere formation (as early as 30Myr); however, the interpretation is complicated by the fact that most of the atmospheric Xe may be from a volatile-rich late veneer.

  2. Accretion and differentiation of carbon in the early Earth.

    PubMed

    Tingle, T N

    1998-05-15

    The abundance of C in carbonaceous and ordinary chondrites decreases exponentially with increasing shock pressure as inferred from the petrologic shock classification of Scott et al. [Scott, E.R.D., Keil, K., Stoffler, D., 1992. Shock metamorphism of carbonaceous chondrites. Geochim. Cosmochim. Acta 56, 4281-4293] and Stoffler et al. [Stoffler, D., Keil, K., Scott, E.R.D., 1991. Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845-3867]. This confirms the experimental results of Tyburczy et al. [Tyburczy, J.A., Frisch, B., Ahrens, T.J., 1986. Shock-induced volatile loss from a carbonaceous chondrite: implications for planetary accretion. Earth Planet. Sci. Lett. 80, 201-207] on shock-induced devolatization of the Murchison meteorite showing that carbonaceous chondrites appear to be completely devolatilized at impact velocities greater than 2 km s-1. Both of these results suggest that C incorporation would have been most efficient in the early stages of accretion, and that the primordial C content of the Earth was between 10(24) and 10(25) g C (1-10% efficiency of incorporation). This estimate agrees well with the value of 3-7 x 10(24) g C based on the atmospheric abundance of 36Ar and the chondritic C/36Ar (Marty and Jambon, 1987). Several observations suggest that C likely was incorporated into the Earth's core during accretion. (1) Graphite and carbides are commonly present in iron meteorites, and those iron meteorites with Widmanstatten patterns reflecting the slowest cooling rates (mostly Group I and IIIb) contain the highest C abundances. The C abundance-cooling rate correlation is consistent with dissolution of C into Fe-Ni liquids that segregated to form the cores of the iron meteorite parent bodies. (2) The carbon isotopic composition of graphite in iron meteorites exhibits a uniform value of -5% [Deines, P., Wickman, F.E. 1973. The isotopic composition of 'graphitic' carbon from iron meteorites and some remarks on the troilitic

  3. Refractive indices of Early Earth organic aerosol analogs

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Carrasco, N.; Fleury, B.; Vettier, L.

    2017-09-01

    Organic hazes in the early Earth atmosphere are hypothesized to provide additional shielding to solar radiation. We simulate the conditions of this primitive atmosphere by adding CO2 to a N2:CH4 gas mixture feeding a plasma. In this plasma, solid organic films were produced simulating early aerosols. We performed ellipsometry on these films from the visible to the near-ultraviolet range. Such measurements reveal how organic aerosols in the early Earth atmosphere preferentially absorb photons of shorter wavelengths than typical Titan tholins, suggesting a coolant role in the early Earth.

  4. Physical conditions on the early Earth

    PubMed Central

    Lunine, Jonathan I

    2006-01-01

    The formation of the Earth as a planet was a large stochastic process in which the rapid assembly of asteroidal-to-Mars-sized bodies was followed by a more extended period of growth through collisions of these objects, facilitated by the gravitational perturbations associated with Jupiter. The Earth's inventory of water and organic molecules may have come from diverse sources, not more than 10% roughly from comets, the rest from asteroidal precursors to chondritic bodies and possibly objects near Earth's orbit for which no representative class of meteorites exists today in laboratory collections. The final assembly of the Earth included a catastrophic impact with a Mars-sized body, ejecting mantle and crustal material to form the Moon, and also devolatilizing part of the Earth. A magma ocean and steam atmosphere (possibly with silica vapour) existed briefly in this period, but terrestrial surface waters were below the critical point within 100 million years after Earth's formation, and liquid water existed continuously on the surface within a few hundred million years. Organic material delivered by comets and asteroids would have survived, in part, this violent early period, but frequent impacts of remaining debris probably prevented the continuous habitability of the Earth for one to several hundred million years. Planetary analogues to or records of this early time when life began include Io (heat flow), Titan (organic chemistry) and Venus (remnant early granites). PMID:17008213

  5. Earth's early biosphere

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  6. Hygroscopicity of Early Earth and Titan Laboratory Aerosol Analogs

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.; Beaver, M. R.; Freedman, M. A.; Toon, O. B.; Tolbert, M. A.

    2009-12-01

    We have explored the ability of organic hazes, known to exist in the atmosphere of Titan and postulated to have existed in the Archean Earth atmosphere, to act as cloud condensation nuclei (CCN). These laboratory aerosol analogs are generated via UV-photolysis of early Earth and Titan analog gas mixtures and are designed to mimic the present day atmospheric conditions on Titan and the early Earth atmosphere before the rise of oxygen. Water uptake is observed to occur on the early Earth and Titan aerosol analogs at relative humidities of 80% - 90% via optical growth measurements using cavity ring-down aerosol extinction spectroscopy. We find the optical growth of these aerosols is similar to known slightly-soluble organic acids, such as phthalic and pyromellitic acids. On average, the optical growth of the early Earth analog is slightly larger than the Titan analog. In order to translate our measurements obtained in a subsaturated regime into the CCN ability of these particles, we rely on the hygroscopicity parameter κ, developed by Petters & Kreidenweis (2007). We retrieve κ = 0.17±0.03 and 0.06±0.01 for the early Earth and Titan analogs, respectively. This early Earth analog hygroscopicity value indicates that the aerosol could activate at reasonable water vapor supersaturations. We use previous aerosol mass spectrometry results to correlate the chemical structure of the two types of analog with their hygroscopicity. The hygroscopicity of the early Earth aerosol analog, coupled with the apparent lack of other good CCN during the Archean, helps explain the role of the organic haze in the indirect effect of clouds on the early Earth and indicates that it may have had a significant impact on the hydrological cycle.

  7. What do we really know about Earth's early crust?

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Tang, M.

    2016-12-01

    The oldest minerals on Earth, the detrital Hadean Jack Hills zircons from western Australia, show evidence for their crystallization from hydrous, low temperature, granitic magmas. However, considerable debate centers on whether the parental melts are minimum-melt granites formed in subduction zone settings and implying widespread, evolved continental crust (e.g., Harrison, 2009, AREPS), or crystallized from the last differentiates of mafic magmas (Darling et al., 2009, Geology), or even late differentiates of impact melt sheets on a largely water-covered Earth (Kenny et al., 2016, Geology). Another means by which to interrogate the nature of Earth's early crust is through analyses of ancient fine-grained terrigenous sedimentary rocks such as shales or glacial diamictites, which provide averages of the surface of the Earth that is exposed to chemical weathering and erosion. From these studies it has long been known that Archean crust contained a higher proportion of mafic rocks. However, only recently has that proportion been constrained based on a change in the average MgO content of the upper continental crust from 15 wt.% at 3.2 Ga, to 4 wt.% at 2.6 Ga (Tang et al., 2016, Science). These data for terrigeneous sediments require the pre 3.2 Ga crust to be dominated by mafic rocks (only 10-40% `granite' s.l.) and to be high-standing and susceptible to subareal weathering and erosion, implying the mafic crust was thick (see Tang and Rudnick, this meeting). The dramatic transition that occurred in upper crustal composition between 3.2 and 2.6 Ga likely marks the onset of widespread subduction as a means of generating voluminous granite.

  8. Biosignatures of early earths

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  9. Biosignatures of early earths.

    PubMed

    Pilcher, Carl B

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  10. A hydrogen-rich early Earth atmosphere.

    PubMed

    Tian, Feng; Toon, Owen B; Pavlov, Alexander A; De Sterck, H

    2005-05-13

    We show that the escape of hydrogen from early Earth's atmosphere likely occurred at rates slower by two orders of magnitude than previously thought. The balance between slow hydrogen escape and volcanic outgassing could have maintained a hydrogen mixing ratio of more than 30%. The production of prebiotic organic compounds in such an atmosphere would have been more efficient than either exogenous delivery or synthesis in hydrothermal systems. The organic soup in the oceans and ponds on early Earth would have been a more favorable place for the origin of life than previously thought.

  11. Potential climatic impact of organic haze on early Earth.

    PubMed

    Hasenkopf, Christa A; Freedman, Miriam A; Beaver, Melinda R; Toon, Owen B; Tolbert, Margaret A

    2011-03-01

    We have explored the direct and indirect radiative effects on climate of organic particles likely to have been present on early Earth by measuring their hygroscopicity and cloud nucleating ability. The early Earth analog aerosol particles were generated via ultraviolet photolysis of an early Earth analog gas mixture, which was designed to mimic possible atmospheric conditions before the rise of oxygen. An analog aerosol for the present-day atmosphere of Saturn's moon Titan was tested for comparison. We exposed the early Earth aerosol to a range of relative humidities (RHs). Water uptake onto the aerosol was observed to occur over the entire RH range tested (RH=80-87%). To translate our measurements of hygroscopicity over a specific range of RHs into their water uptake ability at any RH < 100% and into their ability to act as cloud condensation nuclei (CCN) at RH > 100%, we relied on the hygroscopicity parameter κ, developed by Petters and Kreidenweis. We retrieved κ=0.22 ±0.12 for the early Earth aerosol, which indicates that the humidified aerosol (RH < 100 %) could have contributed to a larger antigreenhouse effect on the early Earth atmosphere than previously modeled with dry aerosol. Such effects would have been of significance in regions where the humidity was larger than 50%, because such high humidities are needed for significant amounts of water to be on the aerosol. Additionally, Earth organic aerosol particles could have activated into CCN at reasonable-and even low-water-vapor supersaturations (RH > 100%). In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would have created short-lived, optically thin clouds. Such clouds, if predominant on early Earth, would have had a lower albedo than clouds today, thereby warming the planet relative to current-day clouds. © Mary Ann Liebert, Inc.

  12. Organic haze on Titan and the early Earth

    PubMed Central

    Trainer, Melissa G.; Pavlov, Alexander A.; DeWitt, H. Langley; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2006-01-01

    Recent exploration by the Cassini/Huygens mission has stimulated a great deal of interest in Saturn's moon, Titan. One of Titan's most captivating features is the thick organic haze layer surrounding the moon, believed to be formed from photochemistry high in the CH4/N2 atmosphere. It has been suggested that a similar haze layer may have formed on the early Earth. Here we report laboratory experiments that demonstrate the properties of haze likely to form through photochemistry on Titan and early Earth. We have used a deuterium lamp to initiate particle production in these simulated atmospheres from UV photolysis. Using a unique analysis technique, the aerosol mass spectrometer, we have studied the chemical composition, size, and shape of the particles produced as a function of initial trace gas composition. Our results show that the aerosols produced in the laboratory can serve as analogs for the observed haze in Titan's atmosphere. Experiments performed under possible conditions for early Earth suggest a significant optical depth of haze may have dominated the early Earth's atmosphere. Aerosol size measurements are presented, and implications for the haze layer properties are discussed. We estimate that aerosol production on the early Earth may have been on the order of 1014 g·year−1 and thus could have served as a primary source of organic material to the surface. PMID:17101962

  13. Differential memory in the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Chen, J.

    1991-01-01

    The process of 'differential memory' in the earth's magnetotail is studied in the framework of the modified Harris magnetotail geometry. It is verified that differential memory can generate non-Maxwellian features in the modified Harris field model. The time scales and the potentially observable distribution functions associated with the process of differential memory are investigated, and it is shown that non-Maxwelllian distributions can evolve as a test particle response to distribution function boundary conditions in a Harris field magnetotail model. The non-Maxwellian features which arise from distribution function mapping have definite time scales associated with them, which are generally shorter than the earthward convection time scale but longer than the typical Alfven crossing time.

  14. Life Detection on the Early Earth

    NASA Technical Reports Server (NTRS)

    Runnegar, B.

    2004-01-01

    Finding evidence for first the existence, and then the nature of life on the early Earth or early Mars requires both the recognition of subtle biosignatures and the elimination of false positives. The history of the search for fossils in increasingly older Precambrian strata illustrates these difficulties very clearly, and new observational and theoretical approaches are both needed and being developed. At the microscopic level of investigation, three-dimensional morphological characterization coupled with in situ chemical (isotopic, elemental, structural) analysis is the desirable first step. Geological context is paramount, as has been demonstrated by the controversies over AH84001, the Greenland graphites, and the Apex chert microfossils . At larger scales, the nature of sedimentary bedforms and the structures they display becomes crucial, and here the methods of condensed matter physics prove most useful in discriminating between biological and non-biological constructions. Ultimately, a combination of geochemical, morphological, and contextural evidence may be required for certain life detection on the early Earth or elsewhere.

  15. Rethinking early Earth phosphorus geochemistry

    PubMed Central

    Pasek, Matthew A.

    2008-01-01

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373

  16. Rethinking early Earth phosphorus geochemistry.

    PubMed

    Pasek, Matthew A

    2008-01-22

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO(3)(2-)), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks.

  17. Effects of primitive photosynthesis on Earth's early climate system

    NASA Astrophysics Data System (ADS)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  18. Convective Differentiation of the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Schmalzl, J.; Stemmer, K.

    2007-05-01

    The differentiation of the Earth is likely to be influenced by convective motions within the early mantle. Double- diffusive convection (d.d.c), driven by thermally and compositionally induced density differences is considered as a vital mechanism behind the dynamic differentiation of the early mantle.. We demonstrate that d.d.c can lead to layer formation on a planetary scale in the diffusive regime where composition stabilizes the system whil heat provides the destabilizing force. Choosing initial conditions in which a stable compositional gradient overlies a hot reservoir we mimic the situation of a planet in a phase after core formation. Differently from earlier studies we fixed the temperature rather than the heat flux at the lower boundary, resembling a more realistic condition for the core-mantle boundary. We have carried out extended series of numerical experiments, ranging from 2D calculations in constant viscosity fluids to fully 3D experiments in spherical geometry with strongly temperature dependent viscosity. The buoyancy ratio R and the Lewis number Le are the important dynamical parameters. In all scenarios we could identify a parameter regime where the non-layered initial structure developed into a state consisting of several, mostly two layers. Initially plumes from the bottom boundary homogenize a first layer which subsequently thickens. The bottom layer heats up and then convection is initiated in the top layer. This creates dynamically (i.e. without jump in the material behavior) a stack of separately convecting layers. The bottom layer is significantly thicker than the top layer. Strongly temperature dependent viscosity leads to a more complex evolution The formation of the bottom layer is followed by the generation of several layers on top. Finally the uppermost layer starts to convect. In general, the multilayer structure collapses into a two layer system. We employed a numerical technique, allowing for a diffusion free treatment of the

  19. Organic chemistry in a CO2 rich early Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Fleury, Benjamin; Carrasco, Nathalie; Millan, Maëva; Vettier, Ludovic; Szopa, Cyril

    2017-12-01

    The emergence of life on the Earth has required a prior organic chemistry leading to the formation of prebiotic molecules. The origin and the evolution of the organic matter on the early Earth is not yet firmly understood. Several hypothesis, possibly complementary, are considered. They can be divided in two categories: endogenous and exogenous sources. In this work we investigate the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth where the significant VUV contribution of the young Sun involved an efficient formation of reactive species. We address the issue whether this chemistry can lead to the formation of complex organic compounds with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by mimicking experimentally this type of chemistry using a low pressure plasma reactor. By analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, N2O and C2N2. The formation of a solid organic phase is also observed, confirming the possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material on the early Earth.

  20. Earth fissures and localized differential subsidence

    USGS Publications Warehouse

    Holzer, Thomas L.; Pampeyan, Earl H.

    1981-01-01

    Long linear tension cracks associated with declining groundwater levels at four sites in subsiding areas in south-central Arizona, Fremont Valley, California, and Las Vegas Valley, Nevada, occur near points of maximum convex-upward curvature in subsidence profiles oriented perpendicular to the cracks. Profiles are based on repeated precise vertical control surveys of lines of closely spaced bench marks. Association of these fissures with zones of localized differential subsidence indicates that linear earth fissures are caused by horizontal tensile strains probably resulting from localized differential compaction. Horizontal tensile strains across the fissures at the point of maximum convex-upward curvature, ranging from approximately 100 to 700 microstrains (0.01 to 0.07% per year), were indicated based on measurements with a tape or electronic distance meter.

  1. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Watermore » was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.« less

  2. Primary differentiation in the early Earth: Nd and Sr isotopic evidence from diamondiferous eclogites for both old depleted and old enriched mantle, Yakutia, Siberia

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Jerde, Eric A.; Taylor, Lawrence A.; Halliday, Alex N.; Sobolev, Vladimir N.; Sobolev, Nickolai V.; Clayton, Robert N.; Mayeda, Toshiko K.; Deines, Peter

    1993-01-01

    Ancient, stable, continental cratons possess thick, subcontinental-lithospheric mantle 'keels' which favor particularly the emplacement of diamondiferous kimberlites and included peridotites and eclogites. These refractory mantle samples of the roots provide hard constraints on the theories of formation, growth, and evolution of these cratons. Xenoliths containing only primary garnet and clinopyroxene (eclogites), although rare in most kimberlites, can retain the geochemical signatures of their parent protoliths (e.g., subducted oceanic crust, ancient mantle) thus offering the opportunity to address mantle processes which may have taken place at earlier times in the Earth's history. In fact, it has been postulated that some eclogites are residues from the accretion of the early Earth. Nd and Sr isotopic data are presented which may be interpreted as evidence of an early (greater than 4 Ga) mantle differentiation event. The kimberlites of Yakutia are located both marginal and central to the Siberian craton, and a wide variety of xenoliths are present within them. The Siberian mantle samples have received little attention in the western world, largely because suitable suites of Yakutian samples have not been readily available. Importantly, there is evidence that metasomatism of the Siberian lithosphere has been considerably less intense or extensive than for the Kaapvaal craton. Therefore, it should be considerably easier to elicit the igneous/metamorphic histories of Siberian kimberlitic xenoliths. One of the notable features of the Siberian eclogites is the common appearance of diamonds, especially in the Mir and Udachnaya pipes. In all, eight eclogite samples (eight garnet separates and eight clinopyroxene separates) have been analyzed to date on the Udachnaya pipe, seven from our group.

  3. Os isotopes in SNC meteorites and their implications to the early evolution of Mars and Earth

    NASA Technical Reports Server (NTRS)

    Jagoutz, E.; Luck, J. M.; Othman, D. Ben; Wanke, H.

    1993-01-01

    A new development on the measurement of the Os isotopic composition by mass spectrometry using negative ions opened a new field of applications. The Re-Os systematic provides time information on the differentiation of the nobel metals. The nobel metals are strongly partitioned into metal and sulphide phases, but also the generation of silicate melts might fractionate the Re-Os system. Compared to the other isotopic systems which are mainly dating the fractionation of the alkalis and alkali-earth elements, the Re-Os system is expected to disclose entirely new information about the geochemistry. Especially the differentiation and early evolution of the planets such as the formation of the core will be elucidated with this method.

  4. Evidence for a high temperature differentiation in a molten earth: A preliminary appraisal

    NASA Technical Reports Server (NTRS)

    Murthy, V. Rama

    1992-01-01

    If the earth were molten during its later stages of accretion as indicated by the present understanding of planetary accretion process, the differentiation that led to the formation of the core and mantle must have occurred at high temperatures in the range of 3000-5000 K because of the effect of pressure on the temperature of melting in the interior of the earth. This calls into question the use of low-temperature laboratory measurements of partition coefficients of trace elements to make inferences about earth accretion and differentiation. The low temperature partition coefficients cannot be directly applied to high temperature fractionations because partition coefficients refer to an equilibrium specific to a temperature for a given reaction, and must change in some proportion to exp 1/RT. There are no laboratory data on partition coefficients at the high temperatures relevant to differentiation in the interior of the earth, and an attempt to estimate high temperature distribution coefficients of siderophile elements was made by considering the chemical potential of a given element at equilibrium and how this potential changes with temperature, under some specific assumptions.

  5. Workshop on Early Crustal Genesis: Implications from Earth

    NASA Technical Reports Server (NTRS)

    Phinney, W. C. (Compiler)

    1981-01-01

    Ways to foster increased study of the early evolution of the Earth, considering the planet as a whole, were explored and recommendations were made to NASA with the intent of exploring optimal ways for integrating Archean studies with problems of planetary evolution. Major themes addressed include: (1) Archean contribution to constraints for modeling planetary evolution; (2) Archean surface conditions and processes as clues to early planetary history; and (3) Archean evidence for physical, chemical and isotopic transfer processes in early planetary crusts. Ten early crustal evolution problems are outlined.

  6. Differential Rotation within the Earth's Outer Core

    NASA Technical Reports Server (NTRS)

    Hide, R.; Boggs, D. H.; Dickey, J. O.

    1998-01-01

    Non-steady differential rotation drive by bouyancy forces within the Earth's liquid outer core (OC) plays a key role not only in the generation of the main geomagnetic field by the magnetohydrodynamic (MHD) dynamo process but also in the excitation of irregular fluctuations in the angular speed of rotation of the overlying solid mantle, as evidenced by changes in the length of the day (LOD) on decadal and longer timescales (1-8).

  7. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon.

    PubMed

    Mukhopadhyay, Sujoy

    2012-06-06

    The isotopes (129)Xe, produced from the radioactive decay of extinct (129)I, and (136)Xe, produced from extinct (244)Pu and extant (238)U, have provided important constraints on early mantle outgassing and volatile loss from Earth. The low ratios of radiogenic to non-radiogenic xenon ((129)Xe/(130)Xe) in ocean island basalts (OIBs) compared with mid-ocean-ridge basalts (MORBs) have been used as evidence for the existence of a relatively undegassed primitive deep-mantle reservoir. However, the low (129)Xe/(130)Xe ratios in OIBs have also been attributed to mixing between subducted atmospheric Xe and MORB Xe, which obviates the need for a less degassed deep-mantle reservoir. Here I present new noble gas (He, Ne, Ar, Xe) measurements from an Icelandic OIB that reveal differences in elemental abundances and (20)Ne/(22)Ne ratios between the Iceland mantle plume and the MORB source. These observations show that the lower (129)Xe/(130)Xe ratios in OIBs are due to a lower I/Xe ratio in the OIB mantle source and cannot be explained solely by mixing atmospheric Xe with MORB-type Xe. Because (129)I became extinct about 100 million years after the formation of the Solar System, OIB and MORB mantle sources must have differentiated by 4.45 billion years ago and subsequent mixing must have been limited. The Iceland plume source also has a higher proportion of Pu- to U-derived fission Xe, requiring the plume source to be less degassed than MORBs, a conclusion that is independent of noble gas concentrations and the partitioning behaviour of the noble gases with respect to their radiogenic parents. Overall, these results show that Earth's mantle accreted volatiles from at least two separate sources and that neither the Moon-forming impact nor 4.45 billion years of mantle convection has erased the signature of Earth's heterogeneous accretion and early differentiation.

  8. Bayesian analysis of the astrobiological implications of life's early emergence on Earth.

    PubMed

    Spiegel, David S; Turner, Edwin L

    2012-01-10

    Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young Earth-like conditions. We revisit this argument quantitatively in a bayesian statistical framework. By constructing a simple model of the probability of abiogenesis, we calculate a bayesian estimate of its posterior probability, given the data that life emerged fairly early in Earth's history and that, billions of years later, curious creatures noted this fact and considered its implications. We find that, given only this very limited empirical information, the choice of bayesian prior for the abiogenesis probability parameter has a dominant influence on the computed posterior probability. Although terrestrial life's early emergence provides evidence that life might be abundant in the universe if early-Earth-like conditions are common, the evidence is inconclusive and indeed is consistent with an arbitrarily low intrinsic probability of abiogenesis for plausible uninformative priors. Finding a single case of life arising independently of our lineage (on Earth, elsewhere in the solar system, or on an extrasolar planet) would provide much stronger evidence that abiogenesis is not extremely rare in the universe.

  9. The origin and early evolution of life on earth

    NASA Technical Reports Server (NTRS)

    Oro, J.; Miller, Stanley L.; Lazcano, Antonio

    1990-01-01

    Results of the studies that have provided insights into the cosmic and primitive earth environments are reviewed with emphasis on those environments in which life is thought to have originated. The evidence bearing on the antiquity of life on the earth and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar-system bodies such as comets, dark asteroids, and carbonaceous chondrites are assessed. The environmental models of the Hadean and early Archean earth are discussed, as well as the prebiotic formation of organic monomers and polymers essential to life. The processes that may have led to the appearance in the Archean of the first cells are considered, and possible effects of these processes on the early steps of biological evolution are analyzed. The significance of these results to the study of the distribution of life in the universe is evaluated.

  10. Electrochemistry of Prebiotic Early Earth Hydrothermal Chimney Systems

    NASA Astrophysics Data System (ADS)

    Hermis, N.; Barge, L. M.; Chin, K. B.; LeBlanc, G.; Cameron, R.

    2017-12-01

    Hydrothermal chimneys are self-organizing chemical garden precipitates generated from geochemical disequilibria within sea-vent environments, and have been proposed as a possible setting for the emergence of life because they contain mineral catalysts and transect ambient pH / Eh / chemical gradients [1]. We simulated the growth of hydrothermal chimneys in early Earth vent systems by using different hydrothermal simulants such as sodium sulfide (optionally doped with organic molecules) which were injected into an early Earth ocean simulant containing dissolved ferrous iron, nickel, and bicarbonate [2]. Chimneys on the early Earth would have constituted flow-through reactors, likely containing Fe/Ni-sulfide catalysts that could have driven proto-metabolic electrochemical reactions. The electrochemical activity of the chimney system was characterized non-invasively by placing electrodes at different locations across the chimney wall and in the ocean to analyze the bulk properties of surface charge potential in the chimney / ocean / hydrothermal fluid system. We performed in-situ characterization of the chimney using electrochemical impedance spectroscopy (EIS) which allowed us to observe the changes in physio-chemical behavior of the system through electrical spectra of capacitance and impedance over a wide range of frequencies during the metal sulfide chimney growth. The electrochemical properties of hydrothermal chimneys in natural systems persist due to the disequilibria maintained between the ocean and hydrothermal fluid. When the injection in our experiment (analogous to fluid flow in a vent) stopped, we observed a corresponding decline in open circuit voltage across the chimney wall, though the impedance of the precipitate remained lor. Further work is needed to characterize the electrochemistry of simulated chimney systems by controlling response factors such as electrode geometry and environmental conditions, in order to simulate electrochemical reactions

  11. Global-scale water circulation in the Earth's mantle: Implications for the mantle water budget in the early Earth

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Spiegelman, Marc W.

    2017-04-01

    We investigate the influence of the mantle water content in the early Earth on that in the present mantle using numerical convection simulations that include three processes for redistribution of water: dehydration, partitioning of water into partially molten mantle, and regassing assuming an infinite water reservoir at the surface. These models suggest that the water content of the present mantle is insensitive to that of the early Earth. The initial water stored during planetary formation is regulated up to 1.2 OMs (OM = Ocean Mass; 1.4 ×1021 kg), which is reasonable for early Earth. However, the mantle water content is sensitive to the rheological dependence on the water content and can range from 1.2 to 3 OMs at the present day. To explain the evolution of mantle water content, we computed water fluxes due to subducting plates (regassing), degassing and dehydration. For weakly water dependent viscosity, the net water flux is almost balanced with those three fluxes but, for strongly water dependent viscosity, the regassing dominates the water cycle system because the surface plate activity is more vigorous. The increased convection is due to enhanced lubrication of the plates caused by a weak hydrous crust for strongly water dependent viscosity. The degassing history is insensitive to the initial water content of the early Earth as well as rheological strength. The degassing flux from Earth's surface is calculated to be approximately O (1013) kg /yr, consistent with a coupled model of climate evolution and mantle thermal evolution.

  12. 21st century early mission concepts for Mars delivery and earth return

    NASA Technical Reports Server (NTRS)

    Cruz, Manuel I.; Ilgen, Marc R.

    1990-01-01

    In the 21st century, the early missions to Mars will entail unmanned Rover and Sample Return reconnaissance missions to be followed by manned exploration missions. High performance leverage technologies will be required to reach Mars and return to earth. This paper describes the mission concepts currently identified for these early Mars missions. These concepts include requirements and capabilities for Mars and earth aerocapture, Mars surface operations and ascent, and Mars and earth rendezvous. Although the focus is on the unmanned missions, synergism with the manned missions is also discussed.

  13. The early Earth atmosphere and early life catalysts.

    PubMed

    Ramírez Jiménez, Sandra Ignacia

    2014-01-01

    Homochirality is a property of living systems on Earth. The time, the place, and the way in which it appeared are uncertain. In a prebiotic scenario two situations are of interest: either an initial small bias for handedness of some biomolecules arouse and progressed with life, or an initial slight excess led to the actual complete dominance of the known chiral molecules. A definitive answer can probably never be given, neither from the fields of physics and chemistry nor biology. Some arguments can be advanced to understand if homochirality is necessary for the initiation of a prebiotic homochiral polymer chemistry, if this homochirality is suggesting a unique origin of life, or if a chiral template such as a mineral surface is always required to result in an enantiomeric excess. A general description of the early Earth scenario will be presented in this chapter, followed by a general description of some clays, and their role as substrates to allow the concentration and amplification of some of the building blocks of life.

  14. Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Dasgupta, Rajdeep; Tsuno, Kyusei; Monteleone, Brian; Shimizu, Nobumichi

    2016-10-01

    The abundances of volatile elements in the Earth's mantle have been attributed to the delivery of volatile-rich material after the main phase of accretion. However, no known meteorites could deliver the volatile elements, such as carbon, nitrogen, hydrogen and sulfur, at the relative abundances observed for the silicate Earth. Alternatively, Earth could have acquired its volatile inventory during accretion and differentiation, but the fate of volatile elements during core formation is known only for a limited set of conditions. Here we present constraints from laboratory experiments on the partitioning of carbon and sulfur between metallic cores and silicate mantles under conditions relevant for rocky planetary bodies. We find that carbon remains more siderophile than sulfur over a range of oxygen fugacities; however, our experiments suggest that in reduced or sulfur-rich bodies, carbon is expelled from the segregating core. Combined with previous constraints, we propose that the ratio of carbon to sulfur in the silicate Earth could have been established by differentiation of a planetary embryo that was then accreted to the proto-Earth. We suggest that the accretion of a Mercury-like (reduced) or a sulfur-rich (oxidized) differentiated body--in which carbon has been preferentially partitioned into the mantle--may explain the Earth's carbon and sulfur budgets.

  15. Early Life on Earth: the Ancient Fossil Record

    NASA Astrophysics Data System (ADS)

    Westall, F.

    2004-07-01

    The evidence for early life and its initial evolution on Earth is lin= ked intimately with the geological evolution of the early Earth. The environment of the early Earth would be considered extreme by modern standards: hot (50-80=B0C), volcanically and hydrothermally active, a= noxic, high UV flux, and a high flux of extraterrestrial impacts. Habitats = for life were more limited until continent-building processes resulted in= the formation of stable cratons with wide, shallow, continental platforms= in the Mid-Late Archaean. Unfortunately there are no records of the first appearance of life and the earliest isotopic indications of the exist= ence of organisms fractionating carbon in ~3.8 Ga rocks from the Isua greenst= one belt in Greenland are tenuous. Well-preserved microfossils and micro= bial mats (in the form of tabular and domical stromatolites) occur in 3.5-= 3.3 Ga, Early Archaean, sedimentary formations from the Barberton (South Afri= ca) and Pilbara (Australia) greenstone belts. They document life forms that = show a relatively advanced level of evolution. Microfossil morphology inclu= des filamentous, coccoid, rod and vibroid shapes. Colonial microorganism= s formed biofilms and microbial mats at the surfaces of volcaniclastic = and chemical sediments, some of which created (small) macroscopic microbi= alites such as stromatolites. Anoxygenic photosynthesis may already have developed. Carbon, nitrogen and sulphur isotopes ratios are in the r= ange of those for organisms with anaerobic metabolisms, such as methanogenesi= s, sulphate reduction and photosynthesis. Life was apparently distribute= d widely in shallow-water to littoral environments, including exposed, evaporitic basins and regions of hydrothermal activity. Biomass in t= he early Archaean was restricted owing to the limited amount of energy t= hat could be produced by anaerobic metabolisms. Microfossils resembling o= xygenic photosynthesisers, such as cyanobacteria, probably first occurred in

  16. Isotope composition and volume of Earth's early oceans.

    PubMed

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  17. Hydrogen-nitrogen greenhouse warming in Earth's early atmosphere.

    PubMed

    Wordsworth, Robin; Pierrehumbert, Raymond

    2013-01-04

    Understanding how Earth has sustained surface liquid water throughout its history remains a key challenge, given that the Sun's luminosity was much lower in the past. Here we show that with an atmospheric composition consistent with the most recent constraints, the early Earth would have been significantly warmed by H(2)-N(2) collision-induced absorption. With two to three times the present-day atmospheric mass of N(2) and a H(2) mixing ratio of 0.1, H(2)-N(2) warming would be sufficient to raise global mean surface temperatures above 0°C under 75% of present-day solar flux, with CO(2) levels only 2 to 25 times the present-day values. Depending on their time of emergence and diversification, early methanogens may have caused global cooling via the conversion of H(2) and CO(2) to CH(4), with potentially observable consequences in the geological record.

  18. Magma Ocean Depth and Oxygen Fugacity in the Early Earth--Implications for Biochemistry.

    PubMed

    Righter, Kevin

    2015-09-01

    A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history.

  19. 3D climate-carbon modelling of the early Earth

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Le Hir, G.; Fluteau, F.; Forget, F.; Catling, D.

    2017-09-01

    We revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. Our resultsfavor cold or temperate climates with global mean temperatures between around 8°C (281 K) and 30°C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean.

  20. The earth and the moon /Harold Jeffreys Lecture/.

    NASA Technical Reports Server (NTRS)

    Press, F.

    1971-01-01

    The internal structures of the earth and the moon are compared in the light of the latest extensive data on the earth structure, mobility of the earth outer layers, and the properties of lunar crust. The Monte Carlo method is applied to develop an earth model by a stepwise process beginning with a random distribution of two elastic velocities and the density as a function of de pth. Lunar seismic, magnetic, and rock analysis data are used to infer the properties of the moon. The marked planetological contrast between the earth and the moon is shown to consist in that the earth is highly differentiated and still undergoes a large-scale differentiation, while the moon has lost its volatiles in its early history and has a cold dynamically inactive shell which has been without basic changes for three billion years.

  1. The origin and early evolution of life on Earth.

    PubMed

    Oró, J; Miller, S L; Lazcano, A

    1990-01-01

    We do not have a detailed knowledge of the processes that led to the appearance of life on Earth. In this review we bring together some of the most important results that have provided insights into the cosmic and primitive Earth environments, particularly those environments in which life is thought to have originated. To do so, we first discuss the evidence bearing on the antiquity of life on our planet and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar system bodies such as comets, dark asteroids, and carbonaceous chondrites. This is followed by a discussion on the environmental models of the Hadean and early Archean Earth, as well as on the prebiotic formation of organic monomers and polymers essential to life. We then consider the processes that may have led to the appearance in the Archean of the first cells, and how these processes may have affected the early steps of biological evolution. Finally, the significance of these results to the study of the distribution of life in the Universe is discussed.

  2. Physical state of the very early Earth

    NASA Astrophysics Data System (ADS)

    Abe, Yutaka

    1993-09-01

    The earliest surface environment of the Earth is reconstructed in accordance with the planetary formation theory. Formation of an atmosphere is an inevitable consequence of Earth's formation. The atmosphere near the close of accretion is composed of 200 ˜ 300 bars of H 2 and H 2O, and several tens of bars of CO and CO 2. Either by the blanketing effect of the proto-atmosphere or heating by large planetesimal impacts a magma ocean is formed during accretion. We can distinguish three stages for the thermal evolution of the magma ocean and proto-crust. Stage 0 is characterized by a super-liquidus (or completely molten) regime near the surface. At this stage the surface of the Earth is covered by a super-liquidus magma ocean. No chemical differentiation is expected during this stage. Once the energy flux released by planet formation decreases to the 200 W/m 2 level the super-liquidus magma ocean then disappears within a time interval of 1 m.y. This is the transition from stage 0 to 1. Stage 1 is characterized by a partially molten magma ocean. In the magma ocean consisting of 20 ˜ 30% partial melt, heat transport is controlled by melt-solid separation (a type of compositional convection) rather than thermal convection. Chemical differentiation of the mantle mainly occurs in this stage. Once the energy flux drops to the 160 W/m 2 level, more than 90% of water vapor in the proto-atmosphere condense to form the proto-oceans. Several tens of bars of CO and CO 2 remain in the atmosphere just after formation of the oceans. Water oceans are occasionally evaporated by large impacts. After each such event, recondensation of the ocean takes several hundred years. Although the surface is covered by a chilled proto-crust, it is short-lived because of extensive volcanic resurfacing activity as well as meteorite impacts resurfacing. This stage ends when the energy flux drops to 0.1 ˜ 1 W/m 2 level. The duration time of stage 1 is estimated to be several hundred million years (the

  3. Prebiotic Chemistry and Atmospheric Warming of Early Earth by an Active Young Sun

    NASA Technical Reports Server (NTRS)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hebrard, E.; Danchi, W.

    2016-01-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed Into the Earth's early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun -- so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth's magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, C02 and CH, suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  4. Hf and Nd Isotope Evidence for Production of an Incompatible Trace Element Enriched Crustal Reservoir in Early Earth (Invited)

    NASA Astrophysics Data System (ADS)

    Brandon, A. D.; Debaille, V.; Lapen, T. J.

    2010-12-01

    , early-formed ITE-enriched reservoir [4]. This early-formed enriched ITE reservoir is indistinguishable in age and 176Lu/177Hf to those that formed in the Moon and Mars [5,6]. Hence all three terrestrial bodies must have undergone similar early differentiation and each formed and sustained their requisite early-formed ITE-enriched reservoirs at or near their surfaces. For all three terrestrial bodies, their early-formed ITE-enriched reservoirs appear to be the result of solidification of late stage residual liquids from their respective MO’s at or prior to 4.4 Ga. In Earth, mixing of an early-formed ITE-enriched reservoir back into the mantle likely occurred back into the convecting mantle at or before 3.9 Ga. For the Moon and Mars, the lack of plate tectonics preserved their early-formed ITE-enriched lithospheric reservoirs. [1] Tolstikhin and Hofmann, PEPI (2005) 148, 109. [2] Boyet and Carlson, Science (2005) 309, 576. [3] Bennett et al., Science (2007) 218, 1907. [3] Kemp et al., EPSL (2010) 296, 45. [5] Taylor et al. (2009) 279, 157. [6] Lapen et al., Science (2010) 328, 347.

  5. Archean Pb Isotope Evolution: Implications for the Early Earth.

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Thorpe, R.; Albarede, F.; Blichert-Toft, J.

    2008-12-01

    .728 Ga (Normetal) to 2.70 Ga (Noranda). The Pb isotopic compositions from these galenas, when normalized to a common age of 2.7 Ga, define a highly linear array in 207Pb/204Pb vs. 206Pb/204Pb. This array is nearly coincident with the 2.7 Ga geochron with a slope that corresponds to an age of ~4.4 Ga and with an extraordinary large range of 207Pb/204Pb, about the same magnitude as modern MORB. These data have important implications for the evolution of the Archean mantle. First, the slope of the Abitibi Pb-Pb array and its coincidence with the 2.7 Ga geochron suggests widespread U-Pb differentiation within the first hundred million years of Earth's history. This may have been due to either core formation or silicate/melt differentiation due to widespread melting of the mantle (e.g., formation of a magma ocean). Second, variations in μ in the Abitibi mantle and the subsequent Pb isotopic heterogeneities, whatever their cause, have not been significantly changed from 4.4 until 2.7 Ga. This implies that changes in μ in the Abitibi mantle source between 4.4 and 2.7 Ga, such as would be caused by crust extraction or recycling of older crust into this region of the mantle, were insufficient to destroy the original μ variations created at 4.4 Ga. Therefore, it appears that this portion of the mantle had essentially remained isolated and undisturbed from the early Hadean until the late Archean.

  6. Bayesian analysis of the astrobiological implications of life’s early emergence on Earth

    PubMed Central

    Spiegel, David S.; Turner, Edwin L.

    2012-01-01

    Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young Earth-like conditions. We revisit this argument quantitatively in a Bayesian statistical framework. By constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the data that life emerged fairly early in Earth’s history and that, billions of years later, curious creatures noted this fact and considered its implications. We find that, given only this very limited empirical information, the choice of Bayesian prior for the abiogenesis probability parameter has a dominant influence on the computed posterior probability. Although terrestrial life's early emergence provides evidence that life might be abundant in the universe if early-Earth-like conditions are common, the evidence is inconclusive and indeed is consistent with an arbitrarily low intrinsic probability of abiogenesis for plausible uninformative priors. Finding a single case of life arising independently of our lineage (on Earth, elsewhere in the solar system, or on an extrasolar planet) would provide much stronger evidence that abiogenesis is not extremely rare in the universe. PMID:22198766

  7. Early evolution of the Earth: Accretion, atmosphere formation, and thermal history

    NASA Astrophysics Data System (ADS)

    Abe, Yutaka; Matsui, Takafumi

    1986-03-01

    Atmospheric and thermal evolution of the earth growing by planetesimal impacts was modeled by taking into account the blanketing effect of an impact-induced H2O atmosphere and the temperature dependence of H2O degassing. When the water content of planetesimals is larger than 0.1% by weight and the accretion time of the earth is less than 5 × 107 years, the surface of the accreting earth melts and thus a “magma ocean” forms and covers the surface. The formation of a “magma ocean” will result in the initiation of core-mantle separation and mantle differentiation during accretion. Once a magma ocean is formed, the surface temperature, the degree of melting in the magma ocean, and the mass of the H2O atmosphere are nearly constant as the protoplanet grows further. The final mass of the H2O atmosphere is about 1021 kg, a value which is insensitive to variations in the model parameter values such as the accretion time and the water content of planetesimals. That the final mass of the H2O atmosphere is close to the mass of the present oceans suggests an impact origin for the earth's hydrosphere. On the other hand, most of the H2O retained in planetesimals will be deposited in the solid earth. Free water within the proto-earth may affect differentiation of the proto-mantle, in particular, the mantle FeO abundance and the incorporation of a light element in the outer core.

  8. Production and recycling of oceanic crust in the early Earth

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.

    2004-08-01

    Because of the strongly different conditions in the mantle of the early Earth regarding temperature and viscosity, present-day geodynamics cannot simply be extrapolated back to the early history of the Earth. We use numerical thermochemical convection models including partial melting and a simple mechanism for melt segregation and oceanic crust production to investigate an alternative suite of dynamics which may have been in operation in the early Earth. Our modelling results show three processes that may have played an important role in the production and recycling of oceanic crust: (1) Small-scale ( x×100 km) convection involving the lower crust and shallow upper mantle. Partial melting and thus crustal production takes place in the upwelling limb and delamination of the eclogitic lower crust in the downwelling limb. (2) Large-scale resurfacing events in which (nearly) the complete crust sinks into the (eventually lower) mantle, thereby forming a stable reservoir enriched in incompatible elements in the deep mantle. New crust is simultaneously formed at the surface from segregating melt. (3) Intrusion of lower mantle diapirs with a high excess temperature (about 250 K) into the upper mantle, causing massive melting and crustal growth. This allows for plumes in the Archean upper mantle with a much higher excess temperature than previously expected from theoretical considerations.

  9. Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Black, B. A.; Elkins-Tanton, L. T.; Bottke, W. F.

    2016-09-01

    Recent revisions to our understanding of the collisional history of the Hadean and early-Archean Earth indicate that large collisions may have been an important geophysical process. In this work we show that the early bombardment flux of large impactors (>100 km) facilitated the atmospheric release of greenhouse gases (particularly CO2) from Earth's mantle. Depending on the timescale for the drawdown of atmospheric CO2, the Earth's surface could have been subject to prolonged clement surface conditions or multiple freeze-thaw cycles. The bombardment also delivered and redistributed to the surface large quantities of sulfur, one of the most important elements for life. The stochastic occurrence of large collisions could provide insights on why the Earth and Venus, considered Earth's twin planet, exhibit radically different atmospheres.

  10. Atmospheric Expression of Seasonality on the Early Earth and Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Olson, S. L.; Schwieterman, E. W.; Reinhard, C. T.; Ridgwell, A.; Lyons, T. W.

    2017-12-01

    Biologically modulated seasonality impacts nearly every chemical constituent of Earth's atmosphere. For example, seasonal shifts in the balance of photosynthesis and respiration manifest as striking oscillation in the atmospheric abundance of CO2 and O2. Similar temporal variability is likely on other inhabited worlds, and seasonality is often regarded as a potential exoplanetary biosignature. Seasonality is a particularly intriguing biosignature because it may allow us to identify life through the abundance of spectrally active gases that are not uniquely biological in origin (e.g., CO2 or CH4). To date, however, the discussion of seasonality as a biosignature has been exclusively qualitative. We lack both quantitative constraints on the likelihood of spectrally detectable seasonality elsewhere and a framework for evaluating potential false positive scenarios (e.g., seasonal CO2 ice sublimation). That is, we do not yet know for which gases, and under which conditions, we could expect to detect seasonality and reliably infer the presence of an active biosphere. The composition of Earth's atmosphere has changed dramatically through time, and consequently, the atmospheric expression of seasonality has necessarily changed throughout Earth history as well. Thus, Earth offers several case studies for examining the potential for observable seasonality on chemically and tectonically diverse exoplanets. We outline an approach for exploring the history of seasonality on Earth via coupled biogeochemical and photochemical models, with particular emphasis on the seasonal cycles of CO2, CH4, and O2/O3. We also discuss the remote detectability of these seasonal signals on directly imaged exoplanets via reflectance and emission spectra. We suggest that seasonality in O2 on the early Earth was biogeochemically significant—and that seasonal cycles in O3, an indirect biological product coupled to biogenic O2, may be a readily detectable fingerprint of life in the absence of

  11. Haze aerosols in the atmosphere of early Earth: manna from heaven.

    PubMed

    Trainer, Melissa G; Pavlov, Alexander A; Curtis, Daniel B; McKay, Christopher P; Worsnop, Douglas R; Delia, Alice E; Toohey, Darin W; Toon, Owen B; Tolbert, Margaret A

    2004-01-01

    An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota.

  12. Comment on "A hydrogen-rich early Earth atmosphere".

    PubMed

    Catling, David C

    2006-01-06

    Tian et al. (Reports, 13 May 2005, p. 1014) proposed a hydrogen-rich early atmosphere with slow hydrogen escape from a cold thermosphere. However, their model neglects the ultraviolet absorption of all gases other than H2. The model also neglects Earth's magnetic field, which affects the temperature and density of ions and promotes nonthermal escape of neutral hydrogen.

  13. Flash heating on the early Earth.

    PubMed

    Lyons, J R; Vasavada, A R

    1999-03-01

    It has been suggested that very large impact events (approximately 500 km diameter impactors) sterilized the surface of the young Earth by producing enough rock vapor to boil the oceans. Here, we consider surface heating due to smaller impactors, and demonstrate that surface temperatures conductive to organic synthesis resulted. In particular, we focus on the synthesis of thermal peptides. Previously, laboratory experiments have demonstrated that dry heating a mixture of amino acids containing excess Asp, Glu, or Lys to temperatures approximately 170 degrees C for approximately 2 hours yields polypeptides. It has been argued that such temperature conditions would not have been available on the early Earth. Here we demonstrate, by analogy with the K/T impact, that the requisite temperatures are achieved on sand surfaces during the atmospheric reentry of fine ejecta particles produced by impacts of bolides approximately 10-20 km in diameter, assuming approximately 1-100 PAL CO2. Impactors of this size struck the Earth with a frequency of approximately 1 per 10(4)-10(5) y at 4.2 Ga. Smaller bolides produced negligible global surface heating, whereas bolides > 30 km in diameter yielded solid surface temperatures > 1000 K, high enough to pyrolyze amino acids and other organic compounds. Thus, peptide formation would have occurred globally for a relatively narrow range of bolide sizes.

  14. Mineral remains of early life on Earth? On Mars?

    USGS Publications Warehouse

    Iberall, Robbins E.; Iberall, A.S.

    1991-01-01

    The oldest sedimentary rocks on Earth, the 3.8-Ga Isua Iron-Formation in southwestern Greenland, are metamorphosed past the point where organic-walled fossils would remain. Acid residues and thin sections of these rocks reveal ferric microstructures that have filamentous, hollow rod, and spherical shapes not characteristic of crystalline minerals. Instead, they resemble ferric-coated remains of bacteria. Because there are no earlier sedimentary rocks to study on Earth, it may be necessary to expand the search elsewhere in the solar system for clues to any biotic precursors or other types of early life. A study of morphologies of iron oxide minerals collected in the southern highlands during a Mars sample return mission may therefore help to fill in important gaps in the history of Earth's earliest biosphere. -from Authors

  15. Follow the Carbon: Isotopic Labeling Studies of Early Earth Aerosol.

    PubMed

    Hicks, Raea K; Day, Douglas A; Jimenez, Jose L; Tolbert, Margaret A

    2016-11-01

    Despite the faint young Sun, early Earth might have been kept warm by an atmosphere containing the greenhouse gases CH 4 and CO 2 in mixing ratios higher than those found on Earth today. Laboratory and modeling studies suggest that an atmosphere containing these trace gases could lead to the formation of organic aerosol haze due to UV photochemistry. Chemical mechanisms proposed to explain haze formation rely on CH 4 as the source of carbon and treat CO 2 as a source of oxygen only, but this has not previously been verified experimentally. In the present work, we use isotopically labeled precursor gases and unit-mass resolution (UMR) and high-resolution (HR) aerosol mass spectrometry to examine the sources of carbon and oxygen to photochemical aerosol formed in a CH 4 /CO 2 /N 2 atmosphere. UMR results suggest that CH 4 contributes 70-100% of carbon in the aerosol, while HR results constrain the value from 94% to 100%. We also confirm that CO 2 contributes approximately 10% of the total mass to the aerosol as oxygen. These results have implications for the geochemical interpretations of inclusions found in Archean rocks on Earth and for the astrobiological potential of other planetary atmospheres. Key Words: Atmosphere-Early Earth-Planetary atmospheres-Carbon dioxide-Methane. Astrobiology 16, 822-830.

  16. Differential compaction mechanism for earth fissures near Casa Grande, Arizona.

    USGS Publications Warehouse

    Jachens, R.C.; Holzer, T.L.

    1982-01-01

    Precise gravity measurements indicate that earth fissures or tension cracks caused by ground-water withdrawal within a 10km2 area SE of Casa Grande are associated with relief on the buried interface between the alluvial aquifer and underlying bedrock. These relations suggest that the fissures are forming in response to localized differential compaction caused by localized variations of aquifer-system thickness. -from Authors

  17. Early Life on Earth and the Search for Extraterrestrial Biosignatures

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; House, Christopher

    2014-01-01

    In the last 2 years, scientists within the ARES Directorate at JSC have applied the technology of Secondary Ion Mass Spectrometry (SIMS) to individual organic structures preserved in Archean (approximately 3 billion years old) sediments on Earth. These organic structures are among the oldest on Earth that may be microfossils - structurally preserved remnants of ancient microbes. The SIMS work was done to determine the microfossils' stable carbon isotopic composition (delta C-13 values). This is the first time that such ancient, potential microfossils have been successfully analyzed for their individual delta C-13 values. The results support the interpretation that these structures are remnants of early life on Earth and that they may represent planktonic organisms that were widely distributed in the Earth's earliest oceans. This study has been accepted for publication in the journal Geology.

  18. Electrical energy sources for organic synthesis on the early earth

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    It is pointed out that much of the contemporary origin-of-life research uses the original estimates of Miller and Urey (1959) for terrestrial energy dissipation by lightning and coronal discharges being equal to 2 x 10 to the 19th J/yr and 6 x 10 to the 19th J/yr, respectively. However, data from experiments that provide analogues to naturally-occurring lightning and coronal discharges indicate that lightning energy yields for organic synthesis (nmole/J) are about one order of magnitude higher than the coronal discharge yields. This suggests that, on early earth, organic production by lightning may have dominated that due to coronal emission. New values are recommended for lightning and coronal discharge dissipation rates on the early earth, 1 x 10 to the 18th J/yr and 5 x 10 to the 17th J/yr, respectively.

  19. Workshop on the Early Earth: The Interval from Accretion to the Older Archean

    NASA Technical Reports Server (NTRS)

    Burke, K. (Editor); Ashwal, L. D. (Editor)

    1985-01-01

    Presentation abstracts are compiled which address various issues in Earth developmental processes in the first one hundred million years. The session topics included: accretion of the Earth (processes accompanying immediately following the accretion, including core formation); impact records and other information from planets and the Moon relevant to early Earth history; isotopic patterns of the oldest rocks; and igneous, sedimentary, and metamorphic petrology of the oldest rocks.

  20. Accessory Mineral Records of Early Earth Crust-Mantle Systematics: an Example From West Greenland

    NASA Astrophysics Data System (ADS)

    Storey, C. D.; Hawkesworth, C. J.

    2008-12-01

    Conditions for the formation and the nature of Earth's early crust are enigmatic due to poor preservation. Before c.4 Ga the only archives are detrital minerals eroded from earlier crust, such as the Jack Hills zircons in western Australia, or extinct isotope systematics. Zircons are particularly powerful since they retain precise records of their ages of crystallisation, and the Lu-Hf radiogenic isotope and O stable isotope systematics of the reservoir from which they crystallised. In principle, this allows insight into the nature of the crust, the mantle reservoir from which the melt was extracted and any reworked material incorporated into that melt. We have used in situ methods to measure U-Pb, O and Lu-Hf within single zircon crystals from tonalitic gneisses from West Greenland in the vicinity of the Isua Supracrustal Belt. They have little disturbed ages of c.3.8 Ga, mantle-like O isotope signatures and Lu-Hf isotope signatures that lie on the CHUR evolution line at 3.8 Ga. These samples have previously been subjected to Pb isotope feldspar and 142Nd whole rock analysis and have helped constrain models in which early differentiation of a proto-crust must have occurred. The CHUR-like Lu-Hf signature, along with mantle-like O signature from these zircons suggests juvenile melt production at 3.8 Ga from undifferentiated mantle, yet the other isotope systems preclude this possibility. Alternatively, this is further strong evidence for a heterogeneous mantle in the early Earth. Whilst zircons afford insight into the nature of the early crust and mantle, it is through the Sm-Nd system that the mantle has traditionally been viewed. Titanite often contains several thousand ppm Nd, making it amenable to precise analysis, and is a common accessory phase. It has a reasonably high closure temperature for Pb and O, and it can retain cores with older ages and distinct REE chemistry. It is often the main accessory phase alongside zircon, and it is the main carrier of Nd

  1. Early Terrestrial Mantle Differentiation Recorded in Paleoarchean Komatiites

    NASA Astrophysics Data System (ADS)

    Puchtel, I. S.; Blichert-Toft, J.; Touboul, M.; Horan, M. F.; Walker, R. J.

    2016-12-01

    Geochmical signatures generated in the manle as a result of radioactive decay of short- and long-lived nuclides can be used to constrain the timing of formation and the nature of now mostly vanished early terrestrial reservoirs. The 3.55 Ga komatiites from the Schapenburg Greenstone Remnant (SGR) located in the Barberton Greenstone Belt in South Africa have a unique combination of trace element abundances and isotopic compositions that place strong constraints on the origin of these reservoirs. The SGR komatiites define a Re-Os isochron with an age of 3550±87 Ma and an initial γ187Os = +3.7±0.2 (2SD). The absolute HSE abundances in the mantle source of the SGR komatiite system are estimated to be only 29±5% of those in the present-day bulk silicate Earth (BSE) estimates. The SGR komatiites show coupled depletion, relative to the modern mantle, in 142Nd and 182W (μ142Nd = -5.0±2.8, μ182W = -8.4±4.5), the decay products of the short-lived 146Sm and 182Hf nuclides, respectively, indicating derivation from a mantle domain that was enriched in incompatible elements 30 Ma after Solar System formation. Early Hadean contributors to this mantle domain could include high-pressure fractionates from a primordial magma ocean. By contrast, the long-lived Sm-Nd and Lu-Hf isotope systems (ɛ143Nd = +2.4±0.1, ɛ176Hf = +5.7±0.3) indicate that the mantle domain that the SGR komatiites were ultimately derived from underwent additional processing after the early Hadean, including melt depletion at lower pressures. The preservation of early-formed 182W and 142Nd anomalies in the mantle until at least 3.55 Ga indicates that the products of early planetary differentiation survived both later planetary accretion and convective mantle mixing during the Hadean. This study lends further support to the notion that variable late accretion, by itself, cannot account for all of the observed W isotope and absolute and relative HSE abundance variations in the Archean mantle recorded by

  2. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    NASA Technical Reports Server (NTRS)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  3. Self-consistent formation of continents on early Earth

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Van Hoolst, Tim; Breuer, Doris; Dehant, Véronique

    2013-04-01

    In our study we want to understand how Earth evolved with time and examine the initiation of plate tectonics and the possible formation of continents on Earth. Plate tectonics and continents seem to influence the likelihood of a planet to harbour life [1], and both are strongly influenced by the planetary interior (e.g. mantle temperature and rheology) and surface conditions (e.g. stabilizing effect of continents, atmospheric temperature), and may also depend on the biosphere. Earth is the only terrestrial planet (i.e. with a rocky mantle and iron core) in the solar system where long-term plate tectonics evolved. Knowing the factors that have a strong influence on the occurrence of plate tectonics allows for prognoses about plate tectonics on terrestrial exoplanets that have been detected in the past decade, and about the likelihood of these planets to harbour Earth-like life. For this purpose, planetary interior and surface processes are coupled via 'particles' as computational tracers in the 3D code GAIA [2,3]. These particles are dispersed in the mantle and crust of the modelled planet and can track the relevant rock properties (e.g. density or water content) over time. During the thermal evolution of the planet, the particles are advected due to mantle convection and along melt paths towards the surface and help to gain information about the thermo-chemical system. This way basaltic crust that is subducted into the silicate mantle is traced in our model. It is treated differently than mantle silicates when re-molten, such that granitic (felsic) crust is produced (similar to the evolution of continental crust on early Earth [4]), which is stored in the particle properties. We apply a pseudo-plastic rheology and use small friction coefficients (since an increased reference viscosity is used in our model). We obtain initiation of plate tectonics and self-consistent formation of pre-continents after a few Myr up to several Gyr - depending on the initial conditions

  4. The rise of oxygen in Earth's early ocean and atmosphere.

    PubMed

    Lyons, Timothy W; Reinhard, Christopher T; Planavsky, Noah J

    2014-02-20

    The rapid increase of carbon dioxide concentration in Earth's modern atmosphere is a matter of major concern. But for the atmosphere of roughly two-and-half billion years ago, interest centres on a different gas: free oxygen (O2) spawned by early biological production. The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth's history.

  5. Thermal, dynamic and compositional aspects of the core-forming Earth

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1985-01-01

    Core formation is the most important and singular differentiation event in the history of a terrestrial planet. It almost certainly involved the downward migration of a partially or wholly molten iron alloy through a silicate and oxide mantle, and was contemporaneous with accretion. Several important, unresolved issues which have implications for mantle and core geochemistry, the thermal history of the Earth, and the origin of geomagnetism are addressed: whether the early Earth was molten; whether core formation involved low or high pressure geochemistry, or both; early Earth mantle homogenization; whether equilibration established between core forming material and the mantle through which it migrated; and how much iron is stranded and unable to reach the core.

  6. Crustal evolution of the early earth: The role of major impacts

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1979-01-01

    The role of major impact basins (such as those which formed on the moon before 4 billion years ago) is examined to determine the effects of such impacts on the early crustal evolution of the earth. Specifically addressed is the fundamental problem of what is the origin of the earth's fundamental crustal dichotomy of low density continental and high density oceanic crust and its relationship to the superficially similar highlands/maria crustal dichotomies of the moon, Mercury and Mars.

  7. The role of impacts in the history of the early earth

    NASA Technical Reports Server (NTRS)

    French, Bevan M.

    1991-01-01

    The significant conclusions of a conference called 'Meteorite Impact and the Early Earth' are reported including data which support the notion that extraterrestrial impacts greatly influenced the development of the earth. The cratering of other planetary surfaces is discussed, and the energy added by meteorite impacts is characterized. The primary effects of large impacts are set forth in terms of atmospheric, oceanic, and biological considerations which suggest that the ramifications would have been significant. Contentious issues include the variation of impact rate with time in the early universe, the interpretation of the record of intense bombardment in the lunar highlands, and the effects related to alternative scenarios. Directions of future study are mentioned including the identification of terrestrial impact structures, conducting searches in the Archean, and assessing ancient impact rates.

  8. Si Isotopes in Enstatite Chondrites: Implications to Accretion and Differentiation Event of the Earth

    NASA Astrophysics Data System (ADS)

    Sikdar, J.; Rai, V. K.

    2018-05-01

    The abstract summarizes the recent results on high precision Si isotope analyses in various micro milled components of Enstatite chondrites with implications towards the accretion and primary differentiation event of the Earth.

  9. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases

  10. Origin and evolution of the atmospheres of early Venus, Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lammer, Helmut; Zerkle, Aubrey L.; Gebauer, Stefanie; Tosi, Nicola; Noack, Lena; Scherf, Manuel; Pilat-Lohinger, Elke; Güdel, Manuel; Grenfell, John Lee; Godolt, Mareike; Nikolaou, Athanasia

    2018-05-01

    We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≥ 0.5 M_Earth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H_2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun's more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N_2 atmospheres. The buildup of atmospheric N_2, O_2, and the role of greenhouse gases such as CO_2 and CH_4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth's geophysical and related atmospheric evolution in relation

  11. Archean Isotope Anomalies as a Window into the Differentiation History of the Earth

    NASA Astrophysics Data System (ADS)

    Wainwright, A. N.; Debaille, V.; Zincone, S. A.

    2018-05-01

    No resolvable µ142Nd anomaly was detected in Paleo- Mesoarchean rocks of São Francisco and West African cratons. The lack of µ142Nd anomalies outside of North America and Greenland implies the Earth differentiated into at least two distinct domains.

  12. Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth.

    PubMed

    Pasek, Matthew; Lauretta, Dante

    2008-02-01

    With growing evidence for a heavy bombardment period ending 4-3.8 billion years ago, meteorites and comets may have been an important source of prebiotic carbon, nitrogen, and phosphorus on the early Earth. Life may have originated shortly after the late-heavy bombardment, when concentrations of organic compounds and reactive phosphorus were enough to "kick life into gear". This work quantifies the sources of potentially prebiotic, extraterrestrial C, N, and P and correlates these fluxes with a comparison to total Ir fluxes, and estimates the effect of atmosphere on the survival of material. We find (1) that carbonaceous chondrites were not a good source of organic compounds, but interplanetary dust particles provided a constant, steady flux of organic compounds to the surface of the Earth, (2) extraterrestrial metallic material was much more abundant on the early Earth, and delivered reactive P in the form of phosphide minerals to the Earth's surface, and (3) large impacts provided substantial local enrichments of potentially prebiotic reagents. These results help elucidate the potential role of extraterrestrial matter in the origin of life.

  13. Planetary Perspective on Life on Early Mars and the Early Earth

    NASA Technical Reports Server (NTRS)

    Sleep, Norman H.; Zahnle, Kevin

    1996-01-01

    Impacts of asteroids and comets posed a major hazard to the continuous existence of early life on Mars as on the Earth. The chief danger was presented by globally distributed ejecta, which for very large impacts takes the form of transient thick rock vapor atmospheres; both planets suffered such impacts repeatedly. The exposed surface on both planets was sterilized when it was quickly heated to the temperature of condensed rock vapor by radiation and rock rain. Shallow water bodies were quickly evaporated and sterilized. Any surviving life must have been either in deep water or well below the surface.

  14. Testing Models for the Origin of the Earth-Moon System with 142Nd/144Nd Measurements

    NASA Astrophysics Data System (ADS)

    Hyung, E.; Jacobsen, S. B.; Zeng, L.

    2015-12-01

    The Sm-Nd system is widely used for tracking the differentiation and evolution of planetary silicate reservoirs, due to the well understood, strong Sm-Nd fractionation between melt and mantle minerals. The short-lived 146Sm-142Nd system with a half-life of 103 Ma or 68 Ma has been used to constrain early planetary differentiation events based on early Archean terrestrial rocks, lunar rocks and meteorites. Early Archean terrestrial rocks show significant variations in 142Nd/144Nd of about 30 ppm, demonstrating very early differentiation of the Earth's mantle and crust. In contrast, present day 142Nd/144Nd ratios of mantle-derived ocean island basalts and MORBs show almost no variation at the reported analytical precision level (2σ = ± 6 ppm), suggesting that such early variations have been erased with time due to crustal recycling and mantle mixing. The 142Nd/144Nd ratio of the lunar mantle has been reported to be offset from terrestrial standards by about -5 ppm, barely resolvable with the reported analytical uncertainties. Differences in the 142Nd/144Nd ratios between the bulk Earth and Moon may suggest early large scale silicate differentiation events on the Earth that predate the Giant Moon forming impact. To address this problem, we carry out new 142Nd/144Nd measurements of terrestrial rocks, and lunar rocks and meteorites with a TIMS (Isoprobe T) equipped with new Xact Faraday amplifiers provided by Isotopx. We find that the Xact amplifiers provide lower noise than the earlier generation preamplifiers and operate close to the theoretical thermodynamic noise limit calculated from the Johnson equation. So far we have been able to improve multidynamic measurements to be reproducible to within ± 2 ppm at the 2σ level, and with this precision we find no variations in a few young terrestrial rocks. Our next step is measurements of lunar rocks and E-chondrites. If these turn out to be identical to the modern Earth, then the Nd isotope system may tell the same

  15. Peroxy defects in Rocks and H2O2 formation on the early Earth

    NASA Astrophysics Data System (ADS)

    Gray, A.; Balk, M.; Mason, P.; Freund, F.; Rothschild, L.

    2013-12-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex life to evolve on Earth and possibly elsewhere in the Universe. The question is still shrouded in uncertainty how free oxygen became available on the early Earth. Here we study processes of peroxy defects in silicate minerals which, upon weathering, generate mobilized electronic charge carriers resulting in oxygen formation in an initially anoxic subsurface environment. Reactive Oxygen Species (ROS) are precursors to molecular oxygen during this process. Due to their toxicity they may have strongly influenced the evolution of life. ROS are generated during hydrolysis of peroxy defects, which consist of pairs of oxygen anions. A second pathway for formation occurs during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, microorganisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defenses against the potentially dangerous, even lethal effects of ROS and oxygen. We have investigated how oxygen might be released through weathering and test microorganisms in contact with rock surfaces. Our results show how early Life might have adapted to oxygen. Early microorganisms must have "trained" to detoxify ROS prior to the evolution of aerobic metabolism and oxygenic photosynthesis. A possible way out of this dilemma comes from a study of igneous and high-grade metamorphic rocks, whose minerals contain a small but significant fraction of oxygen anions in the valence state 1- , forming peroxy links of the type O3Si-OO-SiO3 [1, 2]. As water hydrolyzes the peroxy links hydrogen peroxide, H2O2, forms. Continued experimental discovery of H2O2 formation at rock

  16. Abstracts for the International Workshop on Meteorite Impact on the Early Earth

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This volume contains abstracts that were accepted for presentation at the International Workshop on Meteorite Impact on the Early Earth, September 21-22, 1990, in Perth, Western Australia. The effects these impacts had on the young Earth are emphasized and a few of the topics covered are as follows: impact induced hot atmosphere, crater size and distribution, late heavy bombardment, terrestrial mantle and crust, impact damage, continental growth, volcanism, climate catastrophes, shocked quartz, and others.

  17. XBtg2 is required for notochord differentiation during early Xenopus development.

    PubMed

    Sugimoto, Kaoru; Hayata, Tadayoshi; Asashima, Makoto

    2005-09-01

    The notochord is essential for normal vertebrate development, serving as both a structural support for the embryo and a signaling source for the patterning of adjacent tissues. Previous studies on the notochord have mostly focused on its formation and function in early organogenesis but gene regulation in the differentiation of notochord cells itself remains poorly defined. In the course of screening for genes expressed in developing notochord, we have isolated Xenopus homolog of Btg2 (XBtg2). The mammalian Btg2 genes, Btg2/PC3/TIS21, have been reported to have multiple functions in the regulation of cell proliferation and differentiation but their roles in early development are still unclear. Here we characterized XBtg2 in early Xenopus laevis embryogenesis with focus on notochord development. Translational inhibition of XBtg2 resulted in a shortened and bent axis phenotype and the abnormal structures in the notochord tissue, which did not undergo vacuolation. The XBtg2-depleted notochord cells expressed early notochord markers such as chordin and Xnot at the early tailbud stage, but failed to express differentiation markers of notochord such as Tor70 and 5-D-4 antigens in the later stages. These results suggest that XBtg2 is required for the differentiation of notochord cells such as the process of vacuolar formation after determination of notochord cell fate.

  18. Life and the solar uv environment on the early Earth

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Kovács, G.; Rontó, G.; Lammer, H.; Kargl, G.; Kömle, N.; Bauer, S.

    2003-04-01

    The solar UV radiation environment on planetary surfaces and within their atmospheres is of importance in a wide range of scientific disciplines. Solar UV radiation is the driving force of chemical and organic evolution and serves also as a constraint in biological evolution. Studies of the solar UV environment of the early Earth 2.0 Gyr to 3.8 Gyr ago suggest that the terrestrial atmosphere was essentially anoxic, resulting in an ozone column abundance insufficient for protecting the planetary surface in the UV-B and the UV-C ranges. Since, short wavelength solar UV radiation in the UV-B ind UV-C range penetrated through the unprotected atmosphere to the surface on early Earth, associated biological consequences may be expected. For DNA-based terrestrial solar UV dosimetry, bacteriophage T7, isolated phage-DNA ind polycrystalline Uracil samples have been used. The effect of solar UV radiation can be measured by detecting the biological-structural consequences of the damage induced by UV photons. We show model calculations for the Biological Effective Dose (BED) rate of Uracil and bacteriophage T7, for various ozone concentrations representing early atmospheric conditions on Earth up to a UV protecting ozone layer comparable to present times. Further, we discuss experimental data which show the photo-reverse effect of Uracil molecules caused by short UV wavelengths. These photoreversion effect highly depend on the wavelength of the radiation. Shorter wavelength UV radiation of about 200 nm is strongly effective in monomerisation, while the longer wavelengths prefer the production of dimerisation. We could demonstrate experimentally, for the case of an Uracil thin-layer that the photo-reaction process of the nucleotides can be both, dimerization and the reverse process: monomerization. These results are important for the study of solar UV exposure on organisms in the terrestrial environment more than 2 Gyr ago where Earth had no UV protecting ozone layer as well as

  19. Higher Flux from the Young Sun as an Explanation for Warm Temperatures for Early Earth and Mars

    NASA Technical Reports Server (NTRS)

    Sackmann, I.-Juliana

    2001-01-01

    Observations indicate that the Earth was at least warm enough for liquid water to exist as far back as 4 Gyr ago, namely, as early as half a billion years after the formation of the Earth; in fact, there is evidence suggesting that Earth may have been even warmer then than it is now. These relatively warm temperatures required on early Earth are in apparent contradiction to the dimness of the early Sun predicted by the standard solar models. This problem has generally been explained by assuming that Earth's early atmosphere contained huge amounts of carbon dioxide (CO2), resulting in a large enough greenhouse effect to counteract the effect of a dimmer Sun. However, recent work places an upper limit of 0.04 bar on the partial pressure of CO2 in the period from 2.75 to 2.2 Gyr ago, based on the absence of siderite in paleosols; this casts doubt on the viability of a strong CO2 greenhouse effect on early Earth. The existence of liquid water on early Mars has been even more of a puzzle; even the maximum possible CO2 greenhouse effect cannot yield warm enough Martian surface temperatures. These problems can be resolved simultaneously for both Earth and Mars, if the early Sun was brighter than predicted by the standard solar models. This could be accomplished if the early Sun was slightly more massive than it is now, i.e., if the solar wind was considerably stronger in the past than at present. A slightly more massive young Sun would have left fingerprints on the internal structure of the present Sun. Today, helioseismic observations exist that can measure the internal structure of the Sun with very high precision. The task undertaken here was to compute solar models with the highest precision possible at this time, starting with slightly greater initial masses. These were evolved to the present solar age, where comparisons with the helioseismic observations could be made. Our computations also yielded the time evolution of the solar flux at the planets - a key input to

  20. EAG Eminent Speaker: Two types of Archean continental crust: plume and plate tectonics on early Earth

    NASA Astrophysics Data System (ADS)

    Van Kranendonk, M. J.

    2012-04-01

    Over 4.5 billion years, Earth has evolved from a molten ball to a cooler planet with large continental plates, but how and when continents grew and plate tectonics started remain poorly understood. In this paper, I review the evidence that 3.5-3.2 Ga continental nuclei of the Pilbara (Australia) and Kaapvaal (southern Africa) cratons formed as thick volcanic plateaux over hot, upwelling mantle and survived due to contemporaneous development of highly depleted, buoyant, unsubductable mantle roots. This type of crust is distinct from, but complimentary to, high-grade gneiss terranes, as exemplified by the North Atlantic Craton of West Greenland, which formed through subduction-accretion tectonics on what is envisaged as a vigorously convecting early Earth with small plates. Thus, it is proposed that two types of crust formed on early Earth, in much the same way as in modern Earth, but with distinct differences resulting from a hotter Archean mantle. Volcanic plateaux provided a variety of stable habitats for early life, including chemical nutrient rich, shallow-water hydrothermal systems and shallow marine carbonate platforms.

  1. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    NASA Technical Reports Server (NTRS)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  2. A nonmagnetic differentiated early planetary body

    NASA Astrophysics Data System (ADS)

    Weiss, Benjamin P.; Wang, Huapei; Sharp, Thomas G.; Gattacceca, Jérôme; Shuster, David L.; Downey, Brynna; Hu, Jinping; Fu, Roger R.; Kuan, Aaron T.; Suavet, Clément; Irving, Anthony J.; Wang, Jun; Wang, Jiajun

    2017-06-01

    Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating that it last cooled in a near-zero field (<∼1.7 μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al-Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. This supports a recent conclusion that the solar nebula had dissipated by ∼4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.

  3. On biogenicity criteria for endolithic microborings on early Earth and beyond.

    PubMed

    McLoughlin, Nicola; Brasier, Martin D; Wacey, David; Green, Owen R; Perry, Randall S

    2007-02-01

    Micron-sized cavities created by the actions of rock-etching microorganisms known as euendoliths are explored as a biosignature for life on early Earth and perhaps Mars. Rock-dwelling organisms can tolerate extreme environmental stresses and are excellent candidates for the colonization of early Earth and planetary surfaces. Here, we give a brief overview of the fossil record of euendoliths in both sedimentary and volcanic rocks. We then review the current understanding of the controls upon the distribution of euendolithic microborings and use these to propose three lines of approach for testing their biogenicity: first, a geological setting that demonstrates a syngenetic origin for the euendolithic microborings; second, microboring morphologies and distributions that are suggestive of biogenic behavior and distinct from ambient inclusion trails; and third, elemental and isotopic evidence suggestive of biological processing. We use these criteria and the fossil record of terrestrial euendoliths to outline potential environments and techniques to search for endolithic microborings on Mars.

  4. Inhibition of master transcription factors in pluripotent cells induces early stage differentiation

    PubMed Central

    De, Debojyoti; Jeong, Myong-Ho; Leem, Young-Eun; Svergun, Dmitri I.; Wemmer, David E.; Kang, Jong-Sun; Kim, Kyeong Kyu; Kim, Sung-Hou

    2014-01-01

    The potential for pluripotent cells to differentiate into diverse specialized cell types has given much hope to the field of regenerative medicine. Nevertheless, the low efficiency of cell commitment has been a major bottleneck in this field. Here we provide a strategy to enhance the efficiency of early differentiation of pluripotent cells. We hypothesized that the initial phase of differentiation can be enhanced if the transcriptional activity of master regulators of stemness is suppressed, blocking the formation of functional transcriptomes. However, an obstacle is the lack of an efficient strategy to block protein–protein interactions. In this work, we take advantage of the biochemical property of seventeen kilodalton protein (Skp), a bacterial molecular chaperone that binds directly to sex determining region Y-box 2 (Sox2). The small angle X-ray scattering analyses provided a low resolution model of the complex and suggested that the transactivation domain of Sox2 is probably wrapped in a cleft on Skp trimer. Upon the transduction of Skp into pluripotent cells, the transcriptional activity of Sox2 was inhibited and the expression of Sox2 and octamer-binding transcription factor 4 was reduced, which resulted in the expression of early differentiation markers and appearance of early neuronal and cardiac progenitors. These results suggest that the initial stage of differentiation can be accelerated by inhibiting master transcription factors of stemness. This strategy can possibly be applied to increase the efficiency of stem cell differentiation into various cell types and also provides a clue to understanding the mechanism of early differentiation. PMID:24434556

  5. Carbon dioxide warming of the early Earth

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1997-01-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  6. Carbon dioxide warming of the early Earth.

    PubMed

    Arrhenius, G

    1997-02-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  7. Hydrogen Fluxes from Photosynthetic Communities: Implications for Early Earth Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Bebout, Brad M.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    More than half the history of life on Earth was dominated by photosynthetic microbial mats, which must have represented the preeminent biological influence on global geochemical cycling during that time. In modem analogs of then ancient communities, hypersaline microbial mats from Guerrero Negro, Mexico, we have observed a large flux of molecular hydrogen originating in the cyanobacteria-dominated surface layers. Hydrogen production follows a distinct diel pattern and is sensitive to both oxygen tension and microbial species composition within the mat. On an early Earth dominated by microbial mats, the observed H2 fluxes would scale to global levels far in excess of geothermal emissions. A hydrogen flux of this magnitude represents a profound transmission of reducing power from oxygenic photosynthesis, both to the anaerobic biosphere, where H2 is an almost universally-utilized substrate and regulator of microbial redox chemistry, and to the atmosphere, where subsequent escape to space could provide an important mechanism for the net oxidation of Earth's surface.

  8. Role for early-differentiated natural killer cells in infectious mononucleosis

    PubMed Central

    Azzi, Tarik; Lünemann, Anna; Murer, Anita; Ueda, Seigo; Béziat, Vivien; Malmberg, Karl-Johan; Staubli, Georg; Gysin, Claudine; Berger, Christoph; Münz, Christian

    2014-01-01

    A growing body of evidence suggests that the human natural killer (NK)-cell compartment is phenotypically and functionally heterogeneous and is composed of several differentiation stages. Moreover, NK-cell subsets have been shown to exhibit adaptive immune features during herpes virus infection in experimental mice and to expand preferentially during viral infections in humans. However, both phenotype and role of NK cells during acute symptomatic Epstein-Barr virus (EBV) infection, termed infectious mononucleosis (IM), remain unclear. Here, we longitudinally assessed the kinetics, the differentiation, and the proliferation of subsets of NK cells in pediatric IM patients. Our results indicate that acute IM is characterized by the preferential proliferation of early-differentiated CD56dim NKG2A+ immunoglobulin-like receptor- NK cells. Moreover, this NK-cell subset exhibits features of terminal differentiation and persists at higher frequency during at least the first 6 months after acute IM. Finally, we demonstrate that this NK-cell subset preferentially degranulates and proliferates on exposure to EBV-infected B cells expressing lytic antigens. Thus, early-differentiated NK cells might play a key role in the immune control of primary infection with this persistent tumor-associated virus. PMID:25205117

  9. Geologically Controlled Isotope-Time Patterns Reveal Early Differentiation and Crust Formation Processes

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Nutman, A. P.

    2014-12-01

    The mechanisms of continental crust production and evolution in the early Earth remain controversial, as are questions of the relative roles of early differentiation versus subsequent tectonic procssing in creating Earth's chemical signatures. Here we present geologic observations integrated with whole rock major, trace element and Sm-Nd isotopic signatures and combined with U-Pb and Lu-Hf isotopic compositions of zircon populations from the same rocks, from the most extensive early rock record comprising the 3.9 Ga to 3.6 Ga terranes of southwest Greenland. These data reveal repeated patterns of formation of juvenile TTG crust and associated mafic and ultramafic rocks in convergent margin settings followed by formation of more evolved granites [1]. Our new zircon Lu-Hf data from rare 3.6-3.7 Ga tonalites within the Itsaq Gneiss Complex, obtained from single component, non-migmatitic gneisses with simple zircon populations, limited within sample Hf isotopic variability and accurate U-Pb ages, now document extraction of juvenile tonalites from a near chondritic mantle source between 3.9 Ga and 3.6 Ga. The more evolved, granitic rocks in each area show slightly negative initial ɛHf in accord with crustal reworking of the older (3.8-3.9 Ga) gniesses. There is no evidence for Hadean material in the sources of the granitoids. The Hf isotope-time patterns are consistent with juvenile crust production from a mantle source that experienced only modest amounts of prior crustal extraction. They are distinct from those predicted by reprocessing of an enriched Hadean mafic crust, as has been proposed for this region [2] and for the source of the Hadean Jack Hills zircons [3]. The well-documented, time decreasing, positive 142Nd anomalies [e.g., 4] from these rocks are further evidence of crustal derivation from a convecting mantle source, rather than reworking of an enriched mafic lithosphere. The 143Nd isotopic -time patterns are more complex, reflecting the interplay

  10. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    NASA Technical Reports Server (NTRS)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  11. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2016-06-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth’s early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun--so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth’s magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  12. A nonmagnetic differentiated early planetary body

    DOE PAGES

    Weiss, Benjamin P.; Wang, Huapei; Sharp, Thomas G.; ...

    2017-06-19

    Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating thatmore » it last cooled in a near-zero field (<~1.7μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al–Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. Finally, this supports a recent conclusion that the solar nebula had dissipated by ~4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.« less

  13. A Nonmagnetic Differentiated Early Planetary Body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Benjamin P.; Wang, Jun

    2017-06-15

    Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating thatmore » it last cooled in a near-zero field (<∼1.7μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al–Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. This supports a recent conclusion that the solar nebula had dissipated by ∼4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.« less

  14. Possible tidal resonance of the early Earth's ocean due to the lunar orbit evolution

    NASA Astrophysics Data System (ADS)

    Motoyama, M.; Tsunakawa, H.; Takahashi, F.

    2016-12-01

    The ocean tide is one of the most important factors affecting the Earth's surface environment and the evolution of the Earth-Moon system (e.g. Goldreich, 1966). According to the Giant Impact hypothesis, the Moon was formed very near the Earth 4.6 billion years ago (Hartmann and Davis, 1979). At that time, the tidal force would be about several thousand times as strong as the present. However previous studies pointed out that significant attenuation of tidal waves might have occurred due to mechanical response of water motion (e.g. Hansen, 1982; Abe and Ooe, 2001), resulting in relatively calm state like the present ocean.In the present study, we analyze tidal response of the ocean on the early Earth using a model of constant-depth ocean covering all the surface of the rigid Earth. The examined modes of response are not only M2 corresponding to spherical harmonics Y22 but also others such as Y21, since the lunar orbital plane would be inclined.First, estimated is an ocean depth for possible resonance of the individual mode. Eigen frequencies of the fluid on a rotating sphere with no friction are calculated on the basis of previous study (Longuet-Higgins, 1968). These frequencies depend on the Earth's rotation rate and the ocean depth. The Earth's rotation period is assumed to have changed from 5 hours to 24 hours for the past 4.6 billion years (e.g. Mignard, 1980; Stacey and Davis, 2008). It is found that resonance could occur for diurnal modes of Y21 and Y31 with reasonable depths of the ancient ocean (1300 - 5200 m).Then we obtain a 2D response function on a sphere with friction in order to estimate the tidal amplitude of the ocean for main modes . The response function in the present study shows good agreement with the numerical simulation result of the tidal torque response of M2 (Abe et al., 1997). The calculation results suggest that diurnal modes of Y21 and Y31 would grown on the early Earth, while the other modes would fairly be attenuated. In particular

  15. BENNU’S JOURNEY - Early Earth

    NASA Image and Video Library

    2017-12-08

    This is an artist's concept of the young Earth being bombarded by asteroids. Scientists think these impacts could have delivered significant amounts of organic matter and water to Earth. Image Credit: NASA's Goddard Space Flight Center Conceptual Image Lab The Origins Spectral Interpretation Resource Identification Security -- Regolith Explorer spacecraft (OSIRIS-REx) will travel to a near-Earth asteroid, called Bennu, and bring a sample back to Earth for study. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-REx is scheduled for launch in late 2016. As planned, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    PubMed

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  17. Ultraviolet radiation and the photobiology of earth's early oceans.

    PubMed

    Cockell, C S

    2000-10-01

    During the Archean era (3.9-2.5 Ga ago) the earth was dominated by an oceanic lithosphere. Thus, understanding how life arose and persisted in the Archean oceans constitutes a major challenge in understanding early life on earth. Using a radiative transfer model of the late Archean oceans, the photobiological environment of the photic zone and the surface microlayer is explored at the time before the formation of a significant ozone column. DNA damage rates might have been approximately three orders of magnitude higher in the surface layer of the Archean oceans than on the present-day oceans, but at 30 m depth, damage may have been similar to the surface of the present-day oceans. However at this depth the risk of being transported to surface waters in the mixed layer was high. The mixed layer may have been inhabited by a low diversity UV-resistant biota. But it could have been numerically abundant. Repair capabilities similar to Deinococcus radiodurans would be sufficient to survive in the mixed layer. Diversity may have been greater in the region below the mixed layer and above the light compensation point corresponding to today's 'deep chlorophyll maximum'. During much of the Archean the air-water interface was probably an uninhabitable extreme environment for neuston. The habitability of some regions of the photic zone is consistent with the evidence embodied in the geologic record, which suggests an oxygenated upper layer in the Archean oceans. During the early Proterozoic, as ozone concentrations increased to a column abundance above 1 x 10(17) cm-2, UV stress would have been reduced and possibly a greater diversity of organisms could have inhabited the mixed layer. However, nutrient upwelling from newly emergent continental crusts may have been more significant in increasing total planktonic abundance in the open oceans and coastal regions than photobiological factors. The phohobiological environment of the Archean oceans has implications for the potential

  18. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics.

    PubMed

    Pujol, Magali; Marty, Bernard; Burgess, Ray; Turner, Grenville; Philippot, Pascal

    2013-06-06

    Understanding the growth rate of the continental crust through time is a fundamental issue in Earth sciences. The isotopic signatures of noble gases in the silicate Earth (mantle, crust) and in the atmosphere afford exceptional insight into the evolution through time of these geochemical reservoirs. However, no data for the compositions of these reservoirs exists for the distant past, and temporal exchange rates between Earth's interior and its surface are severely under-constrained owing to a lack of samples preserving the original signature of the atmosphere at the time of their formation. Here, we report the analysis of argon in Archaean (3.5-billion-year-old) hydrothermal quartz. Noble gases are hosted in primary fluid inclusions containing a mixture of Archaean freshwater and hydrothermal fluid. Our analysis reveals Archaean atmospheric argon with a (40)Ar/(36)Ar value of 143 ± 24, lower than the present-day value of 298.6 (for which (40)Ar has been produced by the radioactive decay of the potassium isotope (40)K, with a half-life of 1.25 billion years; (36)Ar is primordial in origin). This ratio is consistent with an early development of the felsic crust, which might have had an important role in climate variability during the first half of Earth's history.

  19. Reactive Oxygen Species on the Early Earth and Survival of Bacteria

    NASA Technical Reports Server (NTRS)

    Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn

    2011-01-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.

  20. Early Earth evolution: new insight from Sm and Nd isotopes in meteoritic inclusions

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Boyet, M.

    2014-12-01

    The interpretation of Sm-Nd systematics for the early Earth relies on knowing the composition of the silicate Earth and the 146Sm decay constant. We have measured both 146Sm-142Nd and 147Sm-143Nd internal systematics of four individual Calcium, Aluminum-rich Inclusions (CAIs), the first solids formed in the Solar System [1], from 3 different carbonaceous chondrites from the CV3 group: Allende, Northwest Africa (NWA) 2364 and NWA 6991. Results obtained on NWA 6991 plot on a well-defined mineral and bulk isochron with a Solar System initial 146Sm/144Sm ratio of 0.0070 ±0.0024. This ratio is more consistent with the ratio defined from internal isochrons of differentiated meteorites using the half-life of 103 Ma for 146Sm [2], instead of the value obtained considering the half-life of 68 Ma [3]. On the basis of nucleosynthethic anomalies in Sm and Nd isotopes [4], the ordinary (O) and enstatite (E) chondrites remain potential candidates for the Earth's building blocks. OC have an average deficit of -18±3 ppm relative to modern terrestrial 142Nd/144Nd, whereas EC range from the OC to the terrestrial values [4-6]. Sm stable isotope compositions of the analyzed CAIs indicate that galactic cosmic rays did not affect the 142Nd/144Nd compositions, but deficits are found in the pure p-process 144Sm nuclide (-240 to -290 ppm/ standard). These deficits may translate to 142Nd deficits of a few ppm. NWA 6991 CAI 146Sm-142Nd internal isochron passes through a 142Nd/144Nd ratio of -6 ±6 ppm relative to the terrestrial standard at a chondritic 147Sm/144Nd of 0.1960. We note that this value is identical to the enstatite chondrite average and the 142Nd/144Nd ratio of the lunar mantle, as defined recently by [7] using a chondritic Sm/Nd and Lu/Hf for the bulk Moon. While the determination of the Sm-Nd reference parameters for the bulk Earth is still contentious, the difference in 142Nd/144Nd between modern terrestrial rocks and meteorites analyzed so far is <10ppm. [1] Bouvier and

  1. Role for early-differentiated natural killer cells in infectious mononucleosis.

    PubMed

    Azzi, Tarik; Lünemann, Anna; Murer, Anita; Ueda, Seigo; Béziat, Vivien; Malmberg, Karl-Johan; Staubli, Georg; Gysin, Claudine; Berger, Christoph; Münz, Christian; Chijioke, Obinna; Nadal, David

    2014-10-16

    A growing body of evidence suggests that the human natural killer (NK)-cell compartment is phenotypically and functionally heterogeneous and is composed of several differentiation stages. Moreover, NK-cell subsets have been shown to exhibit adaptive immune features during herpes virus infection in experimental mice and to expand preferentially during viral infections in humans. However, both phenotype and role of NK cells during acute symptomatic Epstein-Barr virus (EBV) infection, termed infectious mononucleosis (IM), remain unclear. Here, we longitudinally assessed the kinetics, the differentiation, and the proliferation of subsets of NK cells in pediatric IM patients. Our results indicate that acute IM is characterized by the preferential proliferation of early-differentiated CD56(dim) NKG2A(+) immunoglobulin-like receptor(-) NK cells. Moreover, this NK-cell subset exhibits features of terminal differentiation and persists at higher frequency during at least the first 6 months after acute IM. Finally, we demonstrate that this NK-cell subset preferentially degranulates and proliferates on exposure to EBV-infected B cells expressing lytic antigens. Thus, early-differentiated NK cells might play a key role in the immune control of primary infection with this persistent tumor-associated virus. © 2014 by The American Society of Hematology.

  2. Synchrotron FTIR microspectroscopy reveals early adipogenic differentiation of human mesenchymal stem cells at single-cell level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhixiao; University of Chinese Academy of Science, Beijing 100049; Tang, Yuzhao

    Human mesenchymal stem cells (hMSCs) have been used as an ideal in vitro model to study human adipogenesis. However, little knowledge of the early stage differentiation greatly hinders our understanding on the mechanism of the adipogenesis processes. In this study, synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy was applied to track the global structural and compositional changes of lipids, proteins and nucleic acids inside individual hMSCs along the time course. The multivariate analysis of the SR-FTIR spectra distinguished the dynamic and significant changes of the lipids and nucleic acid at early differentiation stage. Importantly, changes of lipid structure during early daysmore » (Day 1–3) of differentiation might serve as a potential biomarker in identifying the state in early differentiation at single cell level. These results proved that SR-FTIR is a powerful tool to study the stem cell fate determination and early lipogenesis events. - Highlights: • Molecular events occur in the early adipogenic differentiation stage of hMSCs are studied by SR-FTIR. • SR-FTIR data suggest that lipids may play an important role in hMSCs determination. • As potential biomarkers, lipids peaks can identify the state of cell in early differentiation stage at single-cell level.« less

  3. Prebiotic materials from on and off the early Earth

    PubMed Central

    Bernstein, Max

    2006-01-01

    One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller–Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System. PMID:17008210

  4. Prebiotic materials from on and off the early Earth.

    PubMed

    Bernstein, Max

    2006-10-29

    One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller-Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System.

  5. Biological effects of high ultraviolet radiation on early earth--a theoretical evaluation.

    PubMed

    Cockell, C S

    1998-08-21

    The surface of early Earth was exposed to both UVC radiation (< 280 nm) and higher doses of UVB (280-315 nm) compared with the surface of present day Earth. The degree to which this radiation environment acted as a selection pressure on organisms and biological systems has rarely been theoretically examined with respect to the biologically effective irradiances that ancient organisms would receive. Here action spectra for DNA inactivation and isolated chloroplast inhibition are used to estimate biologically effective irradiances on archean Earth. Comparisons are made with present day Earth. The theoretical estimations on the UV radiation screening required to protect DNA on archean Earth compare well with field and laboratory observations on protection strategies found in present day microbial communities. They suggest that many physical and biological methods may have been effective and would have allowed for the radiation of life even under the high UV radiation regimes of archean Earth. Such strategies would also have provided effective reduction of photoinhibition by UV radiation. The data also suggest that the UV regime on the surface of Mars is not a life limiting factor per se, although other environmental factors such as desiccation and low temperatures may contribute towards the apparent lack of a surface biota.

  6. Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry.

    PubMed

    Ranjan, Sukrit; Todd, Zoe R; Sutherland, John D; Sasselov, Dimitar D

    2018-04-08

    A key challenge in origin-of-life studies is understanding the environmental conditions on early Earth under which abiogenesis occurred. While some constraints do exist (e.g., zircon evidence for surface liquid water), relatively few constraints exist on the abundances of trace chemical species, which are relevant to assessing the plausibility and guiding the development of postulated prebiotic chemical pathways which depend on these species. In this work, we combine literature photochemistry models with simple equilibrium chemistry calculations to place constraints on the plausible range of concentrations of sulfidic anions (HS - , HSO 3 - , SO 3 2- ) available in surficial aquatic reservoirs on early Earth due to outgassing of SO 2 and H 2 S and their dissolution into small shallow surface water reservoirs like lakes. We find that this mechanism could have supplied prebiotically relevant levels of SO 2 -derived anions, but not H 2 S-derived anions. Radiative transfer modeling suggests UV light would have remained abundant on the planet surface for all but the largest volcanic explosions. We apply our results to the case study of the proposed prebiotic reaction network of Patel et al. ( 2015 ) and discuss the implications for improving its prebiotic plausibility. In general, epochs of moderately high volcanism could have been especially conducive to cyanosulfidic prebiotic chemistry. Our work can be similarly applied to assess and improve the prebiotic plausibility of other postulated surficial prebiotic chemistries that are sensitive to sulfidic anions, and our methods adapted to study other atmospherically derived trace species. Key Words: Early Earth-Origin of life-Prebiotic chemistry-Volcanism-UV radiation-Planetary environments. Astrobiology 18, xxx-xxx.

  7. Looking Backwards in Time to the Early Earth Using the Lens of Stable Isotope Geodynamic Cycles

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.

    2016-12-01

    The stable isotope ratios of hydrogen, carbon, oxygen and sulfur provide of means of tracing interactions between the major reservoirs of the Earth. The oceans and the dichotomy between continental and oceanic crust are key differences between the Earth and other terrestrial bodies. The existence of plate tectonics and the recognition that no primary crust survives at the Earth's surface sets this planet apart from the smaller terrestrial bodies. The thermostatic control of carbonate-silicate cycle works because of the hydrosphere and plate tectonics. Additionally, the contrast between the carbon isotope ratios for reduced and oxidized species appear to also be invariant over geologic time with evidence of old recycled carbon in the form of diamond inclusions in mantle-derived igneous rocks. Lessons from comparative planetology suggest that early differentiation of the Earth would have likely resulted in the rapid formation of the oceans, a water world over the primary crust. Plate tectonics provides a mechanism for buffering the oxygen isotope fractionation between the oceans and the mantle. The set point for hydrosphere's oxygen isotope composition is a result of the geometry of mid-ocean ridge accretion that is stable over an order magnitude change in spreading rates with time constants much younger shorter than the age of the Earth. The recognition that the "normal" ranges for hydrogen isotope ratios of igneous, metamorphic and sedimentary rocks of any age generally overlap with similar ranges, with the exception of rocks that have interacted with D- and 18O-depleted meteoric waters (generally at high latitudes), is an argument for a constant volume ocean over geologic time. Plate tectonics with a constant volume ocean constrains the thickness of the continental crust because of the rapidity of the mechanical weathering cycle (characteristic times of 10's of millions of years; freeboard of the continents argument). In a plate tectonic regime, chemical

  8. Meteors as a Delivery Vehicle for Organic Matter to the Early Earth

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Only in recent years has a concerted effort been made to study the circumstances under which extraterrestrial organic matter is accreted on Earth by way of meteors. Meteors are the luminous phenomena associated with the (partial) ablation of meteoric matter and represent the dominant pathway from space to Earth, with the possible exception of rare giant impacts of asteroids and comets. Meteors dominated the supply of organics to the early Earth if organic matter survived this pathway efficiently. Moreover, meteors are a source of kinetic energy that can convert inert atmospheric gases such as CO, N, and H2O into useful compounds, such as HCN and NO. Understanding these processes relies heavily on empirical evidence that is still very limited. Here I report on the observations in hand and discuss their relevance in the context of the origin of life.

  9. Autotrophic Ecosystems on the Early Earth

    NASA Technical Reports Server (NTRS)

    Schulte, M.

    2003-01-01

    Ophiolite sequences, sections of lower oceanic crust and upper mantle that have been thrust onto continental craton, are located in northern and central California and provide easily accessible areas that serve as good analogs for similar, more extensive areas of the early Earth. We have begun investigating and characterizing these sites in order to understand better the processes that may be responsible for the water chemistry, mineralogy and biology of similar environments on the early Earth. The geophysical and geochemical processes in these terranes provide niches for unique communities of extremeophiles and likely provide a good analog to the location that first gave rise to life on Earth. The ophiolites found in northern and central California include the Trinity, Josephine, Coast Range and Point Sal, all of which are approximately 160 million years old. Fluids from serpentinizing springs are generally alkaline with high pH and H2 contents, indicating that the mafic rock compositions control the fluid composition through water-rock reactions during relatively low-grade hydrothermal processes. There are significant amounts of primary mineralogy remaining in the rocks, meaning that substantial alteration processes are still occurring in these terranes. The general reaction for serpentinization of olivine is given by one of the authors. olivine + H2O = serpentine + brucite + magnetite + H2. We have analyzed the mineralogical composition of several rock samples collected from the Coast Range Ophiolite near Clear Lake, CA by electron microprobe. The remnant primary mineralogy is fairly urnform in composition, with an olivine composition of Fo(sub 90), and with pyroxene compositions of En(sub 90) for orthopyroxene and En(sub 49)Wo(sub 48)Fs(sub 03) for the clinopyroxene. Other primary phases observed include chromites and other spinels. Examination of petrographic thin sections reveals that serpentinization reactions have occurred in these locations. The serpentine

  10. Early differential processing of material images: Evidence from ERP classification.

    PubMed

    Wiebel, Christiane B; Valsecchi, Matteo; Gegenfurtner, Karl R

    2014-06-24

    Investigating the temporal dynamics of natural image processing using event-related potentials (ERPs) has a long tradition in object recognition research. In a classical Go-NoGo task two characteristic effects have been emphasized: an early task independent category effect and a later task-dependent target effect. Here, we set out to use this well-established Go-NoGo paradigm to study the time course of material categorization. Material perception has gained more and more interest over the years as its importance in natural viewing conditions has been ignored for a long time. In addition to analyzing standard ERPs, we conducted a single trial ERP pattern analysis. To validate this procedure, we also measured ERPs in two object categories (people and animals). Our linear classification procedure was able to largely capture the overall pattern of results from the canonical analysis of the ERPs and even extend it. We replicate the known target effect (differential Go-NoGo potential at frontal sites) for the material images. Furthermore, we observe task-independent differential activity between the two material categories as early as 140 ms after stimulus onset. Using our linear classification approach, we show that material categories can be differentiated consistently based on the ERP pattern in single trials around 100 ms after stimulus onset, independent of the target-related status. This strengthens the idea of early differential visual processing of material categories independent of the task, probably due to differences in low-level image properties and suggests pattern classification of ERP topographies as a strong instrument for investigating electrophysiological brain activity. © 2014 ARVO.

  11. Impact melting of frozen oceans on the early Earth: implications for the origin of life

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Bigham, C.; Miller, S. L.

    1994-01-01

    Without sufficient greenhouse gases in the atmosphere, the early Earth would have become a permanently frozen planet because the young Sun was less luminous than it is today. Several resolutions to this faint young Sun-frozen Earth paradox have been proposed, with an atmosphere rich in CO2 being the one generally favored. However, these models assume that there were no mechanisms for melting a once frozen ocean. Here we show that bolide impacts between about 3.6 and 4.0 billion years ago could have episodically melted an ice-covered early ocean. Thaw-freeze cycles associated with bolide impacts could have been important for the initiation of abiotic reactions that gave rise to the first living organisms.

  12. Earth Science. Developing an Early Interest in Science: A Preschool Science Curriculum. (4-Year-Olds).

    ERIC Educational Resources Information Center

    Summer, Gail L.; Giovannini, Kathleen

    This teaching guide on earth sciences for 4-year-olds is based on a modification of the "Plan, Do, Review" approach to education devised by High Scope in Ypsilanti, Michigan. First implemented as an outreach early childhood program in North Carolina, the science activities described in this guide can be adapted to various early childhood…

  13. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  14. Earth Science. Developing an Early Interest in Science: A Preschool Science Curriculum. (3-Year-Olds).

    ERIC Educational Resources Information Center

    Summer, Gail L.; Giovannini, Kathleen

    This teaching guide on earth sciences for 3-year-old children is based on a modification of the "Plan, Do, Review" approach to education devised by High Scope in Ypsilanti, Michigan. First implemented as an outreach early childhood program in North Carolina, the science activities described in this guide can be adapted to various early childhood…

  15. Early Stage of Origin of Earth (interval after Emergence of Sun, Formation of Liquid Core, Formation of Solid Core)

    NASA Astrophysics Data System (ADS)

    Pechernikova, G. V.; Sergeev, V. N.

    2017-05-01

    Gravitational collapse of interstellar molecular cloud fragment has led to the formation of the Sun and its surrounding protoplanetary disk, consisting of 5 × 10^5 dust and gas. The collapse continued (1 years. Age of solar system (about 4.57×10^9 years) determine by age calcium-aluminum inclusions (CAI) which are present at samples of some meteorites (chondrites). Subsidence of dust to the central plane of a protoplanetary disk has led to formation of a dust subdisk which as a result of gravitational instability has broken up to condensations. In the process of collisional evolution they turned into dense planetesimals from which the planets formed. The accounting of a role of large bodies in evolution of a protoplanetary swarm in the field of terrestrial planets has allowed to define times of formation of the massive bodies permitting their early differentiation at the expense of short-lived isotopes heating and impacts to the melting temperature of the depths. The total time of Earth's growth is estimated about 10^8 years. Hf geochronometer showed that the core of the Earth has existed for Using W about 3×10^7 Hf geohronometer years since the formation of the CAI. Thus data W point to the formation of the Earth's core during its accretion. The paleomagnetic data indicate the existence of Earth's magnetic field past 3.5×10^9 years. But the age of the solid core, estimated by heat flow at the core-mantle boundary is 1.7×10^9 (0.5 years). Measurements of the thermal conductivity of liquid iron under the conditions that exist in the Earth's core, indicate the absence of the need for a solid core of existence to support the work geodynamo, although electrical resistivity measurements yield the opposite result.

  16. What Do We Really Know About Early Earth? Less Than We Claim.

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Bell, E. A.; Boehnke, P.

    2016-12-01

    The ubiquity of origin myths suggests that our species has an innate need to explain how Earth formed and evolved. Myth fabrication is in part controlled by limitations of the available historical record. When our community encountered its limit - there are no known rocks older than 4.02 Ga - it chose the paradigm of a desiccated, molten, continent-free wasteland and called it the Hadean. Over the past 15 years, motivated largely by study of >4 Ga zircons, aspects of this story have been displaced to include granite weathering and sediment cycling in the presence of H2O. While encouraging that observational data now informs at least part of our early Earth paradigm, other elements appear unchanged. For example, the view that significant continental crust or plate interactions didn't emerge until 3 Ga are argued on the basis of changes at that time in diamond inclusions, shale composition, zircon age spectra, and arc rock associations. However, they share 3 flawed, interrelated assumptions (lithospheric thermal structure and zircon productivity are time independent and the Archean rock record is unbiased) that greatly weaken their evidentiary value. It is axiomatic that we cannot know if earliest Earth was similar to present day or more akin to our longstanding myth from rocks given their >4.02 Ga absence. However, we are not without a lithic record and data from zircons as old as 4.38 Ga are decidedly more consistent with the former view than the latter. What compelled us to create an origin myth in the absence of empirical evidence? While science is distinguished from mythology by its emphasis on verification, its practitioners may be as subject to the same existential needs as any primitive society. Given high expected early radioactivity and impact flux, it was irresistible to explain the lack of Hadean continental crust by its non-existence rather than the equally plausible notion that it was consumed by the same processes operating on the planet today. If

  17. A warm or a cold early Earth? New insights from a 3-D climate-carbon model

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Le Hir, Guillaume; Fluteau, Frédéric; Forget, François; Catling, David C.

    2017-09-01

    Oxygen isotopes in marine cherts have been used to infer hot oceans during the Archean with temperatures between 60 °C (333 K) and 80 °C (353 K). Such climates are challenging for the early Earth warmed by the faint young Sun. The interpretation of the data has therefore been controversial. 1D climate modeling inferred that such hot climates would require very high levels of CO2 (2-6 bars). Previous carbon cycle modeling concluded that such stable hot climates were impossible and that the carbon cycle should lead to cold climates during the Hadean and the Archean. Here, we revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. We find that CO2 partial pressures of around 1 bar could have produced hot climates given a low land fraction and cloud feedback effects. However, such high CO2 partial pressures should not have been stable because of the weathering of terrestrial and oceanic basalts, producing an efficient stabilizing feedback. Moreover, the weathering of impact ejecta during the Late Heavy Bombardment (LHB) would have strongly reduced the CO2 partial pressure leading to cold climates and potentially snowball Earth events after large impacts. Our results therefore favor cold or temperate climates with global mean temperatures between around 8 °C (281 K) and 30 °C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean. Finally, our model suggests that the carbon cycle was efficient for preserving clement conditions on the early Earth without necessarily requiring any other greenhouse gas or warming process.

  18. By Permission of the Mantle: Modern and Ancient Deep Earth Volatile Cycles

    NASA Astrophysics Data System (ADS)

    Hirschmann, M. M.

    2011-12-01

    The principle volatile elements, H and C, are of surpassing importance to processes and conditions in the interiors and the surfaces of terrestrial planets, affecting everything from mantle dynamics and large scale geochemical differentiation to climate and habitability. The storage of these volatiles in planetary interiors, their inventory in the near-surface environment and exchange between the interiors and the exosphere are governed by petrologic processes. Were it not for the effective incompatibility of these components in mantle lithologies, there might be no oceans, no habitable climate, and no biosphere on the surface. Consequently, deep Earth volatile cycles represent one of the best examples of how petrology influences nearly all other aspects of Earth science. The exosphere of the modern Earth has a high H/C ratio compared to that of the interior sampled by oceanic basalts. A potential explanation for this is that C is subducted to the deep mantle more efficiently than H, such that the exosphere C reservoir shrinks through geologic time. Unfortunately this hypothesis conflicts with the sedimentary record, which suggests that carbonate storage on the continents has increased rather than decreased with time. It also may not be applicable to the first 3 Ga of Earth history, when hotter typical subduction geotherms greatly reduced the efficiency of C subduction. An important question regarding deep Earth volatile cycles is the inventory of H and C in the interior and the exosphere that descend from Earth's earliest differentiation processes. Originally, much of Earth's volatile inventory was presumably present as a thick atmosphere, in part because volatiles were probably delivered late in the accretion history and owing to both the efficiency of impact degassing and of volatile release from early magma ocean(s). Early mantle H2O may descend from the magma ocean, in which portions of a steam atmosphere are dissolved in the magma and then precipitated with

  19. Sulfur in Earth's Mantle and Its Behavior During Core Formation

    NASA Technical Reports Server (NTRS)

    Chabot, Nancy L.; Righter,Kevin

    2006-01-01

    The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.

  20. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.

    PubMed

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James

    2014-12-16

    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other magmatic iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.

  1. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth

    NASA Technical Reports Server (NTRS)

    Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L.

    2001-01-01

    The much-studied Murchison meteorite is generally used as the standard reference for organic compounds in extraterrestrial material. Amino acids and other organic compounds important in contemporary biochemistry are thought to have been delivered to the early Earth by asteroids and comets, where they may have played a role in the origin of life. Polyhydroxylated compounds (polyols) such as sugars, sugar alcohols and sugar acids are vital to all known lifeforms-they are components of nucleic acids (RNA, DNA), cell membranes and also act as energy sources. But there has hitherto been no conclusive evidence for the existence of polyols in meteorites, leaving a gap in our understanding of the origins of biologically important organic compounds on Earth. Here we report that a variety of polyols are present in, and indigenous to, the Murchison and Murray meteorites in amounts comparable to amino acids. Analyses of water extracts indicate that extraterrestrial processes including photolysis and formaldehyde chemistry could account for the observed compounds. We conclude from this that polyols were present on the early Earth and therefore at least available for incorporation into the first forms of life.

  2. Impact melting of frozen oceans on the early Earth: Implications for the origin of life

    PubMed Central

    Bada, J. L.; Bigham, C.; Miller, S. L.

    1994-01-01

    Without sufficient greenhouse gases in the atmosphere, the early Earth would have become a permanently frozen planet because the young Sun was less luminous than it is today. Several resolutions to this faint young Sun-frozen Earth paradox have been proposed, with an atmosphere rich in CO2 being the one generally favored. However, these models assume that there were no mechanisms for melting a once frozen ocean. Here we show that bolide impacts between about 3.6 and 4.0 billion years ago could have episodically melted an ice-covered early ocean. Thaw-freeze cycles associated with bolide impacts could have been important for the initiation of abiotic reactions that gave rise to the first living organisms. PMID:11539550

  3. Revisiting the Swaziland Supergroup: New Approaches to Examining Evidence for Early Life on Earth

    NASA Technical Reports Server (NTRS)

    Walsh, M. M.; Westall, F.

    2000-01-01

    The re-examination by SEM of 3.4 Ga fossiliferous carbonaceous cherts reveals fungal contaminants in addition to indigenous microfossils. Weathered volcanic flows associated with fossiliferous chert layers offer a promising area for further study of early life on Earth.

  4. An Earth with affinities to Enstatite Chondrites

    NASA Astrophysics Data System (ADS)

    McDonough, W. F.

    2015-12-01

    parent body. The Earth accreted early in a reduced state, perhaps to the point of differentiating silicides into the core. Later accreted material was increasingly more oxidized. Stirring and mixing in the early solar system created opportunities for the Earth and enstatite chondrites to share some, but not all chemical and isotopic characteristics.

  5. A Review of Recent Studies on Differential Reinforcement during Skill Acquisition in Early Intervention

    ERIC Educational Resources Information Center

    Vladescu, Jason C.; Kodak, Tiffany

    2010-01-01

    Although the use of differential reinforcement has been recommended in previous investigations and in early intervention curriculum manuals, few studies have evaluated the best method for providing differential reinforcement to maximize independent responding. This paper reviews previous research on the effectiveness of differential reinforcement…

  6. Noncanonical RNA Nucleosides as Molecular Fossils of an Early Earth-Generation by Prebiotic Methylations and Carbamoylations.

    PubMed

    Schneider, Christina; Becker, Sidney; Okamura, Hidenori; Crisp, Antony; Amatov, Tynchtyk; Stadlmeier, Michael; Carell, Thomas

    2018-05-14

    The RNA-world hypothesis assumes that life on Earth started with small RNA molecules that catalyzed their own formation. Vital to this hypothesis is the need for prebiotic routes towards RNA. Contemporary RNA, however, is not only constructed from the four canonical nucleobases (A, C, G, and U), it also contains many chemically modified (noncanonical) bases. A still open question is whether these noncanonical bases were formed in parallel to the canonical bases (chemical origin) or later, when life demanded higher functional diversity (biological origin). Here we show that isocyanates in combination with sodium nitrite establish methylating and carbamoylating reactivity compatible with early Earth conditions. These reactions lead to the formation of methylated and amino acid modified nucleosides that are still extant. Our data provide a plausible scenario for the chemical origin of certain noncanonical bases, which suggests that they are fossils of an early Earth. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Statistical Constraints from Siderophile Elements on Earth's Accretion, Differentiation, and Initial Core Stratification

    NASA Astrophysics Data System (ADS)

    O'Rourke, J. G.; Stevenson, D. J.

    2015-12-01

    Abundances of siderophile elements in the primitive mantle constrain the conditions of Earth's core/mantle differentiation. Core growth occurred as Earth accreted from collisions between planetesimals and larger embryos of unknown original provenance, so geochemistry is directly related to the overall dynamics of Solar System formation. Recent studies claim that only certain conditions of equilibration (pressure, temperature, and oxygen fugacity) during core formation can reproduce the available data. Typical analyses, however, only consider the effects of varying a few out of tens of free parameters in continuous core formation models. Here we describe the Markov chain Monte Carlo method, which simultaneously incorporates the large uncertainties on Earth's composition and the parameterizations that describe elemental partitioning between metal and silicate. This Bayesian technique is vastly more computationally efficient than a simple grid search and is well suited to models of planetary accretion that involve a plethora of variables. In contrast to previous work, we find that analyses of siderophile elements alone cannot yield a unique scenario for Earth's accretion. Our models predict a wide range of possible light element contents for the core, encompassing all combinations permitted by seismology and mineral physics. Specifically, we are agnostic between silicon and oxygen as the dominant light element, and the addition of carbon or sulfur is also permissible but not well constrained. Redox conditions may have remained roughly constant during Earth's accretion or relatively oxygen-rich material could have been incorporated before reduced embryos. Pressures and temperatures of equilibration, likewise, may only increase slowly throughout accretion. Therefore, we do not necessarily expect a thick (>500 km), compositionally stratified layer that is stable against convection to develop at the top of the core of Earth (or, by analogy, Venus). A thinner stable layer

  8. Function of FEZF1 during early neural differentiation of human embryonic stem cells.

    PubMed

    Liu, Xin; Su, Pei; Lu, Lisha; Feng, Zicen; Wang, Hongtao; Zhou, Jiaxi

    2018-01-01

    The understanding of the mechanism underlying human neural development has been hampered due to lack of a cellular system and complicated ethical issues. Human embryonic stem cells (hESCs) provide an invaluable model for dissecting human development because of unlimited self-renewal and the capacity to differentiate into nearly all cell types in the human body. In this study, using a chemical defined neural induction protocol and molecular profiling, we identified Fez family zinc finger 1 (FEZF1) as a potential regulator of early human neural development. FEZF1 is rapidly up-regulated during neural differentiation in hESCs and expressed before PAX6, a well-established marker of early human neural induction. We generated FEZF1-knockout H1 hESC lines using CRISPR-CAS9 technology and found that depletion of FEZF1 abrogates neural differentiation of hESCs. Moreover, loss of FEZF1 impairs the pluripotency exit of hESCs during neural specification, which partially explains the neural induction defect caused by FEZF1 deletion. However, enforced expression of FEZF1 itself fails to drive neural differentiation in hESCs, suggesting that FEZF1 is necessary but not sufficient for neural differentiation from hESCs. Taken together, our findings identify one of the earliest regulators expressed upon neural induction and provide insight into early neural development in human.

  9. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  10. Earth's early O2 cycle suppressed by primitive continents

    NASA Astrophysics Data System (ADS)

    Smit, Matthijs A.; Mezger, Klaus

    2017-10-01

    Free oxygen began to accumulate in Earth's surface environments between 3.0 and 2.4 billion years ago. Links between oxygenation and changes in the composition of continental crust during this time are suspected, but have been difficult to demonstrate. Here we constrain the average composition of the exposed continental crust since 3.7 billion years ago by compiling records of the Cr/U ratio of terrigenous sediments. The resulting record is consistent with a predominantly mafic crust prior to 3.0 billion years ago, followed by a 500- to 700-million-year transition to a crust of modern andesitic composition. Olivine and other Mg-rich minerals in the mafic Archaean crust formed serpentine minerals upon hydration, continuously releasing O2-scavenging agents such as dihydrogen, hydrogen sulfide and methane to the environment. Temporally, the decline in mafic crust capable of such process coincides with the first accumulation of O2 in the oceans, and subsequently the atmosphere. We therefore suggest that Earth's early O2 cycle was ultimately limited by the composition of the exposed upper crust, and remained underdeveloped until modern andesitic continents emerged.

  11. Conditions for the emergence of life on the early Earth: summary and reflections

    PubMed Central

    Jortner, Joshua

    2006-01-01

    This review attempts to situate the emergence of life on the early Earth within the scientific issues of the operational and mechanistic description of life, the conditions and constraints of prebiotic chemistry, together with bottom-up molecular fabrication and biomolecular nanofabrication and top-down miniaturization approaches to the origin of terrestrial life. PMID:17008225

  12. Chondritic Earth: comparisons, guidelines and status

    NASA Astrophysics Data System (ADS)

    McDonough, W. F.

    2014-12-01

    The chemical and isotopic composition of the Earth is rationally understood within the context of the chondritic reference frame, without recourse to hidden reservoirs, collision erosion, or strict interpretation of an enstatite chondrite model. Challenges to interpreting the array of recent and disparate chemical and isotopic observations from meteorites need to be understood as rich data harvests that inform us of the compositional heterogeneity in the early solar system. Our ability to resolve small, significant compositional differences between chondrite families provide critical insights into integrated compositional signatures at differing annuli distances from the Sun (i.e., 1-6 AU). Rigorous evaluation of chondritic models for planets requires treatment of both statistical and systematic uncertainties - to date these efforts are uncommonly practiced. Planetary olivine to pyroxene ratio reflects fO2 and temperature potentials in the nebular, given possible ISM compositional conditions; thus this ratio is a non-unique parameter of terrestrial bodies. Consequently the Mg/Si value of a planet (ie., olivine to pyroxene ratio) is a free variable; there is no singular chondritic Mg/Si value. For the Earth, there is an absence of physical and chemical evidence requiring a major element, chemical distinction between the upper and lower mantle, within uncertainties. Early Earth differentiation likely occurred, but there is an absence of chemical and isotopic evidence of its imprint. Chondrites, peridotites, komatiites, and basalts (ancient and modern) reveal a coherent picture of a chondritic compositional Earth, with compositionally affinities to enstatite chondrites. At present results from geoneutrino studies non-uniquely support these conclusions. Future experiments can provide true transformative insights into the Earth's thermal budget, define compositional BSE models, and will restrict discussions on Earth dynamics and its thermal evolution.

  13. Early results from Magsat. [studies of near-earth magnetic fields

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.; Mayhew, M. A.

    1981-01-01

    Papers presented at the May 27, 1981 meeting of the American Geophysical Union concerning early results from the Magsat satellite program, which was designed to study the near-earth magnetic fields originating in the core and lithosphere, are discussed. The satellite was launched on October 30, 1979 into a sun-synchronous (twilight) orbit, and re-entered the atmosphere on June 11, 1980. Instruments carried included a cesium vapor magnetometer to measure field magnitudes, a fluxgate magnetometer to measure field components and an optical system to measure fluxgate magnetometer orientation. Early results concerned spherical harmonic models, fields due to ionospheric and magnetospheric currents, the identification and interpretation of fields from lithospheric sources. The preliminary results confirm the possibility of separating the measured field into core, crustal and external components, and represent significant developments in analytical techniques in main-field modelling and the physics of the field sources.

  14. A review of recent studies on differential reinforcement during skill acquisition in early intervention.

    PubMed

    Vladescu, Jason C; Kodak, Tiffany

    2010-01-01

    Although the use of differential reinforcement has been recommended in previous investigations and in early intervention curriculum manuals, few studies have evaluated the best method for providing differential reinforcement to maximize independent responding. This paper reviews previous research on the effectiveness of differential reinforcement as treatment and describes important areas of future research.

  15. Were micrometeorites a source of prebiotic molecules on the early Earth?

    PubMed

    Maurette, M; Brack, A; Kurat, G; Perreau, M; Engrand, C

    1995-03-01

    "Interplanetary Dust Particles" with sizes approximately 10 micrometers collected in the stratosphere (IDPs), as well as much larger "giant" micrometeorites retrieved from Antarctic ice melt water (AMMs), are mostly composed of unequilibrated assemblages of minerals, thus being related to primitive unequilibrated meteorites. Two independent evaluations of the mass flux of micrometeorites measuring approximately 50 micrometers to approximately 200 micrometers, recovered from either the Greenland or the Antarctic ice sheets have been reported (approximately 20,000 tons/a). A comparison with recent evaluation of the flux of meteorites reaching the Earth's surface (up to masses of 10,000 tons), indicates that micrometeorites represent about 99.5% of the extraterrestrial material falling on the Earth's surface each year. As they show carbon concentrations exceeding that of the most C-rich meteorite (Orgueil), they are the major contributors of extraterrestrial C-rich matter accreting to the Earth today. Moreover they are complex microstructured aggregates of grains. They contain not only a variety of C-rich matter, such as a new "dirty" magnetite phase enriched in P, S, and minor elements, but also a diversity of potential catalysts (hydrous silicates, oxides, sulfides and metal grains of Fe/Ni composition, etc.). They could have individually functioned on the early Earth, as "micro-chondritic-reactors" for the processing of prebiotic organic molecules in liquid water. Future progress requires the challenging development of meaningful laboratory simulation experiments, and a better understanding of the partial reprocessing of micrometeorites in the atmosphere.

  16. Gene function in early mouse embryonic stem cell differentiation

    PubMed Central

    Sene, Kagnew Hailesellasse; Porter, Christopher J; Palidwor, Gareth; Perez-Iratxeta, Carolina; Muro, Enrique M; Campbell, Pearl A; Rudnicki, Michael A; Andrade-Navarro, Miguel A

    2007-01-01

    Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and

  17. A REVIEW OF RECENT STUDIES ON DIFFERENTIAL REINFORCEMENT DURING SKILL ACQUISITION IN EARLY INTERVENTION

    PubMed Central

    Vladescu, Jason C; Kodak, Tiffany

    2010-01-01

    Although the use of differential reinforcement has been recommended in previous investigations and in early intervention curriculum manuals, few studies have evaluated the best method for providing differential reinforcement to maximize independent responding. This paper reviews previous research on the effectiveness of differential reinforcement as treatment and describes important areas of future research. PMID:21119913

  18. Conditions of Core Formation in the Early Earth: Single Stage or Heterogeneous Accretion?

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2010-01-01

    Since approx.1990 high pressure and temperature (PT) experiments on metal-silicate systems have showed that partition coefficients [D(met/sil)] for siderophile (iron-loving) elements are much different than those measured at low PT conditions [1,2]. The high PT data have been used to argue for a magma ocean during growth of the early Earth [3,4]. In the ensuing decades there have been hundreds of new experiments carried out and published on a wide range of siderophile elements (> 80 experiments published for Ni, Co, Mo, W, P, Mn, V, Cr, Ga, Cu and Pd). At the same time several different models have been advanced to explain the siderophile elements in Earth's mantle: a) shallow depth magma ocean 25-30 GPa [3,5]; b) deep magma ocean; up to 50 GPa [6,7], and c) early reduced and later oxidized magma ocean [8,9]. Some studies have drawn conclusions based on a small subset of siderophile elements, or a set of elements that provides little leverage on the big picture (like slightly siderophile elements), and no single study has attempted to quantitatively explain more than 5 elements at a time. The purpose of this abstract is to identify issues that have lead to a difference in interpretation, and to present updated predictive expressions based on new experimental data. The resulting expressions will be applied to the siderophile element depletions in Earth's upper mantle.

  19. Water in the Earth's Interior: Distribution and Origin

    NASA Astrophysics Data System (ADS)

    Peslier, Anne H.; Schönbächler, Maria; Busemann, Henner; Karato, Shun-Ichiro

    2017-10-01

    The concentration and distribution of water in the Earth has influenced its evolution throughout its history. Even at the trace levels contained in the planet's deep interior (mantle and core), water affects Earth's thermal, deformational, melting, electrical and seismic properties, that control differentiation, plate tectonics and volcanism. These in turn influenced the development of Earth's atmosphere, oceans, and life. In addition to the ubiquitous presence of water in the hydrosphere, most of Earth's "water" actually occurs as trace amounts of hydrogen incorporated in the rock-forming silicate minerals that constitute the planet's crust and mantle, and may also be stored in the metallic core. The heterogeneous distribution of water in the Earth is the result of early planetary differentiation into crust, mantle and core, followed by remixing of lithosphere into the mantle after plate-tectonics started. The Earth's total water content is estimated at 18_{-15}^{+81} times the equivalent mass of the oceans (or a concentration of 3900_{-3300}^{+32700} ppm weight H2O). Uncertainties in this estimate arise primarily from the less-well-known concentrations for the lower mantle and core, since samples for water analyses are only available from the crust, the upper mantle and very rarely from the mantle transition zone (410-670 km depth). For the lower mantle (670-2900 km) and core (2900-4500 km), the estimates rely on laboratory experiments and indirect geophysical techniques (electrical conductivity and seismology). The Earth's accretion likely started relatively dry because it mainly acquired material from the inner part of the proto-planetary disk, where temperatures were too high for the formation and accretion of water ice. Combined evidence from several radionuclide systems (Pd-Ag, Mn-Cr, Rb-Sr, U-Pb) suggests that water was not incorporated in the Earth in significant quantities until the planet had grown to ˜60-90% of its current size, while core formation

  20. Numerical Results of Earth's Core Accumulation 3-D Modelling

    NASA Astrophysics Data System (ADS)

    Khachay, Yurie; Anfilogov, Vsevolod

    2013-04-01

    For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in

  1. Enhancer and Transcription Factor Dynamics during Myeloid Differentiation Reveal an Early Differentiation Block in Cebpa null Progenitors.

    PubMed

    Pundhir, Sachin; Bratt Lauridsen, Felicia Kathrine; Schuster, Mikkel Bruhn; Jakobsen, Janus Schou; Ge, Ying; Schoof, Erwin Marten; Rapin, Nicolas; Waage, Johannes; Hasemann, Marie Sigurd; Porse, Bo Torben

    2018-05-29

    Transcription factors PU.1 and CEBPA are required for the proper coordination of enhancer activity during granulocytic-monocytic (GM) lineage differentiation to form myeloid cells. However, precisely how these factors control the chronology of enhancer establishment during differentiation is not known. Through integrated analyses of enhancer dynamics, transcription factor binding, and proximal gene expression during successive stages of murine GM-lineage differentiation, we unravel the distinct kinetics by which PU.1 and CEBPA coordinate GM enhancer activity. We find no evidence of a pioneering function of PU.1 during late GM-lineage differentiation. Instead, we delineate a set of enhancers that gain accessibility in a CEBPA-dependent manner, suggesting a pioneering function of CEBPA. Analyses of Cebpa null bone marrow demonstrate that CEBPA controls PU.1 levels and, unexpectedly, that the loss of CEBPA results in an early differentiation block. Taken together, our data provide insights into how PU.1 and CEBPA functionally interact to drive GM-lineage differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Early differentiation of the Moon: Experimental and modeling studies

    NASA Technical Reports Server (NTRS)

    Longhi, J.

    1986-01-01

    Major accomplishments include the mapping out of liquidus boundaries of lunar and meteoritic basalts at low pressure; the refinement of computer models that simulate low pressure fractional crystallization; the development of a computer model to calculate high pressure partial melting of the lunar and Martian interiors; and the proposal of a hypothesis of early lunar differentiation based upon terrestrial analogs.

  3. Alternative Earths: The Diverse Chapters of Sustained Habitability on a Dynamic Early Earth and Their Astrobiological Significance

    NASA Astrophysics Data System (ADS)

    Lyons, T. W.

    2015-12-01

    The oldest signs of animal life appear in the geologic record 600 to 700 million years ago. For the four billion years prior, our planet experienced dramatic changes that paved the way for this milestone. Beyond the establishment of Earth's earliest oceans 4.3 billion years ago (Ga), the single most important environmental transformation in history may have been the first permanent rise of atmospheric oxygen around 2.3 Ga. Before this Great Oxidation Event (GOE), Earth's atmosphere and oceans were virtually devoid of this gas, which forms the basis for all macroscopic life. Yet full oxygenation was a long, drawn out process. This talk will lay out the state-of-the-art in our understanding of Earth's early oxygenation, with an emphasis on the delay between the first biological oxygen production, tentatively placed at 3 Ga, and the appearance of animals almost 2.5 billion years later. Recent work suggests transient oxygenation episodes occurred prior to the GOE. Once permanently present in the atmosphere, oxygen may have risen to very high levels and then nose-dived. Then, at least a billion years of dominantly oxygen-free conditions in the deep ocean followed, beneath an atmosphere and shallow oceans much leaner in oxygen than previous estimates indicated. Deficiencies in oxygen and associated nutrients may have, in turn, set a challenging course for many of the oceans' inhabitants, explaining persistently low populations and diversities of eukaryotes. The latest data suggest these billion-plus years of intermediate oxygen were followed by increases in both ocean and atmosphere oxygen contents and eukaryotic diversity 750 to 800 million years ago. Novel, rock-bound proxies and complementary numerical models are now steering our views of co-evolving life and marine and atmospheric chemistry, including greenhouse gas controls on climate. New findings are revealing various states of planetary habitability that differ greatly from the Earth we know today. These

  4. Petrochronology in constraining early Archean Earth processes and environments: Barberton greenstone belt, South Africa

    NASA Astrophysics Data System (ADS)

    Grosch, Eugene

    2017-04-01

    Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.

  5. Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors

    PubMed Central

    Cunningham, Thomas J.; Colas, Alexandre

    2016-01-01

    ABSTRACT Bipotent neuromesodermal progenitors (NMPs) residing in the caudal epiblast drive coordinated body axis extension by generating both posterior neuroectoderm and presomitic mesoderm. Retinoic acid (RA) is required for body axis extension, however the early molecular response to RA signaling is poorly defined, as is its relationship to NMP biology. As endogenous RA is first seen near the time when NMPs appear, we used WNT/FGF agonists to differentiate embryonic stem cells to NMPs which were then treated with a short 2-h pulse of 25 nM RA or 1 µM RA followed by RNA-seq transcriptome analysis. Differential expression analysis of this dataset indicated that treatment with 25 nM RA, but not 1 µM RA, provided physiologically relevant findings. The 25 nM RA dataset yielded a cohort of previously known caudal RA target genes including Fgf8 (repressed) and Sox2 (activated), plus novel early RA signaling targets with nearby conserved RA response elements. Importantly, validation of top-ranked genes in vivo using RA-deficient Raldh2−/− embryos identified novel examples of RA activation (Nkx1-2, Zfp503, Zfp703, Gbx2, Fgf15, Nt5e) or RA repression (Id1) of genes expressed in the NMP niche or progeny. These findings provide evidence for early instructive and permissive roles of RA in controlling differentiation of NMPs to neural and mesodermal lineages. PMID:27793834

  6. Lipid biomarker production and preservation in acidic ecosystems: Relevance to early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Jahnke, L. L.; Parenteau, M. N.; Harris, R.; Bristow, T.; Farmer, J. D.; Des Marais, D. J.

    2013-12-01

    Compared to relatively benign carbonate buffered marine environments, terrestrial Archean and Paleoproterozoic life was forced to cope with a broader range of pH values. In particular, acidic terrestrial ecosystems arose from the oxidation of reduced species in hydrothermal settings and crustal reservoirs of metal sulfides, creating acid sulfate conditions. While oxidation of reduced species is facilitated by reactions with molecular oxygen, acidic conditions also arose in Archean hydrothermal systems before the rise of oxygen (Van Kranendonk, 2006), expanding the range of time over which acidophiles could have existed on the early Earth. Acidic terrestrial habitats would have included acidic hydrothermal springs, acid sulfate soils, and possibly lakes and streams lacking substantial buffering capacity with sources of acidity in their catchments. Although acidic hot springs are considered extreme environments on Earth, robust and diverse microbial communities thrive in these habitats. Such acidophiles are found across all three domains of life and include both phototrophic and chemotrophic members. In this presentation, we examine hopanes and sterols that are characteristic of microbial communities living in acidic hydrothermal environments. Moreover we discuss taphonomic processes governing the capture and preservation of these biosignatures in acid environments. In particular, we discuss the production and early preservation of hopanoids and sterols in the following geological/mineralogical settings: 1) rapid entombment of microbes and organic matter by predominantly fine-grained silica; 2) rapid burial of organic matter by clay-rich, silica poor sediments; 3) and the survival of organics in iron oxide and sulfate rich sediments. We discovered and isolated an acid-tolerant purple non-sulfur anoxygenic phototroph from Lassen Volcanic National Park that synthesizes 3methyl-bacteriohopanepolyols. These compounds were previously thought to be exclusively made by

  7. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists pose for a group photo at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  8. Continental crust formation on early Earth controlled by intrusive magmatism

    NASA Astrophysics Data System (ADS)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.

    2017-05-01

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the “Plutonic squishy lid” tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  9. Continental crust formation on early Earth controlled by intrusive magmatism.

    PubMed

    Rozel, A B; Golabek, G J; Jain, C; Tackley, P J; Gerya, T

    2017-05-18

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  10. Cometary delivery of organic molecules to the early earth

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher F.; Thomas, Paul J.; Sagan, Carl; Brookshaw, Leigh

    1990-01-01

    It has long been speculated that earth accreted prebiotic organic molecules important for the origins of life from impacts of carbonaceous asteroids and comets during the period of heavy bombardment 4.5 x 10 to the 9th to 3.8 x 10 to the 9th years ago. A comprehensive treatment of comet-asteroid interaction with the atmosphere, surface impact, and resulting organic pyrolysis demonstrates that organics will not survive impacts at velocities greater than about 10 kilometers per second and that even comets and asteroids as small as 100 meters in radius cannot be aerobraked to below this velocity in 1-bar atmospheres. However, for plausible dense (10-bar carbon dioxide) early atmospheres, it is found that 4.5 x 10 to the 9th years ago earth was accreting intact cometary organics at a rate of at least about 10 to the 6th to 10 to the 7th kilograms per year, a flux that thereafter declined with a half-life of about 10 to the 8th years. These results may be put in context by comparison with terrestrial oceanic and total biomasses, about 3 x 10 to the 12th kilograms and about 6 x 10 to the 14th kilograms, respectively.

  11. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth.

    PubMed

    Catling, D C; Zahnle, K J; McKay, C

    2001-08-03

    The low O2 content of the Archean atmosphere implies that methane should have been present at levels approximately 10(2) to 10(3) parts per million volume (ppmv) (compared with 1.7 ppmv today) given a plausible biogenic source. CH4 is favored as the greenhouse gas that countered the lower luminosity of the early Sun. But abundant CH4 implies that hydrogen escapes to space (upward arrow space) orders of magnitude faster than today. Such reductant loss oxidizes the Earth. Photosynthesis splits water into O2 and H, and methanogenesis transfers the H into CH4. Hydrogen escape after CH4 photolysis, therefore, causes a net gain of oxygen [CO2 + 2H2O --> CH4 + 2O2 --> CO2 + O2 + 4H(upward arrow space)]. Expected irreversible oxidation (approximately 10(12) to 10(13) moles oxygen per year) may help explain how Earth's surface environment became irreversibly oxidized.

  12. Numerical Mantle Convection Models of Crustal Formation in an Oceanic Environment in the Early Earth

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.

    2001-12-01

    The generation of basaltic crust in the early Earth by partial melting of mantle rocks, subject to investigation in this study, is thought to be a first step in the creation of proto-continents (consisting largely of felsic material), since partial melting of basaltic material was probably an important source for these more evolved rocks. In the early Archean the earth's upper mantle may have been hotter than today by as much as several hundred degrees centigrade. As a consequence, partial melting in shallow convective upwellings would have produced a layering of basaltic crust and underlying depleted (lherzolitic-harzburgitic) mantle peridotite which is much thicker than found under modern day oceanic ridges. When a basaltic crustal layer becomes sufficiently thick, a phase transition to eclogite may occur in the lower parts, which would cause delamination of this dense crustal layer and recycling of dense eclogite into the upper mantle. This recycling mechanism may have contributed significantly to the early cooling of the earth during the Archean (Vlaar et al., 1994). The delamination mechanism which limits the build-up of a thick basaltic crustal layer is switched off after sufficient cooling of the upper mantle has taken place. We present results of numerical modelling experiments of mantle convection including pressure release partial melting. The model includes a simple approximate melt segregation mechanism and basalt to eclogite phase transition, to account for the dynamic accumulation and recycling of the crust in an upper mantle subject to secular cooling. Finite element methods are used to solve for the viscous flow field and the temperature field, and lagrangian particle tracers are used to represent the evolving composition due to partial melting and accumulation of the basaltic crust. We find that this mechanism creates a basaltic crust of several tens of kilometers thickness in several hundreds of million years. This is accompanied by a cooling of

  13. Nitrogen partitioning during Earth's accretion and core-mantle differentiation

    NASA Astrophysics Data System (ADS)

    Speelmanns, I. M.; Schmidt, M. W.; Liebske, C.

    2017-12-01

    On present day Earth, N is one of the key constituents of our atmosphere and forms the basis of life. However, the deep Earth geochemistry of N, i.e. its distribution and isotopic fractionation between Earth's deep reservoirs is not well constrained. This study investigates nitrogen partitioning between metal and silicate melts as relevant for core segregation during the accretion of planetesimals into the Earth. We have determined N-partitioning coefficients over a wide range of temperatures (1250-2000 °C), pressures (15-35 kbar) and oxygen fugacity's, the latter in the relevant range of core segregation (IW-5 to IW). Centrifuging piston cylinders were used to equilibrate and then gravitationally separate metal-silicate melt pairs. Separation of the two melts is necessary to avoid micro nugget contamination in the silicate melt at reducing conditions < IW-2.5. Complete segregation of the two melts was reached within 1 to 3 hours at 1000 g and 1600-1250 °C respectively, the interface showing a proper meniscus. The applied double capsule technique in all experiments, using an outer metallic (Pt) and inner non-metallic capsule (graphite or Al2O3), minimizes N-loss over the course of the experiments compared to single non-metallic capsules. The two quenched melts were cut apart mechanically, cleaned at the outside, their N concentrations were then analysed on bulk samples by an elemental analyser, the low abslute masses requiring careful development of analytical routines. Despite these difficulties, we were able to determine a DNmetal/silicate of 13±0.3 at IW-1 decreasing to 2.0±0.2 at IW-5.5, at 1250°C and 15 kbar, N partitioning into the core forming metal. Increasing temperature dramatically lowers the DNmetal/silicate to e.g. 0.5±0.15 at IW-4, during early core formation N was hence mildly incompatible in the metal. The results suggest that under magma ocean conditions (> 2000 oC and fO2 IW-2.5), N-partition coefficents were within a factor of 2 of unity

  14. A nucleosynthetic origin for the Earth's anomalous (142)Nd composition.

    PubMed

    Burkhardt, C; Borg, L E; Brennecka, G A; Shollenberger, Q R; Dauphas, N; Kleine, T

    2016-09-15

    A long-standing paradigm assumes that the chemical and isotopic compositions of many elements in the bulk silicate Earth are the same as in chondrites. However, the accessible Earth has a greater (142)Nd/(144)Nd ratio than do chondrites. Because (142)Nd is the decay product of the now-extinct (146)Sm (which has a half-life of 103 million years), this (142)Nd difference seems to require a higher-than-chondritic Sm/Nd ratio for the accessible Earth. This must have been acquired during global silicate differentiation within the first 30 million years of Solar System formation and implies the formation of a complementary (142)Nd-depleted reservoir that either is hidden in the deep Earth, or lost to space by impact erosion. Whether this complementary reservoir existed, and whether or not it has been lost from Earth, is a matter of debate, and has implications for determining the bulk composition of Earth, its heat content and structure, as well as for constraining the modes and timescales of its geodynamical evolution. Here we show that, compared with chondrites, Earth's precursor bodies were enriched in neodymium that was produced by the slow neutron capture process (s-process) of nucleosynthesis. This s-process excess leads to higher (142)Nd/(144)Nd ratios; after correction for this effect, the (142)Nd/(144)Nd ratios of chondrites and the accessible Earth are indistinguishable within five parts per million. The (142)Nd offset between the accessible silicate Earth and chondrites therefore reflects a higher proportion of s-process neodymium in the Earth, and not early differentiation processes. As such, our results obviate the need for hidden-reservoir or super-chondritic Earth models and imply a chondritic Sm/Nd ratio for the bulk Earth. Although chondrites formed at greater heliocentric distances and contain a different mix of presolar components than Earth, they nevertheless are suitable proxies for Earth's bulk chemical composition.

  15. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2016-10-01

    Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.

  16. Coupled Nd-142, Nd-143 and Hf-176 Isotopic Data from 3.6-3.9 Ga Rocks: New Constraints on the Timing of Early Terrestrial Chemical Reservoirs

    NASA Technical Reports Server (NTRS)

    Bennett, Vickie C.; Brandon, alan D.; Hiess, Joe; Nutman, Allen P.

    2007-01-01

    Increasingly precise data from a range of isotopic decay schemes, including now extinct parent isotopes, from samples of the Earth, Mars, Moon and meteorites are rapidly revising our views of early planetary differentiation. Recognising Nd-142 isotopic variations in terrestrial rocks (which can only arise from events occurring during the lifetime of now extinct Sm-146 [t(sub 1/2)=103 myr]) has been an on-going quest starting with Harper and Jacobsen. The significance of Nd-142 variations is that they unequivocally reflect early silicate differentiation processes operating in the first 500 myr of Earth history, the key time period between accretion and the beginning of the rock record. The recent establishment of the existence of Nd-142 variations in ancient Earth materials has opened a new range of questions including, how widespread is the evidence of early differentiation, how do Nd-142 compositions vary with time, rock type and geographic setting, and, combined with other types of isotopic and geochemical data, what can Nd-142 isotopic variations reveal about the timing and mechanisms of early terrestrial differentiation? To explore these questions we are determining high precision Nd-142, Nd-143 and Hf-176 isotopic compositions from the oldest well preserved (3.63- 3.87 Ga), rock suites from the extensive early Archean terranes of southwest Greenland and western Australia.

  17. Coordination of cellular differentiation, polarity, mitosis and meiosis - New findings from early vertebrate oogenesis.

    PubMed

    Elkouby, Yaniv M; Mullins, Mary C

    2017-10-15

    A mechanistic dissection of early oocyte differentiation in vertebrates is key to advancing our knowledge of germline development, reproductive biology, the regulation of meiosis, and all of their associated disorders. Recent advances in the field include breakthroughs in the identification of germline stem cells in Medaka, in the cellular architecture of the germline cyst in mice, in a mechanistic dissection of chromosomal pairing and bouquet formation in meiosis in mice, in tracing oocyte symmetry breaking to the chromosomal bouquet of meiosis in zebrafish, and in the biology of the Balbiani body, a universal oocyte granule. Many of the major events in early oogenesis are universally conserved, and some are co-opted for species-specific needs. The chromosomal events of meiosis are of tremendous consequence to gamete formation and have been extensively studied. New light is now being shed on other aspects of early oocyte differentiation, which were traditionally considered outside the scope of meiosis, and their coordination with meiotic events. The emerging theme is of meiosis as a common groundwork for coordinating multifaceted processes of oocyte differentiation. In an accompanying manuscript we describe methods that allowed for investigations in the zebrafish ovary to contribute to these breakthroughs. Here, we review these advances mostly from the zebrafish and mouse. We discuss oogenesis concepts across established model organisms, and construct an inclusive paradigm for early oocyte differentiation in vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth

    PubMed Central

    Fiore, Michele; Strazewski, Peter

    2016-01-01

    It is still uncertain how the first minimal cellular systems evolved to the complexity required for life to begin, but it is obvious that the role of amphiphilic compounds in the origin of life is one of huge relevance. Over the last four decades a number of studies have demonstrated how amphiphilic molecules can be synthesized under plausibly prebiotic conditions. The majority of these experiments also gave evidence for the ability of so formed amphiphiles to assemble in closed membranes of vesicles that, in principle, could have compartmented first biological processes on early Earth, including the emergence of self-replicating systems. For a competitive selection of the best performing molecular replicators to become operative, some kind of bounded units capable of harboring them are indispensable. Without the competition between dynamic populations of different compartments, life itself could not be distinguished from an otherwise disparate array or network of molecular interactions. In this review, we describe experiments that demonstrate how different prebiotically-available building blocks can become precursors of phospholipids that form vesicles. We discuss the experimental conditions that resemble plausibly those of the early Earth (or elsewhere) and consider the analytical methods that were used to characterize synthetic products. Two brief sections focus on phosphorylating agents, catalysts and coupling agents with particular attention given to their geochemical context. In Section 5, we describe how condensing agents such as cyanamide and urea can promote the abiotic synthesis of phospholipids. We conclude the review by reflecting on future studies of phospholipid compartments, particularly, on evolvable chemical systems that include giant vesicles composed of different lipidic amphiphiles. PMID:27043635

  19. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  20. The Xenon record of Earth's early differentiaiton

    NASA Astrophysics Data System (ADS)

    Peto, M. K.; Mukhopadhyay, S.; Kelley, K. A.

    2011-12-01

    Xenon isotopes in mantle derived rocks provide information on the early differentiation of the silicate mantle of our planet. {131,132 134,136}Xe isotopes are produced by the spontaneous fission of two different elements: the now extinct radionuclide 244Pu, and the long-lived 238U. These two parent nuclides, however, yield rather different proportion of fissiogenic Xenon isotopes. Hence, the proportion of Pu- to U-derived fission xenon is indicative of the degree and rate of outgassing of a mantle reservoir. Recent data obtained from Iceland in our lab confirm that the Xenon isotopic composition of the plume source(s) is characterized by lower 136Xe/130Xe ratios than the MORB source and the Iceland plume is more enriched in the Pu-derived Xenon component. These features are interpreted as reflecting different degrees of outgassing and appear not to be the result of preferential recycling of Xenon to the deep mantle. To further investigate how representative the Icelandic measurements might be of other mantle plumes, we measured noble gases (He, Ne, Ar, Xe) in gas-rich basalt glasses from the Rochambeau Ridge (RR) in the Northern Lau Basin. Recent work suggests the presence of a "Samoan-like" OIB source in the northern Lau Basin and our measurements were performed on samples with plume-like 3He/4He ratios (15-28 RA) [1]. The Xenon isotopic measurements indicate that the maximum measured 136Xe/130Xe ratios in the Rochambeau samples are similar to Iceland. In particular, for one of the gas rich samples we were able to obtain 77 different isotopic measurements through step-crushing. Preliminary investigation of this sample suggests higher Pu- to U-derived fission Xenon than in MORBs. To quantitatively evaluate the degree and rate of outgassing of the plume and MORB reservoirs, particularly during the first few hundred million years of Earth's history, we have modified a geochemical reservoir model that was previously developed to investigate mantle overturn and mixing

  1. A review of noble gas geochemistry in relation to early Earth history

    NASA Technical Reports Server (NTRS)

    Kurz, M. D.

    1985-01-01

    One of the most fundamental noble gas constraints on early Earth history is derived from isotopic differences in (129)Xe/(130)Xe between various terrestrial materials. The short half life (17 m.y.) of extinct (129I, parent of (129)Xe, means that these differences must have been produced within the first 100 m.y. after terrestrial accretion. The identification of large anomalies in (129)Xe/(130)Xe in mid ocean ridge basalts (MORB), with respect to atmospheric xenon, suggests that the atmosphere and upper mantle have remained separate since that time. This alone is a very strong argument for early catastrophic degassing, which would be consistent with an early fractionation resulting in core formation. However, noble gas isotopic systematics of oceanic basalts show that the mantle cannot necessarily be regarded as a homogeneous system, since there are significant variations in (3)He/(4)He, (40)Ar/(36)Ar, and (129)Xe/(130)Xe. Therefore, the early degassing cannot be considered to have acted on the whole mantle. The specific mechanisms of degassing, in particular the thickness and growth of the early crust, is an important variable in understanding present day noble gas inventories. Another constraint can be obtained from rocks that are thought to be derived from near the lithosphere asthenosphere boundary: ultramafic xenoliths.

  2. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists discuss how research on early Earth could help guide our search for habitable planets orbiting other stars at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Photo Credit: (NASA/Aubrey Gemignani)

  3. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. David H. Grinspoon, Senior Scientist, Planetary Science Institute, moderates a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  4. Seismological Signature of Chemical Differentiation of Earth's Upper Mantle

    NASA Astrophysics Data System (ADS)

    Matsukage, K. N.; Nishihara, Y.; Karato, S.

    2004-12-01

    Chemical differentiation from a primitive rock (such as pyrolite) to harzburgite due to partial melting and melt extraction is one of the most important mechanisms that causes the chemical heterogeneity in Earth's upper mantle. In this study, we investigate the seismic signature of chemical differentiation that helps mapping chemical heterogeneity in the upper mantle. The relation between chemical differentiation and its seismological signature is not straightforward because a large number of unknown parameters are involved although the seismological observations provide only a few parameters (e.g., VP, VS, QP). Therefore it is critical to identify a small number of parameters by which the gross trend of chemical evolution can be described. The variation in major element composition in natural samples reflect complicated processes that include not only partial melting but also other complex processes (e.g., metasomatism, influx melting). We investigate the seismic velocities of hypothetical but well-defined simple chemical differentiation processes (e.g., partial melting of various pressure conditions, addition of Si-rich melt or fluid), which cover the chemical variation of the natural mantle peridotites with various tectonic settings (mid ocean ridge, island arc and continent). The seismic velocities of the peridotites were calculated to 13 GPa and 1730 K. We obtained two major conclusions. First is that the variations of seismic velocities of upper mantle peridotites can be interpreted in terms of a few distinct parameters. For one class of peridotites which is formed by simple partial melting (e.g. mid-ocean ridges peridotites), seismic velocities can be described in terms of one parameter, namely Mg# (=Mg/(Mg+Fe) atomic ratio). In contrast, some of the peridotites in the continental (cratonic) environment with high silica content and high Mg# need at least two parameters (such as Mg# and Opx# (the volume fraction of orthopyroxene)) are needed to characterize

  5. Induction of endoplasmic reticulum calcium pump expression during early leukemic B cell differentiation.

    PubMed

    Aït Ghezali, Lamia; Arbabian, Atousa; Roudot, Hervé; Brouland, Jean-Philippe; Baran-Marszak, Fanny; Salvaris, Evelyn; Boyd, Andrew; Drexler, Hans G; Enyedi, Agnes; Letestu, Remi; Varin-Blank, Nadine; Papp, Bela

    2017-06-26

    Endoplasmic reticulum (ER) calcium storage and release play important roles in B lymphocyte maturation, survival, antigen-dependent cell activation and immunoglobulin synthesis. Calcium is accumulated in the endoplasmic reticulum (ER) by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). Because lymphocyte function is critically dependent on SERCA activity, it is important to understand qualitative and quantitative changes of SERCA protein expression that occur during B lymphoid differentiation and leukemogenesis. In this work we investigated the modulation of SERCA expression during the pharmacologically induced differentiation of leukemic precursor B lymphoblast cell lines that carry the E2A-PBX1 fusion oncoprotein. Changes of SERCA levels during differentiation were determined and compared to those of established early B lymphoid differentiation markers. SERCA expression of the cells was compared to that of mature B cell lines as well, and the effect of the direct inhibition of SERCA-dependent calcium transport on the differentiation process was investigated. We show that E2A-PBX1 + leukemia cells simultaneously express SERCA2 and SERCA3-type calcium pumps; however, their SERCA3 expression is markedly inferior to that of mature B cells. Activation of protein kinase C enzymes by phorbol ester leads to phenotypic differentiation of the cells, and this is accompanied by the induction of SERCA3 expression. Direct pharmacological inhibition of SERCA-dependent calcium transport during phorbol ester treatment interferes with the differentiation process. These data show that the calcium pump composition of the ER is concurrent with increased SERCA3 expression during the differentiation of precursor B acute lymphoblastic leukemia cells, that a cross-talk exists between SERCA function and the control of differentiation, and that SERCA3 may constitute an interesting new marker for the study of early B cell phenotype.

  6. Probing Core Processes in the Earth and Small Bodies Using Paleomagnetism

    NASA Astrophysics Data System (ADS)

    Fu, R. R.; Weiss, B. P.; Lima, E. A.; Glenn, D. R.; Kehayias, P.; Walsworth, R. L.

    2015-12-01

    Convective motion in the cores of differentiated metal-silicate bodies may sustain a global dynamo magnetic field. Progressive crystallization in a dynamo-generating core is expected to play a central role in determining the observable properties of the hosted magnetic field. Importantly, the release of light elements and latent heat during core crystallization is a key source of entropy for sustaining core convection. Therefore, the persistence and intensity of a dynamo magnetic field depend directly on the extent and style of core crystallization. We present and discuss paleomagnetic data from the Earth and asteroid-sized bodies to characterize internally generated magnetic fields during the early histories of these objects. In the case of the Earth, recent and ongoing paleomagnetic experiments of zircons from the Jack Hills of Australia can potentially constrain the existence and intensity of the geodynamo before 3.5 Ga. If robust, such measurements hold strong implications for the energy budget of the Earth's early core and the dynamics of the early mantle. We will discuss both recently published and preliminary results and assess carefully the challenges and uncertainties of paleomagnetic experimentation on ancient zircon samples. In the case of small bodies, several classes of meteorites record ancient magnetic fields likely produced by core dynamos on their parent bodies. Data from the CV carbonaceous chondrites and pallasites indicate that dynamos in planetesimal-sized bodies persisted for a broad range of timescales between ~10 My and >100 My. Meanwhile, measurements of the angrite group of achondrites show that their earliest-forming members crystallized in an almost non-magnetic environment, suggesting a delayed onset of the planetesimal dynamo until several My after initial differentiation. We will discuss the possible causes for this observed diversity of small body dynamo properties, including the role of core crystallization and the distribution of

  7. Meteors: A Delivery Mechanism of Organic Matter to The Early Earth

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Wilson, Mike A.; Packan, Dennis; Laux, Christophe O.; Krueger, Charles H.; Boyd, Iain, D.; Popova, Olga P.; Fonda, Mark; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    All potential exogenous pre-biotic matter arrived to Earth by ways of our atmosphere, where much material was ablated during a luminous phase called 1. meteors" in rarefied flows of high (up to 270) Mach number. The recent Leonid showers offered a first glimpse into the elusive physical conditions of the ablation process and atmospheric chemistry associated with high-speed meteors. Molecular emissions were detected that trace a meteor's brilliant light to a 4,300 K warm wake rather than to the meteor's head. A new theoretical approach using the direct simulation by Monte Carlo technique identified the source-region and demonstrated that the ablation process is critical in the heating of the meteor's wake. In the head of the meteor, organic carbon appears to survive flash heating and rapid cooling. The temperatures in the wake of the meteor are just right for dissociation of CO and the formation of more complex organic compounds. The resulting materials could account for the bulk of pre-biotic organic carbon on the early Earth at the time of the origin of life.

  8. No Nd-142 Excess in the Early Archean Isua Gneiss IE 715-28

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Sharma, M.; Ngo, H. H.; Wasserburg, G. J.; Dymek, R. F.

    2003-01-01

    There is abundant evidence for the existence of 146Sm in the early solar system and for preservation of effects in the 146Sm-142Nd system in differentiated meteorites ([1]; see recent discussion in Stewart et al. 1994). Information from the 182Hf-182W system, as revised by new careful work [2-3] also indicates that the Earth s core formed relatively early. It is in principle possible for early-formed crust and mantle reservoirs on Earth to have preserved evidence for 146Sm if such reservoirs were produced with high Sm/Nd fractionation and if they have remained isolated and closed since 4.3 Ga. The mean life of 146Sm of 149 Ma is sufficiently long to make this an intriguing possibility.

  9. Earth's Coming of Age: Isotopically Tracking the Global Transformation from the Hadean to the Geologically Modern Earth

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Nutman, A. P.

    2017-12-01

    Some of the strongest direct evidence that documents fundamental changes in the chemistry and organisation of Earth's interior derives from radiogenic isotopic compositions that include both long-lived (particularly 176Lu-176Hf and 147Sm-143Nd) and short-lived, i.e., now extinct parent isotope, systems (182Hf-182W, 146Sm-142Nd). Changes in patterns of isotopic evolution are linked to changes in mantle dynamics such that tracking these signatures in geologically well-characterised rocks can be used to discover the the nature and evolution of tectonic processes. Over the past decade, intensive geochemical investigations by various groups focussing on the oldest (> 4.0 Ga to 3.6 Ga) rock record, as preserved in several localities, have revealed isotopic distinctions in the early Earth compared with those in Proterozoic and younger rocks. For example, whilst the major and trace element compositions of Eoarchean gneisses have analogs in younger rocks in accord with a continuum of crust formation processes, radiogenic isotopic signatures from both long and short half-life decay schemes record an image of the Earth in transition from early differentiation processes, likely associated with planetary accretion and formation, to more modern style characterised by plate tectonics. The emerging image is that many Eoarchean rocks possess extinct nuclide anomalies in the form of 142Nd and 182Hf isotopic signatures that are absent in modern terrestrial samples; these signatures are evidence of chemical fractionation processes occuring within the first ca. 10-300 million years of Solar System history. In addition, viewing the global database, patterns of long-half life isotope signatures i.e., 143Nd and 176Hf differ from those seen in younger (<3.6 Ga) rocks, again providing a tracer of mantle dynamics and reflecting the influence of early processes. It is becoming increasingly apparent that the well demonstrated "coupled" 176Hf-143Nd isotopic evolution generated by plate tectonic

  10. Terrestrial production vs. extraterrestrial delivery of prebiotic organics to the early Earth

    NASA Technical Reports Server (NTRS)

    Chyba, C. F.; Sagan, C.; Thomas, P. J.; Brookshaw, L.

    1991-01-01

    A comprehensive treatment of comet/asteroid interaction with the atmosphere, ensuring surface impact, and resulting organic pyrolysis is required to determine whether more than a negligible fraction of the organics in incident comets and asteroids actually survived collision with Earth. Results of such an investigation, using a smoothed particle hydrodynamic simulation of cometary and asteroidal impacts into both oceans and rock, demonstrate that organics will not survive impacts at velocities approx. greater than 10 km s(exp -1), and that even comets and asteroids as small as 100m in radius cannot be aerobraked to below this velocity in 1 bar atmospheres. However, for plausible dense (10 bar CO2) early atmospheres, there will be sufficient aerobraking during atmospheric passage for some organics to survive the ensuing impact. Combining these results with analytical fits to the lunar impact record shows that 4.5 Gyr ago Earth was accreting at least approx. 10(exp 6) kg yr(exp 1) of intact cometary organics, a flux which thereafter declined with a approx. 100 Myr half-life. The extent to which this influx was augmented by asteroid impacts, as well as the effect of more careful modelling of a variety of conservative approximations, is currently being quantified. These results may be placed in context by comparison with in situ organic production from a variety of terrestrial energy sources, as well as organic delivery by interplanetary dust. Which source dominated the early terrestrial prebiotic inventory is found to depend on the nature of the early terrestrial atmosphere. However, there is an intriguing symmetry: it is exactly those dense CO2 atmospheres where in situ atmospheric production of organic molecules should be the most difficult, in which intact cometary organics would be delivered in large amounts.

  11. Formation of the Lunar Fossil Bulges and its Implication for the Early Earth and Moon

    NASA Astrophysics Data System (ADS)

    Qin, C.; Zhong, S.; Phillips, R. J.

    2017-12-01

    large tidal dissipation Q-value for the early Earth, implying that the early Earth may not have prevalent oceans.

  12. The early Martian environment: Clues from the cratered highlands and the Precambrian Earth

    NASA Technical Reports Server (NTRS)

    Craddock, R. A.; Maxwell, T. A.

    1993-01-01

    There is abundant geomorphic evidence to suggest that Mars once had a much denser and warmer atmosphere than present today. Outflow channel, ancient valley networks, and degraded impact craters in the highlands all suggest that ancient Martian atmospheric conditions supported liquid water on the surface. The pressure, composition, and duration of this atmosphere is largely unknown. However, we have attempted to place some constraints on the nature of the early Martian atmosphere by analyzing morphologic variations of highland impact crater populations, synthesizing results of other investigators, and incorporating what is know about the geologic history of the early Earth. This is important for understanding the climatic evolution of Mars, the relative abundance of martian volatiles, and the nature of highland surface materials.

  13. Samples from Differentiated Asteroids; Regolithic Achondrites

    NASA Technical Reports Server (NTRS)

    Herrin J. S.; Ross, A. J.; Cartwright, J. A.; Ross, D. K.; Zolensky, Michael E.; Jenniskens, P.

    2011-01-01

    Differentiated and partially differentiated asteroids preserve a glimpse of planet formation frozen in time from the early solar system and thus are attractive targets for future exploration. Samples of such asteroids arrive to Earth in the form of achondrite meteorites. Many achondrites, particularly those thought to be most representative of asteroidal regolith, contain a diverse assortment of materials both indigenous and exogenous to the original igneous parent body intermixed at microscopic scales. Remote sensing spacecraft and landers would have difficulty deciphering individual components at these spatial scales, potentially leading to confusing results. Sample return would thus be much more informative than a robotic probe. In this and a companion abstract [1] we consider two regolithic achondrite types, howardites and (polymict) ureilites, in order to evaluate what materials might occur in samples returned from surfaces of differentiated asteroids and what sampling strategies might be prudent.

  14. Differentiating early-onset persistent versus childhood-limited conduct problem youth.

    PubMed

    Barker, Edward D; Maughan, Barbara

    2009-08-01

    Among young children who demonstrate high levels of conduct problems, less than 50% will continue to exhibit these problems into adolescence. Such developmental heterogeneity presents a serious challenge for intervention and diagnostic screening in early childhood. The purpose of the present study was to inform diagnostic screening and preventive intervention efforts by identifying youths whose conduct problems persist. The authors examined 1) the extent to which early-onset persistent versus childhood-limited trajectories can be identified from repeated assessments of childhood and early-adolescent conduct problems and 2) how prenatal and early postnatal risks differentiate these two groups. To identify heterogeneity in early-onset conduct problems, the authors used data from a large longitudinal population-based cohort of children followed from the prenatal period to age 13. Predictive risk factors examined were prenatal and postnatal measures of maternal distress (anxiety, depression), emotional and practical support, and family and child characteristics (from birth to 4 years of age). Findings revealed a distinction between early-onset persistent versus childhood-limited conduct problems in youths. Robust predictors of the early-onset persistent trajectory were maternal anxiety during pregnancy (32 weeks gestation), partner cruelty to the mother (from age 0 to 4 years), harsh parenting, and higher levels of child undercontrolled temperament. Sex differences in these risks were not identified. Interventions aiming to reduce childhood conduct problems should address prenatal risks in mothers and early postnatal risks in both mothers and their young children.

  15. The Potential of Gait Analysis to Contribute to Differential Diagnosis of Early Stage Dementia: Current Research and Future Directions

    ERIC Educational Resources Information Center

    Morgan, Debra; Funk, Melanie; Crossley, Margaret; Basran, Jenny; Kirk, Andrew; Bello-Haas, Vanina Dal

    2007-01-01

    Early differential diagnosis of dementia is becoming increasingly important as new pharmacologic therapies are developed, as these treatments are not equally effective for all types of dementia. Early detection and differential diagnosis also facilitates informed family decision making and timely access to appropriate services. Information about…

  16. Photosynthesis and early Earth.

    PubMed

    Shih, Patrick M

    2015-10-05

    Life has been built on the evolution and innovation of microbial metabolisms. Even with our scant understanding of the full diversity of microbial life, it is clear that microbes have become integral components of the biogeochemical cycles that drive our planet. The antiquity of life further suggests that various microbial metabolisms have been core and essential to global elemental cycling for a majority of Earth's history. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Earth - Pacific Ocean

    NASA Image and Video Library

    1996-01-29

    This color image of the Earth was obtained by NASA’s Galileo spacecraft early Dec. 12, 1990, when the spacecraft was about 1.6 million miles from the Earth. http://photojournal.jpl.nasa.gov/catalog/PIA00123

  18. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    An audience member asks the panelists a question at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  19. Climatic consequences of very high CO2 levels in Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Earth has approximately 60 bars of carbon dioxide tied up in carbonate rocks, or roughly 2/3 the amount of CO2 of Venus' atmosphere. Two different lines of evidence, one based on thermodynamics and the other on geochemical cycles, indicate that a substantial fraction of this CO2 may have resulted in the atmosphere during the first few hundred million years of the Earth's history. A natural question which arises concerning this hypothesis is whether this would have resulted in a runaway greenhouse affect. One-dimensional radiative/convective model calculations show that the surface temperature of a hypothetical primitive atmosphere containing 20 bars of CO2 would have been less than 100C and no runaway greenhouse should have occurred. The climatic stability of the early atmosphere is a consequence of three factors: (1) reduced solar luminosity at that time; (2) an increase in planetary albedo caused by Rayleigh scattering by CO2; and (3) the stabilizing effects of moist convection. The latter two factors are sufficient to prevent a CO2-induced runaway greenhouse on the present Earth and for CO2 levels up to 100 bars. It is determined whether a runaway greenhouse could have occurred during the latter stages of the accretion process and, if so, whether it would have collapsed once the influx of material slowed down.

  20. Solubility of oxygen in liquid Fe at high pressure and consequences for the early differentiation of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Rubie, D. C.; Gessmann, C. K.; Frost, D. J.

    2003-04-01

    Knowledge of the solubility of oxygen in liquid iron enables the partitioning of oxygen between metal and silicates and the oxidation state of residual silicates to be constrained during core formation in planetary bodies. We have determined oxygen solubility experimentally at 5--23 GPa, 2100--2700 K and oxygen fugacities 1--4 log units below the iron-wüstite buffer in samples of liquid Ni-Fe alloy contained in magnesiowüstite capsules using a multianvil apparatus. Results show that oxygen solubility increases with increasing temperature but decreases slightly with increasing pressure over the range of experimental conditions, at constant oxygen fugacity. Using an extrapolation of the results to higher pressures and temperatures, we have modeled the geochemical consequences of metal-silicate separation in magma oceans in order to explain the contrasting FeO contents of the mantles of Earth and Mars. We assume that both Earth and Mars accreted originally from material with a chondritic composition; because the initial oxidation state is uncertain, we vary this parameter by defining the initial oxygen content. Two metal-silicate fractionation models are considered: (1) Metal and silicate are allowed to equilibrate at fictive conditions that approximate the pressure and temperature at the base of a magma ocean. (2) The effect of settling Fe droplets in a magma ocean is determined using a simple polybaric metal-silicate fractionation model. We assume that the temperature at the base of a magma ocean is close to the peridotite liquidus. In the case of Earth, high temperatures in a magma ocean with a depth >1200 km would have resulted in significant quantities of oxygen dissolving in the liquid metal with the consequent extraction of FeO from the residual silicate. In contrast, on Mars, even if the magma ocean extended to the depth of the current core-mantle boundary, temperatures would not have been sufficiently high for oxygen solubility in liquid metal to be

  1. Biomarkers as tracers for life on early earth and Mars

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Summons, R. E.; Jahnke, L. L.

    1998-01-01

    Biomarkers in geological samples are products derived from biochemical (natural product) precursors by reductive and oxidative processes (e.g., cholestanes from cholesterol). Generally, lipids, pigments and biomembranes are preserved best over longer geological times and labile compounds such as amino acids, sugars, etc. are useful biomarkers for recent times. Thus, the detailed characterization of biomarker compositions permits the assessment of the major contributing species of extinct and/or extant life. In the case of the early Earth, work has progressed to elucidate molecular structure and carbon isotropic signals preserved in ancient sedimentary rocks. In addition, the combination of bacterial biochemistry with the organic geochemistry of contemporary and ancient hydrothermal ecosystems permits the modeling of the nature, behavior and preservation potential of primitive microbial communities. This approach uses combined molecular and isotopic analyses to characterize lipids produced by cultured bacteria (representative of ancient strains) and to test a variety of culture conditions which affect their biosynthesis. On considering Mars, the biomarkers from lipids and biopolymers would be expected to be preserved best if life flourished there during its early history (3.5-4 x 10(9) yr ago). Both oxidized and reduced products would be expected. This is based on the inferred occurrence of hydrothermal activity during that time with the concomitant preservation of biochemically-derived organic matter. Both known biomarkers (i.e., as elucidated for early terrestrial samples and for primitive terrestrial microbiota) and novel, potentially unknown compounds should be characterized.

  2. The Early Years: The Earth-Sun System

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2015-01-01

    We all experience firsthand many of the phenomena caused by Earth's Place in the Universe (Next Generation Science Standard 5-ESS1; NGSS Lead States 2013) and the relative motion of the Earth, Sun, and Moon. Young children can investigate phenomena such as changes in times of sunrise and sunset (number of daylight hours), Moon phases, seasonal…

  3. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Phoebe Cohen, Professor of Geosciences, Williams College, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  4. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Christopher House, Professor of Geosciences, Pennsylvania State University, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  5. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Dawn Sumner, Professor of Geology, UC Davis, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  6. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Timothy Lyons, Professor of Biogeochemistry, UC Riverside, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  7. Clinicopathological features of alpha-fetoprotein producing early gastric cancer with enteroblastic differentiation.

    PubMed

    Matsumoto, Kohei; Ueyama, Hiroya; Matsumoto, Kenshi; Akazawa, Yoichi; Komori, Hiroyuki; Takeda, Tsutomu; Murakami, Takashi; Asaoka, Daisuke; Hojo, Mariko; Tomita, Natsumi; Nagahara, Akihito; Kajiyama, Yoshiaki; Yao, Takashi; Watanabe, Sumio

    2016-09-28

    To investigate clinicopathological features of early stage gastric cancer with enteroblastic differentiation (GCED). We retrospectively investigated data on 6 cases of early stage GCED and 186 cases of early stage conventional gastric cancer (CGC: well or moderately differentiated adenocarcinoma) who underwent endoscopic submucosal dissection or endoscopic mucosal resection from September 2011 to February 2015 in our hospital. GCED was defined as a tumor having a primitive intestine-like structure composed of cuboidal or columnar cells with clear cytoplasm and immunohistochemical positivity for either alpha-fetoprotein, Glypican 3 or SALL4. The following were compared between GCED and CGC: age, gender, location and size of tumor, macroscopic type, ulceration, depth of invasion, lymphatic and venous invasion, positive horizontal and vertical margin, curative resection rate. Six cases (5 males, 1 female; mean age 75.7 years; 6 lesions) of early gastric cancer with a GCED component and 186 cases (139 males, 47 females; mean age 72.7 years; 209 lesions) of early stage CGC were investigated. Mean tumor diameters were similar but rates of submucosal invasion, lymphatic invasion, venous invasion, and non-curative resection were higher in GCED than CGC (66.6% vs 11.4%, 33.3% vs 2.3%, 66.6% vs 0.4%, 83.3% vs 11% respectively, P < 0.01). Deep submucosal invasion was not revealed endoscopically or by preoperative biopsy. Histologically, in GCED the superficial mucosal layer was covered with a CGC component. The GCED component tended to exist in the deeper part of the mucosa to the submucosa by lymphatic and/or venous invasion, without severe stromal reaction. In addition, Glypican 3 was the most sensitive marker for GCED (positivity, 83.3%), immunohistochemically. Even in the early stage GCED has high malignant potential, and preoperative diagnosis is considered difficult. Endoscopists and pathologists should know the clinicopathological features of this highly malignant type

  8. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Shawn Domagal-Goldman, Research Space Scientist, NASA Goddard Space Flight Center, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  9. Ultramafic Terranes and Associated Springs as Analogs for Mars and Early Earth

    NASA Technical Reports Server (NTRS)

    Blake, David; Schulte, Mitch; Cullings, Ken; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Putative extinct or extant Martian organisms, like their terrestrial counterparts, must adopt metabolic strategies based on the environments in which they live. In order for organisms to derive metabolic energy from the natural environment (Martian or terrestrial), a state of thermodynamic disequilibrium must exist. The most widespread environment of chemical disequilibrium on present-day Earth results from the interaction of mafic rocks of the ocean crust with liquid water. Such environments were even more pervasive and important on the Archean Earth due to increased geothermal heat flow and the absence of widespread continental crust formation. The composition of the lower crust and upper mantle of the Earth is essentially the-same as that of Mars, and the early histories of these two planets are similar. It follows that a knowledge of the mineralogy, water-rock chemistry and microbial ecology of Earth's oceanic crust could be of great value in devising a search strategy for evidence of past or present life on Mars. In some tectonic regimes, cross-sections of lower oceanic crust and upper mantle are exposed on land as so-called "ophiolite suites." Such is the case in the state of California (USA) as a result of its location adjacent to active plate margins. These mafic and ultramafic rocks contain numerous springs that offer an easily accessible field laboratory for studying water/rock interactions and the microbial communities that are supported by the resulting geochemical energy. A preliminary screen of Archaean biodiversity was conducted in a cold spring located in a presently serpentinizing ultramafic terrane. PCR and phylogenetic analysis of partial 16s rRNA, sequences were performed on water and sediment samples. Archaea of recent phylogenetic origin were detected with sequences nearly identical to those of organisms living in ultra-high pH lakes of Africa.

  10. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  11. Heparan sulfates and the decrease of N-glycans promote early adipogenic differentiation rather than myogenesis of murine myogenic progenitor cells.

    PubMed

    Grassot, Vincent; Bouchatal, Amel; Da Silva, Anne; Chantepie, Sandrine; Papy-Garcia, Dulce; Maftah, Abderrahman; Gallet, Paul-François; Petit, Jean-Michel

    In vitro, extracted muscle satellite cells, called myogenic progenitor cells, can differentiate either in myotubes or preadipocytes, depending on environmental factors and the medium. Transcriptomic analyses on glycosylation genes during satellite cells differentiation into myotubes showed that 31 genes present a significant variation of expression at the early stages of murine myogenic progenitor cells (MPC) differentiation. In the present study, we analyzed the expression of 383 glycosylation related genes during murine MPC differentiation into preadipocytes and compared the data to those previously obtained during their differentiation into myotubes. Fifty-six glycosylation related genes are specifically modified in their expression during early adipogenesis. The variations correspond mainly to: a decrease of N-glycans, and of alpha (2,3) and (2,6) linked sialic acids, and to a high level of heparan sulfates. A high amount of TGF-β1 in extracellular media during early adipogenesis was also observed. It seems that the increases of heparan sulfates and TGF-β1 favor pre-adipogenic differentition of MPC and possibly prevent their myogenic differentiation. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  12. Overlapping DNA Methylation Dynamics in Mouse Intestinal Cell Differentiation and Early Stages of Malignant Progression

    PubMed Central

    Forn, Marta; Díez-Villanueva, Anna; Merlos-Suárez, Anna; Muñoz, Mar; Lois, Sergi; Carriò, Elvira; Jordà, Mireia; Bigas, Anna; Batlle, Eduard; Peinado, Miguel A.

    2015-01-01

    Mouse models of intestinal crypt cell differentiation and tumorigenesis have been used to characterize the molecular mechanisms underlying both processes. DNA methylation is a key epigenetic mark and plays an important role in cell identity and differentiation programs and cancer. To get insights into the dynamics of cell differentiation and malignant transformation we have compared the DNA methylation profiles along the mouse small intestine crypt and early stages of tumorigenesis. Genome-scale analysis of DNA methylation together with microarray gene expression have been applied to compare intestinal crypt stem cells (EphB2high), differentiated cells (EphB2negative), ApcMin/+ adenomas and the corresponding non-tumor adjacent tissue, together with small and large intestine samples and the colon cancer cell line CT26. Compared with late stages, small intestine crypt differentiation and early stages of tumorigenesis display few and relatively small changes in DNA methylation. Hypermethylated loci are largely shared by the two processes and affect the proximities of promoter and enhancer regions, with enrichment in genes associated with the intestinal stem cell signature and the PRC2 complex. The hypermethylation is progressive, with minute levels in differentiated cells, as compared with intestinal stem cells, and reaching full methylation in advanced stages. Hypomethylation shows different signatures in differentiation and cancer and is already present in the non-tumor tissue adjacent to the adenomas in ApcMin/+ mice, but at lower levels than advanced cancers. This study provides a reference framework to decipher the mechanisms driving mouse intestinal tumorigenesis and also the human counterpart. PMID:25933092

  13. Earth Science: Then and Now

    ERIC Educational Resources Information Center

    Orgren, James R.

    1969-01-01

    Reviews history of earth science in secondary schools. From early nineteenth century to the present, earth science (and its antecedents, geology, physical geography, and astronomy) has had an erratic history for several reasons, but particularly because of lack of earth science teacher-training programs. (BR)

  14. Eastern Indian 3800-million-year-old crust and early mantle differentiation

    USGS Publications Warehouse

    Basu, A.R.; Ray, S.L.; Saha, A.K.; Sarkar, S.N.

    1981-01-01

    Samarium-neodymium data for nine granitic and tonalite gneisses occurring as remnants within the Singhbhum granite batholith in eastern India define an isochron of age 3775 ?? 89 ?? 106 years with an initial 143Nd/144Nd ratio of 0.50798 ?? 0.00007. This age contrasts with the rubidium-strontium age of 3200 ?? 106 years for the same suite of rocks. On the basis of the new samarium-neodynium data, field data, and petrologic data, a scheme of evolution is proposed for the Archean crust in eastern India. The isotopic data provide evidence that parts of the earth's mantle were already differentiated with respect to the chondritic samarium-neodymium ratio 3800 ?? 106 years ago.

  15. Noble gas Records of Early Evolution of the Earth

    NASA Astrophysics Data System (ADS)

    Ozima, M.; Podoesk, F. A.

    2001-12-01

    Comparison between atmospheric noble gases (except for He) and solar (or meteoritic) noble gases clearly suggests that the Earth should have much more Xe than is present in air, and thus that up to about 90 percent of terrestrial Xe is missing from the Earth (1). In this report, we discuss implications of these observations on I-Pu chronology of the Earth and on the origin of terrestrial He3. Whetherill (2) first noted that an estimated I129/I127 ratio (3x10-6) in the proto-Earth was about two orders of magnitude smaller than values commonly observed in meteorites (10-4), and pointed out the possibility that Earth formation postdated meteorites by about 100Ma. Ozima and Podosek (1999) came to a similar conclusion on the basis of I129/I127-Pu244/U238 systematics (1). In this report, we reexamine I-Pu systematics with new data for crustal I content (295 ppb for a bulk crust, (3)). With imposition of an estimated value of 86 percent missing Xe as a constraint on terrestrial Xe inventory, we conclude that the best estimate for a formation age of the Earth is about 28Ma after the initial condensation of the solar nebula (at 4.57Ga). The formation age thus estimated is significantly later than the generally assumed age of meteorites. We also argue from the I-Pu systematics that the missing Xe became missing place about 120Ma after Earth formation. Assuming that the Earth is mostly degassed, the I-Pu formation age of the Earth can be reasonably assumed to represent a whole Earth event. Therefore, we interpret that the I-Pu age of the Earth represents the time when the Earth started to retain noble gases. More specifically, this may correspond to the time when the proto-Earth attained a sufficient size to exert the necessary gravitational force. A giant impact could be another possibility, but it remains to be seen whether or not a giant impact could quantitatively remove heavier noble gases from the Earth. It is interesting to speculate that missing Xe was sequestered in

  16. The neodymium stable isotope composition of the silicate Earth and chondrites

    NASA Astrophysics Data System (ADS)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd

  17. Experimental investigation of anaerobic nitrogen fixation rates with varying pressure, temperature and metal concentration with application to the atmospheric evolution of early Earth and Mars.

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek

    2012-07-01

    The atmosphere of the early Earth is thought to have been significantly different than the modern composition of 21% O2 and 78% N2, yet the planet has been clearly established as hosting microbial life as far back as 3.8 billion years ago. As such, constraining the atmospheric composition of the early Earth is fundamental to establishing a database of habitable atmospheric compositions. A similar argument can be made for the planet Mars, where nitrates have been hypothesized to exist in the subsurface. During the early period on Mars when liquid water was likely more abundant, life may have developed to take advantage of available nitrates and a biologically-driven Martian nitrogen cycle could have evolved. Early Earth atmospheric composition has been investigated numerically, but only recently has the common assumption of a pN2 different than modern been investigated. Nonetheless, these latest attempts fail to take into account a key atmospheric parameter: life. On modern Earth, nitrogen is cycled vigorously by biology. The nitrogen cycle likely operated on the early Earth, but probably differed in the metabolic processes responsible, dominantly due to the lack of abundant oxygen which stabilizes oxidized forms of N that drive de-nitrification today. Recent advances in evolutionary genomics suggest that microbial pathways that are relatively uncommon today (i.e. vanadium and iron-based nitrogen fixation) probably played important roles in the early N cycle. We quantitatively investigate in the laboratory the effects of variable pressure, temperature and metal concentration on the rates of anoxic nitrogen fixation, as possible inputs for future models investigating atmospheric evolution, and better understand the evolution of the nitrogen cycle on Earth. A common anaerobic methanogenic archaeal species with i) a fully sequenced genome, ii) all three nitrogenases (molybdenum, vanadium and iron-based) and iii) the ability to be genetically manipulated will be used as

  18. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?

    NASA Astrophysics Data System (ADS)

    Kerrich, Robert; Polat, Ali

    2006-03-01

    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  19. Acquisition and Early Losses of Rare Gases from the Deep Earth

    NASA Technical Reports Server (NTRS)

    Porcelli, D.; Cassen, P.; Woolum, D.; Wasserburg, G. J.

    1998-01-01

    Direct observations show that the deep Earth contains rare gases of solar composition distinct from those in the atmosphere. We examine the implications of mantle rare gas characteristics on acquisition of rare gases from the solar nebula and subsequent losses due to a large impact. Deep mantle rare gas concentrations and isotopic compositions can be obtained from a model of transport and distribution of mantle rare gases. This model assumes the lower mantle closed early, while the upper mantle is open to subduction from the atmosphere and mass transfer from the lower mantle. Constraints are derived that can be incorporated into models for terrestrial volatile acquisition: (1) Calculated lower-mantle Xe-isotopic ratios indicate that the fraction of radiogenic Xe produced by I-129 and Pu-244 during the first about 10(exp 8) yr was lost, a conclusion also drawn for atmospheric Xe. Thus, either the Earth was made from materials that had lost >99% of rare gases about (0.7-2) x 10(exp 8) yr after the solar system formed, or gases were then lost from the fully formed Earth. (2) Concentrations of 3He and 20Ne in the lower mantle were established after these losses. (3) Neon-isotopic data indicates that mantle Ne has solar composition. The model allows for solar Ar/Ne and Xe/Ne in the lower mantle if a dominant fraction of upper mantle Ar and Xe are subduction-derived. If Earth formed in the presence of the solar nebula, it could have been melted by accretional energy and the blanketing effect of a massive, nebula-derived atmosphere. Gases from this atmosphere would have been sequestered within the molten Earth by dissolution at the surface and downward mixing. It was found that too much Ne would be dissolved in the Earth unless the atmosphere began to escape when the Earth was only partially assembled. Here we consider conditions required to initially dissolve sufficient rare gases to account for the present lower mantle concentrations after subsequent losses at 10(exp 8

  20. Application of recursive approaches to differential orbit correction of near Earth asteroids

    NASA Astrophysics Data System (ADS)

    Dmitriev, Vasily; Lupovka, Valery; Gritsevich, Maria

    2016-10-01

    Comparison of three approaches to the differential orbit correction of celestial bodies was performed: batch least squares fitting, Kalman filter, and recursive least squares filter. The first two techniques are well known and widely used (Montenbruck, O. & Gill, E., 2000). The most attention is paid to the algorithm and details of program realization of recursive least squares filter. The filter's algorithm was derived based on recursive least squares technique that are widely used in data processing applications (Simon, D, 2006). Usage recursive least squares filter, makes possible to process a new set of observational data, without reprocessing data, which has been processed before. Specific feature of such approach is that number of observation in data set may be variable. This feature makes recursive least squares filter more flexible approach compare to batch least squares (process complete set of observations in each iteration) and Kalman filtering (suppose updating state vector on each epoch with measurements).Advantages of proposed approach are demonstrated by processing of real astrometric observations of near Earth asteroids. The case of 2008 TC3 was studied. 2008 TC3 was discovered just before its impact with Earth. There are a many closely spaced observations of 2008 TC3 on the interval between discovering and impact, which creates favorable conditions for usage of recursive approaches. Each of approaches has very similar precision in case of 2008 TC3. At the same time, recursive least squares approaches have much higher performance. Thus, this approach more favorable for orbit fitting of a celestial body, which was detected shortly before the collision or close approach to the Earth.This work was carried out at MIIGAiK and supported by the Russian Science Foundation, Project no. 14-22-00197.References:O. Montenbruck and E. Gill, "Satellite Orbits, Models, Methods and Applications," Springer-Verlag, 2000, pp. 1-369.D. Simon, "Optimal State Estimation

  1. Mars is the Earth's Only Nearby Early Life Analog, but the Moon is on the Path to Get There

    NASA Astrophysics Data System (ADS)

    Schmitt, H. H.

    2017-02-01

    Mars provides a geological integration of the early solar system impacts recorded by the Moon and the contemporaneous water-rich pre-biotic period on Earth. Consideration of human missions to Mars needs to include a return to the Moon to stay.

  2. Methylation Markers for Early Detection and Differentiation of Follicular Thyroid Cancer Subtypes

    PubMed Central

    Stephen, Josena K.; Chen, Kang Mei; Merritt, Jason; Chitale, Dhananjay; Divine, George; Worsham, Maria J.

    2016-01-01

    Thyroid cancer has the fastest rising incidence rates and is the fifth most common cancer in women. There are four main types of which the papillary and follicular types together account for >90%, followed by medullary cancers (3%−5%) and anaplastic carcinomas (<3%). For individuals who present with early stage disease of papillary and follicular cancers, there are no accurate markers to predict whether they will develop metastatic or recurrent disease. Our immediate goal is to molecularly differentiate follicular cancer subtypes for enhanced classification. Promoter methylation status of genes with reported associations in thyroid cancer (CASP8, CDKN2A, DAPK1, ESR1, NIS, RASSF1 and TIMP3) were examined in a cohort of follicular thyroid cancers comprising of 26 Hurthle and 27 Classic subtypes utilizing quantitative methylation-specific PCR. RASSF1 was differentially methylated in Classic tumor tissue compared to Hurthle (p<0.001). Methylation of RASSF1 pointed to racial group differences between African Americans and Caucasian Americans (p=0.05). Extra thyroidal extension was found to be associated with DAPK1 (p=0.014) and ESR1 (p=0.036) methylation. Late stage disease was associated with older age (p<0.001) and methylation of DAPK1 (p=0.034) and ESR1 (p=0.035). The methylation status of RASSF1, DAPK1 and ESR1 suggests the utility of methylation markers to molecularly differentiate thyroid cancer subtypes for enhanced classification and early detection of thyroid cancer. PMID:27158284

  3. Records of our Early Biosphere Illuminate our Origins and Guide our Search for Life Beyond Earth

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2003-01-01

    A scientific "mission of exploration to early Earth" will help us chart the distribution of life elsewhere. We must discriminate between attributes of biospheres that are universal versus those attributes that represent principally the outcomes of long-term survival specifically on Earth. In addition to the basic physics and chemistry of matter, the geologic evolution of rocky habitable planets and their climates might be similar elsewhere in the Universe. Certain key agents that drive long-term environmental change (e.g., stellar evolution, impacts, geothermal heat flow, tectonics, etc.) can help us to reconstruct ancient climates and to compare their evolution among populations of Earth- like planets. Early Earth was tectonically more active than today and therefore it exhaled reduced chemical species into the more oxidized surface environment at greater rates. This tectonic activity thus sustained oxidation-reduction reactions that provided the basis for the development of biochemical pathways that harvest chemical energy ("bioenergetics"). Most examples of bioenergetics today that extract energy by reacting oxidized and reduced chemicals in the environment were likely more pervasive among our microbial ancestors than are the presently known examples of photosynthesis. The geologic rock record indicates that, as early as 3.5 billion years ago (3.5 Ga), microbial biofilms were widespread within the coastal environments of small continents and tectonically unstable volcanic islands. Non oxygen-producing (non-oxygenic) photosynthesis preceded oxygenic photosynthesis, but all types of photosynthesis contributed substantially to the long-term increase in global primary biological productivity. Evidence of photosynthesis is tentative by 3.5 Ga and compelling by 2.7 Ga. Evidence of oxygenic photosynthesis is strong by 2.7 Ga and compelling by 2.3 Ga. These successive innovations transformed life from local communities that survived principally by catalyzing chemical

  4. A Mercury-like component of early Earth yields uranium in the core and high mantle (142)Nd.

    PubMed

    Wohlers, Anke; Wood, Bernard J

    2015-04-16

    Recent (142)Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a 'hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the 'hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an (142)Nd/(144)Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the 'missing' heat source for the geodynamo.

  5. A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd

    NASA Astrophysics Data System (ADS)

    Wohlers, Anke; Wood, Bernard J.

    2015-04-01

    Recent 142Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a `hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the `hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an 142Nd/144Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the `missing' heat source for the geodynamo.

  6. Thermal evolution of the earth

    NASA Technical Reports Server (NTRS)

    Spohn, T.

    1984-01-01

    The earth's heat budget and models of the earth's thermal evolution are discussed. Sources of the planetary heat are considered and modes of heat transport are addressed, including conduction, convection, and chemical convection. Thermal and convectional models of the earth are covered, and models of thermal evolution are discussed in detail, including changes in the core, the influence of layered mantle convection on the thermal evolution, and the effect of chemical differentiation on the continents.

  7. Extending Whole-earth Tectonics To The Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  8. The gga-let-7 family post-transcriptionally regulates TGFBR1 and LIN28B during the differentiation process in early chick development.

    PubMed

    Lee, Sang In; Jeon, Mi-Hyang; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2015-12-01

    Early chick embryogenesis is governed by a complex mechanism involving transcriptional and post-transcriptional regulation, although how post-transcriptional processes influence the balance between pluripotency and differentiation during early chick development have not been previously investigated. Here, we characterized the microRNA (miRNA) signature associated with differentiation in the chick embryo, and found that as expression of the gga-let-7 family increases through early development, expression of their direct targets, TGFBR1 and LIN28B, decreases; indeed, gga-let-7a-5p and gga-let-7b miRNAs directly bind to TGFBR1 and LIN28B transcripts. Our data further indicate that TGFBR1 and LIN28B maintain pluripotency by regulating POUV, NANOG, and CRIPTO. Therefore, gga-let-7 miRNAs act as post-transcriptional regulators of differentiation in blastodermal cells by repressing the expression of the TGFBR1 and LIN28B, which intrinsically controls blastodermal cell differentiation in early chick development. © 2015 Wiley Periodicals, Inc.

  9. Differential associations of early callous-unemotional, oppositional, and ADHD behaviors: multiple domains within early-starting conduct problems?

    PubMed

    Waller, Rebecca; Hyde, Luke W; Grabell, Adam S; Alves, Martha L; Olson, Sheryl L

    2015-06-01

    Early-starting child conduct problems (CP) are linked to the development of persistent antisocial behavior. Researchers have theorized multiple pathways to CP and that CP comprise separable domains, marked by callous-unemotional (CU) behavior, oppositional behavior, or ADHD symptoms. However, a lack of empirical evidence exists from studies that have examined whether there are unique correlates of these domains. We examined differential correlates of CU, oppositional, and ADHD behaviors during the preschool years to test their potentially distinct nomological networks. Multimethod data, including parent and teacher reports and observations of child behavior, were drawn from a prospective, longitudinal study of children assessed at age 3 and age 6 (N = 240; 48% female). Dimensions of CU, oppositional, and ADHD behaviors were separable within Confirmatory Factor Analyses across mother and father reports. There were differential associations between CU, oppositional, and ADHD behaviors and socioemotional, cognitive, and behavioral outcomes: CU behavior was uniquely related to lower moral regulation, guilt, and empathy. ADHD was uniquely related to lower attentional focusing and observed effortful control. Finally, CU behavior uniquely predicted increases in teacher-reported externalizing from ages 3-6 over and above covariates, and ADHD and oppositional behavior. Consistent with theory, dimensions of CU, ADHD, and oppositional behavior demonstrated separable nomological networks representing separable facets within early-starting CP. © 2014 Association for Child and Adolescent Mental Health.

  10. A Model of Volcanic Outgassing for Earth's Early Atmosphere

    NASA Astrophysics Data System (ADS)

    Dhaliwal, J. K.; Kasting, J. F.; Zhang, Z.

    2017-12-01

    We build on historical paradigms of volcanic degassing [1] to account for non-linear relations among C-O-H-S volatiles, their speciation, solubility and concentrations in magmatic melts, and the resulting contribution to atmospheric volatile inventories. We focus on the build-up of greenhouse-relevant carbon species (CO2 and CH4) and molecular oxygen to better understand the environments of early life and the Great Oxygenation Event [2,3,4]. The mantle is an important reservoir of C-O-H-S volatiles [5], and melt concentrations depend on temperature, pressure and oxygen fugacity. We present a preliminary chemical model that simulates volatile concentrations released into the Earth's atmosphere at 1 bar, or pressures corresponding to the early Earth prior to 2.4 Ga. We maintain redox balance in the system using H+ [2, 6] because the melt oxidation state evolves with volatile melt concentrations [7] and affects the composition of degassed compounds. For example, low fO2 in the melt degasses CO, CH4, H2S and H2 while high fO2 yields CO2, SO2 and H2O [1,8,9]. Our calculations incorporate empirical relations from experimental petrology studies [e.g., 10, 11] to account for inter-dependencies among volatile element solubility trends. This model has implications for exploring planetary atmospheric evolution and potential greenhouse effects on Venus and Mars [12]­, and possibly exoplanets. A future direction of this work would be to link this chemical degassing model with different tectonic regimes [13] to account for degassing and ingassing, such as during subduction. References: [1] Holland, H. D. (1984) The chemical evolution of the atmosphere and oceans [2] Kasting, J. F. (2013) Chem. Geo. 362, 13-25 [3] Kasting, J.F. (1993) Sci. 259, 920-926 [4] Duncan, M.S. & Dasgupta, R. (2017) Nat. Geoscience 10, 387-392. [5] Hier-Majumder, S. & Hirschmann, M.M. (2017) G3, doi: 10.1002/2017GC006937 [6] Gaillard, F. et al. (2003) GCA 67, 2427- 2441 [7] Moussalam, Y. et al. (2014

  11. Siderophilic Cyanobacteria: Implications for Early Earth.

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Mummey, D.; Sarkisova, S.; Shen, G.; Bryant, D. A.; Lindsay, J.; Garrison, D.; McKay, D. S.

    2006-01-01

    Of all extant environs, iron-depositing hot springs (IDHS) may exhibit the greatest similarity to late Precambrian shallow warm oceans in regards to temperature, O2 gradients and dissolved iron and H2S concentrations. Despite the insights into the ecology, evolutionary biology, paleogeobiochemistry, and astrobiology examination of IDHS could potentially provide, very few studies dedicated to the physiology and diversity of cyanobacteria (CB) inhabiting IDHS have been conducted. Results. Here we describe the phylogeny, physiology, ultrastructure and biogeochemical activity of several recent CB isolates from two different greater Yellowstone area IDHS, LaDuke and Chocolate Pots. Phylogenetic analysis of 16S rRNA genes indicated that 6 of 12 new isolates examined couldn't be placed within established CB genera. Some of the isolates exhibited pronounced requirements for elevated iron concentrations, with maximum growth rates observed when 0.4-1 mM Fe(3+) was present in the media. In light of "typical" CB iron requirements, our results indicate that elevated iron likely represents a salient factor selecting for "siderophilicM CB species in IDHS. A universal feature of our new isolates is their ability to produce thick EPS layers in which iron accumulates resulting in the generation of well preserved signatures. In parallel, siderophilic CB show enhanced ability to etch the analogs of iron-rich lunar regolith minerals and impact glasses. Despite that iron deposition by CB is not well understood mechanistically, we recently obtained evidence that the PS I:PS II ratio is higher in one of our isolates than for other CB. Although still preliminary, this finding is in direct support of the Y. Cohen hypothesis that PSI can directly oxidize Fe(2+). Conclusion. Our results may have implications for factors driving CB evolutionary relationships and biogeochemical processes on early Earth and probably Mars.

  12. The Formation of Haze During the Rise of Oxygen in the Atmosphere of the Early Earth

    NASA Astrophysics Data System (ADS)

    Horst, S. M.; Jellinek, M.; Pierrehumbert, R.; Tolbert, M. A.

    2014-12-01

    also provide a wealth of organic material to the surface. Photochemical hazes are abundant in reducing atmospheres, such as the N2/CH4 atmosphere of Titan, but are unlikely to form in oxidizing atmospheres, such as the N2/O2 atmosphere of present day Earth. However, information about haze formation in mildly oxidizing atmospheres is lacking. Understanding haze formation in mildly oxidizing atmospheres is necessary for models that wish to investigate the atmosphere of the Early Earth as O2 first appeared and then increased in abundance. Previous studies of the atmosphere of the Early Earth have focused on haze formation in N2/CO2/CH4 atmospheres. In this work, we experimentally investigate the effect of the addition of O2 on the formation and composition of aerosols. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [1]) we have obtained in situ composition measurements of aerosol particles produced in N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (deuterium lamp, 115-400 nm) for a range of initial CO2/CH4/O2 mixing ratios. In particular, we studied the effect of O2 ranging from 2 ppm to 2%. The particles were also investigated using a Scanning Mobility Particle Sizer (SMPS), which measures particle size, number density and mass loading. A comparison of the composition of the aerosols will be presented. The effect of variation of O2 mixing ratio on aerosol production, size, and composition will also be discussed. [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326.

  13. The early Earth -- A perspective on the Archean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, W.B.

    1993-04-01

    Dominant models of Archean tectonics and magmatism involve plate-tectonic mechanisms. Common tenets of geochemistry (e.g., model ages) and petrology visualize a cold-accreted Earth in which primitive mantle gradually fractionated to produce crust during and since Archean time. These popular assumptions appear to be incompatible with cosmologic and planetologic evidence and with Archean geology. All current quantitative and semiquantitative theories agree that the Earth was largely or entirely melted (likely superheated) by giant impacts, including the Mars-size impact which splashed out the Moon, and by separation of the core. The Earth at [approximately]4.5 Ga was a violently convecting anhydrous molten ball.more » Both this history and solar-system position indicate the bulk Earth to be more refractory than chondrite. The outer part of whatever sold shell developed was repeatedly recycled by impacts before 3.9 Ga. Water and CO[sub 2] were added by impactors after the Moon-forming event; the mantle is not a source of primordial volatiles, but rather is a sink that has depleted the hydrosphere. Voluminous liquidus ultramafic lava (komatiite) indicates that much Archean upper mantle was above its solidus. Only komatiitic and basaltic magma entered Archean crust from the mantle. Variably hydrous contamination, secondary melting, and fractionation in the crust produced intermediate and felsic melts. Magmatism was concurrent over vast tracts. Within at least the small sample of Archean crust that has not been recycled into the mantle, heat loss was primarily by voluminous, dispersed magmatism, not, as in the modern Earth, primarily through spreading windows through the crust. Only in Proterozoic time did plate-tectonic mechanisms become prevalent.« less

  14. Effects of spin crossover on iron isotope fractionation in Earth's mantle

    NASA Astrophysics Data System (ADS)

    Qin, T.; Shukla, G.; Wu, Z.; Wentzcovitch, R.

    2017-12-01

    Recent studies have revealed that the iron isotope composition of mid-ocean ridge basalts (MORBs) is +0.1‰ richer in heavy Fe (56Fe) relative to chondrites, while basalts from Mars and Vesta have similar Fe isotopic composition as chondrites. Several hypotheses could explain these observations. For instance, iron isotope fractionation may have occurred during core formation or Earth may have lost some light Fe isotope during the high temperature event in the early Earth. To better understand what drove these isotopic observations, it is important to obtain accurate Fe isotope fractionation factors among mantle and core phases at the relevant P-T conditions. In bridgmanite, the most voluminous mineral in the lower mantle, Fe can occupy more than one crystalline site, be in ferrous and/or ferric states, and may undergo a spin crossover in the lower mantle. Iron isotopic fractionation properties under spin crossover are poorly constrained, while this may be relevant to differentiation of Earth's magma ocean. In this study we address the effect of these multiple states on the iron isotope fractionation factors between mantle and core phases.

  15. Metabolic Differentiation of Early Lyme Disease from Southern Tick-Associated Rash Illness (STARI)

    PubMed Central

    Molins, C. R.; Ashton, L. V.; Wormser, G. P.; Andre, B. G.; Hess, A. M.; Delorey, M. J.; Pilgard, M. A.; Johnson, B. J.; Webb, K.; Islam, M. N.; Pegalajar-Jurado, A; Molla, I.; Jewett, M. W.; Belisle, J. T.

    2017-01-01

    Lyme disease, the most commonly reported vector-borne disease in the United States, results from infection with Borrelia burgdorferi. Early clinical diagnosis of this disease is largely based on the presence of an erythematous skin lesion for individuals in high-risk regions. This, however, can be confused with other illnesses including southern tick-associated rash illness (STARI), an illness that lacks a defined etiological agent or laboratory diagnostic test, and is co-prevalent with Lyme disease in portions of the Eastern United States. By applying an unbiased metabolomics approach with sera retrospectively obtained from well-characterized patients we defined biochemical and diagnostic differences between early Lyme disease and STARI. Specifically, a metabolic biosignature consisting of 261 molecular features (MFs) revealed that altered N-acyl ethanolamine and primary fatty acid amide metabolism discriminated early Lyme disease from STARI. More importantly, development of classification models with the 261 MF biosignature and testing against validation samples differentiated early Lyme disease from STARI with an accuracy of 85 to 98%. These findings revealed metabolic dissimilarity between early Lyme disease and STARI, and provide a powerful and new approach to objectively distinguish early Lyme disease from an illness with nearly identical symptoms. PMID:28814545

  16. Chondritic Mn/Na ratio and limited post-nebular volatile loss of the Earth

    NASA Astrophysics Data System (ADS)

    Siebert, Julien; Sossi, Paolo A.; Blanchard, Ingrid; Mahan, Brandon; Badro, James; Moynier, Frédéric

    2018-03-01

    The depletion pattern of volatile elements on Earth and other differentiated terrestrial bodies provides a unique insight as to the nature and origin of planetary building blocks. The processes responsible for the depletion of volatile elements range from the early incomplete condensation in the solar nebula to the late de-volatilization induced by heating and impacting during planetary accretion after the dispersion of the H2-rich nebular gas. Furthermore, as many volatile elements are also siderophile (metal-loving), it is often difficult to deconvolve the effect of volatility from core formation. With the notable exception of the Earth, all the differentiated terrestrial bodies for which we have samples have non-chondritic Mn/Na ratios, taken as a signature of post-nebular volatilization. The bulk silicate Earth (BSE) is unique in that its Mn/Na ratio is chondritic, which points to a nebular origin for the depletion; unless the Mn/Na in the BSE is not that of the bulk Earth (BE), and has been affected by core formation through the partitioning of Mn in Earth's core. Here we quantify the metal-silicate partitioning behavior of Mn at deep magma ocean pressure and temperature conditions directly applicable to core formation. The experiments show that Mn becomes more siderophile with increasing pressure and temperature. Modeling the partitioning of Mn during core formation by combining our results with previous data at lower P-T conditions, we show that the core likely contains a significant fraction (20 to 35%) of Earth's Mn budget. However, we show that the derived Mn/Na value of the bulk Earth still lies on the volatile-depleted end of a trend defined by chondritic meteorites in a Mn/Na vs Mn/Mg plot, which tend to higher Mn/Na with increasing volatile depletion. This suggests that the material that formed the Earth recorded similar chemical fractionation processes for moderately volatile elements as chondrites in the solar nebula, and experienced limited post

  17. Sex Differential Item Functioning in the Inventory of Early Development III Social-Emotional Skills

    ERIC Educational Resources Information Center

    Beaver, Jessica L.; French, Brian F.; Finch, W. Holmes; Ullrich-French, Sarah C.

    2014-01-01

    Social-emotional (SE) skills in the early developmental years of children influence outcomes in psychological, behavioral, and learning domains. The adult ratings of a child's SE skills can be influenced by sex stereotypes. These rating differences could lead to differential conclusions about developmental progress or risk. To ensure that…

  18. Early-life sexual segregation: ontogeny of isotopic niche differentiation in the Antarctic fur seal

    NASA Astrophysics Data System (ADS)

    Kernaléguen, L.; Arnould, J. P. Y.; Guinet, C.; Cazelles, B.; Richard, P.; Cherel, Y.

    2016-09-01

    Investigating the ontogeny of niche differentiation enables to determine at which life-stages sexual segregation arises, providing insights into the main factors driving resource partitioning. We investigated the ontogeny of foraging ecology in Antarctic fur seals (Arctocephalus gazella), a highly dimorphic species with contrasting breeding strategies between sexes. Sequential δ13C and δ15N values of whiskers provided a longitudinal proxy of the foraging niche throughout the whole life of seals, from weaning, when size dimorphism is minimal to the age of 5. Females exhibited an early-life ontogenetic shift, from a total segregation during their first year at-sea, to a similar isotopic niche as breeding females as early as age 2. In contrast, males showed a progressive change in isotopic niche throughout their development such that 5-year-old males did not share the same niche as territorial bulls. Interestingly, males and females segregated straight after weaning with males appearing to feed in more southerly habitats than females. This spatial segregation was of similar amplitude as observed in breeding adults and was maintained throughout development. Such early-life niche differentiation is an unusual pattern and indicates size dimorphism and breeding constraints do not directly drive sexual segregation contrary to what has been assumed in otariid seals.

  19. NASA's global differential GPS system and the TDRSS augmentation service for satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz; Young, Larry; Stocklin, Frank; Rush, John

    2004-01-01

    NASA is planning to launch a new service for Earth satellites providing them with precise GPS differential corrections and other ancillary information enabling decimeter level orbit determination accuracy, and nanosecond time-transfer accuracy, onboard, in real-time. The TDRSS Augmentation Service for Satellites (TASS) will broadcast its message on the S-band multiple access channel of NASA's Tracking and Data Relay Satellite System (TDRSS). The satellite's phase array antenna has been configured to provide a wide beam, extending coverage up to 1000 km altitude over the poles. Global coverage will be ensured with broadcast from three or more TDRSS satellites. The GPS differential corrections are provided by the NASA Global Differential GPS (GDGPS) System, developed and operated by NASA's Jet Propulsion Laboratory. The GDGPS System employs a global ground network of more than 70 GPS receivers to monitor the GPS constellation in real time. The system provides real-time estimates of the GPS satellite states, as well as many other real-time products such as differential corrections, global ionospheric maps, and integrity monitoring. The unique multiply redundant architecture of the GDGPS System ensures very high reliability, with 99.999% demonstrated since the inception of the system in Early 2000. The estimated real time GPS orbit and clock states provided by the GDGPS system are accurate to better than 20 cm 3D RMS, and have been demonstrated to support sub-decimeter real time positioning and orbit determination for a variety of terrestrial, airborne, and spaceborne applications. In addition to the GPS differential corrections, TASS will provide real-time Earth orientation and solar flux information that enable precise onboard knowledge of the Earth-fixed position of the spacecraft, and precise orbit prediction and planning capabilities. TASS will also provide 5 seconds alarms for GPS integrity failures based on the unique GPS integrity monitoring service of the

  20. Crustal formation and recycling in an oceanic environment in the early Earth

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.

    2003-04-01

    Several lines of evidence indicate higher mantle temperatures (by some hundreds of degrees) during the early history of the Earth. Due to the strong effect of temperature on viscosity as well as on the degree of melting, this enforces a geodynamic regime which is different from the present plate tectonics, and in which smaller scale processes play a more important role. Upwelling of a hotter mantle produces a thicker oceanic crust, of which the lower part may reside in the eclogite stability field. This facilitates delamination, making room for fresh mantle material which may partly melt and add new material to the crust (Vlaar et al., 1994). We present results of numerical thermo-chemical convection models including a simple approximate melt segregation mechanism in which we investigate this alternative geodynamic regime, and its effect on the cooling history and chemical evolution of the mantle. Our results show that the mechanism is capable of working on two scales. On a small scale, involving the lower boundary of the crust, delaminations and downward transport of eclogite into the upper mantle takes place. On a larger scale, involving the entire crustal column, (parts of) the crust may episodically sink into the mantle and be replaced by a fresh crust. Both are capable of significantly and rapidly cooling a hot upper mantle by driving partial melting and thus the generation of new crust. After some hundreds of millions of years, as the temperature drops, the mechanism shuts itself off, and the cooling rate significantly decreases. Vlaar, N.J., P.E. van Keken and A.P. van den Berg (1994), Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle, Earth and Planetary Science Letters, vol 121, pp. 1-18

  1. The oxidation state of Hadean magmas and implications for early Earth's atmosphere.

    PubMed

    Trail, Dustin; Watson, E Bruce; Tailby, Nicholas D

    2011-11-30

    Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wüstite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth's history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ∼4,400 Myr (refs 5-8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas as early as ∼4,350 Myr before present. These results suggest that outgassing of Earth's interior later than ∼200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.

  2. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.

    2010-11-01

    The discovery of a habitable Earth-like planet beyond our solar-system will be remembered as one of the major breakthroughs of 21st century science, and of the same magnitude as Copernicus' heliocentric model dating from the mid 16th century. The real astrobiological breakthrough will be the added results from atmospheric remote sensing of such planets to determine habitability. Atmospheres, in both concentration and composition are suggestive of processes occurring at the planetary surface and upper crust. Unfortunately, only the modern Earth's atmosphere is known to be habitable. I investigate the density and pressure of our planet's early atmosphere before the rise of oxygen 2.5 billion years ago, because our planet was very much alive microbially. Such knowledge gives us another example of a habitable atmosphere. I also investigates the atmosphere of early Mars, as geomorphic signatures on its surface are suggestive of a past where liquid water may have present in a warmer climate, conditions suitable for the emergence of life, compared with today's 6 mbar CO2-dominated atmosphere. Using tools of fluvial geomorphology, I find that the largest river-valleys on Mars do not record a signature of a sustained hydrological cycle, in which precipitation onto a drainage basin induces many cycles of water flow, substrate incision, water ponding, and return to the atmosphere via evaporation. Rather, I conclude that while episodes of flow did occur in perhaps warmer environments, those periods were short-lived and overprinted onto a dominantly cold and dry planet. For Earth, I develop a new method of investigating atmospheric density and pressure using the size of raindrop imprints, and find that raindrop imprints preserved in the 2.7 billion year old Ventersdorp Supergroup of South Africa are consistent with precipitation falling in an atmosphere of near-surface density < 2 kg/m3 and probably > 0.1 kg/m3, compared to a modern value of 1.2 kg/m3, further suggesting a

  3. Biogenesis and early life on Earth and Europa: favored by an alkaline ocean?

    PubMed

    Kempe, Stephan; Kazmierczak, Jozef

    2002-01-01

    Recent discoveries about Europa--the probable existence of a sizeable ocean below its ice crust; the detection of hydrated sodium carbonates, among other salts; and the calculation of a net loss of sodium from the subsurface--suggest the existence of an alkaline ocean. Alkaline oceans (nicknamed "soda oceans" in analogy to terrestrial soda lakes) have been hypothesized also for early Earth and Mars on the basis of mass balance considerations involving total amounts of acids available for weathering and the composition of the early crust. Such an environment could be favorable to biogenesis since it may have provided for very low Ca2+ concentrations mandatory for the biochemical function of proteins. A rapid loss of CO2 from Europa's atmosphere may have led to freezing oceans. Alkaline brine bubbles embedded in ice in freezing and impact-thawing oceans could have provided a suitable environment for protocell formation and the large number of trials needed for biogenesis. Understanding these processes could be central to assessing the probability of life on Europa.

  4. The underlying process of early ecological and genetic differentiation in a facultative mutualistic Sinorhizobium meliloti population.

    PubMed

    Toro, Nicolás; Villadas, Pablo J; Molina-Sánchez, María Dolores; Navarro-Gómez, Pilar; Vinardell, José M; Cuesta-Berrio, Lidia; Rodríguez-Carvajal, Miguel A

    2017-04-06

    The question of how genotypic and ecological units arise and spread in natural microbial populations remains controversial in the field of evolutionary biology. Here, we investigated the early stages of ecological and genetic differentiation in a highly clonal sympatric Sinorhizobium meliloti population. Whole-genome sequencing revealed that a large DNA region of the symbiotic plasmid pSymB was replaced in some isolates with a similar synteny block carrying densely clustered SNPs and displaying gene acquisition and loss. Two different versions of this genomic island of differentiation (GID) generated by multiple genetic exchanges over time appear to have arisen recently, through recombination in a particular clade within this population. In addition, these isolates display resistance to phages from the same geographic region, probably due to the modification of surface components by the acquired genes. Our results suggest that an underlying process of early ecological and genetic differentiation in S. meliloti is primarily triggered by acquisition of genes that confer resistance to soil phages within particular large genomic DNA regions prone to recombination.

  5. The Formation of Haze During the Rise of Oxygen in the Atmosphere of the Early Earth

    NASA Astrophysics Data System (ADS)

    Horst, S. M.; Jellinek, M.; Pierrehumbert, R.; Tolbert, M. A.

    2013-12-01

    Atmospheric aerosols play an important role in determining the radiation budget of an atmosphere and can also provide a wealth of organic material to the surface. Photochemical hazes are abundant in reducing atmospheres, such as the N2/CH4 atmosphere of Titan, but are unlikely to form in oxidizing atmospheres, such as the N2/O2 atmosphere of present day Earth. However, information about haze formation in mildly oxidizing atmospheres is lacking. Understanding haze formation in mildly oxidizing atmospheres is necessary for models that wish to investigate the atmosphere of the Early Earth as O2 first appeared and then increased in abundance. Previous studies of the atmosphere of the Early Earth have focused on haze formation in N2/CO2/CH4 atmospheres. In this work, we experimentally investigate the effect of the addition of O2 on the formation and composition of aerosols. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [1]) we have obtained in situ composition measurements of aerosol particles produced in N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (deuterium lamp, 115-400 nm) for a range of initial CO2/CH4/O2 mixing ratios. In particular, we studied the effect of O2 ranging from 2 ppm to 2%. The particles were also investigated using a Scanning Mobility Particle Sizer (SMPS), which measures particle size, number density and mass loading. A comparison of the composition of the aerosols will be presented. The effect of variation of O2 mixing ratio on aerosol production, size, and composition will also be discussed. [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326.

  6. The value of cyclooxygenase-2 expression in differentiating between early melanomas and histopathologically difficult types of benign human skin lesions.

    PubMed

    Kuźbicki, Łukasz; Lange, Dariusz; Strączyńska-Niemiec, Anita; Chwirot, Barbara W

    2012-02-01

    Early cutaneous melanomas may present a substantial diagnostic challenge. We have already reported that expression of cyclooxygenase-2 (COX-2) may be useful for differentiating between cutaneous melanomas and naevi. The purpose of this study was to examine the value of COX-2 in a challenging task of differential diagnosis of early melanomas and melanocytic naevi considered by histopathologists as morphologically difficult to unequivocally diagnose as benign lesions. The material for the study comprised formalin-fixed paraffin-embedded samples of 46 naevi (including 27 cases of dysplastic, Spitz and Reed naevi) and 30 early human cutaneous melanomas. The expression of COX-2 was detected immunohistochemically. Melanomas expressed COX-2 significantly more strongly compared with naevi. The test, on the basis of determination of the percentage fractions of COX-2-positive cells, allows for differentiation of early skin melanomas and naevi with high sensitivity and specificity. Receiver operating characteristic analysis of the test results yielded areas under receiver operating characteristics curves (AUC)=0.946±0.030 for central regions and AUC=0.941±0.031 for the peripheries of the lesions. The performance of the test in differentiating between melanomas and the naevi group comprising dysplastic, Spitz and Reed naevi was also good, with AUC=0.933±0.034 and 0.923±0.037 for the central and the border regions of the lesions, respectively. Using a more complex diagnostic algorithm also accounting for the staining intensity did not result in an improvement in the resolving power of the assay. A diagnostic algorithm using differences in the percentage fractions of cells expressing COX-2 may serve as a useful tool in aiding the differential diagnosis of 'histopathologically difficult' benign melanocytic skin lesions and early melanomas.

  7. Interleukin-6 inhibits early differentiation of ATDC5 chondrogenic progenitor cells.

    PubMed

    Nakajima, Shoko; Naruto, Takuya; Miyamae, Takako; Imagawa, Tomoyuki; Mori, Masaaki; Nishimaki, Shigeru; Yokota, Shumpei

    2009-08-01

    Interleukin (IL)-6 is a causative agent of systemic juvenile idiopathic arthritis (sJIA), a chronic inflammatory disease complicated with severe growth impairment. Recent trials of anti-IL-6 receptor monoclonal antibody, tocilizumab, indicated that tocilizumab blocks IL-6/IL-6 receptor-mediated inflammation, and induces catch-up growth in children with sJIA. This study evaluates the effects of IL-6 on chondrogenesis by ATDC5 cells, a clonal murine chondrogenic cell line that provides an excellent model for studying endochondral ossification at growth plate. ATDC5 cells were examined for the expression of IL-6 receptor and gp130 by fluorescence-activated cell sorting analysis. Recombinant murine IL-6 was added to ATDC5 cultures to observe cell differentiation, using a quantitative RT-PCR for the chondrogenic differentiation markers type II collagen, aggrecan, and type X collagen. To block IL-6, the anti-mouse IL-6 receptor monoclonal antibody MR16-1 was added. As a result, the cells expressed IL-6 receptor and gp130. The expression of chondrogenic differentiation marker gene was reduced by IL-6, but this was abrogated by MR16-1. We conclude that IL-6 inhibits early chondrogenesis of ATDC5 cells suggesting that IL-6 may affect committed stem cells at a cellular level during chondrogenic differentiation of growth plate chondrocytes, and that IL-6 may be a cellular-level factor in growth impairment in sJIA.

  8. Tuberin and PRAS40 are anti-apoptotic gatekeepers during early human amniotic fluid stem-cell differentiation.

    PubMed

    Fuchs, Christiane; Rosner, Margit; Dolznig, Helmut; Mikula, Mario; Kramer, Nina; Hengstschläger, Markus

    2012-03-01

    Embryoid bodies (EBs) are three-dimensional multicellular aggregates allowing the in vitro investigation of stem-cell differentiation processes mimicking early embryogenesis. Human amniotic fluid stem (AFS) cells harbor high proliferation potential, do not raise the ethical issues of embryonic stem cells, have a lower risk for tumor development, do not need exogenic induction of pluripotency and are chromosomal stable. Starting from a single human AFS cell, EBs can be formed accompanied by the differentiation into cells of all three embryonic germ layers. Here, we report that siRNA-mediated knockdown of the endogenous tuberous sclerosis complex-2 (TSC2) gene product tuberin or of proline-rich Akt substrate of 40 kDa (PRAS40), the two major negative regulators of mammalian target of rapamycin (mTOR), leads to massive apoptotic cell death during EB development of human AFS cells without affecting the endodermal, mesodermal and ectodermal cell differentiation spectrum. Co-knockdown of endogenous mTOR demonstrated these effects to be mTOR-dependent. Our findings prove this enzyme cascade to be an essential anti-apoptotic gatekeeper of stem-cell differentiation during EB formation. These data allow new insights into the regulation of early stem-cell maintenance and differentiation and identify a new role of the tumor suppressor tuberin and the oncogenic protein PRAS40 with the relevance for a more detailed understanding of the pathogenesis of diseases associated with altered activities of these gene products.

  9. Galileo's Earth-Moon portrait

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Research reported at an AGU session on Galileo's Earth/Moon flyby refined the spacecraft's distinctive portrait of the Earth-Moon system. The Galileo team presented dramatic new views of the Earth and Moon taken last December. Andrew P. Ingersoll showed a color movie of the rotating Earth, made through spectral filters with which Galileo viewed the Earth almost continuously for 25 hours.Galileo also made finely tuned observations of vegetation and clouds, using three very closely spaced spectral wavelengths in the near-infrared, explained W. Reid Thompson. In the resulting images, Argentinian grassland and Brazilian rain forest are clearly distinguished, demonstrating the applicability of this technique for routine monitoring of deforestation, shifts in vegetation due to climate, and other phenomena. Thompson suggested that this capability could be used on the Earth Observing System. One of the spectral bands may also have potential for monitoring cloud condensation, as it appears to differentiate actively condensing, vapor-heavy clouds from higher and drier clouds.

  10. Usefulness of Demarcation of Differentiated-Type Early Gastric Cancers after Helicobacter pylori Eradication by Magnifying Endoscopy with Narrow-Band Imaging.

    PubMed

    Akazawa, Yoichi; Ueyama, Hiroya; Yao, Takashi; Komori, Hiroyuki; Takeda, Tsutomu; Matsumoto, Kohei; Matsumoto, Kenshi; Asaoka, Daisuke; Hojo, Mariko; Watanabe, Sumio; Nagahara, Akihito

    2018-06-05

    Early gastric cancer after Helicobacter pylori (Hp) eradication is difficult to demarcate. We used the vessel plus surface classification system (VSCS) to determine whether magnifying endoscopy with narrow-band imaging (ME-NBI) could demarcate differentiated-type early gastric cancers after Hp eradication, and to identify causes of an unclear demarcation line (DL). Among 100 lesions of differentiated-type early gastric cancer resected endoscopically, 34 lesions in the Hp-eradicated group and 66 in the Hp-infected group were retrospectively compared. Clinicopathological factors and ME-NBI findings, including the presence or absence of the DL, were examined. Histopathologically, histological gastritis, the surface structure at the tumor border, well-differentiated adenocarcinoma with low-grade atypia (tub1-low), and non-neoplastic epithelium (NE) coverage rate on the tumor surface and at the tumor border were evaluated. DL (-) cases were more frequent in the Hp-eradicated group (11.8%, 4/34) than in the Hp-infected group (1.5%, 1/66; p < 0.05). The Hp-eradicated group had a higher NE coverage rate than the Hp-infected group (p < 0.05). All DL (-) cases had tub1-low or NE at the tumor border. ME-NBI with VSCS can identify the DL in most patients (88.2%) with differentiated-type early gastric cancer after Hp eradication. © 2018 S. Karger AG, Basel.

  11. Chronology of Planetesimal Differentiation Based on the Timing of Achondrite Formation in the Early Solar System

    NASA Astrophysics Data System (ADS)

    Dunlap, D. R.; Wadhwa, M.

    2018-05-01

    Chronology of achondrites provide critical insights into accretion and differentiation timescales in the early solar system. A diverse suite of achondrites are presented here to constrain the thermal histories of a number of distinct planetesimals.

  12. Early endocrine disruptors exposure acts on 3T3-L1 differentiation and endocrine activity

    PubMed Central

    Boudalia, Sofiane; Belloir, Christine; Miller, Marie-Louise; Canivenc-Lavier, Marie-Chantal

    2017-01-01

    Introduction: Data from last years suggested that early exposure to endocrine disruptors (EDs) can predispose newborns to endocrine dysfunction of adipocytes, obesity, and associated disorders. The implication of EDs at low doses on adipocyte development has been poorly investigated. For instance, vinclozolin (V) is a dicarboximide fungicide widely used in agriculture since the 90's, alone or in mixture with genistein (G), an isoflavonoid from Leguminosae. This study aims to identify the effect of vinclozolin alone or with genistein, on adipose tissue properties using cell culture. Methods: In steroid-free conditions, 3T3-L1 pre-adipocytes were induced to differentiate in the presence of EDs, singularly or in mixtures, for 2 days. DNA and triglyceride (TG) levels were measured on days 0, 2 and 8 of differentiation. Leptin secretion was measured only on the eighth day. Results: We show that low doses of G (25 µM) and V (0.1 µM) inhibit pre-adipocytes differentiation. This inhibition has been represented by a decreasing in DNA content (µg/well) and decreasing in TG accumulation (mg/mL) in 3T3-L1 cells. Nevertheless, V increased the anti-adipogenic properties of G. Conclusion: This study confirms that EDs singularly or in mixtures, introduced during early stages of life, could affect the differentiation and the endocrine activity of adipocytes, and can act as potential factors for obesity. PMID:28752072

  13. Biological modulation of planetary atmospheres: The early Earth scenario

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.

    1985-01-01

    The establishment and subsequent evolution of life on Earth had a profound impact on the chemical regime at the planet's surface and its atmosphere. A thermodynamic gradient was imposed on near-surface environments that served as the driving force for a number on important geochemical transformations. An example is the redox imbalance between the modern atmosphere and the material of the Earth's crust. Current photochemical models predict extremely low partial pressures of oxygen in the Earth's prebiological atmosphere. There is widespread consensus that any large-scale oxygenation of the primitive atmosphere was contingent on the advent of biological (autotrophic) carbon fixation. It is suggested that photoautotrophy existed both as a biochemical process and as a geochemical agent since at least 3.8 Ga ago. Combining the stoichiometry of the photosynthesis reaction with a carbon isotope mass balance and current concepts for the evolution of the stationary sedimentary mass as a funion of time, it is possible to quantify, the accumulation of oxygen and its photosynthetic oxidation equivalents through Earth history.

  14. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth.

    PubMed

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-10-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.

  15. Identification of MS4A3 as a reliable marker for early myeloid differentiation in human hematopoiesis.

    PubMed

    Ishibashi, Tomohiko; Yokota, Takafumi; Satoh, Yusuke; Ichii, Michiko; Sudo, Takao; Doi, Yukiko; Ueda, Tomoaki; Nagate, Yasuhiro; Hamanaka, Yuri; Tanimura, Akira; Ezoe, Sachiko; Shibayama, Hirohiko; Oritani, Kenji; Kanakura, Yuzuru

    2018-01-15

    Information of myeloid lineage-related antigen on hematopoietic stem/progenitor cells (HSPCs) is important to clarify the mechanisms regulating hematopoiesis, as well as for the diagnosis and treatment of myeloid malignancies. We previously reported that special AT-rich sequence binding protein 1 (SATB1), a global chromatin organizer, promotes lymphoid differentiation from HSPCs. To search a novel cell surface molecule discriminating early myeloid and lymphoid differentiation, we performed microarray analyses comparing SATB1-overexpressed HSPCs with mock-transduced HSPCs. The results drew our attention to membrane-spanning 4-domains, subfamily A, member 3 (Ms4a3) as the most downregulated molecule in HSPCs with forced overexpression of SATB1. Ms4a3 expression was undetectable in hematopoietic stem cells, but showed a concomitant increase with progressive myeloid differentiation, whereas not only lymphoid but also megakaryocytic-erythrocytic progenitors were entirely devoid of Ms4a3 expression. Further analysis revealed that a subset of CD34 + CD38 + CD33 + progenitor population in human adult bone marrow expressed MS4A3, and those MS4A3 + progenitors only produced granulocyte/macrophage colonies, losing erythroid colony- and mixed colony-forming capacity. These results suggest that cell surface expression of MS4A3 is useful to distinguish granulocyte/macrophage lineage-committed progenitors from other lineage-related ones in early human hematopoiesis. In conclusion, MS4A3 is useful to monitor early stage of myeloid differentiation in human hematopoiesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of planetary rotation on the differentiation of a terrestrial magma ocean in spherical geometry

    NASA Astrophysics Data System (ADS)

    Hansen, Ulrich; Maas, Christian

    2017-04-01

    About 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes and could for example influence the presence and distribution of chemical heterogeneities in the Earth's mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008]. Previous work in Cartesian geometry revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we developed a spherical shell model that allows to study crystal settling in-between pole and equator as well as the migration of crystals between these regions. Further we included centrifugal forces on the crystals, which significantly affect the lateral and radial distribution of the crystals. Depending on the strength of rotation the particles accumulate at mid-latitude or at the equator. At high rotation rates the dynamics of fluid and particles are dominated by jet-like motions in longitudinal direction that have different directions on northern and southern hemisphere. All in all the first numerical experiments in spherical geometry agree with Maas and Hansen [2015] that the crystal distribution crucially depends on latitude, rotational strength and crystal density. References E. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008. C. Maas and U. Hansen. Eff ects of earth's rotation on the early di erentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120

  17. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  18. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  19. Did 26Al and impact-induced heating differentiate Mercury?

    NASA Astrophysics Data System (ADS)

    Bhatia, G. K.; Sahijpal, S.

    2017-02-01

    Numerical models dealing with the planetary scale differentiation of Mercury are presented with the short-lived nuclide, 26Al, as the major heat source along with the impact-induced heating during the accretion of planets. These two heat sources are considered to have caused differentiation of Mars, a planet with size comparable to Mercury. The chronological records and the thermal modeling of Mars indicate an early differentiation during the initial 1 million years (Ma) of the formation of the solar system. We theorize that in case Mercury also accreted over an identical time scale, the two heat sources could have differentiated the planets. Although unlike Mars there is no chronological record of Mercury's differentiation, the proposed mechanism is worth investigation. We demonstrate distinct viable scenarios for a wide range of planetary compositions that could have produced the internal structure of Mercury as deduced by the MESSENGER mission, with a metallic iron (Fe-Ni-FeS) core of radius 2000 km and a silicate mantle thickness of 400 km. The initial compositions were derived from the enstatite and CB (Bencubbin) chondrites that were formed in the reducing environments of the early solar system. We have also considered distinct planetary accretion scenarios to understand their influence on thermal processing. The majority of our models would require impact-induced mantle stripping of Mercury by hit and run mechanism with a protoplanet subsequent to its differentiation in order to produce the right size of mantle. However, this can be avoided if we increase the Fe-Ni-FeS contents to 71% by weight. Finally, the models presented here can be used to understand the differentiation of Mercury-like exoplanets and the planetary embryos of Venus and Earth.

  20. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E., E-mail: creekk@sccp.sc.edu

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistancemore » to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling.« less

  1. The carbon cycle on early Earth--and on Mars?

    PubMed

    Grady, Monica M; Wright, Ian

    2006-10-29

    One of the goals of the present Martian exploration is to search for evidence of extinct (or even extant) life. This could be redefined as a search for carbon. The carbon cycle (or, more properly, cycles) on Earth is a complex interaction among three reservoirs: the atmosphere; the hydrosphere; and the lithosphere. Superimposed on this is the biosphere, and its presence influences the fixing and release of carbon in these reservoirs over different time-scales. The overall carbon balance is kept at equilibrium on the surface by a combination of tectonic processes (which bury carbon), volcanism (which releases it) and biology (which mediates it). In contrast to Earth, Mars presently has no active tectonic system; neither does it possess a significant biosphere. However, these observations might not necessarily have held in the past. By looking at how Earth's carbon cycles have changed with time, as both the Earth's tectonic structure and a more sophisticated biology have evolved, and also by constructing a carbon cycle for Mars based on the carbon chemistry of Martian meteorites, we investigate whether or not there is evidence for a Martian biosphere.

  2. Do Guilt- and Shame-Proneness Differentially Predict Prosocial, Aggressive, and Withdrawn Behaviors during Early Adolescence?

    ERIC Educational Resources Information Center

    Roos, Sanna; Hodges, Ernest V. E.; Salmivalli, Christina

    2014-01-01

    In this short-term longitudinal study, we systematically examined the distinctiveness of guilt- and shame-proneness in early adolescents (N = 395, mean age = 11.8 years) in terms of differential relations with peer reported prosocial behavior, withdrawal, and aggression. Results from structural equation modeling indicated that guilt-proneness…

  3. The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions: implications for early earth.

    PubMed

    DeWitt, H Langley; Hasenkopf, Christa A; Trainer, Melissa G; Farmer, Delphine K; Jimenez, Jose L; McKay, Christopher P; Toon, Owen B; Tolbert, Margaret A

    2010-10-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 × 10(9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO(2)) by UV light with λ < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S(8)) and sulfuric acid (H(2)SO(4)) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO(2) either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H(2)) or methane (CH(4)), increased the formation of S(8). With UV photolysis, formation of S(8) aerosols is highly dependent on the initial SO(2) pressure; and S(8) is only formed at a 2% SO(2) mixing ratio and greater in the absence of a reductant, and at a 0.2% SO(2) mixing ratio and greater in the presence of 1000 ppmv CH(4). We also found that organosulfur compounds are formed from the photolysis of CH(4) and moderate amounts of SO(2). The implications for sulfur aerosols on early Earth are discussed. Key Words: S-MIF-Archean atmosphere-Early Earth-Sulfur aerosols.

  4. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Dun; Orthopedic Department, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang 317000; Chen, Hai-Xiao, E-mail: Hxchen-1@163.net

    Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not formmore » a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation - a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.« less

  5. Analysis of the Material Properties of Early Chondrogenic Differentiated Adipose-Derived Stromal Cells (ASC) Using an in vitro Three-dimensional Micromass Culture System

    PubMed Central

    Xu, Yue; Balooch, Guive; Chiou, Michael; Bekerman, Elena; Ritchie, Robert O.; Longaker, Michael T.

    2009-01-01

    Cartilage is an avascular tissue with only a limited potential to heal and chondrocytes in vitro have poor proliferative capacity. Recently, adipose-derived stromal cells (ASC) have demonstrated a great potential for application to tissue engineering due to their ability to differentiate into cartilage, bone, and fat. In this study, we have utilized a high density three-dimensional (3D) micromass model system of early chondrogenesis with ASC. The material properties of these micromasses showed a significant increase in dynamic and static elastic modulus during the early chondrogenic differentiation process. These data suggest that the 3D micromass culture system represents an in vitro model of early chondrogenesis with dynamic cell signaling interactions associated with the mechanical properties of chondrocyte differentiation. PMID:17543281

  6. Analysis of the material properties of early chondrogenic differentiated adipose-derived stromal cells (ASC) using an in vitro three-dimensional micromass culture system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yue; Balooch, Guive; Chiou, Michael

    2007-07-27

    Cartilage is an avascular tissue with only a limited potential to heal and chondrocytes in vitro have poor proliferative capacity. Recently, adipose-derived stromal cells (ASC) have demonstrated a great potential for application to tissue engineering due to their ability to differentiate into cartilage, bone, and fat. In this study, we have utilized a high density three-dimensional (3D) micromass model system of early chondrogenesis with ASC. The material properties of these micromasses showed a significant increase in dynamic and static elastic modulus during the early chondrogenic differentiation process. These data suggest that the 3D micromass culture system represents an in vitromore » model of early chondrogenesis with dynamic cell signaling interactions associated with the mechanical properties of chondrocyte differentiation.« less

  7. Metabolic differentiation of early Lyme disease from southern tick-associated rash illness (STARI).

    PubMed

    Molins, Claudia R; Ashton, Laura V; Wormser, Gary P; Andre, Barbara G; Hess, Ann M; Delorey, Mark J; Pilgard, Mark A; Johnson, Barbara J; Webb, Kristofor; Islam, M Nurul; Pegalajar-Jurado, Adoracion; Molla, Irida; Jewett, Mollie W; Belisle, John T

    2017-08-16

    Lyme disease, the most commonly reported vector-borne disease in the United States, results from infection with Borrelia burgdorferi. Early clinical diagnosis of this disease is largely based on the presence of an erythematous skin lesion for individuals in high-risk regions. This, however, can be confused with other illnesses including southern tick-associated rash illness (STARI), an illness that lacks a defined etiological agent or laboratory diagnostic test, and is coprevalent with Lyme disease in portions of the eastern United States. By applying an unbiased metabolomics approach with sera retrospectively obtained from well-characterized patients, we defined biochemical and diagnostic differences between early Lyme disease and STARI. Specifically, a metabolic biosignature consisting of 261 molecular features (MFs) revealed that altered N -acyl ethanolamine and primary fatty acid amide metabolism discriminated early Lyme disease from STARI. Development of classification models with the 261-MF biosignature and testing against validation samples differentiated early Lyme disease from STARI with an accuracy of 85 to 98%. These findings revealed metabolic dissimilarity between early Lyme disease and STARI, and provide a powerful and new approach to inform patient management by objectively distinguishing early Lyme disease from an illness with nearly identical symptoms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Memories of Earth Formation in the Modern Mantle: W Isotopic Composition of Flood Basalt Lavas

    NASA Astrophysics Data System (ADS)

    Rizo Garza, H. L.; Walker, R. J.; Carlson, R.; Horan, M. F.; Mukhopadhyay, S.; Francis, D.; Jackson, M. G.

    2015-12-01

    Four and a half billion years of geologic activity has overprinted much of the direct evidence for processes involved in Earth's formation and its initial chemical differentiation. Xenon isotopic ratios [1] and 3He/22Ne ratios [2] suggest that heterogeneities formed during Earth's accretion have been preserved to the present time. New opportunities to learn about early Earth history have opened up with the development of analytical techniques that allow high precision analysis of short-lived isotopic systems. The Hf-W system (t½ = 8.9 Ma) is particularly valuable for studying events that occurred during the first ~50 Ma of Solar System history. Here we report new data for ~ 60 Ma Baffin Bay and ~ 120 Ma Ontong Java Plateau lava samples. Both are large igneous provinces that may have sampled a primitive, less degassed deep mantle reservoir that has remained isolated since shortly after Earth formation [3,4]. Three samples analyzed have 182W/184W ratios that are 10 to 48 ppm higher than our terrestrial standard. These excesses in 182W are the highest ever measured in terrestrial rocks, and may reflect 182W ingrowth in an early-formed high Hf/W mantle domain that was produced by magma ocean differentiation [5]. Long and short-lived Sm-Nd systematics in these samples, however, are inconsistent with this hypothesis. The 182W excessses could rather reflect the derivation of these lavas from a mantle reservoir that was isolated from late accretionary additions [6]. The chondritic initial Os isotopic compositions and highly siderophile element abundances of these samples, however, are inconsistent with this interpretation. Tungsten concentrations for the Baffin Bay and Ontong Java Plateau samples range from 23 ppb to 62 ppb, and are negatively correlated with their 182W/184W ratios. We propose that the source reservoirs for these flood basalts likely formed through Hf/W fractionation caused by core-forming events occuring over a protacted time interval during Earth

  9. A model for the evolution of the Earth's mantle structure since the Early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Zhong, Shijie; Leng, Wei; Li, Zheng-Xiang

    2010-06-01

    Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a globally spherical harmonic degree 2 structure). However, the cause for and time evolution of the African and Pacific superplumes and the degree 2 mantle structure remain poorly understood with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Myr and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma) and the mantle in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree 1 structure before the Pangea formation). Here, we construct a proxy model of plate motions for the African hemisphere for the last 450 Myr since the Early Paleozoic using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations. Coupled with assumed oceanic plate motions for the Pacific hemisphere, this proxy model for the plate motion history is used as time-dependent surface boundary condition in three-dimensional spherical models of thermochemical mantle convection to study the evolution of mantle structure, particularly the African mantle structure, since the Early Paleozoic. Our model calculations reproduce well the present-day mantle structure including the African and Pacific superplumes and generally support the second proposal with a dynamic cause for the superplume structure. Our results suggest that while the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of

  10. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth

    PubMed Central

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-01-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration. PMID:21593797

  11. Earth fissures and localized differential subsidence

    USGS Publications Warehouse

    Holzer, Thomas L.; Pampeyan, Earl Haig

    1979-01-01

    Long tension cracks caused by declines of ground-water level at four sites in Arizona, California, and Nevada occur at points of maximum, convex-upward curvature in subsidence profiles based on relevelings of closely-spaced bench marks aligned perpendicular to the cracks. We conclude the cracks are caused by horizontal strains associated with the differential subsidence.

  12. Off-Earth Driving Champs in Miles

    NASA Image and Video Library

    2011-12-07

    The total distance driven on Mars by NASA Mars Exploration Rover, 21.35 miles by early December 2011, is approaching the record total for off-Earth driving, held by the robotic Lunokhod 2 rover operated on Earth moon by the Soviet Union in 1973.

  13. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    2005-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. The compositional diversity that we explore is the residue of process diversity, which has strong relevance for comparative planetology. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Our lunar research concentrates on the rare pristine (unmixed) samples that reflect the original genetic diversity of the early crust. Among HED basalts (eucrites and clasts in howardites), we distinguish as pristine the small minority that escaped the pervasive thermal metamorphism of the parent asteroid's crust. We have found a correlation between metamorphically pristine HED basalts and the similarly small minority of compositionally evolved "Stannern trend" samples, which are enriched in incompatible elements and titanium compared to main group eucrites, and yet have relatively high mg ratios. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; siderophile compositions of the lunar and martian mantles; and planetary bulk compositions and origins.

  14. Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks.

    PubMed

    Orange, F; Westall, F; Disnar, J-R; Prieur, D; Bienvenu, N; Le Romancer, M; Défarge, Ch

    2009-09-01

    Hydrothermal activity was common on the early Earth and associated micro-organisms would most likely have included thermophilic to hyperthermophilic species. 3.5-3.3 billion-year-old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro-organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro-organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro-organisms were placed in a silica-saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro-organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils.

  15. Variation in 142Nd/144Nd of Archean rocks from southwest Greenland : Implications for early Earth mantle dynamics

    NASA Astrophysics Data System (ADS)

    Rizo, H.; Boyet, M.; Blichert-Toft, J.; Rosing, M.; Paquette, J. L.

    2012-04-01

    The short-lived 146Sm-142Nd chronometer (half-life = 103 Ma) has proven successful in bringing constraints on the dynamics of the early Earth mantle. Since the parent isotope, 146Sm, was extant only during the first 300 Ma of the history of the Solar System, the positive 142Nd anomalies measured in southwest Greenland Archean rocks imply that their incompatible element-depleted mantle source formed during the Hadean. Interestingly, the magnitude of these anomalies seems to decrease over time. 3.7-3.8 Ga old rocks from the Amitsoq Complex have revealed +10 to +20 ppm 142Nd anomalies [1, 2, 3, 4, 5, 6, 7], whereas younger 3.0 Ga old samples from the Ivisaartoq greenstone belt yield smaller positive anomalies, ranging from +5.5 to +8.5 ppm [8]. Thus, the chemical heterogeneities detected in the southwest Greenland mantle were formed during the first 150 Ma of Earth's history, and seem to have resisted re-mixing by mantle convection until 3.0 Ga. In this study, we investigate the evolution of the southwest Greenland mantle during the time period of 3.3-3.4 Ga. The samples analyzed come from both the ~3.3 Ga amphibolite unit and the ~3.4 Ga Ameralik basic dyke swarm from the Amitsoq Complex. Coupled Sm-Nd and Lu-Hf bulk-rock ages obtained for seven amphibolites are in good agreement (3351 ± 210 Ma and 3302 ± 260 Ma, respectively) and consistent with the minimum age found by Nutman and Friend (2009) [9] for this formation. We further obtained coherent bulk-rock 147Sm-143Nd and zircon+baddeleyite 207Pb/206Pb ages for the Ameralik dykes (3428 ± 250 Ma and 3421 ± 34 Ma, respectively), in line with ages suggested by Nielsen at al., (2002) [10] and Nutman et al., (2004) [11]. We are currently in the process of analyzing these samples for 142Nd isotopic compositions and the results will be compared with the existing southwest Greenland data in order to shed new light on the evolution and destruction of heterogeneities in the early Earth mantle. [1] Rizo et al., (2011

  16. Pair-wise comparison analysis of differential expression of mRNAs in early and advanced stage primary colorectal adenocarcinomas

    PubMed Central

    Lau, Tze Pheng; Roslani, April Camilla; Lian, Lay Hoong; Chai, Hwa Chia; Lee, Ping Chin; Hilmi, Ida; Goh, Khean Lee; Chua, Kek Heng

    2014-01-01

    Objectives To characterise the mRNA expression patterns of early and advanced stage colorectal adenocarcinomas of Malaysian patients. Design Comparative expression analysis. Setting and participants We performed a combination of annealing control primer (ACP)-based PCR and reverse transcription-quantitative real-time PCR for the identification of differentially expressed genes (DEGs) associated with early and advanced stage primary colorectal tumours. We recruited four paired samples from patients with colorectal cancer (CRC) of Dukes’ A and B for the preliminary differential expression study, and a total of 27 paired samples, ranging from CRC stages I to IV, for subsequent confirmatory test. The tumouric samples were obtained from the patients with CRC undergoing curative surgical resection without preoperative chemoradiotherapy. The recruited patients with CRC were newly diagnosed with CRC, and were not associated with any hereditary syndromes, previously diagnosed cancer or positive family history of CRC. The paired non-cancerous tissue specimens were excised from macroscopically normal colonic mucosa distally located from the colorectal tumours. Primary and secondary outcome measures The differential mRNA expression patterns of early and advanced stage colorectal adenocarcinomas compared with macroscopically normal colonic mucosa were characterised by ACP-based PCR and reverse transcription-quantitative real-time PCR. Results The RPL35, RPS23 and TIMP1 genes were found to be overexpressed in both early and advanced stage colorectal adenocarcinomas (p<0.05). However, the ARPC2 gene was significantly underexpressed in early colorectal adenocarcinomas, while the advanced stage primary colorectal tumours exhibited an additional overexpression of the C6orf173 gene (p<0.05). Conclusions We characterised two distinctive gene expression patterns to aid in the stratification of primary colorectal neoplasms among Malaysian patients with CRC. Further work can be done to

  17. Clementine Images of Earth and Moon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    During its flight and lunar orbit, the Clementine spacecraft returned images of the planet Earth and the Moon. This collection of UVVIS camera Clementine images shows the Earth from the Moon and 3 images of the Earth.

    The image on the left shows the Earth as seen across the lunar north pole; the large crater in the foreground is Plaskett. The Earth actually appeared about twice as far above the lunar horizon as shown. The top right image shows the Earth as viewed by the UVVIS camera while Clementine was in transit to the Moon; swirling white cloud patterns indicate storms. The two views of southeastern Africa were acquired by the UVVIS camera while Clementine was in low Earth orbit early in the mission

  18. On the effects of planetary rotation on the differentiation of a terrestrial magma ocean in spherical geometry

    NASA Astrophysics Data System (ADS)

    Maas, C.; Hansen, U.

    2016-12-01

    During a later stage of the accretion about 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes of the mantle and could for example influence the presence and distribution of chemical heterogeneities in the Earth mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008].Our previous work in Cartesian geometry studied crystal settling in the polar and equatorial regions separately from each other and revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we recently developed a spherical shell model that allows for new insights into the crystal settling in-between the pole and the equator as well as the migration of crystals between these regions. Further the spherical model allows us to include the centrifugal force on the crystals, which significantly affects the lateral and radial distribution of crystals. All in all the first numerical experiments in spherical geometry agree with the results of Maas and Hansen [2015] and show that the crystal distribution crucially depends on latitude, rotational strength and crystal density. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008.C. Maas and U. Hansen. Effects of earth's rotation on the early dierentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120(11):7508-7525, 2015.C. Matyska, J. Moser, and D. A. Yuen. The

  19. MicroRNA changes through Müller glia dedifferentiation and early/late rod photoreceptor differentiation.

    PubMed

    Quintero, H; Gómez-Montalvo, A I; Lamas, M

    2016-03-01

    Cell-type determination is a complex process driven by the combinatorial effect of extrinsic signals and the expression of transcription factors and regulatory genes. MicroRNAs (miRNAs) are non-coding RNAs that, generally, inhibit the expression of target genes and have been involved, among other processes, in cell identity acquisition. To search for candidate miRNAs putatively involved in mice rod photoreceptor and Müller glia (MG) identity, we compared miRNA expression profiles between late-stage retinal progenitor cells (RPCs), CD73-immunopositive (CD73+) rods and postnatal MG. We found a close similarity between RPCs and CD73+ miRNA expression profiles but a divergence between CD73+ and MG miRNA signatures. We validated preferentially expressed miRNAs in the CD73+ subpopulation (miR-182, 183, 124a, 9(∗), 181c and 301b(∗)) or MG (miR-143, 145, 214, 199a-5p, 199b(∗), and 29a). Taking advantage of the unique capacity of MG to dedifferentiate into progenitor-like cells that can be differentiated to a rod phenotype in response to external cues, we evaluated changes of selected miRNAs in MG-derived progenitors (MGDP) during neuronal differentiation. We found decreased levels of miR-143 and 145, but increased levels of miR-29a in MGDP. In MGDPs committed to early neuronal lineages we found increased levels of miR-124a and upregulation of miR-124a, 9(∗) and 181c during MGDP acquisition of rod phenotypes. Furthermore, we demonstrated that ectopic miR-124 expression is sufficient to enhance early neuronal commitment of MGDP. Our data reveal a dynamic regulation of miRNAs in MGDP through early and late neuronal commitment and miRNAs that could be potential targets to exploit the silent neuronal differentiation capacity of MG in mammals. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Reduced Gas Cycling in Microbial Mats: Implications for Early Earth

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Bebout, Brad M.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    For more than half the history of life on Earth, biological productivity was dominated by photosynthetic microbial mats. During this time, mats served as the preeminent biological influence on earth's surface and atmospheric chemistry and also as the primary crucible for microbial evolution. We find that modern analogs of these ancient mat communities generate substantial quantities of hydrogen, carbon monoxide, and methane. Escape of these gases from the biosphere would contribute strongly to atmospheric evolution and potentially to the net oxidation of earth's surface; sequestration within the biosphere carries equally important implications for the structure, function, and evolution of anaerobic microbial communities within the context of mat biology.

  1. Effects of administration of a proton pump inhibitor before endoscopic submucosal dissection for differentiated early gastric cancer with ulcer.

    PubMed

    Myung, Yu Sik; Hong, Su Jin; Han, Jae Pil; Park, Kyung Woo; Ko, Bong Min; Lee, Moon Sung

    2017-01-01

    In ulcerative early gastric cancer, improvement and exacerbation of ulceration repeat as a malignant cycle. Moreover, early gastric cancer combined with ulcer is associated with a low curative resection rate and high risk of adverse events. The aim of this study was to investigate the ulcer healing rate and clinical outcomes with the administration of a proton pump inhibitor before endoscopic submucosal dissection for differentiated early gastric cancer with ulcer. A total of 136 patients with differentiated early gastric cancer with ulcer who met the expanded indications for endoscopic submucosal dissection were reviewed between June 2005 and June 2014. Eighty-one patients were given PPI before endoscopic submucosal dissection and 55 patients were not given PPI. The complete ulcer healing rate was significantly different between the two groups (59.3 % vs. 23.6 %, P < 0.001). The procedure time was 38.1 ± 35.7 and 50.8 ± 50.2 min (P = 0.047). However, no significant differences were detected in the en bloc resection rate, complete resection rate, and adverse events including bleeding and perforation. Multivariate analysis showed that administration of PPI (OR = 10.83, P < 0.001) and mucosal invasion (OR = 24.43, P < 0.001) were independent factors that predicted complete healing of ulceration. The calculated accuracy for whether complete healing of the ulcer after PPI administration can differentiate mucosal from submucosal invasion was 75.3 %. Administration of PPI before ESD in differentiated EGC meeting the expanded criteria is effective to heal the ulcer lesion and reduce the mean procedure time. Complete healing of the ulcer after PPI administration suggests mucosal cancer.

  2. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  3. Decursin inhibits vasculogenesis in early tumor progression by suppression of endothelial progenitor cell differentiation and function.

    PubMed

    Jung, Seok Yun; Choi, Jin Hwa; Kwon, Sang-Mo; Masuda, Haruchika; Asahara, Takayuki; Lee, You-Mie

    2012-05-01

    Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti-inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood-derived AC133+ cells that produce functional EPC progenies. Decursin dose-dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle-shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin-2, angiopoietin receptor Tie-2, Flk-1 (vascular endothelial growth factor receptor-2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose-dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor-induced mobilization of circulating EPCs (CD34 + /VEGFR-2+ cells) from bone marrow and early incorporation of Dil-Ac-LDL-labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild-type- or bone-marrow-transplanted mice. Accordingly, decursin attenuated EPC-derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. Copyright © 2012 Wiley Periodicals, Inc.

  4. Early stages in the evolution of the atmosphere and climate on the Earth-group planets

    NASA Technical Reports Server (NTRS)

    Moroz, V. I.; Mukhin, L. M.

    1977-01-01

    The early evolution of the atmospheres and climate of the Earth, Mars and Venus is discussed, based on a concept of common initial conditions and main processes (besides known differences in chemical composition and outgassing rate). It is concluded that: (1) liquid water appeared on the surface of the earth in the first few hundred million years; the average surface temperature was near the melting point for about the first two eons; CO2 was the main component of the atmosphere in the first 100-500 million years; (2) much more temperate outgassing and low solar heating led to the much later appearance of liquid water on the Martian surface, only one to two billion years ago; the Martian era of rivers, relatively dense atmosphere and warm climate ended as a result of irreversible chemical bonding of CO2 by Urey equilibrium processes; (3) a great lack of water in the primordial material of Venus is proposed; liquid water never was present on the surface of the planet, and there was practically no chemical bonding of CO2; the surface temperature was over 600 K four billion years ago.

  5. Germ layer differentiation during early hindgut and cloaca formation in rabbit and pig embryos

    PubMed Central

    Hassoun, Romia; Schwartz, Peter; Rath, Detlef; Viebahn, Christoph; Männer, Jörg

    2010-01-01

    Relative to recent advances in understanding molecular requirements for endoderm differentiation, the dynamics of germ layer morphology and the topographical distribution of molecular factors involved in endoderm formation at the caudal pole of the embryonic disc are still poorly defined. To discover common principles of mammalian germ layer development, pig and rabbit embryos at late gastrulation and early neurulation stages were analysed as species with a human-like embryonic disc morphology, using correlative light and electron microscopy. Close intercellular contact but no direct structural evidence of endoderm formation such as mesenchymal–epithelial transition between posterior primitive streak mesoderm and the emerging posterior endoderm were found. However, a two-step process closely related to posterior germ layer differentiation emerged for the formation of the cloacal membrane: (i) a continuous mesoderm layer and numerous patches of electron-dense flocculent extracellular matrix mark the prospective region of cloacal membrane formation; and (ii) mesoderm cells and all extracellular matrix including the basement membrane are lost locally and close intercellular contact between the endoderm and ectoderm is established. The latter process involves single cells at first and then gradually spreads to form a longitudinally oriented seam-like cloacal membrane. These gradual changes were found from gastrulation to early somite stages in the pig, whereas they were found from early somite to mid-somite stages in the rabbit; in both species cloacal membrane formation is complete prior to secondary neurulation. The results highlight the structural requirements for endoderm formation during development of the hindgut and suggest new mechanisms for the pathogenesis of common urogenital and anorectal malformations. PMID:20874819

  6. Early Hydrodynamic Escape Limits Rocky Planets to Less Than or Equal to 1.6 Earth Radii

    NASA Technical Reports Server (NTRS)

    Lehmer, O. R.; Catling, D. C.

    2017-01-01

    In the past decade thousands of exoplanet candidates and hundreds of confirmed exoplanets have been found. For sub-Neptune-sized planets, those less than approx. 10 Earth masses, we can separate planets into two broad categories: predominantly rocky planets, and gaseous planets with thick volatile sheaths. Observations and subsequent analysis of these planets show that rocky planets are only found with radii less than approx. 1.6 Earth radii. No rocky planet has yet been found that violates this limit. We propose that hydrodynamic escape of hydrogen rich protoatmospheres, accreted by forming planets, explains the limit in rocky planet size. Following the hydrodynamic escape model employed by Luger et al. (2015), we modelled the XUV driven escape from young planets (less than approx.100 Myr in age) around a Sun-like star. With a simple, first-order model we found that the rocky planet radii limit occurs consistently at approx. 1.6 Earth radii across a wide range of plausible parameter spaces. Our model shows that hydrodynamic escape can explain the observed cutoff between rocky and gaseous planets. Fig. 1 shows the results of our model for rocky planets between 0.5 and 10 Earth masses that accrete 3 wt. % H2/He during formation. The simulation was run for 100 Myr, after that time the XUV flux drops off exponentially and hydrodynamic escape drops with it. A cutoff between rocky planets and gaseous ones is clearly seen at approx. 1.5-1.6 Earth radii. We are only interested in the upper size limit for rocky planets. As such, we assumed pure hydrogen atmospheres and the highest possible isothermal atmospheric temperatures, which will produce an upper limit on the hydrodynamic loss rate. Previous work shows that a reasonable approximation for an upper temperature limit in a hydrogen rich protoatmosphere is 2000-3000 K, consistent with our assumptions. From these results, we propose that the observed dichotomy between mini-Neptunes and rocky worlds is simply explained by

  7. Rare-earth metal prices in the USA ca. 1960 to 1994

    USGS Publications Warehouse

    Hedrick, James B.

    1997-01-01

    Rare-earth metal prices were compiled from the late 1950s and early 1960s through 1994. Although commercial demand for rare-earth metals began in 1908, as the alloy mischmetal, commercial quantities of a wide range of individual rare-earth metals were not available until the late 1950s. The discovery of a large, high-grade rare-earth deposit at Mountain Pass. CA, USA, in 1949, was significant because it led to the production of commercial quantities or rare-earth elements that reduced prices and encouraged wider application of the materials. The availability of ore from Mountain Pass, and other large rare-earth deposits, especially those in Australia and China, has provided the world with abundant resources for rare-earth metal production. This availability, coupled with improved technology from Government and private-sector metallurgical research, has resulted in substantial decreases in rare-earth metal prices since the late 1950s and early 1960s. Price series for the individual rare-earth metals (except promethium) are quoted on a kilogram basis from the late 1950s and early 1960s through 1994. Prices are given in US dollars on an actual and constant dollar basis. Industrial and economic factors affecting prices during this time period are examined.

  8. Rare-earth metal prices in the USA ca. 1960 to 1994

    USGS Publications Warehouse

    Hedrick, J.B.

    1997-01-01

    Rare-earth metal prices were compiled from the late 1950s and early 1960s through 1994. Although commercial demand for rare-earth metals began in 1908, as the alloy mischmetal, commercial quantities of a wide range of individual rare-earth metals were not available until the late 1950s. The discovery of a large, high-grade rare-earth deposit at Mountain Pass, CA, USA, in 1949, was significant because it led to the production of commercial quantities of rare-earth elements that reduced prices and encouraged wider application of the materials. The availability of ore from Mountain Pass, and other large rare-earth deposits, especially those in Australia and China, has provided the world with abundant resources for rare-earth metal production. This availability, coupled with improved technology from Government and private-sector metallurgical research, has resulted in substantial decreases in rare-earth metal prices since the late 1950s and early 1960s. Price series for the individual rare-earth metals (except promethium) are quoted on a kilogram basis from the late 1950s and early 1960s through 1994. Prices are given in US dollars on an actual and constant dollar basis. Industrial and economic factors affecting prices during this time period are examined.

  9. Clementine Images of Earth and Moon

    NASA Image and Video Library

    1999-06-12

    During its flight and lunar orbit, NASA’s Clementine spacecraft returned images of the planet Earth and the Moon. This collection of UVVIS camera Clementine images shows the Earth from the Moon and 3 images of the Earth. The image on the left shows the Earth as seen across the lunar north pole; the large crater in the foreground is Plaskett. The Earth actually appeared about twice as far above the lunar horizon as shown. The top right image shows the Earth as viewed by the UVVIS camera while Clementine was in transit to the Moon; swirling white cloud patterns indicate storms. The two views of southeastern Africa were acquired by the UVVIS camera while Clementine was in low Earth orbit early in the mission. http://photojournal.jpl.nasa.gov/catalog/PIA00432

  10. Nonproteinogenic D-amino acids at millimolar concentrations are a toxin for anaerobic microorganisms relevant to early Earth and other anoxic planets.

    PubMed

    Nixon, Sophie L; Cockell, Charles S

    2015-03-01

    The delivery of extraterrestrial organics to early Earth provided a potentially important source of carbon and energy for microbial life. Optically active organic compounds of extraterrestrial origin exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. Although D-enantiomers of proteinogenic amino acids are known to inhibit aerobic microorganisms, the role of concentrated nonproteinogenic meteoritic D-amino acids on anaerobic metabolisms relevant to early Earth and other anoxic planets such as Mars is unknown. Here, we test the inhibitory effect of D-enantiomers of two nonproteinogenic amino acids common to carbonaceous chondrites, norvaline and α-aminobutyric acid, on microbial iron reduction. Three pure strains (Geobacter bemidjiensis, Geobacter metallireducens, Geopsychrobacter electrodiphilus) and an iron-reducing enrichment culture were grown in the presence of 10 mM D-enantiomers of both amino acids. Further tests were conducted to assess the inhibitory effect of these D-amino acids at 1 and 0.1 mM. The presence of 10 mM D-norvaline and D-α-aminobutyric acid inhibited microbial iron reduction by all pure strains and the enrichment. G. bemidjiensis was not inhibited by either amino acid at 0.1 mM, but D-α-aminobutyric acid still inhibited at 1 mM. Calculations using published meteorite accumulation rates to the martian surface indicate D-α-aminobutyric acid may have reached inhibitory concentrations in little over 1000 years during peak infall. These data show that, on a young anoxic planet, the use of one enantiomer over another may render the nonbiological enantiomer an environmental toxin. Processes that generate racemic amino acids in the environment, such as meteoritic infall or impact synthesis, would have been toxic processes and could have been a selection pressure for the evolution of early racemases.

  11. Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation.

    PubMed

    Tao, Wenjing; Sun, Lina; Shi, Hongjuan; Cheng, Yunying; Jiang, Dongneng; Fu, Beide; Conte, Matthew A; Gammerdinger, William J; Kocher, Thomas D; Wang, Deshou

    2016-05-04

    MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.

  12. Subduction on Venus and Implications for Volatile Cycling, Early Earth and Exoplanets

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.; Davaille, A.; Mueller, N. T.; Dyar, M. D.; Helbert, J.; Barnes, H.

    2017-12-01

    it a good analog of Earth's Archean. There is increasing evidence that Venus is a dynamic planet with possible active and/or recent volcanism and subduction. Studying these processes on Venus provides a window into both early Earth and offers constraints on the conditions needed to initiate plate tectonics on exoplanets.

  13. Morphological and ecological complexity in early eukaryotic ecosystems.

    PubMed

    Javaux, E J; Knoll, A H; Walter, M R

    2001-07-05

    Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.

  14. Origin of the Early Sial Crust and U-Pb Isotope-Geochemical Heterogeneity of the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Mishkin, M. A.; Nozhkin, A. D.; Vovna, G. M.; Sakhno, V. G.; Veldemar, A. A.

    2018-02-01

    It is shown that presence of the Early Precambrian sial crust in the Indo-Atlantic segment of the Earth and its absence in the Pacific has been caused by geochemical differences in the mantle underlying these segments. These differences were examined on the basis of Nd-Hf and U-Pb isotopes in modern basalts. The U-Pb isotope system is of particular interest, since uranium is a member of a group of heat-generating radioactive elements providing heat for plumes. It is shown that in the Indo-Atlantic segment, a distribution of areas of the modern HIMU type mantle is typical, while it is almost completely absent in the Pacific segment. In the Archean, in the upper HIMU type paleo-mantle areas, plume generation and formation of the primordial basic crust occurred; this was followed by its remelting resulting in the appearance of an early sial crust forming cratons of the Indo-Atlantic segment.

  15. The Dynamical Evolution of the Earth-Moon Progenitors. 1; Motivation and Methodology

    NASA Technical Reports Server (NTRS)

    Lissuer, Jack; Rivera, E.; Duncan, M. J.; Levison, H. F.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    The Giant Impact Hypothesis was introduced in the mid-1970's after consideration of results from the Apollo Moon missions. This hypothesis best explains the similarity in elemental proportions in lunar and terrestrial rocks, the depletion of lunar volatiles, the lack of lunar iron. and the large angular momentum in the Earth-Moon system. Comparison between the radiometric ages of inclusions in the most primitive meteorites and those of inclusions in the oldest lunar rocks and the differentiation age of Earth suggests that the Earth-Moon system formed about 100 Myr after the oldest meteorites. In addition, the age of the famous Martian meteorite ALH84001 and an early solidification time estimated from the Martian crust, suggest that the inner Solar System was fairly clear of large bodies about 10 Myr after the oldest meteorites formed. Thus, the 'standard model' suggests that for a period of several tens of millions of years the terrestrial planet region had few. if any, lunar-sized bodies and there were five terrestrial planets, Mercury, Venus, the two progenitors of the Earth-Moon system, and Mars. To simulate the dynamics of the Solar System before the hypothesized Moon-forming impact, we are integrating the Solar System with the Earth-Moon system replaced by two bodies in heliocentric orbits between Venus and Mars. The total (orbital) angular momentum of the Earth-Moon progenitors is that of the present Earth-Moon system, and their total mass is that of the Earth-Moon system. We are looking at ranges in mass ratio and initial values for eccentricity, inclination. and semi-major axis. We are using the SYMBA integrator to integrate these systems until a collision occurs or a time of 200 Myr elapses. Results are presented in a companion paper.

  16. The Dynamical Evolution of the Earth-Moon Progenitors. 1; Motivation and Methodology

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Rivera, E.; Duncan, M. J.; Levison, H. F.

    1998-01-01

    The giant impact hypothesis was introduced in the mid-1970s after consideration of results from the Apollo missions. This hypothesis best explains the similarity in elemental proportions in lunar and terrestrial rocks, the depletion of lunar volatiles, the lack of lunar Fe, and the large angular momentum in the Earth-Moon system. Comparison between the radiometric ages of inclusions in the most primitive meteorites and in the oldest lunar rocks and the differentiation age of Earth suggests that the Earth-Moon system formed about100 m.y. after the oldest meteorites. In addition, the age of the famous martian meteorite ALH 84001 and an early Martian solidification time obtained by Lee and Halliday suggest that the inner solar system was fairly clear of large bodies about 10 m.y. after the oldest meteorites formed. Thus, the "standard model" suggests that for several tens of millions of years, the terrestrial planet region had few, if any, lunar-sized bodies, and there were five terrestrial planets: Mercury, Venus, the two progenitors of the Earth-Moon system, and Mars. To simulate the dynamics of the solar system before the hypothesized Moon-forming impact, we are integrating the solar system with the Earth-Moon system replaced by two bodies in heliocentric orbits between Venus and Mars. The total (orbital) angular momentum of the Earth-Moon progenitors is that of the present Earth-Moon system, and their total mass is that of the Earth-Moon System. We are looking at ranges in mass ratio and initial values for eccentricity, inclination, and semimajor axis. We are using the SYMBA integrator to integrate these systems until a collision occurs or a time of 200 m.y. elapses. Results are presented in a companion abstract, (also presented at this meeting).

  17. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  18. A volatile rich Earth's core?

    NASA Astrophysics Data System (ADS)

    Morard, G.; Antonangeli, D.; Andrault, D.; Nakajima, Y.

    2017-12-01

    The composition of the Earth's core is still an open question. Although mostly composed of iron, it contains impurities that lower its density and melting point with respect to pure Fe. Knowledge of the nature and abundance of light elements (O, S, Si, C or H) in the core has major implications for establishing the bulk composition of the Earth and for building the model of Earth's differentiation. Geochemical models of the Earth's formation point out that its building blocks were depleted in volatile elements compared to the chondritic abundance, therefore light elements such as S, H or C cannot be the major elements alloyed with iron in the Earth's core. However, such models should be compatible with the comparison of seismic properties of the Earth's core and physical properties of iron alloys under extreme conditions, such as sound velocity or density of solid and liquid. The present work will discuss the recent progress for compositional model issued from studies of phase diagrams and elastic properties of iron alloys under core conditions and highlight the compatibility of volatile elements with observed properties of the Earth's core, in potential contradiction with models derived from metal-silicate partitioning experiments.

  19. A morphogram for silica-witherite biomorphs and its application to microfossil identification in the early earth rock record.

    PubMed

    Rouillard, J; García-Ruiz, J-M; Gong, J; van Zuilen, M A

    2018-05-01

    Archean hydrothermal environments formed a likely site for the origin and early evolution of life. These are also the settings, however, were complex abiologic structures can form. Low-temperature serpentinization of ultramafic crust can generate alkaline, silica-saturated fluids in which carbonate-silica crystalline aggregates with life-like morphologies can self-assemble. These "biomorphs" could have adsorbed hydrocarbons from Fischer-Tropsch type synthesis processes, leading to metamorphosed structures that resemble carbonaceous microfossils. Although this abiogenic process has been extensively cited in the literature and has generated important controversy, so far only one specific biomorph type with a filamentous shape has been discussed for the interpretation of Archean microfossils. It is therefore critical to precisely determine the full distribution in morphology and size of these biomorphs, and to study the range of plausible geochemical conditions under which these microstructures can form. Here, a set of witherite-silica biomorph synthesis experiments in silica-saturated solutions is presented, for a range of pH values (from 9 to 11.5) and barium ion concentrations (from 0.6 to 40 mmol/L BaCl 2 ). Under these varying conditions, a wide range of life-like structures is found, from fractal dendrites to complex shapes with continuous curvature. The size, spatial concentration, and morphology of the biomorphs are strongly controlled by environmental parameters, among which pH is the most important. This potentially limits the diversity of environments in which the growth of biomorphs could have occurred on Early Earth. Given the variety of the observed biomorph morphologies, our results show that the morphology of an individual microstructure is a poor criterion for biogenicity. However, biomorphs may be distinguished from actual populations of cellular microfossils by their wide, unimodal size distribution. Biomorphs grown by diffusion in silica gel can

  20. Not So Rare Earth? New Developments in Understanding the Origin of the Earth and Moon

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2007-01-01

    A widely accepted model for the origin of the Earth and Moon has been a somewhat specific giant impact scenario involving an impactor to proto-Earth mass ratio of 3:7, occurring 50-60 Ma after T(sub 0), when the Earth was only half accreted, with the majority of Earth's water then accreted after the main stage of growth, perhaps from comets. There have been many changes to this specific scenario, due to advances in isotopic and trace element geochemistry, more detailed, improved, and realistic giant impact and terrestrial planet accretion modeling, and consideration of terrestrial water sources other than high D/H comets. The current scenario is that the Earth accreted faster and differentiated quickly, the Moon-forming impact could have been mid to late in the accretion process, and water may have been present during accretion. These new developments have broadened the range of conditions required to make an Earth-Moon system, and suggests there may be many new fruitful avenues of research. There are also some classic and unresolved problems such as the significance of the identical O isotopic composition of the Earth and Moon, the depletion of volatiles on the lunar mantle relative to Earth's, the relative contribution of the impactor and proto-Earth to the Moon's mass, and the timing of Earth's possible atmospheric loss relative to the giant impact.

  1. Differential Network Analyses of Alzheimer’s Disease Identify Early Events in Alzheimer’s Disease Pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jing; Rocke, David M.; Perry, George

    In late-onset Alzheimer’s disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with lowmore » topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.« less

  2. Differential Network Analyses of Alzheimer’s Disease Identify Early Events in Alzheimer’s Disease Pathology

    DOE PAGES

    Xia, Jing; Rocke, David M.; Perry, George; ...

    2014-01-01

    In late-onset Alzheimer’s disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with lowmore » topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.« less

  3. Successful In Vitro Expansion and Differentiation of Cord Blood Derived CD34+ Cells into Early Endothelial Progenitor Cells Reveals Highly Differential Gene Expression

    PubMed Central

    Topcic, Denijal; Haviv, Izhak; Merivirta, Ruusu-Maaria; Agrotis, Alexander; Leitner, Ephraem; Jowett, Jeremy B.; Bode, Christoph; Lappas, Martha; Peter, Karlheinz

    2011-01-01

    Endothelial progenitor cells (EPCs) can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU) assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP), PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15) or pro-angiogenic (galectin-3) properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP) was the most up-regulated gene. PMID:21858032

  4. The first 800 million years of earth's history

    NASA Technical Reports Server (NTRS)

    Smith, J. V.

    1981-01-01

    It is pointed out that there is no direct geological information on the first 750 Ma of earth history. Consequently the reported study is based on controversial inferences drawn from the moon, other planets and meteorites, coupled with backward extrapolation from surviving terrestrial rocks, especially those of Archaean age. Aspects of accretion are considered, taking into account cosmochemical and cosmophysical evidence, a new earth model, and convection systems. Attention is given to phase-equilibrium constraints, estimates of heat production, the bombardment history of the moon and implications for the earth, and the nature of the early crust. From a combination of physical, chemical, and petrological arguments, it is concluded that the earth's surface underwent intense volcanism in the pre-Archaean era, and that the rock types were chemically similar to those found in the early Archaean era.

  5. Earth science: Extraordinary world

    NASA Astrophysics Data System (ADS)

    Day, James M. D.

    2016-09-01

    The isotopic compositions of objects that formed early in the evolution of the Solar System have been found to be similar to Earth's composition -- overturning notions of our planet's chemical distinctiveness. See Letters p.394 & p.399

  6. Educating the Public about Deep-Earth Science

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2010-12-01

    The nature of Earth’s interior is an active frontier of scientific research. Much of our current understanding of sub-crustal Earth is based on knowledge acquired in the last 2-3 decades, made possible by public funding and by dense seismic arrays, satellite remote sensing, increases in computer power that enable use of enhanced numerical techniques, improved theoretical and experimental knowledge of high PT mineral physics and chemistry, and a vigorous scientific community that has been trained to take advantage of these opportunities. An essential component of science is effective communication; therefore, providing for public education about science is a responsibility of the research community. Current public understanding of Earth’s interior is meager at best. In pre-college texts and in non-technical mass media, Earth's interior is typically visualized as an onion or baseball of concentric different-colored shells along whose upper surface "crustal" plates move like packages on conveyor belts of convecting mantle. Or the crust is thought to float on a molten mantle, as in the 19th century ideas of William Lowthian Green. Misconceptions about Earth that are brought to the undergraduate classroom must be confronted frankly and replaced by current understanding based on good science. Persistent ignorance has consequences. What do we want the public to know? First, the public should understand that knowledge of Earth's interior is important, not irrelevant. The public should know that deep-Earth processes result in Earth's dynamic magnetic field. Deep-Earth processes affect how radiation from the Sun reaches Earth, consequently affecting the atmosphere, the oceans, and the viability of life on Earth. The composition and differentiated structure of Earth's interior is a result of the early accretionary history of Earth and the Earth-Moon system. The public should also know that lithospheric tectonics, with all of its consequences (dynamic topography, volcanoes

  7. Direct and indirect capture of near-Earth asteroids in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2017-09-01

    Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth-Moon L1 and L2 points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun-Earth-Moon restricted four-body problem until its insertion, with a second impulse, onto the L2 stable manifold in the Earth-Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid's initial obit to the stable manifold associated with Earth-Moon L2 point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun-Earth circular restricted three-body problem and subsequent transfer to the Earth-Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth-Moon system.

  8. Early Opportunities Research Partnership Between Howard University, University of Maryland Baltimore County and NASA Goddard for Engaging Underrepresented STEM Students in Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Misra, P.; Venable, D. D.; Hoban, S.; Demoz, B.; Bleacher, L.; Meeson, B. W.; Farrell, W. M.

    2017-12-01

    Howard University, University of Maryland Baltimore County and NASA Goddard Space Flight Center (GSFC) are collaborating to engage underrepresented STEM students and expose them to an early career pathway in NASA-related Earth & Space Science research. The major goal is to instill interest in Earth and Space Science to STEM majors early in their academic careers, so that they become engaged in ongoing NASA-related research, motivated to pursue STEM careers, and perhaps become part of the future NASA workforce. The collaboration builds on a program established by NASA's Dynamic Response of the Environments of Asteroids, the Moon and the moons of Mars (DREAM2) team to engage underrepresented students from Howard in summer internships. Howard leveraged this program to expand via NASA's Minority University Research and Education Project (MUREP) funding. The project pairs Howard students with GSFC mentors and engages them in cutting-edge Earth and Space Science research throughout their undergraduate tenure. The project takes a multi-faceted approach, with each year of the program specifically tailored to each student's strengths and addressing their weaknesses, so that they experience a wide array of enriching research and professional development activities that help them grow both academically and professionally. During the academic year, the students are at Howard taking a full load of courses towards satisfying their degree requirements and engaging in research with their GSFC mentors via regular telecons, e-mail exchanges, video chats & on an average one visit per semester to GSFC for an in-person meeting with their research mentor. The students extend their research with full-time summer internships at GSFC, culminating in a Capstone Project and Senior Thesis. As a result, these Early Opportunities Program students, who have undergone rigorous training in the Earth and Space Sciences, are expected to be well-prepared for graduate school and the NASA workforce.

  9. Characterization of early and late endocytic compartments of the transferrin cycle. Transferrin receptor antibody blocks erythroid differentiation by trapping the receptor in the early endosome.

    PubMed

    Killisch, I; Steinlein, P; Römisch, K; Hollinshead, R; Beug, H; Griffiths, G

    1992-09-01

    We describe a detailed morphological characterization of the endocytic pathway in differentiating chicken erythroblasts transformed by a temperature-sensitive mutant of avian erythroblastosis virus (AEV). These cells express high levels of transferrin receptors (TfR) when induced to differentiate at 42 degrees C. Biochemical analysis showed that most (approximately 90%) of the internalized 125I-Tf recycled within approximately 30 min while a smaller fraction of 125I-Tf required up to 2 h for recycling. By immunocytochemistry, the bulk of Tf and TfR was localized at the plasma membrane and in tubuloreticular early endosomes. This structure contained coated buds that labelled with an antibody specific for the clathrin light chain. Decreasing amounts of both Tf and TfR were detected in two distal compartments, spherical endosome vesicles resembling multivesicular bodies and the prelysosomal compartment (PLC) enriched in cation-independent mannose 6-phosphate receptor. As shown by fluorescent (FITC-Tf) labelling of living cells, the movement of Tf/TfR complex into these late structures was accompanied by a significant drop in pH from about 6, the value displayed by early endosomes, to values below pH 5.0. Since no detectable 125I-Tf degradation was observed during a 4 h period we believe that the Tf/TfR detected in these late endocytic structures avoids degradation and recycles back to the cell surface. The addition of an anti-TfR monoclonal antibody to the culture medium of these cells blocks their differentiation. Under this condition the antibody-TfR complex was trapped in an early endosome compartment that enlarged to more than twice its normal size. However, this condition did not affect the transport kinetics of horseradish peroxidase from the medium to the PLC.

  10. Evolution of Earth&'s Atmosphere and Climate

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.

    2004-12-01

    Earth's climate prior to 2.5 Ga seems to have been, if anything, warmer than today (1,2), despite the faintness of the young Sun (3). The idea that the young Sun was 25-30 percent less bright has been bolstered by data on mass loss from young, solar-type stars (4). Sagan and Mullen (1) suggested many years ago that the warming required to offset low solar luminosity was provided by high concentrations of reduced greenhouse gases. Ammonia has since been shown to be photochemically unstable in low-O2 atmospheres (5), but methane is a viable candidate. Methane photolyzes only at wavelengths shorter than 145 nm, so it is long-lived in the absence of O2 and O3. Furthermore, it is produced by anaerobic bacteria (methanogens) that are thought to have evolved early in Earth history (6). A biological methane flux comparable to today's flux, ~500 Tg CH4/yr, could have been generated by methanogens living in an anaerobic early ocean and sediments (7). This flux should have increased once oxygenic photosynthesis evolved because of increased production and recycling of organic matter (8). An Archean methane flux equal to today's flux could have generated atmospheric CH4 concentrations in excess of 1000 ppmv (9). This, in turn, could have provided 30 degrees or more of greenhouse warming (10) enough to have kept the early Earth warm even if atmospheric CO2 was no higher than today. All of this does not imply that CO2 concentrations must have been low throughout the Archean. Indeed, siderite-coated stream pebbles imply that pCO2 was greater than 2.5,e10-3 bar, or ~7 times present, at 3.2 Ga (11). Atmospheric CO2 could have been much higher than this if the continents had formed slowly (12) and/or if subduction of carbonates was inhibited (13). The rise in O2 at ~2.3 Ga (14,15) brought an end to the methane greenhouse and may have triggered the Huronian glaciation (10). Although methane concentrations declined with the rise of O2, they may still have remained much higher than

  11. Localization of DNA methyltransferase-1 during oocyte differentiation, in vitro maturation and early embryonic development in cow

    PubMed Central

    Lodde, V.; Modina, S.C.; Franciosi, F.; Zuccari, E.; Tessaro, I.; Luciano, A.M.

    2009-01-01

    DNA methyltransferase-1 (Dnmt1) is involved in the maintenance of DNA methylation patterns and is crucial for normal mammalian development. The aim of the present study was to assess the localization of Dnmt1 in cow, during the latest phases of oocyte differentiation and during the early stages of segmentation. Dnmt1 expression and localization were assessed in oocytes according to the chromatin configuration, which in turn provides an important epigenetic mechanism for the control of global gene expression and represents a morphological marker of oocyte differentiation. We found that the initial chromatin condensation was accompanied by a slight increase in the level of global DNA methylation, as assessed by 5-methyl-cytosine immunostaining followed by laser scanning confocal microscopy analysis (LSCM). RT-PCR confirmed the presence of Dnmt1 transcripts throughout this phase of oocyte differentiation. Analogously, Dnmt1 immunodetection and LSCM indicated that the protein was always present and localized in the cytoplasm, regardless the chromatin configuration and the level of global DNA methylation. Moreover, our data indicate that while Dnmt1 is retained in the cytoplasm in metaphase II stage oocytes and zygotes, it enters the nuclei of 8–16 cell stage embryos. As suggested in mouse, the functional meaning of the presence of Dnmt1 in the bovine embryo nuclei could be the maintainement of the methylation pattern of imprinted genes. In conclusion, the present work provides useful elements for the study of Dnmt1 function during the late stage of oocyte differentiation, maturation and early embryonic development in mammals. PMID:22073356

  12. Earth Observations for Early Detection of Agricultural Drought: Contributions of the Famine Early Warning Systems Network (FEWS NET)

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Funk, C.; Husak, G. J.; Peterson, P.; Rowland, J.; Senay, G. B.; Verdin, J. P.

    2016-12-01

    The U.S. Geological Survey (USGS) has a long history of supporting the use of Earth observation data for food security monitoring through its role as an implementing partner of the Famine Early Warning Systems Network (FEWS NET) program. The use of remote sensing and crop modeling to address food security threats in the form of drought, floods, pests, and changing climatic regimes has been a core activity in monitoring FEWS NET countries. In recent years, it has become a requirement that FEWS NET apply monitoring and modeling frameworks at global scales to assess emerging crises in regions that FEWS NET does not traditionally monitor. USGS FEWS NET, in collaboration with the University of California, Santa Barbara, has developed a number of new global applications of satellite observations, derived products, and efficient tools for visualization and analyses to address these requirements. (1) A 35-year quasi-global (+/- 50 degrees latitude) time series of gridded rainfall estimates, the Climate Hazards Infrared Precipitation with Stations (CHIRPS) dataset, based on infrared satellite imagery and station observations. Data are available as 5-day (pentadal) accumulations at 0.05 degree spatial resolution. (2) Global actual evapotranspiration data based on application of the Simplified Surface Energy Balance (SSEB) model using 10-day MODIS Land Surface Temperature composites at 1-km resolution. (3) Production of global expedited MODIS (eMODIS) 10-day NDVI composites updated every 5 days. (4) Development of an updated Early Warning eXplorer (EWX) tool for data visualization, analysis, and sharing. (5) Creation of stand-alone tools for enhancement of gridded rainfall data and trend analyses. (6) Establishment of an agro-climatology analysis tool and knowledge base for more than 90 countries of interest to FEWS NET. In addition to these new products and tools, FEWS NET has partnered with the GEOGLAM community to develop a Crop Monitor for Early Warning (CM4EW) which

  13. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification

    PubMed Central

    Liu, Ling; Liu, Xu; Ren, Xudong; Tian, Yue; Chen, Zhenyu; Xu, Xiangjie; Du, Yanhua; Jiang, Cizhong; Fang, Yujiang; Liu, Zhongliang; Fan, Beibei; Zhang, Quanbin; Jin, Guohua; Yang, Xiao; Zhang, Xiaoqing

    2016-01-01

    The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events. PMID:26905010

  14. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification.

    PubMed

    Liu, Ling; Liu, Xu; Ren, Xudong; Tian, Yue; Chen, Zhenyu; Xu, Xiangjie; Du, Yanhua; Jiang, Cizhong; Fang, Yujiang; Liu, Zhongliang; Fan, Beibei; Zhang, Quanbin; Jin, Guohua; Yang, Xiao; Zhang, Xiaoqing

    2016-02-24

    The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events.

  15. Interleukins 12 and 15 induce cytotoxicity and early NK-cell differentiation in type 3 innate lymphoid cells.

    PubMed

    Raykova, Ana; Carrega, Paolo; Lehmann, Frank M; Ivanek, Robert; Landtwing, Vanessa; Quast, Isaak; Lünemann, Jan D; Finke, Daniela; Ferlazzo, Guido; Chijioke, Obinna; Münz, Christian

    2017-12-26

    Type 3 innate lymphoid cells (ILC3s) fulfill protective functions at mucosal surfaces via cytokine production. Although their plasticity to become ILC1s, the innate counterparts of type 1 helper T cells, has been described previously, we report that they can differentiate into cytotoxic lymphocytes with many characteristics of early differentiated natural killer (NK) cells. This transition is promoted by the proinflammatory cytokines interleukin 12 (IL-12) and IL-15, and correlates with expression of the master transcription factor of cytotoxicity, eomesodermin (Eomes). As revealed by transcriptome analysis and flow cytometric profiling, differentiated ILC3s express CD94, NKG2A, NKG2C, CD56, and CD16 among other NK-cell receptors, and possess all components of the cytotoxic machinery. These characteristics allow them to recognize and kill leukemic cells with perforin and granzymes. Therefore, ILC3s can be harnessed for cytotoxic responses via differentiation under the influence of proinflammatory cytokines.

  16. Applications of Differential Geometry to Cartography

    ERIC Educational Resources Information Center

    Benitez, Julio; Thome, Nestor

    2004-01-01

    This work introduces an application of differential geometry to cartography. The mathematical aspects of some geographical projections of Earth surface are revealed together with some of its more important properties. An important problem since the discovery of the 'spherical' form of the Earth is how to compose a reliable map of the surface of…

  17. From Suns to Life: A Chronological Approach to the History of Life on Earth 4. Building of a Habitable Planet

    NASA Astrophysics Data System (ADS)

    Martin, Hervé; Albarède, Francis; Claeys, Philippe; Gargaud, Muriel; Marty, Bernard; Morbidelli, Alessandro; Pinti, Daniele L.

    2006-06-01

    Except the old Jack Hills zircon crystals, it does not exit direct record of the first 500 Ma of the Earth history. Consequently, the succession of events that took place during this period is only indirectly known through geochemistry, comparison with other telluric planets, and numerical modelling. Just after planetary accretion several episodes were necessary in order to make life apparition and development possible and to make the Earth surface habitable. Among these stages are: the core differentiation, the formation of a magma ocean, the apparition of the first atmosphere, oceans and continents as well as the development of magnetic field and of plate tectonics. In the same time, Earth has been subject to extraterrestrial events such as the Late Heavy Bombardment (LHB) between 3.95 and 3.8 Ga. Since 4.4 4.3 Ga, the conditions for pre-biotic chemistry and appearance of life were already met (liquid water, continental crust, no strong meteoritic bombardment, etc...). This does not mean that life existed as early, but this demonstrates that all necessary conditions assumed for life development were already present on Earth.

  18. Evidence for extreme mantle fractionation in early Archaean ultramafic rocks from northern Labrador

    NASA Technical Reports Server (NTRS)

    Collerson, Kenneth D.; Campbell, Lisa M.; Weaver, Barry L.; Palacz, Zenon A.

    1991-01-01

    Samarium-neodymium isotope data for tectonically interleaved fragments of lithospheric mantle and meta-komatiite from the North Atlantic craton provide the first direct record of mantle differentiation before 3,800 Myr ago. The results confirm the magnitude of light-rare-earth-element depletion in the early mantle, and also its depleted neodymium isotope composition. The mantle fragments were able to retain these ancient geochemical signatures by virtue of having been tectonically incorporated in buoyant felsic crust, thus escaping recycling and homogenization by mantle convection.

  19. Viscous dissipation of energy at the stage of accumulation of the Earth

    NASA Astrophysics Data System (ADS)

    Yurie Khachay, Professor; Olga Hachay, Professor; Antipin, Alexandr

    2017-04-01

    In the papers [1,2] it is published the differentiation model of the proto planet cloud during the accumulation of the Earth's group planets. In [2] it was shown that the energy released during the decay of short-lived radioactive elements in the small size more than 50 km, it is enough that the temperature inside of the protoplanet becomes larger than the temperature of iron melting. It provides a realization of the matter differentiation process and convection development inside the inner envelopes. With increasing of the Earth, the forming region of the outer core remains in a molten state, although the power and viscosity of the layer changed. In [3] it is shown that during the sequence of growth changes of accumulated protoplanets, the main contribution of heat is provided first by radioactive sources, and then heated from above by converting the kinetic energy during the growing impact inside the Earth, and finally heated from below. That provides three types of driving mechanisms of convection: internal heat sources; heated top; heated from bottom and chemical-thermal convection. At all stages of proto Earth's development the convective heat-mass transfer becomes a most significant factor in the dynamics of the planet. However, the heat release due to friction in the viscous liquid of the outer core up to now was not still considered, or it was considered only for the formed planetary envelopes with a constant radius. In this paper we present the first results of thermal evolution numerical modeling of 3D spherical segment for a protoplanet with increasing radius and accounting random falling of bodies and particles. To describe the planetary accumulation Safronov equation is used [4]. For the quantitative account of the released heat by viscous friction a system of hydro dynamic equations for a viscous liquid is used. The obtained results show that the heat input due to viscous friction heat release at the early stage of planetary accumulation was very

  20. How did Earth not End up like Venus?

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Lenardic, A.; Weller, M. B.

    2017-12-01

    Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).

  1. Sensitivities of Earth's core and mantle compositions to accretion and differentiation processes

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Ciesla, Fred J.

    2017-01-01

    The Earth and other terrestrial planets formed through the accretion of smaller bodies, with their core and mantle compositions primarily set by metal-silicate interactions during accretion. The conditions of these interactions are poorly understood, but could provide insight into the mechanisms of planetary core formation and the composition of Earth's core. Here we present modeling of Earth's core formation, combining results of 100 N-body accretion simulations with high pressure-temperature metal-silicate partitioning experiments. We explored how various aspects of accretion and core formation influence the resulting core and mantle chemistry: depth of equilibration, amounts of metal and silicate that equilibrate, initial distribution of oxidation states in the disk, temperature distribution in the planet, and target:impactor ratio of equilibrating silicate. Virtually all sets of model parameters that are able to reproduce the Earth's mantle composition result in at least several weight percent of both silicon and oxygen in the core, with more silicon than oxygen. This implies that the core's light element budget may be dominated by these elements, and is consistent with ≤1-2 wt% of other light elements. Reproducing geochemical and geophysical constraints requires that Earth formed from reduced materials that equilibrated at temperatures near or slightly above the mantle liquidus during accretion. The results indicate a strong tradeoff between the compositional effects of the depth of equilibration and the amounts of metal and silicate that equilibrate, so these aspects should be targeted in future studies aiming to better understand core formation conditions. Over the range of allowed parameter space, core and mantle compositions are most sensitive to these factors as well as stochastic variations in what the planet accreted as a function of time, so tighter constraints on these parameters will lead to an improved understanding of Earth's core composition.

  2. The Role of Paracrine and Autocrine Signaling in the Early Phase of Adipogenic Differentiation of Adipose-derived Stem Cells

    PubMed Central

    Hemmingsen, Mette; Vedel, Søren; Skafte-Pedersen, Peder; Sabourin, David; Collas, Philippe; Bruus, Henrik; Dufva, Martin

    2013-01-01

    Introduction High cell density is known to enhance adipogenic differentiation of mesenchymal stem cells, suggesting secretion of signaling factors or cell-contact-mediated signaling. By employing microfluidic biochip technology, we have been able to separate these two processes and study the secretion pathways. Methods and results Adipogenic differentiation of human adipose-derived stem cells (ASCs) cultured in a microfluidic system was investigated under perfusion conditions with an adipogenic medium or an adipogenic medium supplemented with supernatant from differentiating ASCs (conditioned medium). Conditioned medium increased adipogenic differentiation compared to adipogenic medium with respect to accumulation of lipid-filled vacuoles and gene expression of key adipogenic markers (C/EBPα, C/EBPβ, C/EBPδ, PPARγ, LPL and adiponectin). The positive effects of conditioned medium were observed early in the differentiation process. Conclusions Using different cell densities and microfluidic perfusion cell cultures to suppress the effects of cell-released factors, we have demonstrated the significant role played by auto- or paracrine signaling in adipocyte differentiation. The cell-released factor(s) were shown to act in the recruitment phase of the differentiation process. PMID:23723991

  3. Identifying early Earth microfossils in unsilicified sediments

    NASA Astrophysics Data System (ADS)

    Javaux, Emmanuelle J.; Asael, Dan; Bekker, Andrey; Debaille, Vinciane; Derenne, Sylvie; Hofmann, Axel; Mattielli, Nadine; Poulton, Simon

    2013-04-01

    The search for life on the early Earth or beyond Earth requires the definition of biosignatures, or "indices of life". These traditionally include fossil molecules, isotopic fractionations, biosedimentary structures and morphological fossils interpreted as remnants of life preserved in rocks. This research focuses on traces of life preserved in unsilicified siliciclastic sediments. Indeed, these deposits preserve well sedimentary structures indicative of past aqueous environments and organic matter, including the original organic walls of microscopic organisms. They also do not form in hydrothermal conditions which may be source of abiotic organics. At our knowledge, the only reported occurrence of microfossils preserved in unsilicified Archean sediments is a population of large organic-walled vesicles discovered in shales and siltstones of the 3.2 Ga Moodies Group, South Africa. (Javaux et al, Nature 2010). These have been interpreted as microfossils based on petrographic and geochemical evidence for their endogenicity and syngeneity, their carbonaceous composition, cellular morphology and ultrastructure, occurrence in populations, taphonomic features of soft wall deformation, and the geological context plausible for life, as well as lack of abiotic explanation falsifying a biological origin. Demonstrating that carbonaceous objects from Archaean rocks are truly old and truly biological is the subject of considerable debate. Abiotic processes are known to produce organics and isotopic signatures similar to life. Spheroidal pseudofossils may form as self-assembling vesicles from abiotic CM, e.g. in prebiotic chemistry experiments (Shoztak et al, 2001), from meteoritic lipids (Deamer et al, 2006), or hydrothermal fluids (Akashi et al, 1996); by artifact of maceration; by migration of abiotic or biotic CM along microfractures (VanZuilen et al, 2007) or along mineral casts (Brasier et al, 2005), or around silica spheres formed in silica-saturated water (Jones and

  4. Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael

    2012-01-01

    The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.

  5. The bottom of the universe: Flat earth science in the Age of Encounter.

    PubMed

    Allegro, James J

    2017-03-01

    This essay challenges the dominance of the spherical earth model in fifteenth- and early-sixteenth-century Western European thought. It examines parallel strains of Latin and vernacular writing that cast doubt on the existence of the southern hemisphere. Three factors shaped the alternate accounts of the earth as a plane and disk put forward by these sources: (1) the unsettling effects of maritime expansion on scientific thought; (2) the revival of interest in early Christian criticism of the spherical earth; and (3) a rigid empirical stance toward entities too large to observe in their entirety, including the earth. Criticism of the spherical earth model faded in the decades after Magellan's crew returned from circuiting the earth in 1522.

  6. Laboratory Studies of Survival Limits of Bacteria During Shock Compression: Application to Impacts on the Early Earth

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Ahrens, T. J.; Bertani, L. E.; Nash, C. Z.

    2004-12-01

    Shock recovery experiments on suspensions of 106 mm-3 E. coli bacteria contained in water-based medium, within stainless steel containers, are used to simulate the impact environment of bacteria residing in water-filled cracks in rocks. Early Earth life is likely to have existed in such environments. Some 10-2 to 10-4 of the bacteria population survived initial (800 ns duration) shock pressures in water of 219 and 260 MPa. TEM images of shock recovered bacteria indicate cell wall indentations and rupture, possibly induced by inward invasion of medium into the cell wall. Notably cell wall rupture occurs dynamically at ˜0.1 times the static pressures E.coli have been demonstrated (Sharma et al., 2002) to survive and may be caused by Rayleigh-Taylor instabilities. We infer the invading fluid pressure may exceed the tensile strength of the cell wall. We assume the overpressures are limited to the initial shock pressure in water. Parameters for the Grady & Lipkin (1980) model of tensile failure versus time-scale (strain rate) are fit to present data, assuming that at low strain rates, overpressures exceeding cell Turgor pressure require ˜103 sec. This model, if validated by experiments at other timescales, may permit using short loading duration laboratory data to infer response of organisms to lower shock overpressures for the longer times (100 to 103 s) of planetary impacts. An Ahrens & O'Keefe (1987) shock attenuation model is then applied for Earth impactors. This model suggests that Earth impactors of radius 1.5 km induce shocks within water-filled cracks in rock to dynamic pressure such that stresses exceeding the survivability threshold of E. coli bacteria, to radii of 1.7-2.6×102 km. In contrast, a giant (1500 km radius) impactor produces a non survival zone for E. coli that encompasses the entire Earth.

  7. Mother Earth, Earth Mother: Gabriela Mistral as an Early Ecofeminist

    ERIC Educational Resources Information Center

    Finzer, Erin

    2015-01-01

    Historians have noted that male bureaucrats and natural resource experts tended to dominate early twentieth-century national and hemispheric conservationist movements in Latin America, but a constellation of female activists, notable among them Gabriela Mistral, strengthened conservationism in the cultural sphere. Capitalizing on her leadership in…

  8. Interpersonal differentiation within depression diagnosis: relating interpersonal subgroups to symptom load and the quality of the early therapeutic alliance.

    PubMed

    Grosse Holtforth, Martin; Altenstein, David; Krieger, Tobias; Flückiger, Christoph; Wright, Aidan G C; Caspar, Franz

    2014-01-01

    We examined interpersonal problems in psychotherapy outpatients with a principal diagnosis of a depressive disorder in routine care (n=361). These patients were compared to a normative non-clinical sample and to outpatients with other principal diagnoses (n=959). Furthermore, these patients were statistically assigned to interpersonally defined subgroups that were compared regarding symptoms and the quality of the early alliance. The sample of depressive patients reported higher levels of interpersonal problems than the normative sample and the sample of outpatients without a principal diagnosis of depression. Latent Class Analysis identified eight distinct interpersonal subgroups, which differed regarding self-reported symptom load and the quality of the early alliance. However, therapists' alliance ratings did not differentiate between the groups. This interpersonal differentiation within the group of patients with a principal diagnosis of depression may add to a personalized psychotherapy based on interpersonal profiles.

  9. How Irreversible Heat Transport Processes Drive Earth's Interdependent Thermal, Structural, and Chemical Evolution Providing a Strongly Heterogeneous, Layered Mantle

    NASA Astrophysics Data System (ADS)

    Hofmeister, A.; Criss, R. E.

    2013-12-01

    Because magmatism conveys radioactive isotopes plus latent heat rapidly upwards while advecting heat, this process links and controls the thermal and chemical evolution of Earth. We present evidence that the lower mantle-upper mantle boundary is a profound chemical discontinuity, leading to observed heterogeneities in the outermost layers that can be directly sampled, and construct an alternative view of Earth's internal workings. Earth's beginning involved cooling via explosive outgassing of substantial ice (mainly CO) buried with dust during accretion. High carbon content is expected from Solar abundances and ice in comets. Reaction of CO with metal provided a carbide-rich core while converting MgSiO3 to olivine via oxidizing reactions. Because thermodynamic law (and buoyancy of hot particles) indicates that primordial heat from gravitational segregation is neither large nor carried downwards, whereas differentiation forced radioactive elements upwards, formation of the core and lower mantle greatly cooled the Earth. Reference conductive geotherms, calculated using accurate and new thermal diffusivity data, require that heat-producing elements are sequestered above 670 km which limits convection to the upper mantle. These irreversible beginnings limit secular cooling to radioactive wind-down, permiting deduction of Earth's inventory of heat-producing elements from today's heat flux. Coupling our estimate for heat producing elements with meteoritic data indicates that Earth's oxide content has been underestimated. Density sorting segregated a Si-rich, peridotitic upper mantle from a refractory, oxide lower mantle with high Ca, Al and Ti contents, consistent with diamond inclusion mineralogy. Early and rapid differentiation means that internal temperatures have long been buffered by freezing of the inner core, allowing survival of crust as old as ca.4 Ga. Magmatism remains important. Melt escaping though stress-induced fractures in the rigid lithosphere imparts a

  10. Circuit Motifs for Contrast-Adaptive Differentiation in Early Sensory Systems: The Role of Presynaptic Inhibition and Short-Term Plasticity

    PubMed Central

    Zhang, Danke; Wu, Si; Rasch, Malte J.

    2015-01-01

    In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems. PMID:25723493

  11. Circuit motifs for contrast-adaptive differentiation in early sensory systems: the role of presynaptic inhibition and short-term plasticity.

    PubMed

    Zhang, Danke; Wu, Si; Rasch, Malte J

    2015-01-01

    In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems.

  12. Preferred-Actual Learning Environment "Spaces" and Earth Science Outcomes in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Hsiao, Chien-Hua; Barufaldi, James P.

    2006-01-01

    This study examines the possibilities of differential impacts on students' earth science learning outcomes between different preferred-actual learning environment spaces by using a newly developed ESCLEI (Earth Science Classroom Learning Environment Instrument). The instrument emphasizes three simultaneously important classroom components:…

  13. Hadean silicate differentiation preserved by anomalous 142Nd/144Nd ratios in the Réunion hotspot source

    NASA Astrophysics Data System (ADS)

    Peters, Bradley J.; Carlson, Richard W.; Day, James M. D.; Horan, Mary F.

    2018-03-01

    Active volcanic hotspots can tap into domains in Earth’s deep interior that were formed more than two billion years ago. High-precision data on variability in tungsten isotopes have shown that some of these domains resulted from differentiation events that occurred within the first fifty million years of Earth history. However, it has not proved easy to resolve analogous variability in neodymium isotope compositions that would track regions of Earth’s interior whose composition was established by events occurring within roughly the first five hundred million years of Earth history. Here we report 142Nd/144Nd ratios for Réunion Island igneous rocks, some of which are resolvably either higher or lower than the ratios in modern upper-mantle domains. We also find that Réunion 142Nd/144Nd ratios correlate with helium-isotope ratios (3He/4He), suggesting parallel behaviour of these isotopic systems during very early silicate differentiation, perhaps as early as 4.39 billion years ago. The range of 142Nd/144Nd ratios in Réunion basalts is inconsistent with a single-stage differentiation process, and instead requires mixing of a conjugate melt and residue formed in at least one melting event during the Hadean eon, 4.56 billion to 4 billion years ago. Efficient post-Hadean mixing nearly erased the ancient, anomalous 142Nd/144Nd signatures, and produced the relatively homogeneous 143Nd/144Nd composition that is characteristic of Réunion basalts. Our results show that Réunion magmas tap into a particularly ancient, primitive source compared with other volcanic hotspots, offering insight into the formation and preservation of ancient heterogeneities in Earth’s interior.

  14. Extreme life on Earth--past, present and possibly beyond.

    PubMed

    Javaux, Emmanuelle J

    2006-01-01

    Life may have been present on Earth since about 3.8 billion years ago or earlier. Multidisciplinary research, especially on the paleobiology and evolution of early microorganisms on Earth and the microbiology of extremophiles in the Earth's environments and under space conditions, enables the defining of strategies for the detection of potential extraterrestrial life by determining biosignatures and the environmental envelope of life.

  15. Comets as Messengers from the Early Solar System - Emerging Insights on Delivery of Water, Nitriles, and Organics to Earth

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Charnley, Steven B.

    2012-01-01

    The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth's volatiles, and for assessing the possible existence of exo-planets similar to Earth. Viewed from a cosmic perspective, Earth is a dry planet, yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen and analogous isotopic enrichments in atmospheric nitrogen and noble gases are also seen. Why is this so? What are the implications for Mars? For icy Worlds in our Planetary System? For the existence of Earth-like exoplanets? An exogenous (vs. outgassed) origin for Earth's atmosphere is implied, and intense debate on the relative contributions of comets and asteroids continues - renewed by fresh models for dynamical transport in the protoplanetary disk, by revelations on the nature and diversity of volatile and rocky material within comets, and by the discovery of ocean-like water in a comet from the Kuiper Belt (cf., Mumma & Charnley 2011). Assessing the creation of conditions favorable to the emergence and sustenance of life depends critically on knowledge of the nature of the impacting bodies. Active comets have long been grouped according to their orbital properties, and this has proven useful for identifying the reservoir from which a given comet emerged (OC, KB) (Levison 1996). However, it is now clear that icy bodies were scattered into each reservoir from a range of nebular distances, and the comet populations in today's reservoirs thus share origins that are (in part) common. Comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition, resulting from strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models of early radial transport and mixing with later dispersion of the final cometary nuclei into the long-term storage reservoirs. The inclusion of material from the natal interstellar cloud is probable

  16. Early In Vitro Differentiation of Mouse Definitive Endoderm Is Not Correlated with Progressive Maturation of Nuclear DNA Methylation Patterns

    PubMed Central

    Tajbakhsh, Jian; Gertych, Arkadiusz; Fagg, W. Samuel; Hatada, Seigo; Fair, Jeffrey H.

    2011-01-01

    The genome organization in pluripotent cells undergoing the first steps of differentiation is highly relevant to the reprogramming process in differentiation. Considering this fact, chromatin texture patterns that identify cells at the very early stage of lineage commitment could serve as valuable tools in the selection of optimal cell phenotypes for regenerative medicine applications. Here we report on the first-time use of high-resolution three-dimensional fluorescence imaging and comprehensive topological cell-by-cell analyses with a novel image-cytometrical approach towards the identification of in situ global nuclear DNA methylation patterns in early endodermal differentiation of mouse ES cells (up to day 6), and the correlations of these patterns with a set of putative markers for pluripotency and endodermal commitment, and the epithelial and mesenchymal character of cells. Utilizing this in vitro cell system as a model for assessing the relationship between differentiation and nuclear DNA methylation patterns, we found that differentiating cell populations display an increasing number of cells with a gain in DNA methylation load: first within their euchromatin, then extending into heterochromatic areas of the nucleus, which also results in significant changes of methylcytosine/global DNA codistribution patterns. We were also able to co-visualize and quantify the concomitant stochastic marker expression on a per-cell basis, for which we did not measure any correlation to methylcytosine loads or distribution patterns. We observe that the progression of global DNA methylation is not correlated with the standard transcription factors associated with endodermal development. Further studies are needed to determine whether the progression of global methylation could represent a useful signature of cellular differentiation. This concept of tracking epigenetic progression may prove useful in the selection of cell phenotypes for future regenerative medicine

  17. Consequences of an Immense Hadean-Archean Heat Flux that Results from Virial Theorem Constraints on the Earth's Initial Axial Spin

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.; Criss, R. E.

    2016-12-01

    Early Earth conditions were largely erased, but the powerful Virial Theorem (VT) constrains Earth's post-accretion state, which largely dictates subsequent thermal and dynamical evolution. Proposals of huge initial inventories of primordial heat are based on Kelvin's disproven theory of starlight. Rather, the VT requires that gravitational potential of the Solar nebula was converted to rotational energy in a conservative, bound accretionary system, which is confirmed by planetary orbit characteristics. In addition, the VT relates axial spin to gravitational self-potential (Ug,self) of each body [2016 Can. J. Phys. p. 380]. From the VT, ½Ug,self binds the body and is unavailable, but spin energy (SE), also equal to ½Ug,self, degrades while gradually evolving heat via friction. The VT likewise restricts primordial heat of core formation, and is consistent with entropy reduction due to ordering and volume restriction [2015 J. Earth Sci., p. 124]. High initial Virial spin is confirmed by (1) data on young stars, (2) independent projections of Earth's initial spin as 2-17 hrs (from fossils and the current rate of spin loss: Lathe 2006), and (3) current SE for all planets defining a power-law trend with Ug,self, which further requires a universal cause for spin loss [2012 Planet. Space Sci. p. 111]. Spin loss is caused by tidal friction and differential rotation of layers. Dissipation is concentrated in the upper layers and especially in the brittle zone, which are much weaker than the highly compressed, essentially hydrostatic interior. With friction, neither mechanical energy nor angular momentum are conserved. Earth's frictional dissipation is immense. Uniform release over time would provide 300-700 TW. This source dominated heat generation for 2 Ga, whereas radiogenic heat dominates today. Exponential spin down suggests 100x more heat production during the Hadean than now, which obliterated early rocks while promoting outgassing and differentiation. Reduction to 10

  18. Uderstanding Snowball Earth Deglaciation

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  19. Fos Promotes Early Stage Teno-Lineage Differentiation of Tendon Stem/Progenitor Cells in Tendon.

    PubMed

    Chen, Jialin; Zhang, Erchen; Zhang, Wei; Liu, Zeyu; Lu, Ping; Zhu, Ting; Yin, Zi; Backman, Ludvig J; Liu, Huanhuan; Chen, Xiao; Ouyang, Hongwei

    2017-11-01

    Stem cells have been widely used in tendon tissue engineering. The lack of refined and controlled differentiation strategy hampers the tendon repair and regeneration. This study aimed to find new effective differentiation factors for stepwise tenogenic differentiation. By microarray screening, the transcript factor Fos was found to be expressed in significantly higher amounts in postnatal Achilles tendon tissue derived from 1 day as compared with 7-days-old rats. It was further confirmed that expression of Fos decreased with time in postnatal rat Achilles tendon, which was accompanied with the decreased expression of multiply tendon markers. The expression of Fos also declined during regular in vitro cell culture, which corresponded to the loss of tendon phenotype. In a cell-sheet and a three-dimensional cell culture model, the expression of Fos was upregulated as compared with in regular cell culture, together with the recovery of tendon phenotype. In addition, significant higher expression of tendon markers was found in Fos-overexpressed tendon stem/progenitor cells (TSPCs), and Fos knock-down gave opposite results. In situ rat tendon repair experiments found more normal tendon-like tissue formed and higher tendon markers expression at 4 weeks postimplantation of Fos-overexpressed TSPCs derived nonscaffold engineering tendon (cell-sheet), as compared with the control group. This study identifies Fos as a new marker and functional driver in the early stage teno-lineage differentiation of tendon, which paves the way for effective stepwise tendon differentiation and future tendon regeneration. Stem Cells Translational Medicine 2017;6:2009-2019. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  20. Identification of nickel response genes in abnormal early developments of sea urchin by differential display polymerase chain reaction.

    PubMed

    Ryu, Tae Kwon; Lee, Gunsup; Rhee, Yong; Park, Heung-Sik; Chang, Man; Lee, Sukchan; Lee, Jaean; Lee, Taek-Kyun

    2012-10-01

    Bioassays and biomarkers have been previously developed to assess the effects of heavy metal contaminants on the early life stages of the sea urchin. In this study, malformation in the early developmental processes was observed in sea urchin (Strongylocentrotus intermedius) larvae exposed to 10 ppm Ni for over 30 h. The most critical stage at which the triggering of nickel effects takes place is thought to be the blastula stage, which occurs after fertilization in larval development. To investigate the molecular-level responses of sea urchin exposed to heavy metal stress and to explore the differentially expressed genes that are induced or repressed by nickel, differential display polymerase chain reaction (DD-PCR) was used with sea urchin mRNAs. The malformation-related genes expressed in the early life stages of the sea urchin were cloned from larvae exposed to 10 ppm of nickel for 15 h, and accessed via DD-PCR. Sequence analysis results revealed that each of the genes evidenced high homology with EGF2, PCSK9, serine/threonine protein kinase, apolipophorin precursor protein, and MGC80921 protein/transcript variant 2. This result may prove useful in the development of novel biomarkers for the assessment of heavy metal stresses on sea urchin embryos. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Stromal cell markers are differentially expressed in the synovial tissue of patients with early arthritis.

    PubMed

    Choi, Ivy Y; Karpus, Olga N; Turner, Jason D; Hardie, Debbie; Marshall, Jennifer L; de Hair, Maria J H; Maijer, Karen I; Tak, Paul P; Raza, Karim; Hamann, Jörg; Buckley, Christopher D; Gerlag, Danielle M; Filer, Andrew

    2017-01-01

    Previous studies have shown increased expression of stromal markers in synovial tissue (ST) of patients with established rheumatoid arthritis (RA). Here, ST expression of stromal markers in early arthritis in relationship to diagnosis and prognostic outcome was studied. ST from 56 patients included in two different early arthritis cohorts and 7 non-inflammatory controls was analysed using immunofluorescence to detect stromal markers CD55, CD248, fibroblast activation protein (FAP) and podoplanin. Diagnostic classification (gout, psoriatic arthritis, unclassified arthritis (UA), parvovirus associated arthritis, reactive arthritis and RA), disease outcome (resolving vs persistent) and clinical variables were determined at baseline and after follow-up, and related to the expression of stromal markers. We observed expression of all stromal markers in ST of early arthritis patients, independent of diagnosis or prognostic outcome. Synovial expression of FAP was significantly higher in patients developing early RA compared to other diagnostic groups and non-inflammatory controls. In RA FAP protein was expressed in both lining and sublining layers. Podoplanin expression was higher in all early inflammatory arthritis patients than controls, but did not differentiate diagnostic outcomes. Stromal marker expression was not associated with prognostic outcomes of disease persistence or resolution. There was no association with clinical or sonographic variables. Stromal cell markers CD55, CD248, FAP and podoplanin are expressed in ST in the earliest stage of arthritis. Baseline expression of FAP is higher in early synovitis patients who fulfil classification criteria for RA over time. These results suggest that significant fibroblast activation occurs in RA in the early window of disease.

  2. Sulfide in the core and the composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    Burton, K. W.

    2015-12-01

    The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive 'chondritic' meteorites. It now appears, however, that the silicate Earth is not 'chondritic', but depleted in incompatible elements, including refractory lithophile and heat-producing elements. Either Earth lost material during planet-building due to collisional erosion or else internal differentiation processes produced a hidden reservoir deep in the early Earth. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [1]. Pioneering work using the short-lived 146Sm-142Nd system strongly suggests that Earth's silicate mantle is non-chondritic [e.g. 2]. The drawback of such radiogenic isotope systems is that it is not possible to distinguish the fractionation of Sm/Nd that occurs during silicate melting from that occurring during the segregation of a sulfide-melt to form the core. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavy values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd Stable isotope

  3. Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation.

    PubMed

    D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L

    2014-01-01

    Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.

  4. The initial Hf isotopic composition of the Earth

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Boyet, M. M.; Vervoort, J. D.; Patchett, P. J.

    2011-12-01

    One area of considerable activity in trying to understand the formation and evolution of Earth's crust is the isotopic analysis of Hf in parallel with Sm-Nd and U-Pb zircon studies, either to constrain early crustal growth and evolution [1], or as a complement to detrital zircon studies [2]. The 176Lu decay constant deduced from early planetary and Earth materials have different values. It has been suggested that a period of irradiation in the early Solar System affected the 176Hf production rate in meteoritic and planetary materials [3,4]. In this scenario, the initial Hf isotopic composition of the Solar System and the Earth would be ~4 ∈Hf units lower, affecting tremendously the interpretation of the differentiation history of the early Earth. We investigated Lu-Hf compositions of calcium-aluminum-rich inclusions, the oldest known objects of the Solar System dated at 4568 Ma [5], to assess the possibility of neutrino irradiation in the solar nebula. Here we report high-precision 176Lu-176Hf systematics of leached and unleached, and spiked and unspiked, bulk fractions and mineral separates of 6 individual CAIs from 2 CV3 chondrites. Isotopic analyses were carried out by Neptune MC-ICPMS at ASU. Analytical details are in [6,7]. The unspiked Hf fractions reveal stable isotope anomalies of μ178Hf= 20 ± 6 and μ180Hf= 31 ± 9 (2SD) for the CAI B4 fractions (n=3) and μ178Hf= -4 ± 10 and μ180Hf= 2 ± 10 (n=2) for BCR-2 relative to the JMC 475 Hf standard. Further high-precision analysis of unspiked Sm and Nd fractions of the samples will be made to correct from nucleosynthetic or neutron capture anomalies [8]. Such Hf stable isotopic anomalies predict no more than 50ppm correction on 176Hf/177Hf. At this stage, we have thus regressed together the spiked and unspiked Hf compositions of CAI fractions (n=13) for isochron calculations. The slope of the Lu-Hf isochron is 0.0882 ± 0.0026 (2SD) which corresponds to a 176Lu decay constant value of 1.852 (± 0.052) ×10

  5. Prebiotic materials from on and off the early Earth

    NASA Technical Reports Server (NTRS)

    Bernstein, Max

    2006-01-01

    One of the great puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in compounds made mostly of carbon, the kind of which we are currently composed. Where did these organic molecules come from? In this talk I will review proposed contributions to pre-biotic organic chemistry from both terrestrial processes (i.e., hydrothermal vents, Miller-Urey syntheses) and also from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, and there is a growing consensus among scientists that molecules from space played an important role in making the Earth habitable, and perhaps even provided specific compounds that were directly related to the origin of life.

  6. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways.

    PubMed

    Slesak, Ireneusz; Slesak, Halina; Kruk, Jerzy

    2012-08-01

    In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O(2), reactive oxygen species (ROS), among them hydrogen peroxide (H(2)O(2)), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O(2) appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O(2) and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O(2)-and H(2)O(2)-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O(2)-and H(2)O(2)-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H(2)O(2) and O(2) should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O(2)/H(2)O(2) was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment.

  7. Models of the Origin of the Moon; Early History of Earth and Venus (The Role of Tidal Friction in the Formation of Structure of the Planets)

    NASA Astrophysics Data System (ADS)

    Pechernikova, G. V.; Ruskol, E. L.

    2017-05-01

    An analytical review of the two contemporary models of the origin of the Earth-Moon system in the process of solid-body accretion is presented: socalled co-accretion model and as a result of a gigantic collision with a planetarysized body (i.e. a megaimpact model). The co-accretion model may be considered as a universal mechanism of the origin of planetary satellites, that accompanies the growth of planets. We consider the conditions of this process that secure the sufficient mass and angular momentum of the protolunar disk such as macroimpacts (collisions with the bodies of asteroidal size) into the mantle of the growing Earth, the role of an lunar embryo growing on the geocentric lunar orbit, its tidal interaction with the Earth. The most difficult remains the explanation of chemical composition of the Moon. Different scenarios of megaimpact are reviewed, in which the Earth's mantle is destroyed and the protosatellite disk is filled mainly by its fragments. There is evaluated amount of energy transferred to the Earth from the evolution of lunar orbit. It is an order of magnitude lower than three main sources of the Earth's interior heat, i.e. the heat of accretion, the energy of differentiation and the heat of radioactive sources. The tidal heating of the Venus's interiors could reach 1000K by slowing its axial initial rotation, in addition to three sources mentioned above in concern of the Earth.

  8. Heterogeneous Delivery of Silicate and Metal to the Earth via Large Planetesimals

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Canup, R. M.; Walker, R. J.

    2017-12-01

    Earth's mantle abundances of at least some highly siderophile elements, (HSE; Re, Os, Ir, Ru, Pt, Rh, Pd, and Au), are much higher than would result from metal-silicate equilibration during terrestrial core formation, and can be better explained as a result of late accretion of a minimum of 0.5% Earth's masses after core formation was complete. Traditional models assume that HSEs delivered by late projectiles completely mixed and chemically equilibrated with the Earth's mantle. This appears likely for undifferentiated, well-mixed projectiles, or for relatively small, differentiated projectiles. However several arguments suggest that late projectiles may have been large (> 1500 km in diameter) and differentiated, and in this case, portions of the projectile's core may merge with the Earth's core, rather than being mixed into the Earth's mantle. We investigate projectile mixing with a suite of SPH simulations of differentiated planetesimal colliding with the Earth. A range of outcomes emerge from our simulations suggesting that for large impactors (>1500 km), the delivery of HSE to the Earth's mantle may be disproportionate with the overall delivery of mass. For impacts with impact angles < 45° , between ˜ 20% to 80% of the impactor's core may merge directly with the Earth's core; while for impact angle > 60°, most of the impactor core escapes for moderate impact speeds. An implication is that the late accreted mass inferred from terrestrial HSE abundances may be a substantial underestimate, by a factor 2-5. In addition, partial mixing of projectiles result in an enrichment in mantle vs core material delivered to the bulk silicate Earth, implying substantial compositional variations in the accreted mass. Such variations could produce initially localized domains in Earth's mantle with distinct, mass independent isotopic signatures, given the isotopic variability resulting from nucleosynthetic heterogeneities among genetically diverse meteorites. In general we find

  9. Early exposure to interleukin-21 limits rapidly generated anti-Epstein-Barr virus T-cell line differentiation.

    PubMed

    Orio, Julie; Carli, Cédric; Janelle, Valérie; Giroux, Martin; Taillefer, Julie; Goupil, Mathieu; Richaud, Manon; Roy, Denis-Claude; Delisle, Jean-Sébastien

    2015-04-01

    The adoptive transfer of ex vivo-expanded Epstein-Barr virus (EBV)-specific T-cell lines is an attractive strategy to treat EBV-related neoplasms. Current evidence suggests that for adoptive immunotherapy in general, clinical responses are superior if the transferred cells have not reached a late or terminal effector differentiation phenotype before infusion. The cytokine interleukin (IL)-21 has shown great promise at limiting late T-cell differentiation in vitro, but this remains to be demonstrated in anti-viral T-cell lines. We adapted a clinically validated protocol to rapidly generate EBV-specific T-cell lines in 12 to 14 days and tested whether the addition of IL-21 at the initiation of the culture would affect T-cell expansion and differentiation. We generated clinical-scale EBV-restricted T-cell line expansion with balanced T-cell subset ratios. The addition of IL-21 at the beginning of the culture decreased both T-cell expansion and effector memory T-cell accumulation, with a relative increase in less-differentiated T cells. Within CD4 T-cell subsets, exogenous IL-21 was notably associated with the cell surface expression of CD27 and high KLF2 transcript levels, further arguing for a role of IL-21 in the control of late T-cell differentiation. Our results show that IL-21 has profound effects on T-cell differentiation in a rapid T-cell line generation protocol and as such should be further explored as a novel approach to program anti-viral T cells with features associated with early differentiation and optimal therapeutic efficacy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Mineralogy and chemistry of the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1985-01-01

    The Earth is the prototype if not typical terrestrial planet. Ideas about the origin, evolution, structure and chemistry of the planets can be tested most thoroughly on the Earth. Similarly, the study of the other planets has generated new ideas which may be applicable to the Earth. For example the concepts of magma oceans, large polar wander, global stress fields, buoyant lithosphere, deep cumulate reservoirs, multiple tectonic styles and crust generation may also apply to the Earth, present or past. It is no longer valid to think of the mantle as an essentially homogeneous undifferentiated shell of olivine with pockes of basalt providing melts to midocean ridges and oceanic islands. It appears to be a well differentiated, outgassed body with both radial and lateral chemical variations. The lower mantle is close to chondritic in its major element chemistry. The transition region is garnet and clinopyroxene rich and may be a major basalt reservoir. This would explain the thin crust paradox. Chemical stratification of the Earth probably occurred during accretion.

  11. Earth-Space Link Attenuation Estimation via Ground Radar Kdp

    NASA Technical Reports Server (NTRS)

    Bolen, Steven M.; Benjamin, Andrew L.; Chandrasekar, V.

    2003-01-01

    A method of predicting attenuation on microwave Earth/spacecraft communication links, over wide areas and under various atmospheric conditions, has been developed. In the area around the ground station locations, a nearly horizontally aimed polarimetric S-band ground radar measures the specific differential phase (Kdp) along the Earth-space path. The specific attenuation along a path of interest is then computed by use of a theoretical model of the relationship between the measured S-band specific differential phase and the specific attenuation at the frequency to be used on the communication link. The model includes effects of rain, wet ice, and other forms of precipitation. The attenuation on the path of interest is then computed by integrating the specific attenuation over the length of the path. This method can be used to determine statistics of signal degradation on Earth/spacecraft communication links. It can also be used to obtain real-time estimates of attenuation along multiple Earth/spacecraft links that are parts of a communication network operating within the radar coverage area, thereby enabling better management of the network through appropriate dynamic routing along the best combination of links.

  12. Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns

    NASA Astrophysics Data System (ADS)

    Wiemer, Daniel; Schrank, Christoph E.; Murphy, David T.; Wenham, Lana; Allen, Charlotte M.

    2018-05-01

    During the early Archaean, the Earth was too hot to sustain rigid lithospheric plates subject to Wilson Cycle-style plate tectonics. Yet by that time, up to 50% of the present-day continental crust was generated. Preserved continental fragments from the early Archaean have distinct granite-dome/greenstone-keel crust that is interpreted to be the result of a gravitationally unstable stratification of felsic proto-crust overlain by denser mafic volcanic rocks, subject to reorganization by Rayleigh-Taylor flow. Here we provide age constraints on the duration of gravitational overturn in the East Pilbara Terrane. Our U-Pb ages indicate the emplacement of 3,600-3,460-million-year-old granitoid rocks, and their uplift during an overturn event ceasing about 3,413 million years ago. Exhumation and erosion of this felsic proto-crust accompanied crustal reorganization. Petrology and thermodynamic modelling suggest that the early felsic magmas were derived from the base of thick ( 43 km) basaltic proto-crust. Combining our data with regional geochronological studies unveils characteristic growth cycles on the order of 100 million years. We propose that maturation of the early crust over three of these cycles was required before a stable, differentiated continent emerged with sufficient rigidity for plate-like behaviour.

  13. Triple DMARD treatment in early rheumatoid arthritis modulates synovial T cell activation and plasmablast/plasma cell differentiation pathways

    PubMed Central

    Wechalekar, Mihir D.; Guo, Yanxia; Yin, Xuefeng; Weedon, Helen; Proudman, Susanna M.; Smith, Malcolm D.; Nagpal, Sunil

    2017-01-01

    Objectives This study sought to investigate the genome-wide transcriptional effects of a combination of disease modifying anti-rheumatic drugs (tDMARD; methotrexate, sulfasalazine and hydroxychloroquine) in synovial tissues obtained from early rheumatoid arthritis (RA) patients. While combination DMARD strategies have been investigated for clinical efficacy, very little data exists on the potential molecular mechanism of action. We hypothesized that tDMARD would impact multiple biological pathways, but the specific pathways were unknown. Methods Paired synovial biopsy samples from early RA patients before and after 6 months of tDMARD therapy were collected by arthroscopy (n = 19). These biopsies as well as those from subjects with normal synovium (n = 28) were profiled by total RNA sequencing. Results Large differences in gene expression between RA and control biopsies (over 5000 genes) were identified. Despite clinical efficacy, the expression of a restricted set of less than 300 genes was reversed after 6 months of treatment. Many genes remained elevated, even in patients who achieved low disease activity. Interestingly, tDMARD downregulated genes included those involved in T cell activation and signaling and plasmablast/plasma cell differentiation and function. Conclusions We have identified transcriptomic signatures that characterize synovial tissue from RA patients with early disease. Analysis after 6 months of tDMARD treatment highlight consistent alterations in expression of genes related to T cell activation and plasmablast/plasma cell differentiation. These results provide novel insight into the biology of early RA and the mechanism of tDMARD action and may help identify novel drug targets to improve rates of treatment-induced disease remission. PMID:28863153

  14. Triple DMARD treatment in early rheumatoid arthritis modulates synovial T cell activation and plasmablast/plasma cell differentiation pathways.

    PubMed

    Walsh, Alice M; Wechalekar, Mihir D; Guo, Yanxia; Yin, Xuefeng; Weedon, Helen; Proudman, Susanna M; Smith, Malcolm D; Nagpal, Sunil

    2017-01-01

    This study sought to investigate the genome-wide transcriptional effects of a combination of disease modifying anti-rheumatic drugs (tDMARD; methotrexate, sulfasalazine and hydroxychloroquine) in synovial tissues obtained from early rheumatoid arthritis (RA) patients. While combination DMARD strategies have been investigated for clinical efficacy, very little data exists on the potential molecular mechanism of action. We hypothesized that tDMARD would impact multiple biological pathways, but the specific pathways were unknown. Paired synovial biopsy samples from early RA patients before and after 6 months of tDMARD therapy were collected by arthroscopy (n = 19). These biopsies as well as those from subjects with normal synovium (n = 28) were profiled by total RNA sequencing. Large differences in gene expression between RA and control biopsies (over 5000 genes) were identified. Despite clinical efficacy, the expression of a restricted set of less than 300 genes was reversed after 6 months of treatment. Many genes remained elevated, even in patients who achieved low disease activity. Interestingly, tDMARD downregulated genes included those involved in T cell activation and signaling and plasmablast/plasma cell differentiation and function. We have identified transcriptomic signatures that characterize synovial tissue from RA patients with early disease. Analysis after 6 months of tDMARD treatment highlight consistent alterations in expression of genes related to T cell activation and plasmablast/plasma cell differentiation. These results provide novel insight into the biology of early RA and the mechanism of tDMARD action and may help identify novel drug targets to improve rates of treatment-induced disease remission.

  15. Early evolution and dynamics of Earth from a molten initial stage

    NASA Astrophysics Data System (ADS)

    Louro Lourenço, Diogo; Tackley, Paul J.

    2016-04-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower

  16. Early evolution and dynamics of Earth from a molten initial stage

    NASA Astrophysics Data System (ADS)

    Lourenço, Diogo; Tackley, Paul

    2015-04-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We will present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much

  17. Early evolution and dynamics of Earth from a molten initial stage

    NASA Astrophysics Data System (ADS)

    Louro Lourenço, D. J.; Tackley, P. J.

    2014-12-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We will present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much

  18. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact.

    PubMed

    Jacobson, Seth A; Morbidelli, Alessandro; Raymond, Sean N; O'Brien, David P; Walsh, Kevin J; Rubie, David C

    2014-04-03

    According to the generally accepted scenario, the last giant impact on Earth formed the Moon and initiated the final phase of core formation by melting Earth's mantle. A key goal of geochemistry is to date this event, but different ages have been proposed. Some argue for an early Moon-forming event, approximately 30 million years (Myr) after the condensation of the first solids in the Solar System, whereas others claim a date later than 50 Myr (and possibly as late as around 100 Myr) after condensation. Here we show that a Moon-forming event at 40 Myr after condensation, or earlier, is ruled out at a 99.9 per cent confidence level. We use a large number of N-body simulations to demonstrate a relationship between the time of the last giant impact on an Earth-like planet and the amount of mass subsequently added during the era known as Late Accretion. As the last giant impact is delayed, the late-accreted mass decreases in a predictable fashion. This relationship exists within both the classical scenario and the Grand Tack scenario of terrestrial planet formation, and holds across a wide range of disk conditions. The concentration of highly siderophile elements (HSEs) in Earth's mantle constrains the mass of chondritic material added to Earth during Late Accretion. Using HSE abundance measurements, we determine a Moon-formation age of 95 ± 32 Myr after condensation. The possibility exists that some late projectiles were differentiated and left an incomplete HSE record in Earth's mantle. Even in this case, various isotopic constraints strongly suggest that the late-accreted mass did not exceed 1 per cent of Earth's mass, and so the HSE clock still robustly limits the timing of the Moon-forming event to significantly later than 40 Myr after condensation.

  19. Cracking the Code of Soil Genesis. The Early Role of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Zaharescu, D. G.; Dontsova, K.; Burghelea, C. I.; Maier, R. M.; Huxman, T. E.; Chorover, J.

    2014-12-01

    Soil is terrestrial life support system. Its genesis involves tight interactions between biota and mineral surfaces that mobilize structural elements into biogeochemical cycles. Of all chemical elements rare earth elements (REE) are a group of 16 non-nutrient elements of unusual geochemical similarity and present in all components of the surface environment. While much is known about the role of major nutrients in soil development we lack vital understanding of how early biotic colonization affects more conservative elements such as REE. A highly controlled experiment was set up at University of Arizona's Biosphere-2 that tested the effect of 4 biological treatments, incorporating a combination of microbe, grass, mycorrhiza and uninoculated control on REE leaching and uptake in 4 bedrock substrates: basalt, rhyolite, granite and schist. Generally the response of REE to biota presence was synergistic. Variation in total bedrock chemistry could explain major trends in pore water REE. There was a fast transition from chemistry-dominated to a biota dominated environment in the first 3-4 months of inoculation/seeding which translated into increase in REE signal over time. Relative REE abundances in water were generally reflected in plant concentrations, particularly in root, implying that below ground biomass is the main sync of REE in the ecosystem. Mycorrhiza effect on REE uptake in plant organs was significant and increased with infection rates. Presence of different biota translated into subtle differences in REE release, reveling potential biosignatures of biolota-rock colonization. The results thus bring fundamental insight into early stages non-nutrient cycle and soil genesis.

  20. Symbiosis in cell evolution: Life and its environment on the early earth

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1981-01-01

    The book treats cell evolution from the viewpoint of the serial endosymbiosis theory of the origin of organelles. Following a brief outline of the symbiotic theory, which holds that eukaryotes evolved by the association of free-living bacteria with a host prokaryote, the diversity of life is considered, and five kingdoms of organisms are distinguished: the prokaryotic Monera and the eukaryotic Protoctista, Animalia, Fungi and Plantae. Symbiotic and traditional direct filiation theories of cell evolution are compared. Recent observations of cell structure and biochemistry are reviewed in relation to early cell evolution, with attention given to the geological context for the origin of eukaryotic cells, the origin of major bacterial anaerobic pathways, the relationship between aerobic metabolism and atmospheric oxygen, criteria for distinguishing symbiotic organelles from those that originated by differentiation, and the major classes of eukaryotic organelles: mitochondria, cilia, microtubules, the mitotic and meiotic apparatuses, and pastids. Cell evolution during the Phanerozoic is also discussed with emphasis on the effects of life on the biosphere

  1. Early anaerobic metabolisms

    PubMed Central

    Canfield, Don E; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8 Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle. PMID:17008221

  2. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Lanz, Thierry; Gaidos, Eric; Kasting, James; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    We have started a comprehensive, interdisciplinary study of the influence of solar ultraviolet radiation on the atmosphere of of the early Earth. We plan to model the chemistry of the Earth atmosphere during its evolution, using observed UV flux distributions of early solar analogs as boundary conditions in photochemical models of the Earth's atmosphere. The study has four distinct but interlinked parts: (1) Establishing the radiation of the early Sun; (2) Determining the photochemistry of the early Earth's atmosphere; (3) Estimating the rates of H2 loss from the atmosphere; and (4) Ascertaining how sensitive is the photochemistry to the metallicity of the Sun. We are currently using STIS and EUVE to obtain high-quality far-UV and extreme-UV observations of three early-solar analogs. We will perform a detailed non-LTE study of each stars, and construct theoretical model photosphere, and an empirical model chromospheres, which can be used to extrapolate the continuum to the Lyman continuum region. Given a realistic flux distribution of the early Sun, we will perform photochemical modeling of weakly reducing primitive atmospheres to determine the lifetime and photochemistry of CH4. In particular, we will make estimates of the amount of CH4 present in the prebiotic atmosphere, and estimate the atmospheric CH4 concentration during the Late Archean (2.5-3.0 b.y. ago) and determine whether it would have been sufficiently abundant to help offset reduced solar luminosity at that time. Having obtained a photochemical model, we will solve for the concentrations of greenhouse gasses and important pre-biotic molecules, and perform a detailed radiative transfer calculations to compute the UV flux reaching the surface.

  3. Deformation of a crystalline olivine aggregate containing two immiscible liquids: Implications for early core-mantle differentiation

    NASA Astrophysics Data System (ADS)

    Cerantola, V.; Walte, N. P.; Rubie, D. C.

    2015-05-01

    Deformation-assisted segregation of metallic and sulphidic liquid from a solid peridotitic matrix is a process that may contribute to the early differentiation of small planetesimals into a metallic core and a silicate mantle. Here we present results of an experimental study using a simplified system consisting of a polycrystalline Fo90-olivine matrix containing a small percentage of iron sulphide and a synthetic primitive MORB melt, in order to investigate whether the silicate melt enhances the interconnection and segregation of FeS liquid under deformation conditions at varying strain rates. The experiments have been performed at 2 GPa, 1450 °C and strain rates between 1 ×10-3s-1 to 1 ×10-5s-1. Our results show that the presence of silicate melt actually hinders the migration and segregation of sulphide liquid by reducing its interconnectivity. At low to moderate strain rates the sulphide liquid pockets preserved a roundish shape, showing the liquid behavior is governed mainly by surface tension rather than by differential stress. Even at the highest strain rates, insignificant FeS segregation and interconnection were observed. On the other hand the basaltic melt was very mobile during deformation, accommodating part of the strain, which led to its segregation from the matrix at high bulk strains leaving the sulphide liquid stranded in the olivine matrix. Hence, we conclude that deformation-induced percolation of sulphide liquid does not contribute to the formation of planetary cores after the silicate solidus is overstepped. A possible early deformation enhanced core-mantle differentiation after overstepping the Fe-S solidus is not possible between the initial formation of silicate melt and the formation of a widespread magma ocean.

  4. Differential Training Facilitates Early Consolidation in Motor Learning

    PubMed Central

    Henz, Diana; Schöllhorn, Wolfgang I.

    2016-01-01

    Current research demonstrates increased learning rates in differential learning (DL) compared to repetitive training. To date, little is known on the underlying neurophysiological processes in DL that contribute to superior performance over repetitive practice. In the present study, we measured electroencephalographic (EEG) brain activation patterns after DL and repetitive badminton serve training. Twenty-four semi-professional badminton players performed badminton serves in a DL and repetitive training schedule in a within-subjects design. EEG activity was recorded from 19 electrodes according to the 10–20 system before and immediately after each 20-min exercise. Increased theta activity was obtained in contralateral parieto-occipital regions after DL. Further, increased posterior alpha activity was obtained in DL compared to repetitive training. Results indicate different underlying neuronal processes in DL and repetitive training with a higher involvement of parieto-occipital areas in DL. We argue that DL facilitates early consolidation in motor learning indicated by post-training increases in theta and alpha activity. Further, brain activation patterns indicate somatosensory working memory processes where attentional resources are allocated in processing of somatosensory information in DL. Reinforcing a somatosensory memory trace might explain increased motor learning rates in DL. Finally, this memory trace is more stable against interference from internal and external disturbances that afford executively controlled processing such as attentional processes. PMID:27818627

  5. Historical Landsat data comparisons: illustrations of the Earth's changing surface

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Geological Survey's (USGS) EROS Data Center (EDC) has managed the Landsat data archive for more than two decades. This archive provides a rich collection of information about the Earth's land surface. Major changes to the surface of the planet can be detected, measured, and analyzed using Landsat data. The effects of desertification, deforestation, pollution, cataclysmic volcanic activity, and other natural and anthropogenic events can be examined using data acquired from the Landsat series of Earth-observing satellites. The information obtainable from the historical and current Landsat data play a key role in studying surface changes through time. This document provides an overview of the Landsat program and illustrates the application of the data to monitor changes occurring on the surface of the Earth. To reveal changes that have taken place within the past 20 years, pairs and triplicates of images were constructed from the Landsat multispectral scanner (MSS) and thematic mapper (TM) sensors. Landsat MSS data provide a historical record of the Earth's land surface from the early 1970's to the early 1990's. Landsat TM data provide land surface information from the early 1980's to the present.

  6. Could the early environment of Mars have supported the development of life?

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Stoker, Carol R.

    1990-01-01

    The environment of Mars and its correlation to the origin of life on earth are examined. Evidence of liquid water and nitrogen on early Mars is discussed. The similarities between the early Mars and early earth environments are described.

  7. Differential gene expression during early embryonic development in diapause and non-diapause eggs of multivoltine silkworm Bombyx mori.

    PubMed

    Ponnuvel, Kangayam M; Murthy, Geetha N; Awasthi, Arvind K; Rao, Guruprasad; Vijayaprakash, Nanjappa B

    2010-11-01

    Quantification of the differential expression of metabolic enzyme and heat-shock protein genes (Hsp) during early embryogenesis in diapause and non-diapause eggs of the silkworm B. mori was carried out by semi-quantitative RT-PCR. Data analysis revealed that, the phosphofructokinase (PFK) expression started at a higher level in the early stage (6 h after oviposition) in non-diapause eggs, while in diapause induced eggs, it started at a lower level. However, the PFK gene expression in diapause eggs was comparatively higher than in non-diapause eggs. PFK facilitates use of carbohydrate reserves. The lower level of PFK gene expression in the early stage of diapause induced eggs but comparatively higher level of expression than in non-diapause eggs is due to enzyme inactivation via protein phosphorylation during early embryogenesis followed by de-phosphorylation in later stage. The sorbitol dehydrogenase-2 (SDH-2) gene was down regulated in diapause induced eggs up to 24 h and its expression levels in diapause induced eggs coincided with that of PFK gene at 48h in non-diapause eggs. During carbohydrate metabolism, there is an initial temporary accumulation of sorbitol which acts as protectant. The down regulation of SDH-2 gene during the first 24 hours in diapause induced eggs was due to the requirement of sorbitol as protectant. However, since the diapause process culminates by 48 h, the SDH-2 gene expression increased and coincided with that of PFK gene expression. The trehalase (Tre) gene expression was at a lower level in diapause induced eggs compared to non-diapausing eggs. The induction of Tre activity is to regulate uptake and use of sugar by the tissues. The non-diapause eggs revealed maximum expression of GPase gene with major fluctuations as well as an overall higher expression compared to diapause induced eggs. The diapause process requires less energy source which reflects lower activity of the gene. Heat shock protein (Hsp) genes (Hsp20.4, 40, 70, and 90

  8. Environmental Consequences of Big Nasty Impacts on the Early Earth

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2015-12-01

    The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced ~10 impacts bigger than Chicxulub between 2.5 Ga and 3.5 Ga, the biggest of which were ~30-100X more energetic than Chicxulub. To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid under the circumstances). (iv) The surface temperature of dry land is presumed to be the same as the lower atmosphere. A

  9. Earth's earliest atmospheres.

    PubMed

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-10-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth's atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth's subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases.

  10. Neutron Monitors as a Tool for Specifying Solar Energetic Particle Effects on Earth and in Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.; Clem, J.; Evenson, P.; Kuwabara, T.; Pyle, R.; Ruffolo, D.; Saiz, A.

    2007-12-01

    Neutron monitors are ground-based instruments that record the byproducts of collisions between cosmic rays and molecules in Earth's atmosphere. When linked together in real-time coordinated arrays, these instruments can make valuable contributions to the specification of major solar energetic particle events. Neutron monitors can provide the earliest alert of elevated radiation levels in Earth's atmosphere caused by the arrival of relativistic solar particles (Ground Level Enhancement or GLE). Early detection of GLE is of interest to the aviation industry because of the associated radiation hazard for pilots and air crews, especially for those flying polar routes. Network observations can also be used to map, in principle in real time, the distribution of radiation in Earth's atmosphere, taking into account the particle anisotropy which can be very large in early phases of the event. Observations from the large GLE of January 20, 2005 and December 13, 2006 will be used to illustrate these applications of neutron monitors. Supported by NSF grant ATM-0527878, the Thailand Research Fund, and the Mahidol University Postdoctoral Fellowship Program.

  11. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA-seq

    PubMed Central

    Kakaradov, Boyko; Arsenio, Janilyn; Widjaja, Christella E.; He, Zhaoren; Aigner, Stefan; Metz, Patrick J.; Yu, Bingfei; Wehrens, Ellen J.; Lopez, Justine; Kim, Stephanie H.; Zuniga, Elina I.; Goldrath, Ananda W.; Chang, John T.; Yeo, Gene W.

    2017-01-01

    SUMMARY During microbial infection, responding CD8+ T lymphocytes differentiate into heterogeneous subsets that together provide immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a single-cell RNA sequencing approach and analyzed individual CD8+ T lymphocytes sequentially throughout the course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division and identified previously unknown molecular determinants controlling CD8+ T lymphocyte fate specification. These findings suggest a model of terminal effector cell differentiation initiated by an early burst of transcriptional activity and subsequently refined by epigenetic silencing of transcripts associated with memory lymphocytes, highlighting the power and necessity of single-cell approaches. PMID:28218746

  12. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon.

    PubMed

    Caro, Guillaume; Bourdon, Bernard; Halliday, Alex N; Quitté, Ghylaine

    2008-03-20

    Small isotopic differences in the atomic abundance of neodymium-142 (142Nd) in silicate rocks represent the time-averaged effect of decay of formerly live samarium-146 (146Sm) and provide constraints on the timescales and mechanisms by which planetary mantles first differentiated. This chronology, however, assumes that the composition of the total planet is identical to that of primitive undifferentiated meteorites called chondrites. The difference in the 142Nd/144Nd ratio between chondrites and terrestrial samples may therefore indicate very early isolation (<30 Myr from the formation of the Solar System) of the upper mantle or a slightly non-chondritic bulk Earth composition. Here we present high-precision 142Nd data for 16 martian meteorites and show that Mars also has a non-chondritic composition. Meteorites belonging to the shergottite subgroup define a planetary isochron yielding an age of differentiation of 40 +/- 18 Myr for the martian mantle. This isochron does not pass through the chondritic reference value (100 x epsilon(142)Nd = -21 +/- 3; 147Sm/144Nd = 0.1966). The Earth, Moon and Mars all seem to have accreted in a portion of the inner Solar System with approximately 5 per cent higher Sm/Nd ratios than material accreted in the asteroid belt. Such chemical heterogeneities may have arisen from sorting of nebular solids or from impact erosion of crustal reservoirs in planetary precursors. The 143Nd composition of the primitive mantle so defined by 142Nd is strikingly similar to the putative endmember component 'FOZO' characterized by high 3He/4He ratios.

  13. Early-stage detection of VE-cadherin during endothelial differentiation of human mesenchymal stem cells using SPR biosensor.

    PubMed

    Fathi, Farzaneh; Rezabakhsh, Aysa; Rahbarghazi, Reza; Rashidi, Mohammad-Reza

    2017-10-15

    Surface plasmon resonance (SPR) biosensors are most commonly applied for real-time dynamic analysis and measurement of interactions in bio-molecular studies and cell-surface analysis without the need for labeling processes. Up to present, SPR application in stem cell biology and biomedical sciences was underused. Herein, a very simple and sensitive method was developed to evaluate human mesenchymal stem cells trans-differentiation to endothelial lineage of over a period of 14 days based on VE-cadherin biomarker. The SPR signals increased with the increase of the amount of VE-cadherin expression on the cell surface during cell differentiation process. The method was able to detect ≈27 cells permm 2 . No significant effect was observed on the cell viability during the cell attachment to the surface of immune-reactive biochips and during the SPR analysis. Using this highly sensitive SPR method, it was possible to sense the early stage of endothelial differentiation on day 3 in label-free form, whereas flow cytometry and fluorescent microscopy methods were found unable to detect the cell differentiation at the same time. Therefore, the proposed method can rapidly and accurately detect cell differentiation in live cells and label-free manner without any need of cell breakage and has great potential for both diagnostic and experimental approaches. Copyright © 2017. Published by Elsevier B.V.

  14. Pyrite-Induced Hydrogen Peroxide Formation as a Driving Force in the Evolution of Photosynthetic Organisms on an Early Earth

    NASA Astrophysics Data System (ADS)

    Borda, Michael J.; Elsetinow, Alicia R.; Schoonen, Martin A.; Strongin, Daniel R.

    2001-09-01

    The remarkable discovery of pyrite-induced hydrogen peroxide (H2O2) provides a key step in the evolution of oxygenic photosynthesis. Here we show that H2O2 can be generated rapidly via a reaction between pyrite and H2O in the absence of dissolved oxygen. The reaction proceeds in the dark, and H2O2 levels increase upon illumination with visible light. Since pyrite was stable in most photic environments prior to the rise of O2 levels, this finding represents an important mechanism for the formation of H2O2 on early Earth.

  15. Ocean Fertilization from Giant Icebergs on Earth and Early Mars

    NASA Astrophysics Data System (ADS)

    Uceda, E. R.; Fairen, A. G.; Rodriguez, J. A. P.; Woodworth-Lynas, C.

    2016-05-01

    Assuming that life existed on Mars coeval to glacial activity, enhanced concentrations of organic carbon could be anticipated near iceberg trails, analogous to what is observed in polar oceans on Earth.

  16. When the Earth's Inner Core Shuffles

    NASA Astrophysics Data System (ADS)

    Tkalcic, H.; Young, M. K.; Bodin, T.; Ngo, S.; Sambridge, M.

    2011-12-01

    Shuffling is a tribal dance recently adapted by teenagers as a street dance. In one of the most popular moves, the so-called "Running Man", a stomp forward on one foot, shifted without being lifted from the ground, is followed by a change of position backwards on the same foot. Here, we present strong observational evidence from a newly observed collection of earthquake doublets that the Earth's inner core "shuffles" exhibiting both prograde and retrograde rotation in the reference frame of the mantle. This discovery is significant on several levels. First, the observed pattern consists of intermittent intervals of quasi-locked and differentially rotating inner core with respect to the Earth's mantle. This means that the angular alignment of the inner core and mantle oscillates in time over the past five decades. Jolting temporal changes are revealed, indicating that during the excursions from the quasi-locked state, the Earth's inner core can rotate both faster and slower than the rest of the planet, thus exhibiting both eastward and westward rotation. According to our results, a short time interval (on the order of one to two years) is needed for the inner core to accelerate to a differential rotation rate of several degrees per year, and typically a slightly longer time is needed to decelerate down to a negligibly small differential rotation rate. These time scales are in agreement with experimental spin-up times obtained when the magnetic torque alone is used to accelerate the inner core. Second, when we integrate the rotation rate over different time intervals, it is possible to explain discrepancies between the body wave and normal modes results for the rate of the inner core differential rotation found by previous authors. We show that the integrated shift in angular alignment and average rotation rates (previously determined to be constant) in normal mode studies are much smaller that those for the body waves. The repeating earthquakes from the South

  17. Earth Observation

    NASA Image and Video Library

    2014-07-15

    ISS040-E-063578 (15 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station, flying some 225 nautical miles above the Caribbean Sea in the early morning hours of July 15, photographed this north-looking panorama that includes parts of Cuba, the Bahamas and Florida, and even runs into several other areas in the southeastern U.S. The long stretch of lights to the left of center frame gives the shape of Miami.

  18. Serpentinization and its implications for life on the early Earth and Mars.

    PubMed

    Schulte, Mitch; Blake, David; Hoehler, Tori; McCollom, Thomas

    2006-04-01

    Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E (h)-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization--the reaction of olivine- and pyroxene-rich rocks with water--produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.

  19. Serpentinization and Its Implications for Life on the Early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Schulte, Mitch; Blake, David; Hoehler, Tori; McCollom, Thomas

    2006-04-01

    Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E h-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization-the reaction of olivine- and pyroxene-rich rocks with water-produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.

  20. Constraining the Time Interval for the Origin of Life on Earth.

    PubMed

    Pearce, Ben K D; Tupper, Andrew S; Pudritz, Ralph E; Higgs, Paul G

    2018-03-01

    Estimates of the time at which life arose on Earth make use of two types of evidence. First, astrophysical and geophysical studies provide a timescale for the formation of Earth and the Moon, for large impact events on early Earth, and for the cooling of the early magma ocean. From this evidence, we can deduce a habitability boundary, which is the earliest point at which Earth became habitable. Second, biosignatures in geological samples, including microfossils, stromatolites, and chemical isotope ratios, provide evidence for when life was actually present. From these observations we can deduce a biosignature boundary, which is the earliest point at which there is clear evidence that life existed. Studies with molecular phylogenetics and records of the changing level of oxygen in the atmosphere give additional information that helps to determine the biosignature boundary. Here, we review the data from a wide range of disciplines to summarize current information on the timings of these two boundaries. The habitability boundary could be as early as 4.5 Ga, the earliest possible estimate of the time at which Earth had a stable crust and hydrosphere, or as late as 3.9 Ga, the end of the period of heavy meteorite bombardment. The lack of consensus on whether there was a late heavy meteorite bombardment that was significant enough to prevent life is the largest uncertainty in estimating the time of the habitability boundary. The biosignature boundary is more closely constrained. Evidence from carbon isotope ratios and stromatolite fossils both point to a time close to 3.7 Ga. Life must have emerged in the interval between these two boundaries. The time taken for life to appear could, therefore, be within 200 Myr or as long as 800 Myr. Key Words: Origin of life-Astrobiology-Habitability-Biosignatures-Geochemistry-Early Earth. Astrobiology 18, 343-364.

  1. The young age of Earth

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    1998-09-01

    Patterson (1956) established that the age of Earth is close to that of meteorites. Over the last 20 years, workers argued for younger age for core differentiation based on Pb-Pb model ages and tungsten isotopic data and for gas retention based on I-Xe modeling. However, disagreement is abundant, and the young age of Earth has not been widely accepted. In this work, I examine all radiogenic noble gases in the atmosphere and use a model-independent approach and total inversion to show that (1) the Xe-closure age of Earth is 109 ± 23 million years younger than the formation of meteorite Bjurbole (˜4560 Ma) and (2) all radiogenic components of noble gases in the atmosphere can be quantitatively accounted for by production and degassing ˜60% of the bulk silicate earth. The agreement between the 129I- 129Xe clock and 244Pu- 238U- 136Xe- 134Xe- 132Xe- 131Xe clock suggests that the volatility of iodine does not affect the 129I- 129Xe clock. Earth's Xe-closure age is 4.45 ± 0.02 Ga, consistent with the model age of Pb and the 146Sm- 142Nd, 147Sm- 143Nd and 182Hf- 182W systematics. On the basis of the consistency of these ages, 4.45 ± 0.02 Ga probably represents the time when the last Martian-sized planetesimal hit Earth and reinitialized the global clocks.

  2. Environmental Consequences of Big Nasty Impacts on the Early Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    2015-01-01

    The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced no more than approximately 10 impacts bigger than Chicxulub between 2.5 billion years and 3.5 billion years, the biggest of which were approximately 30-100 times more energetic, comparable to the Orientale impact on the Moon (1x10 (sup 26) joules). To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid

  3. Environmental Consequences of Big Nasty Impacts on the Early Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    2015-01-01

    The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced no more than approximately 10 impacts bigger than Chicxulub between 2.5 billion years and 3.5 2.5 billion years, the biggest of which were approximately30-100 times more energetic, comparable to the Orientale impact on the Moon (1x10 (sup 26) joules). To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid

  4. Lunar Science from and for Planet Earth

    NASA Astrophysics Data System (ADS)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th

  5. Effects of tributyltin on early life-stage, reproduction, and gonadal sex differentiation in Japanese medaka (Oryzias latipes).

    PubMed

    Horie, Yoshifumi; Yamagishi, Takahiro; Shintaku, Yoko; Iguchi, Taisen; Tatarazako, Norihisa

    2018-07-01

    Tributyltin, an organotin compound, was used worldwide as an antifouling agent in aquatic environments and there has been much concern about the toxicological and ecotoxicological properties of organotin compounds. Even though it has been prohibited worldwide, tributyltin is still detected at low concentrations in aquatic environments. Here we investigated the effects of tributyltin on the early life-stage, reproduction, and gonadal sex differentiation in Japanese medaka (Oryzias latipes). In adults, exposure to tributyltin at 3.82 μg/L suppressed fecundity and fertility and increased mortality. At 10.48 μg/L all medaka died by the sixth day of exposure. Exposure to tributyltin during early life-stages induced no significant differences in mortality or embryonic development, but growth was suppressed in groups exposed to 0.13 and 0.68 μg/L. Furthermore, there was no abnormal gonadal development in Japanese medaka exposed to tributyltin. These results provide evidence of the negative effects of tributyltin on reproduction in a teleost fish. Tributyltin did not affect gonadal sex differentiation in Japanese medaka, but fecundity and fertility were suppressed, although it is not clear whether this suppression resulted from the endocrine-disrupting action of tributyltin or its toxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Maize early endosperm growth and development: from fertilization through cell type differentiation.

    PubMed

    Leroux, Brian M; Goodyke, Austin J; Schumacher, Katelyn I; Abbott, Chelsi P; Clore, Amy M; Yadegari, Ramin; Larkins, Brian A; Dannenhoffer, Joanne M

    2014-08-01

    • Given the worldwide economic importance of maize endosperm, it is surprising that its development is not the most comprehensively studied of the cereals. We present detailed morphometric and cytological descriptions of endosperm development in the maize inbred line B73, for which the genome has been sequenced, and compare its growth with four diverse Nested Association Mapping (NAM) founder lines.• The first 12 d of B73 endosperm development were described using semithin sections of plastic-embedded kernels and confocal microscopy. Longitudinal sections were used to compare endosperm length, thickness, and area.• Morphometric comparison between Arizona- and Michigan-grown B73 showed a common pattern. Early endosperm development was divided into four stages: coenocytic, cellularization through alveolation, cellularization through partitioning, and differentiation. We observed tightly synchronous nuclear divisions in the coenocyte, elucidated that the onset of cellularization was coincident with endosperm size, and identified a previously undefined cell type (basal intermediate zone, BIZ). NAM founders with small mature kernels had larger endosperms (0-6 d after pollination) than lines with large mature kernels.• Our B73-specific model of early endosperm growth links developmental events to relative endosperm size, while accounting for diverse growing conditions. Maize endosperm cellularizes through alveolation, then random partitioning of the central vacuole. This unique cellularization feature of maize contrasts with the smaller endosperms of Arabidopsis, barley, and rice that strictly cellularize through repeated alveolation. NAM analysis revealed differences in endosperm size during early development, which potentially relates to differences in timing of cellularization across diverse lines of maize. © 2014 Botanical Society of America, Inc.

  7. Identification of factors for physicians to facilitate early differential diagnosis of scrub typhus, murine typhus, and Q fever from dengue fever in Taiwan.

    PubMed

    Chang, Ko; Lee, Nan-Yao; Ko, Wen-Chien; Tsai, Jih-Jin; Lin, Wei-Ru; Chen, Tun-Chieh; Lu, Po-Liang; Chen, Yen-Hsu

    2017-02-01

    Dengue fever, rickettsial diseases, and Q fever are acute febrile illnesses with similar manifestations in tropical areas. Early differential diagnosis of scrub typhus, murine typhus, and Q fever from dengue fever may be made by understanding the distinguishing clinical characteristics and the significance of demographic and weather factors. We conducted a retrospective study to identify clinical, demographic, and meteorological characteristics of 454 dengue fever, 178 scrub typhus, 143 Q fever, and 81 murine typhus cases in three Taiwan hospitals. Case numbers of murine typhus and Q fever correlated significantly with temperature and rainfall; the scrub typhus case number was only significantly related with temperature. Neither temperature nor rainfall correlated with the case number of dengue fever. The rarity of dengue fever cases from January to June in Taiwan may be a helpful clue for diagnosis in the area. A male predominance was observed, as the male-to-female rate was 2.1 for murine typhus and 7.4 for Q fever. Multivariate analysis revealed the following six important factors for differentiating the rickettsial diseases and Q fever group from the dengue fever group: fever ≥8 days, alanine aminotransferase > aspartate aminotransferase, platelets >63,000/mL, C-reactive protein >31.9 mg/L, absence of bone pain, and absence of a bleeding syndrome. Understanding the rarity of dengue in the first half of a year in Taiwan and the six differentiating factors may help facilitate the early differential diagnosis of rickettsial diseases and Q fever from dengue fever, permitting early antibiotic treatment. Copyright © 2015. Published by Elsevier B.V.

  8. Contribution to the theory of tidal oscillations of an elastic earth. External tidal potential

    NASA Technical Reports Server (NTRS)

    Musen, P.

    1974-01-01

    The differential equations of the tidal oscillations of the earth were established under the assumption that the interior of the earth is laterally inhomogeneous. The theory was developed using vectorial and dyadic symbolism to shorten the exposition and to reduce the differential equations to a symmetric form convenient for programming and for numerical integration. The formation of tidal buldges on the surfaces of discontinuity and the changes in the internal density produce small periodic variations in the exterior geopotential which are reflected in the motion of artificial satellites. The analoques of Love elastic parameters in the expansion of exterior tidal potential reflect the asymmetric and inhomogeneous structure of the interior of the earth.

  9. The accelerations of the earth and moon from early astronomical observations

    NASA Technical Reports Server (NTRS)

    Muller, P. M.; Stephenson, F. R.

    1975-01-01

    An investigation has compiled a very large amount of data on central or near central solar eclipses as recorded in four principal ancient sources (Greek and Roman classics, medieval European chronicles, Chinese annals and astronomical treatises, and Late Babylonian astronomical texts) and applied careful data selectivity criteria and statistical methods to obtain reliable dates, magnitudes, and places of observation of the events, and thereby made estimates of the earth acceleration and lunar acceleration. The basic conclusion is that the lunar acceleration and both tidal and nontidal earth accelerations have been essentially constant during the period from 1375 B.C. to the present.

  10. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    NASA Astrophysics Data System (ADS)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  11. Exploring for early bombardments on Earth from pre-3.85 Fa thermal effects recorded in Hadean zircons - a status report

    NASA Astrophysics Data System (ADS)

    Mojzsis, S. J.; Abramov, O.; Harrison, T. M.; Kring, D. A.; Levison, H. F.; Trail, D.; Watson, E. B.

    2008-12-01

    We report on our progress with high-resolution ion microprobe U-Th-Pb depth profiles and Ti+REEs spot analysis which show that subsequent to their crystallization in melts under typical crustal conditions on Earth, some Hadean (pre-3.85 Ga) zircons record common age domains with unusual chemical and isotopic characteristics consistent with a high-temperature (possibly impact) origin. We have found evidence for later overprints caused by intense thermal alteration between 3.94-3.97 Ga in six of eight studied grains but no evidence for older events. These findings alert us to two fundamental things we did not know before about the probiotic potential of the Earth in the earliest solar system: (i) that the bombardment epoch did not result in complete 'Doomsday' scale destruction of the Earth's crust since the Moon-forming event at ca. 4.5 Ga; and (ii) age constraints on both sides of the ther-mally altered 3.94-3.97 Ga zircon domains are very good and so far our data show that no detectable thermal events are recorded by the zircons before ~3.97 Ga up to about 4.3 Ga. This observation is consistent with the output of new classes of dynamical models that successfully re-create the decay of impactor populations in the early solar system as recorded on the Moon and in meteorites.

  12. Differential Susceptibility in Early Literacy Instruction through Computer Games: The Role of the Dopamine D4 Receptor Gene (DRD4)

    ERIC Educational Resources Information Center

    Kegel, Cornelia A. T.; Bus, Adriana G.; van IJzendoorn, Marinus H.

    2011-01-01

    Not every child seems equally susceptible to the same parental, educational, or environmental influences even if cognitive level is similar. This study is the first randomized controlled trial to apply the differential susceptibility paradigm to education in relation to children's genotype and early literacy skills. A randomized pretest-posttest…

  13. Origin and earliest state of the earth's hydrosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cogley, J.G.; Henderson-Sellers, A.

    1984-05-01

    The origin and earliest history of the earth's hydrosphere, the inventory of excess volatiles defined by Rubey in 1951, can be constrained within wide but useful limits by a consideration of empirical and theoretical evidence from astrophysics and geology. Models for the evolution of the solar system from the protoplanetary nebula and for the growth of the earth to its present dimensions suggest quite strongly that the hydrosphere came into being during accretion. Its format, with H/sub 2/O mostly in the oceans, CO/sub 2/ mostly in sediments, and a residual atmosphere dominated by N/sub 2/, CO/sub 2/, and H/sub 2/Omore » was established at a very early data and has persisted without large, destabilizing climatic excursions until the present day. Alternative accounts of early history, in which the earth either loses a massive primordial atmosphere or acquires its secondary atmosphere by gradual degassing, seem improbable on the basis of a series of circumstantial but cumulatively persuasive arguments. The difficulty of dissipating a massive atmosphere of solar composition in reasonable times, the likelihood that accretion was a highly energetic process and that it triggered early segregation of the core, and the tendency of the planet to accumulate volatiles preferentially in the later stages of accretion are examples of arguments favoring an early origin for the hydrosphere. Several geological isotope systems which can be sampled today require early separation of the atmosphere and probably the hydrosphere ass a whole; these systems recorrd radiogenic enrichment patterns in the noble gases and stable isotope fractionations which suggest an early origin of the biosphere. Certain geological indicators of atmsopheric composition. and the broadly equable character of the rock record, are also consistent with a hydrosphere established in the earliest stages of history and having an initial neutral or weakly reduced composition.« less

  14. Continental emergence and growth on a cooling earth

    NASA Astrophysics Data System (ADS)

    Vlaar, N. J.

    2000-07-01

    Isostasy considerations are connected to a 1-D model of mantle differentiation due to pressure release partial melting to obtain a model for the evolution of the relative sea level with respect to the continent during the earth secular cooling. In this context, a new mechanism is derived for the selective exhumation of exposed ancient cratons. The model results in a quantitative scenario for sea-level fall due to the changing thicknesses of the oceanic basaltic crust and its harzburgite residual layer as a function of falling mantle temperature. It is also shown that the buoyancy of the harzburgite root of a stabilized continental craton has an important effect on sea-level and on the isostatic readjustment and exhumation of exposed continental surface during the earth's secular cooling. The model does not depend on the usual assumption of constant continental freeboard and crustal thickness and its application is not restricted to the post-Archaean. It predicts large-scale continental emergence near the end of the Archaean and the early Proterozoic. This provides an explanation for reported late Archaean emergence and the subsequent formation of late Archaean cratonic platforms and early Proterozoic sedimentary basins. For a period of secular cooling of 3.8 Ga, corresponding to the length of the geological record, the model predicts a fall of the ocean floor of some 4 km or more. For a constant ocean depth, this implies a sea-level fall of the same magnitude. A formula is derived that allows for an increasing ocean depth due to either the changing ratio of continental with respect to oceanic area, or to a possible increase of the oceanic volume during the geological history. Increasing ocean depth results in a later emergence of submarine ancient geological formations compared to the case when ocean depth is constant. Selective exhumation is studied for the case of constant ocean depth. It is shown that for this case, early exposed continental crust can be exhumed

  15. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1998-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Rare pristine (unmixed) samples reflect the original genetic diversity of the early crust. We studied the relative importance of internally generated melt (including the putative magma ocean) versus large impact melts in early lunar magmatism, through both sample analysis and physical modeling. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; effects of regolith/megaregolith insulation on thermal evolution and geochronology; and planetary bulk compositions and origins. We investigated the theoretical petrology of impact melts, especially those formed in large masses, such as the unejected parts of the melts of the largest lunar and terrestrial impact basins. We developed constraints on several key effects that variations in melting/displacement ratio (a strong function of both crater size and planetary g) have on impact melt petrology. Modeling results indicate that the impact melt-derived rock in the sampled, megaregolith part of the Moon is probably material that was ejected from deeper average levels than the non-impact-melted material (fragmental breccias and unbrecciated pristine rocks). In the largest lunar impacts, most of the impact melt is of mantle origin and avoids ejection from the crater, while most of the crust, and virtually all of the impact-melted crust, in the area of the crater is ejected. We investigated numerous extraordinary meteorites and Apollo rocks, emphasizing pristine rocks, siderophile and volatile trace elements, and the identification of primary partial melts, as opposed to partial cumulates. Apollo 15 sample 15434,28 is an

  16. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    PubMed

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  17. LIDAR technology developments in support of ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  18. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2013-01-01

    Background The naphthoquinone pigment, shikonin, is a major component of Lithospermum erythrorhizon and has been shown to have various biological functions, including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we investigated the effect of shikonin on adipocyte differentiation and its mechanism of action in 3T3-L1 cells. Methods To investigate the effects of shikonin on adipocyte differentiation, 3T3-L1 cells were induced to differentiate using 3-isobutyl-1-methylzanthine, dexamethasone, and insulin (MDI) for 8 days in the presence of 0–2 μM shikonin. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the anti-adipogenic mechanism of shikonin, adipogenic transcription factors, the phosphorylation levels of ERK, and adipogenic gene expression were analyzed by Western blotting and quantitative real-time PCR. To further confirm that shikonin inhibits adipogenic differentiation through downregulation of ERK 1/2 activity, 3T3-L1 cells were treated with shikonin in the presence of FGF-2, an activator, or PD98059, an inhibitor, of the ERK1/2 signaling pathway. Results Shikonin effectively suppressed adipogenesis and downregulated the protein levels of 2 major transcription factors, PPARγ and C/EBPα, as well as the adipocyte specific gene aP2 in a dose-dependent manner. qRT-PCR analysis revealed that shikonin inhibited mRNA expression of adipogenesis-related genes, such as PPARγ, C/EBPα, and aP2. Adipocyte differentiation was mediated by ERK 1/2 phosphorylation, which was confirmed by pretreatment with PD98059 (an ERK 1/2 inhibitor) or FGF-2 (an ERK 1/2 activator). The phosphorylation of ERK1/2 during the early stages of adipogenesis in 3T3-L1 cells was inhibited by shikonin. We also confirmed that FGF-2-stimulated ERK 1/2 activity was attenuated by shikonin. Conclusions These results demonstrate that shikonin inhibits adipogenic differentiation via suppression of the ERK signaling pathway

  19. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Gwon, So Young; Ahn, Ji Yun; Jung, Chang Hwa; Moon, Bo Kyung; Ha, Tae Youl

    2013-08-06

    The naphthoquinone pigment, shikonin, is a major component of Lithospermum erythrorhizon and has been shown to have various biological functions, including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we investigated the effect of shikonin on adipocyte differentiation and its mechanism of action in 3T3-L1 cells. To investigate the effects of shikonin on adipocyte differentiation, 3T3-L1 cells were induced to differentiate using 3-isobutyl-1-methylzanthine, dexamethasone, and insulin (MDI) for 8 days in the presence of 0-2 μM shikonin. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the anti-adipogenic mechanism of shikonin, adipogenic transcription factors, the phosphorylation levels of ERK, and adipogenic gene expression were analyzed by Western blotting and quantitative real-time PCR. To further confirm that shikonin inhibits adipogenic differentiation through downregulation of ERK 1/2 activity, 3T3-L1 cells were treated with shikonin in the presence of FGF-2, an activator, or PD98059, an inhibitor, of the ERK1/2 signaling pathway. Shikonin effectively suppressed adipogenesis and downregulated the protein levels of 2 major transcription factors, PPARγ and C/EBPα, as well as the adipocyte specific gene aP2 in a dose-dependent manner. qRT-PCR analysis revealed that shikonin inhibited mRNA expression of adipogenesis-related genes, such as PPARγ, C/EBPα, and aP2. Adipocyte differentiation was mediated by ERK 1/2 phosphorylation, which was confirmed by pretreatment with PD98059 (an ERK 1/2 inhibitor) or FGF-2 (an ERK 1/2 activator). The phosphorylation of ERK1/2 during the early stages of adipogenesis in 3T3-L1 cells was inhibited by shikonin. We also confirmed that FGF-2-stimulated ERK 1/2 activity was attenuated by shikonin. These results demonstrate that shikonin inhibits adipogenic differentiation via suppression of the ERK signaling pathway during the early stages of adipogenesis.

  20. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugheimer, S.; Sasselov, D.; Segura, A.

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UVmore » flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.« less

  1. Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays.

    PubMed

    Giannoutsou, E; Sotiriou, P; Apostolakos, P; Galatis, B

    2013-10-01

    The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule

  2. Early Earth Science Activities in the Sanford Underground Science and Engineering Laboratory at Homestake

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Glaser, S. D.; Moore, J. R.; Hart, K.; King, G.; Regan, T.; Bang, S. S.; Sani, R. K.; Roggenthen, W. M.

    2007-12-01

    On July 10, 2007, the former Homestake Mine, Lead, South Dakota, was selected as the development site for the Deep Underground Science and Engineering Laboratory, to become the Sanford Underground Science and Engineering Laboratory at Homestake. Work on refurbishment and certification of the Ross Shaft began in August 2007 to effect pumping of water that had reached the 5000 level in late July. Completion of this work will allow a physics and geosciences laboratory to be constructed on the 4,850 ft level (1,478 m from the surface). Concurrent with reentry operations, several earth science research activities have been initiated. These early activities are as follows: (1) Seismic monitoring system: Accelerometers will be installed in surface boreholes and underground drifts as they become available as a result of the reentry work. (2) Evaluation of the 300 level (91 m), which has multiple locations for horizontal access, is ongoing. This near- surface level, with varying overburden thicknesses, offers excellent opportunities to investigate the "critical zone" in terms of hydrology, ecology, and geochemistry, yielding measurements of both moisture and carbon fluxes to evaluate fluid exchanges with the atmosphere. (3) Water and soil samples were collected in the Ross Shaft as part of the first reentry work. Molecular survey of microbial diversity showed the presence of mesophilic and thermophilic cellulose-degrading microorganisms. (4) Supercritical carbon dioxide injection experiments are being planned that will take advantage of three pairs of existing, nearly vertical, open 8-inch (0.2 m) boreholes that are easily accessible from the Ross Shaft. The candidate holes are located between the 1550 and the 2900 levels and are between 90 to 180 m in length (5) Monitoring of the response of the water during the dewatering operations will be facilitated by the use of existing boreholes. Ultimately, the dewatering operation provide access to the 8000 level (depth of 2,438 m

  3. Differential risk for late adolescent conduct problems and mood dysregulation among children with early externalizing behavior problems.

    PubMed

    Okado, Yuko; Bierman, Karen L

    2015-05-01

    To investigate the differential emergence of antisocial behaviors and mood dysregulation among children with externalizing problems, the present study prospectively followed 317 high-risk children with early externalizing problems from school entry (ages 5-7) to late adolescence (ages 17-19). Latent class analysis conducted on their conduct and mood symptoms in late adolescence revealed three distinct patterns of symptoms, characterized by: 1) criminal offenses, conduct disorder symptoms, and elevated anger ("conduct problems"), 2) elevated anger, dysphoric mood, and suicidal ideation ("mood dysregulation"), and 3) low levels of severe conduct and mood symptoms. A diathesis-stress model predicting the first two outcomes was tested. Elevated overt aggression at school entry uniquely predicted conduct problems in late adolescence, whereas elevated emotion dysregulation at school entry uniquely predicted mood dysregulation in late adolescence. Experiences of low parental warmth and peer rejection in middle childhood moderated the link between early emotion dysregulation and later mood dysregulation but did not moderate the link between early overt aggression and later conduct problems. Thus, among children with early externalizing behavior problems, increased risk for later antisocial behavior or mood dysfunction may be identifiable in early childhood based on levels of overt aggression and emotion dysregulation. For children with early emotion dysregulation, however, increased risk for mood dysregulation characterized by anger, dysphoric mood, and suicidality--possibly indicative of disruptive mood dysregulation disorder--emerges only in the presence of low parental warmth and/or peer rejection during middle childhood.

  4. The case for a Martian origin for Earth life

    NASA Astrophysics Data System (ADS)

    Benner, Steven A.; Kim, Hyo-Joong

    2015-09-01

    Classical prebiotic chemistry, which has for the last half century explored the reactivity of small organic molecules in glassware environments under the control of chemists, has left unanswered multiple paradoxes with respect to the origins of life. Many of these can be approached, and possibly solved, by placing organic molecular reactivity within the context of the rocks, minerals, hydrosphere, and atmosphere of a prebiotic earth. This new direction in prebiotic chemistry is discussed here, with special emphasis on the role of minerals in constraining the inherent propensity of carbohydrates to devolve to form unproductively complex mixtures of materials. We focus in particular on minerals containing the elements boron and molybdenum, which is produced in discontinuous synthesis model for the emergence of RNA as the first Darwinian molecule. Further, the role of desert environments to manage the "water paradox" is discussed in the context of many classes of processes that have been proposed to deliver RNA under prebiotic conditions. If current models are correct to suggest that early Earth may have been largely flooded at the time when life originated, Then those desert environments may not have been available. However, the inventory of water on Mars has always been less than on Earth and, as Kirschvink has pointed out, intercourse between the two planets was frequent during the time when life is emerging on either planets. This suggests that desert like environments may have been present on early Mars, if they were not present on early Earth.

  5. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    NASA Astrophysics Data System (ADS)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  6. Origin of the earth's ocean basins

    NASA Technical Reports Server (NTRS)

    Frex, H.

    1977-01-01

    The earth's original ocean basins were mare-type basins produced 4 billion years ago by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upwards from the observed number of lunar basins for the greater capture cross-section and impact velocity of the Earth indicates that at least 50 percent of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60 percent oceanic, 40 percent continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.

  7. The Sun-earth Imbalance radiometer for a direct measurement of the net heating of the earth

    NASA Astrophysics Data System (ADS)

    Dewitte, Steven; Karatekin, Özgür; Chevalier, Andre; Clerbaux, Nicolas; Meftah, Mustapha; Irbah, Abdanour; Delabie, Tjorven

    2015-04-01

    It is accepted that the climate on earth is changing due to a radiative energy imbalance at the top of the atmosphere, up to now this radiation imbalance has not been measured directly. The measurement is challenging both in terms of space-time sampling of the radiative energy that is leaving the earth and in terms of accuracy. The incoming solar radiation and the outgoing terrestrial radiation are of nearly equal magnitude - of the order of 340 W/m² - resulting in a much smaller difference or imbalance of the order of 1 W/m². The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar and the outgoing terrestrial radiation with the same instrument. Based on our 30 year experience of measuring the Total Solar Irradiance with the Differential Absolute RADiometer (DIARAD) type of instrument and on our 10 year experience of measuring the Earth Radiation Budget with the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat Second Generation, we propose an innovative constellation of Sun-earth IMBAlance (SIMBA) radiometer cubesats with the ultimate goal to measure the Sun-earth radiation imbalance. A first Simba In Orbit Demonstration satellite is scheduled for flight with QB50 in 2015. It is currently being developed as ESA's first cubesat through an ESA GSTP project. In this paper we will give an overview of the Simba science objectives and of the current satellite and payload development status.

  8. On the temporal evolution of long-wavelength mantle structure of the Earth since the early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Rudolph, Maxwell L.

    2015-05-01

    The seismic structure of the Earth's lower mantle is characterized by a dominantly degree-2 pattern with the African and Pacific large low shear velocity provinces (i.e., LLSVP) that are separated by circum-Pacific seismically fast anomalies. It is important to understand the origin of such a degree-2 mantle structure and its temporal evolution. In this study, we investigated the effects of plate motion history and mantle viscosity on the temporal evolution of the lower mantle structure since the early Paleozoic by formulating 3-D spherical shell models of thermochemical convection. For convection models with realistic mantle viscosity and no initial structure, it takes about ˜50 Myr to develop dominantly degree-2 lower mantle structure using the published plate motion models for the last either 120 Ma or 250 Ma. However, it takes longer time to develop the mantle structure for more viscous mantle. While the circum-Pangea subduction in plate motion history models promotes the formation of degree-2 mantle structure, the published pre-Pangea plate motions before 330 Ma produce relatively cold lower mantle in the African hemisphere and significant degree-1 structure in the early Pangea (˜300 Ma) or later times, even if the lower mantle has an initially degree-2 structure and a viscosity as high as 1023 Pas. This suggests that the African LLSVP may not be stationary since the early Paleozoic. With the published plate motion models and lower mantle viscosity of 1022 Pas, our mantle convection models suggest that the present-day degree-2 mantle structure may have largely been formed by ˜200 Ma.

  9. NOx in the Atmosphere of Early Earth as Electron Acceptors for Life

    NASA Astrophysics Data System (ADS)

    Wong, M. L.; Charnay, B.; Gao, P.; Yung, Y. L.; Russell, M. J.

    2015-12-01

    We quantify the amount of NOx produced in the Hadean atmosphere and available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for driving the highly endergonic reactions at the entry points to autotrophic metabolic pathways at submarine alkaline hydrothermal vents (Ducluzeau, 2008; Russell, 2014). The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning and impacts (Ducluzeau, 2008; Nna Mvondo, 2001). Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO3 and HNO2 that rain into the ocean and dissociate into NO3- and NO2-. Previous work suggests that 1018 g of NOx can be produced in a million years or so, satisfying the need for micromolar concentrations of NO3- and NO2- in the ocean (Ducluzeau, 2008). But because this number is controversial, we present new calculations based on a novel combination of early-Earth GCM and photochemical modeling, calculating the sources and sinks for fixed nitrogen. Finally, it is notable that lightning has been detected on Venus and Mars along with evidence of atmospheric NO; in the distant past, could NOx have been created and available for the emergence of life on numerous wet, rocky worlds?

  10. Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence

    NASA Astrophysics Data System (ADS)

    Wong, Michael L.; Charnay, Benjamin D.; Gao, Peter; Yung, Yuk L.; Russell, Michael J.

    2017-10-01

    We quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning. Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO, HNO2, HNO3, and HO2NO2 that rain into the ocean. There, they dissociate into or react to form nitrate and nitrite. We present new calculations based on a novel combination of early-Earth global climate model and photochemical modeling, and we predict the flux of NOx to the Hadean ocean. In our 0.1-, 1-, and 10-bar pCO2 models, we calculate the NOx delivery to be 2.4 × 105, 6.5 × 108, and 1.9 × 108 molecules cm-2 s-1. After only tens of thousands to tens of millions of years, these NOx fluxes are expected to produce sufficient (micromolar) ocean concentrations of high-potential electron acceptors for the emergence of life.

  11. First Results from Colorado Student Space Weather Experiment (CSSWE): Differential Flux Measurements of Energetic Particles in a Highly Inclined Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Li, X.; Palo, S. E.; Kohnert, R.; Gerhardt, D.; Blum, L. W.; Schiller, Q.; Turner, D. L.; Tu, W.

    2012-12-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, scheduled for launch into a low-Earth, polar orbit after August 14th, 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles (SEP) reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics (LASP). The REPT instrument will fly onboard the NASA/Radiation Belt Storm Probes (RBSP) mission, which consists of two identical spacecraft scheduled to launch after August 23rd, 2012 that will go through the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3 MeV. Such differential flux measurements have significant science value, and a number of engineering challenges were overcome to enable these clean measurements to be made under the mass and power limits of a CubeSat. The CSSWE is an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project. We will report the first results from this exciting mission.

  12. Sunrise, Earth Limb

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This sunrise scene (5.5S, 29.5E) was taken early in the morning, when the sun was still below the horizon and not yet illuminating the dark band of low level clouds on the Earth limb. Ranging from 13 to 18 km. above these low level clouds is a brown layer at the tropopause, an atmospheric temperature inversion which isolates the troposphere from the stratosphere and effectively concentrates particulates from both above and below this level.

  13. Alkali element constraints on Earth-Moon relations

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Drake, M. J.; Jones, J. H.

    1994-01-01

    Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.

  14. Convergent Validity of the Mullen Scales of Early Learning and the Differential Ability Scales in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Bishop, Somer L.; Guthrie, Whitney; Coffing, Mia; Lord, Catherine

    2011-01-01

    Despite widespread use of the Mullen Scales of Early Learning (MSEL; E. M. Mullen, 1995) as a cognitive test for children with autism spectrum disorders and other developmental disabilities, the instrument has not been independently validated for use in these populations. Convergent validity of the MSEL and the Differential Ability Scales (DAS; C.…

  15. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen

    PubMed Central

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli (Brassica oleracea var. italica) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development. PMID:28392797

  16. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen.

    PubMed

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli ( Brassica oleracea var. italica ) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.

  17. Geochemical Constraints on Core Formation in the Earth

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Drake, Michael J.

    1986-01-01

    New experimental data on the partitioning of siderophile and chalcophile elements among metallic and silicate phases may be used to constrain hypotheses of core formation in the Earth. Three current hypotheses can explain gross features of mantle geochemistry, but none predicts siderophile and chalcophile element abundances to within a factor of two of observed values. Either our understanding of metal-silicate interactions and/or our understanding of the early Earth requires revision.

  18. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, S. R.; Gaidos, E.; Hubeny, I.; Lanz, T. M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We have embarked on a program aimed at understanding the atmosphere of the early Earth, because of its importance as a greenhouse, radiation shield, and energy source for life. Here, we give a progress report on the first phase of this program: to establish the UV radiation from the early Sun. We are presently obtaining ultraviolet spectra (STIS, FUSE, EUVE) of carefully selected nearby, young solar-type stars, which act as surrogates for the early Sun. We are currently making detailed non-LTE analyses of the spectra and constructing models of their photospheres + chromospheres. once validated, these models will allow us to extrapolate our theoretical spectra to unobserved spectral regions, and to proceed to the next step: to develop photochemical models of the pre-biotic and Archean atmosphere of the Earth.

  19. Cometary material and the origins of life on earth

    NASA Technical Reports Server (NTRS)

    Lazcano-Araujo, A.; Oro, J.

    1981-01-01

    The role of cometary material in determining the environmental conditions of the prebiotic earth is reviewed. The organic synthesis pathways that occur in dense interstellar clouds and in comets are examined, and complex organic molecules believed to exist (amino acids, carboxylic acids, purines, pyrimidines and hydrocarbons) based on spectral detections of degradation products are noted. Estimates of the amount of terrestrial volatiles of cometary origin that may have been acquired in collisions during the early history of the earth are considered, and shown to dominate any estimated contributions to terrestrial carbon from other extraterrestrial sources. Current evidence that the origin and early evolution of life began about four billion years ago is discussed in relation to the cometary bombardment processes occurring at the time and the resultant shock waves, reducing atmospheres and reactive chemical species. It is thus concluded that comets contributed significantly to the processes of chemical evolution necessary for the emergence of life on earth.

  20. Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics.

    PubMed

    Ishihara, Takeshi; Kakiya, Kiyoshi; Takahashi, Koji; Miwa, Hiroto; Rokushima, Masatomo; Yoshinaga, Tomoyo; Tanaka, Yoshikazu; Ito, Takaomi; Togame, Hiroko; Takemoto, Hiroshi; Amano, Maho; Iwasaki, Norimasa; Minami, Akio; Nishimura, Shin-Ichiro

    2014-01-01

    Osteoarthritis (OA) is one of the most common chronic diseases among adults, especially the elderly, which is characterized by destruction of the articular cartilage. Despite affecting more than 100 million individuals all over the world, therapy is currently limited to treating pain, which is a principal symptom of OA. New approaches to the treatment of OA that induce regeneration and repair of cartilage are strongly needed. To discover potent markers for chondrogenic differentiation, glycoform-focused reverse proteomics and genomics were performed on the basis of glycoblotting-based comprehensive approach. Expression levels of high-mannose type N-glycans were up-regulated significantly at the late stage of differentiation of the mouse chondroprogenitor cells. Among 246 glycoproteins carrying this glycotype identified by ConA affinity chromatography and LC/MS, it was demonstrated that 52% are classified as cell surface glycoproteins. Gene expression levels indicated that mRNAs for 15 glycoproteins increased distinctly in the earlier stages during differentiation compared with Type II collagen. The feasibility of mouse chondrocyte markers in human chondrogenesis model was demonstrated by testing gene expression levels of these 15 glycoproteins during differentiation in human mesenchymal stem cells. The results showed clearly an evidence of up-regulation of 5 genes, ectonucleotide pyrophosphatase/phosphodiesterase family member 1, collagen alpha-1(III) chain, collagen alpha-1(XI) chain, aquaporin-1, and netrin receptor UNC5B, in the early stages of differentiation. These cell surface 5 glycoproteins become highly sensitive differentiation markers of human chondrocytes that contribute to regenerative therapies, and development of novel therapeutic reagents. © 2013.

  1. Simulation of Prebiotic Processing by Comet and Meteoroid Impact: Implications for Life on Early Earth and Other Planets

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.

    2003-01-01

    We develop a reacting flow model to simulate the shock induced chemistry of comets and meteoroids entering planetary atmospheres. Various atmospheric compositions comprising of simpler molecules (i.e., CH4, CO2, H2O, etc.) are investigated to determine the production efficiency of more complex prebiotic molecules as a function of composition, pressure, and entry velocity. The possible role of comets and meteoroids in creating the inventory of prebiotic material necessary for life on Early Earth is considered. Comets and meteoroids can also introduce new materials from the Interstellar Medium (ISM) to planetary atmospheres. The ablation of water from comets, introducing the element oxygen into Titan's atmosphere will also be considered and its implications for the formation of organic and prebiotic material.

  2. Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation

    PubMed Central

    Sivori, Simona; Falco, Michela; Marcenaro, Emanuela; Parolini, Silvia; Biassoni, Roberto; Bottino, Cristina; Moretta, Lorenzo; Moretta, Alessandro

    2002-01-01

    In this study we analyzed the progression of cell surface receptor expression during the in vitro-induced human natural killer (NK) cell maturation from CD34+ Lin− cell precursors. NKp46 and NKp30, two major triggering receptors that play a central role in natural cytotoxicity, were expressed before the HLA class I-specific inhibitory receptors. Moreover, their appearance at the cell surface correlated with the acquisition of cytolytic activity by developing NK cells. Although the early expression of triggering receptors may provide activating signals required for inducing further cell differentiation, it may also affect the self-tolerance of developing NK cells. Our data show that a fail-safe mechanism preventing killing of normal autologous cells may be provided by the 2B4 surface molecule, which, at early stages of NK cell differentiation, functions as an inhibitory rather than as an activating receptor. PMID:11917118

  3. Were Ocean Impacts an Important Mechanism to Deliver Meteoritic Organic Matter to the Early Earth? Some Inferences from Eltanin

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Gersonde, Rainer; Kuhn. Gerhard

    2002-01-01

    Several workers have addressed the potential for extraterrestrial delivery of volatles, including water and complex organic compounds, to the early Earth. For example, Chyba and Sagan (1992) argued that since impacts would destroy organic matter, most extraterrestrial organics must be delivered in the fine-fractions of interplanetary dust. More recent computer simulations (Pierazzo and Chyba, 1999), however, have shown that substantial amounts of amino acids may survive the impacts of large (km-sized) comets and that this may exceed the amounts derived from IDPs or Miller-Urey synthesis in the atmosphere. Once an ocean developed on the early Earth, impacts of small ,asteroids and comets into deep-ocean basins were potentially common and may have been the most likely events to deliver large amounts of organics. The deposits of the late Pliocene impact of the Eltanin asteroid into the Bellingshausen Sea provide the only record of a deep-ocean (approx. 5 km) impact that can be used to constrain models of these events. This impact was first discovered in 1981 as an Ir anomaly in sediment cores collected by the USNS Eltanin in 1965 (Kyte et al., 1981). In 1995, Polarstem expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5S, 91 W) contained well-preserved impact deposits that include disturbed ocean sediments and meteoritic impact ejecta (Gersonde et al., 1997). The latter is composed of shock- melted asteroidal materials and unmelted meteorites. In 2001, the FS Polarstem returned to the impact area during expedition ANT XVIII/5a. At least 16 cores were recovered that contain ejecta deposits. These cores and geophysical data from the expedition can be used to map the effects of the impact over a large region of the ocean floor.

  4. [Establishment of malaria early warning system in Jiangsu Province II application of digital earth system in malaria epidemic management and surveillance].

    PubMed

    Wang, Wei-Ming; Zhou, Hua-Yun; Liu, Yao-Bao; Li, Ju-Lin; Cao, Yuan-Yuan; Cao, Jun

    2013-04-01

    To explore a new mode of malaria elimination through the application of digital earth system in malaria epidemic management and surveillance. While we investigated the malaria cases and deal with the epidemic areas in Jiangsu Province in 2011, we used JISIBAO UniStrong G330 GIS data acquisition unit (GPS) to collect the latitude and longitude of the cases located, and then established a landmark library about early-warning areas and an image management system by using Google Earth Free 6.2 and its image processing software. A total of 374 malaria cases were reported in Jiangsu Province in 2011. Among them, there were 13 local vivax malaria cases, 11 imported vivax malaria cases from other provinces, 20 abroad imported vivax malaria cases, 309 abroad imported falciparum malaria cases, 7 abroad imported quartan malaria cases (Plasmodium malaria infection), and 14 abroad imported ovale malaria cases (P. ovale infection). Through the analysis of Google Earth Mapping system, these malaria cases showed a certain degree of aggregation except the abroad imported quartan malaria cases which were highly sporadic. The local vivax malaria cases mainly concentrated in Sihong County, the imported vivax malaria cases from other provinces mainly concentrated in Suzhou City and Wuxi City, the abroad imported vivax malaria cases concentrated in Nanjing City, the abroad imported falciparum malaria cases clustered in the middle parts of Jiangsu Province, and the abroad imported ovale malaria cases clustered in Liyang City. The operation of Google Earth Free 6.2 is simple, convenient and quick, which could help the public health authority to make the decision of malaria prevention and control, including the use of funds and other health resources.

  5. Early Psoriatic Arthritis Versus Early Seronegative Rheumatoid Arthritis: Role of Dermoscopy Combined with Ultrasonography for Differential Diagnosis.

    PubMed

    Zabotti, Alen; Errichetti, Enzo; Zuliani, Francesca; Quartuccio, Luca; Sacco, Stefania; Stinco, Giuseppe; De Vita, Salvatore

    2018-05-01

    Exclusion of psoriatic skin/nail lesions is important in differentiating early seronegative rheumatoid arthritis (ERA) from early polyarticular psoriatic arthritis (EPsA) and such manifestations may go unnoticed in atypical or minimally expressed cases. The aim of this study is to assess the usefulness of integrated rheumatological-dermatological evaluation in highlighting dermatological lesions missed on rheumatological examination and to investigate the role of ultrasonography (US) and dermoscopy in improving the recognition of subclinical psoriatic findings. Patients with a new diagnosis of seropositive or seronegative ERA and EPsA with prevalent hands involvement were recruited. All were reassessed for the presence of psoriatic lesions during an integrated rheumatological-dermatological clinical evaluation and underwent hands US and proximal nailfold dermoscopy. Seventy-three consecutive subjects were included in the study: 25 with seropositive ERA, 23 with seronegative ERA, and 25 with EPsA. One-fourth of the subjects initially diagnosed as seronegative ERA presented cutaneous or nail psoriasis on integrated rheumatological-dermatological evaluation, thereby being reclassified as EPsA. The presence of at least 1 extrasynovial feature on hand US and dotted vessels on proximal nailfold dermoscopy was significantly associated with EPsA, with a sensitivity of 68.0% and 96.0% and a specificity of 88.1% and 83.3% for US and dermoscopy, respectively. When used together, specificity for PsA diagnosis raised to 90.5%. Integrated rheumatological-dermatological clinical evaluation may be helpful in identifying patients with EPsA misclassified as seronegative ERA. Additionally, US and dermoscopy may be used as supportive tools in identifying subclinical psoriatic features, which may come in handy in distinguishing EPsA from ERA.

  6. Early differential sensitivity of evoked-potentials to local and global shape during the perception of three-dimensional objects.

    PubMed

    Leek, E Charles; Roberts, Mark; Oliver, Zoe J; Cristino, Filipe; Pegna, Alan J

    2016-08-01

    Here we investigated the time course underlying differential processing of local and global shape information during the perception of complex three-dimensional (3D) objects. Observers made shape matching judgments about pairs of sequentially presented multi-part novel objects. Event-related potentials (ERPs) were used to measure perceptual sensitivity to 3D shape differences in terms of local part structure and global shape configuration - based on predictions derived from hierarchical structural description models of object recognition. There were three types of different object trials in which stimulus pairs (1) shared local parts but differed in global shape configuration; (2) contained different local parts but shared global configuration or (3) shared neither local parts nor global configuration. Analyses of the ERP data showed differential amplitude modulation as a function of shape similarity as early as the N1 component between 146-215ms post-stimulus onset. These negative amplitude deflections were more similar between objects sharing global shape configuration than local part structure. Differentiation among all stimulus types was reflected in N2 amplitude modulations between 276-330ms. sLORETA inverse solutions showed stronger involvement of left occipitotemporal areas during the N1 for object discrimination weighted towards local part structure. The results suggest that the perception of 3D object shape involves parallel processing of information at local and global scales. This processing is characterised by relatively slow derivation of 'fine-grained' local shape structure, and fast derivation of 'coarse-grained' global shape configuration. We propose that the rapid early derivation of global shape attributes underlies the observed patterns of N1 amplitude modulations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Amino Acid Stability in the Early Oceans

    NASA Technical Reports Server (NTRS)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  8. Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607

  9. Earth's Paleomagnetosphere and Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Blackman, E. G.; Oda, H.; Bono, R. K.; Carroll-Nellenback, J.; Cottrell, R. D.; Nimmo, F.

    2017-12-01

    The geodynamo is thought to play an important role in protecting Earth's hydrosphere, vital for life as we know it, from loss due to the erosive potential of the solar wind. Here we consider the mechanisms and history of this shielding. A larger core dynamo magnetic field strength provides more pressure to abate the solar wind dynamic pressure, increasing the magnetopause radius. However, the larger magnetopause also implies a larger collecting area for solar wind flux during phases of magnetic reconnection. The important variable is not mass capture but energy transfer, which does not scale linearly with magnetosphere size. Moreover, the ordered field provides the magnetic topology for recapturing atmospheric components in the opposite hemisphere such that the net global loss might not be greatly affected. While a net protection role for magnetospheres is suggested, forcing by the solar wind will change with stellar age. Paleomagnetism utilizing the single silicate crystal approach, defines a relatively strong field some 3.45 billion years ago (the Paleoarchean), but with a reduced magnetopause of 5 Earth radii, implying the potential for some atmospheric loss. Terrestrial zircons from the Jack Hills (Western Australia) and other localities host magnetic inclusions, whose magnetization has now been recorded by a new generation of ultra-sensitive 3-component SQUID magnetometer (U. Rochester) and SQUID microscope (GSJ/AIST). Paleointensity data suggest the presence of a terrestrial dynamo and magnetic shielding for Eoarchean to Hadean times, at ages as old as 4.2 billion years ago. However, the magnetic data suggest that for intervals >100,000 years long, magnetopause standoff distances may have reached 3 to 4 Earth radii or less. The early inception of the geodynamo, which probably occurred shortly after the lunar-forming impact, its continuity, and an early robust hydrosphere, appear to be key ingredients for Earth's long-term habitability.

  10. Are infants differentially sensitive to parenting? Early maternal care, DRD4 genotype and externalizing behavior during adolescence.

    PubMed

    Nikitopoulos, Jörg; Zohsel, Katrin; Blomeyer, Dorothea; Buchmann, Arlette F; Schmid, Brigitte; Jennen-Steinmetz, Christine; Becker, Katja; Schmidt, Martin H; Esser, Günter; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2014-12-01

    Insensitive and unresponsive caregiving during infancy has been linked to externalizing behavior problems during childhood and adolescence. The 7-repeat (7r) allele of the dopamine D4 receptor (DRD4) gene has meta-analytically been associated with a heightened susceptibility to adverse as well as supportive environments. In the present study, we examined long-term effects of early maternal care, DRD4 genotype and the interaction thereof on externalizing and internalizing psychopathology during adolescence. As part of an ongoing epidemiological cohort study, early maternal care was assessed at child's age 3 months during a nursing and playing situation. In a sample of 296 offspring, externalizing and internalizing symptoms were assessed using a psychiatric interview conducted at age 15 years. Parents additionally filled out a questionnaire on their children's psychopathic behaviors. Results indicated that adolescents with the DRD4 7r allele who experienced less responsive and stimulating early maternal care exhibited more symptoms of ADHD and CD/ODD as well as higher levels of psychopathic behavior. In accordance with the hypothesis of differential susceptibility, 7r allele carriers showed fewer ADHD symptoms and lower levels of psychopathic behavior when exposed to especially beneficial early caregiving. In contrast, individuals without the DRD4 7r allele proved to be insensitive to the effects of early maternal care. This study replicates earlier findings with regard to an interaction between DRD4 genotype and early caregiving on externalizing behavior problems in preschoolers. It is the first one to imply continuity of this effect until adolescence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Differential Risk for Late Adolescent Conduct Problems and Mood Dysregulation Among Children with Early Externalizing Behavior Problems

    PubMed Central

    Bierman, Karen L.

    2016-01-01

    To investigate the differential emergence of antisocial behaviors and mood dysregulation among children with externalizing problems, the present study prospectively followed 317 high-risk children with early externalizing problems from school entry (ages 5–7) to late adolescence (ages 17–19). Latent class analysis conducted on their conduct and mood symptoms in late adolescence revealed three distinct patterns of symptoms, characterized by: 1) criminal offenses, conduct disorder symptoms, and elevated anger (“conduct problems”), 2) elevated anger, dysphoric mood, and suicidal ideation (“mood dysregulation”), and 3) low levels of severe conduct and mood symptoms. A diathesis-stress model predicting the first two outcomes was tested. Elevated overt aggression at school entry uniquely predicted conduct problems in late adolescence, whereas elevated emotion dysregulation at school entry uniquely predicted mood dysregulation in late adolescence. Experiences of low parental warmth and peer rejection in middle childhood moderated the link between early emotion dysregulation and later mood dysregulation but did not moderate the link between early overt aggression and later conduct problems. Thus, among children with early externalizing behavior problems, increased risk for later antisocial behavior or mood dysfunction may be identifiable in early childhood based on levels of overt aggression and emotion dysregulation. For children with early emotion dysregulation, however, increased risk for mood dysregulation characterized by anger, dysphoric mood, and suicidality – possibly indicative of disruptive mood dysregulation disorder – emerges only in the presence of low parental warmth and/or peer rejection during middle childhood. PMID:25183553

  12. Searching for Life: Early Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    We might be entering a golden age for exploring life throughout time and space. Rapid gene sequencing will better define our most distant ancestors. The earliest geologic evidence of life is now 3.8 billion years old. Organic matter and submicron-sized morphologies have been preserved in the martian crust for billions of years. Several new missions to Mars are planned, with a high priority on the search for life, past or present. The recent discovery of large extrasolar planets has heightened interest in spacecraft to detect small, earth-like planets. A recent workshop discussed strategies for life detection on such planets. There is much to anticipate in the near future.

  13. Analysis of cell cycle-related proteins in gastric intramucosal differentiated-type cancers based on mucin phenotypes: a novel hypothesis of early gastric carcinogenesis based on mucin phenotype

    PubMed Central

    2010-01-01

    Background Abnormalities of cell cycle regulators are common features in human cancers, and several of these factors are associated with the early development of gastric cancers. However, recent studies have shown that gastric cancer tumorigenesis was characterized by mucin expression. Thus, expression patterns of cell cycle-related proteins were investigated in the early phase of differentiated-type gastric cancers to ascertain any mechanistic relationships with mucin phenotypes. Methods Immunostaining for Cyclins D1, A, E, and p21, p27, p53 and β-catenin was used to examine impairments of the cell cycle in 190 gastric intramucosal differentiated-type cancers. Mucin phenotypes were determined by the expressions of MUC5AC, MUC6, MUC2 and CD10. A Ki-67 positive rate (PR) was also examined. Results Overexpressions of p53, cyclin D1 and cyclin A were significantly more frequent in a gastric phenotype than an intestinal phenotype. Cyclin A was overexpressed in a mixed phenotype compared with an intestinal phenotype, while p27 overexpression was more frequent in an intestinal phenotype than in a mixed phenotype. Reduction of p21 was a common feature of the gastric intramucosal differentiated-type cancers examined. Conclusions Our results suggest that the levels of some cell cycle regulators appear to be associated with mucin phenotypes of early gastric differentiated-type cancers. PMID:20525401

  14. Electron Backscatter Diffraction (EBSD) Analysis and U-Pb Geochronology of the Oldest Lunar Zircon: Constraining Early Lunar Differentiation and Dating Impact-Related Deformation

    NASA Technical Reports Server (NTRS)

    Timms, Nick; Nemchin, Alexander; Grange, Marion; Reddy, Steve; Pidgeon, Bob; Geisler, Thorsten; Meyer, Chuck

    2009-01-01

    The evolution of the early moon was dominated by two processes (i) crystallization of the Lunar Magma Ocean (LMO) and differentiation of potassium-rare earth element-phosphorous-rich residual magma reservoir referred to as KREEP, and (ii) an intense meteorite bombardment referred to as lunar cataclysm . The exact timing of these processes is disputed, and resolution relies on collection and interpretation of precise age data. This study examines the microstructure and geochronology of zircon from lunar impact breccias collected during the Apollo 17 mission. A large zircon clast within lunar breccia 72215,195 shows sector zoning in optical microscopy, cathodoluminescence (CL) imaging and Raman mapping, and indicates that it was a relict fragment of a much larger magmatic grain. Sensitive high resolution ion microprobe (SHRIMP) U-Pb analysis of the zircon shows that U and Th concentration correlate with sector zoning, with darkest CL domains corresponding with high-U and Th (approx.150 and approx.100 ppm respectively), and the brightest-CL sectors containing approx.30-50 ppm U and approx.10-20 ppm Th. This indicates that variations in optical CL and Raman properties correspond to differential accumulation of alpha-radiation damage in each sector. Electron backscatter diffraction (EBSD) mapping shows that the quality of electron backscatter patterns (band contrast) varies with sector zoning, with the poorest quality patterns obtained from high-U and Th, dark-CL zones. EBSD mapping also reveals a deformation microstructure that is cryptic in optical, CL and Raman imaging. Two orthogonal sets of straight discrete and gradational low-angle boundaries accommodate approx.12 misorientation across the grain. The deformation bands are parallel to the crystallographic {a}-planes of the zircon, have misorientation axes parallel to the c-axis, and are geometrically consistent with formation by dislocation creep associated with <100>{010} slip. The deformation bands are unlike

  15. Mechanism of Earth Fissures in Beijing,China

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Gong, H.; Gu, Z.; Wang, R.; Jia, S.; Li, X.

    2013-12-01

    Earth fissure is one of the natural hazards that can occur due to different mechanisms. The Beijing city, located in the north of North China Plain, China, has undergone extensive fissuring for the last twenty years. These fissures have caused serious damages to homes, farmlands and infrastructures. The previous investigation shows the distribution and direction of the major earth fissures mostly paralleled to the active fault, such as Huangzhuang-Gaoliying Fault. Hence, tectonic movements were thought to be the major cause of the fissuring in this region. But the subsidence caused by overdraft and other geological, hydrological and mechanical factors may also play important roles in forming earth fissure. The purpose of the work was to further explores the reason for the cause of the earth fissures and their mechanism of formations using field investigations, geophysical surveys, geotechnical tests and numerical analysis. The results indicated that over-extraction groundwater and differential subsidence are the major causes of the fissuring. The active faulting and fault zone provided or created an ideal condition for stress to accumulate. The earth fissures occur at times when the accumulated stress exceed the strength of soil or coupled with other process by which the strength of soil material is reduced. Survey and simulated results reveal the complex pattern of earth fissure including tensile deformation, vertical offset and rotation. The potential locations for future damage were also evaluated. Keywords: Earth Fissure; Mechanism; Beijing; Subsidence; tectonic movement; Geophysical survey

  16. Perturbed Equations of Motion for Formation Flight Near the Sun-Earth L2 Point

    NASA Technical Reports Server (NTRS)

    Luquette, Richard; Segerman, A. M.; Zedd, M. F.

    2005-01-01

    NASA is planning missions to the vicinity of the Sun-Earth L(sub 2) point, some involving a distributed system of telescope spacecraft, configured in a plane about a hub. Several sets of differential equations are written for the formation flight of such telescopes relative to the hub, with varying levels of fidelity. Effects are cast as additive perturbations to the circular restricted three-body problem, expanded in terms of the system distanced, to an accuracy of 10-20 m. These include Earth's orbital eccentricity, lunar motion, solar radiation pressure, and small thrusting forces. Simulations validating the expanded differential equations are presented.

  17. Heavy Rare Earth Elements Affect Sphaerechinus granularis Sea Urchin Early Life Stages by Multiple Toxicity Endpoints.

    PubMed

    Gravina, Maria; Pagano, Giovanni; Oral, Rahime; Guida, Marco; Toscanesi, Maria; Siciliano, Antonietta; Di Nunzio, Aldo; Burić, Petra; Lyons, Daniel M; Thomas, Philippe J; Trifuoggi, Marco

    2018-05-01

    Heavy rare earth elements (HREEs) were tested for adverse effects to early life stages of the sea urchin Sphaerechinus granularis. Embryos were exposed to analytically measured HREE concentrations ranging from 10 -7 to 10 -5  M. No significant developmental defect (DD) increases were observed in embryos exposed to 10 -7  M HREEs, whereas 10 -5  M HREEs resulted in significant DD increase up to 96% for HoCl 3 versus 14% in controls. Embryos exposed to 10 -6  M HREEs showed the highest DD frequency in embryos exposed to 10 -6  M DyCl 3 and HoCl 3 . Cytogenetic analysis of HREE-exposed embryos revealed a significant decrease in mitotic activity, with increased mitotic aberrations. When S. granularis sperm were exposed to HREEs, the offspring of sperm exposed to 10 -5  M GdCl 3 and LuCl 3 showed significant DD increases. The results warrant investigations on HREEs in other test systems, and on REE-containing complex mixtures.

  18. Meteorite Impact-Induced Rapid NH3 Production on Early Earth: Ab Initio Molecular Dynamics Simulation.

    PubMed

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori

    2016-12-14

    NH 3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH 3 from atmospheric N 2 and oceanic H 2 O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH 3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH 3 . Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N 2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process.

  19. Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence.

    PubMed

    Wong, Michael L; Charnay, Benjamin D; Gao, Peter; Yung, Yuk L; Russell, Michael J

    2017-10-01

    We quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO 3 - ) and nitrite (NO 2 - ) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO 2 and N 2 , will produce nitric oxide (NO) when shocked by lightning. Photochemical reactions involving NO and H 2 O vapor will then produce acids such as HNO, HNO 2 , HNO 3 , and HO 2 NO 2 that rain into the ocean. There, they dissociate into or react to form nitrate and nitrite. We present new calculations based on a novel combination of early-Earth global climate model and photochemical modeling, and we predict the flux of NOx to the Hadean ocean. In our 0.1-, 1-, and 10-bar pCO 2 models, we calculate the NOx delivery to be 2.4 × 10 5 , 6.5 × 10 8 , and 1.9 × 10 8 molecules cm -2 s -1 . After only tens of thousands to tens of millions of years, these NOx fluxes are expected to produce sufficient (micromolar) ocean concentrations of high-potential electron acceptors for the emergence of life. Key Words: Nitrogen oxides-Nitrate-Nitrite-Photochemistry-Lightning-Emergence of life. Astrobiology 17, 975-983.

  20. The earth radiation budget experiment: Early validation results

    NASA Astrophysics Data System (ADS)

    Smith, G. Louis; Barkstrom, Bruce R.; Harrison, Edwin F.

    The Earth Radiation Budget Experiment (ERBE) consists of radiometers on a dedicated spacecraft in a 57° inclination orbit, which has a precessional period of 2 months, and on two NOAA operational meteorological spacecraft in near polar orbits. The radiometers include scanning narrow field-of-view (FOV) and nadir-looking wide and medium FOV radiometers covering the ranges 0.2 to 5 μm and 5 to 50 μm and a solar monitoring channel. This paper describes the validation procedures and preliminary results. Each of the radiometer channels underwent extensive ground calibration, and the instrument packages include in-flight calibration facilities which, to date, show negligible changes of the instruments in orbit, except for gradual degradation of the suprasil dome of the shortwave wide FOV (about 4% per year). Measurements of the solar constant by the solar monitors, wide FOV, and medium FOV radiometers of two spacecraft agree to a fraction of a percent. Intercomparisons of the wide and medium FOV radiometers with the scanning radiometers show agreement of 1 to 4%. The multiple ERBE satellites are acquiring the first global measurements of regional scale diurnal variations in the Earth's radiation budget. These diurnal variations are verified by comparison with high temporal resolution geostationary satellite data. Other principal investigators of the ERBE Science Team are: R. Cess, SUNY, Stoneybrook; J. Coakley, NCAR; C. Duncan, M. King and A Mecherikunnel, Goddard Space Flight Center, NASA; A. Gruber and A.J. Miller, NOAA; D. Hartmann, U. Washington; F.B. House, Drexel U.; F.O. Huck, Langley Research Center, NASA; G. Hunt, Imperial College, London U.; R. Kandel and A. Berroir, Laboratory of Dynamic Meteorology, Ecole Polytechique; V. Ramanathan, U. Chicago; E. Raschke, U. of Cologne; W.L. Smith, U. of Wisconsin and T.H. Vonder Haar, Colorado State U.

  1. Current NASA Earth Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  2. Widespread mixing and burial of Earth's Hadean crust by asteroid impacts.

    PubMed

    Marchi, S; Bottke, W F; Elkins-Tanton, L T; Bierhaus, M; Wuennemann, K; Morbidelli, A; Kring, D A

    2014-07-31

    The history of the Hadean Earth (∼4.0-4.5 billion years ago) is poorly understood because few known rocks are older than ∼3.8 billion years old. The main constraints from this era come from ancient submillimetre zircon grains. Some of these zircons date back to ∼4.4 billion years ago when the Moon, and presumably the Earth, was being pummelled by an enormous flux of extraterrestrial bodies. The magnitude and exact timing of these early terrestrial impacts, and their effects on crustal growth and evolution, are unknown. Here we provide a new bombardment model of the Hadean Earth that has been calibrated using existing lunar and terrestrial data. We find that the surface of the Hadean Earth was widely reprocessed by impacts through mixing and burial by impact-generated melt. This model may explain the age distribution of Hadean zircons and the absence of early terrestrial rocks. Existing oceans would have repeatedly boiled away into steam atmospheres as a result of large collisions as late as about 4 billion years ago.

  3. Laser Prevention of Earth Impact Disasters

    NASA Technical Reports Server (NTRS)

    Campbell, J.; Smalley, L.; Boccio, D.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 100,000 or more objects in the 100m size range. Can anything be done about this fundamental existence question facing us? The answer is a resounding yes! We have the technology to prevent collisions. By using an intelligent combination of Earth and space based sensors coupled with an infrastructure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them from striking the Earth. This can be accomplished by irradiating the surface of an inbound rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun. One-kilometer size rocks can be moved sufficiently in a month while smaller rocks may be moved in a shorter time span.We recommend that the World's space objectives be immediately reprioritized to start us moving quickly towards a multiple option defense capability. While lasers should be the primary approach, all mitigation options depend on robust early warning, detection, and tracking resources to find objects sufficiently prior to Earth orbit passage in time to allow mitigation. Infrastructure options should include ground, LEO, GEO, Lunar, and libration point laser and sensor stations for providing early warning, tracking, and deflection. Other options should include space interceptors that will carry both laser and nuclear ablators for close range work. Response options must be developed to deal with the consequences of an impact should we move too slowly.

  4. Rates of Earth degassing

    NASA Technical Reports Server (NTRS)

    Onions, R. K.

    1994-01-01

    The degassing of the Earth during accretion is constrained by Pu-U-I-Xe systematics. Degassing was much more efficient during the first 100-200 Ma than subsequently, and it was more complete for Xe than for the lighter gases. More than 90 percent of the degassed Xe escaped from the atmosphere during this period. The combination of fractional degassing of melts and rare gas escape from the atmosphere is able to explain the deficit of terrestrial Xe as a simple consequence of this early degassing history. By the time Xe was quantitatively retained in the atmosphere, the abundances of Kr and the lighter gases in the Earth's interior were similar to or higher than the present-day atmospheric abundances. Subsequent transfer of these lighter rare gases into the atmosphere requires a high rate of post-accretion degassing and melt production. Considerations of Pu-U-Xe systematics suggest that relatively rapid post-accretion degassing was continued to ca. 4.1-4.2 Ga. The present-day degassing history of the Earth is investigated through consideration of rare gas isotope abundances. Although the Earth is a highly degassed body, depleted in rare gases by many orders of magnitude relative to their solar abundances, it is at the present-day losing primordial rare gases which were trapped at the time of accretion.

  5. Differential tissue growth and cell adhesion alone drive early tooth morphogenesis: An ex vivo and in silico study

    PubMed Central

    Savriama, Yoland; Jernvall, Jukka

    2018-01-01

    From gastrulation to late organogenesis animal development involves many genetic and bio-mechanical interactions between epithelial and mesenchymal tissues. Ectodermal organs, such as hairs, feathers and teeth are well studied examples of organs whose development is based on epithelial-mesenchymal interactions. These develop from a similar primordium through an epithelial folding and its interaction with the mesenchyme. Despite extensive knowledge on the molecular pathways involved, little is known about the role of bio-mechanical processes in the morphogenesis of these organs. We propose a simple computational model for the biomechanics of one such organ, the tooth, and contrast its predictions against cell-tracking experiments, mechanical relaxation experiments and the observed tooth shape changes over developmental time. We found that two biomechanical processes, differential tissue growth and differential cell adhesion, were enough, in the model, for the development of the 3D morphology of the early tooth germ. This was largely determined by the length and direction of growth of the cervical loops, lateral folds of the enamel epithelium. The formation of these cervical loops was found to require accelerated epithelial growth relative to other tissues and their direction of growth depended on specific differential adhesion between the three tooth tissues. These two processes and geometrical constraints in early tooth bud also explained the shape asymmetry between the lateral cervical loops and those forming in the anterior and posterior of the tooth. By performing mechanical perturbations ex vivo and in silico we inferred the distribution and direction of tensile stresses in the mesenchyme that restricted cervical loop lateral growth and forced them to grow downwards. Overall our study suggests detailed quantitative explanations for how bio-mechanical processes lead to specific morphological 3D changes over developmental time. PMID:29481561

  6. Iron Speciation in Minerals and Melts at High Pressure: Implications for the Redox Evolution of the Early Mantle

    NASA Astrophysics Data System (ADS)

    Armstrong, K.; Frost, D. J.; McCammon, C. A.; Rubie, D. C.; Boffa Ballaran, T.; Miyajima, N.

    2016-12-01

    During the differentiation of the early Earth, the silicates of the mantle must have been in equilibrium with core-forming metal iron, as indicated by the depletion of siderophile elements from the mantle. Studies of ancient rocks suggest that by at least 3.9 Ga, the upper mantle was 4-5 log units more oxidized than metal saturation implies (Delano 2001). The process(es) by which the mantle was oxidized is unclear, but has implications for the timing of accretion, differentiation, and volatile delivery to the early Earth, as well as evolution of the early atmosphere. One plausible oxidation mechanism is suggested by the tendency of high-pressure silicate minerals to favor Fe3+ over Fe2+ in their structures, even at metal saturation. This preference in the lower mantle mineral bridgmanite has been proposed to drive the disproportionation reaction of FeO to form Fe­2O3 and iron metal (Frost and McCammon 2008). We have performed experiments at the Ru-RuO2 fO2 buffer which show that silicate melts may mirror this behavior and Fe3+ may be stabilized with pressure for a constant fO2; by 21 GPa, the previously observed trend of Fe3+ decreasing with pressure (O'Neill, 2006) reverses and ferric iron content had increased. If this is also the case at lower oxygen fugacities, FeO disproportionation may have occurred at the base of an early magma ocean, establishing a redox gradient similar to what is presumed for the mantle today. Here we report results of further multianvil and diamond anvil cell experiments exploring the plausibility of FeO disproportionation driving mantle oxidation. Experiments investigating Fe speciation in high pressure melts at variable fO2 will be discussed along with results of diamond anvil cell experiments investigating ferric iron content of lower mantle minerals at metal saturation.

  7. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  8. Laser technology developments in support of ESA's earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Y.; Bézy, J.-L.; Meynart, R.

    2008-02-01

    Within the context of ESA's Living Planet Programme, the European Space Agency has selected three missions embarking lidar instruments: ADM-Aeolus (Atmospheric Dynamics Mission) planed for launch in 2009 with a Doppler Wind Lidar, ALADIN, as unique payload; EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer) planed for launch in 2013 including an ATmospheric backscatter LIDar (ATLID); at last, A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), candidate for the 7 th Earth Explorer, relying on a CO II Total Column Differential Absorption Lidar. To mitigate the technical risks for selected missions associated with the different sorts of lidar, ESA has undertaken critical technology developments, from the transmitter to the receiver and covering both components and sub-systems development and characterization. The purpose of this paper is to present the latest results obtained in the area of laser technology that are currently ongoing in support to EarthCARE, A-SCOPE and ADM-Aeolus.

  9. Do guilt- and shame-proneness differentially predict prosocial, aggressive, and withdrawn behaviors during early adolescence?

    PubMed

    Roos, Sanna; Hodges, Ernest V E; Salmivalli, Christina

    2014-03-01

    In this short-term longitudinal study, we systematically examined the distinctiveness of guilt- and shame-proneness in early adolescents (N = 395, mean age = 11.8 years) in terms of differential relations with peer reported prosocial behavior, withdrawal, and aggression. Results from structural equation modeling indicated that guilt-proneness concurrently predicted more aggressive and less prosocial behavior as well as subsequent increases in prosocial behavior. Shame-proneness predicted subsequent decreases in prosocial behavior. Although girls reported a greater proneness to experience guilt and shame than boys, the associations between the two dispositional emotions and social behaviors were found to be similar across time and gender. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Maternal Sensitivity Predicts Fewer Sleep Problems at Early Adolescence for Toddlers with Negative Emotionality: A Case of Differential Susceptibility.

    PubMed

    Conway, Anne; Modrek, Anahid; Gorroochurn, Prakash

    2018-02-01

    Theory underscores the importance of parenting in sleep development, but few studies have examined whether links vary by temperament. To address this gap, we tested whether potential links between early maternal sensitivity and early adolescent sleep problems varied by child negative emotionality and delay of gratification. Using data from the National Institute of Child Health and Human Development Study of Early Child Care and Youth Development (N = 820), we found that high maternal sensitivity predicted fewer bedtime problems and longer sleep duration at 6th grade for toddlers with high negative emotionality, whereas low maternal sensitivity predicted the reverse. No differences were observed for low negative emotionality. Moreover, delay of gratification predicted fewer bedtime problems at 6th grade, but did not moderate associations between maternal sensitivity, negative emotionality, and sleep. Findings demonstrate that high, but not low, negative emotionality renders toddlers differentially susceptible and receptive to maternal sensitivity in relation to sleep.

  11. Enstatite chondrites EL3 as building blocks for the Earth: The debate over the 146Sm-142Nd systematics

    NASA Astrophysics Data System (ADS)

    Boyet, M.; Bouvier, A.; Frossard, P.; Hammouda, T.; Garçon, M.; Gannoun, A.

    2018-04-01

    The 146Sm-142Nd extinct decay scheme (146Sm half-life of 103 My) is a powerful tool to trace early Earth silicate differentiation. Differences in 142Nd abundance measured between different chondrite meteorite groups and the modern Earth challenges the interpretation of the 142Nd isotopic variations found in terrestrial samples because the origin of the Earth and the nature of its building blocks is still an ongoing debate. As bulk meteorites, the enstatite chondrites (EC) have isotope signatures that are the closest to the Earth value with an average small deficit of ∼10 ppm in 142Nd relative to modern terrestrial samples. Here we review all the Nd isotope data measured on EC so far, and present the first measurements on an observed meteorite fall Almahata Sitta containing pristine fragments of an unmetamorphosed enstatite chondrite belonging to the EL3 subgroup. Once 142Nd/144Nd ratios are normalized to a common chondritic evolution, samples from the EC group (both EL and EH) have a deficit in 142Nd but the dispersion is important (μ142 Nd = - 10 ± 12 (2SD) ppm). This scatter reflects their unique mineralogy associated to their formation in reduced conditions (low fO2 or high C/O). Rare-earth elements are mainly carried by the sulfide phase oldhamite (CaS) that is more easily altered than silicates by weathering since most of the EC meteorites are desert finds. The EL6 have fractionated rare-earth element patterns with depletion in the most incompatible elements. Deviations in Nd mass independent stable isotope ratios in enstatite chondrites relative to terrestrial standard are not resolved with the level of analytical precision achieved by modern mass spectrometry techniques. Here we show that enstatite chondrites from the EL3 and EL6 subgroups may come from different parent bodies. Samples from the EL3 subgroup have Nd (μ142 Nd = - 0.8 ± 7.0, 2SD) and Ru isotope ratios undistinguishable from that of the Bulk Silicate Earth. EL3 samples have never been

  12. Exploring the Hydrothermal System in the Chicxulub Crater and Implications for the Early Evolution of Life on Earth

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Schmieder, M.; Tikoo, S.; Riller, U. P.; Simpson, S. L.; Osinski, G.; Cockell, C. S.; Coolen, M.; Gulick, S. P. S.; Morgan, J. V.

    2017-12-01

    Impact cratering, particularly large basin-size craters with diameters >100 km, have the potential to generate vast subsurface hydrothermal systems. There were dozens of such impacts during the Hadean and early Archean, some of which vaporized seas for brief periods of time, during which the safest niches for early life may have been in those subsurface hydrothermal systems. The Chicxulub crater can serve as a proxy for those events. New IODP-ICDP core recovered by Expedition 364 reveals a high-temperature (>300 degree C) system that may have persisted for more than 100,000 years. Of order 105 to 106 km3 of crust was structurally deformed, melted, and vaporized within about 10 minutes of the impact. The crust had to endure immense strain rates of 104/s to 106/s, up to 12 orders of magnitude greater than those associated with igneous and metamorphic processes. The outcome is a porous, permeable region that is a perfect host for hydrothermal circulation across the entire diameter of the crater to depths up to 5 or 6 km. The target rocks at Chicxulub are composed of an 3 km-thick carbonate platform sequence over a crystalline basement composed of igneous granite, granodiorite, and a few other intrusive components, such as dolerite, and metamorphic assemblages composed, in part, of gneiss and mica schist. Post-impact hydrothermal alteration includes Ca-Na- and K-metasomatism, pervasive hydration to produce layered silicates, and lower-temperature vug-filling zeolites as the system cycled from high temperatures to low temperatures. While the extent of granitic crust on early Earth is still debated and, thus, the direct application of those mineral reactions to the Hadean and early Archean can be debated, the thermal evolution of the system should be applicable to diverse crustal compositions. It is important to point out that pre-impact thermal conditions of Hadean and early Archean crust can affect the size of an impact basin and, in turn, the proportion of that basin

  13. Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas

    PubMed Central

    Won, Minho; Ro, Hyunju; Dawid, Igor B.

    2015-01-01

    The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use. PMID:26392552

  14. Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas.

    PubMed

    Won, Minho; Ro, Hyunju; Dawid, Igor B

    2015-10-06

    The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use.

  15. Earth's earliest biosphere-a proposal to develop a collection of curated archean geologic reference materials

    NASA Technical Reports Server (NTRS)

    Lindsay, John F.; McKay, David S.; Allen, Carlton C.

    2003-01-01

    The discovery of evidence indicative of life in a Martian meteorite has led to an increase in interest in astrobiology. As a result of this discovery, and the ensuing controversy, it has become apparent that our knowledge of the early development of life on Earth is limited. Archean stratigraphic successions containing evidence of Earth's early biosphere are well preserved in the Pilbara Craton of Western Australia. The craton includes part of a protocontinent consisting of granitoid complexes that were emplaced into, and overlain by, a 3.51-2.94 Ga volcanigenic carapace - the Pilbara Supergroup. The craton is overlain by younger supracrustal basins that form a time series recording Earth history from approximately 2.8 Ga to approximately 1.9 Ga. It is proposed that a well-documented suite of these ancient rocks be collected as reference material for Archean and astrobiological research. All samples would be collected in a well-defined geological context in order to build a framework to test models for the early evolution of life on Earth and to develop protocols for the search for life on other planets.

  16. Forming a Moon with an Earth-like composition via a giant impact.

    PubMed

    Canup, Robin M

    2012-11-23

    In the giant impact theory, the Moon formed from debris ejected into an Earth-orbiting disk by the collision of a large planet with the early Earth. Prior impact simulations predict that much of the disk material originates from the colliding planet. However, Earth and the Moon have essentially identical oxygen isotope compositions. This has been a challenge for the impact theory, because the impactor's composition would have likely differed from that of Earth. We simulated impacts involving larger impactors than previously considered. We show that these can produce a disk with the same composition as the planet's mantle, consistent with Earth-Moon compositional similarities. Such impacts require subsequent removal of angular momentum from the Earth-Moon system through a resonance with the Sun as recently proposed.

  17. Experimental study of heterogeneous organic chemistry induced by far ultraviolet light: Implications for growth of organic aerosols by CH3 addition in the atmospheres of Titan and early Earth

    NASA Astrophysics Data System (ADS)

    Hong, Peng; Sekine, Yasuhito; Sasamori, Tsutoni; Sugita, Seiji

    2018-06-01

    Formation of organic aerosols driven by photochemical reactions has been observed and suggested in CH4-containing atmospheres, including Titan and early Earth. However, the detailed production and growth mechanisms of organic aerosols driven by solar far ultraviolet (FUV) light remain poorly constrained. We conducted laboratory experiments simulating photochemical reactions in a CH4sbnd CO2 atmosphere driven by the FUV radiations dominated by the Lyman-α line. In the experiments, we analyzed time variations in thickness and infrared spectra of solid organic film formed on an optical window in a reaction cell. Gas species formed by FUV irradiation were also analyzed and compared with photochemical model calculations. Our experimental results show that the growth rate of the organic film decreases as the CH4/CO2 ratio of reactant gas mixture decreases, and that the decrease becomes very steep for CH4/CO2 < 1. Comparison with photochemical model calculations suggests that polymerizations of gas-phase hydrocarbons, such as polyynes and aromatics, cannot account for the growth rate of the organic film but that the addition reaction of CH3 radicals onto the organic film with the reaction probability around 10-2 can explain the growth rate. At CH4/CO2 < 1, etching by O atom formed by CO2 photolysis would reduce or inhibit the growth of the organic film. Our results suggest that organic aerosols would grow through CH3 addition onto the surface during the precipitation of aerosol particles in the middle atmosphere of Titan and early Earth. On Titan, effective CH3 addition would reduce C2H6 production in the atmosphere. On early Earth, growth of aerosol particles would be less efficient than those on Titan, possibly resulting in small-sized monomers and influencing UV shielding.

  18. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. Inmore » all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti

  19. Biospheric-atmospheric coupling on the early Earth

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    1991-01-01

    Theoretical calculations performed with a one-dimensional photochemical model have been performed to assess the biospheric-atmospheric transfer of gases. Ozone reached levels to shield the Earth from biologically lethal solar ultraviolet radiation (220-300 nm) when atmospheric oxygen reached about 1/10 of its present atmospheric level. In the present atmosphere, about 90 percent of atmospheric nitrous oxide is destroyed via solar photolysis in the stratosphere with about 10 percent destroyed via reaction with excited oxygen atoms. The reaction between nitrous oxide and excited oxygen atoms leads to the production of nitric oxide in the stratosphere, which is responsible for about 70 percent of the global destruction of oxygen in the stratosphere. In the oxygen/ozone deficient atmosphere, solar photolysis destroyed about 100 percent of the atmospheric nitrous oxide, relegating the production of nitric oxide via reaction with excited oxygen to zero. Our laboratory and field measurements indicate that atmospheric oxygen promotes the biogenic production of N2O and NO via denitrification and the biogenic production of methane by methanogenesis.

  20. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  1. Organic Aerosols in the Presence of CO2 in the Early Earth and Exoplanets: UV-Vis Refractive Indices of Oxidized Tholins

    NASA Astrophysics Data System (ADS)

    Gavilan, Lisseth; Broch, Laurent; Carrasco, Nathalie; Fleury, Benjamin; Vettier, Ludovic

    2017-10-01

    In this experimental study we investigate the role of atmospheric CO2 on the optical properties of organic photochemical aerosols. To this end, we add CO2 to a N2:CH4 gas mixture used in a plasma typically used for Titan studies. We produce organic thin films (tholins) in plasmas where the CO2/CH4 ratio is increased from 0 to 4. We measure these films via spectrometric ellipsometry and apply a Tauc-Lorentz model, used for optically transparent materials, to obtain the thickness of the thin film, its optical band gap, and the refractive indices in the UV-visible (270-600 nm). All samples present a significant absorption band in the UV. According to the Tauc-Lorentz model, as the CO2/CH4 ratio is quadrupled, the position of the UV band is shifted from ˜177 nm to 264 nm while its strength is quadrupled. Consequently, we infer that oxidized organic aerosols absorb more efficiently at longer UV wavelengths than reduced aerosols. Our laboratory wavelength-tabulated UV-vis refractive indices provide new constraints to atmospheric models of the early Earth and Earth-like exoplanets including photochemical hazes formed under increasingly oxidizing conditions.

  2. Peptide synthesis triggered by comet impacts: A possible method for peptide delivery to the early Earth and icy satellites

    NASA Astrophysics Data System (ADS)

    Sugahara, Haruna; Mimura, Koichi

    2015-09-01

    We performed shock experiments simulating natural comet impacts in an attempt to examine the role that comet impacts play in peptide synthesis. In the present study, we selected a mixture of alanine (DL-alanine), water ice, and silicate (forsterite) to make a starting material for the experiments. The shock experiments were conducted under cryogenic conditions (77 K), and the shock pressure range achieved in the experiments was 4.8-25.8 GPa. The results show that alanine is oligomerized into peptides up to tripeptides due to the impact shock. The synthesized peptides were racemic, indicating that there was no enantioselective synthesis of peptides from racemic amino acids due to the impact shock. We also found that the yield of linear peptides was a magnitude higher than those of cyclic diketopiperazine. Furthermore, we estimated the amount of cometary-derived peptides to the early Earth based on two models (the Lunar Crating model and the Nice model) during the Late Heavy Bombardment (LHB) using our experimental data. The estimation based on the Lunar Crating model gave 3 × 109 mol of dialanine, 4 × 107 mol of trialanine, and 3 × 108 mol of alanine-diketopiperazine. Those based on the Nice model, in which the main impactor of LHB is comets, gave 6 × 1010 mol of dialanine, 1 × 109 mol of trialanine, and 8 × 109 mol of alanine-diketopiperazine. The estimated amounts were comparable to those originating from terrestrial sources (Cleaves, H.J., Aubrey, A.D., Bada, J.L. [2009]. Orig. Life Evol. Biosph. 39, 109-126). Our results indicate that comet impacts played an important role in chemical evolution as a supplier of linear peptides, which are important for further chemical evolution on the early Earth. Our study also highlights the importance of icy satellites, which were formed by comet accumulation, as prime targets for missions searching for extraterrestrial life.

  3. Summary of the Geocarto International Special Issue on "NASA Earth Science Satellite Data for Applications to Public Health" to be Published in Early 2014

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2013-01-01

    At the 2011 Applied Science Public Health review held in Santa Fe, NM, it was announced that Dr. Dale Quattrochi from the NASA Marshall Space Flight Center, John Haynes, Program Manager for the Applied Sciences Public Health program at NASA Headquarters, and Sue Estes, Deputy Program Manager for the NASA Applied Sciences Public Health Program located at the Universities Space Research Association (USRA) at the National Space Science and Technology Center (NSSTC) in Huntsville, AL, would edit a special issue of the journal Geocarto International on "NASA Earth Science Satellite Data for Applications to Public Health". This issue would be focused on compiling research papers that use NASA Earth Science satellite data for applications to public health. NASA's Public Health Program concentrates on advancing the realization of societal and economic benefits from NASA Earth Science in the areas of infectious disease, emergency preparedness and response, and environmental health (e.g., air quality). This application area as a focus of the NASA Applied Sciences program, has engaged public health institutions and officials with research scientists in exploring new applications of Earth Science satellite data as an integral part of public health decision- and policy-making at the local, state and federal levels. Of interest to this special issue are papers submitted on are topics such as epidemiologic surveillance in the areas of infectious disease, environmental health, and emergency response and preparedness, national and international activities to improve skills, share data and applications, and broaden the range of users who apply Earth Science satellite data in public health decisions, or related focus areas.. This special issue has now been completed and will be published n early 2014. This talk will present an overview of the papers that will be published in this special Geocarto International issue.

  4. On the paleo-magnetospheres of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Scherf, Manuel; Khodachenko, Maxim; Alexeev, Igor; Belenkaya, Elena; Blokhina, Marina; Johnstone, Colin; Tarduno, John; Lammer, Helmut; Tu, Lin; Guedel, Manuel

    2017-04-01

    The intrinsic magnetic field of a terrestrial planet is considered to be an important factor for the evolution of terrestrial atmospheres. This is in particular relevant for early stages of the solar system, in which the solar wind as well as the EUV flux from the young Sun were significantly stronger than at present-day. We therefore will present simulations of the paleo-magnetospheres of ancient Earth and Mars, which were performed for ˜4.1 billion years ago, i.e. the Earth's late Hadean eon and Mars' early Noachian. These simulations were performed with specifically adapted versions of the Paraboloid Magnetospheric Model (PMM) of the Skobeltsyn Institute of Nuclear Physics of the Moscow State University, which serves as ISO-standard for the Earth's magnetic field (see e.g. Alexeev et al., 2003). One of the input parameters into our model is the ancient solar wind pressure. This is derived from a newly developed solar/stellar wind evolution model, which is strongly dependent on the initial rotation rate of the early Sun (Johnstone et al., 2015). Another input parameter is the ancient magnetic dipole field. In case of Earth this is derived from measurements of the paleomagnetic field strength by Tarduno et al., 2015. These data from zircons are varying between 0.12 and 1.0 of today's magnetic field strength. For Mars the ancient magnetic field is derived from the remanent magnetization in the Martian crust as measured by the Mars Global Surveyor MAG/ER experiment. These data together with dynamo theory are indicating an ancient Martian dipole field strength in the range of 0.1 to 1.0 of the present-day terrestrial dipole field. For the Earth our simulations show that the paleo-magnetosphere during the late Hadean eon was significantly smaller than today, with a standoff-distance rs ranging from ˜3.4 to 8 Re, depending on the input parameters. These results also have implications for the early terrestrial atmosphere. Due to the significantly higher EUV flux, the

  5. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  6. False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth

    NASA Astrophysics Data System (ADS)

    Reinhard, Christopher T.; Olson, Stephanie L.; Schwieterman, Edward W.; Lyons, Timothy W.

    2017-04-01

    Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth - oxygen (O2), ozone (O3), and methane (CH4). We suggest that the canonical O2-CH4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ˜4.5-billion-year history and that in general atmospheric O2/O3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ˜500 million years. We further suggest that detecting atmospheric CH4 would have been problematic for most of the last ˜2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures.

  7. The lipodystrophic hotspot lamin A p.R482W mutation deregulates the mesodermal inducer T/Brachyury and early vascular differentiation gene networks.

    PubMed

    Briand, Nolwenn; Guénantin, Anne-Claire; Jeziorowska, Dorota; Shah, Akshay; Mantecon, Matthieu; Capel, Emilie; Garcia, Marie; Oldenburg, Anja; Paulsen, Jonas; Hulot, Jean-Sebastien; Vigouroux, Corinne; Collas, Philippe

    2018-04-15

    The p.R482W hotspot mutation in A-type nuclear lamins causes familial partial lipodystrophy of Dunnigan-type (FPLD2), a lipodystrophic syndrome complicated by early onset atherosclerosis. Molecular mechanisms underlying endothelial cell dysfunction conferred by the lamin A mutation remain elusive. However, lamin A regulates epigenetic developmental pathways and mutations could perturb these functions. Here, we demonstrate that lamin A R482W elicits endothelial differentiation defects in a developmental model of FPLD2. Genome modeling in fibroblasts from patients with FPLD2 caused by the lamin A R482W mutation reveals repositioning of the mesodermal regulator T/Brachyury locus towards the nuclear center relative to normal fibroblasts, suggesting enhanced activation propensity of the locus in a developmental model of FPLD2. Addressing this issue, we report phenotypic and transcriptional alterations in mesodermal and endothelial differentiation of induced pluripotent stem cells we generated from a patient with R482W-associated FPLD2. Correction of the LMNA mutation ameliorates R482W-associated phenotypes and gene expression. Transcriptomics links endothelial differentiation defects to decreased Polycomb-mediated repression of the T/Brachyury locus and over-activation of T target genes. Binding of the Polycomb repressor complex 2 to T/Brachyury is impaired by the mutated lamin A network, which is unable to properly associate with the locus. This leads to a deregulation of vascular gene expression over time. By connecting a lipodystrophic hotspot lamin A mutation to a disruption of early mesodermal gene expression and defective endothelial differentiation, we propose that the mutation rewires the fate of several lineages, resulting in multi-tissue pathogenic phenotypes.

  8. The earth as a planet - Paradigms and paradoxes

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1984-01-01

    The independent growth of the various branches of the earth sciences in the past two decades has led to a divergence of geophysical, geochemical, geological, and planetological models for the composition and evolution of a terrestrial planet. Evidence for differentiation and volcanism on small planets and a magma ocean on the moon contrasts with hypotheses for a mostly primitive, still undifferentiated, and homogeneous terrestrial mantle. In comparison with the moon, the earth has an extraordinarily thin crust. The geoid, which should reflect convection in the mantle, is apparently unrelated to the current distribution of continents and oceanic ridges. If the earth is deformable, the whole mantle should wander relative to the axis of rotation, but the implications of this are seldom discussed. The proposal of a mantle rich in olivine violates expectations based on evidence from extraterrestrial sources. These and other paradoxes force a reexamination of some long-held assumptions.

  9. Redefining early gastric cancer.

    PubMed

    Barreto, Savio G; Windsor, John A

    2016-01-01

    The problem is that current definitions of early gastric cancer allow the inclusion of regional lymph node metastases. The increasing use of endoscopic submucosal dissection to treat early gastric cancer is a concern because regional lymph nodes are not addressed. The aim of the study was thus to critically evaluate current evidence with regard to tumour-specific factors associated with lymph node metastases in "early gastric cancer" to develop a more precise definition and improve clinical management. A systematic and comprehensive search of major reference databases (MEDLINE, EMBASE, PubMed and the Cochrane Library) was undertaken using a combination of text words "early gastric cancer", "lymph node metastasis", "factors", "endoscopy", "surgery", "lymphadenectomy" "mucosa", "submucosa", "lymphovascular invasion", "differentiated", "undifferentiated" and "ulcer". All available publications that described tumour-related factors associated with lymph node metastases in early gastric cancer were included. The initial search yielded 1494 studies, of which 42 studies were included in the final analysis. Over time, the definition of early gastric cancer has broadened and the indications for endoscopic treatment have widened. The mean frequency of lymph node metastases increased on the basis of depth of infiltration (mucosa 6% vs. submucosa 28%), presence of lymphovascular invasion (absence 9% vs. presence 53%), tumour differentiation (differentiated 13% vs. undifferentiated 34%) and macroscopic type (elevated 13% vs. flat 26%) and tumour diameter (≤2 cm 8% vs. >2 cm 25%). There is a need to re-examine the diagnosis and staging of early gastric cancer to ensure that patients with one or more identifiable risk factor for lymph node metastases are not denied appropriate chemotherapy and surgical resection.

  10. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth

    NASA Astrophysics Data System (ADS)

    Chowdhury, Priyadarshi; Gerya, Taras; Chakraborty, Sumit

    2017-09-01

    The rock record and geochemical evidence indicate that continental recycling has been occurring since the early history of the Earth. The stabilization of felsic continents in place of Earth's early mafic crust about 3.0 to 2.0 billion years ago, perhaps due to the initiation of plate tectonics, implies widespread destruction of mafic crust during this time interval. However, the physical mechanisms of such intense recycling on a hotter, (late) Archaean and presumably plate-tectonic Earth remain largely unknown. Here we use thermomechanical modelling to show that extensive recycling via lower crustal peeling-off (delamination but not eclogitic dripping) during continent-continent convergence was near ubiquitous during the late Archaean to early Proterozoic. We propose that such destruction of the early mafic crust, together with felsic magmatism, may have caused both the emergence of silicic continents and their subsequent isostatic rise, possibly above the sea level. Such changes in the continental character have been proposed to influence the Great Oxidation Event and, therefore, peeling-off plate tectonics could be the geodynamic trigger for this event. A transition to the slab break-off controlled syn-orogenic recycling occurred as the Earth aged and cooled, leading to reduced recycling and enhanced preservation of the continental crust of present-day composition.

  11. Astrobiology: Life on Earth (and Elsewhere?)

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2016-01-01

    Astrobiology investigates the origins, evolution and distribution of life in the universe. Scientists study how stellar systems and their planets can create planetary environments that sustain biospheres. They search for biosignatures, which are objects, substances and or patterns that indicate the presence of life. Studies of Earth's early biosphere enhance these search strategies and also provide key insights about our own origins.

  12. Formation of the Lunar Fossil Bulges and Its Implication for the Early Earth and Moon

    NASA Astrophysics Data System (ADS)

    Qin, Chuan; Zhong, Shijie; Phillips, Roger

    2018-02-01

    First recognized by Laplace over two centuries ago, the Moon's present tidal-rotational bulges are significantly larger than hydrostatic predictions. They are likely relics of a former hydrostatic state when the Moon was closer to the Earth and had larger bulges, and they were established when stresses in a thickening lunar lithosphere could maintain the bulges against hydrostatic adjustment. We formulate the first dynamically self-consistent model of this process and show that bulge formation is controlled by the relative timing of lithosphere thickening and lunar orbit recession. Viable solutions indicate that lunar bulge formation was a geologically slow process lasting several hundred million years, that the process was complete about 4 Ga when the Moon-Earth distance was less than 32 Earth radii, and that the Earth in Hadean was significantly less dissipative to lunar tides than during the last 4 Gyr, possibly implying a frozen hydrosphere due to the fainter young Sun.

  13. Chemical composition of Earth's core

    NASA Astrophysics Data System (ADS)

    Saxena, S.

    2017-12-01

    Many planetary scientists accept that the condensed planetesimals in the solar nebula eventually led to accretion of the earth. The details of the process have not been worked out. From the metallurgical experience, it is assumed that Earth's core may have formed by density differentiation with iron sinking to the core and the slag forming the mantle. This would be a post-accretionary process with temperature developing with self-compression. The problem with this hypothesis was recognized some time ago in that the seismic density profile of the core does not match the density of iron and requires the addition of a light element. Many elements such as Si, O, C and s have been proposed as diluents to decrease the density of a purely iron core. How and when this will be accomplished is still under discussion. Since the planetesimals (or condensates) formed in a well stirred nebula, it may be argued that a variety of condensed solids and fluids may have accreted and compressed without differentiation and the core does not necessarily contain mainly the differentiated iron. It is a matter of accumulating the condensate composition that would result in a density of 12 to 13 g/cm3 in the inner core. Therefore, we need a thermodynamic database that extends to 6000 K over the pressure range of ambient to 360 GPa. The development of such a database is currently in progress. It is a database with multicomponent solutions (C-Fe-Ni-S-Si) and all the major elements in the solar gas. Thermodynamic calculations using a preliminary dataset reveal that the solid species condensed at a temperature of 650 K and a pressure of 0.001 bar pressure, when self-compressed to various pressures and temperatures, yield densities that are appropriate for the mantle and core. Depending on H2/O of the escaping fluid, the formation of hydrous minerals, carbides, carbonates and iron melts with significant other elements have been found. Earth's core may have formed from solar condensate materials

  14. In Brief: European Earth science network for postdocs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    The European Space Agency (ESA) has launched a new initiative called the Changing Earth Science Network, to support young scientists undertaking leading-edge research activities aimed at advancing the understanding of the Earth system. The initiative will enable up to 10 young postdoctoral researchers from the agency's member states to address major scientific challenges by using Earth observation (EO) satellite data from ESA and its third-party missions. The initiative aims to foster the development of a network of young scientists in Europe with a good knowledge of the agency and its EO programs. Selected candidates will have the option to carry out part of their research in an ESA center as a visiting scientist. The deadline to submit proposals is 16 January 2009. Selections will be announced in early 2009. The Changing Earth Science Network was developed as one of the main programmatic components of ESA's Support to Science Element, launched in 2008. For more information, visit http://www.esa.int/stse.

  15. Volatiles in the Earth and Moon: Constraints on planetary formation and evolution

    NASA Astrophysics Data System (ADS)

    Parai, Rita

    The volatile inventories of the Earth and Moon reflect unique histories of volatile acquisition and loss in the early Solar System. The terrestrial volatile inventory was established after the giant impact phase of accretion, and the planet subsequently settled into a regime of long-term volatile exchange between the mantle and surface reservoirs in association with plate tectonics. Therefore, volatiles in the Earth and Moon shed light on a diverse array of processes that shaped planetary bodies in the Solar System as they evolved to their present-day states. Here we investigate new constraints on volatile depletion in the early Solar System, early outgassing of the terrestrial mantle, and the long-term evolution of the deep Earth volatile budget. We develop a Monte Carlo model of long-term water exchange between the mantle and surface reservoirs. Previous estimates of the deep Earth return flux of water are up to an order of magnitude too large, and incorporation of recycled slabs on average rehydrates the upper mantle but dehydrates the plume source. We find evidence for heterogeneous recycling of atmospheric argon and xenon into the upper mantle from noble gases in Southwest Indian Ridge basalts. Xenon isotope systematics indicate that xenon budgets of mid-ocean ridge and plume-related mantle sources are dominated by recycled atmospheric xenon, though the two sources have experienced different degrees of degassing. Differences between the mid-ocean ridge and plume sources were initiated within the first 100 million years of Earth history, and the two sources have never subsequently been homogenized. New high-precision xenon isotopic data contribute to an emerging portrait of two mantle reservoirs with distinct histories of outgassing and incorporation of recycled material in association with plate tectonics. Xenon isotopes indicate that the Moon likely formed within ˜70 million years of the start of the Solar System. To further investigate early Solar System

  16. Earth's oxygen cycle and the evolution of animal life.

    PubMed

    Reinhard, Christopher T; Planavsky, Noah J; Olson, Stephanie L; Lyons, Timothy W; Erwin, Douglas H

    2016-08-09

    The emergence and expansion of complex eukaryotic life on Earth is linked at a basic level to the secular evolution of surface oxygen levels. However, the role that planetary redox evolution has played in controlling the timing of metazoan (animal) emergence and diversification, if any, has been intensely debated. Discussion has gravitated toward threshold levels of environmental free oxygen (O2) necessary for early evolving animals to survive under controlled conditions. However, defining such thresholds in practice is not straightforward, and environmental O2 levels can potentially constrain animal life in ways distinct from threshold O2 tolerance. Herein, we quantitatively explore one aspect of the evolutionary coupling between animal life and Earth's oxygen cycle-the influence of spatial and temporal variability in surface ocean O2 levels on the ecology of early metazoan organisms. Through the application of a series of quantitative biogeochemical models, we find that large spatiotemporal variations in surface ocean O2 levels and pervasive benthic anoxia are expected in a world with much lower atmospheric pO2 than at present, resulting in severe ecological constraints and a challenging evolutionary landscape for early metazoan life. We argue that these effects, when considered in the light of synergistic interactions with other environmental parameters and variable O2 demand throughout an organism's life history, would have resulted in long-term evolutionary and ecological inhibition of animal life on Earth for much of Middle Proterozoic time (∼1.8-0.8 billion years ago).

  17. Capturing asteroids into bound orbits around the earth: Massive early return on an asteroid terminal defense system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, J.G.

    1992-02-06

    Nuclear explosives may be used to capture small asteroids (e.g., 20--50 meters in diameter) into bound orbits around the earth. The captured objects could be used for construction material for manned and unmanned activity in Earth orbit. Asteroids with small approach velocities, which are the ones most likely to have close approaches to the Earth, require the least energy for capture. They are particularly easy to capture if they pass within one Earth radius of the surface of the Earth. They could be intercepted with intercontinental missiles if the latter were retrofit with a more flexible guiding and homing capability.more » This asteroid capture-defense system could be implemented in a few years at low cost by using decommissioned ICMs. The economic value of even one captured asteroid is many times the initial investment. The asteroid capture system would be an essential part of the learning curve for dealing with larger asteroids that can hit the earth.« less

  18. Pisolithus tinctorius, Fungal Extremophile and Modern Analog to an Early Earth Environment; An Unlikely Harbor for Deeply Diverging and Novel Chemoautrophic Microbes

    NASA Astrophysics Data System (ADS)

    Cullings, K. C.; Lauzon, C.; Marinkovich, N.; Truong, T.

    2014-12-01

    Endosymbioses have given rise to some of the most important innovations in Earth's history. Indeed, ecological facilitation has been pivotal to the creation of higher order complexity, and in driving evolutionary transitions at every level of organization from cellular organelles to multicellularity. In this study we address a newly discovered endosymbiosis between prokaryotes and a eukaryote growing with no apparent external energy source in soils associated with acid-sulfate hydrothermal springs. Hydrothermal sites are relevant to origin of life because they provide a chemical and energetic environment that may have provided energy for pre-biotic synthesis in the absence of photosynthesis through chemoautotrophy. Pisolithus (genus, picture 1 below) is a terrestrial fungal extremophile that can grow in thermally altered soils of acid-thermal hot springs at extreme low pH and elevated temperature, thriving in conditions that are beyond the threshold of survivability for most other organisms. Fruiting bodies of this fungus accumulate elemental sulfur into the spore producing tissues (gleba) of the fruiting body. The gleba is encased in a thick peridium, or shell. Further, Pisolithus is capable of enzymatic conversion of elemental S to sulfate. The fruiting bodies are rich in hydrocarbons, contain water through much of their development and are also likely to contain CO2 from fungal cellular respiration. Further, our data indicate the presence of anaerobic zones within. Thus, the internal environment of Pisolithus contains many conditions relevant to early Earth environments in which life is thought to have originated. We used 16S rDNA sequences to test the hypothesis that Pisolithus individuals contain novel and/or ancient microbial lineages. Our data reveal lineages comprised of novel relatives of known aerobic and anaerobic chemoautrophic Bacteria (85-90% BLAST search matches), several deeply divergent and novel Bacterial lineages, and a newly discovered lineage

  19. Predictive factors for lymph node metastasis in poorly differentiated early gastric cancer and their impact on the surgical strategy

    PubMed Central

    Li, Hua; Lu, Ping; Lu, Yang; Liu, Cai-Gang; Xu, Hui-Mian; Wang, Shu-Bao; Chen, Jun-Qing

    2008-01-01

    AIM: To identify the predictive clinicopathological factors for lymph node metastasis (LNM) in poorly differentiated early gastric cancer (EGC) and to further expand the possibility of using endoscopic mucosal resection (EMR) for the treatment of poorly differentiated EGC. METHODS: Data were collected from 85 poorly-differentiated EGC patients who were surgically treated. Association between the clinicopathological factors and the presence of LNM was retrospectively analyzed by univariate and multivariate logistic regression analyses. RESULTS: Univariate analysis showed that tumor size (OR = 5.814, 95% CI = 1.050 - 32.172, P = 0.044), depth of invasion (OR = 10.763, 95% CI = 1.259 - 92.026, P = 0.030) and lymphatic vessel involvement (OR = 61.697, 95% CI = 2.144 - 175.485, P = 0.007) were the significant and independent risk factors for LNM. The LNM rate was 5.4%, 42.9% and 50%, respectively, in poorly differentiated EGC patients with one, two and three of the risk factors, respectively. No LNM was found in 25 patients without the three risk factors. Forty-four lymph nodes were found to have metastasis, 29 (65.9%) and 15 (34.1%) of the lymph nodes involved were within N1 and beyond N1, respectively, in 12 patients with LNM. CONCLUSION: Endoscopic mucosal resection alone may be sufficient to treat poorly differentiated intramucosal EGC (≤ 2.0 cm in diameter) with no histologically-confirmed lymphatic vessel involvement. When lymphatic vessels are involved, lymph node dissection beyond limited (D1) dissection or D1+ lymph node dissection should be performed depending on the tumor location. PMID:18636670

  20. The scaffold protein Nde1 safeguards the brain genome during S phase of early neural progenitor differentiation

    PubMed Central

    Houlihan, Shauna L; Feng, Yuanyi

    2014-01-01

    Successfully completing the S phase of each cell cycle ensures genome integrity. Impediment of DNA replication can lead to DNA damage and genomic disorders. In this study, we show a novel function for NDE1, whose mutations cause brain developmental disorders, in safeguarding the genome through S phase during early steps of neural progenitor fate restrictive differentiation. Nde1 mutant neural progenitors showed catastrophic DNA double strand breaks concurrent with the DNA replication. This evoked DNA damage responses, led to the activation of p53-dependent apoptosis, and resulted in the reduction of neurons in cortical layer II/III. We discovered a nuclear pool of Nde1, identified the interaction of Nde1 with cohesin and its associated chromatin remodeler, and showed that stalled DNA replication in Nde1 mutants specifically occurred in mid-late S phase at heterochromatin domains. These findings suggest that NDE1-mediated heterochromatin replication is indispensible for neuronal differentiation, and that the loss of NDE1 function may lead to genomic neurological disorders. DOI: http://dx.doi.org/10.7554/eLife.03297.001 PMID:25245017

  1. False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth.

    PubMed

    Reinhard, Christopher T; Olson, Stephanie L; Schwieterman, Edward W; Lyons, Timothy W

    2017-04-01

    Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth-oxygen (O 2 ), ozone (O 3 ), and methane (CH 4 ). We suggest that the canonical O 2 -CH 4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O 2 /O 3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH 4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures-Oxygen-Methane-Ozone-Exoplanets-Planetary habitability. Astrobiology 17, 287-297.

  2. Sulfur Earth

    NASA Astrophysics Data System (ADS)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  3. Modelling the isotopic evolution of the Earth.

    PubMed

    Paul, Debajyoti; White, William M; Turcotte, Donald L

    2002-11-15

    We present a flexible multi-reservoir (primitive lower mantle, depleted upper mantle, upper continental crust, lower continental crust and atmosphere) forward-transport model of the Earth, incorporating the Sm-Nd, Rb-Sr, U-Th-Pb-He and K-Ar isotope-decay systematics. Mathematically, the model consists of a series of differential equations, describing the changing abundance of each nuclide in each reservoir, which are solved repeatedly over the history of the Earth. Fluxes between reservoirs are keyed to heat production and further constrained by estimates of present-day fluxes (e.g. subduction, plume flux) and current sizes of reservoirs. Elemental transport is tied to these fluxes through 'enrichment factors', which allow for fractionation between species. A principal goal of the model is to reproduce the Pb-isotope systematics of the depleted upper mantle, which has not been done in earlier models. At present, the depleted upper mantle has low (238)U/(204)Pb (mu) and (232)Th/(238)U (kappa) ratios, but Pb-isotope ratios reflect high time-integrated values of these ratios. These features are reproduced in the model and are a consequence of preferential subduction of U and of radiogenic Pb from the upper continental crust into the depleted upper mantle. At the same time, the model reproduces the observed Sr-, Nd-, Ar- and He-isotope ratios of the atmosphere, continental crust and mantle. We show that both steady-state and time-variant concentrations of incompatible-element concentrations and ratios in the continental crust and upper mantle are possible. Indeed, in some cases, incompatible-element concentrations and ratios increase with time in the depleted mantle. Hence, assumptions of a progressively depleting or steady-state upper mantle are not justified. A ubiquitous feature of this model, as well as other evolutionary models, is early rapid depletion of the upper mantle in highly incompatible elements; hence, a near-chondritic Th/U ratio in the upper mantle

  4. Plutonium-fission xenon found in Earth's mantle

    PubMed

    Kunz; Staudacher; Allegre

    1998-05-08

    Data from mid-ocean ridge basalt glasses indicate that the short-lived radionuclide plutonium-244 that was present during an early stage of the development of the solar system is responsible for roughly 30 percent of the fissiogenic xenon excesses in the interior of Earth today. The rest of the fissiogenic xenon can be ascribed to the spontaneous fission of still live uranium-238. This result, in combination with the refined determination of xenon-129 excesses from extinct iodine-129, implies that the accretion of Earth was finished roughly 50 million to 70 million years after solar system formation and that the atmosphere was formed by mantle degassing.

  5. A new numerical theory of Earth rotation

    NASA Astrophysics Data System (ADS)

    Gerlach, Enrico; Klioner, Sergei; Soffel, Michael

    2012-08-01

    Nowadays the rotation of the Earth can be observed with an accuracy of about 0.01 milliarcseconds (mas ), while theoretical models are able to describe this motion at a level of 1 mas. This mismatch is partly due to the enormous complexity of the involved processes, operating on different time scales and driven by a large variety of physical effects. But al so partly due to the used models, which often use simplified and linearized equations to obtain the solution analytically. In this work we present our new numerical theory of the rotation of the Earth. The model underlying the theory is fully compatible with the post - Newtonian approximation of general relativity and is formulated using ordinary differential equations for the angles describing the orientation of the Earth (or its particular layers) in the GCRS. These equations are then solved numerically to describe the rotational motion with highest accuracy. Being initially developed for a rigid Earth our theory was extended towards a more realistic Earth model. In particular, we included 3 different layers (crust, fluid outer core and solid inner core) and all important coupling torques between them as well as all important effects of non - rigidity, such as elastic deformation, relative angular momenta due to atmosphere and ocean etc. In our presentation we will describe the details of our work and compare i t to the currently used models of Earth rotation. Further, we discuss possible applications of our numerical theory to obtain high - accuracy models of rotational motion of other celestial bodies such as Mercury.

  6. The TEL-AML1 fusion protein of acute lymphoblastic leukemia modulates IRF3 activity during early B-cell differentiation.

    PubMed

    de Laurentiis, A; Hiscott, J; Alcalay, M

    2015-12-03

    The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.

  7. Early aerial photography and contributions to Digital Earth - The case of the 1921 Halifax air survey mission in Canada

    NASA Astrophysics Data System (ADS)

    Werle, D.

    2016-04-01

    This paper presents research into the military and civilian history, technological development, and practical outcomes of aerial photography in Canada immediately after the First World War. The collections of early aerial photography in Canada and elsewhere, as well as the institutional and practical circumstances and arrangements of their creation, represent an important part of remote sensing heritage. It is argued that the digital rendition of the air photos and their representation in mosaic form can make valuable contributions to Digital Earth historic inquiries and mapping exercises today. An episode of one of the first urban surveys, carried out over Halifax, Nova Scotia, in 1921, is highlighted and an air photo mosaic and interpretation key is presented. Using the almost one hundred year old air photos and a digitally re-assembled mosaic of a substantial portion of that collection as a guide, a variety of features unique to the post-war urban landscape of the Halifax peninsula are analysed, illustrated, and compared with records of past and current land use. The pan-chromatic air photo ensemble at a nominal scale of 1:5,000 is placed into the historical context with contemporary thematic maps, recent air photos, and modern satellite imagery. Further research opportunities and applications concerning early Canadian aerial photography are outlined.

  8. Large impacts and climatic catastrophes on the early Earth

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.

    1991-01-01

    Radiometric data of cratered lunar surfaces suggest that the cratering rate on the ancient Moon was substantially larger than the present rate before about 3.2 Gyr. Since the cratering rate was higher than present on the Moon, it seems likely that is was similarly higher on the Earth. Recently the occurrence of beds of spherules up to 2m thick was reported in 3.2 to 3.5 Gyr old Archean rocks. These spherule beds closely resemble the 3 mm thick spherule beds associated with the K/T boundary (including elevated iridium abundances), widely believed to have been deposited in association of a 10 km diameter comet or asteroid.

  9. Archean microfossils: a reappraisal of early life on Earth.

    PubMed

    Altermann, Wladyslaw; Kazmierczak, Józef

    2003-11-01

    The oldest fossils found thus far on Earth are c. 3.49- and 3.46-billion-year-old filamentous and coccoidal microbial remains in rocks of the Pilbara craton, Western Australia, and c. 3.4-billion-year-old rocks from the Barberton region, South Africa. Their biogenicity was recently questioned and they were reinterpreted as contaminants, mineral artefacts or inorganic carbon aggregates. Morphological, geochemical and isotopic data imply, however, that life was relatively widespread and advanced in the Archean, between 3.5 and 2.5 billion years ago, with metabolic pathways analogous to those of recent prokaryotic organisms, including cyanobacteria, and probably even eukaryotes at the terminal Archean.

  10. Laser-ranging long-baseline differential atom interferometers for space

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-wey; Williams, Jason; Yu, Nan

    2015-12-01

    High-sensitivity differential atom interferometers (AIs) are promising for precision measurements in science frontiers in space, including gravity-field mapping for Earth science studies and gravitational wave detection. Difficulties associated with implementing long-baseline differential AIs have previously included the need for a high optical power, large differential Doppler shifts, and narrow dynamic range. We propose a configuration of twin AIs connected by a laser-ranging interferometer (LRI-AI) to provide precise information of the displacements between the two AI reference mirrors and also to phase-lock the two independent interferometer lasers over long distances, thereby drastically improving the practical feasibility of long-baseline differential AI measurements. We show that a properly implemented LRI-AI can achieve equivalent functionality to the conventional differential AI measurement configuration.

  11. Effects of selective fusion on the thermal history of the earth's mantle

    USGS Publications Warehouse

    Lee, W.H.K.

    1968-01-01

    A comparative study on the thermal history of the earth's mantle was made by numerical solutions of the heat equation including and excluding selective fusion of silicates. Selective fusion was approximated by melting in a multicomponent system and redistribution of radioactive elements. Effects of selective fusion on the thermal models are (1) lowering (by several hundred degrees centigrade) and stabilizing the internal temperature distribution, and (2) increasing the surface heat-flow. It was found that models with selective fusion gave results more compatible with observations of both present temperature and surface heat-flow. The results therefore suggest continuous differentiation of the earth's mantle throughout geologic time, and support the hypothesis that the earth's atmosphere, oceans, and crust have been accumulated throughout the earth's history by degassing and selective fusion of the mantle. ?? 1968.

  12. The Mission Accessibility of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Abell, P. A.; Adamo, D. R.; Mazanek, D. D.; Johnson, L. N.; Yeomans, D. K.; Chodas, P. W.; Chamberlin, A. B.; Benner, L. A. M.; Taylor, P.; hide

    2015-01-01

    The population of near-Earth asteroids (NEAs) that may be accessible for human space flight missions is defined by the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS). The NHATS is an automated system designed to monitor the accessibility of, and particular mission opportunities offered by, the NEA population. This is analogous to systems that automatically monitor the impact risk posed to Earth by the NEA population. The NHATS system identifies NEAs that are potentially accessible for future round-trip human space flight missions and provides rapid notification to asteroid observers so that crucial follow-up observations can be obtained following discovery of accessible NEAs. The NHATS was developed in 2010 and was automated by early 2012. NHATS data are provided via an interactive web-site, and daily NHATS notification emails are transmitted to a mailing list; both resources are available to the public.

  13. The Case for Scientific Drilling of Precambrian Sedimentary Sequences: A Mission to Early Earth

    NASA Astrophysics Data System (ADS)

    Buick, R.; Anbar, A. D.; Mojzsis, S. J.; Kaufman, A. J.; Kieft, T. L.; Lyons, T. W.; Humayun, M.

    2001-12-01

    Research into the emergence and early evolution of life, particularly in relation to environmental conditions, has intensified in the past decade. The field is energized by controversy (e.g., over the history of atmospheric composition, ocean redox, climate and biochemical pathways) and by the application of new biogeochemical tools (e.g., ion probe in situ stable isotope studies; improved geochronological techniques; non-mass-dependent stable isotope effects; stable metal isotope systematics; advances in organic geochemistry/biomarkers). The past decade has also seen improved understanding of old tools (notably, S isotopes), and new perspectives on evolution and on microbial interaction with the environment borne of the genomics revolution. Recent papers demonstrate the potential for innovative research when such developments are integrated, as well as the limitations of present knowledge. The chief limiting factor is not lack of scientists or advanced techniques, but availability of fresh samples from suitable successions. Where classic Precambrian stratigraphy exists, suitable rocks are rarely exposed due to interaction with the oxidizing atmosphere, occurrence of flat-lying strata or sedimentary cover. Available drill-cores are concentrated around ore bodies, and hence are inherently altered or not environmentally representative. Stratigraphic drilling using clean diamond drilling techniques, targeted in accord with scientific priorities, could provide samples of unmatched quality across the most interesting stratigraphic intervals. Diamond drilling is a proven, inexpensive technology for accessing subsurface material. The time is ripe to use this technology to secure the materials needed for further advances. The Mission to Early Earth (MtEE) Focus Group of the NASA Astrobiology Institute is developing a case for the acquisition, curation and distribution of suitable samples, with a special focus on diamond drilling. A communal activity is envisioned, modeled

  14. Polymerization of amino acids under primitive earth conditions.

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Ponnamperuma, C.

    1972-01-01

    Small amounts of peptides were obtained when equal amounts of methane and ammonia were reacted with vaporized aqueous solutions of C14-labeled glycine, L-alanine, L-aspartic acid, L-glutamic acid and L-threonine in the presence of a continuous spark discharge in a 24-hr cyclic process. The experiment was designed to demonstrate the possibility of peptide synthesis under simulated primeval earth conditions. It is theorized that some dehydration-condensation processes may have taken place, with ammonium cyanide, the hydrogencyanide tetramer or aminonitriles as intermediate products, during the early chemical evolution of the earth.

  15. Method of forming magnetostrictive rods from rare earth-iron alloys

    DOEpatents

    McMasters, O.D.

    1986-09-02

    Rods of magnetostrictive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube. 5 figs.

  16. Method of forming magnetostrictive rods from rare earth-iron alloys

    DOEpatents

    McMasters, O. Dale

    1986-09-02

    Rods of magnetrostructive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube.

  17. The earth's oldest known crust - A geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia

    NASA Astrophysics Data System (ADS)

    Maas, Roland; Kinny, Peter D.; Williams, Ian S.; Froude, Derek O.; Compston, William

    1992-03-01

    Trace element characteristics were analyzed and inclusions were identified within a suite of pre-3.9 Ga detritral zircons from western Australia representing the earth's oldest-known minerals. A diversity of trace-element compositions was found, particularly in the REE compositions of the old Mt. Narryer zircons, implying a variety of source-rock compositions and hence, the presence of a differentiated crust in the earth 4.15-4.20 Ga ago. Comparisons drawn with data obtained from younger detrital zircons occurring within the same deposits indicate nothing unique about the chemical compositions of the old grains. A number of interelement covariations were observed among the analyzed grains which were independent of age and isotopic characteristics, most notably that occurring between Lu and Hf. A general positive correlation between total LREE and the U + Th contents is also apparent. The findings indicate an origin in felsic igneous rocks, which has implications for early-Archaean crustal evolution.

  18. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants

    NASA Astrophysics Data System (ADS)

    Wallace, Malcolm W.; Hood, Ashleigh vS.; Shuster, Alice; Greig, Alan; Planavsky, Noah J.; Reed, Christopher P.

    2017-05-01

    There has been extensive debate about the history of Earth's oxygenation and the role that land plant evolution played in shaping Earth's ocean-atmosphere system. Here we use the rare earth element patterns in marine carbonates to monitor the structure of the marine redox landscape through the rise and diversification of animals and early land plants. In particular, we use the relative abundance of cerium (Ceanom), the only redox-sensitive rare earth element, in well-preserved marine cements and other marine precipitates to track seawater oxygen levels. Our results indicate that there was only a moderate increase in oceanic oxygenation during the Ediacaran (average Cryogenian Ceanom = 1.1, average Ediacaran Ceanom = 0.62), followed by a decrease in oxygen levels during the early Cambrian (average Cryogenian Ceanom = 0.90), with significant ocean anoxia persisting through the early and mid Paleozoic (average Early Cambrian-Early Devonian Ceanom = 0.84). It was not until the Late Devonian that oxygenation levels are comparable to the modern (average of all post-middle Devonian Ceanom = 0.55). Therefore, this work confirms growing evidence that the oxygenation of the Earth was neither unidirectional nor a simple two-stage process. Further, we provide evidence that it was not until the Late Devonian, when large land plants and forests first evolved, that oxygen levels reached those comparable to the modern world. This is recorded with the first modern-like negative Ceanom (values <0.6) occurring at around 380 Ma (Frasnian). This suggests that land plants, rather than animals, are the 'engineers' responsible for the modern fully oxygenated Earth system.

  19. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    NASA Technical Reports Server (NTRS)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  20. Mass driver retrievals of earth-approaching asteroids. [earth orbit capture for mining purposes

    NASA Technical Reports Server (NTRS)

    Oleary, B.

    1977-01-01

    Mass driver tugs can be designed to move Apollo and Amor asteroids at opportunities of low velocity increment to the vicinity of the earth. The cost of transferring asteroids through a velocity interval of 3 km/sec by mass driver is about 16 cents per kilogram amortized over 10 years, about ten times less than that required to retrieve lunar resources during the early phases of a program of space manufacturing. About 22 per cent of a 200-meter diameter asteroid could be transferred to high earth orbit by an automated 100 megawatt solar-powered mass driver in a period of five years for a cost of approximately $1 billion. Estimates of the total investment of a space manufacturing program could be reduced twofold by using asteroidal instead of lunar resources; such a program could begin several years sooner with minimal concurrent development if asteroidal search programs and mass driver development are immediately accelerated.