Sample records for early embryo-maternal cross-talk

  1. Toddlers with Early Behavioral Problems at Higher Family Demographic Risk Benefit the Most from Maternal Emotion Talk.

    PubMed

    Brophy-Herb, Holly E; Bocknek, Erika London; Vallotton, Claire D; Stansbury, Kathy E; Senehi, Neda; Dalimonte-Merckling, Danielle; Lee, Young-Eun

    2015-09-01

    To test the hypothesis that toddlers at highest risk for behavioral problems from the most economically vulnerable families will benefit most from maternal talk about emotions. This study included 89 toddlers and mothers from low-income families. Behavioral problems were rated at 2 time points by masters-level trained Early Head Start home visiting specialists. Maternal emotion talk was coded from a wordless book-sharing task. Coding focused on mothers' emotion bridging, which included labeling emotions, explaining the context of emotions, noting the behavioral cues of emotions, and linking emotions to toddlers' own experiences. Maternal demographic risk reflected a composite score of 5 risk factors. A significant 3-way interaction between Time 1 toddler behavior problems, maternal emotion talk, and maternal demographic risk (p = .001) and examination of slope difference tests revealed that when maternal demographic risk was greater, more maternal emotion talk buffered associations between earlier and later behavior problems. Greater demographic risk and lower maternal emotion talk intensified Time 1 behavior problems as a predictor of Time 2 behavior problems. The model explained 54% of the variance in toddlers' Time 2 behavior problems. Analyses controlled for maternal warmth to better examine the unique contributions of emotion bridging to toddlers' behaviors. Toddlers at highest risk, those with more early behavioral problems from higher demographic-risk families, benefit the most from mothers' emotion talk. Informing parents about the use of emotion talk may be a cost-effective, simple strategy to support at-risk toddlers' social-emotional development and reduce behavioral problems.

  2. Early maternal serum ß-human chorionic gonadotropin (ß-hCG) levels and sex-related growth difference of IVF embryos.

    PubMed

    Esh-Broder, Efrat; Oron, Galia; Son, Weon-Young; Holzer, Hananel; Tulandi, Togas

    2015-10-01

    Maternal serum ß-human chorionic gonadotropin (ß-hCG) represents the trophoblastic cell mass and is an indirect measurement of embryo development at early implantation stage. Studies in animals and human embryos detected sex-related growth differences (SRGD) in favour of male embryos during the pre-implantation period. The purpose of our study was to correlate SRGD and maternal serum ß-hCG at 16 days after embryo transfer. We retrospectively analysed all (fresh and frozen) non-donor, single embryo transfers (SET), elective and not elective, that were performed between December 2008 and December 2013. We included ß-hCG values from day 16 after oocyte collection of pregnancies resulting in live birth. Neonatal gender was retrieved from patient files. Male and female embryos were further grouped to cleavage and blastocyst stage transfers. Regression analysis for confounding variables included maternal age, maternal body mass index (BMI), use of micromanipulation (ICSI), embryo quality (grade), assisted hatching, day of transfer and fresh or frozen embryo transfer. Seven hundred eighty-six non-donor SETs resulted in live birth. After including only day 16 serum ß-hCG results, 525 SETs were analysed. Neonatal gender was available for 522 cases. Mean maternal serum ß-hCG levels were similar, 347 ± 191 IU/L in the male newborn group and 371 ± 200 IU/L in the female group. The difference between ß-hCG levels remained insignificant after adjusting for confounding variables. Early maternal ß-hCG levels after embryo transfers did not represent SRGD in our study.

  3. Maternal hCG concentrations in early IVF pregnancies: associations with number of cells in the Day 2 embryo and oocytes retrieved.

    PubMed

    Tanbo, T G; Eskild, A

    2015-12-01

    Do number of cells in the transferred cleavage stage embryo and number of oocytes retrieved for IVF influence maternal hCG concentrations in early pregnancies? Compared with transfer of a 2-cell embryo, transfer of a 4-cell embryo results in higher hCG concentrations on Day 12 after transfer, and more than 20 oocytes retrieved were associated with low hCG concentrations. Maternal hCG concentration in very early pregnancy varies considerably among women, but is likely to be an indicator of time since implantation of the embryo into the endometrium, in addition to number and function of trophoblast cells. We followed 1047 pregnancies after IVF/ICSI from oocyte retrieval until Day 12 after embryo transfer. Women were recruited in Norway during the years 2005-2013. Successful pregnancies after transfer of one single embryo that had been cultured for 2 days were included. Maternal hCG was quantified on Day 12 after embryo transfer by chemiluminescence immunoassay, which measures intact hCG and the free β-hCG chain. Information on a successful pregnancy, defined as birth after >16 weeks, was obtained by linkage to the Medical Birth Registry of Norway. Transfer of a 4-cell embryo resulted in higher maternal hCG concentrations compared with transfer of a 2-cell embryo (134.8 versus 87.8 IU/l, P < 0.05). A high number of oocytes retrieved (>20) was associated with low hCG concentrations (P < 0.05). The factors studied explain a limited part of the total variation of hCG concentrations in early pregnancy. Although embryo transfer was performed at the same time after fertilization, we do not know the exact time of implantation. A further limitation to our study is that the number of pregnancies after transfer of a 2-cell embryo was small (27 cases). Number of cells in the transferred embryo and number of oocytes retrieved may influence the conditions and timing for embryo implantation in different ways and thereby influence maternal hCG concentrations. Such knowledge may be

  4. Maternal organism and embryo biosensoring: insights from ruminants.

    PubMed

    Sandra, Olivier; Constant, Fabienne; Vitorino Carvalho, Anais; Eozénou, Caroline; Valour, Damien; Mauffré, Vincent; Hue, Isabelle; Charpigny, Gilles

    2015-04-01

    In terms of contribution to pregnancy, the mother not only produces gametes, but also hosts gestation, whose progression in the uterus is conditioned by early events during implantation. In ruminants, this period is associated with elongation of the extra-embryonic tissues, gastrulation of the embryonic disk and cross-talk with the endometrium. Recent data have prompted the need for accurate staging of the bovine conceptus and shown that asynchrony between elongation and gastrulation processes may account for pregnancy failure. Data mining of endometrial gene signatures has allowed the identification of molecular pathways and new factors regulated by the conceptus (e.g. FOXL2, SOCS6). Interferon-tau has been recognised to be the major signal of pregnancy recognition, but prostaglandins and lysophospholipids have also been demonstrated to be critical players at the conceptus-endometrium interface. Interestingly, up-regulation of interferon-regulated gene expression has been identified in circulating immune cells during implantation, making these factors a potential source of non-invasive biomarkers for early pregnancy. Distinct endometrial responses have been shown to be elicited by embryos produced by artificial insemination, in vitro fertilisation or somatic cell nuclear transfer. These findings have led to the concept that endometrium is an early biosensor of embryo quality. This biological property first demonstrated in cattle has been recently extended and associated with embryo selection in humans. Hence, compromised or suboptimal endometrial quality can subtly or deeply affect embryo development, with visible and sometimes severe consequences for placentation, foetal development, pregnancy outcome and the long-term health of the offspring. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. The Armadillo Repeat Gene ZAK IXIK Promotes Arabidopsis Early Embryo and Endosperm Development through a Distinctive Gametophytic Maternal Effect[C][W][OA

    PubMed Central

    Ngo, Quy A.; Baroux, Celia; Guthörl, Daniela; Mozerov, Peter; Collinge, Margaret A.; Sundaresan, Venkatesan; Grossniklaus, Ueli

    2012-01-01

    The proper balance of parental genomic contributions to the fertilized embryo and endosperm is essential for their normal growth and development. The characterization of many gametophytic maternal effect (GME) mutants affecting seed development indicates that there are certain classes of genes with a predominant maternal contribution. We present a detailed analysis of the GME mutant zak ixik (zix), which displays delayed and arrested growth at the earliest stages of embryo and endosperm development. ZIX encodes an Armadillo repeat (Arm) protein highly conserved across eukaryotes. Expression studies revealed that ZIX manifests a GME through preferential maternal expression in the early embryo and endosperm. This parent-of-origin–dependent expression is regulated by neither the histone and DNA methylation nor the DNA demethylation pathways known to regulate some other GME mutants. The ZIX protein is localized in the cytoplasm and nucleus of cells in reproductive tissues and actively dividing root zones. The maternal ZIX allele is required for the maternal expression of MINISEED3. Collectively, our results reveal a reproductive function of plant Arm proteins in promoting early seed growth, which is achieved through a distinct GME of ZIX that involves mechanisms for maternal allele-specific expression that are independent of the well-established pathways. PMID:23064319

  6. Loss of maternal CTCF is associated with peri-implantation lethality of Ctcf null embryos.

    PubMed

    Moore, James M; Rabaia, Natalia A; Smith, Leslie E; Fagerlie, Sara; Gurley, Kay; Loukinov, Dmitry; Disteche, Christine M; Collins, Steven J; Kemp, Christopher J; Lobanenkov, Victor V; Filippova, Galina N

    2012-01-01

    CTCF is a highly conserved, multifunctional zinc finger protein involved in critical aspects of gene regulation including transcription regulation, chromatin insulation, genomic imprinting, X-chromosome inactivation, and higher order chromatin organization. Such multifunctional properties of CTCF suggest an essential role in development. Indeed, a previous report on maternal depletion of CTCF suggested that CTCF is essential for pre-implantation development. To distinguish between the effects of maternal and zygotic expression of CTCF, we studied pre-implantation development in mice harboring a complete loss of function Ctcf knockout allele. Although we demonstrated that homozygous deletion of Ctcf is early embryonically lethal, in contrast to previous observations, we showed that the Ctcf nullizygous embryos developed up to the blastocyst stage (E3.5) followed by peri-implantation lethality (E4.5-E5.5). Moreover, one-cell stage Ctcf nullizygous embryos cultured ex vivo developed to the 16-32 cell stage with no obvious abnormalities. Using a single embryo assay that allowed both genotype and mRNA expression analyses of the same embryo, we demonstrated that pre-implantation development of the Ctcf nullizygous embryos was associated with the retention of the maternal wild type Ctcf mRNA. Loss of this stable maternal transcript was temporally associated with loss of CTCF protein expression, apoptosis of the developing embryo, and failure to further develop an inner cell mass and trophoectoderm ex vivo. This indicates that CTCF expression is critical to early embryogenesis and loss of its expression rapidly leads to apoptosis at a very early developmental stage. This is the first study documenting the presence of the stable maternal Ctcf transcript in the blastocyst stage embryos. Furthermore, in the presence of maternal CTCF, zygotic CTCF expression does not seem to be required for pre-implantation development.

  7. Maternal Mental State Talk and Infants' Early Gestural Communication

    ERIC Educational Resources Information Center

    Slaughter, Virginia; Peterson, Candida C.; Carpenter, Malinda

    2009-01-01

    Twenty-four infants were tested monthly for the production of imperative and declarative gestures between 0 ; 9 and 1 ; 3 and concurrent mother-infant free-play sessions were conducted at 0 ; 9, 1 ; 0 and 1 ; 3 (Carpenter, Nagell & Tomasello, 1998). Free-play transcripts were subsequently coded for maternal talk about mental states. Results…

  8. An investigation of maternal food intake and maternal food talk as predictors of child food intake.

    PubMed

    DeJesus, Jasmine M; Gelman, Susan A; Viechnicki, Gail B; Appugliese, Danielle P; Miller, Alison L; Rosenblum, Katherine L; Lumeng, Julie C

    2018-08-01

    Though parental modeling is thought to play a critical role in promoting children's healthy eating, little research has examined maternal food intake and maternal food talk as independent predictors of children's food intake. The present study examines maternal food talk during a structured eating protocol, in which mothers and their children had the opportunity to eat a series of familiar and unfamiliar vegetables and desserts. Several aspects of maternal talk during the protocol were coded, including overall food talk, directives, pronoun use, and questions. This study analyzed the predictors of maternal food talk and whether maternal food talk and maternal food intake predicted children's food intake during the protocol. Higher maternal body mass index (BMI) predicted lower amounts of food talk, pronoun use, and questions. Higher child BMI z-scores predicted more first person pronouns and more wh-questions within maternal food talk. Mothers of older children used fewer directives, fewer second person pronouns, and fewer yes/no questions. However, maternal food talk (overall and specific types of food talk) did not predict children's food intake. Instead, the most robust predictor of children's food intake during this protocol was the amount of food that mothers ate while sitting with their children. These findings emphasize the importance of modeling healthy eating through action and have implications for designing interventions to provide parents with more effective tools to promote their children's healthy eating. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Maternal program of apoptosis activated shortly after midblastula transition by overexpression of S-adenosylmethionine decarboxylase in Xenopus early embryos.

    PubMed

    Shiokawa, K; Kai, M; Higo, T; Kaito, C; Yokoska, J; Yasuhiko, Y; Kajita, E; Nagano, M; Yamada, Y; Shibata, M; Muto, T; Shinga, J; Hara, H; Takayama, E; Fukamachi, H; Yaoita, Y; Igarashi, K

    2000-06-01

    When we studied polyamine metabolism in Xenopus embryos, we cloned the cDNA for Xenopus S-adenosylmethionine decarboxylase (SAMDC), which converts SAM (S-adenosylmethionine), the methyl donor, into decarboxylated SAM (dcSAM), the aminopropyl donor, and microinjected its in vitro transcribed mRNA into Xenopus fertilized eggs. We found here that the mRNA injection induces a SAM deficient state in early embryos due to over-function of the overexpressed SAMDC, which in turn induces inhibition of protein synthesis. Such embryos developed quite normally until blastula stage, but stopped development at the early gastrula stage, due to induction of massive cell dissociation and cell autolysis, irrespective of the dosage and stage of the mRNA injection. We found that the dissociated cells were TUNEL-positive, contained fragmented nuclei with ladder-forming DNA, and furthermore, rescued completely by coinjection of Bcl-2 mRNA. Thus, overexpression of SAMDC in Xenopus embryos appeared to switch on apoptotic program, probably via inhibition of protein synthesis. Here, we briefly review our results together with those reported from other laboratories. After discussing the general importance of this newly discovered apoptotic program, we propose that the maternal program of apoptosis serves as a surveillance mechanism to eliminate metabolically severely-damaged cells and functions as a 'fail-safe' mechanism for normal development in Xenopus embryos.

  10. Sex Bias and Maternal Contribution to Gene Expression Divergence in Drosophila Blastoderm Embryos

    PubMed Central

    Paris, Mathilde; Villalta, Jacqueline E.; Eisen, Michael B.; Lott, Susan E.

    2015-01-01

    Early embryogenesis is a unique developmental stage where genetic control of development is handed off from mother to zygote. Yet the contribution of this transition to the evolution of gene expression is poorly understood. Here we study two aspects of gene expression specific to early embryogenesis in Drosophila: sex-biased gene expression prior to the onset of canonical X chromosomal dosage compensation, and the contribution of maternally supplied mRNAs. We sequenced mRNAs from individual unfertilized eggs and precisely staged and sexed blastoderm embryos, and compared levels between D. melanogaster, D. yakuba, D. pseudoobscura and D. virilis. First, we find that mRNA content is highly conserved for a given stage and that studies relying on pooled embryos likely systematically overstate the degree of gene expression divergence. Unlike studies done on larvae and adults where most species show a larger proportion of genes with male-biased expression, we find that transcripts in Drosophila embryos are largely female-biased in all species, likely due to incomplete dosage compensation prior to the activation of the canonical dosage compensation mechanism. The divergence of sex-biased gene expression across species is observed to be often due to lineage-specific decrease of expression; the most drastic example of which is the overall reduction of male expression from the neo-X chromosome in D. pseudoobscura, leading to a pervasive female-bias on this chromosome. We see no evidence for a faster evolution of expression on the X chromosome in embryos (no “faster-X” effect), unlike in adults, and contrary to a previous study on pooled non-sexed embryos. Finally, we find that most genes are conserved in regard to their maternal or zygotic origin of transcription, and present evidence that differences in maternal contribution to the blastoderm transcript pool may be due to species-specific divergence of transcript degradation rates. PMID:26485701

  11. Prenatal and postnatal maternal contributions to reproductive, maternal, and size-related traits of beef cattle.

    PubMed

    Gregory, K E; Maurer, R R

    1991-03-01

    Brown Swiss-Hereford (BS-H) reciprocal cross embryos were transferred to BS and H recipient cows and Red Poll-Angus (RP-A) reciprocal cross embryos were transferred to RP and A recipient cows to estimate the relative contributions of ovum cytoplasm and uterine influences to prenatal maternal effects. Calves resulting from embryo transfers (ET) were weaned early (3 to 5 d). Reciprocal cross mating also were made by natural service (NS) between BS and H and between RP and A breeds; part of the offspring were weaned at 3 to 5 d, and the remainder nursed their dams to an age of 150 to 180 d. This was done to estimate breed differences in prenatal and postnatal effects combined and to separate the effects of prenatal maternal influences from postnatal maternal influences of these breeds. Females produced in both ET and NS parts of the experiment were retained to produce three calf crops to an age of about 4.5 yr. The following traits were analyzed: percentage of conception rate; percentage of calf survival; percentage of calves produced per cow exposed; birth and weaning weights of calves produced; and periodic weights, heights, and condition scores of females to an age of 4.5 yr. Neither breed of donor (cytoplasmic influence) nor breed of recipient (uterine influence) had consistently important effects on the traits evaluated. In NS matings, differences between reciprocal crosses were small for most of the traits evaluated. Method of rearing (nursed vs weaned at 3 to 5 d) had no effect on reproductive and maternal traits for RP-A reciprocal cross females, but females that nursed generally were heavier, were taller, and had higher condition scores at most ages than early-weaned females. For the BS-H reciprocal cross, early-weaned females were favored over females reared by their dams in percentage of calves produced per cow exposed, but the method of rearing did not affect other reproductive or maternal traits. BS-H reciprocal cross females that nursed their dams were

  12. Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention.

    PubMed

    Mitchell, Megan; Schulz, Samantha L; Armstrong, David T; Lane, Michelle

    2009-04-01

    Dietary supply of nutrients, both periconception and during pregnancy, influence the growth and development of the fetus and offspring and their health into adult life. Despite the importance of research efforts surrounding the developmental origins of health and disease hypothesis, the biological mechanisms involved remain elusive. Mitochondria are of major importance in the oocyte and early embryo, particularly as a source of ATP generation, and perturbations in their function have been related to reduced embryo quality. The present study examined embryo development following periconception exposure of females to a high-protein diet (HPD) or a low-protein diet (LPD) relative to a medium-protein diet (MPD; control), and we hypothesized that perturbed mitochondrial metabolism in the mouse embryo may be responsible for the impaired embryo and fetal development reported by others. Although the rate of development to the blastocyst stage did not differ between diets, both the HPD and LPD reduced the number of inner cell mass cells in the blastocyst-stage embryo. Furthermore, mitochondrial membrane potential was reduced and mitochondrial calcium levels increased in the 2-cell embryo. Embryos from HPD females had elevated levels of reactive oxygen species and ADP concentrations, indicative of metabolic stress and, potentially, the uncoupling of oxidative phosphorylation, whereas embryos from LPD females had reduced mitochondrial clustering around the nucleus, suggestive of an overall quietening of metabolism. Thus, although periconception dietary supply of different levels of protein is permissive of development, mitochondrial metabolism is altered in the early embryo, and the nature of the perturbation differs between HPD and LPD exposure.

  13. Precision matters for position decoding in the early fly embryo

    NASA Astrophysics Data System (ADS)

    Petkova, Mariela D.; Tkacik, Gasper; Wieschaus, Eric F.; Bialek, William; Gregor, Thomas

    Genetic networks can determine cell fates in multicellular organisms with precision that often reaches the physical limits of the system. However, it is unclear how the organism uses this precision and whether it has biological content. Here we address this question in the developing fly embryo, in which a genetic network of patterning genes reaches 1% precision in positioning cells along the embryo axis. The network consists of three interconnected layers: an input layer of maternal gradients, a processing layer of gap genes, and an output layer of pair-rule genes with seven-striped patterns. From measurements of gap gene protein expression in hundreds of wild-type embryos we construct a ``decoder'', which is a look-up table that determines cellular positions from the concentration means, variances and co-variances. When we apply the decoder to measurements in mutant embryos lacking various combinations of the maternal inputs, we predict quantitative changes in the output layer such as missing, altered or displaced stripes. We confirm these predictions by measuring pair-rule expression in the mutant embryos. Our results thereby show that the precision of the patterning network is biologically meaningful and a necessary feature for decoding cell positions in the early fly embryo.

  14. Antenatal Training with Music and Maternal Talk Concurrently May Reduce Autistic-Like Behaviors at around 3 Years of Age

    PubMed Central

    Ruan, Zeng-Liang; Liu, Li; Strodl, Esben; Fan, Li-Jun; Yin, Xiao-Na; Wen, Guo-Min; Sun, Deng-Li; Xian, Dan-Xia; Jiang, Hui; Jing, Jin; Jin, Yu; Wu, Chuan-An; Chen, Wei-Qing

    2018-01-01

    Antenatal training through music and maternal talk to the unborn fetus is a topic of general interest for parents-to-be in China, but we still lack a comprehensive assessment of their effects on the development of autistic-like behaviors during early childhood. During 2014–2016, 34,749 parents of children around the age of 3 years who were enrolled at kindergarten in the Longhua district of Shenzhen participated in this study. Self-administered questionnaires regarding demographics, antenatal music training, and maternal talk to the fetus during pregnancy were completed by the children’s primary caregivers. Autistic-like behaviors were assessed using the Autism Behavioral Checklist. Tobit regression analyses revealed that antenatal music training and maternal talk to the fetus was associated with a reduction in autistic-like behaviors in children, with a dose-dependent relationship. Furthermore, factorial analysis of covariance indicated a significant interaction effect between antenatal music training and maternal talk to the fetus on the autistic-like behaviors and found that children who often experienced antenatal music training and maternal talk concurrently had the lowest risk of autistic-like behaviors, while children who were never exposed to maternal talk and only sometimes experienced antenatal music training had the highest risk. Our results suggest that antenatal training through both music and maternal talk to the unborn fetus might reduce the risk of children’s autistic-like behaviors at around 3 years of age. PMID:29375407

  15. Antenatal Training with Music and Maternal Talk Concurrently May Reduce Autistic-Like Behaviors at around 3 Years of Age.

    PubMed

    Ruan, Zeng-Liang; Liu, Li; Strodl, Esben; Fan, Li-Jun; Yin, Xiao-Na; Wen, Guo-Min; Sun, Deng-Li; Xian, Dan-Xia; Jiang, Hui; Jing, Jin; Jin, Yu; Wu, Chuan-An; Chen, Wei-Qing

    2017-01-01

    Antenatal training through music and maternal talk to the unborn fetus is a topic of general interest for parents-to-be in China, but we still lack a comprehensive assessment of their effects on the development of autistic-like behaviors during early childhood. During 2014-2016, 34,749 parents of children around the age of 3 years who were enrolled at kindergarten in the Longhua district of Shenzhen participated in this study. Self-administered questionnaires regarding demographics, antenatal music training, and maternal talk to the fetus during pregnancy were completed by the children's primary caregivers. Autistic-like behaviors were assessed using the Autism Behavioral Checklist. Tobit regression analyses revealed that antenatal music training and maternal talk to the fetus was associated with a reduction in autistic-like behaviors in children, with a dose-dependent relationship. Furthermore, factorial analysis of covariance indicated a significant interaction effect between antenatal music training and maternal talk to the fetus on the autistic-like behaviors and found that children who often experienced antenatal music training and maternal talk concurrently had the lowest risk of autistic-like behaviors, while children who were never exposed to maternal talk and only sometimes experienced antenatal music training had the highest risk. Our results suggest that antenatal training through both music and maternal talk to the unborn fetus might reduce the risk of children's autistic-like behaviors at around 3 years of age.

  16. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis.

    PubMed

    Del Toro-De León, Gerardo; García-Aguilar, Marcelina; Gillmor, C Stewart

    2014-10-30

    Zygotic genome activation in metazoans typically occurs several hours to a day after fertilization, and thus maternal RNAs and proteins drive early animal embryo development. In plants, despite several molecular studies of post-fertilization transcriptional activation, the timing of zygotic genome activation remains a matter of debate. For example, two recent reports that used different hybrid ecotype combinations for RNA sequence profiling of early Arabidopsis embryo transcriptomes came to divergent conclusions. One identified paternal contributions that varied by gene, but with overall maternal dominance, while the other found that the maternal and paternal genomes are transcriptionally equivalent. Here we assess paternal gene activation functionally in an isogenic background, by performing a large-scale genetic analysis of 49 EMBRYO DEFECTIVE genes and testing the ability of wild-type paternal alleles to complement phenotypes conditioned by mutant maternal alleles. Our results demonstrate that wild-type paternal alleles for nine of these genes are completely functional 2 days after pollination, with the remaining 40 genes showing partial activity beginning at 2, 3 or 5 days after pollination. Using our functional assay, we also demonstrate that different hybrid combinations exhibit significant variation in paternal allele activation, reconciling the apparently contradictory results of previous transcriptional studies. The variation in timing of gene function that we observe confirms that paternal genome activation does not occur in one early discrete step, provides large-scale functional evidence that maternal and paternal genomes make non-equivalent contributions to early plant embryogenesis, and uncovers an unexpectedly profound effect of hybrid genetic backgrounds on paternal gene activity.

  17. Expression of renin–angiotensin system components in the early bovine embryo

    PubMed Central

    Pijacka, Wioletta; Hunter, Morag G; Broughton Pipkin, Fiona; Luck, Martin R

    2012-01-01

    The renin–angiotensin system (RAS), mainly associated with the regulation of blood pressure, has been recently investigated in female reproductive organs and the developing foetus. Angiotensin II (Ang II) influences oviductal gamete movements and foetal development, but there is no information about RAS in the early embryo. The aim of this study was to determine whether RAS components are present in the pre-implantation embryo, to determine how early they are expressed and to investigate their putative role at this stage of development. Bovine embryos produced in vitro were used for analysis of RAS transcripts (RT-PCR) and localisation of the receptors AGTR1 and AGTR2 (immunofluorescent labelling). We also investigated the effects of Ang II, Olmesartan (AGTR1 antagonist) and PD123319 (AGTR2 antagonist) on oocyte cleavage, embryo expansion and hatching. Pre-implanted embryos possessed AGTR1 and AGTR2 but not the other RAS components. Both receptors were present in the trophectoderm and in the inner cell mass of the blastocyst. AGTR1 was mainly localised in granular-like structures in the cytoplasm, suggesting its internalisation into clathrin-coated vesicles, and AGTR2 was found mainly in the nuclear membrane and in the mitotic spindle of dividing trophoblastic cells. Treating embryos with PD123319 increased the proportion of hatched embryos compared with the control. These results, the first on RAS in the early embryo, suggest that the pre-implanted embryo responds to Ang II from the mother rather than from the embryo itself. This may be a route by which the maternal RAS influences blastocyst hatching and early embryonic development. PMID:23781300

  18. The mRNA-bound proteome of the early fly embryo

    PubMed Central

    Wessels, Hans-Hermann; Imami, Koshi; Baltz, Alexander G.; Kolinski, Marcin; Beldovskaya, Anastasia; Selbach, Matthias; Small, Stephen; Ohler, Uwe; Landthaler, Markus

    2016-01-01

    Early embryogenesis is characterized by the maternal to zygotic transition (MZT), in which maternally deposited messenger RNAs are degraded while zygotic transcription begins. Before the MZT, post-transcriptional gene regulation by RNA-binding proteins (RBPs) is the dominant force in embryo patterning. We used two mRNA interactome capture methods to identify RBPs bound to polyadenylated transcripts within the first 2 h of Drosophila melanogaster embryogenesis. We identified a high-confidence set of 476 putative RBPs and confirmed RNA-binding activities for most of 24 tested candidates. Most proteins in the interactome are known RBPs or harbor canonical RBP features, but 99 exhibited previously uncharacterized RNA-binding activity. mRNA-bound RBPs and TFs exhibit distinct expression dynamics, in which the newly identified RBPs dominate the first 2 h of embryonic development. Integrating our resource with in situ hybridization data from existing databases showed that mRNAs encoding RBPs are enriched in posterior regions of the early embryo, suggesting their general importance in posterior patterning and germ cell maturation. PMID:27197210

  19. Maternally derived trypsin may have multiple functions in the early development of turbot (Scopthalmus maximus).

    PubMed

    Chi, Liang; Liu, Qinghua; Xu, Shihong; Xiao, Zhizhong; Ma, Daoyuan; Li, Jun

    2015-10-01

    Trypsin is an important serine protease that is considered to be involved in digestion of protein in teleost fish. Nevertheless, studies on trypsin/trypsinogen in fish embryos are very limited. In this study, the trypsinogen of turbot (Scophthalmus maximus) (tTG) was identified and the expression patterns and activity of trypsinogen/trypsin were investigated. The results showed that the tTG mRNA was evenly distributed in the oocytes and was also expressed along the yolk periphery in early embryos. At later embryo stages and 1 days after hatching (dph), the tTG mRNA concentrated at the alimentary tract and head. Quantitative expression analysis showed that the tTG transcripts decreased after fertilization until the gastrula stage, then increased with the embryo and larvae development. This result was also confirmed by the specific activity analysis of trypsin and in-situ-hybridization (ISH). All of the results indicated that tTG in early embryo stages was maternally derived and expressed by itself after gastrula stages. Additionally, location of tTG mRNA in embryos and larvae was investigated; we considered that trypsin may have multiple functions during the embryo development process. Based on our results regarding trypsinogen in embryos and early development, we concluded that the trypsin/trypsinogen in turbot embryos was inherited from a maternal source and we suggested that trypsin in early development has multiple functions in the process of development. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos.

    PubMed

    Bakhtari, Azizollah; Ross, Pablo J

    2014-09-01

    Dppa3 has been described in mice as an important maternal factor contributed by the oocyte that participates in protecting the maternal genome from oxidation of methylated cytosines (5mC) to hydroxymethylated cytosines (5hmC). Dppa3 is also required for normal mouse preimplantation development. This gene is poorly conserved across mammalian species, with less than 32% of protein sequence shared between mouse, cow and human. RNA-seq analysis of bovine oocytes and preimplantation embryos revealed that DPPA3 transcripts are some of the most highly abundant mRNAs in the oocyte, and their levels gradually decrease toward the time of embryonic genome activation (EGA). Knockdown of DPPA3 by injection of siRNA in germinal vesicle (GV) stage oocytes was used to assess its role in epigenetic remodeling and embryo development. DPPA3 knockdown resulted in increased intensity of 5hmC staining in the maternal pronucleus (PN), demonstrating a role for this factor in the asymmetric remodeling of the maternal and paternal PN in bovine zygotes. Also, DPPA3 knockdown decreased the developmental competence of parthenogenetic and in vitro fertilized embryos. Finally, DPPA3 knockdown embryos that reached the blastocyst stage had significantly fewer ICM cells as compared with control embryos. We conclude that DPPA3 is a maternal factor important for correct epigenetic remodeling and normal embryonic development in cattle, indicating that the role of DPPA3 during early development is conserved between species.

  1. Signs of embryo-maternal communication: miRNAs in the maternal serum of pregnant pigs.

    PubMed

    Reliszko, Z P; Gajewski, Z; Kaczmarek, M M

    2017-09-01

    Circulating miRNAs were proposed to be indicators of normal or complicated pregnancies. Based on this knowledge and our recent transcriptomic approach showing expression of miRNAs in the porcine endometrium, conceptuses and uterine extracellular vesicles during pregnancy, we have hypothesized that signs of ongoing local embryo-maternal crosstalk involving miRNAs can be detected in the circulation of pregnant gilts as early as a few days after maternal recognition of pregnancy. By applying several molecular biology techniques that differ in dynamic range and precision in maternal serum of Day 16 pregnant pigs, we were able to show for the first time increased levels of several miRNAs, previously reported to be expressed in either conceptuses and extracellular vesicles (miR-26a and miR-125b) or pregnant endometrium (miR-23b). Our results clearly showed that real-time RT-PCR and digital PCR are the most reliable methods, being able to detect small-fold changes of low-abundant circulating miRNAs. Further validation in a separate group of gilts confirmed an increase in miR-23b and miR-125b levels. In silico analyses identified pregnancy-related biological processes and pathways affected by these miRNAs. Target prediction analysis revealed hundreds of porcine transcripts with conserved sites for these miRNAs, which were classified into signaling pathways relevant to pregnancy. We conclude that a unique set of miRNAs can already be observed in the circulation of pigs during the first weeks of pregnancy, as a result of the initiation of embryo-maternal communication. © 2017 Society for Reproduction and Fertility.

  2. Maternal stress-associated cortisol stimulation may protect embryos from cortisol excess in zebrafish.

    PubMed

    Faught, Erin; Best, Carol; Vijayan, Mathilakath M

    2016-02-01

    Abnormal embryo cortisol level causes developmental defects and poor survival in zebrafish (Danio rerio). However, no study has demonstrated that maternal stress leads to higher embryo cortisol content in zebrafish. We tested the hypothesis that maternal stress-associated elevation in cortisol levels increases embryo cortisol content in this asynchronous breeder. Zebrafish mothers were fed cortisol-spiked food for 5 days, to mimic maternal stress, followed by daily breeding for 10 days to monitor temporal embryo cortisol content. Cortisol treatment increased mean embryo yield, but the daily fecundity was variable among the groups. Embryo cortisol content was variable in both groups over a 10-day period. A transient elevation in cortisol levels was observed in the embryos from cortisol-fed mothers only on day 3, but not on subsequent days. We tested whether excess cortisol stimulates 11βHSD2 expression in ovarian follicles as a means to regulate embryo cortisol deposition. Cortisol treatment in vitro increased 11β HSD2 levels sevenfold, and this expression was regulated by actinomycin D and cycloheximide suggesting tight regulation of cortisol levels in the ovarian follicles. We hypothesize that cortisol-induced upregulation of 11βHSD2 activity in the ovarian follicles is a mechanism restricting excess cortisol incorporation into the eggs during maternal stress.

  3. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    PubMed

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  4. Efficient and Rapid Isolation of Early-stage Embryos from Arabidopsis thaliana Seeds

    PubMed Central

    Raissig, Michael T.; Gagliardini, Valeria; Jaenisch, Johan; Grossniklaus, Ueli; Baroux, Célia

    2013-01-01

    In flowering plants, the embryo develops within a nourishing tissue - the endosperm - surrounded by the maternal seed integuments (or seed coat). As a consequence, the isolation of plant embryos at early stages (1 cell to globular stage) is technically challenging due to their relative inaccessibility. Efficient manual dissection at early stages is strongly impaired by the small size of young Arabidopsis seeds and the adhesiveness of the embryo to the surrounding tissues. Here, we describe a method that allows the efficient isolation of young Arabidopsis embryos, yielding up to 40 embryos in 1 hr to 4 hr, depending on the downstream application. Embryos are released into isolation buffer by slightly crushing 250-750 seeds with a plastic pestle in an Eppendorf tube. A glass microcapillary attached to either a standard laboratory pipette (via a rubber tube) or a hydraulically controlled microinjector is used to collect embryos from droplets placed on a multi-well slide on an inverted light microscope. The technical skills required are simple and easily transferable, and the basic setup does not require costly equipment. Collected embryos are suitable for a variety of downstream applications such as RT-PCR, RNA sequencing, DNA methylation analyses, fluorescence in situ hybridization (FISH), immunostaining, and reporter gene assays. PMID:23770918

  5. Family food talk, child eating behavior, and maternal feeding practices.

    PubMed

    Roach, Elizabeth; Viechnicki, Gail B; Retzloff, Lauren B; Davis-Kean, Pamela; Lumeng, Julie C; Miller, Alison L

    2017-10-01

    Families discuss food and eating in many ways that may shape child eating habits. Researchers studying how families talk about food have examined this process during meals. Little work has examined parent-child food-related interactions outside of mealtime. We assessed family food talk at home outside of mealtime and tested whether food talk was associated with obesogenic child eating behaviors, maternal feeding practices, or child weight. Preschool and school-aged mother-child dyads (n = 61) participated in naturalistic voice recording using a LENA (Language ENvironment Analysis) recorder. A coding scheme was developed to reliably characterize different types of food talk from LENA transcripts. Mothers completed the Children's Eating Behavior Questionnaire (CEBQ) and Child Feeding Questionnaire (CFQ) to assess child eating behaviors and maternal feeding practices. Child weight and height were measured and body mass index z-score (BMIz) calculated. Bivariate associations among food talk types, as a proportion of total speech, were examined and multivariate regression models used to test associations between food talk and child eating behaviors, maternal feeding practices, and child BMIz. Proportion of child Overall Food Talk and Food Explanations were positively associated with CEBQ Food Responsiveness and Enjoyment of Food (p's < 0.05). Child food Desire/Need and child Prep/Planning talk were positively associated with CEBQ Enjoyment of Food (p < 0.05). Child Food Enjoyment talk and mother Overt Restriction talk were positively associated with CEBQ Emotional Over-Eating (p < 0.05). Mother Monitoring talk was positively associated with CFQ Restriction (p < 0.05). Mother Prep/Planning talk was negatively associated with child BMIz. Food talk outside of mealtimes related to child obesogenic eating behaviors and feeding practices in expected ways; examining food talk outside of meals is a novel way to consider feeding practices and child eating behavior

  6. Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture.

    PubMed

    Schmaltz-Panneau, Barbara; Cordova, Amanda; Dhorne-Pollet, Sophie; Hennequet-Antier, Christelle; Uzbekova, Sveltlana; Martinot, Emmanuelle; Doret, Sarah; Martin, Patrice; Mermillod, Pascal; Locatelli, Yann

    2014-10-01

    In mammals, the oviduct may participate to the regulation of early embryo development. In vitro co-culture of early bovine embryos with bovine oviduct epithelial cells (BOEC) has been largely used to mimic the maternal environment. However, the mechanisms of BOEC action have not been clearly elucidated yet. The aim of this study was to determine the response of BOEC cultures to the presence of developing bovine embryos. A 21,581-element bovine oligonucleotide array was used compare the gene expression profiles of confluent BOEC cultured for 8 days with or without embryos. This study revealed 34 differentially expressed genes (DEG). Of these 34 genes, IFI6, ISG15, MX1, IFI27, IFI44, RSAD2, IFITM1, EPSTI1, USP18, IFIT5, and STAT1 expression increased to the greatest extent due to the presence of embryos with a major impact on antiviral and immune response. Among the mRNAs at least 25 are already described as induced by interferons. In addition, transcript levels of new candidate genes involved in the regulation of transcription, modulation of the maternal immune system and endometrial remodeling were found to be increased. We selected 7 genes and confirmed their differential expression by quantitative RT-PCR. The immunofluorescence imaging of cellular localization of STAT1 protein in BOEC showed a nuclear translocation in the presence of embryos, suggesting the activation of interferon signaling pathway. This first systematic study of BOEC transcriptome changes in response to the presence of embryos in cattle provides some evidences that these cells are able to adapt their transcriptomic profile in response to embryo signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Stickleback embryos use ATP-binding cassette transporters as a buffer against exposure to maternally derived cortisol

    PubMed Central

    Bukhari, Syed Abbas; Bell, Alison M.

    2016-01-01

    Offspring from females that experience stressful conditions during reproduction often exhibit altered phenotypes and many of these effects are thought to arise owing to increased exposure to maternal glucocorticoids. While embryos of placental vertebrates are known to regulate exposure to maternal glucocorticoids via placental steroid metabolism, much less is known about how and whether egg-laying vertebrates can control their steroid environment during embryonic development. We tested the hypothesis that threespine stickleback (Gasterosteus aculeatus) embryos can regulate exposure to maternal steroids via active efflux of maternal steroids from the egg. Embryos rapidly (within 72 h) cleared intact steroids, but blocking ATP-binding cassette (ABC) transporters inhibited cortisol clearance. Remarkably, this efflux of cortisol was sufficient to prevent a transcriptional response of embryos to exogenous cortisol. Taken together, these findings suggest that, much like their placental counterparts, developing fish embryos can actively regulate their exposure to maternal cortisol. These findings highlight the fact that even in egg-laying vertebrates, the realized exposure to maternal steroids is mediated by both maternal and embryonic processes and this has important implications for understanding how maternal stress influences offspring development. PMID:26984623

  8. Early detection and staging of spontaneous embryo resorption by ultrasound biomicroscopy in murine pregnancy.

    PubMed

    Flores, Luis E; Hildebrandt, Thomas B; Kühl, Anja A; Drews, Barbara

    2014-05-10

    Embryo resorption is a major problem in human medicine, agricultural animal production and in conservation breeding programs. Underlying mechanisms have been investigated in the well characterised mouse model. However, post mortem studies are limited by the rapid disintegration of embryonic structures. A method to reliably identify embryo resorption in alive animals has not been established yet. In our study we aim to detect embryos undergoing resorption in vivo at the earliest possible stage by ultra-high frequency ultrasound. In a longitudinal study, we monitored 30 pregnancies of wild type C57BI/6 mice using ultra-high frequency ultrasound (30-70 MHz), so called ultrasound biomicroscopy (UBM). We compared the sonoembryology of mouse conceptuses under spontaneous resorption and neighbouring healthy conceptuses and correlated the live ultrasound data with the respective histology. The process of embryo resorption comprised of four stages: first, the conceptus exhibited growth retardation, second, bradycardia and pericardial edema were observed, third, further development ceased and the embryo died, and finally embryo remnants were resorbed by maternal immune cells. In early gestation (day 7 and 8), growth retardation was characterized by a small embryonic cavity. The embryo and its membranes were ill defined or did not develop at all. The echodensity of the embryonic fluid increased and within one to two days, the embryo and its cavity disappeared and was transformed into echodense tissue surrounded by fluid filled caverns. In corresponding histologic preparations, fibrinoid material interspersed with maternal granulocytes and lacunae filled with maternal blood were observed. In later stages (day 9-11) resorption prone embryos were one day behind in their development compared to their normal siblings. The space between Reichert's membrane and inner yolk sac membrane was enlarged The growth retarded embryos exhibited bradycardia and ultimately cessation of heart

  9. Early detection and staging of spontaneous embryo resorption by ultrasound biomicroscopy in murine pregnancy

    PubMed Central

    2014-01-01

    Background Embryo resorption is a major problem in human medicine, agricultural animal production and in conservation breeding programs. Underlying mechanisms have been investigated in the well characterised mouse model. However, post mortem studies are limited by the rapid disintegration of embryonic structures. A method to reliably identify embryo resorption in alive animals has not been established yet. In our study we aim to detect embryos undergoing resorption in vivo at the earliest possible stage by ultra-high frequency ultrasound. Methods In a longitudinal study, we monitored 30 pregnancies of wild type C57BI/6 mice using ultra-high frequency ultrasound (30-70 MHz), so called ultrasound biomicroscopy (UBM). We compared the sonoembryology of mouse conceptuses under spontaneous resorption and neighbouring healthy conceptuses and correlated the live ultrasound data with the respective histology. Results The process of embryo resorption comprised of four stages: first, the conceptus exhibited growth retardation, second, bradycardia and pericardial edema were observed, third, further development ceased and the embryo died, and finally embryo remnants were resorbed by maternal immune cells. In early gestation (day 7 and 8), growth retardation was characterized by a small embryonic cavity. The embryo and its membranes were ill defined or did not develop at all. The echodensity of the embryonic fluid increased and within one to two days, the embryo and its cavity disappeared and was transformed into echodense tissue surrounded by fluid filled caverns. In corresponding histologic preparations, fibrinoid material interspersed with maternal granulocytes and lacunae filled with maternal blood were observed. In later stages (day 9–11) resorption prone embryos were one day behind in their development compared to their normal siblings. The space between Reichert’s membrane and inner yolk sac membrane was enlarged The growth retarded embryos exhibited bradycardia and

  10. Cross-talk interactions of exogenous nitric oxide and sucrose modulates phenylpropanoid metabolism in yellow lupine embryo axes infected with Fusarium oxysporum.

    PubMed

    Morkunas, Iwona; Formela, Magda; Floryszak-Wieczorek, Jolanta; Marczak, Łukasz; Narożna, Dorota; Nowak, Witold; Bednarski, Waldemar

    2013-10-01

    The aim of the study was to examine cross-talk of exogenous nitric oxide (NO) and sucrose in the mechanisms of synthesis and accumulation of isoflavonoids in embryo axes of Lupinus luteus L. cv. Juno. It was verified whether the interaction of these molecules can modulate the defense response of axes to infection and development of the pathogenic fungus Fusarium oxysporum f. sp. lupini. Sucrose alone strongly stimulated a high level of genistein glucoside in axes pretreated with exogenous nitric oxide (SNP or GSNO) and non-pretreated axes. As a result of amplification of the signal coming from sucrose and GSNO, high isoflavonoids accumulation was observed (+Sn+GSNO). It needs to be stressed that infection in tissues pretreated with SNP/GSNO and cultured on the medium with sucrose (+Si+SNP/+Si+GSNO) very strongly enhances the accumulation of free isoflavone aglycones. In +Si+SNP axes phenylalanine ammonia-lyase activity was high up to 72h. As early as at 12h in +Si+SNP axes an increase was recorded in gene expression level of the specific isoflavonoid synthesis pathway. At 24h in +Si+SNP axes a very high total antioxidant capacity dependent on the pool of fast antioxidants was noted. Post-infection generation of semiquinone radicals was lower in axes with a high level of sucrose than with a deficit. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Chronology of early embryonic development and embryo uterine migration in alpacas.

    PubMed

    Picha, Y; Tibary, A; Memon, M; Kasimanickam, R; Sumar, J

    2013-03-01

    The objectives were to: (1) describe the chronology of early embryonic development from ovulation to entry into the uterus; and (2) to determine the timing of embryo migration to the left uterine horn when ovulation occurred from the right ovary. The experiment was conducted in Peru. Females (n = 132) were randomly assigned to 15 experimental groups. All females were mated to an intact male, given 50 μg GnRH im (Cystorelin) and ovulation time determined by transrectal ultrasonography, conducted every 6 hours, starting 24 hours postmating. Animals were slaughtered at a specific intervals postovulation and reproductive tracts were recovered and subjected to oviductal and uterine flushing for females slaughtered between 1 and 6 days postovulation (dpo; Day 0 = ovulation) and uterine flushing for females slaughtered from 7 to 15 dpo for recovery of oocytes/embryos. Season of mating did not influence the interval from mating to ovulation (winter: 29 ± 6 hours vs. summer: 30 ± 6 hours; P = 0.49). Ovulation rates for females mated during winter and summer were 92% versus 100%, respectively (P = 0.05). Fertilization rates for winter and summer mated females were 72% and 82% (P = 0.29). Unfertilized ova were not retained in the uterine tube. All embryos collected were in the uterine tube ipsilateral to the side of ovulation between 1 and 5 dpo. Embryos reached the uterus on 6 dpo. Embryos began to elongate on 9 dpo; at this time, 83% of embryos derived from right-ovary ovulations were collected from the left uterine horn. Embryos occupied the entire uterine cavity by 10 dpo. In conclusion, we characterized early embryo development and location of embryo during its early developmental stages in alpaca. This was apparently the first report regarding chronology of embryo development and migration to the left horn in alpaca which merits further investigation regarding its role in maternal recognition of pregnancy. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Arrested human embryos are more likely to have abnormal chromosomes than developing embryos from women of advanced maternal age.

    PubMed

    Qi, Shu-Tao; Liang, Li-Feng; Xian, Ye-Xing; Liu, Jian-Qiao; Wang, Weihua

    2014-01-01

    Aneuploidy is one of the major factors that result in low efficiency in human infertility treatment by in vitro fertilization (IVF). The development of DNA microarray technology allows for aneuploidy screening by analyzing all 23 pairs of chromosomes in human embryos. All chromosome screening for aneuploidy is more accurate than partial chromosome screening, as errors can occur in any chromosome. Currently, chromosome screening for aneuploidy is performed in developing embryos, mainly blastocysts. It has not been performed in arrested embryos and/or compared between developing embryos and arrested embryos from the same IVF cycle. The present study was designed to examine all chromosomes in blastocysts and arrested embryos from the same cycle in patients of advanced maternal ages. Embryos were produced by routine IVF procedures. A total of 90 embryos (45 blastocysts and 45 arrested embryos) from 17 patients were biopsied and analyzed by the Agilent DNA array platform. It was found that 50% of the embryos developed to blastocyst stage; however, only 15.6% of the embryos (both blastocyst and arrested) were euploid, and most (84.4%) of the embryos had chromosomal abnormalities. Further analysis indicated that 28.9% of blastocysts were euploid and 71.1% were aneuploid. By contrast, only one (2.2%) arrested embryo was euploid while others (97.8%) were aneuploid. The prevalence of multiple chromosomal abnormalities in the aneuploid embryos was also higher in the arrested embryos than in the blastocysts. These results indicate that high proportions of human embryos from patients of advanced maternal age are aneuploid, and the arrested embryos are more likely to have abnormal chromosomes than developing embryos.

  13. No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo.

    PubMed

    Wharton, Tammy H; Nomie, Krystle J; Wharton, Robin P

    2018-01-01

    Drosophila Pumilio (Pum) is a founding member of the conserved Puf domain class of RNA-binding translational regulators. Pum binds with high specificity, contacting eight nucleotides, one with each of the repeats in its RNA-binding domain. In general, Pum is thought to block translation in collaboration with Nanos (Nos), which exhibits no binding specificity in isolation but is recruited jointly to regulatory sequences containing a Pum binding site in the 3'-UTRs of target mRNAs. Unlike Pum, which is ubiquitous in the early embryo, Nos is tightly restricted to the posterior, ensuring that repression of its best-characterized target, maternal hunchback (hb) mRNA, takes place exclusively in the posterior. An exceptional case of Nos-independent regulation by Pum has been described-repression of maternal bicoid (bcd) mRNA at the anterior pole of the early embryo, dependent on both Pum and conserved Pum binding sites in the 3'-UTR of the mRNA. We have re-investigated regulation of bcd in the early embryo; our experiments reveal no evidence of a role for Pum or its conserved binding sites in regulation of the perdurance of bcd mRNA or protein. Instead, we find that Pum and Nos control the accumulation of bcd mRNA in testes.

  14. The maternal nucleolus plays a key role in centromere satellite maintenance during the oocyte to embryo transition.

    PubMed

    Fulka, Helena; Langerova, Alena

    2014-04-01

    The oocyte (maternal) nucleolus is essential for early embryonic development and embryos originating from enucleolated oocytes arrest at the 2-cell stage. The reason for this is unclear. Surprisingly, RNA polymerase I activity in nucleolus-less mouse embryos, as manifested by pre-rRNA synthesis, and pre-rRNA processing are not affected, indicating an unusual role of the nucleolus. We report here that the maternal nucleolus is indispensable for the regulation of major and minor satellite repeats soon after fertilisation. During the first embryonic cell cycle, absence of the nucleolus causes a significant reduction in major and minor satellite DNA by 12% and 18%, respectively. The expression of satellite transcripts is also affected, being reduced by more than half. Moreover, extensive chromosome bridging of the major and minor satellite sequences was observed during the first mitosis. Finally, we show that the absence of the maternal nucleolus alters S-phase dynamics and causes abnormal deposition of the H3.3 histone chaperone DAXX in pronuclei of nucleolus-less zygotes.

  15. The Effect of Maternal Teaching Talk on Children's Emergent Literacy as a Function of Type of Activity and Maternal Education Level

    ERIC Educational Resources Information Center

    Korat, Ofra

    2009-01-01

    This study examined the extent to which maternal education affects mothers' teaching talk level as a function of activity (book reading vs. looking at a family photo album), and the contribution of maternal teaching talk level during these activities to 88 five- to six-year old children's emergent literacy. Videotaped mother-child interactions…

  16. Cross-Generational Reproductive Fitness Enforced by Microchimeric Maternal Cells.

    PubMed

    Kinder, Jeremy M; Jiang, Tony T; Ertelt, James M; Xin, Lijun; Strong, Beverly S; Shaaban, Aimen F; Way, Sing Sing

    2015-07-30

    Exposure to maternal tissue during in utero development imprints tolerance to immunologically foreign non-inherited maternal antigens (NIMA) that persists into adulthood. The biological advantage of this tolerance, conserved across mammalian species, remains unclear. Here, we show maternal cells that establish microchimerism in female offspring during development promote systemic accumulation of immune suppressive regulatory T cells (Tregs) with NIMA specificity. NIMA-specific Tregs expand during pregnancies sired by males expressing alloantigens with overlapping NIMA specificity, thereby averting fetal wastage triggered by prenatal infection and non-infectious disruptions of fetal tolerance. Therefore, exposure to NIMA selectively enhances reproductive success in second-generation females carrying embryos with overlapping paternally inherited antigens. These findings demonstrate that genetic fitness, canonically thought to be restricted to Mendelian inheritance, is enhanced in female placental mammals through vertically transferred maternal cells that promote conservation of NIMA and enforce cross-generational reproductive benefits. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Cross-Talk Limits of Highly Segmented Semiconductor Detectors

    NASA Astrophysics Data System (ADS)

    Pullia, Alberto; Weisshaar, Dirk; Zocca, Francesca; Bazzacco, Dino

    2011-06-01

    Cross-talk limits of monolithic highly-segmented semiconductor detectors for high-resolution X-gamma spectrometry are investigated. Cross-talk causes false signal components yielding amplitude losses and fold-dependent shifts of the spectral lines, which partially spoil the spectroscopic performance of the detector. Two complementary electrical models are developed, which describe quantitatively the inter-channel cross-talk of monolithic segmented detectors whose electrodes are read out by charge-sensitive preamplifiers. The first is here designated as Cross-Capacitance (CC) model, the second as Split-Charge (SC) model. The CC model builds around the parasitic capacitances Cij linking the preamplifier outputs and the neighbor channel inputs. The SC model builds around the finite-value of the decoupling capacitance CC used to read out the high-voltage detector electrode. The key parameters of the models are individuated and ideas are shown to minimize their impact. Using a quasi-coaxial germanium segmented detector it is found that the SC cross-talk becomes negligible for decoupling capacitances larger than 1 nF, where instead the CC cross-talk tends to dominate. The residual cross-talk may be reduced by minimization of stray capacitances Cij, through a careful design of the layout of the Printed Circuit Board (PCB) where the input transistors are mounted. Cij can be made as low as 5 fF, but it is shown that even in such case the impact of the CC cross-talk on the detector performance is not negligible. Finally, an algorithm for cross-talk correction is presented and elaborated.

  18. Higher growth rate and gene expression in male zebra finch embryos are independent of manipulation of maternal steroids in the eggs.

    PubMed

    Lutyk, Dorota; Tagirov, Makhsud; Drobniak, Szymon; Rutkowska, Joanna

    2017-12-01

    Sexual dimorphism in prenatal development is widespread among vertebrates, including birds. Its mechanism remains unclear, although it has been attributed to the effect of maternal steroid hormones. The aim of this study was to investigate how increased levels of steroid hormones in the eggs influence early embryonic development of male and female offspring. We also asked whether maternal hormones take part in the control of sex-specific expression of the genes involved in prenatal development. We experimentally manipulated hormones' concentrations in the egg yolk by injecting zebra finch females prior to ovulation with testosterone or corticosterone. We assessed growth rate and expression levels of CDK7, FBP1 and GHR genes in 37h-old embryos. We found faster growth and higher expression of two studied genes in male compared to female embryos. Hormonal treatment, despite clearly differentiating egg steroid levels, had no effect on the sex-specific pattern of the embryonic gene expression, even though we confirmed expression of receptors of androgens and glucocorticoids at such an early stage of development. Thus, our study shows high stability of the early sex differences in the embryonic development before the onset of sexual differentiation and indicates their independence of maternal hormones in the egg. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Maternal Styles of Talking about Child Feeding across Sociodemographic Groups

    PubMed Central

    Pesch, Megan H.; Harrell, Kristina J.; Kaciroti, Niko; Rosenblum, Kate; Lumeng, Julie C.

    2011-01-01

    This study sought to identify maternal styles of talking about child feeding from a semi-structured interview and to evaluate associated maternal and child characteristics. Mothers of preschool-aged children (n = 133) of diverse race/ethnicity and socioeconomic status (SES) (45 lower SES black, 29 lower SES white, 32 lower SES Hispanic, 15 middle to upper SES white, 12 middle to upper SES Asian) participated in a semi-structured interview about feeding. Interviews were audio-taped and transcribed. Themes were identified, and individual interviews were coded within these themes: authority (high/low), confidence (confident/conflicted/unopinionated), and investment (deep/mild/removed). Demographic characteristics were collected and a subset of children had measured weights and heights. Cluster analysis was used to identify narrative styles. Participant characteristics were compared across clusters using Fisher’s exact test and analysis of variance. Six narrative styles were identified: Easy-Going, Practical No-Nonsense, Disengaged, Effortful No-Nonsense, Indulgent Worry, and Conflicted Control. Cluster membership differed significantly based on maternal demographic group (P < .001) and child weight status (P < .05). More than half (60%) of children of mothers in the Conflicted Control cluster were obese. Maternal styles of talking about feeding are associated with maternal and child characteristics. PMID:22117662

  20. Maternal styles of talking about child feeding across sociodemographic groups.

    PubMed

    Pesch, Megan H; Harrell, Kristina J; Kaciroti, Niko; Rosenblum, Katherine L; Lumeng, Julie C

    2011-12-01

    This study sought to identify maternal styles of talking about child feeding from a semistructured interview and to evaluate associated maternal and child characteristics. Mothers of preschool-aged children (n=133) of diverse race/ethnicity and socioeconomic status (SES) (45 lower SES black, 29 lower SES white, 32 lower SES Hispanic, 15 middle to upper SES white, and 12 middle to upper SES Asian) participated in a semistructured interview about feeding. Interviews were audiotaped and transcribed. Themes were identified, and individual interviews were coded within these themes: authority (high/low), confidence (confident/conflicted/unopinionated), and investment (deep/mild/removed). Demographic characteristics were collected and a subset of children had measured weights and heights. Cluster analysis was used to identify narrative styles. Participant characteristics were compared across clusters using Fisher's exact test and analysis of variance. Six narrative styles were identified: Easy-Going, Practical No-Nonsense, Disengaged, Effortful No-Nonsense, Indulgent Worry, and Conflicted Control. Cluster membership differed significantly based on maternal demographic group (P<0.001) and child weight status (P<0.05). More than half (60%) of children of mothers in the Conflicted Control cluster were obese. Maternal styles of talking about feeding are associated with maternal and child characteristics. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  1. Gene Expression in Pre-MBT Embryos and Activation of Maternally-Inherited Program of Apoptosis to be Executed at around MBT as a Fail-Safe Mechanism in Xenopus Early Embryogenesis

    PubMed Central

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Uchiyama, Hiroaki; Kuroyanagi, Shinsaku; Takai, Jun-Ichi; Takahashi, Senji; Kajitani, Masayuki; Kaito, Chikara; Sekimizu, Kazuhisa; Takayama, Eiji; Igarashi, Kazuei; Hara, Hiroshi

    2008-01-01

    S-adenosylmethionine decarboxylase (SAMDC) is an enzyme which converts S-adenosylmethione (SAM), a methyl donor, to decarboxylated SAM (dcSAM), an aminopropyl donor for polyamine biosynthesis. In our studies on gene expression control in Xenopus early embryogenesis, we cloned the mRNA for Xenopus SAMDC, and overexpressed the enzyme by microinjecting its mRNA into Xenopus fertilized eggs. In the mRNA-injected embryos, the level of SAMDC was enormously increased, the SAM was exhausted, and protein synthesis was greatly inhibited, but cellular polyamine content did not change appreciably. SAMDC-overexpressed embryos cleaved and developed normally up to the early blastula stage, but at the midblastula stage, or the stage of midblastula transition (MBT), all the embryos were dissociated into cells, and destroyed due to execution of apoptosis. During cleavage SAMDC-overexpressed embryos transcribed caspase-8 gene, and this was followed by activation of caspase-9. When we overexpressed p53 mRNA in fertilized eggs, similar apoptosis took place at MBT, but in this case, transcription of caspase-8 did not occur, however activation of caspase-9 took place. Apoptosis induced by SAMDC-overexpression was completely suppressed by Bcl-2, whereas apoptosis induced by p53 overexpression or treatments with other toxic agents was only partially rescued. When we injected SAMDC mRNA into only one blastomere of 8- to 32-celled embryos, descendant cells of the mRNA-injected blastomere were segregated into the blastocoel and underwent apoptosis within the blastocoel, although such embryos continued to develop and became tadpoles with various extents of anomaly, reflecting the developmental fate of the eliminated cells. Thus, embryonic cells appear to check themselves at MBT and if physiologically severely-damaged cells occur, they are eliminated from the embryo by activation and execution of the maternally-inherited program of apoptosis. We assume that the apoptosis executed at MBT is a

  2. Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage

    PubMed Central

    Pires, Camilla Valente; Freitas, Flávia Cristina de Paula; Cristino, Alexandre S.; Dearden, Peter K.; Simões, Zilá Luz Paulino

    2016-01-01

    In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development. PMID:26751956

  3. Effect of exogenous transforming growth factor β1 (TGF-β1) on early bovine embryo development.

    PubMed

    Barrera, Antonio D; García, Elina V; Miceli, Dora C

    2018-06-08

    SummaryDuring preimplantation development, embryos are exposed and have the capacity to respond to different growth factors present in the maternal environment. Among these factors, transforming growth factor β1 (TGF-β1) is a well known modulator of embryonic growth and development. However, its action during the first stages of development, when the embryo transits through the oviduct, has not been yet elucidated. The objective of the present study was to examine the effect of early exposure to exogenous TGF-β1 on embryo development and expression of pluripotency (OCT4, NANOG) and DNA methylation (DNMT1, DNMT3A, DNMT3B) genes in bovine embryos produced in vitro. First, gene expression analysis of TGF-β receptors confirmed a stage-specific expression pattern, showing greater mRNA abundance of TGFBR1 and TGFBR2 from the 2- to the 8-cell stage, before embryonic genome activation. Second, embryo culture for the first 48 h in serum-free CR1aa medium supplemented with 50 or 100 ng/ml recombinant TGF-β1 did not affect the cleavage and blastocyst rate (days 7 and 8). However, RT-qPCR analysis showed a significant increase in the relative abundance of NANOG and DNMT3A in the 8-cell stage embryos and expanded blastocysts (day 8) derived from TGF-β1 treated embryos. These results suggest an early action of exogenous TGF-β1 on the bovine embryo, highlighting the importance to provide a more comprehensive understanding of the role of TGF-β signalling during early embryogenesis.

  4. Maternal xNorrin, a Canonical Wnt Signaling Agonist and TGF-β Antagonist, Controls Early Neuroectoderm Specification in Xenopus

    PubMed Central

    Xu, Suhong; Cheng, Feng; Liang, Juan; Wu, Wei; Zhang, Jian

    2012-01-01

    Dorsal–ventral specification in the amphibian embryo is controlled by β-catenin, whose activation in all dorsal cells is dependent on maternal Wnt11. However, it remains unknown whether other maternally secreted factors contribute to β-catenin activation in the dorsal ectoderm. Here, we show that maternal Xenopus Norrin (xNorrin) promotes anterior neural tissue formation in ventralized embryos. Conversely, when xNorrin function is inhibited, early canonical Wnt signaling in the dorsal ectoderm and the early expression of the zygotic neural inducers Chordin, Noggin, and Xnr3 are severely suppressed, causing the loss of anterior structures. In addition, xNorrin potently inhibits BMP- and Nodal/Activin-related functions through direct binding to the ligands. Moreover, a subset of Norrin mutants identified in humans with Norrie disease retain Wnt activation but show defective inhibition of Nodal/Activin-related signaling in mesoderm induction, suggesting that this disinhibition causes Norrie disease. Thus, xNorrin is an unusual molecule that acts on two major signaling pathways, Wnt and TGF-β, in opposite ways and is essential for early neuroectoderm specification. PMID:22448144

  5. Elucidation of Cross-Talk and Specificity of Early Response Mechanisms to Salt and PEG-Simulated Drought Stresses in Brassica napus Using Comparative Proteomic Analysis

    PubMed Central

    Luo, Junling; Tang, Shaohua; Peng, Xiaojue; Yan, Xiaohong; Zeng, Xinhua; Li, Jun; Li, Xiaofei; Wu, Gang

    2015-01-01

    To understand the cross-talk and specificity of the early responses of plants to salt and drought, we performed physiological and proteome analyses of Brassica napus seedlings pretreated with 245 mM NaCl or 25% polyethylene glycol (PEG) 6000 under identical osmotic pressure (-1.0 MPa). Significant decreases in water content and photosynthetic rate and excessive accumulation of compatible osmolytes and oxidative damage were observed in response to both stresses. Unexpectedly, the drought response was more severe than the salt response. We further identified 45 common differentially expressed proteins (DEPs), 143 salt-specific DEPs and 160 drought-specific DEPs by isobaric tags for relative and absolute quantitation (iTRAQ) analysis. The proteome quantitative data were then confirmed by multiple reaction monitoring (MRM). The differences in the proteomic profiles between drought-treated and salt-treated seedlings exceeded the similarities in the early stress responses. Signal perception and transduction, transport and membrane trafficking, and photosynthesis-related proteins were enriched as part of the molecular cross-talk and specificity mechanism in the early responses to the two abiotic stresses. The Ca2+ signaling, G protein-related signaling, 14-3-3 signaling pathway and phosphorylation cascades were the common signal transduction pathways shared by both salt and drought stress responses; however, the proteins with executive functions varied. These results indicate functional specialization of family proteins in response to different stresses, i.e., CDPK21, TPR, and CTR1 specific to phosphorylation cascades under early salt stress, whereas STN7 and BSL were specific to phosphorylation cascades under early drought stress. Only the calcium-binding EF-hand family protein and ZKT were clearly identified as signaling proteins that acted as cross-talk nodes for salt and drought signaling pathways. Our study provides new clues and insights for developing strategies to

  6. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo.

    PubMed

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1

  7. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo

    PubMed Central

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1

  8. National CrossTalk. Volume 18, Number 1

    ERIC Educational Resources Information Center

    National Center for Public Policy and Higher Education, 2010

    2010-01-01

    "National CrossTalk" is a publication of the National Center for Public Policy and Higher Education. The National Center promotes public policies that enhance opportunities for quality education and training beyond high school. The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher…

  9. National CrossTalk. Volume 17, Number 2

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2009-01-01

    "National CrossTalk" is a publication of the National Center for Public Policy and Higher Education. The National Center promotes public policies that enhance opportunities for quality education and training beyond high school. The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher…

  10. National CrossTalk. Volume 19, Number 1

    ERIC Educational Resources Information Center

    National Center for Public Policy and Higher Education, 2011

    2011-01-01

    "National CrossTalk" is a publication of the National Center for Public Policy and Higher Education. The National Center promotes public policies that enhance opportunities for quality education and training beyond high school. The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher…

  11. National CrossTalk. Volume 18, Number 2

    ERIC Educational Resources Information Center

    National Center for Public Policy and Higher Education, 2010

    2010-01-01

    "National CrossTalk" is a publication of the National Center for Public Policy and Higher Education. The National Center promotes public policies that enhance opportunities for quality education and training beyond high school. The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher…

  12. Tripolar chromosome segregation drives the association between maternal genotype at variants spanning PLK4 and aneuploidy in human preimplantation embryos.

    PubMed

    McCoy, Rajiv C; Newnham, Louise J; Ottolini, Christian S; Hoffmann, Eva R; Chatzimeletiou, Katerina; Cornejo, Omar E; Zhan, Qiansheng; Zaninovic, Nikica; Rosenwaks, Zev; Petrov, Dmitri A; Demko, Zachary P; Sigurjonsson, Styrmir; Handyside, Alan H

    2018-04-24

    Aneuploidy is prevalent in human embryos and is the leading cause of pregnancy loss. Many aneuploidies arise during oogenesis, increasing with maternal age. Superimposed on these meiotic aneuploidies are frequent errors occurring during early mitotic divisions, contributing to widespread chromosomal mosaicism. Here we reanalyzed a published dataset comprising preimplantation genetic testing for aneuploidy in 24,653 blastomere biopsies from day-3 cleavage-stage embryos, as well as 17,051 trophectoderm biopsies from day-5 blastocysts. We focused on complex abnormalities that affected multiple chromosomes simultaneously, seeking insights into their formation. In addition to well-described patterns such as triploidy and haploidy, we identified 4.7% of blastomeres possessing characteristic hypodiploid karyotypes. We inferred this signature to have arisen from tripolar chromosome segregation in normally-fertilized diploid zygotes or their descendant diploid cells. This could occur via segregation on a tripolar mitotic spindle or by rapid sequential bipolar mitoses without an intervening S-phase. Both models are consistent with time-lapse data from an intersecting set of 77 cleavage-stage embryos, which were enriched for the tripolar signature among embryos exhibiting abnormal cleavage. The tripolar signature was strongly associated with common maternal genetic variants spanning the centrosomal regulator PLK4, driving the association we previously reported with overall mitotic errors. Our findings are consistent with the known capacity of PLK4 to induce tripolar mitosis or precocious M-phase upon dysregulation. Together, our data support tripolar chromosome segregation as a key mechanism generating complex aneuploidy in cleavage-stage embryos and implicate maternal genotype at a quantitative trait locus spanning PLK4 as a factor influencing its occurrence.

  13. Maternal source of variability in the embryo development of an annual killifish.

    PubMed

    Polačik, M; Smith, C; Reichard, M

    2017-04-01

    Organisms inhabiting unpredictable environments often evolve diversified reproductive bet-hedging strategies, expressed as production of multiple offspring phenotypes, thereby avoiding complete reproductive failure. To cope with unpredictable rainfall, African annual killifish from temporary savannah pools lay drought-resistant eggs that vary widely in the duration of embryo development. We examined the sources of variability in the duration of individual embryo development, egg production and fertilization rate in Nothobranchius furzeri. Using a quantitative genetics approach (North Carolina type II design), we found support for maternal effects rather than polyandrous mating as the primary source of the variability in the duration of embryo development. The number of previously laid eggs appeared to serve as an internal physiological cue initiating a shift from rapid-to-slow embryo developmental mode. In annual killifish, extensive phenotypic variability in progeny traits is adaptive, as the conditions experienced by parents have limited relevance to the offspring generation. In contrast to genetic control, with high phenotypic expression and heritability, maternal control of traits under natural selection prevents standing genetic diversity from potentially detrimental effects of selection in fluctuating environments. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  14. A multicenter prospective study to assess the effect of early cleavage on embryo quality, implantation, and live-birth rate.

    PubMed

    de los Santos, Maria José; Arroyo, Gemma; Busquet, Ana; Calderón, Gloria; Cuadros, Jorge; Hurtado de Mendoza, Maria Victoria; Moragas, Marta; Herrer, Raquel; Ortiz, Agueda; Pons, Carme; Ten, Jorge; Vilches, Miguel Angel; Figueroa, Maria José

    2014-04-01

    To investigate the impact of early cleavage (EC) on embryo quality, implantation, and live-birth rates. Prospective cross-sectional study. Multicenter study. Seven hundred embryo transfers and 1,028 early-stage human embryos. None. Implantation according to the presence of EC and embryo quality. The presence of EC is associated with embryo quality, especially in cycles with autologous oocytes. However, the use of EC as an additional criterion for selecting an embryo for transfer does not appear to significantly improve likelihood of implantation. Furthermore, embryos that presented EC had live-birth rates per implanted embryo similar to those that did not show any sign of cleavage. At least for conventional embryo culture and morphologic evaluations, the additional evaluation of EC in embryos may not be valuable to improve embryo implantation. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Magnitude and behavior of cross-talk effects in multichannel electrophysiology experiments.

    PubMed

    Nelson, Matthew J; Valtcheva, Silvana; Venance, Laurent

    2017-07-01

    Modern neurophysiological experiments frequently involve multiple channels separated by very small distances. A unique methodological concern for multiple-electrode experiments is that of capacitive coupling (cross-talk) between channels. Yet the nature of the cross-talk recording circuit is not well known in the field, and the extent to which it practically affects neurophysiology experiments has never been fully investigated. Here we describe a simple electrical circuit model of simultaneous recording and stimulation with two or more channels and experimentally verify the model using ex vivo brain slice and in vivo whole-brain preparations. In agreement with the model, we find that cross-talk amplitudes increase nearly linearly with the impedance of a recording electrode and are larger for higher frequencies. We demonstrate cross-talk contamination of action potential waveforms from intracellular to extracellular channels, which is observable in part because of the different orders of magnitude between the channels. This contamination is electrode impedance-dependent and matches predictions from the model. We use recently published parameters to simulate cross-talk in high-density multichannel extracellular recordings. Cross-talk effectively spatially smooths current source density (CSD) estimates in these recordings and induces artefactual phase shifts where underlying voltage gradients occur; however, these effects are modest. We show that the effects of cross-talk are unlikely to affect most conclusions inferred from neurophysiology experiments when both originating and receiving electrode record signals of similar magnitudes. We discuss other types of experiments and analyses that may be susceptible to cross-talk, techniques for detecting and experimentally reducing cross-talk, and implications for high-density probe design. NEW & NOTEWORTHY We develop and experimentally verify an electrical circuit model describing cross-talk that necessarily occurs between

  16. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos

    PubMed Central

    Wang, Xinyi; Liu, Denghui; He, Dajian; Suo, Shengbao; Xia, Xian; He, Xiechao; Han, Jing-Dong J.; Zheng, Ping

    2017-01-01

    Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey. PMID:28223401

  17. The DVR-1 (Vg1) transcript of zebrafish is maternally supplied and distributed throughout the embryo.

    PubMed

    Helde, K A; Grunwald, D J

    1993-10-01

    It is not known how region- or tissue-specific differences are generated in the zebrafish embryo. To look at the potential role of maternal transcripts in generating cell diversity, we have isolated and characterized the zebrafish homologue of Xenopus DVR-1 (Vg1), a maternally supplied RNA that encodes a member of the transforming growth factor-beta superfamily. The zebrafish DVR-1 RNA is maternally supplied and its protein product shares a high degree of sequence identity with Xenopus DVR-1. These conserved features indicate that DVR-1 is likely to have an essential function in early embryogenesis. However, unlike the frog transcript, which is restricted to vegetal cells, DVR-1 RNA is distributed equally among all zebrafish blastomeres. We suggest that the ubiquitous distribution of DVR-1 RNA reflects a significant aspect of the developmental strategy of the zebrafish in which each blastomere retains an equivalent developmental potential throughout the cleavage period.

  18. Glassfrog embryos hatch early after parental desertion.

    PubMed

    Delia, Jesse R J; Ramírez-Bautista, Aurelio; Summers, Kyle

    2014-06-22

    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations.

  19. Glassfrog embryos hatch early after parental desertion

    PubMed Central

    Delia, Jesse R. J.; Ramírez-Bautista, Aurelio; Summers, Kyle

    2014-01-01

    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations. PMID:24789892

  20. Effects of maternal dietary manganese and incubation temperature on hatchability, antioxidant status, and expression of heat shock proteins in chick embryos.

    PubMed

    Zhu, Y W; Lu, L; Li, W X; Zhang, L Y; Ji, C; Lin, X; Liu, H C; Odle, J; Luo, X G

    2015-12-01

    To investigate whether supplementing manganese (Mn) to the maternal diet could reduce the deleterious effect of heat stress on the developing embryo, the hatchability, antioxidant status, and expression of heat shock proteins (HSP) were evaluated in chick embryos under normal and high incubation temperatures. A completely randomized design ( = 6) with 2 maternal dietary Mn treatments (unsupplemented control basal diet versus the basal diet + 120 mg Mn/kg as inorganic Mn) × 2 incubation temperatures (normal, 37.8°C, versus high, 39.0°C) was used. High incubation temperature did not affect ( > 0.19) hatchability and embryo mortality and development but did increase ( < 0.05) activities of heart manganese superoxide dismutase (MnSOD) and liver copper zinc superoxide dismutase and liver MnSOD mRNA and protein levels in embryos. High incubation temperature also decreased ( < 0.003) HSP70 protein level in the heart but had no effects ( > 0.07) in the liver of embryos. Maternal diet with Mn supplementation not only increased ( < 0.05) the hatchability and Mn content ( < 0.001) in the yolk and embryonic tissues and the activity of MnSOD in the heart ( < 0.004) as well as relative liver weight ( < 0.05) under normal incubation temperature but also decreased ( ≤ 0.05) embryo mortality and HSP90 mRNA level in the liver and heart of embryos. Furthermore, under high incubation temperature, maternal diet Mn supplementation increased ( < 0.002) MnSOD protein expression in the liver of embryos but had no effect ( > 0.43) under normal incubation temperature. These results indicated that high incubation temperature induced self-protective responses of chick embryos with a modification of antioxidant status and a depression of HSP70 protein level. Maternal dietary supplementation of Mn could improve the hatchability as well as antioxidant ability to protect against heat challenge in embryos during incubation.

  1. The maternal genes Ci-p53/p73-a and Ci-p53/p73-b regulate zygotic ZicL expression and notochord differentiation in Ciona intestinalis embryos.

    PubMed

    Noda, Takeshi

    2011-12-01

    I isolated a Ciona intestinalis homolog of p53, Ci-p53/p73-a, in a microarray screen of rapidly degraded maternal mRNA by comparing the transcriptomes of unfertilized eggs and 32-cell stage embryos. Higher expression of the gene in eggs and lower expression in later embryonic stages were confirmed by whole-mount in situ hybridization (WISH) and quantitative reverse transcription-PCR (qRT-PCR); expression was ubiquitous in eggs and early embryos. Knockdown of Ci-p53/p73-a by injection of antisense morpholino oligonucleotides (MOs) severely perturbed gastrulation cell movements and expression of notochord marker genes. A key regulator of notochord differentiation in Ciona embryos is Brachyury (Ci-Bra), which is directly activated by a zic-like gene (Ci-ZicL). The expression of Ci-ZicL and Ci-Bra in A-line notochord precursors was downregulated in Ci-p53/p73-a knockdown embryos. Maternal expression of Ci-p53/p73-b, a homolog of Ci-p53/p73-a, was also detected. In Ci-p53/p73-b knockdown embryos, gastrulation cell movements, expression of Ci-ZicL and Ci-Bra in A-line notochord precursors, and expression of notochord marker gene at later stages were perturbed. The upstream region of Ci-ZicL contains putative p53-binding sites. Cis-regulatory analysis of Ci-ZicL showed that these sites are involved in expression of Ci-ZicL in A-line notochord precursors at the 32-cell and early gastrula stages. These results suggest that p53 genes are maternal factors that play a crucial role in A-line notochord differentiation in C. intestinalis embryos by regulating Ci-ZicL expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. A transcriptional blueprint for a spiral-cleaving embryo.

    PubMed

    Chou, Hsien-Chao; Pruitt, Margaret M; Bastin, Benjamin R; Schneider, Stephan Q

    2016-08-05

    The spiral cleavage mode of early development is utilized in over one-third of all animal phyla and generates embryonic cells of different size, position, and fate through a conserved set of stereotypic and invariant asymmetric cell divisions. Despite the widespread use of spiral cleavage, regulatory and molecular features for any spiral-cleaving embryo are largely uncharted. To address this gap we use RNA-sequencing on the spiralian model Platynereis dumerilii to capture and quantify the first complete genome-wide transcriptional landscape of early spiral cleavage. RNA-sequencing datasets from seven stages in early Platynereis development, from the zygote to the protrochophore, are described here including the de novo assembly and annotation of ~17,200 Platynereis genes. Depth and quality of the RNA-sequencing datasets allow the identification of the temporal onset and level of transcription for each annotated gene, even if the expression is restricted to a single cell. Over 4000 transcripts are maternally contributed and cleared by the end of the early spiral cleavage phase. Small early waves of zygotic expression are followed by major waves of thousands of genes, demarcating the maternal to zygotic transition shortly after the completion of spiral cleavages in this annelid species. Our comprehensive stage-specific transcriptional analysis of early embryonic stages in Platynereis elucidates the regulatory genome during early spiral embryogenesis and defines the maternal to zygotic transition in Platynereis embryos. This transcriptome assembly provides the first systems-level view of the transcriptional and regulatory landscape for a spiral-cleaving embryo.

  3. Embryo sac formation and early embryo development in Agave tequilana (Asparagaceae).

    PubMed

    González-Gutiérrez, Alejandra G; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín

    2014-01-01

    Agave tequilana is an angiosperm species that belongs to the family Asparagaceae (formerly Agavaceae). Even though there is information regarding to some aspects related to the megagametogenesis of A. tequilana, this is the first report describing the complete process of megasporogenesis, megagametogenesis, the early embryo and endosperm development process in detail. The objective of this work was to study and characterize all the above processes and the distinctive morphological changes of the micropylar and chalazal extremes after fertilization in this species. The agave plant material for the present study was collected from commercial plantations in the state of Jalisco, Mexico. Ovules and immature seeds, previously fixed in FAA and kept in ethanol 70%, were stained based on a tissue clarification technique by using a Mayer's-Hematoxylin solution. The tissue clarification technique was successfully used for the characterization of the megasporogenesis, megagametogenesis, mature embryo sac formation, the early embryo and endosperm development processes by studying intact cells. The embryo sac of A. tequilana was confirmed to be of the monosporic Polygonum-type and an helobial endosperm formation. Also, the time-lapse of the developmental processes studied was recorded.

  4. Microchannel plate cross-talk mitigation for spatial autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Lipka, Michał; Parniak, Michał; Wasilewski, Wojciech

    2018-05-01

    Microchannel plates (MCP) are the basis for many spatially resolved single-particle detectors such as ICCD or I-sCMOS cameras employing image intensifiers (II), MCPs with delay-line anodes for the detection of cold gas particles or Cherenkov radiation detectors. However, the spatial characterization provided by an MCP is severely limited by cross-talk between its microchannels, rendering MCP and II ill-suited for autocorrelation measurements. Here, we present a cross-talk subtraction method experimentally exemplified for an I-sCMOS based measurement of pseudo-thermal light second-order intensity autocorrelation function at the single-photon level. The method merely requires a dark counts measurement for calibration. A reference cross-correlation measurement certifies the cross-talk subtraction. While remaining universal for MCP applications, the presented cross-talk subtraction, in particular, simplifies quantum optical setups. With the possibility of autocorrelation measurements, the signal needs no longer to be divided into two camera regions for a cross-correlation measurement, reducing the experimental setup complexity and increasing at least twofold the simultaneously employable camera sensor region.

  5. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    PubMed

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  6. Efficient harvesting methods for early-stage snake and turtle embryos.

    PubMed

    Matsubara, Yoshiyuki; Kuroiwa, Atsushi; Suzuki, Takayuki

    2016-04-01

    Reptile development is an intriguing research target for understating the unique morphogenesis of reptiles as well as the evolution of vertebrates. However, there are numerous difficulties associated with studying development in reptiles. The number of available reptile eggs is usually quite limited. In addition, the reptile embryo is tightly adhered to the eggshell, making it a challenge to isolate reptile embryos intact. Furthermore, there have been few reports describing efficient procedures for isolating intact embryos especially prior to pharyngula stage. Thus, the aim of this review is to present efficient procedures for obtaining early-stage reptilian embryos intact. We first describe the method for isolating early-stage embryos of the Japanese striped snake. This is the first detailed method for obtaining embryos prior to oviposition in oviparous snake species. Second, we describe an efficient strategy for isolating early-stage embryos of the soft-shelled turtle. © 2016 Japanese Society of Developmental Biologists.

  7. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos.

    PubMed

    Foo, Shawna A; Dworjanyn, Symon A; Poore, Alistair G B; Byrne, Maria

    2012-01-01

    Predicting effects of rapid climate change on populations depends on measuring the effects of climate stressors on performance, and potential for adaptation. Adaptation to stressful climatic conditions requires heritable genetic variance for stress tolerance present in populations. We quantified genetic variation in tolerance of early development of the ecologically important sea urchin Centrostephanus rodgersii to near-future (2100) ocean conditions projected for the southeast Australian global change hot spot. Multiple dam-sire crosses were used to quantify the interactive effects of warming (+2-4 °C) and acidification (-0.3-0.5 pH units) across twenty-seven family lines. Acidification, but not temperature, decreased the percentage of cleavage stage embryos. In contrast, temperature, but not acidification decreased the percentage of gastrulation. Cleavage success in response to both stressors was strongly affected by sire identity. Sire and dam identity significantly affected gastrulation and both interacted with temperature to determine developmental success. Positive genetic correlations for gastrulation indicated that genotypes that did well at lower pH also did well in higher temperatures. Significant genotype (sire) by environment interactions for both stressors at gastrulation indicated the presence of heritable variation in thermal tolerance and the ability of embryos to respond to changing environments. The significant influence of dam may be due to maternal provisioning (maternal genotype or environment) and/or offspring genotype. It appears that early development in this ecologically important sea urchin is not constrained in adapting to the multiple stressors of ocean warming and acidification. The presence of tolerant genotypes indicates the potential to adapt to concurrent warming and acidification, contributing to the resilience of C. rodgersii in a changing ocean.

  8. Seasonal Variations in Maternal Provisioning of Crepidula fornicata (Gastropoda): Fatty Acid Composition of Females, Embryos and Larvae

    PubMed Central

    Leroy, Fanny; Meziane, Tarik; Riera, Pascal; Comtet, Thierry

    2013-01-01

    Recruitment success of marine invertebrate populations not only depends on the number of recruits but also on their quality which affects their survival. In species characterized by a mixed development (encapsulated embryonic development and release of planktotrophic larvae), the offspring quality depends on both maternal provisioning and larval feeding. Here, we investigated potential changes of maternal provisioning over the whole reproductive period in a gastropod with a mixed development: Crepidula fornicata . In its introduction area, C . fornicata reproduces from February to October, which implies that both adults and larvae are exposed to different food availabilities. Maternal provisioning was assessed by measuring the fatty acid (FA) composition of females, encapsulated embryos and larvae, in February, May, July and September 2009. FA are essential resources for the development of embryos and larvae, and are key biomarkers of offspring quality. Our results showed differences in FA composition between muscles, visceral masses, and encapsulated embryos. In particular, FA composition of embryos was similar to that of the visceral mass. Seasonal variations in FA composition were observed: in the middle of the reproductive season (May and July), female tissues and embryos showed a higher proportion of polyunsaturated fatty acids and especially ω3, as compared to the beginning and end of the reproductive season (February and September). This showed that through maternal provisioning the quality of C . fornicata offspring was higher in the middle of the reproductive season. Whether this would result in an increase of recruitment success and juvenile performance would require further investigations. PMID:24086505

  9. Seasonal variations in maternal provisioning of Crepidula fornicata (Gastropoda): fatty acid composition of females, embryos and larvae.

    PubMed

    Leroy, Fanny; Meziane, Tarik; Riera, Pascal; Comtet, Thierry

    2013-01-01

    Recruitment success of marine invertebrate populations not only depends on the number of recruits but also on their quality which affects their survival. In species characterized by a mixed development (encapsulated embryonic development and release of planktotrophic larvae), the offspring quality depends on both maternal provisioning and larval feeding. Here, we investigated potential changes of maternal provisioning over the whole reproductive period in a gastropod with a mixed development: Crepidula fornicata. In its introduction area, C. fornicata reproduces from February to October, which implies that both adults and larvae are exposed to different food availabilities. Maternal provisioning was assessed by measuring the fatty acid (FA) composition of females, encapsulated embryos and larvae, in February, May, July and September 2009. FA are essential resources for the development of embryos and larvae, and are key biomarkers of offspring quality. Our results showed differences in FA composition between muscles, visceral masses, and encapsulated embryos. In particular, FA composition of embryos was similar to that of the visceral mass. Seasonal variations in FA composition were observed: in the middle of the reproductive season (May and July), female tissues and embryos showed a higher proportion of polyunsaturated fatty acids and especially ω3, as compared to the beginning and end of the reproductive season (February and September). This showed that through maternal provisioning the quality of C. fornicata offspring was higher in the middle of the reproductive season. Whether this would result in an increase of recruitment success and juvenile performance would require further investigations.

  10. Compact and low cross-talk silicon-on-insulator crossing using a periodic dielectric waveguide.

    PubMed

    Feng, Junbo; Li, Qunqing; Fan, Shoushan

    2010-12-01

    We propose and experimentally demonstrate a compact, highly efficient, and negligible cross-talk silicon-on-insulator crossing using a periodic dielectric waveguide. The crossing occupies a footprint of less than 4 μm × 4 μm. Around 0.7 dB insertion loss and lower than -40 dB, cross talk was achieved experimentally over a broad wavelength range.

  11. Pathway cross-talk network analysis identifies critical pathways in neonatal sepsis.

    PubMed

    Meng, Yu-Xiu; Liu, Quan-Hong; Chen, Deng-Hong; Meng, Ying

    2017-06-01

    Despite advances in neonatal care, sepsis remains a major cause of morbidity and mortality in neonates worldwide. Pathway cross-talk analysis might contribute to the inference of the driving forces in bacterial sepsis and facilitate a better understanding of underlying pathogenesis of neonatal sepsis. This study aimed to explore the critical pathways associated with the progression of neonatal sepsis by the pathway cross-talk analysis. By integrating neonatal transcriptome data with known pathway data and protein-protein interaction data, we systematically uncovered the disease pathway cross-talks and constructed a disease pathway cross-talk network for neonatal sepsis. Then, attract method was employed to explore the dysregulated pathways associated with neonatal sepsis. To determine the critical pathways in neonatal sepsis, rank product (RP) algorithm, centrality analysis and impact factor (IF) were introduced sequentially, which synthetically considered the differential expression of genes and pathways, pathways cross-talks and pathway parameters in the network. The dysregulated pathways with the highest IF values as well as RP<0.01 were defined as critical pathways in neonatal sepsis. By integrating three kinds of data, only 6919 common genes were included to perform the pathway cross-talk analysis. By statistic analysis, a total of 1249 significant pathway cross-talks were selected to construct the pathway cross-talk network. Moreover, 47 dys-regulated pathways were identified via attract method, 20 pathways were identified under RP<0.01, and the top 10 pathways with the highest IF were also screened from the pathway cross-talk network. Among them, we selected 8 common pathways, i.e. critical pathways. In this study, we systematically tracked 8 critical pathways involved in neonatal sepsis by integrating attract method and pathway cross-talk network. These pathways might be responsible for the host response in infection, and of great value for advancing

  12. Nucleolus Precursor Bodies and Ribosome Biogenesis in Early Mammalian Embryos: Old Theories and New Discoveries.

    PubMed

    Fulka, Helena; Aoki, Fugaku

    2016-06-01

    In mammals, mature oocytes and early preimplantation embryos contain transcriptionally inactive structures termed nucleolus precursor bodies instead of the typical fibrillo-granular nucleoli. These nuclear organelles are essential and strictly of maternal origin. If they are removed from oocytes, the resulting embryos are unable to replace them and consequently fail to develop. Historically, nucleolus precursor bodies have been perceived as a passive repository site of nucleolar proteins that are required for embryos to form fully functional nucleoli. Recent results, however, contradict this long-standing dogma and show that these organelles are dispensable for nucleologenesis and ribosome biogenesis. In this article, we discuss the possible roles of nucleolus precursor bodies and propose how they might be involved in embryogenesis. Furthermore, we argue that these organelles are essential only shortly after fertilization and suggest that they might actively participate in centromeric chromatin establishment. © 2016 by the Society for the Study of Reproduction, Inc.

  13. Effect of exogenous progesterone on embryo size and ewe uterine gene expression in an ovine 'dam size' model of maternal constraint.

    PubMed

    Fermin, Lisanne M; Pain, Sarah J; Morel, Patrick C H; Gedye, Kristene R; Kenyon, Paul R; Blair, Hugh T

    2017-11-21

    Progesterone (P4), acting via its receptor, regulates uterine function and histotroph production, which are crucial to embryo growth. This study aimed to examine exogenous P4 effects on embryo size and differential endometrial gene expression at Day 19 of gestation using a 'dam size' sheep model of maternal constraint. Purebred Suffolk (S, genotypically large) embryos were transferred into recipient groups of Cheviot (C, genotypically small) or Suffolk ewes that had, or had not, been pre-treated with P4 from Days 0 to 6 of pregnancy. At Day 19S embryos were collected from four experimental groups: P4 pretreated S ewes (SP4; n=5), untreated S ewes (SnP4; n=15), P4 pretreated C ewes (CP4; n=7) and untreated C ewes (CnP4; n=21). Day-19 embryos from CP4 ewes were larger (P<0.05) than those from CnP4 ewes and similar in size (P>0.05) to embryos from SnP4 and SP4 ewes. Expression of mucin 1 (MUC1) and prostaglandin-endoperoxide synthase 2 (PTGS2) was upregulated in uterine horns ipsilateral to the corpus luteum from CP4 ewes. Prostaglandin receptor (PGR), MUC1 and PTGS2 expression was upregulated, whilst cathepsin L (CTSL) and radical S-adenosyl methionine domain-containing 2 (RSAD2) expression was downregulated in the ipsilateral horn of SP4 ewes. This suggests that pretreating ewes with exogenous P4 may alleviate early pregnancy maternal constraint via mechanisms that alter uterine function. However, further research is required to investigate the timing of P4 administration and its impact on conception rates.

  14. Small pixel cross-talk MTF and its impact on MWIR sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Willers, Cornelius J.

    2017-05-01

    As pixel sizes reduce in the development of modern High Definition (HD) Mid Wave Infrared (MWIR) detectors the interpixel cross-talk becomes increasingly difficult to regulate. The diffusion lengths required to achieve the quantum efficiency and sensitivity of MWIR detectors are typically longer than the pixel pitch dimension, and the probability of inter-pixel cross-talk increases as the pixel pitch/diffusion length fraction decreases. Inter-pixel cross-talk is most conveniently quantified by the focal plane array sampling Modulation Transfer Function (MTF). Cross-talk MTF will reduce the ideal sinc square pixel MTF that is commonly used when modelling sensor performance. However, cross-talk MTF data is not always readily available from detector suppliers, and since the origins of inter-pixel cross-talk are uniquely device and manufacturing process specific, no generic MTF models appear to satisfy the needs of the sensor designers and analysts. In this paper cross-talk MTF data has been collected from recent publications and the development for a generic cross-talk MTF model to fit this data is investigated. The resulting cross-talk MTF model is then included in a MWIR sensor model and the impact on sensor performance is evaluated in terms of the National Imagery Interoperability Rating Scale's (NIIRS) General Image Quality Equation (GIQE) metric for a range of fnumber/ detector pitch Fλ/d configurations and operating environments. By applying non-linear boost transfer functions in the signal processing chain, the contrast losses due to cross-talk may be compensated for. Boost transfer functions, however, also reduce the signal to noise ratio of the sensor. In this paper boost function limits are investigated and included in the sensor performance assessments.

  15. National CrossTalk. Volume 12, Number 1, Winter 2004

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2004-01-01

    "National CrossTalk" is a publication of the National Center for Public Policy and Higher Education. The National Center promotes public policies that enhance opportunities for quality education and training beyond high school. The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher…

  16. Maternal Argonaute 2 Is Essential for Early Mouse Development at the Maternal-Zygotic Transition

    PubMed Central

    Lykke-Andersen, Karin; Gilchrist, Michael J.; Grabarek, Joanna B.; Das, Partha; Miska, Eric

    2008-01-01

    Activation of zygotic gene expression in the two-cell mouse embryo is associated with destruction of maternally inherited transcripts, an important process for embryogenesis about which little is understood. We asked whether the Argonaute (Ago)/RNA-induced silencing complex, providing the mRNA “slicer” activity in gene silencing, might contribute to this process. Here we show that Ago2, 3, and 4 transcripts are contributed to the embryo maternally. By systematic knockdown of maternal Ago2, 3, and 4, individually and in combination, we find that only Ago2 is required for development beyond the two-cell stage. Knockdown of Ago2 stabilizes one set of maternal mRNAs and reduces zygotic transcripts of another set of genes. Ago2 is localized in mRNA-degradation P-bodies analogous to those that function in RNAi-like mechanisms in other systems. Profiling the expression of microRNAs throughout preimplantation development identified several candidates that could potentially work with Ago2 to mediate degradation of specific mRNAs. However, their low abundance raises the possibility that other endogenous siRNAs may also participate. Together, our results demonstrate that maternal expression of Ago2 is essential for the earliest stages of mouse embryogenesis and are compatible with the notion that degradation of a proportion of maternal messages involves the RNAi-machinery. PMID:18701707

  17. Maternal Vibration: An Important Cue for Embryo Hatching in a Subsocial Shield Bug

    PubMed Central

    Mukai, Hiromi; Hironaka, Mantaro; Tojo, Sumio; Nomakuchi, Shintaro

    2014-01-01

    Hatching care has been reported for many taxonomic groups, from invertebrates to vertebrates. The sophisticated care that occurs around hatching time is expected to have an adaptive function supporting the feeble young. However, details of the characteristics of the adaptive function of hatching care remain unclear. This study investigated the hatching care of the subsocial shield bug, Parastrachia japonensis (Heteroptera: Parastrachiidae) to verify its function. Results show that the P. japonensis mothers vibrated the egg mass intermittently while maintaining an egg-guarding posture. Then embryos started to emerge from their shells synchronously. Unlike such behaviors of closely related species, this vibrating behavior was faint, but lasted more than 6 h. To investigate the effect of this behavior on hatching synchrony and hatching success, we observed the hatching pattern and the hatching rate in control, mother-removed, and two artificial vibration groups. Control broods experienced continuous guarding from the mother. Intermittent artificial vibration broods were exposed to vibrations that matched the temporal pattern of maternal vibration produced by a motor. They showed synchronous hatching patterns and high hatching rates. However, for mother-removed broods, which were isolated from the mother, and when we provided continuous artificial vibration that did not match the temporal pattern of the maternal vibration, embryo hatching was not only asynchronous: some embryos failed to emerge from their shells. These results lead us to infer that hatching care in P. japonensis has two functions: hatching regulation and hatching assistance. Nevertheless, several points of observational and circumstantial evidence clearly contraindicate hatching assistance. A reduction in the hatching rate might result from dependence on maternal hatching care as a strong cue in P. japonensis. We conclude that the hatching care of P. japonensis regulates the hatching pattern and serves

  18. Maternal vibration: an important cue for embryo hatching in a subsocial shield bug.

    PubMed

    Mukai, Hiromi; Hironaka, Mantaro; Tojo, Sumio; Nomakuchi, Shintaro

    2014-01-01

    Hatching care has been reported for many taxonomic groups, from invertebrates to vertebrates. The sophisticated care that occurs around hatching time is expected to have an adaptive function supporting the feeble young. However, details of the characteristics of the adaptive function of hatching care remain unclear. This study investigated the hatching care of the subsocial shield bug, Parastrachia japonensis (Heteroptera: Parastrachiidae) to verify its function. Results show that the P. japonensis mothers vibrated the egg mass intermittently while maintaining an egg-guarding posture. Then embryos started to emerge from their shells synchronously. Unlike such behaviors of closely related species, this vibrating behavior was faint, but lasted more than 6 h. To investigate the effect of this behavior on hatching synchrony and hatching success, we observed the hatching pattern and the hatching rate in control, mother-removed, and two artificial vibration groups. Control broods experienced continuous guarding from the mother. Intermittent artificial vibration broods were exposed to vibrations that matched the temporal pattern of maternal vibration produced by a motor. They showed synchronous hatching patterns and high hatching rates. However, for mother-removed broods, which were isolated from the mother, and when we provided continuous artificial vibration that did not match the temporal pattern of the maternal vibration, embryo hatching was not only asynchronous: some embryos failed to emerge from their shells. These results lead us to infer that hatching care in P. japonensis has two functions: hatching regulation and hatching assistance. Nevertheless, several points of observational and circumstantial evidence clearly contraindicate hatching assistance. A reduction in the hatching rate might result from dependence on maternal hatching care as a strong cue in P. japonensis. We conclude that the hatching care of P. japonensis regulates the hatching pattern and serves

  19. Folic acid and safflower oil supplementation interacts and protects embryos from maternal diabetes-induced damage.

    PubMed

    Higa, R; Kurtz, M; Mazzucco, M B; Musikant, D; White, V; Jawerbaum, A

    2012-05-01

    Maternal diabetes increases the risk of embryo malformations. Folic acid and safflower oil supplementations have been shown to reduce embryo malformations in experimental models of diabetes. In this study we here tested whether folic acid and safflower oil supplementations interact to prevent embryo malformations in diabetic rats, and analyzed whether they act through the regulation of matrix metalloproteinases (MMPs), their endogenous inhibitors (TIMPs), and nitric oxide (NO) and reactive oxygen species production. Diabetes was induced by streptozotocin administration prior to mating. From Day 0.5 of pregnancy, rats did or did not receive folic acid (15 mg/kg) and/or a 6% safflower oil-supplemented diet. Embryos and decidua were explanted on Day 10.5 of gestation for further analysis of embryo resorptions and malformations, MMP-2 and MMP-9 activities, TIMP-1 and TIMP-2 levels, NO production and lipid peroxidation. Maternal diabetes induced resorptions and malformations that were prevented by folic acid and safflower oil supplementation. MMP-2 and MMP-9 activities were increased in embryos and decidua from diabetic rats and decreased with safflower oil and folic acid supplementations. In diabetic animals, the embryonic and decidual TIMPs were increased mainly with safflower oil supplementation in decidua and with folic acid in embryos. NO overproduction was decreased in decidua from diabetic rats treated with folic acid alone and in combination with safflower oil. These treatments also prevented increases in embryonic and decidual lipid peroxidation. In conclusion, folic acid and safflower oil supplementations interact and protect the embryos from diabetes-induced damage through several pathways related to a decrease in pro-inflammatory mediators.

  20. On Cross-talk Correction of Images from Multiple-port CCDs

    NASA Astrophysics Data System (ADS)

    Freyhammer, L. M.; Andersen, M. I.; Arentoft, T.; Sterken, C.; Nørregaard, P.

    Multi-channel CCD read-out, which is an option offered at most optical observatories, can significantly reduce the time spent on reading the detector. The penalty of using this option is the so-called amplifier cross-talk, which causes contamination across the output amplifiers, typically at the level of 1:10 000. This can be a serious problem for applications where high precision and/or high contrast is of importance. We represent an analysis of amplifier cross-talk for two instruments - FORS1 at the ESO VLT telescope Antu (Paranal) and DFOSC at the Danish 1.54 m telescope (La Silla) - and present a post-processing method for removing the imprint of cross-talk. It is found that cross-talk may significantly contaminate high-precision photometry in crowded fields, but it can be effectively eliminated during data reduction.

  1. Adaptive Capacity of the Habitat Modifying Sea Urchin Centrostephanus rodgersii to Ocean Warming and Ocean Acidification: Performance of Early Embryos

    PubMed Central

    Foo, Shawna A.; Dworjanyn, Symon A.; Poore, Alistair G. B.; Byrne, Maria

    2012-01-01

    Background Predicting effects of rapid climate change on populations depends on measuring the effects of climate stressors on performance, and potential for adaptation. Adaptation to stressful climatic conditions requires heritable genetic variance for stress tolerance present in populations. Methodology/Principal Findings We quantified genetic variation in tolerance of early development of the ecologically important sea urchin Centrostephanus rodgersii to near-future (2100) ocean conditions projected for the southeast Australian global change hot spot. Multiple dam-sire crosses were used to quantify the interactive effects of warming (+2–4°C) and acidification (−0.3−0.5 pH units) across twenty-seven family lines. Acidification, but not temperature, decreased the percentage of cleavage stage embryos. In contrast, temperature, but not acidification decreased the percentage of gastrulation. Cleavage success in response to both stressors was strongly affected by sire identity. Sire and dam identity significantly affected gastrulation and both interacted with temperature to determine developmental success. Positive genetic correlations for gastrulation indicated that genotypes that did well at lower pH also did well in higher temperatures. Conclusions/Significance Significant genotype (sire) by environment interactions for both stressors at gastrulation indicated the presence of heritable variation in thermal tolerance and the ability of embryos to respond to changing environments. The significant influence of dam may be due to maternal provisioning (maternal genotype or environment) and/or offspring genotype. It appears that early development in this ecologically important sea urchin is not constrained in adapting to the multiple stressors of ocean warming and acidification. The presence of tolerant genotypes indicates the potential to adapt to concurrent warming and acidification, contributing to the resilience of C. rodgersii in a changing ocean. PMID

  2. Natural killer cells and regulatory T cells in early pregnancy loss

    PubMed Central

    SHARMA, SURENDRA

    2015-01-01

    Survival of the allogeneic embryo in the uterus depends on the maintenance of immune tolerance at the maternal-fetal interface. The pregnant uterus is replete with activated maternal immune cells. How this immune tolerance is acquired and maintained has been a topic of intense investigation. The key immune cells that predominantly populate the pregnant uterus are natural killer (NK) cells. In normal pregnancy, these cells are not killers, but rather provide a microenvironment that is pregnancy compatible and supports healthy placentation. In placental mammals, an array of highly orchestrated immune elements to support successful pregnancy outcome has been incorporated. This includes active cooperation between maternal immune cells, particularly NK cells, and trophoblast cells. This intricate process is required for placentation, immune regulation and to remodel the blood supply to the fetus. During the past decade, various types of maternal immune cells have been thought to be involved in cross-talk with trophoblasts and in programming immune tolerance. RegulatoryT cells (Tregs) have attracted a great deal of attention in promoting implantation and immune tolerance beyond implantation. However, what has not been fully addressed is how this immune-trophoblast axis breaks down during adverse pregnancy outcomes, particularly early pregnancy loss, and in response to unscheduled inflammation. Intense research efforts have begun to shed light on the roles of NK cells and Tregs in early pregnancy loss, although much remains to be unraveled in order to fully characterize the mechanisms underlying their detrimental activity. An increased understanding of host-environment interactions that lead to the cytotoxic phenotype of these otherwise pregnancy compatible maternal immune cells is important for prediction, prevention and treatment of pregnancy maladies, particularly recurrent pregnancy loss. In this review, we discuss relevant information from experimental and human

  3. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells.

    PubMed

    Guo, Fan; Li, Lin; Li, Jingyun; Wu, Xinglong; Hu, Boqiang; Zhu, Ping; Wen, Lu; Tang, Fuchou

    2017-08-01

    Single-cell epigenome sequencing techniques have recently been developed. However, the combination of different layers of epigenome sequencing in an individual cell has not yet been achieved. Here, we developed a single-cell multi-omics sequencing technology (single-cell COOL-seq) that can analyze the chromatin state/nucleosome positioning, DNA methylation, copy number variation and ploidy simultaneously from the same individual mammalian cell. We used this method to analyze the reprogramming of the chromatin state and DNA methylation in mouse preimplantation embryos. We found that within < 12 h of fertilization, each individual cell undergoes global genome demethylation together with the rapid and global reprogramming of both maternal and paternal genomes to a highly opened chromatin state. This was followed by decreased openness after the late zygote stage. Furthermore, from the late zygote to the 4-cell stage, the residual DNA methylation is preferentially preserved on intergenic regions of the paternal alleles and intragenic regions of maternal alleles in each individual blastomere. However, chromatin accessibility is similar between paternal and maternal alleles in each individual cell from the late zygote to the blastocyst stage. The binding motifs of several pluripotency regulators are enriched at distal nucleosome depleted regions from as early as the 2-cell stage. This indicates that the cis-regulatory elements of such target genes have been primed to an open state from the 2-cell stage onward, long before pluripotency is eventually established in the ICM of the blastocyst. Genes may be classified into homogeneously open, homogeneously closed and divergent states based on the chromatin accessibility of their promoter regions among individual cells. This can be traced to step-wise transitions during preimplantation development. Our study offers the first single-cell and parental allele-specific analysis of the genome-scale chromatin state and DNA

  4. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells

    PubMed Central

    Guo, Fan; Li, Lin; Li, Jingyun; Wu, Xinglong; Hu, Boqiang; Zhu, Ping; Wen, Lu; Tang, Fuchou

    2017-01-01

    Single-cell epigenome sequencing techniques have recently been developed. However, the combination of different layers of epigenome sequencing in an individual cell has not yet been achieved. Here, we developed a single-cell multi-omics sequencing technology (single-cell COOL-seq) that can analyze the chromatin state/nucleosome positioning, DNA methylation, copy number variation and ploidy simultaneously from the same individual mammalian cell. We used this method to analyze the reprogramming of the chromatin state and DNA methylation in mouse preimplantation embryos. We found that within < 12 h of fertilization, each individual cell undergoes global genome demethylation together with the rapid and global reprogramming of both maternal and paternal genomes to a highly opened chromatin state. This was followed by decreased openness after the late zygote stage. Furthermore, from the late zygote to the 4-cell stage, the residual DNA methylation is preferentially preserved on intergenic regions of the paternal alleles and intragenic regions of maternal alleles in each individual blastomere. However, chromatin accessibility is similar between paternal and maternal alleles in each individual cell from the late zygote to the blastocyst stage. The binding motifs of several pluripotency regulators are enriched at distal nucleosome depleted regions from as early as the 2-cell stage. This indicates that the cis-regulatory elements of such target genes have been primed to an open state from the 2-cell stage onward, long before pluripotency is eventually established in the ICM of the blastocyst. Genes may be classified into homogeneously open, homogeneously closed and divergent states based on the chromatin accessibility of their promoter regions among individual cells. This can be traced to step-wise transitions during preimplantation development. Our study offers the first single-cell and parental allele-specific analysis of the genome-scale chromatin state and DNA

  5. Nanoscale thermal cross-talk effect on phase-change probe memory.

    PubMed

    Wang, Lei; Wen, Jing; Xiong, Bangshu

    2018-05-14

    Phase-change probe memory is considered as one of the most promising means for next-generation mass storage devices. However, the achievable storage density of phase-change probe memory is drastically affected by the resulting thermal cross-talk effect while previously lacking of detailed study. Therefore, a three dimensional model that couples electrical, thermal, and phase-change processes of the Ge2Sb2Te5 media is developed, and subsequently deployed to assess the thermal cross-talk effect based on Si/TiN/ Ge2Sb2Te5/diamond-like carbon structure by appropriately tailoring the electro-thermal and geometrical properties of the storage media stack for a variety of external excitations. The modeling results show that the diamond-like carbon capping with a thin thickness, a high electrical conductivity, and a low thermal conductivity is desired to minimize the thermal cross-talk, while the TiN underlayer has a slight impact on the thermal cross-talk. Combining the modeling findings with the previous film deposition experience, an optimized phase-change probe memory architecture is presented, and its capability of providing ultra-high recording density simultaneously with a sufficiently low thermal cross-talk is demonstrated. . © 2018 IOP Publishing Ltd.

  6. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia.

    PubMed

    Frey, Anne; Godin, Béatrice; Bonnet, Magda; Sotta, Bruno; Marion-Poll, Annie

    2004-04-01

    The role of maternally derived abscisic acid (ABA) during seed development has been studied using ABA-deficient mutants of Nicotiana plumbaginifolia Viviani. ABA deficiency induced seed abortion, resulting in reduced seed yield, and delayed growth of the remaining embryos. Mutant grafting onto wild-type stocks and reciprocal crosses indicated that maternal ABA, synthesized in maternal vegetative tissues and translocated to the seed, promoted early seed development and growth. Moreover ABA deficiency delayed both seed coat pigmentation and capsule dehiscence. Mutant grafting did not restore these phenotypes, indicating that ABA synthesized in the seed coat and capsule envelope may have a positive effect on capsule and testa maturation. Together these results shed light on the positive role of maternal ABA during N. plumbaginifolia seed development.

  7. [Association of human chorionic gonadotropin level in embryo culture media with early embryo development].

    PubMed

    Wang, Haiying; Zhang, Renli; Han, Dong; Liu, Caixia; Cai, Jiajie; Bi, Yanling; Wen, Anmin; Quan, Song

    2014-06-01

    To investigate the association of human chorionic gonadotropin (HCG) level on day 3 of embryo culture with embryo development. Spent culture media were collected from individually cultured embryos on day 3 of in vitro fertilization and embryo transfer (IVF-ET) cycles. HCG concentration in the culture media was measured using an ELISA kit and its association with embryo development was assessed. In the 163 samples of embryo culture media from 60 patients, HCG was positive in 153 sample (93.8%) with a mean level of 0.85 ± 0.43 mIU/ml. The concentration of hCG in the culture media increased gradually as the number of blastomeres increased (F=2.273, P=0.03), and decreased as the morphological grade of the embryo was lowered (F=3.900, P=0.02). ELISA is capable of detecting HCG levels in spent culture media of embryos on day 3 of in vitro culture. The concentration of HCG in spent culture media is positively correlated with the status of early embryo development and implantation rate and thus serves as a useful marker for embryo selection in IVF-ET procedure.

  8. Selection for rapid embryo development correlates with embryo exposure to maternal androgens among passerine birds

    USGS Publications Warehouse

    Schwabl, H.; Palacios, M.G.; Martin, T.E.

    2007-01-01

    Greater offspring predation favors evolution of faster development among species. We hypothesized that greater offspring predation exerts selection on mothers to increase levels of anabolic androgens in egg yolks to achieve faster development. Here, we tested whether (1) concentrations of yolk androgens in passerine species were associated with offspring predation and (2) embryo and nestling development rates were associated with yolk androgen concentrations. We examined three androgens that increase in potency along the synthesis pathway: androstenedione (A4) to testosterone (T) to 5??- dihydrotestosterone (5??-DHT). Concentrations of none of these steroids were related to clutch size; only A4 was allometrically related to egg volume. Species that experience greater predation showed higher yolk concentrations of T and 5??-DHT. Higher concentrations of T and particularly 5??-DHT were strongly correlated with faster development during the embryo period and less so during the nestling period. Development rates were most strongly correlated with 5??-DHT, suggesting that potency increases along the androgen synthesis pathway and that effects are mediated by the androgen receptor pathway. These results are consistent with the hypothesis that selection for faster development by time-dependent offspring mortality may be achieved epigenetically by varying embryo exposure to maternal anabolic steroids. ?? 2007 by The University of Chicago. All rights reserved.

  9. Evaluating changes in brain vasculature of murine embryos in utero due to maternal alcohol consumption using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Raghunathan, Raksha; Wu, Chen; Singh, Manmohan; Liu, Chih-Hao; Miranda, Rajesh C.; Larin, Kirill V.

    2017-04-01

    Fetal Alcohol Syndrome (FAS) refers to the broad spectrum of developmental and behavioral effects caused due to prenatal alcohol exposure (PAE). Wide range of abnormalities vary depending on the amount of alcohol consumed and the period of consumption during gestation. PAE during early stages of pregnancy is very common. However a large number of women continue to consume alcohol even during the second trimester, a critical period for fetal neurogenesis and angiogenesis. Optical coherence tomography (OCT) has shown to be extremely useful in embryonic imaging. Our previous work showed that OCT is capable of quantitative assessment of ventriculomegaly caused by maternal alcohol consumption. Although structural changes and changes in blood flow in the fetal brain after maternal alcohol consumption have been studied, acute vasculature changes are not well documented. Speckle variance OCT (SVOCT), is a functional extension of OCT that has been used to study vasculature development in embryos. We use SVOCT, to detect vasculature changes in the embryonic brain in utero, minutes after maternal alcohol consumption.

  10. Intravenous Exposure of Pregnant Mice to Silver Nanoparticles: Silver Tissue Distribution and Effects in Maternal and Extra-Embryonic Tissues and Embryos

    NASA Astrophysics Data System (ADS)

    Austin, Carlye Anne

    This research explores the tissue distribution of silver, as well as adverse effects in pregnant mice and embryos, following prenatal silver nanoparticle (AgNP) exposure. Chapter one of this dissertation is a survey of the published literature on the reproductive and/or developmental toxicity of AgNPs. The available data indicate that AgNPs adversely affect sperm count, viability, and/or motility both in vivo and in vitro, and cause apoptosis and necrosis in spermatogonial stem cells and testicular cells. Additionally, AgNP exposure results in mortality and morphological deformities in fish embryos, but produces no adverse effects in chicken embryos. The current published research on in vivo AgNP exposure to mammals during gestation consists of only three studies, one of which is described in chapter two of this dissertation. These studies report results that may suggest a potential for adverse effects on fetal development (e.g. , decreased viability and fetal and placental weights, increased incidence of developmentally young embryos), but additional research is needed. Chapter two of this dissertation investigates the distribution of silver in tissues of pregnant mice and gestation day (GD) 10 embryos following intravenous maternal exposure to 50 nm AgNPs during early organogenesis (GDs 7-9). Examinations of embryo morphology and histology were also performed. Results demonstrated the presence of silver in all organs and tissues examined. Silver concentrations were highest in liver, spleen, and visceral yolk sac, and lowest in embryos. Groups of mice were also treated with soluble silver nitrate, and the pattern of silver tissue distribution following silver nitrate exposure was similar to that which followed AgNP treatment. Transmission electron microscopy-energy dispersive x-ray spectroscopy (TEM-EDS) confirmed the presence of vesicle-bound nanoparticulate silver in visceral yolk sac endoderm, but not mesoderm. This finding, along with the high silver

  11. Predicting pathway cross-talks in ankylosing spondylitis through investigating the interactions among pathways.

    PubMed

    Gu, Xiang; Liu, Cong-Jian; Wei, Jian-Jie

    2017-11-13

    Given that the pathogenesis of ankylosing spondylitis (AS) remains unclear, the aim of this study was to detect the potentially functional pathway cross-talk in AS to further reveal the pathogenesis of this disease. Using microarray profile of AS and biological pathways as study objects, Monte Carlo cross-validation method was used to identify the significant pathway cross-talks. In the process of Monte Carlo cross-validation, all steps were iterated 50 times. For each run, detection of differentially expressed genes (DEGs) between two groups was conducted. The extraction of the potential disrupted pathways enriched by DEGs was then implemented. Subsequently, we established a discriminating score (DS) for each pathway pair according to the distribution of gene expression levels. After that, we utilized random forest (RF) classification model to screen out the top 10 paired pathways with the highest area under the curve (AUCs), which was computed using 10-fold cross-validation approach. After 50 bootstrap, the best pairs of pathways were identified. According to their AUC values, the pair of pathways, antigen presentation pathway and fMLP signaling in neutrophils, achieved the best AUC value of 1.000, which indicated that this pathway cross-talk could distinguish AS patients from normal subjects. Moreover, the paired pathways of SAPK/JNK signaling and mitochondrial dysfunction were involved in 5 bootstraps. Two paired pathways (antigen presentation pathway and fMLP signaling in neutrophil, as well as SAPK/JNK signaling and mitochondrial dysfunction) can accurately distinguish AS and control samples. These paired pathways may be helpful to identify patients with AS for early intervention.

  12. Tissue morphodynamics shaping the early mouse embryo.

    PubMed

    Sutherland, Ann E

    2016-07-01

    Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Impact of PCOS on early embryo cleavage kinetics.

    PubMed

    Wissing, M L; Bjerge, M R; Olesen, A I G; Hoest, T; Mikkelsen, A L

    2014-04-01

    This study investigated whether polycystic ovary syndrome (PCOS) affected early embryo development assessed by time-lapse analysis of embryo kinetics from fertilization to the blastocyst stage. This was a prospective cohort study of two pronuclei (2PN) embryos from 25 hyperandrogenic PCOS patients (110 2PN embryos), 26 normoandrogenic PCOS patients (140 2PN embryos) and 20 healthy, regularly cycling women (controls, 97 2PN embryos). Patients underwent the same baseline evaluation and the same ovarian stimulation from April 2010 to February 2013. Oocytes were fertilized by intracytoplasmic sperm injection and incubated in an EmbryoScope with pictures taken every 20 min in seven focal planes. Time to 2PN breakdown, first cleavage and cleavage to 3, 4, 5, 6, 7 and 8 cells, morula and blastocyst (t₂, t₃, t₄, t₅, t₆, t₇, t₈, t(M), t(B)) were annotated. Differences in embryo kinetics between groups were assessed by mixed modelling. Compared with controls, embryos from hyperandrogenic PCOS patients were significantly delayed at 2PN breakdown, t₂, t₃, t₄ and t₇ but not at t₅, t₆, t₈, t(M) or t(B). Embryos from hyperandrogenic PCOS women had developed slower from fertilization to the 8-cell stage compared with embryos from controls. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Maternal dietary zinc supplementation enhances the epigenetic-activated antioxidant ability of chick embryos from maternal normal and high temperatures.

    PubMed

    Zhu, Yongwen; Liao, Xiudong; Lu, Lin; Li, Wenxiang; Zhang, Liyang; Ji, Cheng; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2017-03-21

    The role of maternal dietary zinc supplementation in protecting the embryos from maternal hyperthermia-induced negative effects via epigenetic mechanisms was examined using an avian model (Gallus gallus). Broiler breeder hens were exposed to two maternal temperatures (21°C and 32°C) × three maternal dietary zinc treatments (zinc-unsupplemented control diet, the control diet + 110 mg zinc/kg inorganic or organic zinc) for 8 weeks. Maternal hyperthermia increased the embryonic mortality and induced oxidative damage evidenced by the elevated mRNA expressions of heat shock protein genes. Maternal dietary zinc deficiency damaged the embryonic development associated with the global DNA hypomethylation and histone 3 lysine 9 hyperacetylation in the embryonic liver. Supplementation of zinc in maternal diets effectively eliminated the embryonic mortality induced by maternal hyperthermia and enhanced antioxidant ability with the increased mRNA and protein expressions of metallothionein IV in the embryonic liver. The increased metallothionein IV mRNA expression was due to the reduced DNA methylation and increased histone 3 lysine 9 acetylation of the metallothionein IV promoter regardless of zinc source. These data demonstrate that maternal dietary zinc addition as an epigenetic modifier could protect the offspring embryonic development against maternal heat stress via enhancing the epigenetic-activated antioxidant ability.

  15. Neurovascular cross talk in diabetic retinopathy: Pathophysiological roles and therapeutic implications

    PubMed Central

    Moran, Elizabeth P.; Wang, Zhongxiao; Chen, Jing; Sapieha, Przemyslaw; Smith, Lois E. H.

    2016-01-01

    Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in developed countries, and its prevalence will increase as the global incidence of diabetes grows exponentially. DR begins with an early nonproliferative stage in which retinal blood vessels and neurons degenerate as a consequence of chronic hyperglycemia, resulting in vasoregression and persistent retinal ischemia, metabolic disequilibrium, and inflammation. This is conducive to overcompensatory pathological neovascularization associated with advanced proliferative DR. Although DR is considered a microvascular complication, the retinal microvasculature is intimately associated with and governed by neurons and glia; neurodegeneration, neuroinflammation, and dysregulation of neurovascular cross talk are responsible in part for vascular abnormalities in both early nonproliferative DR and advanced proliferative DR. Neuronal activity directly regulates microvascular dilation and blood flow in the process of neurovascular coupling. Retinal neurons also secrete guidance cues in response to injury, ischemia, or metabolic stress that may either promote or suppress vascular outgrowth, either alleviating or exacerbating DR, contingent on the stage of disease and retinal microenvironment. Neurodegeneration, impaired neurovascular coupling, and dysregulation of neuronal guidance cues are key events in the pathogenesis of DR, and correcting these events may prevent or delay development of advanced DR. The review discusses the mechanisms of neurovascular cross talk and its dysregulation in DR, and their potential therapeutic implications. PMID:27473938

  16. The effect of repeated light-dark shifts on uterine receptivity and early gestation in mice undergoing embryo transfer.

    PubMed

    Goldstein, Cathy A; O'Brien, Louise M; Bergin, Ingrid L; Saunders, Thomas L

    2018-04-01

    Female shift workers are at increased risk for negative reproductive outcomes, and animal evidence suggests that manipulation of the light-dark cycle is detrimental to early gestation in female mice. Specifically, failure of implantation may be responsible for these findings. The objective of this study was to better delineate which reproductive processes are vulnerable to detrimental effects of maternal circadian disturbance. We exposed mice undergoing embryo transfer to repetitive phase advances of the photoperiod. Embryos were derived from donor sperm and eggs from mice living in normal light-dark conditions to isolate the effects of photoperiod disruption on uterine receptivity and early gestation. Twenty-eight mice receiving embryo transfer underwent an experimental light-dark condition (advance of lights on and lights off by 6 hours every 4 days). Twenty-eight mice remained in a normal light-dark condition. Animals lived in their assigned light-dark condition beginning 2 weeks prior to embryo transfer and ending the day of uterine necropsy (post-coitus day 14.5). Wilcoxon-Mann-Whitney test demonstrated no significant differences between control and experimental light-dark conditions in pups (Z=0.10, p=.92), resorptions (Z=0.20, p=.84), or implantations (Z=-0.34, p=.73). Pup and placental weights were similar between groups. In this investigation, uterine receptivity and maintenance of early gestation were preserved despite recurrent phase advances in photoperiod. This finding, in the context of the current literature, suggests that the negative effects of circadian disruption are mediated by reproductive processes upstream of implantation.

  17. Effect of number of pig embryos in the uterus on their survival and development and on maternal metabolism.

    PubMed

    Père, M C; Dourmad, J Y; Etienne, M

    1997-05-01

    The effects of pig embryo number on fetal survival and growth and maternal metabolism were evaluated with 114 Large White gilts. Gilts were assigned at 38 kg to three treatments: control (CTR), ligature of the left oviduct (LIG), or right hemi-hysteroovariectomy (HHO). Insemination occurred at 311 +/- 18 d of age. A laparotomy was performed at d 35 of gestation, and gilts were slaughtered at d 112. Ovulation rate per uterine horn was 4.30, 8.70, and 17.12 in the LIG, CTR, and HHO groups, respectively. The hierarchy was the same for litter size at d 35 of gestation, but the relative differences were reduced (3.24, 5.98, and 8.40 fetuses/uterine horn, respectively). Litter size per uterine horn was similar in the CTR and HHO groups at d 112 of pregnancy (2.93, 4.69, and 4.76 fetuses in the LIG, CTR, and HHO groups, respectively). Early (before d 35 of gestation), late, and total fetal mortality increased with embryo potential per uterine horn. There was a compensation between early and late fetal mortality in the CTR and HHO groups. Fetal weight at d 112 was related to litter size in early pregnancy (1.50, 1.38, and 1.27 kg in the LIG, CTR, and HHO groups, respectively). Uterine capacity limits litter size and fetal development, even in sows with a conventional potential of embryos. Availability of energetic and gluconeogenic substrates was higher at 110 than at 60 d of gestation in the three groups. Blood substrate levels suggested that lipid mobilization and glucose uptake were higher in the gilts with a larger litter weight.

  18. Stepping Stones to Others' Minds: Maternal Talk Relates to Child Mental State Language and Emotion Understanding at 15, 24, and 33 Months

    ERIC Educational Resources Information Center

    Taumoepeau, Mele; Ruffman, Ted

    2008-01-01

    This continuation of a previous study (Taumoepeau & Ruffman, 2006) examined the longitudinal relation between maternal mental state talk to 15- and 24-month-olds and their later mental state language and emotion understanding (N = 74). The previous study found that maternal talk about the child's desires to 15-month-old children uniquely predicted…

  19. Maternal dietary manganese protects chick embryos against maternal heat stress via epigenetic-activated antioxidant and anti-apoptotic abilities.

    PubMed

    Zhu, Yongwen; Lu, Lin; Liao, Xiudong; Li, Wenxiang; Zhang, Liyang; Ji, Cheng; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2017-10-27

    Maternal heat stress induced the aberrant epigenetic patterns resulting in the abnormal development of offspring embryos. It is unclear whether maternal dietary manganese supplementation as an epigenetic modifier could protect the chick embryonic development against maternal heat stress via epigenetic mechanisms. To test this hypothesis using an avian model, a completely randomized design with a 2 (maternal normal and high environmental temperatures of 21 and 32°C, respectively) × 3 (maternal dietary manganese sources, the control diet without manganese supplementation and the control diet + 120 mg/kg as either inorganic or organic manganese) factorial arrangement was adopted. Maternal environmental hyperthermia increased mRNA expressions of heat shock proteins 90 and 70, cyclin-dependent kinase 6 and B-cell CLL/lymphoma 2-associated X protein displaying oxidative damage and apoptosis in the embryonic heart. Maternal environmental hyperthermia impaired the embryonic development associated with the alteration of epigenetic status, as evidenced by global DNA hypomethylation and histone 3 lysine 9 hypoacetylation in the embryonic heart. Maternal dietary manganese supplementation increased the heart anti-apoptotic gene B-cell CLL/lymphoma 2 expressions under maternal environmental hyperthermia and manganese superoxide dismutase enzyme activity in the embryonic heart. Maternal dietary organic Mn supplementation effectively eliminated the impairment of maternal environmental hyperthermia on the embryonic development. Maternal dietary manganese supplementation up-regulated manganese superoxide dismutase mRNA expression by reducing DNA methylation and increasing histone 3 lysine 9 acetylation of its promoter. It is suggested that maternal dietary manganese addition could protect the chick embryonic development against maternal heat stress via enhancing epigenetic-activated antioxidant and anti-apoptotic abilities.

  20. Maternal Talk about Mental States and the Emergence of Joint Visual Attention

    ERIC Educational Resources Information Center

    Slaughter, Virginia; Peterson, Candida C.; Carpenter, Malinda

    2008-01-01

    Twenty-four infants were tested monthly for gaze and point following between 9 and 15 months of age and mother-infant free play sessions were also conducted at 9, 12, and 15 months (Carpenter, Nagell, & Tomasello, 1998). Using this data set, this study explored relations between maternal talk about mental states during mothers' free play with…

  1. Extra-embryonic tissue spreading directs early embryo morphogenesis in killifish

    PubMed Central

    Reig, Germán; Cerda, Mauricio; Sepúlveda, Néstor; Flores, Daniela; Castañeda, Victor; Tada, Masazumi; Härtel, Steffen; Concha, Miguel L.

    2017-01-01

    The spreading of mesenchymal-like cell layers is critical for embryo morphogenesis and tissue repair, yet we know little of this process in vivo. Here we take advantage of unique developmental features of the non-conventional annual killifish embryo to study the principles underlying tissue spreading in a simple cellular environment, devoid of patterning signals and major morphogenetic cell movements. Using in vivo experimentation and physical modelling we reveal that the extra-embryonic epithelial enveloping cell layer, thought mainly to provide protection to the embryo, directs cell migration and the spreading of embryonic tissue during early development. This function relies on the ability of embryonic cells to couple their autonomous random motility to non-autonomous signals arising from the expansion of the extra-embryonic epithelium, mediated by cell membrane adhesion and tension. Thus, we present a mechanism of extra-embryonic control of embryo morphogenesis that couples the mechanical properties of adjacent tissues in the early killifish embryo. PMID:28580937

  2. Monte Carlo study of x-ray cross talk in a variable resolution x-ray detector

    NASA Astrophysics Data System (ADS)

    Melnyk, Roman; DiBianca, Frank A.

    2003-06-01

    A variable resolution x-ray (VRX) detector provides a great increase in the spatial resolution of a CT scanner. An important factor that limits the spatial resolution of the detector is x-ray cross-talk. A theoretical study of the x-ray cross-talk is presented in this paper. In the study, two types of the x-ray cross-talk were considered: inter-cell and inter-arm cross-talk. Both types of the x-ray cross-talk were simulated, using the Monte Carlo method, as functions of the detector field of view (FOV). The simulation was repeated for lead and tungsten separators between detector cells. The inter-cell x-ray cross-talk was maximum at the 34-36 cm FOV, but it was low at small and the maximum FOVs. The inter-arm x-ray cross-talk was high at small and medium FOVs, but it was greatly reduced when variable width collimators were placed on the front surfaces of the detector. The inter-cell, but not inter-arm, x-ray cross-talk was lower for tungsten than for lead separators. From the results, x-ray cross-talk in a VRX detector can be minimized by imaging all objects between 24 cm and 40 cm in diameter with the 40 cm FOV, using tungsten separators, and placing variable width collimators in front of the detector.

  3. Effect of early addition of bone morphogenetic protein 5 (BMP5) to embryo culture medium on in vitro development and expression of developmentally important genes in bovine preimplantation embryos.

    PubMed

    García, Elina V; Miceli, Dora C; Rizo, Gabriela; Valdecantos, Pablo A; Barrera, Antonio D

    2015-09-01

    Previous studies have reported that bone morphogenetic protein 5 (BMP5) is differentially expressed in the isthmus of bovine oviducts and it is present in the oviductal fluid. However, the specific action of this factor is unknown. To evaluate whether BMP5 exerts some effect during early bovine embryo development, gene expression of BMP5, BMP receptors, and the effect of exogenous BMP5 on in vitro development and expression of developmentally important genes were assessed. In experiment 1, pools of embryos at two-cell, four-cell, eight-cell, and blastocyst stages, derived from in vitro fertilization, were collected for analysis of BMP5 and BMP receptors (BMPR1A, BMPR1B, and BMPR2) messenger RNA (mRNA) expression. On the basis of previous results, in experiment 2, presumptive zygotes were cultured for the first 48 hours after insemination in CR1aa medium assaying three different treatments: (1) control (CR1aa); (2) vehicle control (CR1aa + 0.04 mM HCl), and (3) BMP5 treatment (CR1aa + 100 ng/mL of BMP5). The cleavage rate was evaluated 48 hours after insemination (Day 2), and then, embryos were transferred to CR1aa + 10% fetal bovine serum. The blastocyst rate was determined on Day 7. In experiment 3, pools of embryos at two-cell, four-cell, eight-cell, and blastocyst stages, derived from control and BMP5-treated groups, were collected for analysis of ID2 (BMP target gene), OCT4, NANOG, and SOX2 (pluripotency genes) mRNA expression. BMP5 transcripts were not detectable in any of the embryonic stages examined, whereas the relative mRNA abundance of the three BMP receptors analyzed was greater in early embryo development stages before maternal-embryonic transition, raising the possibility of a direct effect of exogenous BMPs on the embryo during the first developmental period. Although early addition of 100 ng/mL of BMP5 to the embryo culture medium had no effect on the cleavage rate, a significantly higher proportion of cleaved embryos developed to the

  4. The role of Mixer in patterning the early Xenopus embryo.

    PubMed

    Kofron, Matt; Wylie, Chris; Heasman, Janet

    2004-05-01

    The transcription factor VegT, is required in early Xenopus embryos for the formation of both the mesoderm and endoderm germ layers. Inherited as a maternal mRNA localized only in vegetal cells, VegT activates the transcription of a large number of transcription factors, as well as signaling ligands that induce cells in the vegetal mass to form endoderm, and the marginal zone to form mesoderm. It is important now to understand the extent to which transcription factors downstream of VegT play individual, or overlapping, roles in the specification and patterning of the endoderm and mesoderm. In addition, it is important to understand the mechanism that specifies the boundary between endoderm and mesoderm. One of the downstream targets of VegT, the homeodomain protein Mixer, is expressed at high levels at the mesoderm/endoderm boundary at the late blastula stage. We therefore examined its functions by blocking its translation using morpholino oligos. In Mixer-depleted embryos, the expression of many signaling ligands and transcription factors was affected. In particular, we found that the expression of several genes, including several normally expressed in mesoderm, was upregulated. Functional assays of Mixer-depleted vegetal cells showed that they have increased mesoderm-inducing activity. This demonstrates that Mixer plays an essential role in controlling the amount of mesoderm induction by the vegetal cells.

  5. CrossTalk: The Journal of Defense Software Engineering. Volume 19, Number 5

    DTIC Science & Technology

    2006-05-01

    Coming Events Web Sites Call for Articles Visit CrossTalk at the SSTC BackTalk Transforming: Business , Security ,Warfighting CrossTalk 76 SMXG CO-SPONSOR...theme “Transforming: Business , Security , Warfighting.” Transformation is not just the current buzzword: Many industries and the military have...systems. Transforming: Business , Security ,Warfighting Characteristic edocfosenilnoillim001-01eziS Number of external interfaces 30-300 Number of

  6. Selective loss of mouse embryos due to the expression of transgenic major histocompatibility class I molecules early in embryogenesis.

    PubMed

    Aït-Azzouzene, D; Langkopf, A; Cohen, J; Bleux, C; Gendron, M C; Kanellopoulos-Langevin, C

    1998-05-01

    Among the numerous hypotheses proposed to explain the absence of fetal rejection by the mother in mammals, it has been suggested that regulation of expression of the polymorphic major histocompatibility complex (MHC) at the fetal-maternal interface plays a major role. In addition to a lack of MHC gene expression in the placenta throughout gestation, the absence of polymorphic MHC molecules on the early embryo, as well as their low level of expression after midgestation, could contribute to this important biologic phenomenon. In order to test this hypothesis, we have produced transgenic mice able to express polymorphic MHC class I molecules early in embryogenesis. We have placed the MHC class la gene H-2Kb under the control of a housekeeping gene promoter, the hydroxy-methyl-glutaryl coenzyme A reductase (HMG) gene minimal promoter. This construct has been tested for functionality after transfection into mouse fibroblast L cells. The analysis of three founder transgenic mice and their progeny suggested that fetoplacental units that could express the H-2Kb heavy chains are unable to survive in utero beyond midgestation. We have shown further that a much higher resorption rate, on days 11 to 13 of embryonic development, is observed among transgenic embryos developing from eggs microinjected at the one-cell stage with the pHMG-Kb construct than in control embryos. This lethality is not due to immune phenomena, since it is observed in histocompatible combinations between mother and fetus. These results are discussed in the context of what is currently known about the regulation of MHC expression at the fetal-maternal interface and in various transgenic mouse models.

  7. Wounded cells drive rapid epidermal repair in the early Drosophila embryo

    PubMed Central

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A.

    2013-01-01

    Epithelial tissues are protective barriers that display a remarkable ability to repair wounds. Wound repair is often associated with an accumulation of actin and nonmuscle myosin II around the wound, forming a purse string. The role of actomyosin networks in generating mechanical force during wound repair is not well understood. Here we investigate the mechanisms of force generation during wound repair in the epidermis of early and late Drosophila embryos. We find that wound closure is faster in early embryos, where, in addition to a purse string around the wound, actomyosin networks at the medial cortex of the wounded cells contribute to rapid wound repair. Laser ablation demonstrates that both medial and purse-string actomyosin networks generate contractile force. Quantitative analysis of protein localization dynamics during wound closure indicates that the rapid contraction of medial actomyosin structures during wound repair in early embryos involves disassembly of the actomyosin network. By contrast, actomyosin purse strings in late embryos contract more slowly in a mechanism that involves network condensation. We propose that the combined action of two force-generating structures—a medial actomyosin network and an actomyosin purse string—contributes to the increased efficiency of wound repair in the early embryo. PMID:23985320

  8. Transcriptomic and proteomic analysis reveals mechanisms of embryo abortion during chrysanthemum cross breeding.

    PubMed

    Zhang, Fengjiao; Wang, Zhiquan; Dong, Wen; Sun, Chunqing; Wang, Haibin; Song, Aiping; He, Lizhong; Fang, Weimin; Chen, Fadi; Teng, Nianjun

    2014-10-07

    Embryo abortion is the main cause of failure in chrysanthemum cross breeding, and the genes and proteins associated with embryo abortion are poorly understood. Here, we applied RNA sequencing and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic profiles of normal and abortive embryos. More than 68,000 annotated unigenes and 700 proteins were obtained from normal and abortive embryos. Functional analysis showed that 140 differentially expressed genes (DEGs) and 41 differentially expressed proteins (DEPs) were involved in embryo abortion. Most DEGs and DEPs associated with cell death, protein degradation, reactive oxygen species scavenging, and stress-response transcriptional factors were significantly up-regulated in abortive embryos relative to normal embryos. In contrast, most genes and proteins related to cell division and expansion, the cytoskeleton, protein synthesis and energy metabolism were significantly down-regulated in abortive embryos. Furthermore, abortive embryos had the highest activity of three executioner caspase-like enzymes. These results indicate that embryo abortion may be related to programmed cell death and the senescence- or death-associated genes or proteins contribute to embryo abortion. This adds to our understanding of embryo abortion and will aid in the cross breeding of chrysanthemum and other crops in the future.

  9. PGF₂α levels in Day 8 blood plasma are increased by the presence of one or more embryos in the uterus.

    PubMed

    Gomez, E; Martin, D; Carrocera, S; Muñoz, M

    2015-08-01

    In cattle, the detection of very early endometrial responses is considered to be hampered by the presence of only a single embryo. Therefore, we have previously developed a model of multiple embryo transfer to circumvent this hindrance. In this work, we analysed embryo-maternal interactions in the bovine uterus on day 8 of development while comparing the presence of multiple v. single embryos using embryo transfer and artificial insemination, respectively. Concentration of proteins (β-actin, NFkB, clusterin and immunoproteosome 20S β5i subunit-i20S), by western blot, and hexoses (glucose and fructose) were measured in paired samples of uterine fluid (UF) from the same animal with and without embryos in the uterus and were compared with UF obtained after artificial insemination. Prostaglandin (PG) F2 α and PGE2 concentrations were also analysed in blood plasma. The four proteins analysed and hexoses were unaffected by the presence of one or more embryos in the uterus. However, blood PGF2 α showed similar, significant increases with one or more embryos over cyclic animals; such changes were not observed in blood PGE2. Although multiple embryo transfer may appear to be non-physiological, we showed that the uterus, at the very early embryonic stages, does exhibit physiological reactions. Multiple embryo transfer can, therefore, be used for studies of very early embryo-maternal interactions in vivo in monotocous species.

  10. Information content and cross-talk in biological signal transduction: An information theory study

    NASA Astrophysics Data System (ADS)

    Prasad, Ashok; Lyons, Samanthe

    2014-03-01

    Biological cells respond to chemical cues provided by extra-cellular chemical signals, but many of these chemical signals and the pathways they activate interfere and overlap with one another. How well cells can distinguish between interfering extra-cellular signals is thus an important question in cellular signal transduction. Here we use information theory with stochastic simulations of networks to address the question of what happens to total information content when signals interfere. We find that both total information transmitted by the biological pathway, as well as its theoretical capacity to discriminate between overlapping signals, are relatively insensitive to cross-talk between the extracellular signals, until significantly high levels of cross-talk have been reached. This robustness of information content against cross-talk requires that the average amplitude of the signals are large. We predict that smaller systems, as exemplified by simple phosphorylation relays (two-component systems) in bacteria, should be significantly much less robust against cross-talk. Our results suggest that mammalian signal transduction can tolerate a high amount of cross-talk without degrading information content, while smaller bacterial systems cannot.

  11. Paternal and maternal factors in preimplantation embryogenesis: interaction with the biochemical environment.

    PubMed

    Ménézo, Yves J R

    2006-05-01

    Paternal effect on embryonic development occurs as early as fertilization. Incorrect formation of the spermatozoon due to centrosome defects and abnormal concentrations of any components involved in the activation process lead to failure immediately or in the subsequent cell cycles. Sperm chromosomal abnormalities result in early embryo developmental arrests. Generally poor spermatozoa lead to poor blastocyst formation. Sperm DNA fragmentation may impair even late post-implantation development. The DNA repair capacity of the oocytes is of major importance. Early preimplantation development, i.e. until maternal to zygotic transition, is maternally driven. Maternal mRNAs and proteins are of major importance, as there is an unavoidable turnover of these reserves. Polyadenylation of these mRNAs is precisely controlled, in order to avoid too early or too late transcription and translation of the housekeeping genes. An important set of maternal regulations, such as DNA stability, transcriptional regulation and protection against oxidative stress, are impaired by age. The embryo biochemical endogenous pool is very important and may depend upon the environment, i.e. the culture medium. Paternal, maternal and environmental factors are unavoidable parameters; they become evident when age impairs oocyte quality.

  12. [Effect of TGF-beta1 on embryo implantation and development in mice in vitro].

    PubMed

    Luo, Shan; Yin, Hai-ning; Li, Shang-wei

    2010-03-01

    To investigate the role of TGF-beta1 in embryo implantation and development in vitro in mice. Mouse embryos at 2-cell stage were cultured in the media of M16 with exposure to different levels of TGF-beta1 (0, 1, 10 and 50 ng/mL). The percentage of embryos reaching fixed stages (early blastocyst, expanding blastocyst and hatched blastocyst) was monitored 68 h and 92 h after the culture. The expanding blastocys cultured for 68 h in M16 without TGF-beta1 and those with 10 ng/mL of TGF-beta1 were transferred to pseudopregnant mice. On the 6th day post transfer, the successful rates of implantation were counted. The level of IL-10/IFN-gamma in the serum and maternal-fetus interface of the mice was detected by ELISA on the 6th day post transfer. TGF-beta1 improved embryo growth in vitro. TGF-beta1 at a level of 10 ng/mL had the maximum impact, with 15.6%, 68.09%, 1.42% of embryos reaching early, expanding, and hatched stage, respectively, 68 h after culture, and 6.38%, 28.37%, 53.19% of embryos reaching early, expanding, and hatched stage, respectively, 92 h after culture. The promoting effect declined when TGF-beta1 reached 50 ng/mL. The successful rate of implantation of embryos cultured in M16 with TGF-beta1 was significantly higher than those cultured in M16 without TGF-beta1 (35. 2% vs. 17.19%, P < 0.05). The embryos cultured in M16 with TGF-beta1 had significantly lower level of IFN-gamma in the maternal-fetus interface than those cultured in M16 without TGF-beta1 [(30.89 +/- 11.31) pg/mL vs. (43.23 +/- 18. 09) pg/mL, P < 0.053. TGF-beta1 at an appropriate dose improves embryo implantation in mice in vitro. The mechanism may involve the improvement of the quality of embryos and their development, and decrease of IFN-gamma synthesis in maternal-fetal interface, a chemical that could cause Th2 bias.

  13. Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms.

    PubMed

    Friis, Else Marie; Crane, Peter R; Pedersen, Kaj Raunsgaard; Stampanoni, Marco; Marone, Federica

    2015-12-24

    The rapid diversification of angiosperms through the Early Cretaceous period, between about 130-100 million years ago, initiated fundamental changes in the composition of terrestrial vegetation and is increasingly well understood on the basis of a wealth of palaeobotanical discoveries over the past four decades and their integration with improved knowledge of living angiosperms. Prevailing hypotheses, based on evidence both from living and from fossil plants, emphasize that the earliest angiosperms were plants of small stature with rapid life cycles that exploited disturbed habitats in open, or perhaps understorey, conditions. However, direct palaeontogical data relevant to understanding the seed biology and germination ecology of Early Cretaceous angiosperms are sparse. Here we report the discovery of embryos and their associated nutrient storage tissues in exceptionally well-preserved angiosperm seeds from the Early Cretaceous. Synchrotron radiation X-ray tomographic microscopy of the fossil embryos from many taxa reveals that all were tiny at the time of dispersal. These results support hypotheses based on extant plants that tiny embryos and seed dormancy are basic for angiosperms as a whole. The minute size of the fossil embryos, and the modest nutrient storage tissues dictated by the overall small seed size, is also consistent with the interpretation that many early angiosperms were opportunistic, early successional colonizers of disturbance-prone habitats.

  14. ATRX contributes to epigenetic asymmetry and silencing of major satellite transcripts in the maternal genome of the mouse embryo

    PubMed Central

    De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M.

    2015-01-01

    A striking proportion of human cleavage-stage embryos exhibit chromosome instability (CIN). Notably, until now, no experimental model has been described to determine the origin and mechanisms of complex chromosomal rearrangements. Here, we examined mouse embryos deficient for the chromatin remodeling protein ATRX to determine the cellular mechanisms activated in response to CIN. We demonstrate that ATRX is required for silencing of major satellite transcripts in the maternal genome, where it confers epigenetic asymmetry to pericentric heterochromatin during the transition to the first mitosis. This stage is also characterized by a striking kinetochore size asymmetry established by differences in CENP-C protein between the parental genomes. Loss of ATRX results in increased centromeric mitotic recombination, a high frequency of sister chromatid exchanges and double strand DNA breaks, indicating the formation of mitotic recombination break points. ATRX-deficient embryos exhibit a twofold increase in transcripts for aurora kinase B, the centromeric cohesin ESCO2, DNMT1, the ubiquitin-ligase (DZIP3) and the histone methyl transferase (EHMT1). Thus, loss of ATRX activates a pathway that integrates epigenetic modifications and DNA repair in response to chromosome breaks. These results reveal the cellular response of the cleavage-stage embryo to CIN and uncover a mechanism by which centromeric fission induces the formation of large-scale chromosomal rearrangements. Our results have important implications to determine the epigenetic origins of CIN that lead to congenital birth defects and early pregnancy loss, as well as the mechanisms involved in the oocyte to embryo transition. PMID:25926359

  15. Cross talk analysis in multicore optical fibers by supermode theory.

    PubMed

    Szostkiewicz, Lukasz; Napierala, Marek; Ziolowicz, Anna; Pytel, Anna; Tenderenda, Tadeusz; Nasilowski, Tomasz

    2016-08-15

    We discuss the theoretical aspects of core-to-core power transfer in multicore fibers relying on supermode theory. Based on a dual core fiber model, we investigate the consequences of this approach, such as the influence of initial excitation conditions on cross talk. Supermode interpretation of power coupling proves to be intuitive and thus may lead to new concepts of multicore fiber-based devices. As a conclusion, we propose a definition of a uniform cross talk parameter that describes multicore fiber design.

  16. Detrimental role of humoral signalling in cardio-renal cross-talk.

    PubMed

    Cantaluppi, Vincenzo; Dellepiane, Sergio; Quercia, Alessandro D; Ferrario, Silvia

    2014-01-22

    In critically ill patients, any acute organ injury is associated with a sudden change of circulating factors that may play a role in distant organ dysfunction through a complex cross-talk. In this issue, Virzì and colleagues discuss the relevance of humoral signalling between heart and kidney, focusing on type 1 and type 3 cardio-renal syndrome. We herein review the mechanisms of heart-kidney cross-talk, discussing the role of circulating detrimental mediators in the pathogenetic mechanisms of cardio-renal syndrome.

  17. Cross-Talk in Superconducting Transmon Quantum Computing Architecture

    NASA Astrophysics Data System (ADS)

    Abraham, David; Chow, Jerry; Corcoles, Antonio; Rothwell, Mary; Keefe, George; Gambetta, Jay; Steffen, Matthias; IBM Quantum Computing Team

    2013-03-01

    Superconducting transmon quantum computing test structures often exhibit significant undesired cross-talk. For experiments with only a handful of qubits this cross-talk can be quantified and understood, and therefore corrected. As quantum computing circuits become more complex, and thereby contain increasing numbers of qubits and resonators, it becomes more vital that the inadvertent coupling between these elements is minimized. The task of accurately controlling each single qubit to the level of precision required throughout the realization of a quantum algorithm is difficult by itself, but coupled with the need of nulling out leakage signals from neighboring qubits or resonators would quickly become impossible. We discuss an approach to solve this critical problem. We acknowledge support from IARPA under contract W911NF-10-1-0324.

  18. Endometrium as an early sensor of in vitro embryo manipulation technologies

    PubMed Central

    Mansouri-Attia, Nadéra; Sandra, Olivier; Aubert, Julie; Degrelle, Séverine; Everts, Robin E.; Giraud-Delville, Corinne; Heyman, Yvan; Galio, Laurent; Hue, Isabelle; Yang, Xiangzhong; Tian, X. Cindy; Lewin, Harris A.; Renard, Jean-Paul

    2009-01-01

    Implantation is crucial for placental development that will subsequently impact fetal growth and pregnancy success with consequences on postnatal health. We postulated that the pattern of genes expressed by the endometrium when the embryo becomes attached to the mother uterus could account for the final outcome of a pregnancy. As a model, we used the bovine species where the embryo becomes progressively and permanently attached to the endometrium from day 20 of gestation onwards. At that stage, we compared the endometrial genes profiles in the presence of an in vivo fertilized embryo (AI) with the endometrial patterns obtained in the presence of nuclear transfer (SCNT) or in vitro fertilized embryos (IVF), both displaying lower and different potentials for term development. Our data provide evidence that the endometrium can be considered as a biological sensor able to fine-tune its physiology in response to the presence of embryos whose development will become altered much later after the implantation process. Compared with AI, numerous biological functions and several canonical pathways with a major impact on metabolism and immune function were found to be significantly altered in the endometrium of SCNT pregnancies at implantation, whereas the differences were less pronounced with IVF embryos. Determining the limits of the endometrial plasticity at the onset of implantation should bring new insights on the contribution of the maternal environment to the development of an embryo and the success of pregnancy. PMID:19297625

  19. National CrossTalk. Volume 17, Number 1

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2009-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) Florida's Unnatural Disaster: The State's Economic Bubble Has Burst, Leaving Higher Education in a Double Bind (Jon Marcus); (2) Saudi King's Modern University:…

  20. MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo.

    PubMed

    Pernaute, Barbara; Spruce, Thomas; Rodriguez, Tristan A; Manzanares, Miguel

    2011-02-15

    At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.

  1. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation.

    PubMed

    Stigliani, S; Anserini, P; Venturini, P L; Scaruffi, P

    2013-10-01

    Is the amount of cell-free DNA released by human embryos into culture medium correlated with embryo morphological features? The mitochondrial DNA (mtDNA) content of culture medium is significantly associated with the fragmentation rate on Days 2 and 3 of embryo development, whether the oocyte came from women ≤ 35 or >35 years old. Cellular fragmentation is often utilized as one of the morphological parameters for embryo quality assessment. The amount of cellular fragments is considered to be an important morphological parameter for embryo implantation potential. It has been hypothesized that fragments are apoptotic bodies or anuclear cytoplasmatic pieces of blastomeres, although no definitive conclusion has been drawn about their pathogenesis. Human fertilized oocytes were individually cultured from Day 1 to Days 2 and 3. A total of 800 samples (166 spent media from Day 2 and 634 from Day 3) were enrolled into the present study. Double-stranded DNA (dsDNA) was quantified in 800 spent embryo culture media by Pico Green dye fluorescence assay. After DNA purification, genomic DNA (gDNA) and mtDNA were profiled by specific quantitative PCR. Statistical analyses defined correlations among DNA contents, embryo morphology and maternal age. Different independent tests confirmed the presence of DNA into embryo culture medium and, for the first time, we demonstrate that both gDNA and mtDNA are detectable in the secretome. The amount of DNA is larger in embryos with bad quality cleavage compared with high-grade embryos, suggesting that the DNA profile of culture medium is an objective marker for embryo quality assessment. In particular, DNA profiles are significantly associated with fragmentation feature (total dsDNA: P = 0.0010; mtDNA; P = 0.0247) and advanced maternal age. It is necessary to establish whether DNA profiling of spent embryo culture medium is a robust onsite test that can improve the prediction of blastulation, implantation and/or pregnancy rate. The

  2. Neural Network Compensation for Frequency Cross-Talk in Laser Interferometry

    NASA Astrophysics Data System (ADS)

    Lee, Wooram; Heo, Gunhaeng; You, Kwanho

    The heterodyne laser interferometer acts as an ultra-precise measurement apparatus in semiconductor manufacture. However the periodical nonlinearity property caused from frequency cross-talk is an obstacle to improve the high measurement accuracy in nanometer scale. In order to minimize the nonlinearity error of the heterodyne interferometer, we propose a frequency cross-talk compensation algorithm using an artificial intelligence method. The feedforward neural network trained by back-propagation compensates the nonlinearity error and regulates to minimize the difference with the reference signal. With some experimental results, the improved accuracy is proved through comparison with the position value from a capacitive displacement sensor.

  3. Application of Monte Carlo cross-validation to identify pathway cross-talk in neonatal sepsis.

    PubMed

    Zhang, Yuxia; Liu, Cui; Wang, Jingna; Li, Xingxia

    2018-03-01

    To explore genetic pathway cross-talk in neonates with sepsis, an integrated approach was used in this paper. To explore the potential relationships between differently expressed genes between normal uninfected neonates and neonates with sepsis and pathways, genetic profiling and biologic signaling pathway were first integrated. For different pathways, the score was obtained based upon the genetic expression by quantitatively analyzing the pathway cross-talk. The paired pathways with high cross-talk were identified by random forest classification. The purpose of the work was to find the best pairs of pathways able to discriminate sepsis samples versus normal samples. The results found 10 pairs of pathways, which were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways were identified according to analysis of extensive literature. Impact statement To find the best pairs of pathways able to discriminate sepsis samples versus normal samples, an RF classifier, the DS obtained by DEGs of paired pathways significantly associated, and Monte Carlo cross-validation were applied in this paper. Ten pairs of pathways were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways ((7) IL-6 Signaling and Phospholipase C Signaling (PLC); (8) Glucocorticoid Receptor (GR) Signaling and Dendritic Cell Maturation) were identified according to analysis of extensive literature.

  4. Making lineage decisions with biological noise: Lessons from the early mouse embryo.

    PubMed

    Simon, Claire S; Hadjantonakis, Anna-Katerina; Schröter, Christian

    2018-04-30

    Understanding how individual cells make fate decisions that lead to the faithful formation and homeostatic maintenance of tissues is a fundamental goal of contemporary developmental and stem cell biology. Seemingly uniform populations of stem cells and multipotent progenitors display a surprising degree of heterogeneity, primarily originating from the inherent stochastic nature of molecular processes underlying gene expression. Despite this heterogeneity, lineage decisions result in tissues of a defined size and with consistent proportions of differentiated cell types. Using the early mouse embryo as a model we review recent developments that have allowed the quantification of molecular intercellular heterogeneity during cell differentiation. We first discuss the relationship between these heterogeneities and developmental cellular potential. We then review recent theoretical approaches that formalize the mechanisms underlying fate decisions in the inner cell mass of the blastocyst stage embryo. These models build on our extensive knowledge of the genetic control of fate decisions in this system and will become essential tools for a rigorous understanding of the connection between noisy molecular processes and reproducible outcomes at the multicellular level. We conclude by suggesting that cell-to-cell communication provides a mechanism to exploit and buffer intercellular variability in a self-organized process that culminates in the reproducible formation of the mature mammalian blastocyst stage embryo that is ready for implantation into the maternal uterus. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Quantitative Methods and Models. © 2018 Wiley Periodicals, Inc.

  5. High oestradiol concentration after ovarian stimulation is associated with lower maternal serum beta-HCG concentration and neonatal birth weight.

    PubMed

    Liu, Suying; Kuang, Yanping; Wu, Yu; Feng, Yun; Lyu, Qifeng; Wang, Li; Sun, Yijuan; Sun, Xiaoxi

    2017-08-01

    In this retrospective study, the relationship between maternal serum oestradiol and progesterone levels after fresh embryo transfer or frozen embryo transfer (FET), and serum beta-HCG levels in early pregnancy and neonatal birth weight was examined. Included for analysis were 5643 conceived singletons: 2610 after FET and 3033 after fresh embryo transfer. Outcome measures included maternal serum oestradiol, progesterone, beta-HCG levels during the peri-implantation period, birth weight and small-for-gestational-age (SGA). Results at 4, 5 and 6 weeks' gestation were as follows: serum oestradiol and progesterone levels were significantly higher in women who underwent fresh embryo transfer compared with FET (all P < 0.0001 except progesterone at 6 weeks; P = 0.009); for fresh embryo transfers, serum beta-HCG levels were significantly lower than in women who underwent FET (P < 0.0001); beta-HCG levels were negatively correlated with serum oestradiol; and birth weight was negatively correlated with serum oestradiol. Incidence of SGA in fresh embryo transfer was increased significantly compared with FET (P < 0.001). Higher maternal oestradiol levels after fresh embryo transfer was correlated with lower beta-HCG in early pregnancy, lower birth weight and higher incidence of SGA. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Reproductive corticotropin releasing hormone, implantation, and fetal immunotolerance.

    PubMed

    Kalantaridou, Sophia N; Zoumakis, Emmanouil; Weil, Stacie; Lavasidis, Lazaros G; Chrousos, George P; Makrigiannakis, Antonis

    2007-01-01

    The fundamental process of implantation involves a series of steps leading to effective cross-talk between invasive trophoblast cells and the maternal endometrium. The molecular interactions at the embryo-maternal interface during the time of blastocyst adhesion and subsequent invasion are not fully understood. Embryonic trophoblast and maternal decidual cells produce corticotropin-releasing hormone (CRH) and express Fas ligand (FasL), a proapoptotic cytokine. Fas and its ligand are pivotal in the regulation of immune tolerance. Trophoblast and decidual CRH play crucial roles in implantation, as well as in the anti-rejection process that protects the fetus from the maternal immune system, primarily by killing activated T cells through Fas-FasL interaction. The potential use of CRH antagonists is presently under intense investigation. CRH antagonists have been used experimentally to elucidate the role of CRH in blastocyst implantation and invasion, early fetal immunotolerance, and premature labor.

  7. Early Activation of MAPK and Apoptosis in Nutritive Embryos of Calyptraeid Gastropods.

    PubMed

    Lesoway, Maryna P; Collin, Rachel; Abouheif, Ehab

    2017-07-01

    Investigation of alternative phenotypes, different morphologies produced by a single genome, has contributed novel insights into development and evolution. Yet, the mechanisms underlying developmental switch points between alternative phenotypes remain poorly understood. The calyptraeid snails Crepidula navicella and Calyptraea lichen produce two phenotypes: viable and nutritive embryos, where nutritive embryos arrest their development after gastrulation and are ingested by their viable siblings as a form of intracapsular nutrition. Here, we investigate the activity of mitogen-activated protein kinase (MAPK, ERK1/2) and apoptosis during early cleavage. MAPK and apoptosis, found in a previous transcriptomic study, are known to be involved in organization of other spiralian embryos and nutritive embryo development, respectively. In the model Crepidula fornicata, MAPK activation begins at the 16-cell stage. In contrast, we discovered in C. navicella and C. lichen that many embryos begin MAPK activation at the one-cell stage. A subset of embryos shows a similar pattern of MAPK activation to C. fornicata at later stages. In all stages where MAPK is detected, the activation pattern is highly variable, frequently occurring in all quadrants or in multiple tiers of cells. We also detected apoptosis in cleaving embryos, while C. fornicata and Crepidula lessoni, which do not produce nutritive embryos, show no signs of apoptosis during cleavage. Our results show that MAPK and apoptosis are expressed during early development in species with nutritive embryos, and raises the possibility that these processes may play a role and even interact with one another in producing the nutritive embryo phenotype. © 2017 Wiley Periodicals, Inc.

  8. Vitrified-warmed embryo transfer is associated with mean higher singleton birth weight compared to fresh embryo transfer.

    PubMed

    Beyer, Daniel Alexander; Griesinger, Georg

    2016-08-01

    To test for differences in birth weight between singletons born after IVF with fresh embryo transfer vs. vitrified-warmed 2PN embryo transfer (vitrification protocol). Retrospective analysis of 464 singleton live births after IVF or ICSI during a 12 year period. University hospital. Fresh embryo transfer, vitrified-warmed 2PN embryo transfer (vitrification protocol). Birth weight standardized as a z-score, adjusting for gestational week at delivery and fetal sex. As a reference, birth weight means from regular deliveries from the same hospital were used. Multivariate regression analysis was used to investigate the relationship between the dependent variable z-score (fetal birth weight) and the independent predictor variables maternal age, weight, height, body mass index, RDS prophylaxis, transfer protocol, number of embryos transferred, indication for IVF treatment and sperm quality. The mean z-score was significantly lower after fresh transfer (-0.11±92) as compared to vitrification transfer (0.72±83) (p<0.001). Multivariate regression analysis indicated that only maternal height and maternal body mass index, but not type of cryopreservation protocol, was a significant predictor of birth weight. In this analysis focusing on 2PN oocytes, vitrified-warmed embryo transfer is associated with mean higher birth weight compared to fresh embryo transfer. Maternal height and body mass index are significant confounders of fetal birth weight and need to be taken into account when studying birth weight differences between ART protocols. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Identification of the Zinc Finger Protein ZRANB2 as a Novel Maternal Lipopolysaccharide-binding Protein That Protects Embryos of Zebrafish against Gram-negative Bacterial Infections*

    PubMed Central

    Wang, Xia; Du, Xiaoyuan; Li, Hongyan; Zhang, Shicui

    2016-01-01

    Zinc finger ZRANB2 proteins are widespread in animals, but their functions and mechanisms remain poorly defined. Here we clearly demonstrate that ZRANB2 is a newly identified LPS-binding protein present abundantly in the eggs/embryos of zebrafish. We also show that recombinant ZRANB2 (rZRANB2) acts as a pattern recognition receptor capable of identifying the bacterial signature molecule LPS as well as binding the Gram-negative bacteria Escherichia coli, Vibrio anguilarum, and Aeromonas hydrophila and functions as an antibacterial effector molecule capable of directly killing the bacteria. Furthermore, we reveal that N-terminal residues 11–37 consisting of the first ZnF_RBZ domain are indispensable for ZRANB2 antimicrobial activity. Importantly, microinjection of rZRANB2 into early embryos significantly enhanced the resistance of the embryos against pathogenic A. hydrophila challenge, and this enhanced bacterial resistance was markedly reduced by co-injection of anti-ZRANB2 antibody. Moreover, precipitation of ZRANB2 in the embryo extracts by preincubation with anti-ZRANB2 antibody caused a marked decrease in the antibacterial activity of the extracts against the bacteria tested. In addition, the N-terminal peptide Z1/37 or Z11/37 with in vitro antibacterial activity also promoted the resistance of embryos against A. hydrophila, but the peptide Z38/198 without in vitro antibacterial activity did not. Collectively, these results indicate that ZRANB2 is a maternal LPS-binding protein that can protect the early embryos of zebrafish against pathogenic attacks, a novel role ever assigned to ZRANB2 proteins. This work also provides new insights into the immunological function of the zinc finger proteins that are widely distributed in various animals. PMID:26740623

  10. P-TEFb, the Super Elongation Complex and Mediator Regulate a Subset of Non-paused Genes during Early Drosophila Embryo Development

    PubMed Central

    Dahlberg, Olle; Shilkova, Olga; Tang, Min; Holmqvist, Per-Henrik; Mannervik, Mattias

    2015-01-01

    Positive Transcription Elongation Factor b (P-TEFb) is a kinase consisting of Cdk9 and Cyclin T that releases RNA Polymerase II (Pol II) into active elongation. It can assemble into a larger Super Elongation Complex (SEC) consisting of additional elongation factors. Here, we use a miRNA-based approach to knock down the maternal contribution of P-TEFb and SEC components in early Drosophila embryos. P-TEFb or SEC depletion results in loss of cells from the embryo posterior and in cellularization defects. Interestingly, the expression of many patterning genes containing promoter-proximal paused Pol II is relatively normal in P-TEFb embryos. Instead, P-TEFb and SEC are required for expression of some non-paused, rapidly transcribed genes in pre-cellular embryos, including the cellularization gene Serendipity-α. We also demonstrate that another P-TEFb regulated gene, terminus, has an essential function in embryo development. Similar morphological and gene expression phenotypes were observed upon knock down of Mediator subunits, providing in vivo evidence that P-TEFb, the SEC and Mediator collaborate in transcription control. Surprisingly, P-TEFb depletion does not affect the ratio of Pol II at the promoter versus the 3’ end, despite affecting global Pol II Ser2 phosphorylation levels. Instead, Pol II occupancy is reduced at P-TEFb down-regulated genes. We conclude that a subset of non-paused, pre-cellular genes are among the most susceptible to reduced P-TEFb, SEC and Mediator levels in Drosophila embryos. PMID:25679530

  11. TSH/IGF-1 Receptor Cross Talk in Graves' Ophthalmopathy Pathogenesis

    PubMed Central

    Krieger, Christine C.; Place, Robert F.; Bevilacqua, Carmine; Marcus-Samuels, Bernice; Abel, Brent S.; Skarulis, Monica C.; Kahaly, George J.; Neumann, Susanne

    2016-01-01

    Context: The TSH receptor (TSHR) is considered the main target of stimulatory autoantibodies in the pathogenesis of Graves' ophthalmopathy (GO); however, it has been suggested that stimulatory IGF-1 receptor (IGF-1R) autoantibodies also play a role. Objective: We previously demonstrated that a monoclonal stimulatory TSHR antibody, M22, activates TSHR/IGF-1R cross talk in orbital fibroblasts/preadipocytes obtained from patients with GO (GO fibroblasts [GOFs]). We show that cross talk between TSHR and IGF-1R, not direct IGF-1R activation, is involved in the mediation of GO pathogenesis stimulated by Graves' autoantibodies. Design/Setting/Participants: Immunoglobulins were purified from the sera of 57 GO patients (GO-Igs) and tested for their ability to activate TSHR and/or IGF-1R directly and TSHR/IGF-1R cross talk in primary cultures of GOFs. Cells were treated with M22 or GO-Igs with or without IGF-1R inhibitory antibodies or linsitinib, an IGF-1R kinase inhibitor. Main Outcome Measures: Hyaluronan (hyaluronic acid [HA]) secretion was measured as a major biological response for GOF stimulation. IGF-1R autophosphorylation was used as a measure of direct IGF-1R activation. TSHR activation was determined through cAMP production. Results: A total of 42 out of 57 GO-Ig samples stimulated HA secretion. None of the GO-Ig samples exhibited evidence for IGF-1R autophosphorylation. Both anti-IGF-1R antibodies completely inhibited IGF-1 stimulation of HA secretion. By contrast, only 1 IGF-1R antibody partially blocked HA secretion stimulated by M22 or GO-Igs in a manner similar to linsitinib, whereas the other IGF-1R antibody had no effect on M22 or GO-Ig stimulation. These findings show that the IGF-1R is involved in GO-Igs stimulation of HA secretion without direct activation of IGF-1R. Conclusions: IGF-1R activation by GO-Igs occurs via TSHR/IGF-1R cross talk rather than direct binding to IGF-1R, and this cross talk is important in the pathogenesis of GO. PMID:27043163

  12. Impact of chronic maternal stress during early gestation on maternal-fetal stress transfer and fetal stress sensitivity in sheep.

    PubMed

    Dreiling, Michelle; Schiffner, Rene; Bischoff, Sabine; Rupprecht, Sven; Kroegel, Nasim; Schubert, Harald; Witte, Otto W; Schwab, Matthias; Rakers, Florian

    2018-01-01

    Acute stress-induced reduction of uterine blood flow (UBF) is an indirect mechanism of maternal-fetal stress transfer during late gestation. Effects of chronic psychosocial maternal stress (CMS) during early gestation, as may be experienced by many working women, on this stress signaling mechanism are unclear. We hypothesized that CMS in sheep during early gestation augments later acute stress-induced decreases of UBF, and aggravates the fetal hormonal, cardiovascular, and metabolic stress responses during later development. Six pregnant ewes underwent repeated isolation stress (CMS) between 30 and 100 days of gestation (dGA, term: 150 dGA) and seven pregnant ewes served as controls. At 110 dGA, ewes were chronically instrumented and underwent acute isolation stress. The acute stress decreased UBF by 19% in both the CMS and control groups (p < .05), but this was prolonged in CMS versus control ewes (74 vs. 30 min, p < .05). CMS increased fetal circulating baseline and stress-induced cortisol and norepinephrine concentrations indicating a hyperactive hypothalamus-pituitary-adrenal (HPA)-axis and sympathetic-adrenal-medullary system. Increased fetal norepinephrine is endogenous as maternal catecholamines do not cross the placenta. Cortisol in the control but not in the CMS fetuses was correlated with maternal cortisol blood concentrations; these findings indicate: (1) no increased maternal-fetal cortisol transfer with CMS, (2) cortisol production in CMS fetuses when the HPA-axis is normally inactive, due to early maturation of the fetal HPA-axis. CMS fetuses were better oxygenated, without shift towards acidosis compared to the controls, potentially reflecting adaptation to repeated stress. Hence, CMS enhances maternal-fetal stress transfer by prolonged reduction in UBF and increased fetal HPA responsiveness.

  13. Embryo density and medium volume effects on early murine embryo development.

    PubMed

    Canseco, R S; Sparks, A E; Pearson, R E; Gwazdauskas, F C

    1992-10-01

    One-cell mouse embryos were used to determine the effects of drop size and number of embryos per drop for optimum development in vitro. Embryos were collected from immature C57BL6 female mice superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin and mated by CD1 males. Groups of 1, 5, 10, or 20 embryos were cultured in 5-, 10-, 20-, or 40-microliters drops of CZB under silicon oil at 37.5 degrees C in a humidified atmosphere of 5% CO2 and 95% air. Development score for embryos cultured in 10 microliters was higher than that of embryos cultured in 20 or 40 microliters. Embryos cultured in groups of 5, 10, or 20 had higher development scores than embryos cultured singly. The highest development score was obtained by the combination of 5 embryos per 10-microliters drop. The percentage of live embryos in 20 or 40 microliters was lower than that of embryos cultured in 10 microliters. Additionally, the percentage of live embryos cultured singly was lower than that of embryos cultured in groups. Our results suggest that a stimulatory interaction occurs among embryos possibly exerted through the secretion of growth factors. This effect can be diluted if the embryos are cultured in large drops or singly.

  14. Laminarin improves developmental competence of porcine early stage embryos by inhibiting oxidative stress.

    PubMed

    Jiang, Hao; Liang, Shuang; Yao, Xue-Rui; Jin, Yong-Xun; Shen, Xing-Hui; Yuan, Bao; Zhang, Jia-Bao; Kim, Nam-Hyung

    2018-04-23

    Laminarin (LMA), a β-glucan mixture with good biocompatibility, improves the growth performance and immune response when used as food additives and nutraceuticals. The aim of the present research was to explore the effects of LMA on porcine early stage embryo development, as well as the underlying mechanisms. The results showed that the developmental competence of porcine early stage embryos was dramatically improved after LMA supplementation during the in vitro culture period. The presence of 20 μg/mL LMA during the in vitro culture period significantly improved cleavage rate, blastocyst formation rates, hatching rate, and total cell number in the blastocyst compared to that in the control group. Notably, LMA attenuated the intracellular reactive oxygen species generation induced by H 2 O 2 . Furthermore, LMA not only increased intracellular glutathione levels, but also ameliorated mitochondrial membrane potential. In addition, the expression of a zygotic genome activation related gene (YAP1), pluripotency-related genes (OCT4, NANOG, and SOX2), and hatching-related genes (COX2, GATA4, and ITGA5) were up-regulated following LMA supplementation during porcine early stage embryo development. These results demonstrate that LMA has beneficial effects on the development of porcine early stage embryos via regulation of oxidative stress. This evidence provides a novel method for embryo development improvement associated with exposure to LMA. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Dynamic changes in leptin distribution in the progression from ovum to blastocyst of the pre-implantation mouse embryo

    PubMed Central

    Schulz, Laura C.; Roberts, R. Michael

    2011-01-01

    The hormone leptin, which is primarily produced by adipose tissue, is a critical permissive factor for multiple reproductive events in the mouse, including implantation. In the CD1 strain, maternally-derived leptin from the oocyte becomes differentially distributed among blastomeres of pre-implantation embryos to create a polarized pattern, a feature consistent with a model of development in which blastomeres are biased towards a particular fate as early as the 2-cell stage. Here, we have confirmed that embryonic leptin is of maternal origin and re-examined leptin distribution in two distinct strains in which embryos were derived after either normal ovulation or superovulation. A polarized pattern of leptin distribution was found in the majority of both CD1 and CF1 embryos (79.1 % and 76.9 %, respectively) collected following superovulation, but was reduced, particularly in CF1 embryos (29.8 %; p < 0.0001), after natural ovulation. The difference in leptin asymmetries in the CF1 strain arose between ovulation and the first cleavage division, and was not affected by removal of the zona pellucida. Presence or absence of leptin polarization was not linked to differences in ability of embryos to develop normally to blastocyst. In the early blastocyst, leptin was confined subcortically to trophectoderm but upon blastocoel expansion it was lost from cells. Throughout development leptin co-localized with LRP2, a multi-ligand transport protein, and its patterning resembled that noted for the maternal-effect proteins OOEP, NLRP5, and PADI6, suggesting that it is a component of the subcortical maternal complex with as yet unknown significance in pre-implantation development. PMID:21444625

  16. Radioecological aftermath: Maternal transfer of anthropogenic radionuclides to shark progeny is sustained and enhanced well beyond maternal exposure.

    PubMed

    Jeffree, Ross A; Oberhaensli, Francois; Teyssie, Jean-Louis; Fowler, Scott W

    2018-05-25

    Cartilaginous dogfish Scyliorhinus canicula continued to transfer four anthropogenic radionuclides ( 65 Zn, 60 Co, 134 Cs and 241 Am) to their eggs for over six months, after two months of continued maternal exposure to radio-labelled food. Unexpectedly, rates of radionuclide transfers to eggs and their yolk & embryo during maternal depuration were equivalent for 60 Co and 241 Am, or even enhanced for 65 Zn and 134 Cs by factors of c.200-350%, over two-three months, compared to their maximal transfer rates at the end of the maternal uptake phase. These rates of maternal transfer of radionuclides to yolk & embryo were positively associated with their previously determined efficiencies of assimilation (AE) from ingested radio-labelled food. Thus progeny may be more exposed via maternal transfer to those radionuclides which have greater rates of maternal assimilation from food. As maternal depuration continued beyond 60-80 up to 180-200 days the transfers of all four radionuclides to eggs did diminish but were still substantial at mean values of 18% for 241 Am, 17% for 134 Cs and 9 and 8% for 60 Co and 65 Zn, respectively. In the yolk & embryo the mean rates of transfer over this period were further reduced for 241 Am (13.5%), 60 Co (2.5%) and 65 Zn (5.8%), but were still appreciable for 134 Cs at 56%. These results for S. canicula have demonstrated a potential enhanced radiological risk of extended duration due to the particular biokinetics of maternal transfer in this species. This study draws further attention to the current paucity of knowledge about the maternal: progeny transfer pathway, particularly in the context of the known heightened radio-sensitivity of early life stages in fish and other vertebrates, compared to later life stages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Effects of early maternal employment on maternal health and well-being

    PubMed Central

    Markowitz, Sara; Brooks-Gunn, Jeanne

    2012-01-01

    This study uses data from the National Institute of Child Health and Human Development Study on Early Child Care to examine the effects of maternal employment on maternal mental and overall health, self-reported parenting stress, and parenting quality. These outcomes are measured when children are 6 months old. Among mothers of 6-month-old infants, maternal work hours are positively associated with depressive symptoms and parenting stress and negatively associated with self-rated overall health. However, maternal employment is not associated with quality of parenting at 6 months, based on trained assessors’ observations of maternal sensitivity. PMID:23645972

  18. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Wyrobek, Andrew J.

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization.more » During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.« less

  19. Maternal SENP7 programs meiosis architecture and embryo survival in mouse.

    PubMed

    Huang, Chun-Jie; Wu, Di; Jiao, Xiao-Fei; Khan, Faheem Ahmed; Xiong, Cheng-Liang; Liu, Xiao-Ming; Yang, Jing; Yin, Tai-Lang; Huo, Li-Jun

    2017-07-01

    Understanding the mechanisms underlying abnormal egg production and pregnancy loss is significant for human fertility. SENP7, a SUMO poly-chain editing enzyme, has been regarded as a mitotic regulator of heterochromatin integrity and DNA repair. Herein, we report the roles of SENP7 in mammalian reproductive scenario. Mouse oocytes deficient in SENP7 experienced meiotic arrest at prophase I and metaphase I stages, causing a substantial decrease of mature eggs. Hyperaceylation and hypomethylation of histone H3 and up-regulation of Cdc14B/C accompanied by down-regulation of CyclinB1 and CyclinB2 were further recognized as contributors to defective M-phase entry and spindle assembly in oocytes. The spindle assembly checkpoint activated by defective spindle morphogenesis, which was also caused by mislocalization and ubiquitylation-mediated proteasomal degradation of γ-tubulin, blocked oocytes at meiosis I stage. SENP7-depleted embryos exhibited severely defective maternal-zygotic transition and progressive degeneration, resulting in nearly no blastocyst production. The disrupted epigenetic landscape on histone H3 restricted Rad51C loading onto DNA lesions due to elevated HP1α euchromatic deposition, and reduced DNA 5hmC challenged the permissive status for zygotic DNA repair, which induce embryo death. Our study pinpoints SENP7 as a novel determinant in epigenetic programming and major pathways that govern oocyte and embryo development programs in mammals. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Teachers' Literal and Inferential Talk in Early Childhood and Special Education Classrooms

    ERIC Educational Resources Information Center

    Sembiante, Sabrina F.; Dynia, Jaclyn M.; Kaderavek, Joan N.; Justice, Laura M.

    2018-01-01

    Research Findings: This study examined preschool teachers' literal talk (LT) and inferential talk (IT) during shared book readings in early childhood education (ECE) and early childhood special education (ECSE) classrooms. We aimed to characterize and compare teachers' LT and IT in these 2 classroom contexts and determine whether differences in LT…

  1. Maternal nutrient restriction in early gestation upregulates myogenic genes in cattle fetal muscle tissue

    USDA-ARS?s Scientific Manuscript database

    Prenatal myogenesis is a critical factor in determining the muscle growth potential of cattle. We hypothesized that maternal nutrient restriction during early gestation would alter the transcriptome of fetal primordial muscle tissue in cattle. A total of 14 Angus-cross heifers were estrus synchroniz...

  2. Patterns of protein synthesis in oocytes and early embryos of Rana esculenta complex.

    PubMed

    Chen, P S; Stumm-Zollinger, E

    1986-01-01

    We have used isotopic labelling and both one-and two-dimensional electrophoretic procedures to analyse the protien synthesis patterns in oocytes and early embryos of three phenotypes of the European green frogs. The results demonstrated that protein patterns of Rana ridibunda and R. esculenta are identical, but that they differ from those of R. lessonae. Progeny of the lethal cross R. esculenta × R. esculenta showed a distinct delay in the appearance of stage-specific proteins during early embryogenesis. The heat-shock response of R. ridibunda and R. esculenta oocytes was found to be identical, but different from that of Xenopus laevis. The implications of these findings, with respect to hybridogenesis in R. esculenta complex and variations in the regulations of heat shock genes in different amphibian species, are discussed.

  3. Disturbances in Maternal Steroidogenesis and Appearance of Intrauterine Growth Retardation at High-Altitude Environments Are Established from Early Pregnancy. Effects of Treatment with Antioxidant Vitamins

    PubMed Central

    Parraguez, Victor H.; Mamani, Sandra; Cofré, Eileen; Castellaro, Giorgio; Urquieta, Bessie; De los Reyes, Mónica; Astiz, Susana; Gonzalez-Bulnes, Antonio

    2015-01-01

    Pregnancies at high-altitudes are influenced by hypoxia and oxidative stress and frequently affected by IUGR. However, a common thought is that early pregnant women visiting altitude have no major complications for gestation development, since IUGR is developed during the second half of pregnancy. Thus, using a well-characterized sheep-model, we aimed to determine whether long- and/or short-term exposure to high-altitude may affect maternal steroidogenesis and therefore embryo-fetal growth from conception. The second aim was to differentiate the relative role of hypoxia and oxidative stress by assessing the effects of supplementation with antioxidant agents during this early-pregnancy stage, which were previously found to be useful to prevent IUGR. The results indicate that both long- and short-term exposure to high-altitude causes disturbances in maternal ovarian steroidogenesis and negatively affects embryo-fetal growth already during the very early stages of gestation, with the consequences being even worsened in newcomers to high-altitude. The supply of antioxidant during this period only showed discrete effects for preventing IUGR. In conclusion, the present study gives a warning for clinicians about the risks for early-pregnant women when visiting high-altitude regions and suggests the need for further studies on the effects of the length of exposure and on the interaction of the exposure with the pregnancy stage. PMID:26560325

  4. Embryo transfer day does not affect the initial maternal serum β-hCG levels: A retrospective cohort study.

    PubMed

    Dahiya, Mona; Rupani, Karishma; Yu, Su Ling; Fook-Chong, Stephanie M C; Siew Fui, Diana Chia; Rajesh, Hemashree

    2017-05-01

    The aim of this study is to compare the serum β-hCG values post transfer of a cleavage stage embryo versus a blastocyst stage embryo at equal time intervals post oocyte retrieval (OR) in clinically pregnant patients, and to ascertain a β-hCG value to predict pregnancy outcomes. This is a retrospective cohort study of 560 women with clinical pregnancy who underwent an embryo transfer performed at either the cleavage stage or the blastocyst stage of embryo development between January 2003 and June 2014 at the Center for Assisted Reproduction (CARE), Singapore General Hospital. The serum β-hCG level was measured on day 17 post OR. The β-hCG values were not significantly different in the cleavage stage versus the blastocyst stage embryos (mean±SD: 387±486IU/L D3 vs. 352±268IU/L D5, p=0.96, median value 297 in both groups). Our study suggests that the initial maternal serum β-hCG values were not affected by the day of transfer of the embryos since assessing the β-hCG at equivalent points after transfer should not lead to a significant difference assuming the progress and development of the embryos occurred as expected. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Early-pregnancy maternal vitamin D status and maternal hyperglycaemia.

    PubMed

    Tomedi, L E; Simhan, H N; Bodnar, L M

    2013-09-01

    To estimate the association between serum 25-hydroxyvitamin D concentrations and maternal hyperglycaemia (post-load glucose concentration ≥ 7.5 mmol/l). Pregnant women (n = 429; 61% black, 36% obese, 45% smokers) enrolled in a cohort study at <16 weeks gestation. Non-fasting blood samples were assayed for serum 25-hydroxyvitamin D at enrolment. At 24-28 weeks gestation, maternal hyperglycaemia was determined using a 50-g 1-h oral glucose challenge test. A total of 67% of women had 25-hydroxyvitamin D concentrations < 50 nmol/l and 11% had maternal hyperglycaemia. Among smokers, each 23-nmol/l increase in serum 25-hydroxyvitamin D was associated with a reduction in the odds of maternal hyperglycaemia [odds ratio: 0.30 (95% CI: 0.13, 0.68)] after adjustment for parity, race/ethnicity, age, pre-pregnancy BMI, marital status, income, family history of diabetes, and gestational age of gestational diabetes mellitus screening. Among non-smokers, we found no association between early pregnancy vitamin D status and maternal hyperglycaemia. Smoking status may modify the relationship between poor maternal vitamin D status and maternal hyperglycaemia. © 2013 The Authors. Diabetic Medicine © 2013 Diabetes UK.

  6. Effects of maternal dietary olive oil on pathways involved in diabetic embryopathy.

    PubMed

    Higa, Romina; Roberti, Sabrina Lorena; Musikant, Daniel; Mazzucco, María Belén; White, Verónica; Jawerbaum, Alicia

    2014-11-01

    Maternal diabetes induces a pro-oxidant/pro-inflammatory intrauterine environment related to the induction of congenital anomalies. Peroxisome proliferator activated receptors (PPARs) are transcription factors that regulate antioxidant and anti-inflammatory pathways. We investigated whether maternal diets supplemented with olive oil, enriched in oleic acid, a PPAR agonist, can regulate the expression of PPAR system genes, levels of lipoperoxidation and activity of matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) in embryos and decidua from diabetic rats. The embryos and decidua from diabetic rats showed reduced expression of PPARs and increased concentration of lipoperoxidation, MMPs and TIMPs, whereas the maternal treatments enriched in olive oil increased PPARδ in embryos and PPARγ and PPARγ-coactivator-1α expression in decidua, and increased TIMPs concentrations and decreased lipoperoxidation and MMPs activity in both tissues. Thus, maternal diets enriched in olive oil can regulate embryonic and decidual PPAR system genes expression and reduce the pro-oxidant/pro-inflammatory environment during rat early organogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Translatome analysis at the egg-to-embryo transition in sea urchin

    PubMed Central

    Chassé, Héloïse; Aubert, Julie; Boulben, Sandrine; Le Corguillé, Gildas; Corre, Erwan; Cormier, Patrick

    2018-01-01

    Abstract Early embryogenesis relies on the translational regulation of maternally stored mRNAs. In sea urchin, fertilization triggers a dramatic rise in translation activity, necessary for the onset of cell division. Here, the full spectrum of the mRNAs translated upon fertilization was investigated by polysome profiling and sequencing. The translatome of the early sea urchin embryo gave a complete picture of the polysomal recruitment dynamics following fertilization. Our results indicate that only a subset of maternal mRNAs were selectively recruited onto polysomes, with over-represented functional categories in the translated set. The increase in translation upon fertilization depends on the formation of translation initiation complexes following mTOR pathway activation. Surprisingly, mTOR pathway inhibition differentially affected polysomal recruitment of the newly translated mRNAs, which thus appeared either mTOR-dependent or mTOR-independent. Therefore, our data argue for an alternative to the classical cap-dependent model of translation in early development. The identification of the mRNAs translated following fertilization helped assign translational activation events to specific mRNAs. This translatome is the first step to a comprehensive analysis of the molecular mechanisms governing translation upon fertilization and the translational regulatory networks that control the egg-to-embryo transition as well as the early steps of embryogenesis. PMID:29660001

  8. Translatome analysis at the egg-to-embryo transition in sea urchin.

    PubMed

    Chassé, Héloïse; Aubert, Julie; Boulben, Sandrine; Le Corguillé, Gildas; Corre, Erwan; Cormier, Patrick; Morales, Julia

    2018-05-18

    Early embryogenesis relies on the translational regulation of maternally stored mRNAs. In sea urchin, fertilization triggers a dramatic rise in translation activity, necessary for the onset of cell division. Here, the full spectrum of the mRNAs translated upon fertilization was investigated by polysome profiling and sequencing. The translatome of the early sea urchin embryo gave a complete picture of the polysomal recruitment dynamics following fertilization. Our results indicate that only a subset of maternal mRNAs were selectively recruited onto polysomes, with over-represented functional categories in the translated set. The increase in translation upon fertilization depends on the formation of translation initiation complexes following mTOR pathway activation. Surprisingly, mTOR pathway inhibition differentially affected polysomal recruitment of the newly translated mRNAs, which thus appeared either mTOR-dependent or mTOR-independent. Therefore, our data argue for an alternative to the classical cap-dependent model of translation in early development. The identification of the mRNAs translated following fertilization helped assign translational activation events to specific mRNAs. This translatome is the first step to a comprehensive analysis of the molecular mechanisms governing translation upon fertilization and the translational regulatory networks that control the egg-to-embryo transition as well as the early steps of embryogenesis.

  9. Maternal Talk in Cognitive Development: Relations between Psychological Lexicon, Semantic Development, Empathy, and Temperament

    PubMed Central

    Rollo, Dolores; Sulla, Francesco

    2016-01-01

    In this study, we investigated the relationship between mothers' psychological lexicon and children's cognitive and socio-emotive development as assessed through conceptual and semantic understanding tasks, in addition to the traditional tasks of theory of mind. Currently, there is considerable evidence to suggest that the frequency of mothers' mental state words used in mother-child picture-book reading is linked with children's theory of mind skills. Furthermore, mothers' use of cognitive terms is more strongly related to children's theory of mind performances than the mothers' references to other mental states, such as desires or emotions (Rollo and Buttiglieri, 2009). Current literature has established that early maternal input is related to later child mental state understanding; however it has not yet clarified which maternal terms are most useful for the socio-emotional and cognitive development of the child, and which aspect of the cognitive development benefits from the mother-child interaction. The present study addresses this issue and focuses on the relationship between mothers' mental state talk and children's behavior in conceptual and semantic tasks, and in a theory of mind task. In this study fifty pairs consisting of mothers and their 3 to 6-year-old children participated in two sessions: (1) The mothers read a picture book to their children. To assess the maternal psychological lexicon, their narrative was codified according to the categories of mental state references used in literature: perceptual, emotional, volitional, cognitive, moral, and communicative. (2) After a few days, the conceptual and semantic skills of the children (tasks of contextualization and classification, memory, and definition of words) and their psychological lexicon were assessed. The results suggest close links between the frequency and variety of mothers' mental state words and some semantic and conceptual skills of children. PMID:27047421

  10. Maternal Talk in Cognitive Development: Relations between Psychological Lexicon, Semantic Development, Empathy, and Temperament.

    PubMed

    Rollo, Dolores; Sulla, Francesco

    2016-01-01

    In this study, we investigated the relationship between mothers' psychological lexicon and children's cognitive and socio-emotive development as assessed through conceptual and semantic understanding tasks, in addition to the traditional tasks of theory of mind. Currently, there is considerable evidence to suggest that the frequency of mothers' mental state words used in mother-child picture-book reading is linked with children's theory of mind skills. Furthermore, mothers' use of cognitive terms is more strongly related to children's theory of mind performances than the mothers' references to other mental states, such as desires or emotions (Rollo and Buttiglieri, 2009). Current literature has established that early maternal input is related to later child mental state understanding; however it has not yet clarified which maternal terms are most useful for the socio-emotional and cognitive development of the child, and which aspect of the cognitive development benefits from the mother-child interaction. The present study addresses this issue and focuses on the relationship between mothers' mental state talk and children's behavior in conceptual and semantic tasks, and in a theory of mind task. In this study fifty pairs consisting of mothers and their 3 to 6-year-old children participated in two sessions: (1) The mothers read a picture book to their children. To assess the maternal psychological lexicon, their narrative was codified according to the categories of mental state references used in literature: perceptual, emotional, volitional, cognitive, moral, and communicative. (2) After a few days, the conceptual and semantic skills of the children (tasks of contextualization and classification, memory, and definition of words) and their psychological lexicon were assessed. The results suggest close links between the frequency and variety of mothers' mental state words and some semantic and conceptual skills of children.

  11. The long-term effects of maternal depression: early childhood physical health as a pathway to offspring depression.

    PubMed

    Raposa, Elizabeth; Hammen, Constance; Brennan, Patricia; Najman, Jake

    2014-01-01

    Cross-sectional and retrospective studies have highlighted the long-term negative effects of maternal depression on offspring physical, social, and emotional development, but longitudinal research is needed to clarify the pathways by which maternal depression during pregnancy and early childhood affects offspring outcomes. The current study tested one developmental pathway by which maternal depression during pregnancy might negatively impact offspring mental health in young adulthood, via poor physical health in early childhood. The sample consisted of 815 Australian youth and their mothers who were followed for 20 years. Mothers reported on their own depressive symptoms during pregnancy and offspring early childhood. Youth completed interviews about health-related stress and social functioning at age 20 years, and completed a questionnaire about their own depressive symptoms 2 to 5 years later. Path analysis indicated that prenatal maternal depressive symptoms predicted worse physical health during early childhood for offspring, and this effect was partially explained by ongoing maternal depression in early childhood. Offspring poor physical health during childhood predicted increased health-related stress and poor social functioning at age 20. Finally, increased health-related stress and poor social functioning predicted increased levels of depressive symptoms later in young adulthood. Maternal depression had a significant total indirect effect on youth depression via early childhood health and its psychosocial consequences. Poor physical health in early childhood and its effects on young adults' social functioning and levels of health related stress is one important pathway by which maternal depression has long-term consequences for offspring mental health. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  12. Sensitivity of early mouse embryos to (/sup 3/H)thymidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spindle, A.; Wu, K.; Pedersen, R.A.

    1982-12-01

    Effects of intranuclear radiation on the developmental capacity of early mouse embryos were studied by exposing embryos to (/sup 3/H)thymidine and counting the number of embryos forming blastocysts, trophoblast outgrowths, inner cell masses (ICMs), and two-layer ICMs (differentiated into primary endoderm and ectoderm). When embryos were cultured from the 2-cell stage for 8 days in the continuous presence of (/sup 3/H)thymidine, concentrations as low as 0.2 nCi/ml reduced the number of embryos forming two-layer ICMs. At 1 nCi/ml, the number of both ICMs and two-layer ICMs were reduced, and at 10 nCi/ml the number of embryos developing to all threemore » post-blastocyst endpoints was reduced. Blastocyst formation was not affected even at the highst concentration (/sup 3/H)thymidine and then cultured further in unlabelled medium, the effects were similar to those of 8-day exposure. When embryos were exposed to (/sup 3/H)thymidine for 24 h at various developmental stages, effects were less severe than when they were exposed continuously for 3 or 8 days, and the sensitivity of embryos differed between stages. The 24-h exposure of immunosurgically isolated ICMS to (/sup 3/H)thymidine revealed that the high sensitivity of the ICM to (/sup 3/H)thymidine persists through the late blastocyst stage and declines progressively thereafter. Autoradiography indicated that the change in radiosensitivity of embryos or ICMs is generally related to their ability to incorporate (/sup 3/H)thymidine into the DNA.« less

  13. Non-cross talk multi-channel photomultiplier using guided electron multipliers

    DOEpatents

    Gomez, J.; Majewski, S.; Weisenberger, A.G.

    1995-09-26

    An improved multi-channel electron multiplier is provided that exhibits zero cross-talk and high rate operation. Resistive material input and output masks are employed to control divergence of electrons. Electron multiplication takes place in closed channels. Several embodiments are provided for these channels including a continuous resistive emissive multiplier and a discrete resistive multiplier with discrete dynode chains interspaced with resistive layers-masks. Both basic embodiments provide high gain multiplication of electrons without accumulating surface charges while containing electrons to their proper channels to eliminate cross-talk. The invention can be for example applied to improve the performance of ion mass spectrometers, positron emission tomography devices, in DNA sequencing and other beta radiography applications and in many applications in particle physics. 28 figs.

  14. Non cross talk multi-channel photomultiplier using guided electron multipliers

    DOEpatents

    Gomez, Javier; Majewski, Stanislaw; Weisenberger, Andrew G.

    1995-01-01

    An improved multi-channel electron multiplier is provided that exhibits zero cross-talk and high rate operation. Resistive material input and output masks are employed to control divergence of electrons. Electron multiplication takes place in closed channels. Several embodiments are provided for these channels including a continuous resistive emissive multiplier and a discrete resistive multiplier with discrete dynode chains interspaced with resistive layers-masks. Both basic embodiments provide high gain multiplication of electrons without accumulating surface charges while containing electrons to their proper channels to eliminate cross-talk. The invention can be for example applied to improve the performance of ion mass spectrometers, positron emission tomography devices, in DNA sequencing and other beta radiography applications and in many applications in particle physics.

  15. An analog method of cross-talk compensation for a RGB wavelength division multiplexed optical link

    NASA Astrophysics Data System (ADS)

    Chisholm, George; Leveneur, Jérôme; Futter, John; Kennedy, John

    2018-06-01

    Pulse-width modulation (PWM) over optical fiber can be a very advantageous data transmission approach when an electrically isolated data link is required. The use of wavelength division multiplexing allows multiple data streams to be sent through a single fiber independently. The present investigation aims to demonstrate a novel approach to reduce cross-talk in a three-channel RGB optical link without the need for complex optical componentry. An op-amp circuit is developed to reduce the cross-talk so that the resolution of the PWM data is preserved. An iterative Monte-Carlo simulation approach is used to optimize the op-amp circuit. The approach is developed for a set of three PWM Hall effect magnetometers with 12-bit resolution and 128 Hz sampling rate. We show that, in these conditions, the loss of resolution due to cross-talk is prevented. We also show that the cross-talk compensation allows the RGB PWM link to outperform other transmission schemes.

  16. Genetic selection of embryos that later develop the metabolic syndrome.

    PubMed

    Edwards, M J

    2012-05-01

    THE BARKER HYPOTHESIS: Is an excellent explanation of the process where human and animal foetuses exposed to malnutrition, either by maternal malnutrition or placental insufficiency, are metabolically programmed, with selective stunting of cell differentiation and organ growth. With the postnatal excess of nutrition observed in developed countries, this irreversible programming causes metabolic syndrome, including obesity, type 2 diabetes, and hypertension. Metabolic programming involves epigenetic changes including imprinting which might be transmitted through more than one generation rather than being completely re-set or erased during reproduction. The Barker hypothesis was supported by epidemiological data that recognised no excess fetal or postnatal mortality when pregnant women were starved during the Dutch famine in World War II. This argued against the "thrifty genotype" theory introduced in 1962, which proposed that starvation selected against members of the population with less "thrifty" genes, but the survivors who had "thrifty" genes developed metabolic syndrome if they were subsequently over-nourished. EMBRYONIC/FETAL SELECTION: Embryos or early foetuses could be selected very early in pregnancy on the basis of their genotype, by maternal malnutrition, hypertension, obesity or other causes of placental insufficiency. The genotype that allows embryos, or cells within them, to survive a less hospitable environment in the decidua after implantation might contribute to the later development of metabolic syndrome. This article hypothesises that an adverse intrauterine environment, caused by maternal malnutrition or placental insufficiency, kills a proportion of embryos and selects a surviving population of early embryos whose growth in utero is retarded by their genotype, their environment or a combination of both. The metabolic syndrome follows if the offspring is over-nourished later in life. The embryonic selection hypothesis presented here could be

  17. DYZ1 copy number variation, Y chromosome polymorphism and early recurrent spontaneous abortion/early embryo growth arrest.

    PubMed

    Yan, Junhao; Fan, Lingling; Zhao, Yueran; You, Li; Wang, Laicheng; Zhao, Han; Li, Yuan; Chen, Zi-Jiang

    2011-12-01

    To find the association between recurrent spontaneous abortion (RSA)/early embryo growth arrest and Y chromosome polymorphism. Peripheral blood samples of the male patients of big Y chromosome, small Y chromosome and other male patients whose partners suffered from unexplained RSA/early embryo growth arrest were collected. PCR and real-time fluorescent quantitative PCR were used to test the deletion and the copy number variation of DYZ1 region in Y chromosome of the patients. A total of 79 big Y chromosome patients (48 of whose partners suffered from RSA or early embryo growth arrest), 7 small Y chromosome patients, 106 other male patients whose partners had suffered from unexplained RSA or early embryo growth arrest, and 100 normal male controls were enrolled. There was no fraction deletion of DYZ1 detected both in big Y patients and in normal men. Of RSA patients, 1 case showed deletion of 266bp from the gene locus 25-290bp, and 2 cases showed deletion of 773bp from 1347 to 2119bp. Of only 7 small Y chromosome patients, 2 cases showed deletion of 266bp from 25 to 290bp, and 4 cases showed deletion of 773bp from 1347 to 2119bp and 275bp from 3128 to 3420bp. The mean of DYZ1 copies was 3900 in normal control men; the mean in big Y patients was 5571, in RSA patients was 2655, and in small Y patients was 1059. All of the others were significantly different (P<0.01) compared with normal control men, which meant that DYZ1 copy number in normal control men was less than that of big Y chromosome patients, and was more than that of unexplained early RSA patients and small Y patients. The integrity and copy number variation of DYZ1 are closely related to the Y chromosome length under microscope. The cause of RSA/early embryo growth arrest in some couples may be the increase (big Y patients) or decrease of DYZ1 copy number in the husbands' Y chromosome. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. The influence of early embryo traits on human embryonic stem cell derivation efficiency.

    PubMed

    O'Leary, Thomas; Heindryckx, Björn; Lierman, Sylvie; Van der Jeught, Margot; Menten, Björn; Deforce, Dieter; Cornelissen, Ria; de Sousa Lopes, Susana Chuva; De Sutter, Petra

    2011-05-01

    Despite its prognostic value in in vitro fertilization, early embryo morphology is not reported on in the derivation of human embryonic stem cell (hESC) lines. Standard hESC derivation does rely on blastocyst development and its efficiency is highly correlated to inner cell mass (ICM) quality. Poor-quality embryos (PQEs) donated for hESC derivation may have a range of cleavage-stage abnormalities that are known to compromise further development. This study was implemented to determine whether specific PQEs traits influence the efficiency of good-quality ICMs to derive new hESC lines. We found that although the types of PQEs investigated were all able to make blastocysts with good-quality ICMs, the ICMs were unequal in their ability to derive hESCs. Good-quality ICMs from embryos with multiple poor-quality traits were unable to generate hESC lines, in contrast to good-quality ICMs from embryos with a single poor-quality trait. In addition, our data suggest a direct correlation between the number of ICM cells present in the blastocyst and its capacity to derive new hESC lines. This study is the first to demonstrate that ICM quality alone is an incomplete indicator of hESC derivation and that application of in vitro fertilization-based early embryo scoring can help predict hESC derivation efficiency. Experiments aiming to quantify, improve upon, or compare hESC derivation efficiency should thus take into consideration early embryo morphology scoring for the comparison of groups with equal developmental competence.

  19. Cross-talk in abscisic acid signaling

    NASA Technical Reports Server (NTRS)

    Fedoroff, Nina V.

    2002-01-01

    "Cross-talk" in hormone signaling reflects an organism's ability to integrate different inputs and respond appropriately, a crucial function at the heart of signaling network operation. Abscisic acid (ABA) is a plant hormone involved in bud and seed dormancy, growth regulation, leaf senescence and abscission, stomatal opening, and a variety of plant stress responses. This review summarizes what is known about ABA signaling in the control of stomatal opening and seed dormancy and provides an overview of emerging knowledge about connections between ABA, ethylene, sugar, and auxin synthesis and signaling.

  20. Mitotic wavefronts mediated by mechanical signaling in early Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Kang, Louis; Idema, Timon; Liu, Andrea; Lubensky, Tom

    2013-03-01

    Mitosis in the early Drosophila embryo demonstrates spatial and temporal correlations in the form of wavefronts that travel across the embryo in each cell cycle. This coordinated phenomenon requires a signaling mechanism, which we suggest is mechanical in origin. We have constructed a theoretical model that supports nonlinear wavefront propagation in a mechanically-excitable medium. Previously, we have shown that this model captures quantitatively the wavefront speed as it varies with cell cycle number, for reasonable values of the elastic moduli and damping coefficient of the medium. Now we show that our model also captures the displacements of cell nuclei in the embryo in response to the traveling wavefront. This new result further supports that mechanical signaling may play an important role in mediating mitotic wavefronts.

  1. Expression profiling of the mouse early embryo: Reflections and Perspectives

    PubMed Central

    Ko, Minoru S. H.

    2008-01-01

    Laboratory mouse plays important role in our understanding of early mammalian development and provides invaluable model for human early embryos, which are difficult to study for ethical and technical reasons. Comprehensive collection of cDNA clones, their sequences, and complete genome sequence information, which have been accumulated over last two decades, have provided even more advantages to mouse models. Here the progress in global gene expression profiling in early mouse embryos and, to some extent, stem cells are reviewed and the future directions and challenges are discussed. The discussions include the restatement of global gene expression profiles as snapshot of cellular status, and subsequent distinction between the differentiation state and physiological state of the cells. The discussions then extend to the biological problems that can be addressed only through global expression profiling, which include: bird’s-eye view of global gene expression changes, molecular index for developmental potency, cell lineage trajectory, microarray-guided cell manipulation, and the possibility of delineating gene regulatory cascades and networks. PMID:16739220

  2. Calcium-sensing receptor (CASR) is involved in porcine in vitro fertilisation and early embryo development.

    PubMed

    Liu, C; Liu, Y; Larsen, K; Hou, Y P; Callesen, H

    2018-01-01

    It has been demonstrated that extracellular calcium is necessary in fertilisation and embryo development but the mechanism is still not well understood. The present study mainly focussed on the extracellular calcium effector called the calcium-sensing receptor (CASR) and examined its expression in porcine gametes and embryos and its function during fertilisation and early embryo development. By using reverse transcription polymerase chain reaction, CASR was found to be expressed in porcine oocytes, spermatozoa and embryos at different developmental stages. Functionally, medium supplementation with a CASR agonist or an antagonist during in vitro fertilisation (IVF) and in vitro culture (IVC) was tested. During fertilisation, the presence of a CASR agonist increased sperm penetration rate and decreased polyspermy rate leading to an increased normal fertilisation rate. During embryo development, for the IVF embryos, agonist treatment during IVC significantly increased cleavage rate and blastocyst formation rate compared with the control group. Furthermore, parthenogenetically activated embryos showed similar results with lower cleavage and blastocyst formation rates in the antagonist group than in the other groups. It was concluded that CASR, as the effector of extracellular calcium, modulates porcine fertilisation and early embryo development.

  3. Viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation.

    PubMed

    Wang, Zheng; Lu, Hong-Liang; Ma, Li; Ji, Xiang

    2014-03-01

    Viviparous Phrynocephalus lizards (Agamidae) are mainly restricted to the Qinghai-Tibet Plateau of China. In this study, we used Phrynocephalus vlangalii females kept under seven thermal regimes for the whole gestation period to test the hypothesis that viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. All females at 24 °C and 93% of the females at 28 °C failed to give birth or produced stillborns, and proportionally fewer females gave birth at 29 or 35 °C than at 32 °C. Though the daily temperatures encountered were unsuitable for embryonic development, 95% of the females in nature and 89% of the females thermoregulating in the laboratory gave birth. There was no shift in the thermal preferences of females when they were pregnant. Although thermal conditions inside natural burrows were unsuitable for embryonic development, mass and sprint speed were both greater in neonates produced in nature. Our data show that (1) long-term exposure of P. vlangalii embryos to temperatures outside the range of 29-35 °C may result in the failure of development, but daily or short-term exposure may not necessarily increase embryonic mortality; (2) low gestation temperatures slow but do not arrest embryonic development, and females produce high-quality offspring in the shortest possible time by maintaining gestation temperatures close to the upper thermal limit for embryonic development; and (3) viviparity is currently adaptive at high elevations because embryos in nature cannot fully develop without relying on maternal thermoregulation. Our data validate the hypothesis tested.

  4. Developmental consequences of cryopreservation of mammalian oocytes and embryos.

    PubMed

    Smith, Gary D; Silva E Silva, Cristine Ane

    2004-08-01

    During the last three decades, significant advances have been made in successful cryopreservation of mammalian preimplantation embryos, and more recently oocytes. The ability to cryopreserve, thaw, and establish pregnancies with supernumerary preimplantation embryos has become an important tool in fertility treatment. Human oocyte cryopreservation has practical application in preserving fertility for individuals at risk of compromised egg quality due to cancer treatments or advanced maternal age. While oocyte/embryo cryopreservation success has increased over time, there is still room for improvement. Oocytes and embryos are susceptible to cryo-damage, which collectively entails cellular damage caused by mechanical, chemical, or thermal forces during the freeze-thaw process. Basic studies focused on understanding cellular structures, their composition, and more importantly their functions, in normal cell developments will continue to be critical in assessing, understanding, and correcting oocyte/embryo cryo-damage. This review will delineate many of the oocyte/embryo intracellular and extracellular structures that are or may be compromised during cryopreservation. A global theme presented throughout this review is that many structural components of the oocyte/embryo also have essential functional roles in development. Compromising these cellular structures, and thus their cellular homeostatic functions, can deleteriously influence initial cryo-survival or compromise subsequent normal development through effects on the oocyte and/or early embryo.

  5. National CrossTalk. Volume 14, Number 4, Fall 2006

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2006-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) Keeping Them in College: East Carolina University's Efforts to Improve Retention and Graduation Rates (Don Campbell); (2) The "Seamless System": Florida's Flurry…

  6. National CrossTalk. Volume 14, Number 2, Spring 2006

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2006-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) "Effectiveness and Efficiency": The University System of Maryland's Campaign to Control Costs and Increase Student Aid (Kay Mills); (2) Remote Access: Western…

  7. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos.

    PubMed

    Kong, Qingran; Banaszynski, Laura A; Geng, Fuqiang; Zhang, Xiaolei; Zhang, Jiaming; Zhang, Heng; O'Neill, Claire L; Yan, Peidong; Liu, Zhonghua; Shido, Koji; Palermo, Gianpiero D; Allis, C David; Rafii, Shahin; Rosenwaks, Zev; Wen, Duancheng

    2018-03-09

    Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. National CrossTalk. Volume 14, Number 1, Winter 2006

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2006-01-01

    The primary purpose of "National Cross Talk" is to stimulate informed discussion and debate of higher education issues. This publication contains the following articles: (1) The Plagiarism Plague: In the Internet Era, Cheating Has Become an Epidemic on College Campuses (Don Campbell); (2) Dillard's Dire Straits: Historically Black…

  9. National CrossTalk. Volume 13, Number 2, Spring 2005

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2005-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) CUNY [City University of New York] Sheds Reputation as "Tutor U": The Nation's Largest Urban University Raises Standards, and Grapples with Remediation (Jon…

  10. National CrossTalk. Volume 12, Number 3, Summer 2004

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2004-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) U.K. Adopts "Top-Up" Tuition Fees: British Universities Prepare to Compete in a More "American" System (Jon Marcus); (2) "Plain Living": Berea…

  11. National CrossTalk. Volume 15, Number 1, Winter 2007

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2007-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) The Celtic Tiger: Ireland Invests Heavily in Higher Education, and Benefits Mightily (Jon Marcus); (2) Western Classic: Nevada's James Rogers Is a Non-Traditional…

  12. National CrossTalk. Volume 12, Number 4, Fall 2004

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2004-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) Code of Conduct: Air Force Academy Adopts Changes in Response to 2003 Sexual Assault Scandal (Kathy Witkowsky); (2) Political Football: Partisan Politics Could Determine…

  13. The subtle intracapsular survival of the fittest: maternal investment, sibling conflict, or environmental effects?

    PubMed

    Smith, Kathryn E; Thatje, Sven

    2013-10-01

    Developmental resource partitioning and the consequent offspring size variations are of fundamental importance for marine invertebrates, in both an ecological and evolutionary context. Typically, differences are attributed to maternal investment and the environmental factors determining this; additional variables, such as environmental factors affecting development, are rarely discussed. During intracapsular development, for example, sibling conflict has the potential to affect resource partitioning. Here, we investigate encapsulated development in the marine gastropod Buccinum undatum. We examine the effects of maternal investment and temperature on intracapsular resource partitioning in this species. Reproductive output was positively influenced by maternal investment, but additionally, temperature and sibling conflict significantly affected offspring size, number, and quality during development. Increased temperature led to reduced offspring number, and a combination of high sibling competition and asynchronous early development resulted in a common occurrence of "empty" embryos, which received no nutrition at all. The proportion of empty embryos increased with both temperature and capsule size. Additionally, a novel example ofa risk in sibling conflict was observed; embryos cannibalized by others during early development ingested nurse eggs from inside the consumer, killing it in a "Trojan horse" scenario. Our results highlight the complexity surrounding offspring fitness. Encapsulation should be considered as significant in determining maternal output. Considering predicted increases in ocean temperatures, this may impact offspring quality and consequently species distribution and abundance.

  14. Effect of women’s age on embryo morphology, cleavage rate and competence—A multicenter cohort study

    PubMed Central

    Grøndahl, Marie Louise; Christiansen, Sofie Lindgren; Kesmodel, Ulrik Schiøler; Agerholm, Inge Errebo; Lemmen, Josephine Gabriela; Lundstrøm, Peter; Bogstad, Jeanette; Raaschou-Jensen, Morten; Ladelund, Steen

    2017-01-01

    This multicenter cohort study on embryo assessment and outcome data from 11,744 IVF/ICSI cycles with 104,830 oocytes and 42,074 embryos, presents the effect of women’s age on oocyte, zygote, embryo morphology and cleavage parameters, as well as cycle outcome measures corrected for confounding factors as center, partner’s age and referral diagnosis. Cycle outcome data confirmed the well-known effect of women’s age. Oocyte nuclear maturation and proportion of 2 pro-nuclear (2PN) zygotes were not affected by age, while a significant increase in 3PN zygotes was observed in both IVF and ICSI (p<0.0001) with increasing age. Maternal age had no effect on cleavage parameters or on the morphology of the embryo day 2 post insemination. Interestingly, initial hCG value after single embryo transfer followed by ongoing pregnancy was increased with age in both IVF (p = 0.007) and ICSI (p = 0.001) cycles. For the first time, we show that a woman’s age does impose a significant footprint on early embryo morphological development (3PN). In addition, the developmentally competent embryos were associated with increased initial hCG values as the age of the women increased. Further studies are needed to elucidate, if this increase in initial hCG value with advancing maternal age is connected to the embryo or the uterus. PMID:28422964

  15. Deep cytoplasmic rearrangements in ventralized Xenopus embryos

    NASA Technical Reports Server (NTRS)

    Brown, E. E.; Denegre, J. M.; Danilchik, M. V.

    1993-01-01

    Following fertilization in Xenopus, dramatic rearrangements of the egg cytoplasm relocalize maternally synthesized egg components. During the first cell cycle the vegetal yolk mass rotates relative to the egg surface, toward the sperm entry point (SEP) (J. P. Vincent, G. F. Oster, and J. C. Gerhart, 1986, Dev. Biol. 113, 484-500), while concomitant deep cytoplasmic rearrangements occur in the animal hemisphere (M. V. Danilchik and J. M. Denegre, 1991, Development 111, 845-856). In this paper we examine the role of vegetal yolk mass rotation in producing the animal cytoplasmic rearrangements. We inhibited rotation by uv-irradiating embryos during the first cell cycle, a treatment that yields an extremely ventralized phenotype. Both uv-irradiated embryos and unirradiated control embryos show cytoplasmic rearrangements in the animal hemisphere during the first cell cycle. Cytoplasmic rearrangements on the SEP side of the embryo associated with the path of the sperm pronucleus, plus a swirl on the anti-SEP (dorsal) side, are seen, whether or not yolk mass rotation has occurred. This result suggests a role for the expanding sperm aster in directing animal hemisphere cytoplasmic movements. In unirradiated control embryos the anti-SEP (dorsal) swirl is larger than that in uv-irradiated embryos and often extends into the vegetal hemisphere, consistent with the animal cytoplasm having been pulled dorsally and vegetally by the sliding vegetal yolk mass. Thus the yolk mass rotation may normally enhance the dorsalward cytoplasmic movement, begun by the sperm aster, enough to induce normal axis formation. We extended our observations of unirradiated control and uv-irradiated embryos through early cleavages. The vegetal extent of the anti-SEP (dorsal) swirl pattern seen in control embryos persists through the early cleavage period, such that labeled animal cytoplasm extends deep into dorsal third-tier blastomeres at the 32-cell stage. Significantly, in uv-irradiated embryos

  16. National CrossTalk. Volume 16, Number 1, Fall 2008

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2008-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) The Credit Crisis Goes to College: Upheaval in the Student-Loan Business Leaves Students and Parents Scrambling (Susan C. Thomson); (2) The Engaged University: Northern…

  17. National CrossTalk. Volume 13, Number 3, Summer 2005

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2005-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) Virginia Tries Restructuring: Financial Stress Leads to New Arrangements between State and Campuses (Robert A. Jones); (2) Georgia's Odd Couple: Can Two Foundations Share a…

  18. National CrossTalk. Volume 13, Number 4, Fall 2005

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2005-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This publication contains the following articles: (1) "Truth in Tuition" (Susan C. Thomson); (2) In Katrina's Wake (Kathy Witkowsky); (3) News from the Center: New Center Associates; (4) Colorado On the Edge…

  19. National CrossTalk. Volume 13, Number 1, Winter 2005

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2005-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) A Legacy to Overcome: The University of Georgia Hopes to Become a More Desirable Destination for Black Students (Don Campbell); (2) Oklahoma's Brain Gain: A Comprehensive…

  20. Evaluation of treatments with hCG and carprofen at embryo transfer in a demi-embryo and recipient virgin heifer model.

    PubMed

    Torres, A; Chagas E Silva, J; Diniz, P; Lopes-da-Costa, L

    2013-08-01

    An in vivo model, combining a low developmental competence embryo (demi-embryo) and a high-fertility recipient (virgin dairy heifer) was used to evaluate the effects of treatment with human chorionic gonadotropin (hCG) and carprofen at embryo transfer (ET) on plasma progesterone (P₄) concentrations of recipients and on embryonic growth and survival. Embryos were bisected and each demi-embryo was transferred to a recipient on Day 7 of the estrous cycle. At ET, heifers (n = 163) were randomly allocated to treatment with hCG (2500 IU im), carprofen (500 mg iv), hCG plus carprofen or to untreated controls. Plasma P₄ concentrations were measured on Days 0, 7, 14 and 21 of all recipients plus on Days 28, 42 and 63 of pregnant recipients. Pregnancy was presumed to be present in recipients with luteal plasma P4 concentrations until Day 21 and confirmed by using transrectal ultrasonography on Days 28, 42 and 63. Embryonic measurements (crown-rump length and width) were obtained on Day 42. Treatment with hCG induced formation of secondary corpora lutea (CL) in 97% of heifers and increased (P < 0.01) mean plasma P₄ concentrations of non-pregnant recipients on Day 14 and of pregnant heifers on Days 14 to 63. This was associated to a significant decrease in early embryonic mortality. In contrast, subsequent embryonic losses resulted in a non-significant numerical increase by 8% of pregnancies maintained to Day 63. Therefore, treatment with hCG significantly rescued embryos through the maternal recognition of pregnancy window but was not able to support development thereafter. Treatment with carprofen at ET had no significant effects on plasma P₄ concentrations and rate of embryo mortality. Treatment with hCG plus carprofen at ET induced formation of secondary CL in 90% of heifers but decreased the luteotrophic effect of hCG, resulting in no effect on embryo survival. Low developmental competence embryos showed an intrinsic deficiency in overcoming the maternal

  1. Maternal N-Carbamylglutamate Supply during Early Pregnancy Enhanced Pregnancy Outcomes in Sows through Modulations of Targeted Genes and Metabolism Pathways.

    PubMed

    Cai, Shuang; Zhu, Jinlong; Zeng, Xiangzhou; Ye, Qianhong; Ye, Changchuan; Mao, Xiangbing; Zhang, Shihai; Qiao, Shiyan; Zeng, Xiangfang

    2018-06-13

    Reducing pregnancy loss is important for improving reproductive efficiency for both human and mammalian animals. Our previous study demonstrates that maternal N-carbamylglutamate (NCG) supply during early pregnancy enhances embryonic survival in gilts. However, whether maternal NCG supply improves the pregnancy outcomes is still not known. Here we found maternal NCG supply during early pregnancy in sows significantly increased the numbers of total piglets born alive per litter ( P < 0.05) and significantly changed the levels of metabolites in amniotic fluid and serum involved in metabolism of energy, lipid, and glutathione and immunological regulation. The expression of endometrial progesterone receptor membrane component 1 (PGRMC1) was significantly increased by NCG supplementation ( P < 0.05) as well as the expression of PGRMC1, endothelial nitric oxide synthesases (eNOS), and lamin A/C in fetuses and placentae ( P < 0.05). Among the NCG-associated amino acids, arginine and glutamine, markedly increased PGRMC1 and eNOS expression in porcine trophectoderm cells ( P < 0.05), whereas glutamate could stimulate the expression of vimentin and lamin A/C in porcine trophectoderm (pTr) cells ( P < 0.05) and proline stimulated lamin A/C expression ( P < 0.05). Collectively, these data reveal the mechanisms of NCG in reducing early embryo loss. These findings have important implications that NCG has great potential to improve pregnancy outcomes in human and mammalian animals.

  2. The early-stage diagnosis of albinic embryos by applying optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Shih-Yuan; Wang, Yu-Yen; Cai, Jyun-Jhang; Chang, Chung-Hao

    2013-09-01

    Albinism is a kind of congenital disease of abnormal metabolism. Poecilia reticulata (guppy fish) is chosen as the model to study the development of albinic embryos as it is albinic, ovoviviparous and with short life period. This study proposed an imaging method for penetrative embryo investigation using optical coherence tomography. By imaging through guppy mother’s reproduction purse, we found the embryo’s eyes were the early-developed albinism features. As human’s ocular albinism typically appear at about four weeks old, it is the time to determine if an embryo will grow into an albino.

  3. Early maternal and paternal bonding, childhood physical abuse and adult psychopathic personality

    PubMed Central

    Gao, Y.; Raine, A.; Chan, F.; Venables, P. H.; Mednick, S. A.

    2013-01-01

    Background A significant gap in the literature on risk factors for psychopathy is the relative lack of research on parental bonding. Method This study examines the cross-sectional relationship between maternal and paternal bonding, childhood physical abuse and psychopathic personality at age 28 years in a community sample of 333 males and females. It also assesses prospectively whether children separated from their parents in the first 3 years of life are more likely to have a psychopathic-like personality 25 years later. Results Hierarchical regression analyses indicated that: (1) poor parental bonding (lack of maternal care and low paternal overprotection) and childhood physical abuse were both associated with a psychopathic personality; (2) parental bonding was significantly associated with psychopathic personality after taking into account sex, social adversity, ethnicity and abuse; (3) those separated from parents in the first 3 years of life were particularly characterized by low parental bonding and a psychopathic personality in adulthood; and (4) the deviant behavior factor of psychopathy was more related to lack of maternal care whereas the emotional detachment factor was related to both lack of maternal care and paternal overprotection. Conclusions Findings draw attention to the importance of different components of early bonding in relation to adult psychopathy, and may have potential implications for early intervention and prevention of psychopathy. PMID:20441692

  4. Polypeptide profiles of human oocytes and preimplantation embryos.

    PubMed

    Capmany, G; Bolton, V N

    1993-11-01

    The polypeptides that direct fertilization and early development until activation of the embryonic genome occurs, at the 4-8 cell stage in the human, are exclusively maternal in origin, and are either synthesized during oogenesis or translated later from maternal mRNA. Using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver stain, we have visualized and compared the polypeptides present in different populations of human oocytes and cleavage stage embryos obtained after superovulation and insemination in vitro. Two polypeptide patterns were resolved, differing in the region of mol. wt 69 kDa. The distribution of these patterns showed no correlation with the ability of individual oocytes to achieve fertilization and develop normally to the 8-cell stage.

  5. National CrossTalk. Volume 14, Number 3, Summer 2006

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2006-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) The M Word: "Marketing" Has Changed from a Dirty Word to a Buzzword in Higher Education (Jon Marcus); (2) A Contrarian View of the Testing Industry: FairTest…

  6. Maternal Nanos-Dependent RNA Stabilization in the Primordial Germ Cells of Drosophila Embryos.

    PubMed

    Sugimori, Seiko; Kumata, Yuji; Kobayashi, Satoru

    2018-01-01

    Nanos (Nos) is an evolutionary conserved protein expressed in the germline of various animal species. In Drosophila, maternal Nos protein is essential for germline development. In the germline progenitors, or the primordial germ cells (PGCs), Nos binds to the 3' UTR of target mRNAs to repress their translation. In contrast to this prevailing role of Nos, here we report that the 3' UTR of CG32425 mRNA mediates Nos-dependent RNA stabilization in PGCs. We found that the level of mRNA expressed from a reporter gene fused to the CG32425 3' UTR was significantly reduced in PGCs lacking maternal Nos (nos PGCs) as compared with normal PGCs. By deleting the CG32425 3' UTR, we identified the region required for mRNA stabilization, which includes Nos-binding sites. In normal embryos, CG32425 mRNA was maternally supplied into PGCs and remained in this cell type during embryogenesis. However, as expected from our reporter assay, the levels of CG32425 mRNA and its protein product expressed in nos PGCs were lower than in normal PGCs. Thus, we propose that Nos protein has dual functions in translational repression and stabilization of specific RNAs to ensure proper germline development. © 2017 Japanese Society of Developmental Biologists.

  7. Two-stage cross-talk mitigation in an orbital-angular-momentum-based free-space optical communication system.

    PubMed

    Qu, Zhen; Djordjevic, Ivan B

    2017-08-15

    We propose and experimentally demonstrate a two-stage cross-talk mitigation method in an orbital-angular-momentum (OAM)-based free-space optical communication system, which is enabled by combining spatial offset and low-density parity-check (LDPC) coded nonuniform signaling. Different from traditional OAM multiplexing, where the OAM modes are centrally aligned for copropagation, the adjacent OAM modes (OAM states 2 and -6 and OAM states -2 and 6) in our proposed scheme are spatially offset to mitigate the mode cross talk. Different from traditional rectangular modulation formats, which transmit equidistant signal points with uniform probability, the 5-quadrature amplitude modulation (5-QAM) and 9-QAM are introduced to relieve cross-talk-induced performance degradation. The 5-QAM and 9-QAM formats are based on the Huffman coding technique, which can potentially achieve great cross-talk tolerance by combining them with corresponding nonbinary LDPC codes. We demonstrate that cross talk can be reduced by 1.6 dB and 1 dB via spatial offset for OAM states ±2 and ±6, respectively. Compared to quadrature phase shift keying and 8-QAM formats, the LDPC-coded 5-QAM and 9-QAM are able to bring 1.1 dB and 5.4 dB performance improvements in the presence of atmospheric turbulence, respectively.

  8. MATER protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine

    PubMed Central

    Pennetier, Sophie; Perreau, Christine; Uzbekova, Svetlana; Thélie, Aurore; Delaleu, Bernadette; Mermillod, Pascal; Dalbiès-Tran, Rozenn

    2006-01-01

    Background Mater (Maternal Antigen that Embryos Require), also known as Nalp5 (NACHT, leucine rich repeat and PYD containing 5), is an oocyte-specific maternal effect gene required for early embryonic development beyond the two-cell stage in mouse. We previously characterized the bovine orthologue MATER as an oocyte marker gene in cattle, and this gene was recently assigned to a QTL region for reproductive traits. Results Here we have analyzed gene expression during folliculogenesis and preimplantation embryo development. In situ hybridization and immunohistochemistry on bovine ovarian section revealed that both the transcript and protein are restricted to the oocyte from primary follicles onwards, and accumulate in the oocyte cytoplasm during follicle growth. In immature oocytes, cytoplasmic, and more precisely cytosolic localization of MATER was confirmed by immunohistochemistry coupled with confocal microscopy and immunogold electron microscopy. By real-time PCR, MATER messenger RNA was observed to decrease strongly during maturation, and progressively during the embryo cleavage stages; it was hardly detected in morulae and blastocysts. The protein persisted after fertilization up until the blastocyst stage, and was mostly degraded after hatching. A similar predominantly cytoplasmic localization was observed in blastomeres from embryos up to 8-cells, with an apparent concentration near the nuclear membrane. Conclusion Altogether, these expression patterns are consistent with bovine MATER protein being an oocyte specific maternal effect factor as in mouse. PMID:16753072

  9. Thinking or feeling? An exploratory study of maternal scaffolding, child mental state talk, and emotion understanding in language-impaired and typically developing school-aged children.

    PubMed

    Yuill, Nicola; Little, Sarah

    2018-06-01

    Mother-child mental state talk (MST) supports children's developing social-emotional understanding. In typically developing (TD) children, family conversations about emotion, cognition, and causes have been linked to children's emotion understanding. Specific language impairment (SLI) may compromise developing emotion understanding and adjustment. We investigated emotion understanding in children with SLI and TD, in relation to mother-child conversation. Specifically, is cognitive, emotion, or causal MST more important for child emotion understanding and how might maternal scaffolding support this? Nine 5- to 9-year-old children with SLI and nine age-matched typically developing (TD) children, and their mothers. We assessed children's language, emotion understanding and reported behavioural adjustment. Mother-child conversations were coded for MST, including emotion, cognition, and causal talk, and for scaffolding of causal talk. Children with SLI scored lower than TD children on emotion understanding and adjustment. Mothers in each group provided similar amounts of cognitive, emotion, and causal talk, but SLI children used proportionally less cognitive and causal talk than TD children did, and more such child talk predicted better child emotion understanding. Child emotion talk did not differ between groups and did not predict emotion understanding. Both groups participated in maternal-scaffolded causal talk, but causal talk about emotion was more frequent in TD children, and such talk predicted higher emotion understanding. Cognitive and causal language scaffolded by mothers provides tools for articulating increasingly complex ideas about emotion, predicting children's emotion understanding. Our study provides a robust method for studying scaffolding processes for understanding causes of emotion. © 2017 The British Psychological Society.

  10. Cross-talk in mechanomyographic signals from the forearm muscles during sub-maximal to maximal isometric grip force.

    PubMed

    Islam, Md Anamul; Sundaraj, Kenneth; Ahmad, R Badlishah; Sundaraj, Sebastian; Ahamed, Nizam Uddin; Ali, Md Asraf

    2014-01-01

    This study aimed: i) to examine the relationship between the magnitude of cross-talk in mechanomyographic (MMG) signals generated by the extensor digitorum (ED), extensor carpi ulnaris (ECU), and flexor carpi ulnaris (FCU) muscles with the sub-maximal to maximal isometric grip force, and with the anthropometric parameters of the forearm, and ii) to quantify the distribution of the cross-talk in the MMG signal to determine if it appears due to the signal component of intramuscular pressure waves produced by the muscle fibers geometrical changes or due to the limb tremor. Twenty, right-handed healthy men (mean ± SD: age  = 26.7±3.83 y; height  = 174.47±6.3 cm; mass  = 72.79±14.36 kg) performed isometric muscle actions in 20% increment from 20% to 100% of the maximum voluntary isometric contraction (MVIC). During each muscle action, MMG signals generated by each muscle were detected using three separate accelerometers. The peak cross-correlations were used to quantify the cross-talk between two muscles. The magnitude of cross-talk in the MMG signals among the muscle groups ranged from, R2(x, y) = 2.45-62.28%. Linear regression analysis showed that the magnitude of cross-talk increased linearly (r2 = 0.857-0.90) with the levels of grip force for all the muscle groups. The amount of cross-talk showed weak positive and negative correlations (r2 = 0.016-0.216) with the circumference and length of the forearm respectively, between the muscles at 100% MVIC. The cross-talk values significantly differed among the MMG signals due to: limb tremor (MMGTF), slow firing motor unit fibers (MMGSF) and fast firing motor unit fibers (MMGFF) between the muscles at 100% MVIC (p<0.05, η2 = 0.47-0.80). The results of this study may be used to improve our understanding of the mechanics of the forearm muscles during different levels of the grip force.

  11. GPCRs and EGFR - Cross-talk of membrane receptors in cancer.

    PubMed

    Köse, Meryem

    2017-08-15

    G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) are two important classes of cell surface receptors proven to be highly tractable as drug targets. Both receptor classes are involved in various complex (patho-) physiological processes in the human body including cellular growth and differentiation. More recently, accumulating data suggest that GPCR-induced activation of EGFR, the prototyp of RTKs represents a major mechanism in various cancers. The present review will focus on this cross-talk with particular emphasis on intracellular scaffold proteins regulating EGFR transactivation. It will give an overview about the current status of the research and future directions, highlight recent trends in the field, and discuss the potential of therapeutic strategies combining GPCR and EGFR targeting on the one hand and specific targeting of the cross-talk on the other hand in cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The second-language vocabulary trajectories of Turkish immigrant children in Norway from ages five to ten: the role of preschool talk exposure, maternal education, and co-ethnic concentration in the neighborhood.

    PubMed

    Rydland, Veslemøy; Grøver, Vibeke; Lawrence, Joshua

    2014-03-01

    Little research has explored how preschools can support children's second-language (L2) vocabulary development. This study keenly followed the progress of twemty-six Turkish immigrant children growing up in Norway from preschool (age five) to fifth grade (age ten). Four different measures of preschool talk exposure (amount and diversity of teacher-led group talk and amount and diversity of peer talk), as well as the demographic variables of maternal education and co-ethnic concentration in the neighborhood, were employed to predict the children's L2 vocabulary trajectories. The results of growth analyses revealed that maternal education was the only variable predicting children's vocabulary growth during the elementary years. However, teacher-led talk, peer talk, and neighborhood predicted children's L2 vocabulary skills at age five, and these differences were maintained up to age ten. This study underscores the importance of both preschool talk exposure (teacher-led talk and peer talk) and demographic factors on L2 learners' vocabulary development.

  13. An MMI-based demultiplexer with reduced cross-talk

    NASA Astrophysics Data System (ADS)

    Xiao, Yueyu; He, Sailing

    2005-03-01

    The crosstalk of a multimode interference (MMI)-based demultiplexer is reduced by connecting appropriately designed cascaded MMI filters of high-order. Numerical results show that the designed demultiplexer greatly improves the bandwidth of 20 dB cross-talk loss and has an excellent performance in terms of the insertion loss and chromatic dispersion. Formed with commonly used MMI couplers, the present structure is much easier to implement than other structures.

  14. Childhood developmental vulnerabilities associated with early life exposure to infectious and noninfectious diseases and maternal mental illness.

    PubMed

    Green, Melissa J; Kariuki, Maina; Dean, Kimberlie; Laurens, Kristin R; Tzoumakis, Stacy; Harris, Felicity; Carr, Vaughan J

    2017-12-26

    Fetal exposure to infectious and noninfectious diseases may influence early childhood developmental functioning, on the path to later mental illness. Here, we investigated the effects of in utero exposure to maternal infection and noninfectious diseases during pregnancy on offspring developmental vulnerabilities at age 5 years, in the context of estimated effects for early childhood exposures to infectious and noninfectious diseases and maternal mental illness. We used population data for 66,045 children from an intergenerational record linkage study (the New South Wales Child Development Study), for whom a cross-sectional assessment of five developmental competencies (physical, social, emotional, cognitive, and communication) was obtained at school entry, using the Australian Early Development Census (AEDC). Child and maternal exposures to infectious or noninfectious diseases were determined from the NSW Ministry of Health Admitted Patients Data Collection (APDC) and maternal mental illness exposure was derived from both APDC and Mental Health Ambulatory Data collections. Multinomial logistic regression analyses were used to examine unadjusted and adjusted associations between these physical and mental health exposures and child developmental vulnerabilities at age 5 years. Among the physical disease exposures, maternal infectious diseases during pregnancy and early childhood infection conferred the largest associations with developmental vulnerabilities at age 5 years; maternal noninfectious illness during pregnancy also retained small but significant associations with developmental vulnerabilities even when adjusted for other physical and mental illness exposures and covariates known to be associated with early childhood development (e.g., child's sex, socioeconomic disadvantage, young maternal age, prenatal smoking). Among all exposures examined, maternal mental illness first diagnosed prior to childbirth conferred the greatest odds of developmental

  15. Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life.

    PubMed

    Velazquez, Miguel A; Sheth, Bhavwanti; Smith, Stephanie J; Eckert, Judith J; Osmond, Clive; Fleming, Tom P

    2018-02-01

    Mouse maternal low protein diet exclusively during preimplantation development (Emb-LPD) is sufficient to programme altered growth and cardiovascular dysfunction in offspring. Here, we use an in vitro model comprising preimplantation culture in medium depleted in insulin and branched-chain amino acids (BCAA), two proposed embryo programming inductive factors from Emb-LPD studies, to examine the consequences for blastocyst organisation and, after embryo transfer (ET), postnatal disease origin. Two-cell embryos were cultured to blastocyst stage in defined KSOM medium supplemented with four combinations of insulin and BCAA concentrations. Control medium contained serum insulin and uterine luminal fluid amino acid concentrations (including BCAA) found in control mothers from the maternal diet model (N-insulin+N-bcaa). Experimental medium (three groups) contained 50% reduction in insulin and/or BCAA (L-insulin+N-bcaa, N-insulin+L-bcaa, and L-insulin+N-bcaa). Lineage-specific cell numbers of resultant blastocysts were not affected by treatment. Following ET, a combined depletion of insulin and BCAA during embryo culture induced a non sex-specific increase in birth weight and weight gain during early postnatal life. Furthermore, male offspring displayed relative hypertension and female offspring reduced heart/body weight, both characteristics of Emb-LPD offspring. Combined depletion of metabolites also resulted in a strong positive correlation between body weight and glucose metabolism that was absent in the control group. Our results support the notion that composition of preimplantation culture medium can programme development and associate with disease origin affecting postnatal growth and cardiovascular phenotypes and implicate two important nutritional mediators in the inductive mechanism. Our data also have implications for human assisted reproductive treatment (ART) practice. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations.

    PubMed

    Uludag, K; Kohl, M; Steinbrink, J; Obrig, H; Villringer, A

    2002-01-01

    Using the modified Lambert-Beer law to analyze attenuation changes measured noninvasively during functional activation of the brain might result in an insufficient separation of chromophore changes ("cross talk") due to the wavelength dependence of the partial path length of photons in the activated volume of the head. The partial path length was estimated by performing Monte Carlo simulations on layered head models. When assuming cortical activation (e.g., in the depth of 8-12 mm), we determine negligible cross talk when considering changes in oxygenated and deoxygenated hemoglobin. But additionally taking changes in the redox state of cytochrome-c-oxidase into account, this analysis results in significant artifacts. An analysis developed for changes in mean time of flight--instead of changes in attenuation--reduces the cross talk for the layers of cortical activation. These results were validated for different oxygen saturations, wavelength combinations and scattering coefficients. For the analysis of changes in oxygenated and deoxygenated hemoglobin only, low cross talk was also found when the activated volume was assumed to be a 4-mm-diam sphere.

  17. Reporting of embryo transfer methods in IVF research: a cross-sectional study.

    PubMed

    Gambadauro, Pietro; Navaratnarajah, Ramesan

    2015-02-01

    The reporting of embryo transfer methods in IVF research was assessed through a cross-sectional analysis of randomized controlled trials (RCTs) published between 2010 and 2011. A systematic search identified 325 abstracts; 122 RCTs were included in the study. Embryo transfer methods were described in 42 out of 122 articles (34%). Catheters (32/42 [76%]) or ultrasound guidance (31/42 [74%]) were most frequently mentioned. Performer 'blinding' (12%) or technique standardization (7%) were seldom reported. The description of embryo transfer methods was significantly more common in trials published by journals with lower impact factor (less than 3, 39.6%; 3 or greater, 21.5%; P = 0.037). Embryo transfer methods were reported more often in trials with pregnancy as the main end-point (33% versus 16%) or with positive outcomes (37.8% versus 25.0%), albeit not significantly. Multivariate logistic regression confirmed that RCTs published in higher impact factor journals are less likely to describe embryo transfer methods (OR 0.371; 95% CI 0.143 to 0.964). Registered trials, trials conducted in an academic setting, multi-centric studies or full-length articles were not positively associated with embryo transfer methods reporting rate. Recent reports of randomized IVF trials rarely describe embryo transfer methods. The under-reporting of research methods might compromise reproducibility and suitability for meta-analysis. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  18. Maternal depressive symptoms and early childhood cognitive development: a review of putative environmental mediators.

    PubMed

    Ahun, Marilyn N; Côté, Sylvana M

    2018-06-06

    Despite the abundance of research investigating the associations between maternal depressive symptoms (MDS) and children's cognitive development, little is known about the putative mechanisms through which depressive symptoms are associated with children's cognitive development. The aim of this review was to summarize the literature on family mediators (i.e., maternal parenting behaviors, mother-child interactions, and family stress) involved in this association in early childhood. The review includes seven studies, five longitudinal and two cross-sectional, which tested putative mediators of the association between MDS and children's cognitive development. Studies were selected from online databases (PubMed, PsycNet) and manual searches. Only studies which quantitatively assessed associations between MDS in the postnatal period and child cognitive development in early childhood (i.e., 0-5 years) and included mediator variables were included in the review. Six out of seven studies identified mediating variables. The mediators included maternal responsiveness, parenting style, family dysfunction, the quality of the home environment, and maternal caregiving practices. Different mediators were identified across the reviewed studies. Maternal depressive symptoms are partly associated with child cognitive development via family processes and parenting practices. Various mediating processes are at play. Further research is needed on the role of maternal and paternal mental health and gene-environment correlations in this association. A better understanding of the mediating pathways is needed for the design of preventative intervention targeting specific family processes.

  19. Metabolite Profiling of Whole Murine Embryos Reveals Metabolic Perturbations Associated with Maternal Valproate-Induced Neural Tube Closure Defects

    PubMed Central

    Akimova, Darya; Wlodarczyk, Bogdan J.; Lin, Ying; Ross, M. Elizabeth; Finnell, Richard H.; Chen, Qiuying; Gross, Steven S.

    2016-01-01

    Background Valproic Acid (VPA) is prescribed therapeutically for multiple conditions, including epilepsy. When taken during pregnancy, VPA is teratogenic, increasing the risk of several birth and developmental defects including neural tube defects (NTDs). The mechanism by which VPA causes NTDs remains controversial and how VPA interacts with folic acid, a vitamin commonly recommended for the prevention of NTDs, remains uncertain. We sought to address both questions by applying untargeted metabolite profiling analysis to neural tube closure stage mouse embryos. Methods Pregnant SWV dams on either a 2ppm or 10ppm folic acid (FA) supplemented diet were injected with a single dose of VPA on gestational day E8.5. On day E9.5, the mouse embryos were collected and evaluated for neural tube closure status. LC/MS metabolomics analysis was performed to compare metabolite profiles of NTD-affected VPA-exposed whole mouse embryos to profiles from embryos that underwent normal neural tube closure from control dams. Results NTDs were observed in all embryos from VPA-treated dams and penetrance was not diminished by dietary folic acid supplementation. The most profound metabolic perturbations were found in the 10ppm FA VPA-exposed mouse embryos, compared to the other three treatment groups. Affected metabolites included amino acids, nucleobases and related phosphorylated nucleotides, lipids, and carnitines. Conclusions Maternal VPA treatment markedly perturbed purine and pyrimidine metabolism in E9.5 embryos. In combination with a high folic acid diet, VPA treatment resulted in gross metabolic changes, likely caused by a multiplicity of mechanisms, including an apparent disruption of mitochondrial beta-oxidation. PMID:27860192

  20. Central cell-derived peptides regulate early embryo patterning in flowering plants.

    PubMed

    Costa, Liliana M; Marshall, Eleanor; Tesfaye, Mesfin; Silverstein, Kevin A T; Mori, Masashi; Umetsu, Yoshitaka; Otterbach, Sophie L; Papareddy, Ranjith; Dickinson, Hugh G; Boutiller, Kim; VandenBosch, Kathryn A; Ohki, Shinya; Gutierrez-Marcos, José F

    2014-04-11

    Plant embryogenesis initiates with the establishment of an apical-basal axis; however, the molecular mechanisms accompanying this early event remain unclear. Here, we show that a small cysteine-rich peptide family is required for formation of the zygotic basal cell lineage and proembryo patterning in Arabidopsis. EMBRYO SURROUNDING FACTOR 1 (ESF1) peptides accumulate before fertilization in central cell gametes and thereafter in embryo-surrounding endosperm cells. Biochemical and structural analyses revealed cleavage of ESF1 propeptides to form biologically active mature peptides. Further, these peptides act in a non-cell-autonomous manner and synergistically with the receptor-like kinase SHORT SUSPENSOR to promote suspensor elongation through the YODA mitogen-activated protein kinase pathway. Our findings demonstrate that the second female gamete and its sexually derived endosperm regulate early embryonic patterning in flowering plants.

  1. Early embryonic survival and embryo development in two lines of rabbits divergently selected for uterine capacity.

    PubMed

    Peiró, R; Santacreu, M A; Climent, A; Blasco, A

    2007-07-01

    The aim of this work is to study early embryo survival and development in 2 lines divergently selected for high and low uterine capacity throughout 10 generations. A total of 162 female rabbits from the high line and 133 from the low line were slaughtered at 25, 48, or 62 h of gestation. There were no differences in ovulation rate and fertilization rate between lines in any of the 3 stages of gestation. Embryo survival, estimated as the number of normal embryos recovered at a constant ovulation rate, was similar in both lines at 25 and 48 h. Embryo survival was greater in the high line [D (posterior mean of the difference between the high and low lines) = 0.57 embryos] at 62 h of gestation. There was no difference in embryonic stage of development at 25 h, but at 48 and 62 h of gestation, the high line, compared with the low line, had a greater percentage of early morulae (83 vs. 72%) and compacted morulae (55 vs. 38%). Divergent selection for uterine capacity appeared to modify embryo development, at least from 48 h of gestation, and embryo survival from 62 h.

  2. A microRNA family exerts maternal control on sex determination in C. elegans

    PubMed Central

    McJunkin, Katherine; Ambros, Victor

    2017-01-01

    Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 (sup-26) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 (nhl-2), encode RNA-binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of Caenorhabditis elegans. Repression of nhl-2 by the mir-35 family is required for not only proper sex determination but also viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-naïve; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves naïveté and prevents premature deleterious developmental decisions. PMID:28279983

  3. [Specification of cell destiny in early Caenorhabditis elegans embryo].

    PubMed

    Schierenberg, E

    1997-02-01

    Embryogenesis of the nematode Caenorhabditis elegans has been described completely on a cell-by-cell basis and found to be essentially invariant. With this knowledge in hands, micromanipulated embryos and mutants have been analyzed for cell lineage defects and the distribution of specific gene products. The results challenge the classical view of cell-autonomous development in nematodes and indicate that the early embryo of C. elegans is a highly dynamic system. A network of inductive events between neighboring cells is being revealed, which is necessary to assign different developmental programs to blastomeres. In those cases where molecules involved in these cell-cell interactions have been identified, homologies to cell surface receptors, ligands and transcription factors found in other systems have become obvious.

  4. Does warmth moderate longitudinal associations between maternal spanking and child aggression in early childhood?

    PubMed

    Lee, Shawna J; Altschul, Inna; Gershoff, Elizabeth T

    2013-11-01

    This study examines whether maternal warmth moderates the association between maternal use of spanking and increased child aggression between ages 1 and 5. Participants were 3,279 pairs of mothers and their children from a cohort study of urban families from 20 U.S. cities. Maternal spanking was assessed when the child was 1 year, 3 years, and 5 years of age. Maternal warmth and child aggressive behavior were measured at 3 years and 5 years of age. Models controlled for demographic characteristics (measured at the child's birth), child emotionality (measured at age 1), and maternal psychosocial risk factors (measured when children were 3 years old). Cross-lagged path models examined the within-time and longitudinal associations between spanking and child aggression. Results indicated that maternal spanking at age 1 was associated with higher levels of child aggression at age 3; similarly, maternal spanking at age 3 predicted increases in child aggression by age 5. Maternal warmth when children were 3 years old did not predict changes in child aggression between 3 and 5 years old. Furthermore, maternal warmth did not moderate the association between spanking and increased child aggression over time. Beginning as early as age 1, maternal spanking is predictive of child behavior problems, and maternal warmth does not counteract the negative consequences of the use of spanking.

  5. Systematic Analysis and Prediction of In Situ Cross Talk of O-GlcNAcylation and Phosphorylation

    PubMed Central

    Li, Ao; Wang, Minghui

    2015-01-01

    Reversible posttranslational modification (PTM) plays a very important role in biological process by changing properties of proteins. As many proteins are multiply modified by PTMs, cross talk of PTMs is becoming an intriguing topic and draws much attention. Currently, lots of evidences suggest that the PTMs work together to accomplish a specific biological function. However, both the general principles and underlying mechanism of PTM crosstalk are elusive. In this study, by using large-scale datasets we performed evolutionary conservation analysis, gene ontology enrichment, motif extraction of proteins with cross talk of O-GlcNAcylation and phosphorylation cooccurring on the same residue. We found that proteins with in situ O-GlcNAc/Phos cross talk were significantly enriched in some specific gene ontology terms and no obvious evolutionary pressure was observed. Moreover, 3 functional motifs associated with O-GlcNAc/Phos sites were extracted. We further used sequence features and GO features to predict O-GlcNAc/Phos cross talk sites based on phosphorylated sites and O-GlcNAcylated sites separately by the use of SVM model. The AUC of classifier based on phosphorylated sites is 0.896 and the other classifier based on GlcNAcylated sites is 0.843. Both classifiers achieved a relatively better performance compared with other existing methods. PMID:26601103

  6. Systematic Analysis and Prediction of In Situ Cross Talk of O-GlcNAcylation and Phosphorylation.

    PubMed

    Yao, Heming; Li, Ao; Wang, Minghui

    2015-01-01

    Reversible posttranslational modification (PTM) plays a very important role in biological process by changing properties of proteins. As many proteins are multiply modified by PTMs, cross talk of PTMs is becoming an intriguing topic and draws much attention. Currently, lots of evidences suggest that the PTMs work together to accomplish a specific biological function. However, both the general principles and underlying mechanism of PTM crosstalk are elusive. In this study, by using large-scale datasets we performed evolutionary conservation analysis, gene ontology enrichment, motif extraction of proteins with cross talk of O-GlcNAcylation and phosphorylation cooccurring on the same residue. We found that proteins with in situ O-GlcNAc/Phos cross talk were significantly enriched in some specific gene ontology terms and no obvious evolutionary pressure was observed. Moreover, 3 functional motifs associated with O-GlcNAc/Phos sites were extracted. We further used sequence features and GO features to predict O-GlcNAc/Phos cross talk sites based on phosphorylated sites and O-GlcNAcylated sites separately by the use of SVM model. The AUC of classifier based on phosphorylated sites is 0.896 and the other classifier based on GlcNAcylated sites is 0.843. Both classifiers achieved a relatively better performance compared with other existing methods.

  7. Evidence from Maternity Leave Expansions of the Impact of Maternal Care on Early Child Development

    ERIC Educational Resources Information Center

    Baker, Michael; Milligan, Kevin

    2010-01-01

    We study the impact of maternal care on early child development using an expansion in Canadian maternity leave entitlements. Following the leave expansion, mothers who took leave spent 48-58 percent more time not working in their children's first year of life. This extra maternal care primarily crowded out home-based care by unlicensed…

  8. Timing of first embryonic cleavage is a positive indicator of the in vitro developmental potential of porcine embryos derived from in vitro fertilization, somatic cell nuclear transfer and parthenogenesis.

    PubMed

    Isom, S Clay; Li, Rong Feng; Whitworth, Kristin M; Prather, Randall S

    2012-03-01

    Evidence in many species has suggested that those embryos that cleave earliest after fertilization are more developmentally competent than those that cleave relatively later after fertilization. Herein we document this phenomenon in porcine in vitro-fertilized (IVF), somatic cell nuclear transfer (SCNT), and parthenogenetic (PA) embryos. In vitro-matured pig oocytes were used to generate IVF, SCNT, and PA embryos. At 24 hr post-activation (or insemination; hpa/hpi), embryos were visually assessed, and cleaved embryos were moved into a new culture well. This process was repeated at 30 and 48 hpa/hpi. All embryos were allowed to develop 7 days in culture. For IVF embryos, 39.9%, 24.6%, and 10.5% of fast-, intermediate-, or slow-cleaving embryos, respectively, developed into blastocysts by day 7. For SCNT embryos, 31.8% of fast-, 5.7% of intermediate-, and 2.9% of late-cleaving embryos achieved the blastocyst stage of development. For PA embryos, the percentages of those cleaved embryos that developed to blastocyst were 59.3%, 36.7%, and 7.5% for early-, intermediate-, and late-cleaving embryos, respectively. Using RNA collected from early-, intermediate-, and late-cleaving embryos, real-time PCR was performed to assess the transcript levels of 14 different genes of widely varied function. The qPCR results suggest that maternal mRNA degradation may not proceed in an appropriate pattern in slow-cleaving embryos. These findings (1) confirm that, as observed in other species, earlier-cleaving porcine embryos are more successful at developing in culture than are slower-cleaving embryos, and (2) implicate mechanisms of maternal transcript destruction as potential determinants of oocyte/embryo quality. Copyright © 2011 Wiley Periodicals, Inc.

  9. Sildenafil citrate (Viagra) impairs fertilization and early embryo development in mice.

    PubMed

    Glenn, David R J; McClure, Neil; Cosby, S Louise; Stevenson, Michael; Lewis, Sheena E M

    2009-03-01

    To determine the effects of sildenafil citrate, a cyclic monophosphate-specific type 5 phosphodiesterase inhibitor known to affect sperm function, on fertilization and early embryo cleavage. This acute mammal study included male and female mice assigned randomly, the females sacrificed after mating and their oocytes/embryos evaluated at four time periods after treatment. Academic research environment. Male and female CBAB(6) mice. Female mice were injected intraperitoneally with 5 IU gonadotropin (hCG) to stimulate follicular growth and induce ovulation. They were each caged with a male that had been gavaged with sildenafil citrate (0.06 mg/0.05 mL) and allowed to mate. After 12, 36, 60, and 84 h, females were killed, their oviducts were dissected out, and retrieved embryos were assessed for blastomere number and quality. Fertilization rates and numbers of embryos were evaluated after treatment. Fertilization rates (day 1) were markedly reduced (-33%) in matings where the male had taken sildenafil citrate. Over days 2-4, the numbers of embryos developing in the treated group were significantly fewer than in the control group. There was also a trend for impaired cleavage rates within those embryos, although this did not reach significance. The impairments to fertility caused by sildenafil citrate have important implications for infertility centers and for couples who are using this drug precoitally while attempting to conceive.

  10. Development of low optical cross talk filters for VIIRS (JPSS)

    NASA Astrophysics Data System (ADS)

    Murgai, Vijay; Hendry, Derek; Downing, Kevin; Carbone, David; Potter, John

    2016-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on Suomi National Polar-orbiting Partnership (S-NPP) satellite launched on October 28, 2011 into a polar orbit of 824 km nominal altitude and the JPSS sensors currently being built and integrated. VIIRS collects radiometric and imagery data of the Earth's atmosphere, oceans, and land surfaces in 22 spectral bands spanning the visible and infrared spectrum from 0.4 to 12.5 μm. Interference filters assembled in `butcher-block' arrays mounted adjacent to focal plane arrays provide spectral definition. Out-of-band signal and out-of-band optical cross-talk was observed for bands in the 0.4 to 1 μm range in testing of VIIRS for S-NPP. Optical cross-talk is in-band or out-of-band light incident on an adjacent filter or adjacent region of the same filter reaching the detector. Out-of-band optical cross-talk results in spectral and spatial `impurities' in the signal and consequent errors in the calculated environmental parameters such as ocean color that rely on combinations of signals from more than one band. This paper presents results of characterization, specification, and coating process improvements that enabled production of filters with significantly reduced out of band light for Joint Polar Satellite System (JPSS) J1 and subsequent sensors. Total transmission and scatter measurements at a wavelength within the pass band can successfully characterize filter performance prior to dicing and assembling filters into butcher block assemblies. Coating and process development demonstrated performance on test samples followed by production of filters for J1 and J2. Results for J1 and J2 filters are presented.

  11. Early embryo mortality in natural human reproduction: What the data say

    PubMed Central

    Jarvis, Gavin E.

    2017-01-01

    How many human embryos die between fertilisation and birth under natural conditions? It is widely accepted that natural human embryo mortality is high, particularly during the first weeks after fertilisation, with total prenatal losses of 70% and higher frequently claimed. However, the first external sign of pregnancy occurs two weeks after fertilisation with a missed menstrual period, and establishing the fate of embryos before this is challenging. Calculations are additionally hampered by a lack of data on the efficiency of fertilisation under natural conditions. Four distinct sources are used to justify quantitative claims regarding embryo loss: (i) a hypothesis published by Roberts & Lowe in The Lancet  is widely cited but has no practical quantitative value; (ii) life table analyses give consistent assessments of clinical pregnancy loss, but cannot illuminate losses at earlier stages of development; (iii) studies that measure human chorionic gonadotrophin (hCG) reveal losses in the second week of development and beyond, but not before; and (iv) the classic studies of Hertig and Rock offer the only direct insight into the fate of human embryos from fertilisation under natural conditions. Re-examination of Hertig’s data demonstrates that his estimates for fertilisation rate and early embryo loss are highly imprecise and casts doubt on the validity of his numerical analysis. A recent re-analysis of hCG study data concluded that approximately 40-60% of embryos may be lost between fertilisation and birth, although this will vary substantially between individual women. In conclusion, natural human embryo mortality is lower than often claimed and widely accepted. Estimates for total prenatal mortality of 70% or higher are exaggerated and not supported by the available data. PMID:28580126

  12. Effect of PMA-induced protein kinase C activation on development and apoptosis in early zebrafish embryos.

    PubMed

    Hrubik, Jelena; Glisic, Branka; Samardzija, Dragana; Stanic, Bojana; Pogrmic-Majkic, Kristina; Fa, Svetlana; Andric, Nebojsa

    2016-12-01

    Protein kinase C (PKC) isoforms have been implicated in several key steps during early development, but the consequences of xenobiotic-induced PKC activation during early embryogenesis are still unknown. In this study, zebrafish embryos were exposed to a range of phorbol 12-myristate 13-acetate (PMA) concentrations (0-200μg/L) at different time points after fertilization. Results showed that 200μgPMA/L caused development of yolk bags, cardiac edema, slow blood flow, pulsating blood flow, slow pulse, elongated heart, lack of tail fins, curved tail, and coagulation. PMA exposure decreased survival rate of the embryos starting within the first 24h and becoming more pronounced after prolonged exposure (96h). PMA increased the number of apoptotic cells in the brain region as demonstrated by acridine orange staining and caused up-regulation of caspase 9 (casp9) and p53 up-regulated modulator of apoptosis (puma) mRNA in whole embryos. PMA caused oxidative stress in the embryos as demonstrated by decreased mRNA expression of catalase and superoxide dismutase 2. Inhibition of Pkc with GF109203X improved overall survival rate, reduced apoptosis in the brain and decreased expression of casp9 and puma in the PMA-exposed embryos. However, Pkc inhibition neither prevented development of deformities nor reversed oxidative stress in the PMA-exposed embryos. These data suggest that direct over-activation of Pkc during early embryogenesis of zebrafish is associated with apoptosis and decreased survival rate of the embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila

    PubMed Central

    Sysoev, Vasiliy O.; Fischer, Bernd; Frese, Christian K.; Gupta, Ishaan; Krijgsveld, Jeroen; Hentze, Matthias W.; Castello, Alfredo; Ephrussi, Anne

    2016-01-01

    The maternal-to-zygotic transition (MZT) is a process that occurs in animal embryos at the earliest developmental stages, during which maternally deposited mRNAs and other molecules are degraded and replaced by products of the zygotic genome. The zygotic genome is not activated immediately upon fertilization, and in the pre-MZT embryo post-transcriptional control by RNA-binding proteins (RBPs) orchestrates the first steps of development. To identify relevant Drosophila RBPs organism-wide, we refined the RNA interactome capture method for comparative analysis of the pre- and post-MZT embryos. We determine 523 proteins as high-confidence RBPs, half of which were not previously reported to bind RNA. Comparison of the RNA interactomes of pre- and post-MZT embryos reveals high dynamicity of the RNA-bound proteome during early development, and suggests active regulation of RNA binding of some RBPs. This resource provides unprecedented insight into the system of RBPs that govern the earliest steps of Drosophila development. PMID:27378189

  14. Embryo selection using time-lapse analysis (Early Embryo Viability Assessment) in conjunction with standard morphology: a prospective two-center pilot study.

    PubMed

    Kieslinger, Dorit C; De Gheselle, Stefanie; Lambalk, Cornelis B; De Sutter, Petra; Kostelijk, E Hanna; Twisk, Jos W R; van Rijswijk, Joukje; Van den Abbeel, Etienne; Vergouw, Carlijn G

    2016-11-01

    Does prospective embryo selection using the results from the Eava Test (Early Embryo Viability Assessment) in combination with standard morphology increase the pregnancy rate of IVF and ICSI patients compared to embryo selection based on morphology only? Embryo selection using the Eeva Test plus standard morphology on Day 3 results in comparable pregnancy rates as conventional morphological embryo selection. Time-lapse monitoring of embryo development may represent a superior way to culture and select embryos in vitro. The Eeva Test records the development of each embryo with a cell-tracking system and predicts the likelihood (High, Medium or Low) that an embryo will form a blastocyst based on an automated analysis of early cell division timings. This trial was designed as a prospective, observational, two-center pilot study with a propensity matched control group. The analysis involved 280 of 302 enrolled patients who were included in the Eeva Test group in 2013 and 560 control patients who were treated in the years 2011-2013. The majority of transfers (98%) were single embryo transfers. Two academic hospitals (VUmc Amsterdam and UZ Gent) enrolled patients <41 years old, with <3 previous attempts and ≥5 normally fertilized eggs. Propensity matching was used to identify a propensity matched control group from a cohort of 1777 patients based on age, cycle number, oocyte number and number of fertilized oocytes. There was no difference in patient baseline characteristics between the two groups. The ongoing pregnancy rate (OPR) of patients enrolled in the Eeva Test group (34.3%; 96/280) did not differ significantly from the OPR in the propensity matched control group (34.6%, 194/560; P = 0.92). However, significantly less top quality embryos (eight-cell embryos with ≤25% fragmentation) were transferred in the Eeva Test group compared to the propensity matched control group (70.4% vs. 82.3%; P < 0.001). The transfer of Eeva High and Medium embryos resulted in a

  15. The first whole transcriptomic exploration of pre-oviposited early chicken embryos using single and bulked embryonic RNA-sequencing.

    PubMed

    Hwang, Young Sun; Seo, Minseok; Choi, Hee Jung; Kim, Sang Kyung; Kim, Heebal; Han, Jae Yong

    2018-04-01

    The chicken is a valuable model organism, especially in evolutionary and embryology research because its embryonic development occurs in the egg. However, despite its scientific importance, no transcriptome data have been generated for deciphering the early developmental stages of the chicken because of practical and technical constraints in accessing pre-oviposited embryos. Here, we determine the entire transcriptome of pre-oviposited avian embryos, including oocyte, zygote, and intrauterine embryos from Eyal-giladi and Kochav stage I (EGK.I) to EGK.X collected using a noninvasive approach for the first time. We also compare RNA-sequencing data obtained using a bulked embryo sequencing and single embryo/cell sequencing technique. The raw sequencing data were preprocessed with two genome builds, Galgal4 and Galgal5, and the expression of 17,108 and 26,102 genes was quantified in the respective builds. There were some differences between the two techniques, as well as between the two genome builds, and these were affected by the emergence of long intergenic noncoding RNA annotations. The first transcriptome datasets of pre-oviposited early chicken embryos based on bulked and single embryo sequencing techniques will serve as a valuable resource for investigating early avian embryogenesis, for comparative studies among vertebrates, and for novel gene annotation in the chicken genome.

  16. Early life traits of farm and wild Atlantic salmon Salmo salar and first generation hybrids in the south coast of Newfoundland.

    PubMed

    Hamoutene, D; Perez-Casanova, J; Burt, K; Lush, L; Caines, J; Collier, C; Hinks, R

    2017-06-01

    This study examined fertilization rates, survival and early life-trait differences of pure farm, wild and first generation (F1) hybrid origin embryos after crossing farm and wild Atlantic salmon Salmo salar. Results show that despite a trend towards higher in vitro fertilization success for wild females, differences in fertilization success in river water are not significantly different among crosses. In a hatchery environment, wild females' progeny (pure wild and hybrids with wild maternal parent) hatched 7-11 days earlier than pure farm crosses and hybrids with farm maternal parents. In addition, pure wild progeny had higher total lengths (L T ) at hatch than pure farm crosses and hybrids. Directions in trait differences need to be tested in a river environment, but results clearly show the maternal influence on early stages beyond egg-size differences. Differences in L T were no longer significant at 70 days post hatch (shortly after the onset of exogenous feeding) showing the need to investigate later developmental stages to better assess somatic growth disparities due to genetic differences. Higher mortality rates of the most likely hybrids (farm female × wild male hybrids) at egg and fry stages and their delayed hatch suggest that these F1 hybrids might be less likely to survive the early larval stages than wild stocks. © 2017 Her Majesty the Queen in Right of Canada. Journal of Fish Biology © 2017 The Fisheries Society of the British Isles.

  17. Heterogeneous nuclear ribonucleoprotein C1 may control miR-30d levels in endometrial exosomes affecting early embryo implantation.

    PubMed

    Balaguer, N; Moreno, I; Herrero, M; González, M; Simón, C; Vilella, F

    2018-05-29

    as a model of hEECs in silencing experiments due to the low survival rates of primary hEECs after transfection. The data show that hnRNPC1 may be involved in the internalization of miR-30d inside Exosomes. The decreased rates of embryo adhesion in endometrial epithelial-like cells transiently silenced with sihnRNPC1evidence that hnRNPC1 could be an important player in the maternal-embryo communication established in the early stages of implantation. This work was supported by the Miguel Servet Program Type I of Instituto de Salud Carlos III [CP13/00038]; FIS project [PI14/00545] to FV; the 'Atracció de Talent' Program from VLC-CAMPUS [UV-INV-PREDOC14-178329 to NB]; a Torres-Quevedo grant (PTQ-13-06133) by the Spanish Ministry of Economy and Competitiveness to IM; and MINECO/FEDER Grant [SAF2015-67154-R] to CS. The authors declare there is no conflict of interest.

  18. Association between early childhood caries and maternal caries status: A cross-section study in São Luís, Maranhão, Brazil

    PubMed Central

    de Souza, Pedrita Mara do Espírito Santo; Mello Proença, Mariana Almeida; Franco, Mayra Moura; Rodrigues, Vandilson Pinheiro; Costa, José Ferreira; Costa, Elizabeth Lima

    2015-01-01

    Objective: This study aims to evaluate the association between early childhood caries (ECC) and maternal caries status, and the maternal perception of ECC risk factors. Materials and Methods: A cross-sectional study was carried out with 77 mother-child pairs, the children ranging from 12 to 36 months of age and their mothers, who were seeking dental care at a health center in São Luís, Maranhão, Brazil. Data collection was conducted using a specific questionnaire for mothers. Oral clinical examination of the mother-child binomial to assess caries incidence, gingival bleeding (GB) and visible plaque was done. Home visits were performed in 10% of the sample in order to observe the environmental conditions, dietary habits and dental hygiene practices. Results: The findings showed that the caries prevalence in children was 22.5 times higher in the mother who had decayed tooth (prevalence ratio [PR] = 22.5, confidence interval [CI] 95% = 3.2–156.6, P < 0.001). GB also was observed in 14 mothers and children, the PR in pair was 12.2 (CI95% = 1.6–88.9, P < 0.001). The variables are related for the mother-child binomial in regression linear analysis. Conclusion: The maternal caries status was associated with ECC. PMID:25713495

  19. One-dimensional photonic crystals for eliminating cross-talk in mid-IR photonics-based respiratory gas sensing

    NASA Astrophysics Data System (ADS)

    Fleming, L.; Gibson, D.; Song, S.; Hutson, D.; Reid, S.; MacGregor, C.; Clark, C.

    2017-02-01

    Mid-IR carbon dioxide (CO2) gas sensing is critical for monitoring in respiratory care, and is finding increasing importance in surgical anaesthetics where nitrous oxide (N2O) induced cross-talk is a major obstacle to accurate CO2 monitoring. In this work, a novel, solid state mid-IR photonics based CO2 gas sensor is described, and the role that 1- dimensional photonic crystals, often referred to as multilayer thin film optical coatings [1], play in boosting the sensor's capability of gas discrimination is discussed. Filter performance in isolating CO2 IR absorption is tested on an optical filter test bed and a theoretical gas sensor model is developed, with the inclusion of a modelled multilayer optical filter to analyse the efficacy of optical filtering on eliminating N2O induced cross-talk for this particular gas sensor architecture. Future possible in-house optical filter fabrication techniques are discussed. As the actual gas sensor configuration is small, it would be challenging to manufacture a filter of the correct size; dismantling the sensor and mounting a new filter for different optical coating designs each time would prove to be laborious. For this reason, an optical filter testbed set-up is described and, using a commercial optical filter, it is demonstrated that cross-talk can be considerably reduced; cross-talk is minimal even for very high concentrations of N2O, which are unlikely to be encountered in exhaled surgical anaesthetic patient breath profiles. A completely new and versatile system for breath emulation is described and the capability it has for producing realistic human exhaled CO2 vs. time waveforms is shown. The cross-talk inducing effect that N2O has on realistic emulated CO2 vs. time waveforms as measured using the NDIR gas sensing technique is demonstrated and the effect that optical filtering will have on said cross-talk is discussed.

  20. Changes in the concentrations of four maternal steroids during embryonic development in the threespined stickleback (Gasterosteus aculeatus).

    PubMed

    Paitz, Ryan Thomas; Mommer, Brett Christian; Suhr, Elissa; Bell, Alison Marie

    2015-08-01

    Embryonic exposure to steroids often leads to long-term phenotypic effects. It has been hypothesized that mothers may be able to create a steroid environment that adjusts the phenotypes of offspring to current environmental conditions. Complicating this hypothesis is the potential for developing embryos to modulate their early endocrine environment. This study utilized the threespined stickleback (Gasterosteus aculeatus) to characterize the early endocrine environment within eggs by measuring four steroids (progesterone, testosterone, estradiol, and cortisol) of maternal origin. We then examined how the concentrations of these four steroids changed over the first 12 days post fertilization (dpf). Progesterone, testosterone, estradiol, and cortisol of maternal origin could be detected within unfertilized eggs and levels of all four steroids declined in the first 3 days following fertilization. While levels of progesterone, testosterone, and estradiol remained low after the initial decline, levels of cortisol rose again by 8 dpf. These results demonstrate that G. aculeatus embryos begin development in the presence of a number of maternal steroids but levels begin to change quickly following fertilization. This suggests that embryonic processes change the early endocrine environment and hence influence the ability of maternal steroids to affect development. With these findings, G. aculeatus becomes an intriguing system in which to study how selection may act on both maternal and embryonic processes to shape the evolutionary consequence of steroid-mediated maternal effects. © 2015 Wiley Periodicals, Inc.

  1. Paternal Diet-Induced Obesity Retards Early Mouse Embryo Development, Mitochondrial Activity and Pregnancy Health

    PubMed Central

    Binder, Natalie K.; Hannan, Natalie J.; Gardner, David K.

    2012-01-01

    Worldwide, 48% of adult males are overweight or obese. An association between infertility and excessive body weight is now accepted, although focus remains primarily on females. It has been shown that parental obesity results in compromised embryo development, disproportionate changes in embryo metabolism and reduced blastocyst cell number. The aim of this study was to determine whether paternal obesity has negative effects on the resultant embryo. Specifically, using in vitro fertilisation (IVF), we wanted to isolate the functional effects of obesity on sperm by examining the subsequent embryo both pre- and post-implantation. Epididymal sperm was collected from age matched normal and obese C57BL/6 mice and cryopreserved for subsequent IVF with oocytes collected from Swiss females (normal diet/weight). Obesity was induced in male mice by feeding a high fat diet of 22% fat for 10 weeks. Resultant embryos were cultured individually and development monitored using time-lapse microscopy. Paternal obesity resulted in a significant delay in preimplantation embryo development as early as syngamy (P<0.05). Metabolic parameters were measured across key developmental stages, demonstrating significant reduction in mitochondrial membrane potential (P<0.01). Blastocysts were stained to determine trophectoderm (TE) and inner cell mass (ICM) cell numbers, revealing significant differences in the ratio of cell allocation to TE and ICM lineages (P<0.01). Functional studies examining blastocyst attachment, growth and implantation demonstrated that blastocysts derived from sperm of obese males displayed significantly reduced outgrowth on fibronectin in vitro (P<0.05) and retarded fetal development in vivo following embryo transfer (P<0.05). Taken together, these data clearly demonstrate that paternal obesity has significant negative effects on the embryo at a variety of key early developmental stages, resulting in delayed development, reduced placental size and smaller offspring

  2. Specificity, cross-talk and adaptation in Interferon signaling

    NASA Astrophysics Data System (ADS)

    Zilman, Anton

    Innate immune system is the first line of defense of higher organisms against pathogens. It coordinates the behavior of millions of cells of multiple types, achieved through numerous signaling molecules. This talk focuses on the signaling specificity of a major class of signaling molecules - Type I Interferons - which are also used therapeutically in the treatment of a number of diseases, such as Hepatitis C, multiple sclerosis and some cancers. Puzzlingly, different Interferons act through the same cell surface receptor but have different effects on the target cells. They also exhibit a strange pattern of temporal cross-talk resulting in a serious clinical problem - loss of response to Interferon therapy. We combined mathematical modeling with quantitative experiments to develop a quantitative model of specificity and adaptation in the Interferon signaling pathway. The model resolves several outstanding experimental puzzles and directly affects the clinical use of Type I Interferons in treatment of viral hepatitis and other diseases.

  3. Impact of Maternal Serotonin Transporter Genotype on Placental Serotonin, Fetal Forebrain Serotonin, and Neurodevelopment

    PubMed Central

    Muller, Christopher L; Anacker, Allison MJ; Rogers, Tiffany D; Goeden, Nick; Keller, Elizabeth H; Forsberg, C Gunnar; Kerr, Travis M; Wender, Carly LA; Anderson, George M; Stanwood, Gregg D; Blakely, Randy D; Bonnin, Alexandre; Veenstra-VanderWeele, Jeremy

    2017-01-01

    Biomarker, neuroimaging, and genetic findings implicate the serotonin transporter (SERT) in autism spectrum disorder (ASD). Previously, we found that adult male mice expressing the autism-associated SERT Ala56 variant have altered central serotonin (5-HT) system function, as well as elevated peripheral blood 5-HT levels. Early in gestation, before midbrain 5-HT projections have reached the cortex, peripheral sources supply 5-HT to the forebrain, suggesting that altered maternal or placenta 5-HT system function could impact the developing embryo. We therefore used different combinations of maternal and embryo SERT Ala56 genotypes to examine effects on blood, placenta and embryo serotonin levels and neurodevelopment at embryonic day E14.5, when peripheral sources of 5-HT predominate, and E18.5, when midbrain 5-HT projections have reached the forebrain. Maternal SERT Ala56 genotype was associated with decreased placenta and embryonic forebrain 5-HT levels at E14.5. Low 5-HT in the placenta persisted, but forebrain levels normalized by E18.5. Maternal SERT Ala56 genotype effects on forebrain 5-HT levels were accompanied by a broadening of 5-HT-sensitive thalamocortical axon projections. In contrast, no effect of embryo genotype was seen in concepti from heterozygous dams. Blood 5-HT levels were dynamic across pregnancy and were increased in SERT Ala56 dams at E14.5. Placenta RNA sequencing data at E14.5 indicated substantial impact of maternal SERT Ala56 genotype, with alterations in immune and metabolic-related pathways. Collectively, these findings indicate that maternal SERT function impacts offspring placental 5-HT levels, forebrain 5-HT levels, and neurodevelopment. PMID:27550733

  4. Alterations in the Vaginal Microbiome by Maternal Stress Are Associated With Metabolic Reprogramming of the Offspring Gut and Brain.

    PubMed

    Jašarević, Eldin; Howerton, Christopher L; Howard, Christopher D; Bale, Tracy L

    2015-09-01

    The neonate is exposed to the maternal vaginal microbiota during parturition, providing the primary source for normal gut colonization, host immune maturation, and metabolism. These early interactions between the host and microbiota occur during a critical window of neurodevelopment, suggesting early life as an important period of cross talk between the developing gut and brain. Because perturbations in the prenatal environment such as maternal stress increase neurodevelopmental disease risk, disruptions to the vaginal ecosystem could be a contributing factor in significant and long-term consequences for the offspring. Therefore, to examine the hypothesis that changes in the vaginal microbiome are associated with effects on the offspring gut microbiota and on the developing brain, we used genomic, proteomic and metabolomic technologies to examine outcomes in our mouse model of early prenatal stress. Multivariate modeling identified broad proteomic changes to the maternal vaginal environment that influence offspring microbiota composition and metabolic processes essential for normal neurodevelopment. Maternal stress altered proteins related to vaginal immunity and abundance of Lactobacillus, the prominent taxa in the maternal vagina. Loss of maternal vaginal Lactobacillus resulted in decreased transmission of this bacterium to offspring. Further, altered microbiota composition in the neonate gut corresponded with changes in metabolite profiles involved in energy balance, and with region- and sex-specific disruptions of amino acid profiles in the developing brain. Taken together, these results identify the vaginal microbiota as a novel factor by which maternal stress may contribute to reprogramming of the developing brain that may predispose individuals to neurodevelopmental disorders.

  5. Changes in Oscillatory Dynamics in the Cell Cycle of Early Xenopus laevis Embryos

    PubMed Central

    Tsai, Tony Y.-C.; Theriot, Julie A.; Ferrell, James E.

    2014-01-01

    During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min) and the subsequent 11 cycles are short (∼30 min) and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development. PMID:24523664

  6. Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth.

    PubMed

    Roberti, Sabrina L; Higa, Romina; White, Verónica; Powell, Theresa L; Jansson, Thomas; Jawerbaum, Alicia

    2018-06-01

    mTOR in the post-implantation period and suggests that activation of PPAR signaling was insufficient to compensate for impaired nutritional/survival signaling induced by mTOR inhibition. Inhibition of PPARγ signaling resulted in decreased decidual PLIN2 and FABP4 protein expression as well as in inhibition of decidual mTOR signaling in Day 9 of pregnancy. This treatment also reduced feto-placental growth on Day 14 of pregnancy, revealing the relevance of PPARγ signaling in sustaining post-implantation growth. Moreover, following inhibition of PPARδ, PLIN2 levels were decreased and mTOR complex 1 and 2 signaling was altered in decidua on Day 9 of pregnancy. On Day 14 of pregnancy, PPARδ inhibition caused reduced feto-placental weight, increased decidual weight and increased resorption rate, suggesting a key role of PPARδ in sustaining post-implantation development. Not applicable. This is an in vivo animal study and the relevance of the results for humans remains to be established. The early post-implantation period is a critical window of development and changes in the intrauterine environment may cause embryo resorption and lead to placental and fetal growth restriction. mTOR, PPARγ and PPARδ signaling are decidual nutrient sensors with extensive cross-talk that regulates adipogenic proteins involved in histotrophic nutrition and important for embryo viability and early placental and fetal development and growth. Funding was provided by the Agencia Nacional de Promoción Científica y Tecnológica de Argentina (PICT 2014-411 and PICT 2015-0130), and by the International Cooperation (Grants CONICET-NIH-2014 and CONICET-NIH-2017) to A.J. and T.J. The authors have no conflicts of interest.

  7. Quality of early maternal-child relationship and risk of adolescent obesity.

    PubMed

    Anderson, Sarah E; Gooze, Rachel A; Lemeshow, Stanley; Whitaker, Robert C

    2012-01-01

    The goal of this study was to determine whether obesity in adolescence is related to the quality of the early maternal-child relationship. We analyzed data from 977 of 1364 participants in the Study of Early Child Care and Youth Development. Child attachment security and maternal sensitivity were assessed by observing mother-child interaction at 15, 24, and 36 months of age. A maternal-child relationship quality score was constructed as the number of times across the 3 ages that the child was either insecurely attached or experienced low maternal sensitivity. Adolescent obesity was defined as a measured BMI ≥95th percentile at age 15 years. Poor-quality maternal-child relationships (score: ≥3) were experienced by 24.7% of children compared with 22.0% who, at all 3 ages, were neither insecurely attached nor exposed to low maternal sensitivity (score: 0). The prevalence of adolescent obesity was 26.1%, 15.5%, 12.1%, and 13.0% for those with risk scores of ≥3, 2, 1, and 0, respectively. After adjustment for gender and birth weight, the odds (95% confidence interval) of adolescent obesity was 2.45 (1.49-4.04) times higher in those with the poorest quality early maternal-child relationships (score: ≥3) compared with those with the highest quality (score: 0). Low maternal sensitivity was more strongly associated with obesity than insecure attachment. Poor quality of the early maternal-child relationship was associated with a higher prevalence of adolescent obesity. Interventions aimed at improving the quality of maternal-child interactions should consider assessing effects on children's weight and examining potential mechanisms involving stress response and emotion regulation.

  8. The effect of flurbiprofen on the development of anencephaly in early stage chicken embryos.

    PubMed

    Özeren, Ersin; Er, Uygur; Güvenç, Yahya; Demirci, Adnan; Arıkök, Ata Türker; Şenveli, Engin; Ergün, Rüçhan Behzat

    2015-04-01

    The study investigated the effect of flurbiprofen on the development of anencephaly in early stage chicken embryos. We looked at four groups with a total of 36 embryos. There was a control group, a normal saline group, a normal-dose group and a high-dose group with ten, ten, eight and eight eggs with embryo respectively. Two embryos in the control group, studied with light microscopy at 48 h, were consistent with 28-29 hours' incubation in the Hamburger-Hamilton System. They had open neural tubes. The other embryos in this group were considered normal. One embryo in the normal saline group was on the occlusion stage at 48 h. One embryo showed an open neural tube. They were compatible with 28-29 hours' incubation in the Hamburger-Hamilton system. The remaining eight embryos showed normal development. In the normal dose group, one embryo showed underdevelopment of the embryonic disc and the embryo was dead. In four embryos, the neural tubes were open. One cranial malformation was found that was complicated with anencephaly in one embryo. In two embryos the neural tubes were closed, as they showed normal development, and they reached their expected stages according to the Hamburger-Hamilton classification. There was no malformation or growth retardation. Four experimental embryos were anencephalic in the high dose group, and three embryos had open neural tubes. One embryo exhibited both anencephaly and a neural tube closure defect. None of the embryos in this group showed normal development. Even the usual therapeutic doses of flurbiprofen increased the risk of neural tube defect. Flurbiprofen was found to significantly increase the risk of anencephaly. The provision of improved technical materials and studies with larger sample sizes will reveal the stage of morphological disruption during the development of embryos.

  9. Early hospital discharge in maternal and newborn care.

    PubMed

    Fink, Anne M

    2011-01-01

    This article highlights the historic precedence of early discharge practices and the debate regarding length of stay for new mothers and newborns in the United States. Although the documented effects of early discharge on maternal and newborn health are inconsistent, research findings universally support follow-up care for mothers and infants within 1 week of hospital discharge. Research is needed to identify the components and timing of follow-up care to optimize maternal and newborn outcomes. © 2011 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  10. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future.

  11. Cross talk between ceramide and redox signaling: implications for endothelial dysfunction and renal disease.

    PubMed

    Li, Pin-Lan; Zhang, Yang

    2013-01-01

    Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where transmembrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial-temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways.

  12. Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success.

    PubMed

    Sandra, Olivier; Mansouri-Attia, Nadéra; Lea, Richard G

    2011-01-01

    Successful pregnancy depends on complex biological processes that are regulated temporally and spatially throughout gestation. The molecular basis of these processes have been examined in relation to gamete quality, early blastocyst development and placental function, and data have been generated showing perturbations of these developmental stages by environmental insults or embryo biotechnologies. The developmental period falling between the entry of the blastocyst into the uterine cavity to implantation has also been examined in terms of the biological function of the endometrium. Indeed several mechanisms underlying uterine receptivity, controlled by maternal factors, and the maternal recognition of pregnancy, requiring conceptus-produced signals, have been clarified. Nevertheless, recent data based on experimental perturbations have unveiled unexpected biological properties of the endometrium (sensor/driver) that make this tissue a dynamic and reactive entity. Persistent or transient modifications in organisation and functionality of the endometrium can dramatically affect pre-implantation embryo trajectory through epigenetic alterations with lasting consequences on later stages of pregnancy, including placentation, fetal development, pregnancy outcome and post-natal health. Developing diagnostic and prognostic tools based on endometrial factors may enable the assessment of maternal reproductive capacity and/or the developmental potential of the embryo, particularly when assisted reproductive technologies are applied.

  13. Maternal Cortisol Mediates Hypothalamus-Pituitary-Interrenal Axis Development in Zebrafish

    PubMed Central

    Nesan, Dinushan; Vijayan, Mathilakath M.

    2016-01-01

    In zebrafish (Danio rerio), de novo synthesis of cortisol in response to stressor exposure commences only after hatch. Maternally deposited cortisol is present during embryogenesis, but a role for this steroid in early development is unclear. We tested the hypothesis that maternal cortisol is essential for the proper development of hypothalamus-pituitary-interrenal (HPI) axis activity and the onset of the stressor-induced cortisol response in larval zebrafish. In this study, zygotic cortisol content was manipulated by microinjecting antibody to sequester this steroid, thereby making it unavailable during embryogenesis. This was compared with embryos containing excess cortisol by microinjection of exogenous steroid. The resulting larval phenotypes revealed distinct treatment effects, including deformed mesoderm structures when maternal cortisol was unavailable and cardiac edema after excess cortisol. Maternal cortisol unavailability heightened the cortisol stress response in post-hatch larvae, whereas excess cortisol abolished the stressor-mediated cortisol elevation. This contrasting hormonal response corresponded with altered expression of key HPI axis genes, including crf, 11B hydroxylase, pomca, and star, which were upregulated in response to reduced cortisol availability and downregulated when embryos had excess cortisol. These findings for the first time underscore a critical role for maternally deposited cortisol in programming HPI axis development and function in zebrafish. PMID:26940285

  14. Effects of S-adenosylmethionine decarboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos.

    PubMed

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Takai, Jun-Ichi; Yoshida, Junki; Mishina, Takamichi; Fuchimukai, Kota; Ogasawara, Tsukasa; Kariya, Taro; Tashiro, Kosuke; Igarashi, Kazuei

    2010-02-01

    We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.

  15. Membrane traffic and synaptic cross-talk during host cell entry by Trypanosoma cruzi.

    PubMed

    Butler, Claire E; Tyler, Kevin M

    2012-09-01

    It is widely accepted that Trypanosoma cruzi can exploit the natural exocytic response of the host to cell damage, utilizing host cell lysosomes as important effectors. It is, though, increasingly clear that the parasite also exploits endocytic mechanisms which allow for incorporation of plasma membrane into the parasitophorous vacuole. Further, that these endocytic mechanisms are involved in cross-talk with the exocytic machinery, in the recycling of vesicles and in the manipulation of the cytoskeleton. Here we review the mechanisms by which T. cruzi exploits features of the exocytic and endocytic pathways in epithelial and endothelial cells and the evidence for cross-talk between these pathways. © 2012 Blackwell Publishing Ltd.

  16. A microRNA family exerts maternal control on sex determination in C. elegans.

    PubMed

    McJunkin, Katherine; Ambros, Victor

    2017-02-15

    Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 ( sup-26 ) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 ( nhl-2 ), encode RNA-binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of Caenorhabditis elegans Repression of nhl-2 by the mir-35 family is required for not only proper sex determination but also viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-naïve; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves naïveté and prevents premature deleterious developmental decisions. © 2017 McJunkin and Ambros; Published by Cold Spring Harbor Laboratory Press.

  17. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 2

    DTIC Science & Technology

    2007-02-01

    article is to show that when an organization is already doing competent project management, the effort to benchmark that capability by using CMMI is...process-improvement evolution. by Watts S . Humphrey, Dr. Michael D. Konrad, James W. Over, and William C. Peterson The ImprovAbility Model This model helps...17 23 29 3 12 16 22 30 31 D ep ar t m e n t s From the Sponsor Call For Articles Ad More Online From CrossTalk Coming Events SSTC 2007 BackTalk CMMI

  18. Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging

    PubMed Central

    Shimozawa, Togo; Yamagata, Kazuo; Kondo, Takefumi; Hayashi, Shigeo; Shitamukai, Atsunori; Konno, Daijiro; Matsuzaki, Fumio; Takayama, Jun; Onami, Shuichi; Nakayama, Hiroshi; Kosugi, Yasuhito; Watanabe, Tomonobu M.; Fujita, Katsumasa; Mimori-Kiyosue, Yuko

    2013-01-01

    A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to “pinhole cross-talk,” which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging. PMID:23401517

  19. Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging.

    PubMed

    Shimozawa, Togo; Yamagata, Kazuo; Kondo, Takefumi; Hayashi, Shigeo; Shitamukai, Atsunori; Konno, Daijiro; Matsuzaki, Fumio; Takayama, Jun; Onami, Shuichi; Nakayama, Hiroshi; Kosugi, Yasuhito; Watanabe, Tomonobu M; Fujita, Katsumasa; Mimori-Kiyosue, Yuko

    2013-02-26

    A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to "pinhole cross-talk," which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging.

  20. Embryo donation parents' attitudes towards donors: comparison with adoption.

    PubMed

    MacCallum, Fiona

    2009-03-01

    Embryo donation produces a family structure where neither rearing parent is genetically related to the child, as in adoption. It is not known how embryo donation parents view the donors compared with how adoptive parents view the birth parents. 21 couples with an embryo donation child aged 2-5 years were compared with 28 couples with an adopted child. Parents were administered a semi-structured interview, assessing knowledge of the donors/birth parents, frequency of thoughts and discussions about the donors/birth parents and disclosure of the donor conception/adoption to the child. Comparisons were made between mothers and fathers to examine gender differences. Embryo donation parents generally knew only the donors' physical characteristics, and thought about and talked about the donors less frequently than adoptive parents thought about and talked about the birth parents. Embryo donation fathers tended to think about the donors less often than did mothers. Disclosure of the child's origins in embryo donation families was far less common than in adoptive families (P < 0.001 for mothers and fathers), and was associated with the level of donor information (P < 0.05 for mothers, P < 0.025 for fathers). Embryo donation parents' views on the donors differ from adoptive parents' views on the birth parents, with donors having little significance in family life once treatment is successful.

  1. Influences of Reduced Expression of Maternal Bone Morphogenetic Protein 2 on Embryonic Development

    PubMed Central

    Singh, Ajeet P.; Castranio, Trisha; Scott, Greg; Guo, Dayong; Harris, Marie A.; Ray, Manas; Harris, Stephan E.; Mishina, Yuji

    2009-01-01

    Bone morphogenetic protein 2 (BMP2) was originally found by its osteoinductive ability, and recent genetic analyses have revealed that it plays critical roles during early embryogenesis, cardiogenesis, decidualization as well as skeletogenesis. During a course of evaluation of the conditional allele for Bmp2, we found that the presence of a neo cassette, a selection marker needed for gene targeting events in embryonic stem cells, in the 3’ untranslated region of exon 3 of Bmp2, reduced the expression levels of Bmp2 both in embryonic and maternal tissues. Some of the embryos that were genotyped as transheterozygous for the floxed allele with the neo cassette over the conventional null allele (fn/−) showed a lethal phenotype including defects in cephalic neural tube closure and ventral abdominal wall closure. Embryos exhibiting these abnormalities were increased when genotypes of the pregnant females were different; when expression levels of Bmp2 in maternal tissues were lower, a larger proportion of fn/− embryos exhibit these abnormalities. These results suggest that the expression levels of Bmp2 together in both in embryonic and maternal tissues influence the normal neural tube closure and body wall closure with different thresholds. PMID:18769073

  2. Expression of genes involved in early cell fate decisions in human embryos and their regulation by growth factors.

    PubMed

    Kimber, S J; Sneddon, S F; Bloor, D J; El-Bareg, A M; Hawkhead, J A; Metcalfe, A D; Houghton, F D; Leese, H J; Rutherford, A; Lieberman, B A; Brison, D R

    2008-05-01

    Little is understood about the regulation of gene expression in human preimplantation embryos. We set out to examine the expression in human preimplantation embryos of a number of genes known to be critical for early development of the murine embryo. The expression profile of these genes was analysed throughout preimplantation development and in response to growth factor (GF) stimulation. Developmental expression of a number of genes was similar to that seen in murine embryos (OCT3B/4, CDX2, NANOG). However, GATA6 is expressed throughout preimplantation development in the human. Embryos were cultured in IGF-I, leukaemia inhibitory factor (LIF) or heparin-binding EGF-like growth factor (HBEGF), all of which are known to stimulate the development of human embryos. Our data show that culture in HBEGF and LIF appears to facilitate human embryo expression of a number of genes: ERBB4 (LIF) and LIFR and DSC2 (HBEGF) while in the presence of HBEGF no blastocysts expressed EOMES and when cultured with LIF only two out of nine blastocysts expressed TBN. These data improve our knowledge of the similarities between human and murine embryos and the influence of GFs on human embryo gene expression. Results from this study will improve the understanding of cell fate decisions in early human embryos, which has important implications for both IVF treatment and the derivation of human embryonic stem cells.

  3. Plant hormone cross-talk: the pivot of root growth.

    PubMed

    Pacifici, Elena; Polverari, Laura; Sabatini, Sabrina

    2015-02-01

    Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria

    PubMed Central

    Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi

    2015-01-01

    Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals. PMID:26416548

  5. MODEL2TALK: An Intervention to Promote Productive Classroom Talk

    ERIC Educational Resources Information Center

    van der Veen, Chiel; van der Wilt, Femke; van Kruistum, Claudia; van Oers, Bert; Michaels, Sarah

    2017-01-01

    This article describes the MODEL2TALK intervention, which aims to promote young children's oral communicative competence through productive classroom talk. Productive classroom talk provides children in early childhood education with many opportunities to talk and think together. Results from a large-scale study show that productive classroom talk…

  6. Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues.

    PubMed

    Van Herck, Stijn L J; Geysens, Stijn; Bald, Edward; Chwatko, Grazyna; Delezie, Evelyne; Dianati, Elham; Ahmed, R G; Darras, Veerle M

    2013-07-01

    Methimazole (MMI) is an anti-thyroid drug used in the treatment of chronic hyperthyroidism. There is, however, some debate about its use during pregnancy as MMI is known to cross the mammalian placenta and reach the developing foetus. A similar problem occurs in birds, where MMI is deposited in the egg and taken up by the developing embryo. To investigate whether maternally derived MMI can have detrimental effects on embryonic development, we treated laying hens with MMI (0.03% in drinking water) and measured total and reduced MMI contents in the tissues of hens and embryos at different stages of development. In hens, MMI was selectively increased in the thyroid gland, while its levels in the liver and especially brain remained relatively low. Long-term MMI treatment induced a pronounced goitre with a decrease in thyroxine (T₄) content but an increase in thyroidal 3,5,3'-triiodothyronine (T₃) content. This resulted in normal T₃ levels in tissues except in the brain. In chicken embryos, MMI levels were similar in the liver and brain. They gradually decreased during development but always remained above those in the corresponding maternal tissues. Contrary to the situation in hens, T₄ availability was only moderately affected in embryos. Peripheral T₃ levels were reduced in 14-day-old embryos but normal in 18-day-old embryos, while brain T₃ content was decreased at all embryonic stages tested. We conclude that all embryonic tissues are exposed to relatively high doses of MMI and its oxidised metabolites. The effect of maternal MMI treatment on embryonic thyroid hormone availability is most pronounced for brain T₃ content, which is reduced throughout the embryonic development period.

  7. β-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo

    PubMed Central

    Wikramanayake, Athula H.; Huang, Ling; Klein, William H.

    1998-01-01

    In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events along the animal–vegetal axis in sea urchin embryos are largely unknown. Nuclear β-catenin is seen in vegetal cells of the early embryo, suggesting that this protein plays a role in specifying vegetal cell fates. Here, we test this hypothesis and show that β-catenin is necessary for vegetal plate specification and is also sufficient for endoderm formation. In addition, we show that β-catenin has pronounced effects on animal blastomeres and is critical for specification of aboral ectoderm and for ectoderm patterning, presumably via a noncell-autonomous mechanism. These results support a model in which a Wnt-like signal released by vegetal cells patterns the early embryo along the animal–vegetal axis. Our results also reveal similarities between the sea urchin animal–vegetal axis and the vertebrate dorsal–ventral axis, suggesting that these axes share a common evolutionary origin. PMID:9689082

  8. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 5

    DTIC Science & Technology

    2008-05-01

    per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing...and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information...the publisher of CrossTalk, providing both editorial oversight and technical review of the journal.CrossTalk’s mission is to encourage the engineering

  9. Fast method of cross-talk effect reduction in biomedical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nowakowski, Maciej; Kolenderska, Sylwia M.; Borycki, Dawid; Wojtkowski, Maciej

    2016-03-01

    Optical imaging of biological samples or living tissue structures requires light delivery to a region of interest and then collection of scattered light or fluorescent light in order to reconstruct an image of the object. When the coherent illumination light enters bulky biological object, each of scattering center (single molecule, group of molecules or other sample feature) acts as a secondary light source. As a result, scattered spherical waves from these secondary sources interact with each other, generating cross-talk noise between optical channels (eigenmodes). The cross-talk effect have serious impact on the performance of the imaging systems. In particular it reduces an ability of optical system to transfer high spatial frequencies thereby reducing its resolution. In this work we present a fast method to eliminate all unwanted waves combination, that overlap at image plane, suppressing recovery of high spatial frequencies by using the spatio-temporal optical coherence manipulation (STOC, [1]). In this method a number of phase mask is introduced to illuminating beam by spatial light modulator in a time of single image acquisition. We use a digital mirror device (DMD) in order to rapid cross-talk noise reduction (up to 22kHz modulation frequency) when imaging living biological cells in vivo by using full-field microscopy setup with double pass arrangement. This, to our best knowledge, has never been shown before. [1] D. Borycki, M. Nowakowski, and M. Wojtkowski, Opt. Lett. 38, 4817 (2013).

  10. Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet.

    PubMed

    Wang, Qiong-Hua; Li, Xiao-Fang; Zhou, Lei; Wang, Ai-Hong; Li, Da-Hai

    2011-03-01

    A method is proposed to alleviate the cross talk in multiview autostereoscopic three-dimensional displays based on a lenticular sheet. We analyze the positional relationship between subpixels on the image panel and the lenticular sheet. According to this relationship, optimal synthetic images are synthesized to minimize cross talk by correcting the positions of subpixels on the image panel. Experimental results show that the proposed method significantly reduces the cross talk of view images and improves the quality of stereoscopic images. © 2010 Optical Society of America

  11. In It Together: Mother Talk of Weight Concerns Moderates Negative Outcomes of Encouragement to Lose Weight on Daughter Body Dissatisfaction and Disordered Eating

    PubMed Central

    Hillard, Erin E.; Gondoli, Dawn M.; Corning, Alexandra F.; Morrissey, Rebecca A.

    2015-01-01

    Mothers’ influence on their daughters is important for understanding girls’ disordered eating and body dissatisfaction. Direct maternal encouragement of daughters to lose weight is linked to daughters’ development of bulimic symptoms, and additional findings indicate that daughters whose mothers merely talk about dieting and body dissatisfaction are more likely to be diagnosed with an eating disorder. The current study extends such research by examining the interactive contributions of maternal encouragement to lose weight and maternal dieting discussions to the prediction of early adolescent daughters’ body dissatisfaction and disordered eating over the middle school period. Participants were 89 adolescent girls who were in the 6th grade at Time 1. Regression analyses were conducted to examine interactive effects of mother encouragement to diet and talk of weight concerns on daughter body dissatisfaction, drive for thinness, and dieting behavior. Results suggest an interactive effect in which mothers’ dieting talk may act as a buffer against the negative effects of direct encouragement to lose weight. PMID:26551484

  12. Cross Talk Between Ceramide and Redox Signaling: Implications for Endothelial Dysfunction and Renal Disease

    PubMed Central

    Li, Pin-Lan; Zhang, Yang

    2013-01-01

    Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where trans-membrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial–temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways. PMID:23563657

  13. Expression of the vascular endothelial growth factor receptor neuropilin-1 at the human embryo-maternal interface.

    PubMed

    Baston-Buest, Dunja M; Porn, Anne C; Schanz, Andrea; Kruessel, Jan-S; Janni, Wolfgang; Hess, Alexandra P

    2011-02-01

    Angiogenesis is required for successful implantation of the invading blastocyst. Vascular endothelial growth factor (VEGF) is an important key player in angiogenesis and vascular remodeling during the implantation process. Besides its well-characterized receptors VEGFR1 and VEGFR2, neuropilin-1 (NRP-1) has been shown to play an additional role in the signaling process of angiogenesis in human endometrium during the menstrual cycle, as a co-receptor of VEGF. These findings led to the hypothesis that NRP-1 might play a role in the vascular remodeling process during embryo implantation and the establishment of a pregnancy. NRP-1 mRNA transcript and protein expression were investigated in human choriocarcinoma cell lines (JEG-3, Jar and BeWo) aiming to evaluate the expression of NRP-1 in vitro, as well as in human decidua of all three trimesters of pregnancy, by western blot analysis (three samples of each trimester of pregnancy). The localization of NRP-1 in human decidua of all three trimesters of pregnancy was analyzed by immunohistochemistry (five samples of each trimester of pregnancy). NRP-1 transcript and protein were expressed in all cell lines examined. Corresponding to the analysis of human tissue by western blot and the localization by immunohistochemistry, NRP-1 protein higher expressed in samples of early pregnancy in comparison to the end of pregnancy. NRP-1 was expressed in the decidua, villi and invading cytotrophoblast of all samples investigated. This is the first study clearly showing the expression of NRP-1 in human decidua and trophoblast, suggesting an important role for the VEGF co-receptor NRP-1 besides the established receptor VEGFR2 at the embryo-maternal interface during embryonic implantation and placentation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. PreImplantation Factor (PIF) correlates with early mammalian embryo development-bovine and murine models

    PubMed Central

    2011-01-01

    Background PreImplantation Factor (PIF), a novel peptide secreted by viable embryos is essential for pregnancy: PIF modulates local immunity, promotes decidual pro-adhesion molecules and enhances trophoblast invasion. To determine the role of PIF in post-fertilization embryo development, we measured the peptide's concentration in the culture medium and tested endogenous PIF's potential trophic effects and direct interaction with the embryo. Methods Determine PIF levels in culture medium of multiple mouse and single bovine embryos cultured up to the blastocyst stage using PIF-ELISA. Examine the inhibitory effects of anti-PIF-monoclonal antibody (mAb) added to medium on cultured mouse embryos development. Test FITC-PIF uptake by cultured bovine blastocysts using fluorescent microscopy. Results PIF levels in mouse embryo culture medium significantly increased from the morula to the blastocyst stage (ANOVA, P = 0.01). In contrast, atretic embryos medium was similar to the medium only control. Detectable - though low - PIF levels were secreted already by 2-cell stage mouse embryos. In single bovine IVF-derived embryos, PIF levels in medium at day 3 of culture were higher than non-cleaving embryos (control) (P = 0.01) and at day 7 were higher than day 3 (P = 0.03). In non-cleaving embryos culture medium was similar to medium alone (control). Anti-PIF-mAb added to mouse embryo cultures lowered blastocyst formation rate 3-fold in a dose-dependent manner (2-way contingency table, multiple groups, X2; P = 0.01) as compared with non-specific mouse mAb, and medium alone, control. FITC-PIF was taken-up by cultured bovine blastocysts, but not by scrambled FITC-PIF (control). Conclusions PIF is an early embryo viability marker that has a direct supportive role on embryo development in culture. PIF-ELISA use to assess IVF embryo quality prior to transfer is warranted. Overall, our data supports PIF's endogenous self sustaining role in embryo development and the utility of PIF

  15. Novel detector design for reducing intercell x-ray cross-talk in the variable resolution x-ray CT scanner: a Monte Carlo study.

    PubMed

    Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib

    2011-03-01

    The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.

  16. Effects of Early and Recent Maternal Employment on Children from Low-Income Families.

    ERIC Educational Resources Information Center

    Vandell, Deborah Lowe; Ramanan, Janaki

    1992-01-01

    Early (during the child's first three years) and recent (during the previous three years) maternal employment were associated with less family poverty and higher scores on measures of home environment. Early maternal employment predicted second grade children's math achievement, and recent maternal employment predicted their reading achievement.…

  17. Reduction of multiple pregnancies in the advanced maternal age population after implementation of an elective single embryo transfer policy coupled with enhanced embryo selection: pre- and post-intervention study.

    PubMed

    Ubaldi, Filippo Maria; Capalbo, Antonio; Colamaria, Silvia; Ferrero, Susanna; Maggiulli, Roberta; Vajta, Gábor; Sapienza, Fabio; Cimadomo, Danilo; Giuliani, Maddalena; Gravotta, Enrica; Vaiarelli, Alberto; Rienzi, Laura

    2015-09-01

    Is an elective single-embryo transfer (eSET) policy an efficient approach for women aged >35 years when embryo selection is enhanced via blastocyst culture and preimplantation genetic screening (PGS)? Elective SET coupled with enhanced embryo selection using PGS in women older than 35 years reduced the multiple pregnancy rates while maintaining the cumulative success rate of the IVF programme. Multiple pregnancies mean an increased risk of premature birth and perinatal death and occur mainly in older patients when multiple embryos are transferred to increase the chance of pregnancy. A SET policy is usually recommended in cases of good prognosis patients, but no general consensus has been reached for SET application in the advanced maternal age (AMA) population, defined as women older than 35 years. Our objective was to evaluate the results in terms of efficacy, efficiency and safety of an eSET policy coupled with increased application of blastocyst culture and PGS for this population of patients in our IVF programme. In January 2013, a multidisciplinary intervention involving optimization of embryo selection procedure and introduction of an eSET policy in an AMA population of women was implemented. This is a retrospective 4-year (January 2010-December 2013) pre- and post-intervention analysis, including 1161 and 499 patients in the pre- and post-intervention period, respectively. The primary outcome measures were the cumulative delivery rate (DR) per oocyte retrieval cycle and multiple DR. Surplus oocytes and/or embryos were vitrified during the entire study period. In the post-intervention period, all couples with good quality embryos and less than two previous implantation failures were offered eSET. Embryo selection was enhanced by blastocyst culture and PGS (blastocyst stage biopsy and 24-chromosomal screening). Elective SET was also applied in cryopreservation cycles. Patient and cycle characteristics were similar in the pre- and post-intervention groups [mean

  18. Reduction of multiple pregnancies in the advanced maternal age population after implementation of an elective single embryo transfer policy coupled with enhanced embryo selection: pre- and post-intervention study

    PubMed Central

    Ubaldi, Filippo Maria; Capalbo, Antonio; Colamaria, Silvia; Ferrero, Susanna; Maggiulli, Roberta; Vajta, Gábor; Sapienza, Fabio; Cimadomo, Danilo; Giuliani, Maddalena; Gravotta, Enrica; Vaiarelli, Alberto; Rienzi, Laura

    2015-01-01

    STUDY QUESTION Is an elective single-embryo transfer (eSET) policy an efficient approach for women aged >35 years when embryo selection is enhanced via blastocyst culture and preimplantation genetic screening (PGS)? SUMMARY ANSWER Elective SET coupled with enhanced embryo selection using PGS in women older than 35 years reduced the multiple pregnancy rates while maintaining the cumulative success rate of the IVF programme. WHAT IS KNOWN ALREADY Multiple pregnancies mean an increased risk of premature birth and perinatal death and occur mainly in older patients when multiple embryos are transferred to increase the chance of pregnancy. A SET policy is usually recommended in cases of good prognosis patients, but no general consensus has been reached for SET application in the advanced maternal age (AMA) population, defined as women older than 35 years. Our objective was to evaluate the results in terms of efficacy, efficiency and safety of an eSET policy coupled with increased application of blastocyst culture and PGS for this population of patients in our IVF programme. STUDY DESIGN, SIZE, DURATION In January 2013, a multidisciplinary intervention involving optimization of embryo selection procedure and introduction of an eSET policy in an AMA population of women was implemented. This is a retrospective 4-year (January 2010–December 2013) pre- and post-intervention analysis, including 1161 and 499 patients in the pre- and post-intervention period, respectively. The primary outcome measures were the cumulative delivery rate (DR) per oocyte retrieval cycle and multiple DR. PARTICIPANTS/MATERIALS, SETTING, METHODS Surplus oocytes and/or embryos were vitrified during the entire study period. In the post-intervention period, all couples with good quality embryos and less than two previous implantation failures were offered eSET. Embryo selection was enhanced by blastocyst culture and PGS (blastocyst stage biopsy and 24-chromosomal screening). Elective SET was also

  19. Method of Electroporation for the Early Chick Embryo

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Jun; Shimamura, Kenji

    Chick embryos have long been one of the favored model systems in the field of embryology and developmental biology. Recent advances in the gene manipulation technologies (Muramatsu et al., 1997; Nakamura et al., 2004) make this model system even more attractive for the developmental biologists (see review by Stern, 2005). Thanks to its two dimensional geometry, easiness in accessibility and observation, and well-established fate maps (e.g. Couly and Le Douarin, 1988; Garcia-Martinez et al., 1993; Hatada and Stern, 1994; Psychoyos and Stern, 1996; Sawada and Aoyama, 1999; Cobos et al., 2001; Lopez-Sanchez et al., 2001; Redkar et al., 2001; Fernandez-Garre et al., 2002; Kimura et al., 2006; Matsushita et al., 2008), it has great advantages especially for studies at the early embryonic stages, such as the processes of gastrulation, neural induction, left-right patterning, etc. For such purposes, a whole embryo culture system, originally invented by Dennis A. T. New (New, 1955), and its derivatives (Flamme, 1987; Sundin and Eichele, 1992; Stern, 1993; Chapman et al., 2001) have been widely used.

  20. Early zebrafish development: It’s in the maternal genes

    PubMed Central

    Abrams, Elliott W.; Mullins, Mary C.

    2009-01-01

    Summary The earliest stages of embryonic development in all animals examined rely on maternal gene products that are generated during oogenesis and supplied to the egg. The period of maternal control of embryonic development varies among animals according to the onset of zygotic transcription and the persistence of maternal gene products. This maternal regulation has been little studied in vertebrates, due to the difficulty in manipulating maternal gene function and lack of basic molecular information. However, recent maternal-effect screens in the zebrafish have generated more than 40 unique mutants that are providing new molecular entry points to the maternal control of early vertebrate development. Here we discuss recent studies of 12 zebrafish mutant genes that illuminate the maternal molecular controls on embryonic development, including advances in the regulation of animal-vegetal polarity, egg activation, cleavage development, body plan formation, tissue morphogenesis, microRNA function and germ cell development. PMID:19608405

  1. Effects of embryo size at transfer (whole versus demi) and early pregnancy progesterone supplementation on embryo growth and pregnancy-specific protein bovine concentrations in recipient dairy heifers.

    PubMed

    Lopes-da-Costa, L; Chagas e Silva, J; Deloche, M C; Jeanguyot, N; Humblot, P; Horta, A E M

    2011-08-01

    The objectives of this study were to evaluate embryonic size and survival, plasma progesterone (P4) and pregnancy-specific protein bovine (PSPB) concentrations in early pregnancies (n = 99) following the transfer of one whole (n = 66) or one demi (n = 33) embryo to recipient virgin dairy heifers. The experiment was designed to evaluate the fixed effects of embryo size at transfer (whole or demi embryo) on Day 7 of the estrous cycle (Day 0 = estrus) and P4 supplementation between Days 7 to 19 through an intravaginal device (yes or no) on plasma P4 and PSPB concentrations and on embryo measurements. Plasma P4 concentrations were measured by RIA on Days 0, 7, 14, 19, 21, 25, 35, 42, 49, 56 and 63 of pregnancy and, PSPB concentrations were measured by ELISA on Days 7, 21, 25, 35, 42, 49, 56 and 63. The presence of an embryonic vesicle was detected on Day 25, embryonic/fetal movements and heartbeat were evaluated on Days 42 and 63 and embryo measurements [crown-rump length (CRL) and width at mid body] were obtained on Day 42 through ultrasonography. In non-supplemented pregnancies, Day 42 whole embryos had higher (P < 0.05) CRL and width than demi embryos, but the difference averaged only 1 to 2 mm. In P4 supplemented pregnancies, whole and demi embryos attained a similar size on Day 42 of pregnancy. Embryo size at transfer, early exogenous P4 supplementation and their interactions had no effects (P > 0.05) on plasma P4 concentrations. However, the post-hoc LSD evaluation showed that plasma P4 concentrations on Day 25 were higher (P < 0.001) in whole than in demi embryo derived pregnancies and, that exogenous P4 supplementation increased (P < 0.05) plasma P4 concentrations on Day 19 of pregnancy. The plasma PSPB detection rate on Days 7 to 63 of pregnancy was similar in pregnancies resulting from the transfer of whole and demi embryos. From a total of 93 recipients remaining pregnant until Day 63, plasma PSPB was constantly undetectable on Day 7, was detected in 4% of

  2. SYNTHESIS AND STORAGE OF MICROTUBULE PROTEINS BY SEA URCHIN EMBRYOS

    PubMed Central

    Raff, Rudolf A.; Greenhouse, Gerald; Gross, Kenneth W.; Gross, Paul R.

    1971-01-01

    Studies employing colchicine binding, precipitation with vinblastine sulfate, and acrylamide gel electrophoresis confirm earlier proposals that Arbacia punctulata and Lytechinus pictus eggs and embryos contain a store of microtubule proteins. Treatment of 150,000 g supernatants from sea urchin homogenates with vinblastine sulfate precipitates about 5% of the total soluble protein, and 75% of the colchicine-binding activity. Electrophoretic examination of the precipitate reveals two very prominent bands. These have migration rates identical to those of the A and B microtubule proteins of cilia. These proteins can be made radioactive at the 16 cell stage and at hatching by pulse labeling with tritiated amino acids. By labeling for 1 hr with leucine-3H in early cleavage, then culturing embryos in the presence of unlabeled leucine, removal of newly synthesized microtubule proteins from the soluble pool can be demonstrated. Incorporation of labeled amino acids into microtubule proteins is not affected by culturing embryos continuously in 20 µg/ml of actinomycin D. Microtubule proteins appear, therefore, to be synthesized on "maternal" messenger RNA. This provides the first protein encoded by stored or "masked" mRNA in sea urchin embryos to be identified. PMID:5165266

  3. Maternal correlates of maternal child feeding practices: a systematic review.

    PubMed

    McPhie, Skye; Skouteris, Helen; Daniels, Lynne; Jansen, Elena

    2014-01-01

    Establishing healthy eating habits early in life is one important strategy to combat childhood obesity. Given that early maternal child feeding practices have been linked to child food intake and weight, identifying the maternal correlates of maternal child feeding practices is important in order to understand the determinants of childhood obesity; this was the overall aim of the current review. Academic databases were searched for studies examining the relationship between maternal child feeding practices and parenting, personal characteristics and psychopathology of mothers with preschoolers. Papers were limited to those published in English, between January 2000 and June 2012. Only studies with mothers of normally developing children between the ages of 2 and 6 years were included. There were no restrictions regarding the inclusion of maternal nationality or socioeconomic status (SES). Seventeen eligible studies were sourced. Information on the aim, sample, measures and findings of these was summarised into tables. The findings of this review support a relationship between maternal controlling parenting, general and eating psychopathology, and SES and maternal child feeding practices. The main methodological issues of the studies reviewed included inconsistency in measures of maternal variables across studies and cross-sectional designs. We conclude that the maternal correlates associated with maternal child feeding practices are complex, and the pathways by which maternal correlates impact these feeding practices require further investigation. © 2012 John Wiley & Sons Ltd.

  4. Influence of metal(loid) bioaccumulation and maternal transfer on embryo-larval development in fish exposed to a major coal ash spill

    DOE PAGES

    Greeley, Jr., Mark Stephen; Adams, S. Marshall; Elmore, Logan R.; ...

    2016-01-03

    In December 2008, an earthen retaining wall at the Tennessee Valley Authority (TVA) Kingston Fossil Fuel Plant failed and released 4.1 million m 3 of coal ash to rivers flowing into Watts Bar Reservoir in east Tennessee, United States (U.S.). As part of a comprehensive effort to evaluate the risks to aquatic resources from this spill – the largest in U.S. history – we compared bioaccumulation and maternal transfer of selenium (Se), arsenic (As), and mercury (Hg) in adult redear sunfish ( Lepomis macrolophus), collected two years after the spill from both coal-ash exposed and non-exposed areas of the Emorymore » and Clinch Rivers, with the success of embryo-larval development in their offspring. Whole body and ovary concentrations of Se in female sunfish at three study sites downstream of the spill were significantly elevated (site means = 4.9–5.3 and 6.7–9.0 mg/kg d.w. whole body and ovary concentrations, respectively) compared with concentrations in fish from reference sites upstream of the spill site (2.2–3.2 mg/kg d.w. for whole bodies and 3.6–4.8 mg/kg d.w. for ovaries). However, Se concentrations in coal ash-exposed areas remain below proposed U.S. Environmental Protection Agency (USEPA) criteria for the protection of aquatic life. Site-to-site variation in fish concentrations of As and Hg were not well-correlated with ash-exposure, reflecting the multiple sources of these metal(loid)s in the affected watersheds. In 7-day laboratory tests of embryos and larvae derived from in vitro crosses of eggs and sperm from these field-collected sunfish, fertilization success, hatching success, embryo-larval survival, and incidences of developmental abnormalities did not differ significantly between ash-exposed and non-exposed fish. Furthermore, these developmental endpoints were not correlated with whole body or ovary concentrations of Se, As, or Hg in the maternal fish, or with fish size, ovary weight, or gonadal-somatic indices. Furthermore, results from

  5. Influence of metal(loid) bioaccumulation and maternal transfer on embryo-larval development in fish exposed to a major coal ash spill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greeley, Jr., Mark Stephen; Adams, S. Marshall; Elmore, Logan R.

    In December 2008, an earthen retaining wall at the Tennessee Valley Authority (TVA) Kingston Fossil Fuel Plant failed and released 4.1 million m 3 of coal ash to rivers flowing into Watts Bar Reservoir in east Tennessee, United States (U.S.). As part of a comprehensive effort to evaluate the risks to aquatic resources from this spill – the largest in U.S. history – we compared bioaccumulation and maternal transfer of selenium (Se), arsenic (As), and mercury (Hg) in adult redear sunfish ( Lepomis macrolophus), collected two years after the spill from both coal-ash exposed and non-exposed areas of the Emorymore » and Clinch Rivers, with the success of embryo-larval development in their offspring. Whole body and ovary concentrations of Se in female sunfish at three study sites downstream of the spill were significantly elevated (site means = 4.9–5.3 and 6.7–9.0 mg/kg d.w. whole body and ovary concentrations, respectively) compared with concentrations in fish from reference sites upstream of the spill site (2.2–3.2 mg/kg d.w. for whole bodies and 3.6–4.8 mg/kg d.w. for ovaries). However, Se concentrations in coal ash-exposed areas remain below proposed U.S. Environmental Protection Agency (USEPA) criteria for the protection of aquatic life. Site-to-site variation in fish concentrations of As and Hg were not well-correlated with ash-exposure, reflecting the multiple sources of these metal(loid)s in the affected watersheds. In 7-day laboratory tests of embryos and larvae derived from in vitro crosses of eggs and sperm from these field-collected sunfish, fertilization success, hatching success, embryo-larval survival, and incidences of developmental abnormalities did not differ significantly between ash-exposed and non-exposed fish. Furthermore, these developmental endpoints were not correlated with whole body or ovary concentrations of Se, As, or Hg in the maternal fish, or with fish size, ovary weight, or gonadal-somatic indices. Furthermore, results from

  6. SOI CMOS Imager with Suppression of Cross-Talk

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Zheng, Xingyu; Cunningham, Thomas J.; Seshadri, Suresh; Sun, Chao

    2009-01-01

    A monolithic silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) image-detecting integrated circuit of the active-pixel-sensor type, now undergoing development, is designed to operate at visible and near-infrared wavelengths and to offer a combination of high quantum efficiency and low diffusion and capacitive cross-talk among pixels. The imager is designed to be especially suitable for astronomical and astrophysical applications. The imager design could also readily be adapted to general scientific, biological, medical, and spectroscopic applications. One of the conditions needed to ensure both high quantum efficiency and low diffusion cross-talk is a relatively high reverse bias potential (between about 20 and about 50 V) on the photodiode in each pixel. Heretofore, a major obstacle to realization of this condition in a monolithic integrated circuit has been posed by the fact that the required high reverse bias on the photodiode is incompatible with metal oxide/semiconductor field-effect transistors (MOSFETs) in the CMOS pixel readout circuitry. In the imager now being developed, the SOI structure is utilized to overcome this obstacle: The handle wafer is retained and the photodiode is formed in the handle wafer. The MOSFETs are formed on the SOI layer, which is separated from the handle wafer by a buried oxide layer. The electrical isolation provided by the buried oxide layer makes it possible to bias the MOSFETs at CMOS-compatible potentials (between 0 and 3 V), while biasing the photodiode at the required higher potential, and enables independent optimization of the sensory and readout portions of the imager.

  7. The association between maternal serious psychological distress and child obesity at 3 years: a cross-sectional analysis of the UK Millennium Cohort Data.

    PubMed

    Ramasubramanian, L; Lane, S; Rahman, A

    2013-01-01

      The prevalence of child obesity is increasing rapidly worldwide. Early childhood has been identified as a critical time period for the development of obesity. Maternal mental health and early life environment are crucial factors and have been linked to adverse child outcomes. The objective of the study was to examine the relationship between maternal serious psychological distress and obesity in early childhood.   A cross-sectional analysis of data from the Millennium Cohort Study was conducted. Subjects consisted of all natural mothers (n= 10 465) who had complete and plausible data for Kessler-6 scores, socio-demographic and anthropometric variables, and their children for whom anthropometric measurements were completed at age 3. Maternal serious psychological distress was defined as a score of 13 or more on the Kessler-6 scale. Obesity was defined as body mass index ≥95th centile of the 1990 reference chart for age and sex in children. The data were analysed using spss 16. Maternal socio-demographic factors that are known to influence maternal mental health and child obesity were identified and adjusted using multivariate logistic regression.   Of the 10 465 mother-child dyads, 3.5% of mothers had serious psychological distress and 5.5% of children were obese at 3 years of age. Logistic regression analysis showed that maternal serious psychological distress was associated with early childhood obesity (P= 0.01; OR 1.62, 95% CI 1.11, 2.37). After adjusting for potential confounding factors using multivariate logistic regression, maternal serious psychological distress remained significantly associated with early childhood obesity (P= 0.01; OR 1.59, 95% CI 1.08, 2.34).   The results show that maternal serious psychological distress is independently associated with early childhood obesity. © 2011 Blackwell Publishing Ltd.

  8. Maternally Mediated Developmental Toxicity

    EPA Science Inventory

    The current practice for the assessment of an agent’s potential effects on the developing embryo/fetus includes administration of high, maternally toxic doses to pregnant laboratory animals. For most agents evaluated, developmental effects occur concomitant with maternal toxicity...

  9. Maternally Mediated Developmental Toxicity

    EPA Science Inventory

    The current practice for the assessment of an agent’s potential effects on the developing embryo/fetus includes administration of high, maternally toxic doses to pregnant laboratory animals. For most agents evaluated, developmental effects occur concomitant with maternal to...

  10. The Effect of Levetiracetam on Closure of the Midline in Early Chicken Embryos.

    PubMed

    Ozgural, Onur; Armagan, Ercan; Bozkurt, Melih; Eroglu, Umit; Kahilogullari, Gokmen; Unlu, Agahan

    2015-01-01

    Genetic predisposition and some environmental factors play an important role in the development of neural tube defects. Levetiracetam is a new drug that has been approved in the treatment of partial seizures. We aimed in this study to determine the effect of levetiracetam on chick embryos. One hundred and sixty fertile non-pathogenic Super Nick eggs were incubated for 24 hours and were divided into four groups of 40 eggs each. Levetiracetam was administered via the sub-blastodermic route. The eggs were incubated for another 24 hours. All eggs were opened at the 48th hour, and the embryos were evaluated morphologically and histopathologically. The effects of levetiracetam on the embryo were correlated with the dose of levetiracetam. In the light of the results, it was determined that the use of increasing doses of levetiracetam led to defects of midline closure in early chicken embryos. Levetiracetam, a new antiepileptic drug that is effective especially on calcium ion concentration, leads to defects in midline closure in embryos in a dose-dependent manner. Further studies are needed to show the mechanism of embryonic damage and the mechanisms of its teratogenous effects associated with genetic and environmental factors.

  11. Transfer of Maternal Antibodies against Avian Influenza Virus in Mallards (Anas platyrhynchos)

    PubMed Central

    van Dijk, Jacintha G. B.; Mateman, A. Christa; Klaassen, Marcel

    2014-01-01

    Maternal antibodies protect chicks from infection with pathogens early in life and may impact pathogen dynamics due to the alteration of the proportion of susceptible individuals in a population. We investigated the transfer of maternal antibodies against avian influenza virus (AIV) in a key AIV host species, the mallard (Anas platyrhynchos). Combining observations in both the field and in mallards kept in captivity, we connected maternal AIV antibody concentrations in eggs to (i) female body condition, (ii) female AIV antibody concentration, (iii) egg laying order, (iv) egg size and (v) embryo sex. We applied maternity analysis to the eggs collected in the field to account for intraspecific nest parasitism, which is reportedly high in Anseriformes, detecting parasitic eggs in one out of eight clutches. AIV antibody prevalence in free-living and captive females was respectively 48% and 56%, with 43% and 24% of the eggs receiving these antibodies maternally. In both field and captive study, maternal AIV antibody concentrations in egg yolk correlated positively with circulating AIV antibody concentrations in females. In the captive study, yolk AIV antibody concentrations correlated positively with egg laying order. Female body mass and egg size from the field and captive study, and embryos sex from the field study were not associated with maternal AIV antibody concentrations in eggs. Our study indicates that maternal AIV antibody transfer may potentially play an important role in shaping AIV infection dynamics in mallards. PMID:25386907

  12. Early Maternal Alcohol Consumption Alters Hippocampal DNA Methylation, Gene Expression and Volume in a Mouse Model

    PubMed Central

    Marjonen, Heidi; Sierra, Alejandra; Nyman, Anna; Rogojin, Vladimir; Gröhn, Olli; Linden, Anni-Maija; Hautaniemi, Sampsa; Kaminen-Ahola, Nina

    2015-01-01

    The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first 8 days of gestation (GD 0.5-8.5). Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P) 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60): we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in different tissue

  13. Potential teratogenicity of methimazole: exposure of zebrafish embryos to methimazole causes similar developmental anomalies to human methimazole embryopathy.

    PubMed

    Komoike, Yuta; Matsuoka, Masato; Kosaki, Kenjiro

    2013-06-01

    While methimazole (MMI) is widely used in the therapy for hyperthyroidism, several groups have reported that maternal exposure to MMI results in a variety of congenital anomalies, including choanal and esophageal atresia, iridic and retinal coloboma, and delayed neurodevelopment. Thus, adverse effects of maternal exposure to MMI on fetal development have long been suggested; however, direct evidence for the teratogenicity of MMI has not been presented. Therefore, we studied the effects of MMI on early development by using zebrafish as a model organism. The fertilized eggs of zebrafish were collected immediately after spawning and grown in egg culture water containing MMI at various concentrations. External observation of the embryos revealed that exposure to high concentrations of MMI resulted in loss of pigmentation, hypoplastic hindbrain, turbid tissue in the forebrain, swelling of the notochord, and curly trunk. Furthermore, these effects occurred in a dose-dependent manner. Precise observation of the serial cross-sections of MMI-exposed embryos elucidated delayed development and hypoplasia of the whole brain and spinal cord, narrowing of the pharynx and esophagus, severe disruption of the retina, and aberrant structure of the notochord. These neuronal, pharyngeal, esophageal, and retinal anomalous morphologies have a direct analogy to the congenital anomalies observed in children exposed to MMI in utero. Here, we show the teratogenic effects of MMI on the development of zebrafish and provide the first experimental evidence for the connection between exposure to MMI and human MMI embryopathy. © 2013 Wiley Periodicals, Inc.

  14. The Maternal to Zygotic Transition in Mammals

    PubMed Central

    Li, Lei; Lu, Xukun; Dean, Jurrien

    2013-01-01

    Prior to activation of the embryonic genome, the initiating events of mammalian development are under maternal control and include fertilization, the block to polyspermy and processing sperm DNA. Following gamete union, the transcriptionally inert sperm DNA is repackaged into the male pronucleus which fuses with the female pronucleus to form a 1-cell zygote. Embryonic transcription begins during the maternal to zygotic transfer of control in directing development. This transition occurs at species-specific times after one or several rounds of blastomere cleavage and is essential for normal development. However, even after activation of the embryonic genome, successful development relies on stored maternal components without which embryos fail to progress beyond initial cell divisions. Better understanding of the molecular basis of maternal to zygotic transition including fertilization, the activation of the embryonic genome and cleavage-stage development will provide insight into early human development that should translate into clinical applications for regenerative medicine and assisted reproductive technologies. PMID:23352575

  15. Relationship Between Child and Maternal Sleep: A Developmental and Cross-Cultural Comparison.

    PubMed

    Mindell, Jodi A; Sadeh, Avi; Kwon, Robert; Goh, Daniel Y T

    2015-08-01

    The aim of this study was to assess the relationship between young children's sleep and maternal sleep from both a developmental and a cross-cultural perspective. Mothers of 10,085 young children completed the Brief Infant/Child Sleep Questionnaire and the Pittsburgh Sleep Quality Index. Overall, there were significant relationships between maternal and child sleep for bedtime, waketime, number of night wakings, and total nighttime sleep time across ages and cultures, although these relationships were stronger with younger children than preschool-aged children. Mothers report that their child's sleep pattern significantly impacts their sleep and daytime function, and they do not feel confident in managing their child's sleep pattern. Thus, interventions to improve children's sleep and develop good sleep habits, especially in early childhood, are likely to improve the quality of life of the whole family. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Nutrient-gene interactions in early pregnancy: a vascular hypothesis.

    PubMed

    Steegers-Theunissen, R P M; Steegers, E A P

    2003-02-10

    It is hypothesized that the following periconceptional and early pregnancy nutrient-gene interactions link vascular-related reproductive complications and cardiovascular diseases in adulthood: (1) Maternal and paternal genetically controlled nutrient status affects the quality of gametes and fertilization capacity; (2) The embryonic genetic constitution, derived from both parents, and the maternal genetically controlled nutrient environment determine embryogenesis and fetal growth; (3) Trophoblast invasion of decidua and spiral arteries is driven by genes derived from both parents as well as by maternal nutritional factors; (4) Angiogenesis, vasculogenesis and vascular function are dependent on the genetic constitution of the embryo, derived from both parents, and the maternal genetically controlled nutritional environment.Early intra-uterine programming of vessels may concern the same (in)dependent determinants of vascular-related complications during pregnancy and cardiovascular diseases in later life.

  17. Scatter and cross-talk correction for one-day acquisition of 123I-BMIPP and 99mtc-tetrofosmin myocardial SPECT.

    PubMed

    Kaneta, Tomohiro; Kurihara, Hideyuki; Hakamatsuka, Takashi; Ito, Hiroshi; Maruoka, Shin; Fukuda, Hiroshi; Takahashi, Shoki; Yamada, Shogo

    2004-12-01

    123I-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) and 99mTc-tetrofosmin (TET) are widely used for evaluation of myocardial fatty acid metabolism and perfusion, respectively. ECG-gated TET SPECT is also used for evaluation of myocardial wall motion. These tests are often performed on the same day to minimize both the time required and inconvenience to patients and medical staff. However, as 123I and 99mTc have similar emission energies (159 keV and 140 keV, respectively), it is necessary to consider not only scattered photons, but also primary photons of each radionuclide detected in the wrong window (cross-talk). In this study, we developed and evaluated the effectiveness of a new scatter and cross-talk correction imaging protocol. Fourteen patients with ischemic heart disease or heart failure (8 men and 6 women with a mean age of 69.4 yr, ranging from 45 to 94 yr) were enrolled in this study. In the routine one-day acquisition protocol, BMIPP SPECT was performed in the morning, with TET SPECT performed 4 h later. An additional SPECT was performed just before injection of TET with the energy window for 99mTc. These data correspond to the scatter and cross-talk factor of the next TET SPECT. The correction was performed by subtraction of the scatter and cross-talk factor from TET SPECT. Data are presented as means +/- S.E. Statistical analyses were performed using Wilcoxon's matched-pairs signed-ranks test, and p < 0.05 was considered significant. The percentage of scatter and cross-talk relative to the corrected total count was 26.0 +/- 5.3%. EDV and ESV after correction were significantly greater than those before correction (p = 0.019 and 0.016, respectively). After correction, EF was smaller than that before correction, but the difference was not significant. Perfusion scores (17 segments per heart) were significantly lower after as compared with those before correction (p < 0.001). Scatter and cross-talk correction revealed significant differences

  18. Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development.

    PubMed

    Brett, Zoë H; Humphreys, Kathryn L; Fleming, Alison S; Kraemer, Gary W; Drury, Stacy S

    2015-05-01

    Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic-pituitary-adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal-infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence.

  19. Bovine oocytes and early embryos express Staufen and ELAVL RNA-binding proteins.

    PubMed

    Calder, M D; Madan, P; Watson, A J

    2008-05-01

    RNA-binding proteins (RBP) influence RNA editing, localization, stability and translation and may contribute to oocyte developmental competence by regulating the stability and turnover of oogenetic mRNAs. The expression of Staufen 1 and 2 and ELAVL1, ELAVL2 RNA-binding proteins during cow early development was characterized. Cumulus-oocyte complexes were collected from slaughterhouse ovaries, matured, inseminated and subjected to embryo culture in vitro. Oocyte or preimplantation embryo pools were processed for RT-PCR and whole-mount immunofluorescence analysis of mRNA expression and protein distribution. STAU1 and STAU2 and ELAVL1 mRNAs and proteins were detected throughout cow preimplantation development from the germinal vesicle (GV) oocyte to the blastocyst stage. ELAVL2 mRNAs were detectable from the GV to the morula stage, whereas ELAVL2 protein was in all stages examined and localized to both cytoplasm and nuclei. The findings provide a foundation for investigating the role of RBPs during mammalian oocyte maturation and early embryogenesis.

  20. Supplementation with CTGF, SDF1, NGF, and HGF promotes ovine in vitro oocyte maturation and early embryo development.

    PubMed

    Wang, D H; Ren, J; Zhou, C J; Han, Z; Wang, L; Liang, C G

    2018-05-17

    The strategies for improving the in vitro maturation (IVM) of domestic animal oocytes focus on promoting nuclear and cytoplasmic maturation. The identification of paracrine factors and their supplementation in the culture medium represent effective approaches for oocyte maturation and embryo development. This study investigated the effects of paracrine factor supplementation including connective tissue growth factor (CTGF), nerve growth factor (NGF), hepatocyte growth factor (HGF), and stromal derived factor 1 (SDF1) on ovine oocytes and early parthenogenetic embryos using an in vitro culture system. First, we identified the optimal concentrations of CTGF (30 ng/mL), SDF1 (10 ng/mL), NGF (3 ng/mL), and HGF (100 ng/mL) for promoting oocyte maturation, which combined, induced nuclear maturation in 94.19% of oocytes. This combination also promoted cumulus cell expansion and inhibited oocyte/cumulus apoptosis, while enabling a larger proportion (33.04%) of embryos to develop into blastocysts than in the controls and prevented embryo apoptosis. These novel findings demonstrate that the paracrine factors CTGF, SDF1, NGF, and HGF facilitate ovine oocyte and early parthenogenetic embryo development in vitro. Thus, supplementation with these factors may help optimize the IVM of ovine oocytes and early parthenogenetic embryo development strategies. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. A Longitudinal Study of Maternal and Child Internalizing Symptoms Predicting Early Adolescent Emotional Eating.

    PubMed

    Kidwell, Katherine M; Nelson, Timothy D; Nelson, Jennifer Mize; Espy, Kimberly Andrews

    2017-05-01

    To examine maternal and child internalizing symptoms as predictors of early adolescent emotional eating in a longitudinal framework spanning three critical developmental periods (preschool, elementary school, and early adolescence). Participants were 170 children recruited at preschool age for a longitudinal study. When children were 5.25 years, their mothers completed ratings of their own internalizing symptoms. During the spring of 4th grade, children completed measures of internalizing symptoms. In early adolescence, youth completed a measure of emotional eating. Maternal and child internalizing symptoms predicted adolescent emotional eating. The results indicated that child psychopathology moderated the association between maternal psychopathology (except for maternal anxiety) and early adolescent emotional eating. There was no evidence of mediation. Pediatric psychologists are encouraged to provide early screening of, and interventions for, maternal and child internalizing symptoms to prevent children's emotional eating. © The Author 2016. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  2. The Xenopus Maternal-to-Zygotic Transition from the Perspective of the Germline.

    PubMed

    Yang, Jing; Aguero, Tristan; King, Mary Lou

    2015-01-01

    In Xenopus, the germline is specified by the inheritance of germ-plasm components synthesized at the beginning of oogenesis. Only the cells in the early embryo that receive germ plasm, the primordial germ cells (PGCs), are competent to give rise to the gametes. Thus, germ-plasm components continue the totipotent potential exhibited by the oocyte into the developing embryo at a time when most cells are preprogrammed for somatic differentiation as dictated by localized maternal determinants. When zygotic transcription begins at the mid-blastula transition, the maternally set program for somatic differentiation is realized. At this time, genetic control is ceded to the zygotic genome, and developmental potential gradually becomes more restricted within the primary germ layers. PGCs are a notable exception to this paradigm and remain transcriptionally silent until the late gastrula. How the germ-cell lineage retains full potential while somatic cells become fate restricted is a tale of translational repression, selective degradation of somatic maternal determinants, and delayed activation of zygotic transcription. © 2015 Elsevier Inc. All rights reserved.

  3. Genetic analysis of traits affecting the success of embryo transfer in dairy cattle.

    PubMed

    König, S; Bosselmann, F; von Borstel, U U; Simianer, H

    2007-08-01

    The primary aim of this study was to estimate variance components for traits related to embryo transfer (ET) by applying generalized linear mixed models (GLMM) for different distributions of traits (normal, binomial, and Poisson) in a synergistic context. Synergistic models were originally developed for traits affected by several genotypes, denoted as maternal, paternal, and direct effects. In the case of ET, the number of flushed ova (FO) only depends on a donor's maternal genetic effect, whereas paternal fertility must be considered for other embryo survival traits, such as the number of transferable embryos (TE), the number of degenerated embryos (DE), the number of unfertilized oocytes (UO), and the percentage of transferable embryos (PTE). Data for these traits were obtained from 4,196 flushes of 2,489 Holstein cows within 4 regions of northwest Germany from January 1998 through October 2004. Estimates of maternal heritability were 0.231 for FO, 0.096 for TE, 0.021 for DE, 0.135 for UO, and 0.099 for PTE, whereas the relative genetic impact of the paternal component was near zero. Estimates of the genetic correlations between the maternal and the paternal component were slightly negative, indicating a genetic antagonism. For the analysis of pregnancy after ET, 8,239 transfers to 6,819 different Holstein-Friesian recipients were considered by applying threshold methodology. The direct heritability for pregnancy in the recipient after ET was 0.056. The relative genetic impact of maternal and paternal components on pregnancy of recipients describing a donor's and a sire's ability to produce viable embryos was below 1%. The genetic correlations of the direct effect of the recipient with the sire of embryos (paternal effect) and the donor cow (maternal effect) for pregnancy after ET were -0.32 and -0.14, respectively. With the exception of FO and PTE (-0.17), estimates of genetic correlations among traits for the maternal site were distinctly positive, especially

  4. Maternal corticosterone reduces egg fertility and hatchability and increases the numbers of early dead embryos in eggs laid by quail hens selected for exaggerated adrenocortical stress responsiveness.

    PubMed

    Schmidt, J B; Satterlee, D G; Treese, S M

    2009-07-01

    Quail hens selected for exaggerated (HS, high stress) rather than reduced (LS, low stress) plasma corticosterone (B) response to brief restraint deposit more B into their egg yolks than do LS hens. Female progeny of HS hens implanted with B also show reduced egg production when compared with female offspring of LS- and HS-control and LS-B-implanted hens. Herein, LS and HS hens were implanted (s.c.) with empty (controls, CON) or B-filled silastic tubes to assess the interactive influences of maternal B-treatment with quail stress line on egg fertility (FERT), total egg hatchability (TOTHATCH) and fertile egg hatchability, and the percentages of embryonic mortality (early dead, ED; late dead) and pipped eggs. Mean FERT was dramatically reduced in eggs of HS compared with LS hens and B-implanted compared with CON-treated hens (P < 0.0001, both cases). Line x implant treatment FERT outcomes partitioned (P < 0.05) as follows: LS-B = LS-CON > HS-CON > HS-B. In addition, TOTHATCH was also affected by line (LS > HS; P < 0.0001) and implant treatment (CON > B-implant; P < 0.0002) and line x implant treatment TOTHATCH means differed (P < 0.05) as follows: LS-CON = LS-B = HS-CON > HS-B. Fertile egg hatchability was reduced (P < 0.05) in HS-B-treated hen eggs when compared with LS-B and HS-CON hen eggs and more (P < 0.05) ED embryos were found in eggs laid by HS-B-implanted hens than in any other treatment group. Late dead and pipped egg percentages were unaffected by any treatment. The findings are important to avian geneticists because they further emphasize the benefits that selection for reduced adrenocortical responsiveness has on hen reproductive performance. The maternal B findings also warn poultry and hatchery managers that unless hen stress during egg formation is avoided, negative consequences in FERT, TOTHATCH, and ED can result, particularly in hens genetically predisposed toward exaggerated adrenal stress responsiveness.

  5. The Role of Maternal Nutrition During the Periconceptional Period and Its Effect on Offspring Phenotype.

    PubMed

    Fleming, Tom P; Eckert, Judith J; Denisenko, Oleg

    2017-01-01

    The early preimplantation embryo has been rigorously studied for decades to understand inherent reproductive and developmental mechanisms driving its morphogenesis from before fertilisation through to and beyond implantation. Recent research has demonstrated that this short developmental window is also critical for the embryo's interaction with external, maternal factors, particularly nutritional status. Here, maternal dietary quality has been shown to alter the pattern of development in an enduring way that can influence health throughout the lifetime. Thus, using mouse models, maternal protein restriction exclusively during the preimplantation period with normal nutrition thereafter is sufficient to cause adverse cardiometabolic and neurological outcomes in adult offspring. Evidence for similar effects whereby environmental factors during the periconceptional window can programme postnatal disease risk can be found in human and large animal models and also in response to in vitro conditions such as assisted conception and related infertility treatments. In this review, using mouse malnutrition models, we evaluate the step-by-step mechanisms that lead from maternal poor diet consumption though to offspring disease. We consider how adverse programming within the embryo may be induced, what nutrient factors and signalling pathways may be involved, and how these cues act to change the embryo in distinct ways across placental and foetal lineage paths, leading especially to changes in the growth trajectory which in turn associate with later disease risk. These mechanisms straddle epigenetic, molecular, cellular and physiological levels of biology and suggest, for health outcomes, preimplantation development to be the most important time in our lives.

  6. Maternal aldehyde elimination during pregnancy preserves the fetal genome.

    PubMed

    Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P; Patel, Ketan J

    2014-09-18

    Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2(-/-)Fanca(-/-) embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Maternal Aldehyde Elimination during Pregnancy Preserves the Fetal Genome

    PubMed Central

    Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P.; Patel, Ketan J.

    2014-01-01

    Summary Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2−/−Fanca−/− embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. PMID:25155611

  8. The ventralizing activity of Radar, a maternally expressed bone morphogenetic protein, reveals complex bone morphogenetic protein interactions controlling dorso-ventral patterning in zebrafish.

    PubMed

    Goutel, C; Kishimoto, Y; Schulte-Merker, S; Rosa, F

    2000-12-01

    In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.

  9. Cross-Talk: The Role of Homophily and Elite Bias in Civic Associations

    ERIC Educational Resources Information Center

    Weare, Christopher; Musso, Juliet; Jun, Kyu-Nahm

    2009-01-01

    We examine the manner in which voluntary associations expose individuals to differing perspectives, or "cross-talk." Specifically we develop hypotheses based on the interactive roles of elite bias and homophily in structuring networks of democratic participation and test them on social network data of Los Angeles neighborhood councils.…

  10. Maternal Thinking and Beyond: Towards a Care-Full Pedagogy for Early Childhood

    ERIC Educational Resources Information Center

    Luff, Paulette; Kanyal, Mallika

    2015-01-01

    This paper explores feminist philosopher Sara Ruddick's concept of "maternal thinking" and considers the applicability and use of her ideas for early childhood pedagogy. This is illustrated through a small-scale case study, undertaken in early years settings in England, in which three dimensions of maternal thinking are evidenced in the…

  11. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  12. 78 FR 53150 - Advisory Committee on the Maternal, Infant and Early Childhood Home Visiting Program Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... and Services Administration Advisory Committee on the Maternal, Infant and Early Childhood Home... Maternal, Infant and Early Childhood Home Visiting Program Evaluation (MIECHVE). Authority: Section 10(a)(2... meeting: Name: Advisory Committee on the Maternal, Infant, and Early Childhood Home Visiting Program...

  13. 76 FR 71979 - Advisory Committee on the Maternal, Infant and Early Childhood Home Visiting Program Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... and Services Administration Advisory Committee on the Maternal, Infant and Early Childhood Home...: Name: Advisory Committee on the Maternal, Infant and Early Childhood Home Visiting Program Evaluation..., DC 20005. (202) 289-7600. The Advisory Committee on the Maternal, Infant and Early Childhood Home...

  14. Cross-modal signatures in maternal speech and singing.

    PubMed

    Trehub, Sandra E; Plantinga, Judy; Brcic, Jelena; Nowicki, Magda

    2013-01-01

    We explored the possibility of a unique cross-modal signature in maternal speech and singing that enables adults and infants to link unfamiliar speaking or singing voices with subsequently viewed silent videos of the talkers or singers. In Experiment 1, adults listened to 30-s excerpts of speech followed by successively presented 7-s silent video clips, one from the previously heard speaker (different speech content) and the other from a different speaker. They successfully identified the previously heard speaker. In Experiment 2, adults heard comparable excerpts of singing followed by silent video clips from the previously heard singer (different song) and another singer. They failed to identify the previously heard singer. In Experiment 3, the videos of talkers and singers were blurred to obscure mouth movements. Adults successfully identified the talkers and they also identified the singers from videos of different portions of the song previously heard. In Experiment 4, 6- to 8-month-old infants listened to 30-s excerpts of the same maternal speech or singing followed by exposure to the silent videos on alternating trials. They looked longer at the silent videos of previously heard talkers and singers. The findings confirm the individuality of maternal speech and singing performance as well as adults' and infants' ability to discern the unique cross-modal signatures. The cues that enable cross-modal matching of talker and singer identity remain to be determined.

  15. Cross-modal signatures in maternal speech and singing

    PubMed Central

    Trehub, Sandra E.; Plantinga, Judy; Brcic, Jelena; Nowicki, Magda

    2013-01-01

    We explored the possibility of a unique cross-modal signature in maternal speech and singing that enables adults and infants to link unfamiliar speaking or singing voices with subsequently viewed silent videos of the talkers or singers. In Experiment 1, adults listened to 30-s excerpts of speech followed by successively presented 7-s silent video clips, one from the previously heard speaker (different speech content) and the other from a different speaker. They successfully identified the previously heard speaker. In Experiment 2, adults heard comparable excerpts of singing followed by silent video clips from the previously heard singer (different song) and another singer. They failed to identify the previously heard singer. In Experiment 3, the videos of talkers and singers were blurred to obscure mouth movements. Adults successfully identified the talkers and they also identified the singers from videos of different portions of the song previously heard. In Experiment 4, 6− to 8-month-old infants listened to 30-s excerpts of the same maternal speech or singing followed by exposure to the silent videos on alternating trials. They looked longer at the silent videos of previously heard talkers and singers. The findings confirm the individuality of maternal speech and singing performance as well as adults' and infants' ability to discern the unique cross-modal signatures. The cues that enable cross-modal matching of talker and singer identity remain to be determined. PMID:24198805

  16. Optimal design of loudspeaker arrays for robust cross-talk cancellation using the Taguchi method and the genetic algorithm.

    PubMed

    Bai, Mingsian R; Tung, Chih-Wei; Lee, Chih-Chung

    2005-05-01

    An optimal design technique of loudspeaker arrays for cross-talk cancellation with application in three-dimensional audio is presented. An array focusing scheme is presented on the basis of the inverse propagation that relates the transducers to a set of chosen control points. Tikhonov regularization is employed in designing the inverse cancellation filters. An extensive analysis is conducted to explore the cancellation performance and robustness issues. To best compromise the performance and robustness of the cross-talk cancellation system, optimal configurations are obtained with the aid of the Taguchi method and the genetic algorithm (GA). The proposed systems are further justified by physical as well as subjective experiments. The results reveal that large number of loudspeakers, closely spaced configuration, and optimal control point design all contribute to the robustness of cross-talk cancellation systems (CCS) against head misalignment.

  17. Maternal bacteremia and the Irish maternity early warning system.

    PubMed

    Maguire, Patrick J; O'Higgins, Amy C; Power, Karen A; Daly, Niamh; McKeating, Aoife; Turner, Michael J

    2015-05-01

    To assess whether introduction of the Irish maternity early warning system (IMEWS) in 2013 has improved the recording of vital signs among women with proven maternal bacteremia. In a mixed retrospective and prospective study at a single center in Dublin, Ireland, the patient records of all cases of maternal bacteremia between January 1, 2009, and March 31, 2014, were reviewed. The IMEWS chart was applied retrospectively to records of vital signs from January 2009 to March 2013, and prospectively from April 2013 to March 2014. For the 61 cases from the period before IMEWS introduction, vital signs were recorded inconsistently on multiple pages. The frequency of recordings was not standardized. Respiratory rate, in particular, was under-recorded. Among the 17 cases between April 2013 and March 2014 that were eligible for IMEWS chart use, 14 women had vital signs recorded on an IMEWS chart. As compared with the period before IMEWS introduction, there was an improvement in respiratory rate recording as part of the first set of observations. Among pregnant women with proven bacteremia, introduction of IMEWS has been associated with an improvement in the recording of vital signs, particularly respiratory rate. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Moral uncertainty in bioethical argumentation: a new understanding of the pro-life view on early human embryos.

    PubMed

    Żuradzki, Tomasz

    2014-12-01

    In this article, I present a new interpretation of the pro-life view on the status of early human embryos. In my understanding, this position is based not on presumptions about the ontological status of embryos and their developmental capabilities but on the specific criteria of rational decisions under uncertainty and on a cautious response to the ambiguous status of embryos. This view, which uses the decision theory model of moral reasoning, promises to reconcile the uncertainty about the ontological status of embryos with the certainty about normative obligations. I will demonstrate that my interpretation of the pro-life view, although seeming to be stronger than the standard one, has limited scope and cannot be used to limit destructive research on human embryos.

  19. PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petriello, Michael C.; University of Kentucky Superfund Research Center, Lexington, KY 40536; Han, Sung Gu

    2014-06-01

    Environmental toxicants such as polychlorinated biphenyls (PCBs) have been implicated in the promotion of multiple inflammatory disorders including cardiovascular disease, but information regarding mechanisms of toxicity and cross-talk between relevant cell signaling pathways is lacking. To examine the hypothesis that cross-talk between membrane domains called caveolae and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways alters PCB-induced inflammation, caveolin-1 was silenced in vascular endothelial cells, resulting in a decreased PCB-induced inflammatory response. Cav-1 silencing (siRNA treatment) also increased levels of Nrf2-ARE transcriptional binding, resulting in higher mRNA levels of the antioxidant genes glutathione s-transferase and NADPH dehydrogenase quinone-1 in both vehiclemore » and PCB-treated systems. Along with this upregulated antioxidant response, Cav-1 siRNA treated cells exhibited decreased mRNA levels of the Nrf2 inhibitory protein Keap1 in both vehicle and PCB-treated samples. Silencing Cav-1 also decreased protein levels of Nrf2 inhibitory proteins Keap1 and Fyn kinase, especially in PCB-treated cells. Further, endothelial cells from wildtype and Cav-1 −/− mice were isolated and treated with PCB to better elucidate the role of functional caveolae in PCB-induced endothelial inflammation. Cav-1 −/− endothelial cells were protected from PCB-induced cellular dysfunction as evidenced by decreased vascular cell adhesion molecule (VCAM-1) protein induction. Compared to wildtype cells, Cav-1 −/− endothelial cells also allowed for a more effective antioxidant response, as observed by higher levels of the antioxidant genes. These data demonstrate novel cross-talk mechanisms between Cav-1 and Nrf2 and implicate the reduction of Cav-1 as a protective mechanism for PCB-induced cellular dysfunction and inflammation. - Highlights: • Reduction of caveolin-1 protein protects against polychlorinated biphenyl toxicity.

  20. Reprogramming the Maternal Zebrafish Genome after Fertilization to Match the Paternal Methylation Pattern

    PubMed Central

    Potok, Magdalena E.; Nix, David A.; Parnell, Timothy J.; Cairns, Bradley R.

    2014-01-01

    SUMMARY Early vertebrate embryos must achieve totipotency and prepare for zygotic genome activation (ZGA). To understand this process, we determined the DNA methylation (DNAme) profiles of zebrafish gametes, embryos at different stages, and somatic muscle and compared them to gene activity and histone modifications. Sperm chromatin patterns are virtually identical to those at ZGA. Unexpectedly, the DNA of many oocyte genes important for germ-line functions (i.e., piwil1) or early development (i.e., hox genes) is methylated, but the loci are demethylated during zygotic cleavage stages to precisely the state observed in sperm, even in parthenogenetic embryos lacking a replicating paternal genome. Furthermore, this cohort constitutes the genes and loci that acquire DNAme during development (i.e., ZGA to muscle). Finally, DNA methyltransferase inhibition experiments suggest that DNAme silences particular gene and chromatin cohorts at ZGA, preventing their precocious expression. Thus, zebrafish achieve a totipotent chromatin state at ZGA through paternal genome competency and maternal genome DNAme reprogramming. PMID:23663776

  1. Cross-talk between cardiac muscle and coronary vasculature.

    PubMed

    Westerhof, Nico; Boer, Christa; Lamberts, Regis R; Sipkema, Pieter

    2006-10-01

    The cardiac muscle and the coronary vasculature are in close proximity to each other, and a two-way interaction, called cross-talk, exists. Here we focus on the mechanical aspects of cross-talk including the role of the extracellular matrix. Cardiac muscle affects the coronary vasculature. In diastole, the effect of the cardiac muscle on the coronary vasculature depends on the (changes in) muscle length but appears to be small. In systole, coronary artery inflow is impeded, or even reversed, and venous outflow is augmented. These systolic effects are explained by two mechanisms. The waterfall model and the intramyocardial pump model are based on an intramyocardial pressure, assumed to be proportional to ventricular pressure. They explain the global effects of contraction on coronary flow and the effects of contraction in the layers of the heart wall. The varying elastance model, the muscle shortening and thickening model, and the vascular deformation model are based on direct contact between muscles and vessels. They predict global effects as well as differences on flow in layers and flow heterogeneity due to contraction. The relative contributions of these two mechanisms depend on the wall layer (epi- or endocardial) and type of contraction (isovolumic or shortening). Intramyocardial pressure results from (local) muscle contraction and to what extent the interstitial cavity contracts isovolumically. This explains why small arterioles and venules do not collapse in systole. Coronary vasculature affects the cardiac muscle. In diastole, at physiological ventricular volumes, an increase in coronary perfusion pressure increases ventricular stiffness, but the effect is small. In systole, there are two mechanisms by which coronary perfusion affects cardiac contractility. Increased perfusion pressure increases microvascular volume, thereby opening stretch-activated ion channels, resulting in an increased intracellular Ca2+ transient, which is followed by an increase in Ca

  2. Perceived early-life maternal care and the cortisol response to repeated psychosocial stress.

    PubMed

    Engert, Veronika; Efanov, Simona I; Dedovic, Katarina; Duchesne, Annie; Dagher, Alain; Pruessner, Jens C

    2010-11-01

    In the past decade, a body of animal and human research has revealed a profound influence of early-life experiences, ranging from variations in parenting behaviour to severe adversity, on hypothalamic-pituitary-adrenal axis regulation in adulthood. In our own previous studies, we have shown how variations in early-life parental care influence the development of the hippocampus and modify the cortisol awakening response. In the present study, we investigated the influence of early-life maternal care on cortisol, heart rate and subjective psychological responses to the repeated administration of a psychosocial laboratory stressor in a population of 63 healthy young adults. Low, medium and high early-life maternal care groups were identified using the Parental Bonding Instrument. Controlling for the effect of sex, we found an inverted u-shaped relation between increasing levels of maternal care and cortisol stress responsivity. Specifically, overall and stress-induced cortisol levels went from below normal in the low maternal care, to normal in the medium care, back to below normal in the high maternal care groups. We found no group differences with respect to heart rate and subjective psychological stress measures. Whereas low and high maternal care groups exhibited similarly low endocrine stress responses, their psychological profiles were opposed with increased levels of depression and anxiety and decreased self-esteem in the low care group. Sex was unequally distributed among maternal care groups, whereby the number of men with low maternal care was too small to allow introducing sex as a second between-group variable. We discuss the potential significance of this dissociation between endocrine and psychological parameters with respect to stress vulnerability and resistance for each maternal care group.

  3. Amplitude-phase cross talk as a deterioration factor of signal-to-noise ratio in phase-detection noise-cancellation technique for spectral pump/probe measurements and compensation of the amplitude-phase cross talk

    NASA Astrophysics Data System (ADS)

    Seto, Keisuke; Tarumi, Takashi; Tokunaga, Eiji

    2018-06-01

    Noise cancellation of the light source is an important method to enhance the signal-to-noise ratio (SNR) and facilitate high-speed detection in pump/probe measurements. We developed a method to eliminate the noise for the multichannel spectral pump/probe measurements with a spectral dispersion of a white probe pulse light. In this method, the sample-induced intensity modulation is converted to the phase modulation of the pulse repetition irrespective of the intensity noise of the light source. The SNR is enhanced through the phase detection of the observed signal with the signal synchronized to the pulse repetition serving as the phase reference (synchronized signal). However, the shot-noise limited performance is not achieved with an intense probe light. In this work, we demonstrate that the performance limitation below the shot noise limit is caused by the amplitude-phase cross talk. It converts the amplitude noise into the phase noise and is caused by the space-charge effect in the photodetector, the reverse bias voltage drop across the load impedance, and the phase detection circuit. The phase delay occurs with an intense light at a PIN photodiode, whereas the phase is advanced in an avalanche photodiode. Although the amplitude distortion characteristics also reduce the performance, the distortion effect is equivalent to the amplitude-phase cross talk. We also propose possible ways to compensate the cross talk effect by using the phase modulation of the synchronized signal for the phase detection based on the instantaneous amplitude.

  4. Maternal left ventricular hypertrophy and diastolic dysfunction and brain natriuretic peptide concentration in early- and late-onset pre-eclampsia.

    PubMed

    Borges, V T M; Zanati, S G; Peraçoli, M T S; Poiati, J R; Romão-Veiga, M; Peraçoli, J C; Thilaganathan, B

    2018-04-01

    Pre-eclampsia (PE) is associated with maternal cardiac remodeling and diastolic dysfunction. The aim of this study was to assess and compare maternal left ventricular structure and diastolic function and levels of brain natriuretic peptide (BNP) in women with early-onset (< 34 weeks' gestation) vs those with late-onset (≥ 34 weeks' gestation) PE. This was a prospective, cross-sectional, observational study of 30 women with early-onset PE, 32 with late-onset PE and 23 normotensive controls. Maternal cardiac structure and diastolic function were assessed by echocardiography and plasma levels of BNP were measured by enzyme immunoassay. Early- and late-onset PE were associated with increased left ventricular mass index and relative wall thickness compared with normotensive controls. In women with early-onset PE, the prevalence of concentric hypertrophy (40%) and diastolic dysfunction (23%) was also significantly higher (both P < 0.05) compared with women with late-onset PE (16% for both). Maternal serum BNP levels were significantly higher (P < 0.05) in women with early-onset PE and correlated with relative wall thickness and left ventricular mass index. Early-onset PE is associated with more severe cardiac impairment than is late-onset PE, as evidenced by an increased prevalence of concentric hypertrophy, diastolic dysfunction and higher levels of BNP. These findings suggest that early-onset PE causes greater myocardial damage, increasing the risk of both peripartum and postpartum cardiovascular morbidity. Although these cardiovascular effects are easily identified by echocardiographic parameters and measuring BNP, further studies are needed to assess their clinical utility. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.

  5. Effects of maternal history of depression and early life maltreatment on children's health-related quality of life.

    PubMed

    Dittrich, Katja; Fuchs, Anna; Bermpohl, Felix; Meyer, Justus; Führer, Daniel; Reichl, Corinna; Reck, Corinna; Kluczniok, Dorothea; Kaess, Michael; Hindi Attar, Catherine; Möhler, Eva; Bierbaum, Anna-Lena; Zietlow, Anna-Lena; Jaite, Charlotte; Winter, Sibylle Maria; Herpertz, Sabine C; Brunner, Romuald; Bödeker, Katja; Resch, Franz

    2018-01-01

    There is a well-established link between maternal depression and child mental health. Similar effects have been found for maternal history of early life maltreatment (ELM). However, studies investigating the relationship of children's quality of life and maternal depression are scarce and none have been conducted for the association with maternal ELM. The aim of the present study was to investigate the effects of maternal history of ELM and depression on children's health-related quality of life and to identify mediating factors accounting for these effects. Our study involved 194 mothers with and without history of depression and/or ELM and their children between five and 12 years. Children's health-related quality of life was assessed by maternal proxy- and child self-ratings using the KIDSCREEN. We considered maternal sensitivity and maternal parenting stress as potential mediators. We found an effect of maternal history of depression but not of maternal history of ELM on health-related quality of life. Maternal stress and sensitivity mediated the effects of maternal depression on child global health-related quality of life, as well as on the dimensions Autonomy & Parent Relation, School Environment (maternal and child rating), and Physical Wellbeing (child rating). Due to the cross-sectional design of the study, causal interpretations must be made with caution. Some scales yielded low internal consistency. Maternal impairments in areas of parenting which possibly developed during acute depression persist even after remission of acute affective symptoms. Interventions should target parenting stress and sensitivity in parents with prior depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comfort with motherhood in late pregnancy facilitates maternal role attainment in early postpartum.

    PubMed

    Nakamura, Yasuka; Takeishi, Yoko; Ito, Naoko; Ito, Mizuki; Atogami, Fumi; Yoshizawa, Toyoko

    2015-01-01

    Quality of life, comfort, and wellbeing during pregnancy are essential for every country in the world. Pregnancy is considered a preparation period for becoming a mother. Maternal role development, including confidence and satisfaction as a mother, is important in the transition to motherhood. Negative psychosocial affect, such as increased anxiety and distress, during pregnancy adversely influences the childbirth experience and childcare, which contributes to postpartum depression. However, the impact of positive feelings on the maternal role development remains unclear. Therefore, the study purpose was to clarify the relationship between comfort in late pregnancy and maternal role attainment and childcare during early postpartum. We designed a descriptive, longitudinal, correlational study by using the Prenatal Comfort Scale, the Postpartum Maternal Role Confidence Scale, and the Postpartum Maternal Satisfaction Scale. Among 339 participants who had received care at a university hospital located in Sendai city in Japan, 215 subjects completed the longitudinal study by answering a questionnaire for the respective Scale late in their pregnancy or during early postpartum. The subjects consisted of 114 primipara (32.0 ± 5.4 years) and 101 multipara (33.4 ± 4.9 years). In primipara, comfort with motherhood was significantly correlated with maternal confidence regarding knowledge and childcare skills and maternal satisfaction. In multipara, comfort in late pregnancy was related to maternal confidence and satisfaction. Positive affect was related to maternal confidence and maternal satisfaction in early postpartum. Therefore, a prenatal nursing intervention helps women become more comfortable with impending motherhood, thereby promoting maternal role attainment after delivery.

  7. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation

    PubMed Central

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P.; Zhou, Feng C.

    2009-01-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88 mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10 and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p < 0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes

  8. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation.

    PubMed

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P; Zhou, Feng C

    2009-10-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10, and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p<0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in

  9. Rapid DNA Synthesis During Early Drosophila Embryogenesis Is Sensitive to Maternal Humpty Dumpty Protein Function.

    PubMed

    Lesly, Shera; Bandura, Jennifer L; Calvi, Brian R

    2017-11-01

    Problems with DNA replication cause cancer and developmental malformations. It is not fully understood how DNA replication is coordinated with development and perturbed in disease. We had previously identified the Drosophila gene humpty dumpty ( hd ), and showed that null alleles cause incomplete DNA replication, tissue undergrowth, and lethality. Animals homozygous for the missense allele, hd 272-9 , were viable, but adult females had impaired amplification of eggshell protein genes in the ovary, resulting in the maternal effects of thin eggshells and embryonic lethality. Here, we show that expression of an hd transgene in somatic cells of the ovary rescues amplification and eggshell synthesis but not embryo viability. The germline of these mothers remain mutant for the hd 272-9 allele, resulting in reduced maternal Hd protein and embryonic arrest during mitosis of the first few S/M nuclear cleavage cycles with chromosome instability and chromosome bridges. Epistasis analysis of hd with the rereplication mutation plutonium indicates that the chromosome bridges of hd embryos are the result of a failed attempt to segregate incompletely replicated sister chromatids. This study reveals that maternally encoded Humpty dumpty protein is essential for DNA replication and genome integrity during the little-understood embryonic S/M cycles. Moreover, the two hd 272-9 maternal-effect phenotypes suggest that ovarian gene amplification and embryonic cleavage are two time periods in development that are particularly sensitive to mild deficits in DNA replication function. This last observation has broader relevance for interpreting why mild mutations in the human ortholog of humpty dumpty and other DNA replication genes cause tissue-specific malformations of microcephalic dwarfisms. Copyright © 2017 by the Genetics Society of America.

  10. Early working memory and maternal communication in toddlers born very low birth weight.

    PubMed

    Lowe, Jean; Erickson, Sarah J; Maclean, Peggy; Duvall, Susanne W

    2009-04-01

    Early working memory is emerging as an important indicator of developmental outcome predicting later cognitive, behavioural and academic competencies. The current study compared early working memory in a sample of toddlers (18-22 months) born very low birth weight (VLBW; n = 40) and full term (n = 51) and the relationship between early working memory, mental developmental index (MDI), and maternal communication in both samples. Early working memory, measured by object permanence; Bayley mental developmental index; and maternal communication, coded during mother-toddler play interaction, were examined in 39 toddlers born VLBW and 41 toddlers born full term. Toddlers born VLBW were found to be 6.4 times less likely to demonstrate attainment of object permanence than were toddlers born full term, adjusting for age at testing. MDI and maternal communication were found to be positively associated with attainment of object permanence in the VLBW group only. The difference found in the early working memory performance of toddlers born VLBW, compared with those born full term, emphasizes the importance of assessing early working memory in at-risk populations, while the maternal communication finding highlights potential targets of intervention for improving working memory in toddlers born VLBW.

  11. Astroglia-Microglia Cross Talk during Neurodegeneration in the Rat Hippocampus

    PubMed Central

    Batlle, Montserrat; Ferri, Lorenzo; Andrade, Carmen; Ortega, Francisco-Javier; Vidal-Taboada, Jose M.; Pugliese, Marco; Mahy, Nicole; Rodríguez, Manuel J.

    2015-01-01

    Brain injury triggers a progressive inflammatory response supported by a dynamic astroglia-microglia interplay. We investigated the progressive chronic features of the astroglia-microglia cross talk in the perspective of neuronal effects in a rat model of hippocampal excitotoxic injury. N-Methyl-D-aspartate (NMDA) injection triggered a process characterized within 38 days by atrophy, neuronal loss, and fast astroglia-mediated S100B increase. Microglia reaction varied with the lesion progression. It presented a peak of tumor necrosis factor-α (TNF-α) secretion at one day after the lesion, and a transient YM1 secretion within the first three days. Microglial glucocorticoid receptor expression increased up to day 5, before returning progressively to sham values. To further investigate the astroglia role in the microglia reaction, we performed concomitant transient astroglia ablation with L-α-aminoadipate and NMDA-induced lesion. We observed a striking maintenance of neuronal death associated with enhanced microglial reaction and proliferation, increased YM1 concentration, and decreased TNF-α secretion and glucocorticoid receptor expression. S100B reactivity only increased after astroglia recovery. Our results argue for an initial neuroprotective microglial reaction, with a direct astroglial control of the microglial cytotoxic response. We propose the recovery of the astroglia-microglia cross talk as a tissue priority conducted to ensure a proper cellular coordination that retails brain damage. PMID:25977914

  12. Review: Post-translational cross-talk between brassinosteroid and sucrose signaling.

    PubMed

    Kühn, Christina

    2016-07-01

    A direct link has been elucidated between brassinosteroid function and perception, and sucrose partitioning and transport. Sucrose regulation and brassinosteroid signaling cross-talk at various levels, including the well-described regulation of transcriptional gene expression: BZR-like transcription factors link the signaling pathways. Since brassinosteroid responses depend on light quality and quantity, a light-dependent alternative pathway was postulated. Here, the focus is on post-translational events. Recent identification of sucrose transporter-interacting partners raises the question whether brassinosteroid and sugars jointly affect plant innate immunity and plant symbiotic interactions. Membrane permeability and sensitivity depends on the number of cell surface receptors and transporters. More than one endocytic route has been assigned to specific components, including brassinosteroid-receptors. The number of such proteins at the plasma membrane relies on endocytic recycling, internalization and/or degradation. Therefore, vesicular membrane trafficking is gaining considerable attention with regard to plant immunity. The organization of pattern recognition receptors (PRRs), other receptors or transporters in membrane microdomains participate in endocytosis and the formation of specific intracellular compartments, potentially impacting biotic interactions. This minireview focuses on post-translational events affecting the subcellular compartmentation of membrane proteins involved in signaling, transport, and defense, and on the cross-talk between brassinosteroid signals and sugar availability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Full-field chromatic confocal surface profilometry employing digital micromirror device correspondence for minimizing lateral cross talks

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Chang, Yi-Wei; Li, Hau-Wei

    2012-08-01

    Full-field chromatic confocal surface profilometry employing a digital micromirror device (DMD) for spatial correspondence is proposed to minimize lateral cross-talks between individual detection sensors. Although full-field chromatic confocal profilometry is capable of enhancing measurement efficiency by completely removing time-consuming vertical scanning operation, its vertical measurement resolution and accuracy are still severely affected by the potential sensor lateral cross-talk problem. To overcome this critical bottleneck, a DMD-based chromatic confocal method is developed by employing a specially-designed objective for chromatic light dispersion, and a DMD for lateral pixel correspondence and scanning, thereby reducing the lateral cross-talk influence. Using the chromatic objective, the incident light is dispersed according to a pre-designed detection range of several hundred micrometers, and a full-field reflected light is captured by a three-chip color camera for multi color detection. Using this method, the full width half maximum of the depth response curve can be significantly sharpened, thus improving the vertical measurement resolution and repeatability of the depth detection. From our preliminary experimental evaluation, it is verified that the ±3σ repeatability of the height measurement can be kept within 2% of the overall measurement range.

  14. Quantifying Three-Dimensional Morphology and RNA from Individual Embryos

    PubMed Central

    Green, Rebecca M.; Leach, Courtney L.; Hoehn, Natasha; Marcucio, Ralph S.; Hallgrímsson, Benedikt

    2017-01-01

    Quantitative analysis of morphogenesis aids our understanding of developmental processes by providing a method to link changes in shape with cellular and molecular processes. Over the last decade many methods have been developed for 3D imaging of embryos using microCT scanning to quantify the shape of embryos during development. These methods generally involve a powerful, cross-linking fixative such as paraformaldehyde to limit shrinkage during the CT scan. However, the extended time frames that these embryos are incubated in such fixatives prevent use of the tissues for molecular analysis after microCT scanning. This is a significant problem because it limits the ability to correlate variation in molecular data with morphology at the level of individual embryos. Here, we outline a novel method that allows RNA, DNA or protein isolation following CT scan while also allowing imaging of different tissue layers within the developing embryo. We show shape differences early in craniofacial development (E11.5) between common mouse genetic backgrounds, and demonstrate that we are able to generate RNA from these embryos after CT scanning that is suitable for downstream RT-PCR and RNAseq analyses. PMID:28152580

  15. Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus.

    PubMed

    Colozza, Gabriele; De Robertis, Edward M

    2014-07-01

    In amphibians and teleosts, early embryonic axial development is driven by maternally deposited mRNAs and proteins, called dorsal determinants, which migrate to the presumptive dorsal side of the embryo in a microtubule-dependent manner after fertilization. Syntabulin is an adapter protein that binds to kinesin KIF5B and to the transmembrane protein Syntaxin1. In zebrafish, a mutation in Syntabulin causes complete embryo ventralization. It is unknown whether Syntabulin plays an analogous role during early development of other species, a question addressed here in Xenopus laevis. in situ hybridization of syntabulin mRNA was carried out at different stages of Xenopus development. In oocytes, syntabulin transcripts were localized to the vegetal cortex of large oocytes and the mitochondrial cloud of very young oocytes. We extended the zebrafish data by finding that during cleavage Xenopus syntabulin mRNA localized to the germ plasm and was later expressed in primordial germ cells (PGCs). This new finding suggested a role for Syntabulin during germ cell differentiation. The functional role of maternal syntabulin mRNA was investigated by knock-down with phosphorothioate DNA antisense oligos followed by oocyte transfer. The results showed that syntabulin mRNA depletion caused the complete loss of dorso-anterior axis formation in frog embryos. Consistent with the ventralized phenotype, syntabulin-depleted embryos displayed severe reduction of dorsal markers and ubiquitous transcription of the ventral marker sizzled. Syntabulin was required for the maternal Wnt/β-Catenin signal, since ventralization could be completely rescued by injection of β-catenin (or syntabulin) mRNA. The data suggest an evolutionarily conserved role for Syntabulin, a protein that bridges microtubule motors and membrane vesicles, during dorso-ventral axis formation in the vertebrates. Copyright © 2013 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  16. Infant-Mother Attachment and Children's Friendship Quality: Maternal Mental-State Talk as an Intervening Mechanism

    ERIC Educational Resources Information Center

    McElwain, Nancy L.; Booth-Laforce, Cathryn; Wu, Xiaoying

    2011-01-01

    Utilizing data from the Eunice Kennedy Shriver National Institute of Child Health and Human Development's Study of Early Child Care and Youth Development, we investigated mothers' talk about mental states during play with their 24-month-old children as a mechanism though which infant-mother attachment was associated with children's later…

  17. Early maternal rejection affects the development of monoaminergic systems and adult abusive parenting in rhesus macaques (Macaca mulatta).

    PubMed

    Maestripieri, Dario; Higley, J Dee; Lindell, Stephen G; Newman, Timothy K; McCormack, Kai M; Sanchez, Mar M

    2006-10-01

    This study investigated the effects of early exposure to variable parenting style and infant abuse on cerebrospinal fluid (CSF) concentrations of monoamine metabolites and examined the role of monoaminergic function in the intergenerational transmission of infant abuse in rhesus monkeys (Macaca mulatta). Forty-three infants reared by their biological mothers and 15 infants that were cross-fostered at birth and reared by unrelated mothers were followed longitudinally through their first 3 years of life or longer. Approximately half of the infants were reared by abusive mothers and half by nonabusive controls. Abused infants did not differ from controls in CSF concentrations of 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), or 3-methoxy-4-hydroxyphenylgycol (MHPG). Abused infants, however, were exposed to higher rates of maternal rejection, and highly rejected infants had lower CSF 5-HIAA and HVA than low-rejection infants. The abused females who became abusive mothers in adulthood had lower CSF 5-HIAA than the abused females who did not. A similar trend was also observed among the cross-fostered females, suggesting that low serotonergic function resulting from early exposure to high rates of maternal rejection plays a role in the intergenerational transmission of infant abuse.

  18. Chicken Embryos as a Potential New Model for Early Onset Type I Diabetes

    PubMed Central

    Shi, Liheng; Ko, Michael L.; Huang, Cathy Chia-Yu; Park, So-Young; Hong, Min-Pyo; Ko, Gladys Y.-P.

    2014-01-01

    Diabetic retinopathy (DR) is the leading cause of blindness among the American working population. The purpose of this study is to establish a new diabetic animal model using a cone-dominant avian species to address the distorted color vision and altered cone pathway responses in prediabetic and early diabetic patients. Chicken embryos were injected with either streptozotocin (STZ), high concentration of glucose (high-glucose), or vehicle at embryonic day 11. Cataracts occurred in varying degrees in both STZ- and high glucose-induced diabetic chick embryos at E18. Streptozotocin-diabetic chicken embryos had decreased levels of blood insulin, glucose transporter 4 (Glut4), and phosphorylated protein kinase B (pAKT). In STZ-injected E20 embryos, the ERG amplitudes of both a- and b-waves were significantly decreased, the implicit time of the a-wave was delayed, while that of the b-wave was significantly increased. Photoreceptors cultured from STZ-injected E18 embryos had a significant decrease in L-type voltage-gated calcium channel (L-VGCC) currents, which was reflected in the decreased level of L-VGCCα1D subunit in the STZ-diabetic retinas. Through these independent lines of evidence, STZ-injection was able to induce pathological conditions in the chicken embryonic retina, and it is promising to use chickens as a potential new animal model for type I diabetes. PMID:25133191

  19. First-time mothers' experiences of early labour in Italian maternity care services.

    PubMed

    Cappelletti, Giulia; Nespoli, Antonella; Fumagalli, Simona; Borrelli, Sara E

    2016-03-01

    The aim of this study is to explore first-time mothers' experiences of early labour in Italian maternity care services when admitted to hospital or advised to return home after maternity triage assessment. The study was conducted in a second-level maternity hospital in northern Italy with an obstetric unit for both low- and high-risk women. The participants included 15 first-time mothers in good general health with spontaneous labour at term of a low-risk pregnancy who accessed maternity triage during early labour, and were either admitted to hospital or advised to return home. A qualitative interpretive phenomenological study was conducted. A face-to-face recorded semi-structured interview was conducted with each participant 48-72h after birth. Four key themes emerged from the interviews: (a) recognising signs of early labour; (b) coping with pain at home; (c) seeking reassurance from healthcare professionals; and (d) being admitted to hospital versus returning home. Uncertainty about the progression of labour and the need for reassurance were cited by women as the main reasons for hospital visit in early labour. An ambivalent feeling was reported by the participants when admitted to hospital in early labour. In fact, while the women felt reassured in the first instance, some women subsequently felt dissatisfied due to the absence of one-to-one dedicated care during early labour. When advised to return home, a number of women reported feelings of disappointment, anger, fear, discouragement and anxiety about not being admitted to hospital; however, some of these women reported a subsequent feeling of comfort due to being at home and putting in place the suggestions made by the midwives during the maternity triage assessment. The guidance provided by midwives during triage assessment seemed to be the key factor influencing women׳s satisfaction when advised either to return home or to stay at the hospital during early labour. During antenatal classes and clinics

  20. Metabolic syndrome in Spanish adolescents and its association with birth weight, breastfeeding duration, maternal smoking, and maternal obesity: a cross-sectional study.

    PubMed

    González-Jiménez, Emilio; Montero-Alonso, Miguel A; Schmidt-RioValle, Jacqueline; García-García, Carmen J; Padez, Cristina

    2015-06-01

    The metabolic syndrome (MetS) in adolescents is a growing problem. The objectives were to verify the association among early predictors such as birth weight, breastfeeding, maternal weight status, smoking during pregnancy, and the development of MetS. A cross-sectional study was performed of 976 children and adolescents, 10-15 years of age, at schools in the provinces of Granada and Almeria (Spain). For this purpose, we analyzed the physical characteristics as well as the biochemical markers of the participants with a view to ascertaining the prevalence of the MetS. Relevant data were also extracted from the clinical histories of their mothers. It was found that 3.85% of the female subjects and 5.38% of the male subjects in the sample population suffered from MetS. In both sexes, there was an association between birth weight and positive MetS diagnosis (OR 1.27). For both males and females, there was an inverse association between the length of time that they had been breastfed and positive MetS diagnosis (OR1-3 months 3.16; OR4-6 months 1.70; OR(>6 months) 0.13). There was also a significant association between maternal weight (OR(overweight )30.79; OR(obesity) 49.36) and cigarette consumption during pregnancy (OR 1.47) and the subsequent development of MetS in the children of these mothers. Those subjects born with a higher than average birth weight had a greater risk of developing MetS in childhood and adolescence. Breastfeeding children for longer than 6 months protected them from MetS in their early years as well as in their teens. Other risk factors for MetS were maternal smoking during pregnancy as well as maternal overweight and obesity.

  1. Perceived early-life maternal care and the cortisol response to repeated psychosocial stress

    PubMed Central

    Engert, Veronika; Efanov, Simona I.; Dedovic, Katarina; Duchesne, Annie; Dagher, Alain; Pruessner, Jens C.

    2010-01-01

    Background In the past decade, a body of animal and human research has revealed a profound influence of early-life experiences, ranging from variations in parenting behaviour to severe adversity, on hypothalamic–pituitary–adrenal axis regulation in adulthood. In our own previous studies, we have shown how variations in early-life parental care influence the development of the hippocampus and modify the cortisol awakening response. Methods In the present study, we investigated the influence of early-life maternal care on cortisol, heart rate and subjective psychological responses to the repeated administration of a psychosocial laboratory stressor in a population of 63 healthy young adults. Low, medium and high early-life maternal care groups were identified using the Parental Bonding Instrument. Results Controlling for the effect of sex, we found an inverted u-shaped relation between increasing levels of maternal care and cortisol stress responsivity. Specifically, overall and stress-induced cortisol levels went from below normal in the low maternal care, to normal in the medium care, back to below normal in the high maternal care groups. We found no group differences with respect to heart rate and subjective psychological stress measures. Whereas low and high maternal care groups exhibited similarly low endocrine stress responses, their psychological profiles were opposed with increased levels of depression and anxiety and decreased self-esteem in the low care group. Limitations Sex was unequally distributed among maternal care groups, whereby the number of men with low maternal care was too small to allow introducing sex as a second between-group variable. Conclusion We discuss the potential significance of this dissociation between endocrine and psychological parameters with respect to stress vulnerability and resistance for each maternal care group. PMID:20964960

  2. Dissection and Downstream Analysis of Zebra Finch Embryos at Early Stages of Development

    PubMed Central

    Murray, Jessica R.; Stanciauskas, Monika E.; Aralere, Tejas S.; Saha, Margaret S.

    2014-01-01

    The zebra finch (Taeniopygiaguttata) has become an increasingly important model organism in many areas of research including toxicology1,2, behavior3, and memory and learning4,5,6. As the only songbird with a sequenced genome, the zebra finch has great potential for use in developmental studies; however, the early stages of zebra finch development have not been well studied. Lack of research in zebra finch development can be attributed to the difficulty of dissecting the small egg and embryo. The following dissection method minimizes embryonic tissue damage, which allows for investigation of morphology and gene expression at all stages of embryonic development. This permits both bright field and fluorescence quality imaging of embryos, use in molecular procedures such as in situ hybridization (ISH), cell proliferation assays, and RNA extraction for quantitative assays such as quantitative real-time PCR (qtRT-PCR). This technique allows investigators to study early stages of development that were previously difficult to access. PMID:24999108

  3. Oxytocin Pathways in the Intergenerational Transmission of Maternal Early Life Stress

    PubMed Central

    Toepfer, Philipp; Heim, Christine; Entringer, Sonja; Binder, Elisabeth; Wadhwa, Pathik; Buss, Claudia

    2017-01-01

    Severe stress in early life, such as childhood abuse and neglect, constitutes a major risk factor in the etiology of psychiatric disorders and somatic diseases. Importantly, these long-term effects may impact the next generation. The intergenerational transmission of maternal early life stress (ELS) may occur via pre-and postnatal pathways, such as alterations in maternal-fetal-placental stress physiology, maternal depression during pregnancy and postpartum, as well as impaired mother-offspring interactions. The neuropeptide oxytocin (OT) has gained considerable attention for its role in modulating all of these assumed transmission pathways. Moreover, central and peripheral OT signaling pathways are highly sensitive to environmental exposures and may be compromised by ELS with implications for these putative transmission mechanisms. Together, these data suggest that OT pathways play an important role in the intergenerational transmission of maternal ELS in humans. By integrating recent studies on gene-environment interactions and epigenetic modifications in OT pathway genes, the present review aims to develop a conceptual framework of intergenerational transmission of maternal ELS that emphasizes the role of OT. PMID:28027955

  4. Heat Sinking, Cross Talk, and Temperature Stability for Large, Close-Packed Arrays of Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Imoto, Naoko; Bandler, SImon; Brekosky, Regis; Chervenak, James; Figueroa-Felicano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Porter, Frederick; Sadleir, Jack; hide

    2007-01-01

    We are developing large, close-packed arrays of x-ray transition-edge sensor (TES) microcalorimeters. In such a device, sufficient heat sinking is important to to minimize thermal cross talk between pixels and to stabilize the bath temperature for all pixels. We have measured cross talk on out 8 x 8 arrays and studied the shape and amount of thermal crosstalk as a function of pixel location and efficiency of electrothermal feedback. In this presentation, we will compare measurements made on arrays with and without a backside, heat-sinking copper layer, as well as results of devices on silicon-nitride membranes and on solid substrates, and we will discuss the implications for energy resolution and maximum count rate. We will also discuss the dependence of pulse height upon bath temperature, and the measured and required stability of the bath temperature.

  5. Decoupling indirect topographic cross-talk in band excitation piezoresponse force microscopy imaging and spectroscopy

    DOE PAGES

    Mazet, Lucie; Jesse, Stephen; Niu, Gang; ...

    2016-06-20

    Here, all scanning probe microscopies are subjected to topographic cross-talk, meaning the topography-related contrast in functional images. Here, we investigate the signatures of indirect topographic cross-talk in piezoresponse force microscopy (PFM) imaging and spectroscopy and its decoupling using band excitation (BE) method in ferroelectric BaTiO 3 deposited on the Si substrates with free standing nanopillars of diameter 50 nm. Comparison between the single-frequency PFM and BE-PFM results shows that the measured signal can be significantly distorted by topography-induced shifts in the contact resonance frequency and cantilever transfer function. However, with proper correction, such shifts do not affect PFM imaging andmore » hysteresis loop measurements. This suggests the necessity of an advanced approach, such as BE-PFM, for detection of intrinsic sample piezoresponse on the topographically non-uniform surfaces.« less

  6. TSH/IGF-1 Receptor Cross-Talk Rapidly Activates Extracellular Signal-Regulated Kinases in Multiple Cell Types.

    PubMed

    Krieger, Christine C; Perry, Joseph D; Morgan, Sarah J; Kahaly, George J; Gershengorn, Marvin C

    2017-10-01

    We previously showed that thyrotropin (TSH)/insulinlike growth factor (IGF)-1 receptor cross-talk appears to be involved in Graves' orbitopathy (GO) pathogenesis and upregulation of thyroid-specific genes in human thyrocytes. In orbital fibroblasts from GO patients, coadministration of TSH and IGF-1 induces synergistic increases in hyaluronan secretion. In human thyrocytes, TSH plus IGF-1 synergistically increased expression of the sodium-iodide symporter that appeared to involve ERK1/2 activation. However, the details of ERK1/2 activation were not known, nor was whether ERK1/2 was involved in this synergism in other cell types. Using primary cultures of GO fibroblasts (GOFs) and human thyrocytes, as well as human embryonic kidney (HEK) 293 cells overexpressing TSH receptors (HEK-TSHRs), we show that simultaneous activation of TSHRs and IGF-1 receptors (IGF-1Rs) causes rapid, synergistic phosphorylation/activation of ERK1 and ERK2 in all three cell types. This effect is partially inhibited by pertussis toxin, an inhibitor of TSHR coupling to Gi/Go proteins. In support of a role for Gi/Go proteins in ERK1/2 phosphorylation, we found that knockdown of Gi(1-3) and Go in HEK-TSHRs inhibited ERK1/2 phosphorylation stimulated by TSH and TSH plus IGF-1. These data demonstrate that the synergistic effects of TSH plus IGF-1 occur early in the TSHR signaling cascade and further support the idea that TSHR/IGF-1R cross-talk is an important mechanism for regulation of human GOFs and thyrocytes.

  7. [The relationship between early neo-maternal exposure, and maternal attachment, maternal self-esteem and postpartum depression in the mothers of NICU infants].

    PubMed

    Ahn, Young-Mee; Kim, Mi-Ran

    2005-08-01

    This study was performed to investigate the quantities of three neo-maternal exposures; visiting frequency, auditory contact and physical contact, and to examine the relationship between the quantities of each exposure and maternal attachment, maternal self-esteem and postpartum depression in 40 mothers of NICU babies during the first week in the NICU. Each neo-maternal exposure was counted at every mother's visit to the newborn and maternal attachment, maternal self-esteem and postpartum depression were measured using the maternal attachment inventory, the maternal self-report inventory and Edinburgh Postpartum Depression Scale (EPDS) on the first and seventh day in the NICU. The Mean of each neo-maternal exposure was 8.77(2.81) for the visiting frequency, 5.82(3.66) for the auditory contact and 5.60(2.89) for the physical contact during 7 days in the NICU. No significant changes were found in the scores of maternal attachment, maternal self-esteem and postpartum depression between the first and the seventh day in the NICU. The quantities of neo-maternal exposures were positively related to the scores of maternal attachment and maternal self-esteem but not related to postpartum depression. The results of the study suggest the lack of early neo-maternal exposure in cases of NICU hospitalization negate its beneficial effects on maternal psychological well-being in increasing maternal attachment and self-esteem. More efforts are needed for the neo-maternal interaction and the reevaluation of NICU visitation hours in order to promote maternal-infant interaction.

  8. Growth curve analyses of the relationship between early maternal age and children's mathematics and reading performance.

    PubMed

    Torres, D Diego

    2015-03-01

    Regarding the methods used to examine the early maternal age-child academic outcomes relationship, the extant literature has tended to examine change using statistical analyses that fail to appreciate that individuals vary in their rates of growth. Of the one study I have been able to find that employs a true growth model to estimate this relationship, the authors only controlled for characteristics of the maternal household after family formation; confounding background factors of mothers that might select them into early childbearing, a possible source of bias, were ignored. The authors' findings nonetheless suggested an inverse relationship between early maternal age, i.e., a first birth between the ages of 13 and 17, and Canadian adolescents' mean math performance at age 10. Early maternal age was not related to the linear slope of age. To elucidate whether the early maternal age-child academic outcomes association, treated in a growth context, is consistent with this finding, the present study built on it using US data and explored children's mathematics and reading trajectories from age 5 on. Its unique contribution is that it further explicitly controlled for maternal background factors and employed a three-level growth model with repeated measures of children nested within their mothers. Though the strength of the relationship varied between mean initial academic performance and mean academic growth, results confirmed that early maternal age was negatively related to children's mathematics and reading achievement, net of post-teen first birth child-specific and maternal household factors. Once maternal background factors were included, there was no statistically significant relationship between early maternal age and either children's mean initial mathematics and reading scores or their mean mathematics and reading growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. How healthcare provider talk with parents of children following severe traumatic brain injury is perceived in early acute care.

    PubMed

    Roscigno, Cecelia I; Savage, Teresa A; Grant, Gerald; Philipsen, Gerry

    2013-08-01

    Healthcare provider talk with parents in early acute care following children's severe traumatic brain injury (TBI) affects parents' orientations to these locales, but this connection has been minimally studied. This lack of attention to this topic in previous research may reflect providers' and researchers' views that these locales are generally neutral or supportive to parents' subsequent needs. This secondary analysis used data from a larger descriptive phenomenological study (2005-2007) with parents of children following moderate to severe TBI recruited from across the United States. Parents of children with severe TBI consistently had strong negative responses to the early acute care talk processes they experienced with providers, while parents of children with moderate TBI did not. Transcript data were independently coded using discourse analysis in the framework of ethnography of speaking. The purpose was to understand the linguistic and paralinguistic talk factors parents used in their meta-communications that could give a preliminary understanding of their cultural expectations for early acute care talk in these settings. Final participants included 27 parents of children with severe TBI from 23 families. We found the human constructed talk factors that parents reacted to were: a) access to the child, which is where information was; b) regular discussions with key personnel; c) updated information that is explained; d) differing expectations for talk in this context; and, e) perceived parental involvement in decisions. We found that the organization and nature of providers' talk with parents was perceived by parents to positively or negatively shape their early acute care identities in these locales, which influenced how they viewed these locales as places that either supported them and decreased their workload or discounted them and increased their workload for getting what they needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. How Healthcare Provider Talk with Parents of Children Following Severe Traumatic Brain Injury is Perceived in Early Acute Care

    PubMed Central

    Savage, Teresa A.; Grant, Gerald; Philipsen, Gerry

    2013-01-01

    Healthcare provider talk with parents in early acute care following children’s severe traumatic brain injury (TBI) affects parents’ orientations to these locales, but this connection has been minimally studied. This lack of attention to this topic in previous research may reflect providers’ and researchers’ views that these locales are generally neutral or supportive to parents’ subsequent needs. This secondary analysis used data from a larger descriptive phenomenological study (2005 – 2007) with parents of children following moderate to severe TBI recruited from across the United States. Parents of children with severe TBI consistently had strong negative responses to the early acute care talk processes they experienced with providers, while parents of children with moderate TBI did not. Transcript data were independently coded using discourse analysis in the framework of ethnography of speaking. The purpose was to understand the linguistic and paralinguistic talk factors parents used in their meta-communications that could give a preliminary understanding of their cultural expectations for early acute care talk in these settings. Final participants included 27 parents of children with severe TBI from 23 families. We found the human constructed talk factors that parents reacted to were: a) access to the child, which is where information was; b) regular discussions with key personnel; c) updated information that is explained; d) differing expectations for talk in this context; and, e) perceived parental involvement in decisions. We found that the organization and nature of providers’ talk with parents was perceived by parents to positively or negatively shape their early acute care identities in these locales, which influenced how they viewed these locales as places that either supported them and decreased their workload or discounted them and increased their workload for getting what they needed. PMID:23746606

  11. Disparities in reproductive outcomes according to the endometrial preparation protocol in frozen embryo transfer : The risk of early pregnancy loss in frozen embryo transfer cycles.

    PubMed

    Hatoum, I; Bellon, L; Swierkowski, N; Ouazana, M; Bouba, S; Fathallah, K; Paillusson, B; Bailly, M; Boitrelle, F; Alter, L; Bergère, M; Selva, J; Wainer, R

    2018-03-01

    The purpose of this study was to determine the effect of stimulated and artificial endometrial preparation protocols on reproductive outcomes in frozen embryo transfer (FET) cycles. We performed a retrospective study of 1926 FET cycles over a 3.5-year period in the Fertility Unit at a University Hospital. Stimulated and artificial protocols were used for endometrial preparation. The embryos for FET were obtained from either in vitro fertilization or intracytoplasmic sperm injection cycles. Live birth rate and early pregnancy loss rates were retrospectively compared. In artificial protocols, oral or vaginal administration of oestradiol 2 mg two or three times a day was followed by vaginal supplementation with progesterone 200 mg two or three times a day. In stimulated protocols, recombinant follicle-stimulating hormone was administered from day 4 onward. Vaginal ultrasound was used for endometrial and ovarian monitoring. A pregnancy test was performed 14 days after FET. If it was positive, oestradiol and progesterone were administered up until the 12th week of gestation in artificial cycles. We defined early pregnancy losses as biochemical pregnancies (preclinical losses) and miscarriages. Data on 865 artificial cycles (45% of the total) and 1061 stimulated cycles (55%) were collected. Early pregnancy loss rate was significantly lower for stimulated cycles (34.2%) than for artificial cycles (56.9%), and the live birth rate was significantly higher for stimulated cycles (59.7%) than for artificial cycles (29.1%). In frozen embryo transfer, artificial cycles were associated with more early pregnancy loss and lower live birth rate than stimulated cycles.

  12. Early nongenomic events in aldosterone action in renal collecting duct cells: PKCalpha activation, mineralocorticoid receptor phosphorylation, and cross-talk with the genomic response.

    PubMed

    Le Moëllic, Cathy; Ouvrard-Pascaud, Antoine; Capurro, Claudia; Cluzeaud, Francoise; Fay, Michel; Jaisser, Frederic; Farman, Nicolette; Blot-Chabaud, Marcel

    2004-05-01

    Effects of aldosterone on its target cells have long been considered to be mediated exclusively through the genomic pathway; however, evidence has been provided for rapid effects of the hormone that may involve nongenomic mechanisms. Whether an interaction exists between these two signaling pathways is not yet established. In this study, the authors show that aldosterone triggers both early nongenomic and late genomic increase in sodium transport in the RCCD(2) rat cortical collecting duct cell line. In these cells, the early (up to 2.5 h) aldosterone-induced increase in short-circuit current (Isc) is not blocked by the mineralocorticoid receptor (MR) antagonist RU26752, it does not require mRNA or protein synthesis, and it involves the PKCalpha signaling pathway. In addition, this early response is reproduced by aldosterone-BSA, which acts at the cell surface and presumably does not enter the cells (aldo-BSA is unable to trigger the late response). The authors also show that MR is rapidly phosphorylated on serine and threonine residues by aldosterone or aldosterone-BSA. In contrast, the late (4 to 24 h) aldosterone-induced increase in ion transport occurs through activation of the MR and requires mRNA and protein synthesis. Interestingly, nongenomic and genomic aldosterone actions appear to be interdependent. Blocking the PKCalpha pathway results in the inhibition of the late genomic response to aldosterone, as demonstrated by the suppression of aldosterone-induced increase in MR transactivation activity, alpha1 Na(+)/K(+)/ATPase mRNA, and Isc. These data suggest cross-talk between the nongenomic and genomic responses to aldosterone in renal cells and suggest that the aldosterone-MR mediated increase in mRNA/protein synthesis and ion transport depends, at least in part, upon PKCalpha activation. E-mail: marcel.blot-chabaud@pharmacie.univ-mrs.fr

  13. Wnt Signaling Cross-Talks with JH Signaling by Suppressing Met and gce Expression

    PubMed Central

    Abdou, Mohamed; Peng, Cheng; Huang, Jianhua; Zyaan, Ola; Wang, Sheng; Li, Sheng; Wang, Jian

    2011-01-01

    Juvenile hormone (JH) plays key roles in controlling insect growth and metamorphosis. However, relatively little is known about the JH signaling pathways. Until recent years, increasing evidence has suggested that JH modulates the action of 20-hydroxyecdysone (20E) by regulating expression of broad (br), a 20E early response gene, through Met/Gce and Kr-h1. To identify other genes involved in JH signaling, we designed a novel Drosophila genetic screen to isolate mutations that derepress JH-mediated br suppression at early larval stages. We found that mutations in three Wnt signaling negative regulators in Drosophila, Axin (Axn), supernumerary limbs (slmb), and naked cuticle (nkd), caused precocious br expression, which could not be blocked by exogenous JHA. A similar phenotype was observed when armadillo (arm), the mediator of Wnt signaling, was overexpressed. qRT-PCR revealed that Met, gce and Kr-h1expression was suppressed in the Axn, slmb and nkd mutants as well as in arm gain-of-function larvae. Furthermore, ectopic expression of gce restored Kr-h1 expression but not Met expression in the arm gain-of-function larvae. Taken together, we conclude that Wnt signaling cross-talks with JH signaling by suppressing transcription of Met and gce, genes that encode for putative JH receptors. The reduced JH activity further induces down-regulation of Kr-h1expression and eventually derepresses br expression in the Drosophila early larval stages. PMID:22087234

  14. Uterine responses to early pre-attachment embryos in the domestic dog and comparisons with other domestic animal species†

    PubMed Central

    Graubner, Felix R.; Gram, Aykut; Kautz, Ewa; Bauersachs, Stefan; Aslan, Selim; Agaoglu, Ali R.; Boos, Alois

    2017-01-01

    Abstract In the dog, there is no luteolysis in the absence of pregnancy. Thus, this species lacks any anti-luteolytic endocrine signal as found in other species that modulate uterine function during the critical period of pregnancy establishment. Nevertheless, in the dog an embryo-maternal communication must occur in order to prevent rejection of embryos. Based on this hypothesis, we performed microarray analysis of canine uterine samples collected during pre-attachment phase (days 10-12) and in corresponding non-pregnant controls, in order to elucidate the embryo attachment signal. An additional goal was to identify differences in uterine responses to pre-attachment embryos between dogs and other mammalian species exhibiting different reproductive patterns with regard to luteolysis, implantation, and preparation for placentation. Therefore, the canine microarray data were compared with gene sets from pigs, cattle, horses, and humans. We found 412 genes differentially regulated between the two experimental groups. The functional terms most strongly enriched in response to pre-attachment embryos related to extracellular matrix function and remodeling, and to immune and inflammatory responses. Several candidate genes were validated by semi-quantitative PCR. When compared with other species, best matches were found with human and equine counterparts. Especially for the pig, the majority of overlapping genes showed opposite expression patterns. Interestingly, 1926 genes did not pair with any of the other gene sets. Using a microarray approach, we report the uterine changes in the dog driven by the presence of embryos and compare these results with datasets from other mammalian species, finding common-, contrary-, and exclusively canine-regulated genes. PMID:28651344

  15. Early working memory and maternal communication in toddlers born very low birth weight

    PubMed Central

    Lowe, Jean; Erickson, Sarah J; MacLean, Peggy; Duvall, Susanne W

    2010-01-01

    Aim Early working memory is emerging as an important indicator of developmental outcome predicting later cognitive, behavioural and academic competencies. The current study compared early working memory in a sample of toddlers (18–22 months) born very low birth weight (VLBW; n = 40) and full term (n = 51) and the relationship between early working memory, mental developmental index (MDI), and maternal communication in both samples. Methods Early working memory, measured by object permanence; Bayley mental developmental index; and maternal communication, coded during mother-toddler play interaction, were examined in 39 toddlers born VLBW and 41 toddlers born full term. Results Toddlers born VLBW were found to be 6.4 times less likely to demonstrate attainment of object permanence than were toddlers born full term, adjusting for age at testing. MDI and maternal communication were found to be positively associated with attainment of object permanence in the VLBW group only. Conclusion The difference found in the early working memory performance of toddlers born VLBW, compared with those born full term, emphasizes the importance of assessing early working memory in at-risk populations, while the maternal communication finding highlights potential targets of intervention for improving working memory in toddlers born VLBW. PMID:19154525

  16. The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan.

    PubMed

    Duan, Baichuan; Dong, Xi-Ping; Porras, Luis; Vargas, Kelly; Cunningham, John A; Donoghue, Philip C J

    2017-12-20

    Early Cambrian Pseudooides prima has been described from embryonic and post-embryonic stages of development, exhibiting long germ-band development. There has been some debate about the pattern of segmentation, but this interpretation, as among the earliest records of ecdysozoans, has been generally accepted. Here, we show that the 'germ band' of P. prima embryos separates along its mid axis during development, with the transverse furrows between the 'somites' unfolding into the polar aperture of the ten-sided theca of Hexaconularia sichuanensis , conventionally interpreted as a scyphozoan cnidarian; co-occurring post-embryonic remains of ecdysozoans are unrelated. We recognize H. sichuanensis as a junior synonym of P. prima as a consequence of identifying these two form-taxa as distinct developmental stages of the same organism. Direct development in P. prima parallels the co-occuring olivooids Olivooides, and Quadrapyrgites and Bayesian phylogenetic analysis of a novel phenotype dataset indicates that, despite differences in their tetra-, penta- and pseudo-hexa-radial symmetry, these hexangulaconulariids comprise a clade of scyphozoan medusozoans, with Arthrochites and conulariids, that all exhibit direct development from embryo to thecate polyp. The affinity of hexangulaconulariids and olivooids to extant scyphozoan medusozoans indicates that the prevalence of tetraradial symmetry and indirect development are a vestige of a broader spectrum of body-plan symmetries and developmental modes that was manifest in their early Phanerozoic counterparts. © 2017 The Authors.

  17. The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan

    PubMed Central

    2017-01-01

    Early Cambrian Pseudooides prima has been described from embryonic and post-embryonic stages of development, exhibiting long germ-band development. There has been some debate about the pattern of segmentation, but this interpretation, as among the earliest records of ecdysozoans, has been generally accepted. Here, we show that the ‘germ band’ of P. prima embryos separates along its mid axis during development, with the transverse furrows between the ‘somites’ unfolding into the polar aperture of the ten-sided theca of Hexaconularia sichuanensis, conventionally interpreted as a scyphozoan cnidarian; co-occurring post-embryonic remains of ecdysozoans are unrelated. We recognize H. sichuanensis as a junior synonym of P. prima as a consequence of identifying these two form-taxa as distinct developmental stages of the same organism. Direct development in P. prima parallels the co-occuring olivooids Olivooides, and Quadrapyrgites and Bayesian phylogenetic analysis of a novel phenotype dataset indicates that, despite differences in their tetra-, penta- and pseudo-hexa-radial symmetry, these hexangulaconulariids comprise a clade of scyphozoan medusozoans, with Arthrochites and conulariids, that all exhibit direct development from embryo to thecate polyp. The affinity of hexangulaconulariids and olivooids to extant scyphozoan medusozoans indicates that the prevalence of tetraradial symmetry and indirect development are a vestige of a broader spectrum of body-plan symmetries and developmental modes that was manifest in their early Phanerozoic counterparts. PMID:29237861

  18. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects.

    PubMed

    Dey, Snigdhadip; Proulx, Stephen R; Teotónio, Henrique

    2016-02-01

    All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than

  19. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects

    PubMed Central

    Dey, Snigdhadip; Proulx, Stephen R.; Teotónio, Henrique

    2016-01-01

    All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia–anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia–anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than

  20. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration.

    PubMed

    Lu, Zufu; Wang, Guocheng; Roohani-Esfahani, Iman; Dunstan, Colin R; Zreiqat, Hala

    2014-03-01

    Understanding interactions among the three elements (cells, scaffolds, and bioactive factors) is critical for successful tissue engineering. This study was aimed to investigate how scaffolds would affect osteogenic gene expression in human adipose tissue-derived stem cells (ASCs) or human primary osteoblasts (HOBs), and their cross talk. Either ASCs or HOBs were seeded on Baghdadite (Ca3ZrSi2O9) and hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds, and osteogenic gene expression was assessed. To further evaluate how substrate affected HOB and ASC cross talk, an indirect co-culture system with semipermeable inserts placed on the culture plate was set up to co-culture ASCs or HOBs, which were grown in monolayer or seeded on Baghdadite or HA/TCP scaffolds, and osteogenic differentiation of the cells was assessed. We found that Baghdadite scaffolds induced a significantly greater increase in RUNX2, osteopontin, bone sialoprotein, and osteocalcin gene expression in HOBs in comparison to HA/TCP scaffolds; Baghdadite scaffolds also significantly induced RUNX2 and osteopontin, but not bone sialoprotein and osteocalcin gene expression in ASCs. In the co-culture system, the HOBs on Baghdadite scaffolds more markedly promoted osteogenic gene expression in ASCs compared to HOBs in monolayer or the HOBs on HA/TCP scaffolds. In addition, the ASCs seeded on Baghdadite scaffolds more markedly promoted osteogenic gene expression in HOBs than did the ASCs on HA/TCP scaffolds. BMP-2 expression in ASCs or HOBs was increased when they were seeded on Baghdadite scaffolds, and adding Noggin into the co-culture medium largely abrogated Baghdadite scaffold-modulated ASC-HOB cross talk. In summary, Baghdadite scaffolds not only promote the osteogenic differentiation of HOBs or ASCs but also modulate the cross talk between ASCs and HOBs, in part via increasing BMP2 expression, thereby promoting their osteogenic differentiation.

  1. Trans-generational Effects of Early Life Stress: The Role of Maternal Behavior

    PubMed Central

    Schmauss, Claudia; Lee-McDermott, Zoe; Medina, Liorimar Ramos

    2014-01-01

    Using a rodent paradigm of early life stress, infant maternal separation (IMS), we examined whether IMS-triggered behavioral and epigenetic phenotypes of the stress-susceptible mouse strain Balb/c are propagated across generations. These phenotypes include impaired emotional behavior and deficits in executive cognitive functions in adulthood, and they are associated with increased acetylation of histone H4K12 protein (acH4K12) in the forebrain neocortex. These behavioral and epigenetic phenotypes are transmitted to the first progeny of IMS Balb/c mothers, but not fathers, and cross-fostering experiments revealed that this transmission is triggered by maternal behavior and modulated by the genetic background of the pups. In the continued absence of the original stressor, this transmission fades in later progenies. An adolescent treatment that lowers the levels of acH4K12 in IMS Balb/c mice augments their emotional abnormality but abolishes their cognitive deficits. Conversely, a treatment that further elevates the levels of acH4K12 improved the emotional phenotype but had no effects on the cognitive deficits. Moreover, treatments that prevent the emergence of either emotional or cognitive deficits in the mother also prevent the establishment of such deficits in her offspring, indicating that trans-generational effects of early life stress can be prevented. PMID:24786242

  2. Distraction and pedestrian safety: how talking on the phone, texting, and listening to music impact crossing the street.

    PubMed

    Schwebel, David C; Stavrinos, Despina; Byington, Katherine W; Davis, Tiffany; O'Neal, Elizabeth E; de Jong, Desiree

    2012-03-01

    As use of handheld multimedia devices has exploded globally, safety experts have begun to consider the impact of distraction while talking, text-messaging, or listening to music on traffic safety. This study was designed to test how talking on the phone, texting, and listening to music may influence pedestrian safety. 138 college students crossed an interactive, semi-immersive virtual pedestrian street. They were randomly assigned to one of four groups: crossing while talking on the phone, crossing while texting, crossing while listening to a personal music device, or crossing while undistracted. Participants distracted by music or texting were more likely to be hit by a vehicle in the virtual pedestrian environment than were undistracted participants. Participants in all three distracted groups were more likely to look away from the street environment (and look toward other places, such as their telephone or music device) than were undistracted participants. Findings were maintained after controlling for demographics, walking frequency, and media use frequency. Distraction from multimedia devices has a small but meaningful impact on college students' pedestrian safety. Future research should consider the cognitive demands of pedestrian safety, and how those processes may be impacted by distraction. Policymakers might consider ways to protect distracted pedestrians from harm and to reduce the number of individuals crossing streets while distracted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Distraction and Pedestrian Safety: How Talking on the Phone, Texting, and Listening to Music Impact Crossing the Street

    PubMed Central

    Schwebel, David C.; Stavrinos, Despina; Byington, Katherine W.; Davis, Tiffany; O’Neal, Elizabeth E.; de Jong, Desiree

    2011-01-01

    As use of handheld multimedia devices has exploded globally, safety experts have begun to consider the impact of distraction while talking, text-messaging, or listening to music on traffic safety. This study was designed to test how talking on the phone, texting, and listening to music may influence pedestrian safety. 138 college students crossed an interactive, semi-immersive virtual pedestrian street. They were randomly assigned to one of four groups: crossing while talking on the phone, crossing while texting, crossing while listening to a personal music device, or crossing while undistracted. Participants distracted by music or texting were more likely to be hit by a vehicle in the virtual pedestrian environment than were undistracted participants. Participants in all three distracted groups were more likely to look away from the street environment (and look toward other places, such as their telephone or music device) than were undistracted participants. Findings were maintained after controlling for demographics, walking frequency, and media use frequency. Distraction from multimedia devices has a small but meaningful impact on college students’ pedestrian safety. Future research should consider the cognitive demands of pedestrian safety, and how those processes may be impacted by distraction. Policymakers might consider ways to protect distracted pedestrians from harm and to reduce the number of individuals crossing streets while distracted. PMID:22269509

  4. Clinical, psychological and maternal characteristics in early functional constipation.

    PubMed

    Kilincaslan, Huseyin; Abali, Osman; Demirkaya, Sevcan Karakoc; Bilici, Mustafa

    2014-08-01

    This cross-sectional study investigated the clinical features of functional constipation (FC) at preschool age, as well as emotional and behavioral characteristics of the children, psychological symptom level and parental attitudes of the mothers, and compared these with that of non-referred typically developing controls with normal intestinal habits. Participants included 65 children with FC (mean age, 43.6 ± 15.4 months; range, 25-72 months), 59 healthy controls (mean age, 46.9 ± 14.5 months; range, 25-72 months) and the mothers of the children. The Childhood Behavior Checklist, Symptom Checklist 90 and Parental Attitude Research Instrument were filled in by the mothers. Participants with FC had higher problem scores than the comparison children in a variety of emotional and behavioral parameters. Approximately half exhibited internalizing and one-third had externalizing problems in the clinical range. The mothers of the patient group had higher levels of psychological distress, overprotective parenting and strict discipline. On multiple logistic regression analysis child psychopathology, maternal education level and maternal distress were independently associated with FC. Behavior problems are common in children with FC from an early age. Low level of education and high psychological distress of the mothers seem to be important risk factors for constipation and should be assessed carefully in the management of these cases. © 2013 Japan Pediatric Society.

  5. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions.

    PubMed

    Hammond, LaTisha M; Hofmann, Gretchen E

    2012-07-15

    Ocean acidification, or the increased uptake of CO(2) by the ocean due to elevated atmospheric CO(2) concentrations, may variably impact marine early life history stages, as they may be especially susceptible to changes in ocean chemistry. Investigating the regulatory mechanisms of early development in an environmental context, or ecological development, will contribute to increased understanding of potential organismal responses to such rapid, large-scale environmental changes. We examined transcript-level responses to elevated seawater CO(2) during gastrulation and the initiation of spiculogenesis, two crucial developmental processes in the purple sea urchin, Strongylocentrotus purpuratus. Embryos were reared at the current, accepted oceanic CO(2) concentration of 380 microatmospheres (μatm), and at the elevated levels of 1000 and 1350 μatm, simulating predictions for oceans and upwelling regions, respectively. The seven genes of interest comprised a subset of pathways in the primary mesenchyme cell gene regulatory network (PMC GRN) shown to be necessary for the regulation and execution of gastrulation and spiculogenesis. Of the seven genes, qPCR analysis indicated that elevated CO(2) concentrations only had a significant but subtle effect on two genes, one important for early embryo patterning, Wnt8, and the other an integral component in spiculogenesis and biomineralization, SM30b. Protein levels of another spicule matrix component, SM50, demonstrated significant variable responses to elevated CO(2). These data link the regulation of crucial early developmental processes with the environment that these embryos would be developing within, situating the study of organismal responses to ocean acidification in a developmental context.

  6. ME31B globally represses maternal mRNAs by two distinct mechanisms during the Drosophila maternal-to-zygotic transition.

    PubMed

    Wang, Miranda; Ly, Michael; Lugowski, Andrew; Laver, John D; Lipshitz, Howard D; Smibert, Craig A; Rissland, Olivia S

    2017-09-06

    In animal embryos, control of development is passed from exclusively maternal gene products to those encoded by the embryonic genome in a process referred to as the maternal-to-zygotic transition (MZT). We show that the RNA-binding protein, ME31B, binds to and represses the expression of thousands of maternal mRNAs during the Drosophila MZT. However, ME31B carries out repression in different ways during different phases of the MZT. Early, it represses translation while, later, its binding leads to mRNA destruction, most likely as a consequence of translational repression in the context of robust mRNA decay. In a process dependent on the PNG kinase, levels of ME31B and its partners, Cup and Trailer Hitch (TRAL), decrease by over 10-fold during the MZT, leading to a change in the composition of mRNA-protein complexes. We propose that ME31B is a global repressor whose regulatory impact changes based on its biological context.

  7. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    PubMed Central

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  8. Early maternal employment and children's school readiness in contemporary families.

    PubMed

    Lombardi, Caitlin McPherran; Coley, Rebekah Levine

    2014-08-01

    This study assessed whether previous findings linking early maternal employment to lower cognitive and behavioral skills among children generalized to modern families. Using a representative sample of children born in the United States in 2001 (N = 10,100), ordinary least squares regression models weighted with propensity scores assessed links between maternal employment in the 2 years after childbearing and children's school readiness skills at kindergarten. There were neutral associations between maternal employment and children's school readiness, which were not differentiated by maternal time, stress, or wages. However, as nonmaternal household income decreased, maternal employment begun prior to 9 months was linked with higher cognitive skills, while employment begun between 9 and 24 months was linked with lower conduct problems. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Neural tube and other developmental anomalies in the guinea pig following maternal hyperthermia during early neural tube development.

    PubMed

    Cawdell-Smith, J; Upfold, J; Edwards, M; Smith, M

    1992-01-01

    Guinea pigs were exposed to hyperthermia for 1 hr once or twice on day 11, 12, 13, or 14 (E11-E14) of pregnancy. The mean rectal temperatures were elevated by 3.4 degrees C-4.0 degrees C. This treatment resulted in a marked elevation of rates of resorption and developmental defects in embryos examined at day E23. The defects observed were those affecting the neural tube (NTD) (exencephaly, encephaloceles, and microphthalmia), kyphosis/scoliosis, branchial arch defects, and pericardial edema. Embryos with NTD and kyphosis/scoliosis have not been found among newborn guinea pigs to date following maternal heat exposure on days E12-E14. It appears that embryos with these defects are filtered out by resorption or abortion by days E30-E35.

  10. An examination of surface epithelium structures of the embryo across the genus Poeciliopsis (Poeciliidae).

    PubMed

    Panhuis, Tami M; Fris, Megan; Tuhela, Laura; Kwan, Lucia

    2017-12-01

    In viviparous, teleost fish, with postfertilization maternal nutrient provisioning, embryonic structures that facilitate maternal-fetal nutrient transfer are predicted to be present. For the family Poeciliidae, only a handful of morphological studies have explored these embryonic specializations. Here, we present a comparative morphological study in the viviparous poeciliid genus, Poeciliopsis. Using microscopy techniques, we examine the embryonic surface epidermis of Poeciliopsis species that vary in their level of postfertilization maternal nutrient provisioning and placentation across two phylogenetic clades and three independent evolutionary origins of placentation. We focus on surface features of the embryo that may facilitate maternal-fetal nutrient transfer. Specifically, we studied cell apical-surface morphology associated with the superficial epithelium that covers the body and sac (yolk and pericardial) of embryos at different developmental stages. Scanning electron microscopy revealed common surface epithelial cells across species, including pavement cells with apical-surface microridges or microvilli and presumed ionocytes and/or mucus-secreting cells. For three species, in the mid-stage embryos, the surface of the body and sac were covered in microvillus epithelium. The remaining species did not display microvillus epithelium at any of the stages examined. Instead, their epithelium of the body and sac were composed of cells with apical-surface microridges. For all species, in the late stage embryos, the surface of the body proper was composed of apical-surface microridges in a "fingerprint-like arrangement." Despite the differences in the surface epithelium of embryos across Poeciliopsis species and embryonic developmental stages, this variation was not associated with the level of postfertilization maternal nutrient provisioning. We discuss these results in light of previous morphological studies of matrotrophic, teleost fish, phylogenetic

  11. The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos.

    PubMed

    Eymery, Angeline; Liu, Zichuan; Ozonov, Evgeniy A; Stadler, Michael B; Peters, Antoine H F M

    2016-08-01

    Oocytes develop the competence for meiosis and early embryogenesis during their growth. Setdb1 is a histone H3 lysine 9 (H3K9) methyltransferase required for post-implantation development and has been implicated in the transcriptional silencing of genes and endogenous retroviral elements (ERVs). To address its role in oogenesis and pre-implantation development, we conditionally deleted Setdb1 in growing oocytes. Loss of Setdb1 expression greatly impaired meiosis. It delayed meiotic resumption, altered the dynamics of chromatin condensation, and impaired kinetochore-spindle interactions, bipolar spindle organization and chromosome segregation in more mature oocytes. The observed phenotypes related to changes in abundance of specific transcripts in mutant oocytes. Setdb1 maternally deficient embryos arrested during pre-implantation development and showed comparable defects during cell cycle progression and in chromosome segregation. Finally, transcriptional profiling data indicate that Setdb1 downregulates rather than silences expression of ERVK and ERVL-MaLR retrotransposons and associated chimearic transcripts during oogenesis. Our results identify Setdb1 as a newly discovered meiotic and embryonic competence factor safeguarding genome integrity at the onset of life. © 2016. Published by The Company of Biologists Ltd.

  12. [Maternal phenylketonuria].

    PubMed

    Bókay, János; Kiss, Erika; Simon, Erika; Szőnyi, László

    2013-05-05

    Elevated maternal phenylalanine levels during pregnancy are teratogenic, and may result in embryo-foetopathy, which could lead to stillbirth, significant psychomotor handicaps and birth defects. This foetal damage is known as maternal phenylketonuria. Women of childbearing age with all forms of phenylketonuria, including mild variants such as hyperphenylalaninaemia, should receive detailed counselling regarding their risks for adverse foetal effects, optimally before contemplating pregnancy. The most assured way to prevent maternal phenylketonuria is to maintain the maternal phenylalanine levels within the optimal range already before conception and throughout the whole pregnancy. Authors review the comprehensive programme for prevention of maternal phenylketonuria at the Metabolic Center of Budapest, they survey the practical approach of the continuous maternal metabolic control and delineate the outcome of pregnancies of mothers with phenylketonuria from the introduction of newborn screening until most recently.

  13. Studies on trypsin-like enzymes in sperm and early embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penn, A.

    1975-12-09

    Results are reported from a study of acrosomal proteinase, a trypsin-like enzyme (TLE), found in the acrosome of all eutherian mammals studied to date. It has been implicated in the dissolution of a passage for the sperm through the zona pellucida of the egg, a step necessary for in vivo fertilization. A cytochemical procedure employing autoradiographic film as a gelatin substrate is described for in situ detection and localization of acrosomal proteolytic activity. A role for TLE in the early development of embryos is suggested. (CH)

  14. Polarity of the ascidian egg cortex and relocalization of cER and mRNAs in the early embryo.

    PubMed

    Prodon, François; Dru, Philippe; Roegiers, Fabrice; Sardet, Christian

    2005-06-01

    The mature ascidian oocyte is a large cell containing cytoplasmic and cortical domains polarized along a primary animal-vegetal (a-v) axis. The oocyte cortex is characterized by a gradient distribution of a submembrane monolayer of cortical rough endoplasmic reticulum (cER) and associated maternal postplasmic/PEM mRNAs (cER-mRNA domain). Between fertilization and first cleavage, this cER-mRNA domain is first concentrated vegetally and then relocated towards the posterior pole via microfilament-driven cortical contractions and spermaster-microtubule-driven translocations. The cER-mRNA domain further concentrates in a macroscopic cortical structure called the centrosome attracting body (CAB), which mediates a series of asymmetric divisions starting at the eight-cell stage. This results in the segregation of determinant mRNAs and their products in posterior cells of the embryo precursors of the muscle and germ line. Using two species of ascidians (Ciona intestinalis and Phallusia mammillata), we have pursued and amplified the work initiated in Halocynthia roretzi. We have analysed the cortical reorganizations in whole cells and in cortical fragments isolated from oocytes and from synchronously developing zygotes and embryos. After fertilization, we observe that a cortical patch rich in microfilaments encircles the cER-mRNA domain, concentrated into a cortical cap at the vegetal/contraction pole (indicating the future dorsal pole). Isolated cortices also retain microtubule asters rich in cER (indicating the future posterior pole). Before mitosis, parts of the cER-mRNA domain are detected, together with short microtubules, in isolated posterior (but not anterior) cortices. At the eight-cell stage, the posteriorly located cER-mRNA domain undergoes a cell-cycle-dependant compaction into the CAB. The CAB with embedded centrosomal microtubules can be isolated with cortical fragments from eight-cell-stage embryos. These and previous observations indicate that cytoskeleton

  15. Elimination of motion, pulsatile flow and cross-talk artifacts using blade sequences in lumbar spine MR imaging.

    PubMed

    Lavdas, Eleftherios; Mavroidis, Panayiotis; Kostopoulos, Spiros; Glotsos, Dimitrios; Roka, Violeta; Koutsiaris, Aristotle G; Batsikas, Georgios; Sakkas, Georgios K; Tsagkalis, Antonios; Notaras, Ioannis; Stathakis, Sotirios; Papanikolaou, Nikos; Vassiou, Katerina

    2013-07-01

    The purpose of this study is to evaluate the ability of T2 turbo spin echo (TSE) axial and sagittal BLADE sequences in reducing or even eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MRI examinations. Forty four patients, who had routinely undergone a lumbar spine examination, participated in the study. The following pairs of sequences with and without BLADE were compared: a) T2 TSE Sagittal (SAG) in thirty two cases, and b) T2 TSE Axial (AX) also in thirty two cases. Both quantitative and qualitative analyses were performed based on measurements in different normal anatomical structures and examination of seven characteristics, respectively. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion, pulsatile flow and cross-talk artifacts was evaluated. Based on the results of the qualitative analysis for the different sequences and anatomical structures, the BLADE sequences were found to be significantly superior to the conventional ones in all the cases. The BLADE sequences eliminated the motion artifacts in all the cases. In our results, it was found that in the examined sequences (sagittal and axial) the differences between the BLADE and conventional sequences regarding the elimination of motion, pulsatile flow and cross-talk artifacts were statistically significant. In all the comparisons, the T2 TSE BLADE sequences were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable of potentially eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MR images and producing high quality images in collaborative and non-collaborative patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Maternal Obesity: Risks for Developmental Delays in Early Childhood.

    PubMed

    Duffany, Kathleen O'Connor; McVeigh, Katharine H; Kershaw, Trace S; Lipkind, Heather S; Ickovics, Jeannette R

    2016-02-01

    To assess the risk for neurodevelopmental delays for children of mothers who were obese (≥200 pounds) prior to pregnancy, and to characterize delays associated with maternal obesity among children referred to and found eligible to receive Early Intervention Program services. We conducted a retrospective cohort study (N = 541,816) using a population-based New York City data warehouse with linked birth and Early Intervention data. Risks for children suspected of a delay and 'significantly delayed', with two moderate or one severe delay, were calculated. Among the group of children eligible by delay for Early Intervention, analyses assessed risk for being identified with a moderate-to-severe delay across each of five functional domains as well as risks for multiple delays. Children of mothers who were obese were more likely to be suspected of a delay (adjusted RR 1.19 [CI 1.15-1.22]) and borderline association for 'significantly delayed' (adjusted RR 1.01 [CI 1.00-1.02). Among children eligible by delay, children of mothers who were obese evidenced an increased risk for moderate-to-severe cognitive (adjusted RR 1.04 [CI 1.02-1.07]) and physical (adjusted RR 1.04 [CI 1.01-1.08]) delays and for global developmental delay (adjusted RR 1.05 [CI 1.01-1.08]). Maternal obesity is associated with increased risk of developmental delay in offspring. Among children with moderate or severe delays, maternal obesity is associated with increased risk of cognitive and physical delays as well as with increased risk for global developmental delay. While causation remains uncertain, this adds to the growing body of research reporting an association between maternal obesity and neurodevelopmental delays in offspring.

  17. Mouse embryo attachment to substratum and interaction of trophoblast with cultured cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, R.H.; Spindle, A.I.; Pedersen, R.A.

    1979-06-01

    Hatching, attachment, and trophoblast outgrowth of mouse embryos in vitro were examined as a model for implantation. Mouse embryos attached and grew out on glass cover slips that were partially covered with cultured mouse cells (L cells, liver cells, transformed JLS-V11 cells, and teratocarcinoma cells). Scanning electron microscopy showed that processes of these cells made contact with trophoblast, but there was no evidence of cell lysis or of phagocytosis of the cells by trophoblast. Time-lapse cinematography showed that after contact the cultured mouse cells retracted from the trophoblast, which then spread into the areas vacated by those cells. This suggestsmore » a means by which the trophoblast gains entry into the endometrium without destruction of maternal cells. Neuraminidase (100 or 250 units/ml) had no effect on attachment of mouse embryos to glass. However, attachment was inhibited by trypsin at concentrations of 0.25%, 0.025%, and 0.0025%. Treatment of early blastocysts with diazooxo-norleucine, an inhibitor of glycoprotein synthesis, decreased the number of embryos hatching from the zona pellucida; treatment at the late blastocyst stage decreased hatching to a lesser extent. Among the late blastocysts that did hatch, the number forming trophoblast outgrowths was lower than in controls. These results suggest that glycoproteins may be of importance for embryo hatching, attachment, and outgrowth.« less

  18. Maternal Smoking during Pregnancy, Prematurity and Recurrent Wheezing in Early Childhood

    PubMed Central

    Robison, Rachel G; Kumar, Rajesh; Arguelles, Lester M; Hong, Xiumei; Wang, Guoying; Apollon, Stephanie; Bonzagni, Anthony; Ortiz, Kathryn; Pearson, Colleen; Pongracic, Jacqueline A; Wang, Xiaobin

    2013-01-01

    Summary Background Prenatal maternal smoking and prematurity independently affect wheezing and asthma in childhood. Objective We sought to evaluate the interactive effects of maternal smoking and prematurity upon the development of early childhood wheezing. Methods We evaluated 1448 children with smoke exposure data from a prospective urban birth cohort in Boston. Maternal antenatal and postnatal exposure was determined from standardized questionnaires. Gestational age was assessed by the first day of the last menstrual period and early prenatal ultrasound (preterm<37 weeks gestation). Wheezing episodes were determined from medical record extraction of well and ill/unscheduled visits. The primary outcome was recurrent wheezing, defined as ≥ 4 episodes of physician documented wheezing. Logistic regression models and zero inflated negative binomial regression (for number of episodes of wheeze) assessed the independent and joint association of prematurity and maternal antenatal smoking on recurrent wheeze, controlling for relevant covariates. Results In the cohort, 90 (6%) children had recurrent wheezing, 147 (10%) were exposed to in utero maternal smoke and 419 (29%) were premature. Prematurity (odds ratio [OR] 2.0; 95% CI, 1.3-3.1) was associated with an increased risk of recurrent wheezing, but in utero maternal smoking was not (OR 1.1, 95% CI 0.5-2.4). Jointly, maternal smoke exposure and prematurity caused an increased risk of recurrent wheezing (OR 3.8, 95% CI 1.8-8.0). There was an interaction between prematurity and maternal smoking upon episodes of wheezing (p=0.049). Conclusions We demonstrated an interaction between maternal smoking during pregnancy and prematurity on childhood wheezing in this urban, multiethnic birth cohort. PMID:22290763

  19. Multigenerational hybridisation and its consequences for maternal effects in Atlantic salmon

    PubMed Central

    Debes, P V; Fraser, D J; McBride, M C; Hutchings, J A

    2013-01-01

    Outbreeding between segregating populations can be important from an evolutionary, conservation and economical-agricultural perspective. Whether and how outbreeding influences maternal effects in wild populations has rarely been studied, despite both the prominent maternal influence on early offspring survival and the known presence of fitness effects resulting from outbreeding in many taxa. We studied several traits during the yolk-feeding stage in multigenerational crosses between a wild and a domesticated Atlantic salmon (Salmo salar) population up to their third-generation hybrid in a common laboratory environment. Using cross-means analysis, we inferred that maternal additive outbreeding effects underlie most offspring traits but that yolk mass also underlies maternal dominant effects. As a consequence of the interplay between additive and dominant maternally controlled traits, offspring from first-generation hybrid mothers expressed an excessive proportion of residual yolk mass, relative to total mass, at the time of first feeding. Their residual yolk mass was 23–97% greater than those of other crosses and 31% more than that predicted by a purely additive model. Offspring additive, epistatic and epistatic offspring-by-maternal outbreeding effects appeared to further modify this largely maternally controlled cross-means pattern, resulting in an increase in offspring size with the percentage of domesticated alleles. Fitness implications remain elusive because of unknown phenotype-by-environment interactions. However, these results suggest how mechanistically co-adapted genetic maternal control on early offspring development can be disrupted by the effects of combining alleles from divergent populations. Complex outbreeding effects at both the maternal and offspring levels make the prediction of hybrid phenotypes difficult. PMID:23652564

  20. Differential Expression of Metallothionein Isoforms in Terrestrial Snail Embryos Reflects Early Life Stage Adaptation to Metal Stress

    PubMed Central

    Baurand, Pierre-Emmanuel; Pedrini-Martha, Veronika; de Vaufleury, Annette; Niederwanger, Michael; Capelli, Nicolas; Scheifler, Renaud; Dallinger, Reinhard

    2015-01-01

    The aim of this study was to analyze the expression of three metallothionein (MT) isoform genes (CdMT, CuMT and Cd/CuMT), already known from adults, in the Early Life Stage (ELS) of Cantareus aspersus. This was accomplished by detection of the MT isoform-specific transcription adopting Polymerase Chain Reaction (PCR) amplification and quantitative Real Time (qRT)-PCR of the three MT genes. Freshly laid eggs were kept for 24 hours under control conditions or exposed to three cadmium (Cd) solutions of increasing concentration (5, 10, and 15 mg Cd/L). The transcription of the three MT isoform genes was detected via PCR in 1, 6 and 12-day-old control or Cd-exposed embryos. Moreover, the transcription of this isoform genes during development was followed by qRT-PCR in 6 and 12-day-old embryos. Our results showed that the CdMT and Cd/CuMT genes, but not the CuMT gene, are expressed in embryos at the first day of development. The transcription of the 3 MT genes in control embryos increased with development time, suggesting that the capacities of metal regulation and detoxification may have gradually increased throughout embryogenesis. However in control embryos, the most highly expressed MT gene was that of the Cd/CuMT isoform, whose transcription levels greatly exceeded those of the other two MT genes. This contrasts with the minor significance of this gene in adult snails and suggests that in embryos, this isoform may play a comparatively more important role in metal physiology compared to adult individuals. This function in adult snails appears not to be related to Cd detoxification. Instead, snail embryos responded to Cd exposure by over-expression of the CdMT gene in a concentration-dependent manner, whereas the expression of the Cd/CuMT gene remained unaffected. Moreover, our study demonstrates the ability of snail embryos to respond very early to Cd exposure by up-regulation of the CdMT gene. PMID:25706953

  1. Early Maternal Employment and Children's Vocabulary and Inductive Reasoning Ability: A Dynamic Approach.

    PubMed

    Kühhirt, Michael; Klein, Markus

    2018-03-01

    This study investigates the relationship between early maternal employment history and children's vocabulary and inductive reasoning ability at age 5, drawing on longitudinal information on 2,200 children from the Growing Up in Scotland data. Prior research rarely addresses dynamics in maternal employment and the methodological ramifications of time-variant confounding. The present study proposes various measures to capture duration, timing, and stability of early maternal employment and uses inverse probability of treatment weighting to control for time-variant confounders that may partially mediate the effect of maternal employment on cognitive scores. The findings suggest only modest differences in the above ability measures between children who have been exposed to very different patterns of eary maternal employment, but with similar observed covariate history. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  2. Nonstandard maternal work schedules during infancy: Implications for children's early behavior problems

    PubMed Central

    Daniel, Stephanie S.; Grzywacz, Joseph G.; Leerkes, Esther; Tucker, Jenna; Han, Wen-Jui

    2009-01-01

    This paper examines the associations between maternal nonstandard work schedules during infancy and children's early behavior problems, and the extent to which infant temperament may moderate these associations. Hypothesized associations were tested using data from the National Institute of Child Health and Human Development (NICHD) Study of Early Child Care (Phase I). Analyses focused on mothers who returned to work by the time the child was 6 months of age, and who worked an average of at least 35 h per week from 6 through 36 months. At 24 and 36 months, children whose mothers worked a nonstandard schedule had higher internalizing and externalizing behaviors. Modest, albeit inconsistent, evidence suggests that temperamentally reactive children may be more vulnerable to maternal work schedules. Maternal depressive symptoms partially mediated associations between nonstandard maternal work schedules and child behavior outcomes. PMID:19233479

  3. Maternal provision of transformer-2 is required for female development and embryo viability in the wasp Nasonia vitripennis.

    PubMed

    Geuverink, Elzemiek; Rensink, Anna H; Rondeel, Inge; Beukeboom, Leo W; van de Zande, Louis; Verhulst, Eveline C

    2017-11-01

    In insect sex determination a primary signal starts the genetic sex determination cascade that, in most insect orders, is subsequently transduced down the cascade by a transformer (tra) ortholog. Only a female-specifically spliced tra mRNA yields a functional TRA-protein that forms a complex with TRA2, encoded by a transformer-2 (tra2) ortholog, to act as a sex specific splicing regulator of the downstream transcription factors doublesex (dsx) and fruitless (fru). Here, we identify the tra2 ortholog of the haplodiploid parasitoid wasp N. vitripennis (Nv-tra2) and confirm its function in N. vitripennis sex determination. Knock down of Nv-tra2 by parental RNA interference (pRNAi) results in complete sex reversal of diploid offspring from female to male, indicating the requirement of Nv-tra2 for female sex determination. As Nv-tra2 pRNAi leads to frequent lethality in early developmental stages, maternal provision of Nv-tra2 transcripts is apparently also required for another, non-sex determining function during embryogenesis. In addition, lethality following Nv-tra2 pRNAi appears more pronounced in diploid than in haploid offspring. This diploid lethal effect was also observed following Nv-tra pRNAi, which served as a positive control in our experiments. As diploid embryos from fertilized eggs have a paternal chromosome set in addition to the maternal one, this suggests that either the presence of this paternal chromosome set or the dosage effect resulting from the diploid state is incompatible with the induced male development in N. vitripennis caused by either Nv-tra2 or Nv-tra pRNAi. The role of Nv-tra2 in activating the female sex determination pathway yields more insight into the sex determination mechanism of Nasonia. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Talking the Talk: Translating Research to Practice

    ERIC Educational Resources Information Center

    Grifenhagen, Jill F.; Barnes, Erica M.; Collins, Molly F.; Dickinson, David K.

    2017-01-01

    Decades of research have identified features of classrooms and teachers' talk that are associated with children's language growth. Unfortunately, much of this work has not yet translated to widespread practice in early childhood classrooms. Given the important contributions that early language development makes to later academic achievement,…

  5. Relations Among Intimate Partner Violence, Maternal Depressive Symptoms, and Maternal Parenting Behaviors

    PubMed Central

    Gustafsson, Hanna C.; Cox, Martha J.

    2013-01-01

    The authors examined the relations among intimate partner violence (IPV), maternal depressive symptoms, and maternal harsh intrusive parenting. Using a cross-lagged, autoregressive path model, they sought to clarify the directionality of the relations among these 3 variables over the first 2 years of the child’s life. The results indicated that, in this diverse sample of families living in predominantly low-income rural communities (N = 705), higher levels of early IPV were associated with increases in maternal depressive symptoms, which in turn were associated with increases in maternal harsh intrusive parenting behaviors. These findings suggest that interventions aimed at improving the parenting of women exposed to domestic violence may want to simultaneously target IPV and depressive symptomatology. PMID:23869110

  6. The First Human Cloned Embryo.

    ERIC Educational Resources Information Center

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  7. Uterine responses to early pre-attachment embryos in the domestic dog and comparisons with other domestic animal species.

    PubMed

    Graubner, Felix R; Gram, Aykut; Kautz, Ewa; Bauersachs, Stefan; Aslan, Selim; Agaoglu, Ali R; Boos, Alois; Kowalewski, Mariusz P

    2017-08-01

    In the dog, there is no luteolysis in the absence of pregnancy. Thus, this species lacks any anti-luteolytic endocrine signal as found in other species that modulate uterine function during the critical period of pregnancy establishment. Nevertheless, in the dog an embryo-maternal communication must occur in order to prevent rejection of embryos. Based on this hypothesis, we performed microarray analysis of canine uterine samples collected during pre-attachment phase (days 10-12) and in corresponding non-pregnant controls, in order to elucidate the embryo attachment signal. An additional goal was to identify differences in uterine responses to pre-attachment embryos between dogs and other mammalian species exhibiting different reproductive patterns with regard to luteolysis, implantation, and preparation for placentation. Therefore, the canine microarray data were compared with gene sets from pigs, cattle, horses, and humans. We found 412 genes differentially regulated between the two experimental groups. The functional terms most strongly enriched in response to pre-attachment embryos related to extracellular matrix function and remodeling, and to immune and inflammatory responses. Several candidate genes were validated by semi-quantitative PCR. When compared with other species, best matches were found with human and equine counterparts. Especially for the pig, the majority of overlapping genes showed opposite expression patterns. Interestingly, 1926 genes did not pair with any of the other gene sets. Using a microarray approach, we report the uterine changes in the dog driven by the presence of embryos and compare these results with datasets from other mammalian species, finding common-, contrary-, and exclusively canine-regulated genes. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction.

  8. Early Maternal Employment and Childhood Obesity among Economically Disadvantaged Families in the USA

    ERIC Educational Resources Information Center

    Coley, Rebekah Levine; Lombardi, Caitlin McPherran

    2012-01-01

    Research indicates a link between maternal employment and children's risk of obesity, but little prior work has addressed maternal employment during children's infancy. This study examined the timing and intensity of early maternal employment and associations with children's later overweight and obesity in a sample of low-income families in…

  9. Adolescent adrenocortical activity and adiposity: differences by sex and exposure to early maternal depression.

    PubMed

    Ruttle, Paula L; Klein, Marjorie H; Slattery, Marcia J; Kalin, Ned H; Armstrong, Jeffrey M; Essex, Marilyn J

    2014-09-01

    Prior research has linked either basal cortisol levels or stress-induced cortisol responses to adiposity; however, it remains to be determined whether these distinct cortisol measures exert joint or independent effects. Further, it is unclear how they interact with individual and environmental characteristics to predict adiposity. The present study aims to address whether morning cortisol levels and cortisol responses to a psychosocial stressor independently and/or interactively influence body mass index (BMI) in 218 adolescents (117 female) participating in a longitudinal community study, and whether associations are moderated by sex and exposure to early maternal depression. Reports of maternal depressive symptoms were obtained in infancy and preschool. Salivary cortisol measures included a longitudinal morning cortisol measure comprising sampling points across ages 11, 13, 15, and 18 and measures of stress-induced cortisol responses assessed via the Trier Social Stress Test (TSST) at age 18. Lower morning cortisol and higher TSST cortisol reactivity independently predicted higher age 18 BMI. Morning cortisol also interacted with sex and exposure to early maternal depression to predict BMI. Specifically, girls exposed to lower levels of early maternal depression displayed a strong negative morning cortisol-BMI association, and girls exposed to higher levels of maternal depression demonstrated a weaker negative association. Among boys, those exposed to lower levels of maternal depression displayed no association, while those exposed to higher levels of maternal depression displayed a negative morning cortisol-BMI association. Results point to the independent, additive effects of morning and reactive cortisol in the prediction of BMI and suggest that exposure to early maternal depression may exert sexually dimorphic effects on normative cortisol-BMI associations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Notch and Delta mRNAs in early-stage and mid-stage Drosophila embryos exhibit complementary patterns of protein producing potentials

    PubMed Central

    Shepherd, Andrew; Wesley, Uma; Wesley, Cedric

    2010-01-01

    Notch and Delta proteins generate Notch signaling that specifies cell fates during animal development. There is an intriguing phenomenon in Drosophila embryogenesis that has not received much attention and whose significance to embryogenesis is unknown. Notch and Delta mRNAs expressed in early-stage embryos are shorter than their counterparts in mid-stage embryos. We show here that the difference in sizes is due to mRNA 3′ processing at alternate polyadenylation sites. While the early-stage Notch mRNA has a lower protein-producing potential than the mid-stage Notch mRNA, the early-stage Delta mRNA has a higher protein-producing potential than the mid-stage Delta mRNA. Our data can explain the complementary patterns of Notch and Delta protein levels in early-stage and mid-stage embryos. Our data also raise the possibility that the manner and regulation of Notch signaling change in the course of embryogenesis and that this change is effected by 3′ UTR and mRNA 3′ processing factors. PMID:20201103

  11. Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice.

    PubMed

    Hong, Fashui; Zhou, Yingjun; Zhao, Xiaoyang; Sheng, Lei; Wang, Ling

    2017-01-01

    Although nanoscale titanium dioxide (nano-TiO 2 ) has been extensively used in industrial food applications and daily products for pregnant women, infants, and children, its potential toxicity on fetal development has been rarely studied. The main objective of this investigation was to establish the effects of maternal exposure of nano-TiO 2 on developing embryos. Female imprinting control region mice were orally administered nano-TiO 2 from gestational day 0 to 17. Our findings showed that Ti concentrations in maternal serum, placenta, and fetus were increased in nano-TiO 2 -exposed mice when compared to controls, which resulted in reductions in the contents of calcium and zinc in maternal serum, placenta, and fetus, maternal weight gain, placental weight, fetal weight, number of live fetuses, and fetal crown-rump length as well as cauda length, and caused an increase in the number of both dead fetuses and resorptions. Furthermore, maternal nano-TiO 2 exposure inhibited development of the fetal skeleton, suggesting a significant absence of cartilage, reduced or absent ossification, and an increase in the number of fetuses with dysplasia, including exencephaly, spina bifida, coiled tail, scoliosis, rib absence, and sternum absence. These findings indicated that nano-TiO 2 can cross the blood-fetal barrier and placental barrier, thereby delaying the development of fetal mice and inducing skeletal malformation. These factors may be associated with reductions in both calcium and zinc in maternal serum and the fetus, and both the placenta and embryos may be major targets of developmental toxicity following maternal exposure to nano-TiO 2 during the prenatal period. Therefore, the application of nano-TiO 2 should be carried out with caution.

  12. Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice

    PubMed Central

    Hong, Fashui; Zhou, Yingjun; Zhao, Xiaoyang; Sheng, Lei; Wang, Ling

    2017-01-01

    Although nanoscale titanium dioxide (nano-TiO2) has been extensively used in industrial food applications and daily products for pregnant women, infants, and children, its potential toxicity on fetal development has been rarely studied. The main objective of this investigation was to establish the effects of maternal exposure of nano-TiO2 on developing embryos. Female imprinting control region mice were orally administered nano-TiO2 from gestational day 0 to 17. Our findings showed that Ti concentrations in maternal serum, placenta, and fetus were increased in nano-TiO2-exposed mice when compared to controls, which resulted in reductions in the contents of calcium and zinc in maternal serum, placenta, and fetus, maternal weight gain, placental weight, fetal weight, number of live fetuses, and fetal crown–rump length as well as cauda length, and caused an increase in the number of both dead fetuses and resorptions. Furthermore, maternal nano-TiO2 exposure inhibited development of the fetal skeleton, suggesting a significant absence of cartilage, reduced or absent ossification, and an increase in the number of fetuses with dysplasia, including exencephaly, spina bifida, coiled tail, scoliosis, rib absence, and sternum absence. These findings indicated that nano-TiO2 can cross the blood–fetal barrier and placental barrier, thereby delaying the development of fetal mice and inducing skeletal malformation. These factors may be associated with reductions in both calcium and zinc in maternal serum and the fetus, and both the placenta and embryos may be major targets of developmental toxicity following maternal exposure to nano-TiO2 during the prenatal period. Therefore, the application of nano-TiO2 should be carried out with caution. PMID:28883729

  13. Embryotoxic cytokines-Potential roles in embryo loss and fetal programming.

    PubMed

    Robertson, Sarah A; Chin, Peck-Yin; Femia, Joseph G; Brown, Hannah M

    2018-02-01

    Cytokines in the reproductive tract environment at conception mediate a dialogue between the embryo and maternal tissues to profoundly influence embryo development and implantation success. Through effects on gene expression and the cell stress response, cytokines elicit an epigenetic impact with consequences for placental development and fetal growth, which in turn affect metabolic phenotype and long-term health of offspring. There is substantial evidence demonstrating that pro-survival cytokines, such as GM-CSF, CSF1, LIF, HB-EGF and IGFII, support embryos to develop optimally. Less attention has been paid to cytokines that adversely impact embryo development, including the pro-inflammatory cytokines TNF, TRAIL and IFNG. These agents elicit cell stress, impair cell survival and retard blastocyst development, and at sufficiently high concentrations, can cause embryo demise. Experiments in mice suggest these so-called 'embryotoxic' cytokines can harm embryos through pro-apoptotic and adverse programming effects, as well as indirectly suppressing uterine receptivity through the maternal immune response. Embryotrophic factors may mitigate against and protect from these adverse effects. Thus, the balance between embryotrophic and embryotoxic cytokines can impart effects on embryo development and implantation, and has the potential to contribute to endometrial 'biosensor' function to mediate embryo selection. Embryotoxic cytokines can be elevated in plasma and reproductive tract tissues in inflammatory conditions including infection, diabetes, obesity, PCOS and endometriosis. Studies are therefore warranted to investigate whether excessive embryotoxic cytokines contribute to infertility and recurrent implantation failure in women, and compromised reproductive performance in livestock animals. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. 76 FR 12978 - Advisory Committee on the Maternal, Infant and Early Childhood Home Visiting Program Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... Administration for Children and Families Advisory Committee on the Maternal, Infant and Early Childhood Home...: Advisory Committee on the Maternal, Infant and Early Childhood Home Visiting Program Evaluation. Date and... and Early Childhood Home Visiting Program Evaluation will meet for its first session on Wednesday...

  15. Early embryo development in Fucus distichus is auxin sensitive

    NASA Technical Reports Server (NTRS)

    Basu, Swati; Sun, Haiguo; Brian, Leigh; Quatrano, Ralph L.; Muday, Gloria K.

    2002-01-01

    Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [(3)H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development.

  16. Are there symplastic connections between the endosperm and embryo in some angiosperms?--a lesson from the Crassulaceae family.

    PubMed

    Kozieradzka-Kiszkurno, Małgorzata; Płachno, Bartosz Jan

    2012-10-01

    It is believed that there is symplastic isolation between the embryo (new sporophyte) and the endosperm (maternal-parental origin tissue, which nourishes the embryo) in angiosperms. However, in embryological literature there are rare examples in which plasmodesmata between the embryo suspensor and endosperm cells have been recorded (three species from Fabaceae). This study was undertaken in order to test the hypothesis that plasmodesmata between the embryo suspensor and the endosperm are not so rare but also occur in other angiosperm families; in order to check this, we used the Crassulaceae family because embryogenesis in Crassulaceae has been studied extensively at an ultrastructure level recently and also we tread members of this family as model for suspensor physiology and function studies. These plasmodesmata even occurred between the basal cell of the two-celled proembryo and endosperm cells. The plasmodesmata were simple at this stage of development. During the development of the embryo proper and the suspensor, the structure of plasmodesmata changes. They were branched and connected with electron-dense material. Our results suggest that in Crassulaceae with plasmodesmata between the endosperm and suspensor, symplastic connectivity at this cell-cell boundary is still reduced or blocked at a very early stage of embryo development (before the globular stage). The occurrence of plasmodesmata between the embryo suspensor and endosperm cells suggests possible symplastic transport between these different organs, at least at a very early stage of embryo development. However, whether this transport actually occurs needs to be proven experimentally. A broader analysis of plants from various families would show whether the occurrence of plasmodesmata between the embryo suspensor and the endosperm are typical embryological characteristics and if this is useful in discussions about angiosperm systematic and evolution.

  17. Maternal self-confidence during the first four months postpartum and its association with anxiety and early infant regulatory problems.

    PubMed

    Matthies, Lina Maria; Wallwiener, Stephanie; Müller, Mitho; Doster, Anne; Plewniok, Katharina; Feller, Sandra; Sohn, Christof; Wallwiener, Markus; Reck, Corinna

    2017-11-01

    Maternal self-confidence has become an essential concept in understanding early disturbances in the mother-child relationship. Recent research suggests that maternal self-confidence may be associated with maternal mental health and infant development. The current study investigated the dynamics of maternal self-confidence during the first four months postpartum and the predictive ability of maternal symptoms of depression, anxiety, and early regulatory problems in infants. Questionnaires assessing symptoms of depression (Edinburgh Postnatal Depression Scale), anxiety (State-Trait Anxiety Inventory), and early regulatory problems (Questionnaire for crying, sleeping and feeding) were completed in a sample of 130 women at three different time points (third trimester (T1), first week postpartum (T2), and 4 months postpartum (T3). Maternal self-confidence increased significantly over time. High maternal trait anxiety and early infant regulatory problems negatively contributed to the prediction of maternal self-confidence, explaining 31.8% of the variance (R=.583, F 3,96 =15.950, p<.001). Our results emphasize the transactional association between maternal self-confidence, regulatory problems in infants, and maternal mental distress. There is an urgent need for appropriate programs to reduce maternal anxiety and to promote maternal self-confidence in order to prevent early regulatory problems in infants. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Youhei; Hara, Kenshiro; Kanai-Azuma, Masami

    Sox7, -17 and -18 constitute the Sox subgroup F (SoxF) of HMG box transcription factor genes, which all are co-expressed in developing vascular endothelial cells in mice. Here we characterized cardiovascular phenotypes of Sox17/Sox18-double and Sox17-single null embryos during early-somite stages. Whole-mount PECAM staining demonstrated the aberrant heart looping, enlarged cardinal vein and mild defects in anterior dorsal aorta formation in Sox17 single-null embryos. The Sox17/Sox18 double-null embryos showed more severe defects in formation of anterior dorsal aorta and head/cervical microvasculature, and in some cases, aberrant differentiation of endocardial cells and defective fusion of the endocardial tube. However, the posteriormore » dorsal aorta and allantoic microvasculature was properly formed in all of the Sox17/Sox18 double-null embryos. The anomalies in both anterior dorsal aorta and head/cervical vasculature corresponded with the weak Sox7 expression sites. This suggests the region-specific redundant activities of three SoxF members along the anteroposterior axis of embryonic vascular network.« less

  19. Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development

    PubMed Central

    Fox, Catherine A.; Dowdle, Megan E.; Blaser, Susanne Imboden; Chung, Andy; Park, Sookhee

    2017-01-01

    The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented

  20. Effect of progesterone supplementation in the first week post conception on embryo survival in beef heifers.

    PubMed

    Beltman, M E; Lonergan, P; Diskin, M G; Roche, J F; Crowe, M A

    2009-04-15

    Progesterone is essential for establishment and maintenance of pregnancy in mammals. The objective of this study was to examine the effect of elevating progesterone during the different physiological stages of early embryo development on embryo survival. Estrus was synchronized in cross-bred beef heifers (n=197, approximately 2-years old) and they were inseminated 12-18h after estrus onset (=Day 0). Inseminated heifers were randomly assigned to 1 of 3 treatments: (1) Control, n=69; (2) progesterone supplementation using a Controlled Internal Drug Release Device (CIDR) from Day 3 to 6.5, n=64; or (3) progesterone supplementation using a CIDR from Day 4.5 to 8, n=64. Body condition (BCS) and locomotion scores (scale of 1-5) were recorded for all animals. Animals with a locomotion score >/=4 (very lame) were excluded. Embryo survival rate was determined at slaughter on Day 25. Conceptus length and weight were recorded and the corpus luteum (CL) of all pregnant animals was dissected and weighed. Supplementation with exogenous progesterone increased (P<0.05) peripheral progesterone concentrations, but did not affect embryo survival rate compared with controls. Mean CL weight, conceptus length and conceptus weight were not different between treatments. There was a positive relationship (P<0.04) between the increase in progesterone concentrations from Days 3 to 6.5 and embryo survival rate in treated heifers and a similar trend existed between the increase from Days 4.5 to 8 (P<0.06). There was also a positive relationship (P<0.05) between the progesterone concentration on Day 6.5 and the embryo survival rate in treated heifers. A direct correlation was seen between locomotion score and embryo survival rate, with higher (P<0.05) early embryo survival rates in heifers with a lower locomotion score. In conclusion, supplementation with progesterone at different stages of early embryo development increased peripheral progesterone concentration and resulted in a positive

  1. Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation: A brief review.

    PubMed

    Ghosh, Sayantan; Dass, J Febin Prabhu

    2016-06-10

    NFκB has been known to be a necessary transcription factor for the functioning of nearly all cells in a living organism. For its proper functioning, it talks to several other molecular cofactors and interacts with their functionalities resulting in a convoluted cross talking mesh of signalling networks. To completely understand the working of nuclear factor-kappa B protein, one needs to understand the interactions that occur during its lifecycle, with cofactors from various biological processes. This study attempts to elaborate and bridge the gaps on the cross-talk interactions that NFkB is a part of, during its activation pathway. For this Cytoscape and its various plugins (Cytocopter, Allegro, AgilentLitSearch and Styles) are employed. Other related pathways were also collated and analysed for cross-talk between NfκB and interacting molecules. NFκB was found to mainly interact with E3 ubiquitin ligase, NIK, RIP, TCR, IRAK-1, TLR, TRAF-6, NLR and IL-1, details of which are discussed as a part of this study. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 9

    DTIC Science & Technology

    2008-09-01

    including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson...SEP 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE CrossTalk: The Journal of Defense Software Engineering...The Journal of Defense Software Engineering September 2008 4 10 15 19 24 26 Securing Legacy C Applications Using Dynamic Data Flow Analysis This

  3. Differential Spatiotemporal Patterns of Galectin Expression are a Hallmark of Endotheliochorial Placentation.

    PubMed

    Conrad, Melanie L; Freitag, Nancy; Diessler, Mónica E; Hernandez, Rocío; Barrientos, Gabriela; Rose, Matthias; Casas, Luciano A; Barbeito, Claudio G; Blois, Sandra M

    2016-03-01

    Galectins influence the progress of pregnancy by regulating key processes associated with embryo-maternal cross talk, including angiogenesis and placentation. Galectin family members exert multiple roles in the context of hemochorial and epitheliochorial placentation; however, the galectin prolife in endotheliochorial placenta remains to be investigated. Here, we used immunohistochemistry to analyze galectin (gal)-1, gal-3 and gal-9 expression during early and late endotheliochorial placentation in two different species (dogs and cats). We found that during early feline gestation, all three galectin members were more strongly expressed on trophoblast and maternal vessels compared to the decidua. This was accompanied by an overall decrease of gal-1, gal-3 and gal-9 expressions in late feline gestation. In canine early pregnancy, we observed that gal-1 and gal-9 were expressed strongly in cytotrophoblast (CTB) cells compared to gal-3, and no galectin expression was observed in syncytiotrophoblast (STB) cells. Progression of canine gestation was accompanied by increased gal-1 and gal-3 expressions on STB cells, whereas gal-9 expression remained similar in CTB and STB. These data suggest that both the maternal and fetal compartments are characterized by a spatiotemporal regulation of galectin expression during endotheliochorial placentation. This strongly suggests the involvement of the galectin family in important developmental processes during gestation including immunemodulation, trophoblast invasion and angiogenesis. A conserved functional role for galectins during mammalian placental development emerges from these studies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Chinese primiparous women's experiences of early motherhood: factors affecting maternal role competence.

    PubMed

    Ngai, Fei-Wan; Chan, Sally W C; Holroyd, Eleanor

    2011-05-01

    The aim of this study was to explore Chinese women's perceptions of maternal role competence and factors contributing to maternal role competence during early motherhood. Developing a sense of competence and satisfaction in the maternal role are considered critical components in maternal adaptation, which have a significant impact on parenting behaviours and the psychosocial development of the child. However, qualitative studies that address maternal role competence are limited in the Chinese population. This was an exploratory descriptive study. A purposive sample of 26 Chinese primiparous mothers participated in a childbirth psychoeducation programme and was interviewed at six weeks postpartum. Data were analysed using content analysis. Women perceived a competent mother as being able to make a commitment to caring for the physical and emotional well-being of child, while cultivating appropriate values for childhood. Personal knowledge and experience of infant care, success in breastfeeding, infant's well-being, availability of social support and contradictory information from various sources were major factors affecting maternal role competency. The findings highlight the importance of understanding Chinese cultural attitudes to childrearing and maternal role competence. New Chinese mothers need information on child care, positive experiences of infant care, social support and consistent information to enhance their maternal role competency. Recommendations are made for Chinese culturally specific guidelines and healthcare delivery interventions to enhance maternal role competence in early motherhood. Nursing and midwifery care should always take into account the cultural beliefs and enable adaptation of traditional postpartum practices. Providing consistent information and positive experience on parenting skills and infant behaviour as well as enhancing effective coping strategies could strengthen Chinese women's maternal role competency. © 2011 Blackwell

  5. Mechanical stress mediated by both endosperm softening and embryo growth underlies endosperm elimination in Arabidopsis seeds.

    PubMed

    Fourquin, Chloé; Beauzamy, Léna; Chamot, Sophy; Creff, Audrey; Goodrich, Justin; Boudaoud, Arezki; Ingram, Gwyneth

    2016-09-15

    Seed development in angiosperms demands the tightly coordinated development of three genetically distinct structures. The embryo is surrounded by the endosperm, which is in turn enclosed within the maternally derived seed coat. In Arabidopsis, final seed size is determined by early expansion of the coenocytic endosperm, which then cellularises and subsequently undergoes developmental programmed cell death, breaking down as the embryo grows. Endosperm breakdown requires the endosperm-specific basic helix-loop-helix transcription factor ZHOUPI. However, to date, the mechanism underlying the Arabidopsis endosperm breakdown process has not been elucidated. Here, we provide evidence that ZHOUPI does not induce the developmental programmed cell death of the endosperm directly. Instead ZHOUPI indirectly triggers cell death by regulating the expression of cell wall-modifying enzymes, thus altering the physical properties of the endosperm to condition a mechanical environment permitting the compression of the cellularised endosperm by the developing embryo. © 2016. Published by The Company of Biologists Ltd.

  6. Navigating the network: signaling cross-talk in hematopoietic cells

    PubMed Central

    Fraser, Iain D C; Germain, Ronald N

    2009-01-01

    Recent studies in hematopoietic cells have led to a growing appreciation of the diverse modes of molecular and functional cross-talk between canonical signaling pathways. However, these intersections represent only the tip of the iceberg. Emerging global analytical methods are providing an even richer and more complete picture of the many components that measurably interact in a network manner to produce cellular responses. Here we highlight the pieces in this Focus, emphasize the limitations of the present canonical pathway paradigm, and discuss the value of a systems biology approach using more global, quantitative experimental design and data analysis strategies. Lastly, we urge caution about overly facile interpretation of genome- and proteome-level studies. PMID:19295628

  7. Melatonin and Hippo Pathway: Is There Existing Cross-Talk?

    PubMed

    Lo Sardo, Federica; Muti, Paola; Blandino, Giovanni; Strano, Sabrina

    2017-09-06

    Melatonin is an indolic hormone that regulates a plethora of functions ranging from the regulation of circadian rhythms and antioxidant properties to the induction and maintenance of tumor suppressor pathways. It binds to specific receptors as well as to some cytosolic proteins, leading to several cellular signaling cascades. Recently, the involvement of melatonin in cancer insurgence and progression has clearly been demonstrated. In this review, we will first describe the structure and functions of melatonin and its receptors, and then discuss both molecular and epidemiological evidence on melatonin anticancer effects. Finally, we will shed light on potential cross-talk between melatonin signaling and the Hippo signaling pathway, along with the possible implications for cancer therapy.

  8. Altered methanol embryopathies in embryo culture with mutant catalase-deficient mice and transgenic mice expressing human catalase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Lutfiya; Wells, Peter G., E-mail: pg.wells@utoronto.ca; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON

    2011-04-01

    The mechanisms underlying the teratogenicity of methanol (MeOH) in rodents, unlike its acute toxicity in humans, are unclear, but may involve reactive oxygen species (ROS). Embryonic catalase, although expressed at about 5% of maternal activity, may protect the embryo by detoxifying ROS. This hypothesis was investigated in whole embryo culture to remove confounding maternal factors, including metabolism of MeOH by maternal catalase. C57BL/6 (C57) mouse embryos expressing human catalase (hCat) or their wild-type (C57 WT) controls, and C3Ga.Cg-Catb/J acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1),more » exposed for 24 h to 4 mg/ml MeOH or vehicle, and evaluated for functional and morphological changes. hCat and C57 WT vehicle-exposed embryos developed normally. MeOH was embryopathic in C57 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed and turning, whereas hCat embryos were protected. Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to C3H WT controls, suggesting that endogenous ROS are embryopathic. MeOH was more embryopathic in aCat embryos than WT controls, with reduced anterior neuropore closure and head length only in catalase-deficient embryos. These data suggest that ROS may be involved in the embryopathic mechanism of methanol, and that embryonic catalase activity may be a determinant of teratological risk.« less

  9. Endometrial signals improve embryo outcome: functional role of vascular endothelial growth factor isoforms on embryo development and implantation in mice.

    PubMed

    Binder, N K; Evans, J; Gardner, D K; Salamonsen, L A; Hannan, N J

    2014-10-10

    Does vascular endothelial growth factor (VEGF) have important roles during early embryo development and implantation? VEGF plays key roles during mouse preimplantation embryo development, with beneficial effects on time to cavitation, blastocyst cell number and outgrowth, as well as implantation rate and fetal limb development. Embryo implantation requires synchronized dialog between maternal cells and those of the conceptus. Following ovulation, secretions from endometrial glands increase and accumulate in the uterine lumen. These secretions contain important mediators that support the conceptus during the peri-implantation phase. Previously, we demonstrated a significant reduction of VEGFA in the uterine cavity of women with unexplained infertility. Functional studies demonstrated that VEGF significantly enhanced endometrial epithelial cell adhesive properties and embryo outgrowth. Human endometrial lavages (n = 6) were obtained from women of proven fertility. Four-week old Swiss mice were superovulated and mated with Swiss males to obtain embryos for treatment with VEGF in vitro. Preimplantation embryo development was assessed prior to embryo transfer (n = 19-30/treatment group/output). Recipient F1 female mice (8-12 weeks of age) were mated with vasectomized males to induce pseudopregnancy and embryos were transferred. On Day 14.5 of pregnancy, uterine horns were collected for analysis of implantation rates as well as placental and fetal development (n = 14-19/treatment). Lavage fluid was assessed by western immunoblot analysis to determine the VEGF isoforms present. Mouse embryos were treated with either recombinant human (rh)VEGF, or VEGF isoforms 121 and 165. Preimplantation embryo development was quantified using time-lapse microscopy. Blastocysts were (i) stained for cell number, (ii) transferred to wells coated with fibronectin to examine trophoblast outgrowth or (iii) transferred to pseudo pregnant recipients to analyze implantation rates, placental and

  10. Impact of Low Maternal Education on Early Childhood Overweight and Obesity in Europe.

    PubMed

    Ruiz, Milagros; Goldblatt, Peter; Morrison, Joana; Porta, Daniela; Forastiere, Francesco; Hryhorczuk, Daniel; Antipkin, Youriy; Saurel-Cubizolles, Marie-Josèphe; Lioret, Sandrine; Vrijheid, Martine; Torrent, Maties; Iñiguez, Carmen; Larrañaga, Isabel; Bakoula, Chryssa; Veltsista, Alexandra; van Eijsden, Manon; Vrijkotte, Tanja G M; Andrýsková, Lenka; Dušek, Ladislav; Barros, Henrique; Correia, Sofia; Järvelin, Marjo-Riitta; Taanila, Anja; Ludvigsson, Johnny; Faresjö, Tomas; Marmot, Michael; Pikhart, Hynek

    2016-05-01

    Comparable evidence on adiposity inequalities in early life is lacking across a range of European countries. This study investigates whether low maternal education is associated with overweight and obesity risk in children from distinct European settings during early childhood. Prospective data of 45 413 children from 11 European cohorts were used. Children's height and weight obtained at ages 4-7 years were used to assess prevalent overweight and obesity according to the International Obesity Task Force definition. The Relative/Slope Indices of Inequality (RII/SII) were estimated within each cohort and by gender to investigate adiposity risk among children born to mothers with low education as compared to counterparts born to mothers with high education. Individual-data meta-analyses were conducted to obtain aggregate estimates and to assess heterogeneity between cohorts. Low maternal education yielded a substantial risk of early childhood adiposity across 11 European countries. Low maternal education yielded a mean risk ratio of 1.58 (95% confidence interval (CI) 1.34, 1.85) and a mean risk difference of 7.78% (5.34, 10.22) in early childhood overweight, respectively, measured by the RII and SII. Early childhood obesity risk by low maternal education was as substantial for all cohorts combined (RII = 2.61 (2.10, 3.23)) and (SII = 4.01% (3.14, 4.88)). Inequalities in early childhood adiposity were consistent among boys, but varied among girls in a few cohorts. Considerable inequalities in overweight and obesity are evident among European children in early life. Tackling early childhood adiposity is necessary to promote children's immediate health and well-being and throughout the life course. © 2016 John Wiley & Sons Ltd.

  11. Size Effect of Ground Patterns on FM-Band Cross-Talks between Two Parallel Signal Traces of Printed Circuit Boards for Vehicles

    NASA Astrophysics Data System (ADS)

    Iida, Michihira; Maeno, Tsuyoshi; Wang, Jianqing; Fujiwara, Osamu

    Electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common slitting ground patterns. To suppress these kinds of noise currents, we previously measured them for simple two-layer PCBs with two parallel signal traces and slitting or non-slitting ground patterns, and then investigated by the FDTD simulation the reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces on six simple PCB models having different slitting ground or different divided ground patterns parallel to the traces. As a result, we found that the contributory factor for the FM-band cross-talk reduction is the reduction of mutual inductance between the two parallel traces, and also the noise currents from PCBs can rather be suppressed even if the size of the return ground becomes small. In this study, to investigate this finding, we further simulated the frequency characteristics of cross-talk reduction for additional six simple PCB models with different dividing dimensions ground patterns parallel to the traces, which revealed an interesting phenomenon that cross-talk reduction characteristics do not always decrease with increasing the width between the divided ground patterns.

  12. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans.

    PubMed

    Samson, Mark; Jow, Margaret M; Wong, Catherine C L; Fitzpatrick, Colin; Aslanian, Aaron; Saucedo, Israel; Estrada, Rodrigo; Ito, Takashi; Park, Sung-kyu Robin; Yates, John R; Chu, Diana S

    2014-10-01

    In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.

  13. No global consensus: a cross-sectional survey of maternal weight policies

    PubMed Central

    2014-01-01

    Background Growing evidence suggests that maternal prepregnancy weight and gestational weight gain are risk factors for perinatal complications and subsequent maternal and child health. Postpartum weight retention is also associated with adverse birth outcomes and maternal obesity. Clinical guidelines addressing healthy weight before, during, and after pregnancy have been introduced in some countries, but at present a systematic accounting for these policies has not been conducted. The objective of the present study was to conduct a cross-national comparison of maternal weight guidelines. Methods This cross sectional survey administered a questionnaire online to key informants with expertise on the subject of maternal weight to assess the presence and content of preconceptional, pregnancy and postpartum maternal weight guidelines, their rationale and availability. We searched 195 countries, identified potential informants in 80 and received surveys representing 66 countries. We estimated the proportion of countries with guidelines by region, income, and formal or informal policy, and described and compared guideline content, including a rubric to assess presence or absence of 4 guidelines: encourage healthy preconceptional weight, antenatal weighing, encourage appropriate gestational gain, and encourage attainment of healthy postpartum weight. Results Fifty-three countries reported either a formal or informal policy regarding maternal weight. The majority of these policies included guidelines to assess maternal weight at the first prenatal visit (90%), to monitor gestational weight gain during pregnancy (81%), and to provide recommendations to women about healthy gestational weight gain (62%). Guidelines related to preconceptional (42%) and postpartum (13%) weight were less common. Only 8% of countries reported policies that included all 4 fundamental guidelines. Guideline content and rationale varied considerably between countries, and respondents perceived that

  14. Randomized single versus double embryo transfer: obstetric and paediatric outcome and a cost-effectiveness analysis.

    PubMed

    Kjellberg, Ann Thurin; Carlsson, Per; Bergh, Christina

    2006-01-01

    Transfer of several embryos after IVF results in a high multiple birth rate associated with increased morbidity and high costs for the neonatal care. In a previous randomized trial we demonstrated that a single embryo transfer (SET) strategy, including one fresh single embryo transfer and, if no live birth, one additional frozen-thawed SET, resulted in a live-birth rate that was not substantially lower than after double embryo transfer (DET) but markedly reduced the multiple birth rate. We compared costs for maternal health care and productivity losses and paediatric costs for the SET and DET strategies. In addition, maternal and paediatric outcomes between the two groups were compared. The SET strategy resulted in lower average total costs from treatment until 6 months after delivery. There were a few more deliveries with at least one live-born child in the DET group. The incremental cost per extra delivery in the DET alternative was high, 71 940. The rates of prematurely born and low birthweight children were significantly lower with the SET strategy. There were also markedly fewer maternal and paediatric complications in the SET group. The SET strategy is superior to the DET strategy, when number of deliveries with at least one live-born child, incremental cost-effectiveness ratio and maternal and paediatric complications are taken into consideration. The findings do not support continuing transfers of two embryos in this group of patients.

  15. Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development

    PubMed Central

    BRETT, ZOË H.; HUMPHREYS, KATHRYN L.; FLEMING, ALISON S.; KRAEMER, GARY W.; DRURY, STACY S.

    2017-01-01

    Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic–pituitary–adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal–infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence. PMID:25997759

  16. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.

    PubMed

    Chen, Linan; Dumelie, Jason G; Li, Xiao; Cheng, Matthew Hk; Yang, Zhiyong; Laver, John D; Siddiqui, Najeeb U; Westwood, J Timothy; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A

    2014-01-07

    Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug's target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.

  17. Preattachment Embryos of Domestic Animals: Insights into Development and Paracrine Secretions.

    PubMed

    Sandra, Olivier; Charpigny, Gilles; Galio, Laurent; Hue, Isabelle

    2017-02-08

    In mammalian species, endometrial receptivity is driven by maternal factors independently of embryo signals. When pregnancy initiates, paracrine secretions of the preattachment embryo are essential both for maternal recognition and endometrium preparation for implantation and for coordinating development of embryonic and extraembryonic tissues of the conceptus. This review mainly focuses on domestic large animal species. We first illustrate the major steps of preattachment embryo development, including elongation in bovine, ovine, porcine, and equine species. We next highlight conceptus secretions that are involved in the communication between extraembryonic and embryonic tissues, as well as between the conceptus and the endometrium. Finally, we introduce experimental data demonstrating the intimate connection between conceptus secretions and endometrial activity and how adverse events perturbing this interplay may affect the progression of implantation that will subsequently impact pregnancy outcome, postnatal health, and expression of production traits in livestock offspring.

  18. Characterization of the altered gene expression profile in early porcine embryos generated from parthenogenesis and somatic cell chromatin transfer.

    PubMed

    Zhou, Chi; Dobrinsky, John; Tsoi, Stephen; Foxcroft, George R; Dixon, Walter T; Stothard, Paul; Verstegen, John; Dyck, Michael K

    2014-01-01

    The in vitro production of early porcine embryos is of particular scientific and economic interest. In general, embryos produced from in vitro Assisted Reproductive Technologies (ART) manipulations, such as somatic cell chromatin transfer (CT) and parthenogenetic activation (PA), are less developmentally competent than in vivo-derived embryos. The mechanisms underlying the deficiencies of embryos generated from PA and CT have not been completely understood. To characterize the altered genes and gene networks in embryos generated from CT and PA, comparative transcriptomic analyses of in vivo (IVV) expanded blastocysts (XB), IVV hatched blastocyst (HB), PA XB, PA HB, and CT HB were performed using a custom microarray platform enriched for genes expressed during early embryonic development. Differential expressions of 1492 and 103 genes were identified in PA and CT HB, respectively, in comparison with IVV HB. The "eIF2 signalling", "mitochondrial dysfunction", "regulation of eIF4 and p70S6K signalling", "protein ubiquitination", and "mTOR signalling" pathways were down-regulated in PA HB. Dysregulation of notch signalling-associated genes were observed in both PA and CT HB. TP53 was predicted to be activated in both PA and CT HB, as 136 and 23 regulation targets of TP53 showed significant differential expression in PA and CT HB, respectively, in comparison with IVV HB. In addition, dysregulations of several critical pluripotency, trophoblast development, and implantation-associated genes (NANOG, GATA2, KRT8, LGMN, and DPP4) were observed in PA HB during the blastocyst hatching process. The critical genes that were observed to be dysregulated in CT and PA embryos could be indicative of underlying developmental deficiencies of embryos produced from these technologies.

  19. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    PubMed

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.

  20. γ-BUTYROBETAINE AS A SPECIFIC ANTAGONIST FOR CARNITINE IN THE DEVELOPMENT OF THE EARLY CHICK EMBRYO

    PubMed Central

    Ito, Toshio; Fraenkel, G.

    1957-01-01

    The effect of γ-butyrobetaine alone and with the addition of carnitine on the development of the early excised chick embryo has been studied. γ-Butyrobetaine in appropriate amounts exerts an inhibitory effect which can be relieved or annulled by the inclusion of appropriate amounts of carnitine. This has been interpreted as a metabolite-antimetabolite relationship, in which the normal metabolite, carnitine, is antagonized by the structurally closely related γ-butyrobetaine, and is regarded as evidence of an important role of carnitine in the metabolism of the developing chick embryo. PMID:13475691

  1. Early Maternal Depression and Children's Adjustment to School.

    ERIC Educational Resources Information Center

    Wright, Cheryl A.; George, Thomas P.; Burke, Renee; Gelfand, Donna M.; Teti, Douglas M.

    2000-01-01

    Examined the relationship between mother's history of depression when their children were 0-3 years old and the child's subsequent early school adaptation, using teacher ratings of problem behaviors, peer relations, and academic performance of 5- to 8-year-olds. Found that maternal depression was related to more adjustment and behavior problems,…

  2. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    PubMed Central

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  3. High-resolution gene expression data from blastoderm embryos of the scuttle fly Megaselia abdita

    PubMed Central

    Wotton, Karl R; Jiménez-Guri, Eva; Crombach, Anton; Cicin-Sain, Damjan; Jaeger, Johannes

    2015-01-01

    Gap genes are involved in segment determination during early development in dipteran insects (flies, midges, and mosquitoes). We carried out a systematic quantitative comparative analysis of the gap gene network across different dipteran species. Our work provides mechanistic insights into the evolution of this pattern-forming network. As a central component of our project, we created a high-resolution quantitative spatio-temporal data set of gap and maternal co-ordinate gene expression in the blastoderm embryo of the non-drosophilid scuttle fly, Megaselia abdita. Our data include expression patterns in both wild-type and RNAi-treated embryos. The data—covering 10 genes, 10 time points, and over 1,000 individual embryos—consist of original embryo images, quantified expression profiles, extracted positions of expression boundaries, and integrated expression patterns, plus metadata and intermediate processing steps. These data provide a valuable resource for researchers interested in the comparative study of gene regulatory networks and pattern formation, an essential step towards a more quantitative and mechanistic understanding of developmental evolution. PMID:25977812

  4. Production of maternal-zygotic mutant zebrafish by germ-line replacement.

    PubMed

    Ciruna, Brian; Weidinger, Gilbert; Knaut, Holger; Thisse, Bernard; Thisse, Christine; Raz, Erez; Schier, Alexander F

    2002-11-12

    We report a generally applicable strategy for transferring zygotic lethal mutations through the zebrafish germ line. By using a morpholino oligonucleotide that blocks primordial germ cell (PGC) development, we generate embryos devoid of endogenous PGCs to serve as hosts for the transplantation of germ cells derived from homozygous mutant donors. Successful transfers are identified by the localization of specifically labeled donor PGCs to the region of the developing gonad in chimeric embryos. This strategy, which results in the complete replacement of the host germ line with donor PGCs, was validated by the generation of maternal and maternal-zygotic mutants for the miles apart locus. This germ-line replacement technique provides a powerful tool for studying the maternal effects of zygotic lethal mutations. Furthermore, the ability to generate large clutches of purely mutant embryos will greatly facilitate embryological, genetic, genomic, and biochemical studies.

  5. Refrigeration of rainbow trout gametes and embryos.

    PubMed

    Babiak, Igor; Dabrowski, Konrad

    2003-12-01

    Prolonged access to early embryos composed of undifferentiated, totipotent blastomeres is desirable in situations when multiple collections of gametes are not possible. The objective of the present study is to examine whether the refrigeration of rainbow trout Oncorhynchus mykiss gametes and early embryos would be a suitable, reliable, and efficient tool for prolonging the availability of early developmental stages up to the advanced blastula stage. The study was conducted continuously during fall, winter, and spring spawning seasons. In all, more than 500 experimental variants were performed involving individual samples from 26 females and 33 males derived from three strains. These strains represented three possible circumstances. In optimal one, gametes from good quality donors were obtained soon after ovulation. In the two non-optimal sources, either donors were of poor genetic quality or gametes were collected from a distant location and transported as unfertilized gametes. A highly significant effect of variability of individual sample quality on efficiency of gamete and embryo refrigeration was revealed. The source of gametes significantly affected viability of refrigerated oocytes and embryos, but not spermatozoa. On average, oocytes from optimal source retained full fertilization viability for seven days of chilled storage, significantly longer than from non-optimal sources. Spermatozoa, regardless of storage method, retained full fertilization ability for the first week of storage. Refrigeration of embryos at 1.4+/-0.4 degrees C significantly slowed the development. Two- week-old embryos were still in blastula stage. Average survival rate of embryos refrigerated for 10 days and then transferred to regular incubation temperatures of 9-14 degrees C was 92% in optimal and 51 and 71% in non-optimal source variants. No effect of gamete and embryo refrigeration on the occurrence of developmental abnormalities was observed. Cumulative refrigeration of oocytes and

  6. Getting behind Discourses of Love, Care and Maternalism in Early Childhood Education

    ERIC Educational Resources Information Center

    Aslanian, Teresa K.

    2015-01-01

    Discourses of love, care and maternalism affect the everyday lives of children enrolled in early childhood education. These discourses bear witness to the ontological transformation that has occurred since the Romantic era that birthed the kindergarten movement to today. Reflecting on historical discourses of love, care and maternalism from the…

  7. Naptime Data Meetings to Increase the Math Talk of Early Care and Education Providers

    ERIC Educational Resources Information Center

    Trawick-Smith, Jeffrey; Oski, Heather; DePaolis, Kim; Krause, Kristen; Zebrowski, Alyssa

    2016-01-01

    Classroom conversations about mathematics--math talk--between early care and education providers and young children have been associated with growth in mathematical thinking. However, professional development opportunities to learn about math teaching and learning are limited in many community-based child development centers. New approaches that…

  8. Biochemical defects of mutant nudel alleles causing early developmental arrest or dorsalization of the Drosophila embryo.

    PubMed Central

    LeMosy, E K; Leclerc, C L; Hashimoto, C

    2000-01-01

    The nudel gene of Drosophila is maternally required both for structural integrity of the egg and for dorsoventral patterning of the embryo. It encodes a structurally modular protein that is secreted by ovarian follicle cells. Genetic and molecular studies have suggested that the Nudel protein is also functionally modular, with a serine protease domain that is specifically required for ventral development. Here we describe biochemical and immunolocalization studies that provide insight into the molecular basis for the distinct phenotypes produced by nudel mutations and for the interactions between these alleles. Mutations causing loss of embryonic dorsoventral polarity result in a failure to activate the protease domain of Nudel. Our analyses support previous findings that catalytic activity of the protease domain is required for dorsoventral patterning and that the Nudel protease is auto-activated and reveal an important role for a region adjacent to the protease domain in Nudel protease function. Mutations causing egg fragility and early embryonic arrest result in a significant decrease in extracellular Nudel protein, due to defects in post-translational processing, stability, or secretion. On the basis of these and other studies of serine proteases, we suggest potential mechanisms for the complementary and antagonistic interactions between the nudel alleles. PMID:10628985

  9. Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells

    PubMed Central

    Liu, Xing; Qin, Jiaqiang; Luo, Qing; Bi, Yang; Zhu, Gaohui; Jiang, Wei; Kim, Stephanie H; Li, Mi; Su, Yuxi; Nan, Guoxin; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Rogers, Mary Rose; Zhang, Hongyu; Shui, Wei; Zhao, Chen; Wang, Ning; Liang, Xi; Wu, Ningning; He, Yunfeng; Luu, Hue H; Haydon, Rex C; Shi, Lewis L; Li, Tingyu; He, Tong-Chuan; Li, Ming

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross-talks with BMP9 and regulates BMP9-induced osteogenic differentiation. We find that EGF potentiates BMP9-induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG-1478 and AG-494 in a dose- and time-dependent manner. Furthermore, EGF significantly augments BMP9-induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9-induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up-regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross-talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine. PMID:23844832

  10. The effect of immature oocytes quantity on the rates of oocytes maturity and morphology, fertilization, and embryo development in ICSI cycles.

    PubMed

    Halvaei, Iman; Ali Khalili, Mohammad; Razi, Mohammad Hossein; Nottola, Stefania A

    2012-08-01

    The goal was to evaluate the role of the number of retrieved immature oocytes on mature oocyte counts and morphology, and also the rates of fertilization and embryo development in ICSI cycles. 101 ICSI cycles were included in this prospective evaluation. Patients were divided into 2 groups of A (≤ 2 immature oocytes) and B (> 2 immature oocytes). In sub-analysis, the impacts of the number of GV and MI oocytes were assessed on the rates of fertilization and embryo development. Also, correlations between the numbers of immature and mature oocytes, as well as maternal age between two groups were analyzed. Assessments of oocyte morphology, fertilization, embryo quality and development were done accordingly. There was no correlation between the immature oocytes quantity with the number of mature ones. There were insignificant differences for embryo development between two groups, but fertilization rate was higher in group A (P = 0.03). In sub-analysis, insignificant differences were observed between two groups of ≤ and >2 GV and MI oocytes for rates of fertilization and embryo development. Also, the rates of clinical pregnancy and delivery were insignificant between groups. The rate of morphologically abnormal oocytes had no significant difference between two groups, except for wide perivitelline space (PVS) which was higher in group A (P = 0.03). There was no significant difference for maternal age between two groups. In cases with few retrieved immature oocytes, rates of fertilization and incidence of wide PVS may increase, although immature oocytes may not have any negative impacts on early embryo development, or the rates on number of mature oocytes.

  11. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in early Xenopus embryos induces cell dissociation and inhibits transition from the blastula to gastrula stage.

    PubMed

    Shibata, M; Shinga, J; Yasuhiko, Y; Kai, M; Miura, K; Shimogori, T; Kashiwagi, K; Igarashi, K; Shiokawa, K

    1998-07-01

    Xenopus early embryos contain relatively low levels of S-adenosyl-methionine decarboxylase (SAMDC) and its mRNA. When SAMDC mRNA was injected into Xenopus embryos, it was preserved until the blastula stage and induced a large increase in SAMDC activity. The SAMDC-overexpressed embryos developed normally until the blastula stage but at the early gastrula stage cells which received the mRNA, dissociated autonomously and stopped synthesizing protein. In a hypotonic medium, the dissociated cells, and hence whole embryos, autolyzed. However, in isotonic media dissociated cells did not autolyze, although they did not divide and their DNA and RNA synthesis activity was greatly inhibited. The effects of SAMDC overexpression were abolished by coinjection of ethylglyoxal-bis(guanylhydrazone) (EGBG), a specific inhibitor of SAMDC. In SAMDC-overexpressed embryos the level of putrescine decreased and that of spermidine increased, though to limited extents, resulting in a considerable decrease in the putrescine/spermidine ratio. However, direct injection of spermidine did not mimic the effect of SAMDC overexpression, and putrescine coinjected with SAMDC mRNA to maintain the normal putrescine/spermidine ratio did not rescue the embryos. Conversely, the level of S-adenosylmethionine (SAM) greatly decreased and coinjection of SAM, which restored the level of SAM, rescued the embryos. We concluded that in SAMDC-overexpressed embryos a SAM-deficient state was induced and this caused cell dissociation and inhibition of transition from the blastula to gastrula stage. We suggest that the SAM-deficient embryos obtained in the present study provide a unique system for studying the cellular control mechanism underlying the blastula-gastrula transition.

  12. Early Childhood Anxious Solitude and Subsequent Peer Relationships: Maternal and Cognitive Moderators

    ERIC Educational Resources Information Center

    Gazelle, Heidi; Spangler, Tamara

    2007-01-01

    It was hypothesized that the relation between early anxious solitude and subsequent peer relations would be moderated by early relational (maternal sensitivity) and individual factors (child school readiness). Participants were 1364 children from the National Institute of Child Health and Human Development's Study of Early Child Care and Youth…

  13. Absence of intrinsic post-zygotic incompatibilities in artificial crosses between sympatric coregonid species from upper Lake Constance.

    PubMed

    Eckmann, R

    2015-05-01

    A full factorial crossing experiment with five females and five males of each of two coregonid species from upper Lake Constance was used to test for intrinsic post-zygotic incompatibilities during early ontogeny. Up until shortly before hatching, there was no difference in embryo mortality between homo and heterologous crosses. A maternal effect on mortality was found in both species, but paternal effects and female-male interactions were absent. Thus, genetic incompatibility during early ontogeny does not appear to prevent introgressive hybridization, suggesting that genetic divergence between these species is maintained primarily by pre-zygotic barriers. The recent genetic homogenizations of coregonid species flocks in European alpine lakes may have been caused by a flattening of adaptive landscapes through eutrophication, but intensive stocking with larvae obtained in hatcheries from artificially fertilized eggs is also likely to be a contributing factor. To safeguard diversity among sympatric coregonids, it is important to re-establish ecological conditions conducive to species divergence and to revise traditional management strategies. © 2015 The Fisheries Society of the British Isles.

  14. The Effects of Early Maternal Employment on Later Cognitive and Behavioral Outcomes.

    ERIC Educational Resources Information Center

    Han, Wen-Jui; Waldfogel, Jane; Brooks-Gunn, Jeanne

    2001-01-01

    This study longitudinally followed Non-Hispanic White and African American children to see whether the impact of early maternal employment on cognitive and behavioral outcomes reported at age three and four persisted into school-age years. Results indicated that maternal employment in the first year of a child's life had significant negative…

  15. Effects of heat stress on bovine preimplantation embryos produced in vitro

    PubMed Central

    SAKATANI, Miki

    2017-01-01

    Summer heat stress decreases the pregnancy rate in cattle and has been thought to be associated with the early embryonic death caused by the elevation of maternal body temperature. In vitro cultures have been widely used for the evaluation of effects of heat stress on oocytes, fertilization, preimplantation, and embryonic development. Susceptibility to heat stress is present in developmental stages from oocytes to cleavage-stage (before embryonic gene activation, EGA) embryos, leading to a consequent decrease in developmental competence. On the other hand, advanced-stage embryos such as morula or blastocysts have acquired thermotolerance. The mechanism for the developmental stage-dependent change in thermotolerance is considered to be the accumulation of antioxidants in embryos in response to heat-inducible production of reactive oxygen species. The supplementation of antioxidants to the culture media has been known to neutralize the detrimental effects of heat stress. Besides, EGA could be involved in acquisition of thermotolerance in later stages of embryos. Morulae or blastocysts can repair heat-induced unfolded proteins or prevent DNA damage occurring in processes such as apoptosis. Therefore, embryo transfer (ET) that can bypass the heat-sensitive stage could be a good solution to improve the pregnancy rate under heat stress. However, frozen-thawed ET could not improve the pregnancy rate as expected. Frozen-thawed blastocysts were more sensitive to heat stress and showed less proliferation upon heat exposure, compared to fresh blastocysts. Therefore, further research is required to improve the reduction in pregnancy rates due to summer heat stress. PMID:28496018

  16. Effects of heat stress on bovine preimplantation embryos produced in vitro.

    PubMed

    Sakatani, Miki

    2017-08-19

    Summer heat stress decreases the pregnancy rate in cattle and has been thought to be associated with the early embryonic death caused by the elevation of maternal body temperature. In vitro cultures have been widely used for the evaluation of effects of heat stress on oocytes, fertilization, preimplantation, and embryonic development. Susceptibility to heat stress is present in developmental stages from oocytes to cleavage-stage (before embryonic gene activation, EGA) embryos, leading to a consequent decrease in developmental competence. On the other hand, advanced-stage embryos such as morula or blastocysts have acquired thermotolerance. The mechanism for the developmental stage-dependent change in thermotolerance is considered to be the accumulation of antioxidants in embryos in response to heat-inducible production of reactive oxygen species. The supplementation of antioxidants to the culture media has been known to neutralize the detrimental effects of heat stress. Besides, EGA could be involved in acquisition of thermotolerance in later stages of embryos. Morulae or blastocysts can repair heat-induced unfolded proteins or prevent DNA damage occurring in processes such as apoptosis. Therefore, embryo transfer (ET) that can bypass the heat-sensitive stage could be a good solution to improve the pregnancy rate under heat stress. However, frozen-thawed ET could not improve the pregnancy rate as expected. Frozen-thawed blastocysts were more sensitive to heat stress and showed less proliferation upon heat exposure, compared to fresh blastocysts. Therefore, further research is required to improve the reduction in pregnancy rates due to summer heat stress.

  17. Do Questions Get Infants Talking? Infant Vocal Responses to Questions and Declaratives in Maternal Speech

    ERIC Educational Resources Information Center

    Reimchen, Melissa; Soderstrom, Melanie

    2017-01-01

    Maternal questions play a crucial role in early language acquisition by virtue of their special grammatical, prosodic and lexical forms, and their abundance in the input. Infants are able to discriminate questions from other sentence types and produce rising intonations in their own requests. This study examined whether caregiver questions were…

  18. Maternal Oral Bacterial Levels Predict Early Childhood Caries Development

    PubMed Central

    Chaffee, B.W.; Gansky, S.A.; Weintraub, J.A.; Featherstone, J.D.B.; Ramos-Gomez, F.J.

    2014-01-01

    Objective: To calculate the association of maternal salivary bacterial challenge (mutans streptococci [MS] and lactobacilli [LB]) from pregnancy through 24 months’ postpartum with child caries incidence (≥1 cavitated or restored teeth) at 36 months. Materials & Methods: Dental, salivary bacterial, sociodemographic, and behavioral measures were collected at three- to six-month intervals from a birth cohort of low-income Hispanic mother-child dyads (N = 243). We calculated the relative child caries incidence, adjusted for confounding, following higher maternal challenge of MS (>4500 colony-forming units per milliliter of saliva [CFU/mL]) and LB (>50 CFU/mL) based on multivariable models. Results: Salivary MS and LB levels were greater among mothers of caries-affected children versus caries-free children. Mothers with higher salivary MS challenge were more likely to have MS-positive children (>0 CFU/mL), but maternal LB challenge was not a statistically significant predictor of child LB-positive status. Adjusting for sociodemographics, feeding and care practices, and maternal dental status, higher maternal salivary challenge of both MS and LB over the study period predicted nearly double the child caries incidence versus lower MS and LB (cumulative incidence ratio: 1.9; 95% confidence interval: 1.1, 3.8). Conclusion: Maternal salivary bacterial challenge not only is associated with oral infection among children but also predicts increased early childhood caries occurrence. PMID:24356441

  19. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which,more » at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the

  20. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein

    PubMed Central

    2014-01-01

    Background Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. Results To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug’s target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Conclusions Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism. PMID:24393533

  1. Alternative complement activity in the egg cytosol of amphioxus Branchiostoma belcheri: evidence for the defense role of maternal complement components.

    PubMed

    Liang, Yujun; Zhang, Shicui; Wang, Zhiping

    2009-01-01

    The eggs in most invertebrates are fertilized externally, and therefore their resulting embryos are exposed to an environment full of microbes, many of which are pathogens capable of killing other organisms. How the developing embryos of invertebrates defend themselves against pathogenic attacks is an intriguing question to biologists, and remains largely unknown. Here we clearly demonstrated that the egg cytosol prepared from the newly fertilized eggs of amphioxus Branchiostoma belcheri, an invertebrate chordate, was able to inhibit the growth of both the Gram-negative bacterium Vibrio anguillarum and the Gram-positive bacterium Staphylococcus aureus. All findings point to that it is the complement system operating via the alternative pathway that is attributable to the bacteriostatic activity. This appears to be the first report providing the evidence for the functional role of the maternal complement components in the eggs of invertebrate species, paving the way for the study of maternal immunity in other invertebrate organisms whose eggs are fertilized in vitro. It also supports the notion that the early developing embryos share some defense mechanisms common with the adult species.

  2. The effect of soluble uterine factors on porcine embryo development within a three-dimensional alginate matrix system

    USDA-ARS?s Scientific Manuscript database

    Between day 10 and 12 of gestation in the pig, the embryo undergoes a dramatic morphological change, known as elongation. During elongation the embryo produces and secretes estrogen, which serves as a key signal for maternal recognition of pregnancy. The uterine environment prepares for embryo elong...

  3. [Effect of human oviductal embryotrophic factors on gene expression of mouse preimplantation embryos].

    PubMed

    Yao, Yuan-Qing; Lee, Kai-Fai; Xu, Jia-Seng; Ho, Pak-Chung; Yeung, Shu-Biu

    2007-09-01

    To investigate the effect of embryotrophic factors (ETF) from human oviductal cells on gene expression of mouse early developmental embryos and discuss the role of fallopian tube in early development of embryos. ETF was isolated from conditioned medium of human oviductal cell line by sequential liquid chromatographic systems. Mouse embryos were treated by ETF in vitro. Using differential display RT-PCR, the gene expression of embryos treated by ETF was compared with embryos without ETF treatment. The differentially expressed genes were separated, re-amplified, cloned and sequenced. Gene expression profiles of embryos with ETF treatment was different from embryos without this treatment. Eight differentially expressed genes were cloned and sequenced. These genes functioned in RNA degradation, synthesis, splicing, protein trafficking, cellular differentiation and embryo development. Embryotrophic factors from human oviductal cells affect gene expression of early developmental embryos. The human oviductal cells play wide roles in early developmental stages of embryos.

  4. 76 FR 12977 - Advisory Committee on the Maternal, Infant and Early Childhood Home Visiting Program Evaluation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... Administration for Children and Families Advisory Committee on the Maternal, Infant and Early Childhood Home... for Children and Families (ACF), Department of Health and Human Services (HHS). ACTION: Notice to announce the establishment of the Advisory Committee on the Maternal, Infant and Early Childhood Home...

  5. Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos

    PubMed Central

    Toh, Hidehiro; Ohishi, Hiroaki; Sharif, Jafar; Koseki, Haruhiko; Sasaki, Hiroyuki

    2017-01-01

    The methylation of cytosine at CG sites in the mammalian genome is dynamically reprogrammed during gametogenesis and preimplantation development. It was previously shown that oocyte-derived DNMT1 (a maintenance methyltransferase) is essential for maintaining and propagating CG methylation at imprinting control regions in preimplantation embryos. In mammalian somatic cells, hemimethylated-CG-binding protein UHRF1 plays a critical role in maintaining CG methylation by recruiting DNMT1 to hemimethylated CG sites. However, the role of UHRF1 in oogenesis and preimplantation development is unknown. In the present study, we show that UHRF1 is mainly, but not exclusively, localized in the cytoplasm of oocytes and preimplantation embryos. However, smaller amounts of UHRF1 existed in the nucleus, consistent with the expected role in DNA methylation. We then generated oocyte-specific Uhrf1 knockout (KO) mice and found that, although oogenesis was itself unaffected, a large proportion of the embryos derived from the KO oocytes died before reaching the blastocyst stage (a maternal effect). Whole genome bisulfite sequencing revealed that blastocysts derived from KO oocytes have a greatly reduced level of CG methylation, suggesting that maternal UHRF1 is essential for maintaining CG methylation, particularly at the imprinting control regions, in preimplantation embryos. Surprisingly, UHRF1 was also found to contribute to de novo CG and non-CG methylation during oocyte growth: in Uhrf1 KO oocytes, transcriptionally-inactive regions gained less methylation, while actively transcribed regions, including the imprinting control regions, were unaffected or only slightly affected. We also found that de novo methylation was defective during the late stage of oocyte growth. To the best of our knowledge, this is the first study to demonstrate the role of UHRF1 in de novo DNA methylation in vivo. Our study reveals multiple functions of UHRF1 during the global epigenetic reprogramming of

  6. Reduction Characteristics of FM-Band Cross-Talks between Two Parallel Signal Traces on Printed Circuit Boards for Vehicles

    NASA Astrophysics Data System (ADS)

    Maeno, Tsuyoshi; Ueyama, Hiroya; Iida, Michihira; Fujiwara, Osamu

    It is well known that electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns with slits. To suppress the noise current outflows from the PCBs of this kind, we previously measured noise current outflows from simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits, which revealed that making slits with open ends on the ground patterns in parallel with the traces can reduce the conducted noise currents. In the present study, with the FDTD simulation, we investigated reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces for eighteen PCBs, which have different ground patterns with/without slits parallel to the traces and dielectric layers with different thickness. As a result, we found that the cross-talk reduction effect due to slits is obtained by 3.6-5.3dB, while the cross-talks between signal traces are reduced in inverse proportion to the square of the dielectric-layer thickness and in proportion to the square of the trace interval and, which can quantitatively be explained from an inductive coupling theory.

  7. Fluorescence-based visualization of autophagic activity predicts mouse embryo viability

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Kito, Seiji; Minami, Naojiro; Kubota, Toshiro; Sato, Ken; Kokubo, Toshiaki

    2014-03-01

    Embryo quality is a critical parameter in assisted reproductive technologies. Although embryo quality can be evaluated morphologically, embryo morphology does not correlate perfectly with embryo viability. To improve this, it is important to understand which molecular mechanisms are involved in embryo quality control. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic materials sequestered by autophagosomes are degraded in lysosomes. We previously demonstrated that autophagy is highly activated after fertilization and is essential for further embryonic development. Here, we developed a simple fluorescence-based method for visualizing autophagic activity in live mouse embryos. Our method is based on imaging of the fluorescence intensity of GFP-LC3, a versatile marker for autophagy, which is microinjected into the embryos. Using this method, we show that embryonic autophagic activity declines with advancing maternal age, probably due to a decline in the activity of lysosomal hydrolases. We also demonstrate that embryonic autophagic activity is associated with the developmental viability of the embryo. Our results suggest that embryonic autophagic activity can be utilized as a novel indicator of embryo quality.

  8. Production of maternal-zygotic mutant zebrafish by germ-line replacement

    PubMed Central

    Ciruna, Brian; Weidinger, Gilbert; Knaut, Holger; Thisse, Bernard; Thisse, Christine; Raz, Erez; Schier, Alexander F.

    2002-01-01

    We report a generally applicable strategy for transferring zygotic lethal mutations through the zebrafish germ line. By using a morpholino oligonucleotide that blocks primordial germ cell (PGC) development, we generate embryos devoid of endogenous PGCs to serve as hosts for the transplantation of germ cells derived from homozygous mutant donors. Successful transfers are identified by the localization of specifically labeled donor PGCs to the region of the developing gonad in chimeric embryos. This strategy, which results in the complete replacement of the host germ line with donor PGCs, was validated by the generation of maternal and maternal-zygotic mutants for the miles apart locus. This germ-line replacement technique provides a powerful tool for studying the maternal effects of zygotic lethal mutations. Furthermore, the ability to generate large clutches of purely mutant embryos will greatly facilitate embryological, genetic, genomic, and biochemical studies. PMID:12397179

  9. The intrauterine environment affects learning ability of Tokai high avoider rat offspring derived using cryopreservation and embryo transfer-mediated reproduction.

    PubMed

    Endo, Hitoshi; Eto, Tomoo; Yoshii, Fumihito; Owada, Satoshi; Watanabe, Tetsu; Tatemichi, Masayuki; Kimura, Minoru

    2017-07-22

    Embryo transfer (ET) to recipient female animals is a useful technique in biological and experimental animal studies. While cryopreservation of two-cell stage rat embryos and ET to recipient rats are currently well-defined, it is unknown whether these artificial reproductive techniques and maternal factors affect offspring phenotype, particularly higher brain functions. Therefore, we assessed the effects of cryopreservation, ET, and maternal care on learning behaviour of the offspring, using Tokai high avoider (THA) rats that have a high learning ability phenotype. We found that the high learning ability of THA rat offspring was not replicated following ET to surrogate Wistar rats with a low-avoidance phenotype. Additionally, the characteristic phenotype of offspring obtained through mating of ET-derived rats was similar to that of THA rats. A postnatal cross-fostering investigation with the offspring of Wistar and THA rats showed that maternal behaviour, including postnatal care and lactation traits, did not differ between the dams of low-avoidance Wistar rats and THA rats; therefore, learning behaviour was retained in both Wistar and THA rat offspring. We conclude that the offspring phenotype, although unchanged, has an imperceptible effect on the learning ability of ET-derived THA rats through the intrauterine environment of the recipient. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice.

    PubMed

    Wu, Yibo; Lv, Zhuo; Yang, Yang; Dong, Guoying; Yu, Yang; Cui, Yiqiang; Tong, Man; Wang, Liu; Zhou, Zuomin; Zhu, Hui; Zhou, Qi; Sha, Jiahao

    2014-05-01

    Blastomere biopsy is used in preimplantation genetic diagnosis; however, the long-term implications on the offspring are poorly characterized. We previously reported a high risk of memory defects in adult biopsied mice. Here, we assessed nervous function of aged biopsied mice and further investigated the mechanism of neural impairment after biopsy. We found that aged biopsied mice had poorer spatial learning ability, increased neuron degeneration, and altered expression of proteins involved in neural degeneration or dysfunction in the brain compared to aged control mice. Furthermore, the MeDIP assay indicated a genome-wide low methylation in the brains of adult biopsied mice when compared to the controls, and most of the genes containing differentially methylated loci in promoter regions were associated with neural disorders. When we further compared the genomic DNA methylation profiles of 7.5-days postconception (dpc) embryos between the biopsy and control group, we found the whole genome low methylation in the biopsied group, suggesting that blastomere biopsy was an obstacle to de novo methylation during early embryo development. Further analysis on mRNA profiles of 4.5-dpc embryos indicated that reduced expression of de novo methylation genes in biopsied embryos may impact de novo methylation. In conclusion, we demonstrate an abnormal neural development and function in mice generated after blastomere biopsy. The impaired epigenetic reprogramming during early embryo development may be the latent mechanism contributing to the impairment of the nervous system in the biopsied mice, which results in a hypomethylation status in their brains.

  11. Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition.

    PubMed

    Laver, John D; Li, Xiao; Ray, Debashish; Cook, Kate B; Hahn, Noah A; Nabeel-Shah, Syed; Kekis, Mariana; Luo, Hua; Marsolais, Alexander J; Fung, Karen Yy; Hughes, Timothy R; Westwood, J Timothy; Sidhu, Sachdev S; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A

    2015-05-12

    Brain tumor (BRAT) is a Drosophila member of the TRIM-NHL protein family. This family is conserved among metazoans and its members function as post-transcriptional regulators. BRAT was thought to be recruited to mRNAs indirectly through interaction with the RNA-binding protein Pumilio (PUM). However, it has recently been demonstrated that BRAT directly binds to RNA. The precise sequence recognized by BRAT, the extent of BRAT-mediated regulation, and the exact roles of PUM and BRAT in post-transcriptional regulation are unknown. Genome-wide identification of transcripts associated with BRAT or with PUM in Drosophila embryos shows that they bind largely non-overlapping sets of mRNAs. BRAT binds mRNAs that encode proteins associated with a variety of functions, many of which are distinct from those implemented by PUM-associated transcripts. Computational analysis of in vitro and in vivo data identified a novel RNA motif recognized by BRAT that confers BRAT-mediated regulation in tissue culture cells. The regulatory status of BRAT-associated mRNAs suggests a prominent role for BRAT in post-transcriptional regulation, including a previously unidentified role in transcript degradation. Transcriptomic analysis of embryos lacking functional BRAT reveals an important role in mediating the decay of hundreds of maternal mRNAs during the maternal-to-zygotic transition. Our results represent the first genome-wide analysis of the mRNAs associated with a TRIM-NHL protein and the first identification of an RNA motif bound by this protein family. BRAT is a prominent post-transcriptional regulator in the early embryo through mechanisms that are largely independent of PUM.

  12. Social Media and Evidence-Based Maternity Care: A Cross-Sectional Survey Study.

    PubMed

    Dekker, Rebecca L; King, Sarah; Lester, Kara

    2016-01-01

    The purpose of this study was to describe how people use social media to find and disseminate information about evidence-based maternity care. We used a cross-sectional Internet-based survey design in which 1,661 participants were recruited from childbirth-related blogs. Participants answered questions about how they find, use, and share evidence-based maternity information using social media. Overall, women in this study were highly engaged in using social media to find and share maternity information. Most respondents were very interested in reading evidence-based maternity care articles online. Most intend to use this information that they found, despite the fact that a substantial percentage had no intentions of discussing this information with their childbirth educators or physician.

  13. Early Embryo Development in Fucus distichus Is Auxin Sensitive1

    PubMed Central

    Basu, Swati; Sun, Haiguo; Brian, Leigh; Quatrano, Ralph L.; Muday, Gloria K.

    2002-01-01

    Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [3H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development. PMID:12226509

  14. Cross-talk between the ligand- and DNA-binding domains of estrogen receptor.

    PubMed

    Huang, Wei; Greene, Geoffrey L; Ravikumar, Krishnakumar M; Yang, Sichun

    2013-11-01

    Estrogen receptor alpha (ERα) is a hormone-responsive transcription factor that contains several discrete functional domains, including a ligand-binding domain (LBD) and a DNA-binding domain (DBD). Despite a wealth of knowledge about the behaviors of individual domains, the molecular mechanisms of cross-talk between LBD and DBD during signal transduction from hormone to DNA-binding of ERα remain elusive. Here, we apply a multiscale approach combining coarse-grained (CG) and atomistically detailed simulations to characterize this cross-talk mechanism via an investigation of the ERα conformational landscape. First, a CG model of ERα is built based on crystal structures of individual LBDs and DBDs, with more emphasis on their interdomain interactions. Second, molecular dynamics simulations are implemented and enhanced sampling is achieved via the "push-pull-release" strategy in the search for different LBD-DBD orientations. Third, multiple energetically stable ERα conformations are identified on the landscape. A key finding is that estradiol-bound LBDs utilize the well-described activation helix H12 to pack and stabilize LBD-DBD interactions. Our results suggest that the estradiol-bound LBDs can serve as a scaffold to position and stabilize the DBD-DNA complex, consistent with experimental observations of enhanced DNA binding with the LBD. Final assessment using atomic-level simulations shows that these CG-predicted models are significantly stable within a 15-ns simulation window and that specific pairs of lysine residues in close proximity at the domain interfaces could serve as candidate sites for chemical cross-linking studies. Together, these simulation results provide a molecular view of the role of ERα domain interactions in response to hormone binding. Copyright © 2013 Wiley Periodicals, Inc.

  15. Cross-talk from β-Adrenergic Receptors Modulates α2A-Adrenergic Receptor Endocytosis in Sympathetic Neurons via Protein Kinase A and Spinophilin*

    PubMed Central

    Cottingham, Christopher; Lu, Roujian; Jiao, Kai; Wang, Qin

    2013-01-01

    Inter-regulation of adrenergic receptors (ARs) via cross-talk is a long appreciated but mechanistically unclear physiological phenomenon. Evidence from the AR literature and our own extensive studies on regulation of α2AARs by the scaffolding protein spinophilin have illuminated a potential novel mechanism for cross-talk from β to α2ARs. In the present study, we have characterized a mode of endogenous AR cross-talk in native adrenergic neurons whereby canonical βAR-mediated signaling modulates spinophilin-regulated α2AAR endocytosis through PKA. Our findings demonstrate that co-activation of β and α2AARs, either by application of endogenous agonist or by simultaneous stimulation with distinct selective agonists, results in acceleration of endogenous α2AAR endocytosis in native neurons. We show that receptor-independent PKA activation by forskolin is sufficient to accelerate α2AAR endocytosis and that α2AAR stimulation alone drives accelerated endocytosis in spinophilin-null neurons. Endocytic response acceleration by β/α2AAR co-activation is blocked by PKA inhibition and lost in spinophilin-null neurons, consistent with our previous finding that spinophilin is a substrate for phosphorylation by PKA that disrupts its interaction with α2AARs. Importantly, we show that α2AR agonist-mediated α2AAR/spinophilin interaction is blocked by βAR co-activation in a PKA-dependent fashion. We therefore propose a novel mechanism for cross-talk from β to α2ARs, whereby canonical βAR-mediated signaling coupled to PKA activation results in phosphorylation of spinophilin, disrupting its interaction with α2AARs and accelerating α2AAR endocytic responses. This mechanism of cross-talk has significant implications for endogenous adrenergic physiology and for therapeutic targeting of β and α2AARs. PMID:23965992

  16. Cross-talk free selective reconstruction of individual objects from multiplexed optical field data

    NASA Astrophysics Data System (ADS)

    Zea, Alejandro Velez; Barrera, John Fredy; Torroba, Roberto

    2018-01-01

    In this paper we present a data multiplexing method for simultaneous storage in a single package composed by several optical fields of tridimensional (3D) objects, and their individual cross-talk free retrieval. Optical field data are extracted from off axis Fourier holograms, and then sampled by multiplying them with random binary masks. The resulting sampled optical fields can be used to reconstruct the original objects. Sampling causes a loss of quality that can be controlled by the number of white pixels in the binary masks and by applying a padding procedure on the optical field data. This process can be performed using a different binary mask for each optical field, and then added to form a multiplexed package. With the adequate choice of sampling and padding, we can achieve a volume reduction in the multiplexed package over the addition of all individual optical fields. Moreover, the package can be multiplied by a binary mask to select a specific optical field, and after the reconstruction procedure, the corresponding 3D object is recovered without any cross-talk. We demonstrate the effectiveness of our proposal for data compression with a comparison with discrete cosine transform filtering. Experimental results confirm the validity of our proposal.

  17. Prenatal Maternal Stress Associated with ADHD and Autistic Traits in early Childhood

    PubMed Central

    Ronald, Angelica; Pennell, Craig E.; Whitehouse, Andrew J. O.

    2010-01-01

    Research suggests that offspring of mothers who experience high levels of stress during pregnancy are more likely to have problems in neurobehavioral development. There is preliminary evidence that prenatal maternal stress (PNMS) is a risk factor for both autism and attention deficit hyperactivity disorder (ADHD), however most studies do not control for confounding factors and no study has investigated PNMS as a risk factor for behaviors characteristic of these disorders in early childhood. A population cohort of 2900 pregnant women were recruited before their 18th week of pregnancy and investigated prospectively. Maternal experience of stressful life events was assessed during pregnancy. When offspring were age 2 years, mothers completed the child behavior checklist. Multiple regression showed that maternal stressful events during pregnancy significantly predicted ADHD behaviors in offspring, after controlling for autistic traits and other confounding variables, in both males (p = 0.03) and females (p = 0.01). Similarly, stressful events during pregnancy significantly predicted autistic traits in the offspring after controlling for ADHD behaviors and confounding variables, in males only (p = 0.04). In conclusion, this study suggests that PNMS, in the form of typical stressful life events such as divorce or a residential move, show a small but significant association with both autistic traits and ADHD behaviors independently, in offspring at age 2 years, after controlling for multiple antenatal, obstetric, postnatal, and sociodemographic covariates. This finding supports future research using epigenetic, cross-fostering, and gene–environment interaction designs to identify the causal processes underlying this association. PMID:21833278

  18. The Ras/Raf signaling pathway is required for progression of mouse embryos through the two-cell stage.

    PubMed Central

    Yamauchi, N; Kiessling, A A; Cooper, G M

    1994-01-01

    We have used microinjection of antisense oligonucleotides, monoclonal antibody, and the dominant negative Ras N-17 mutant to interfere with Ras expression and function in mouse oocytes and early embryos. Microinjection of either ras antisense oligonucleotides or anti-Ras monoclonal antibody Y13-259 did not affect normal progression of oocytes through meiosis and arrest at metaphase II. However, microinjection of fertilized eggs with constructs expressing Ras N-17 inhibited subsequent development through the two-cell stage. The inhibitory effect of Ras N-17 was overcome by simultaneous injection of a plasmid expressing an active raf oncogene, indicating that it resulted from interference with the Ras/Raf signaling pathway. In contrast to the inhibition of two-cell embryo development resulting from microinjection of pronuclear stage eggs, microinjection of late two-cell embryos with Ras N-17 expression constructs did not affect subsequent cleavages and development to morulae and blastocysts. It thus appears that the Ras/Raf signaling pathway, presumably activated by autocrine growth factor stimulation, is specifically required at the two-cell stage, which is the time of transition between maternal and embryonic gene expression in mouse embryos. Images PMID:7935384

  19. Relationships between Structural and Acoustic Properties of Maternal Talk and Children's Early Word Recognition

    ERIC Educational Resources Information Center

    Suttora, Chiara; Salerni, Nicoletta; Zanchi, Paola; Zampini, Laura; Spinelli, Maria; Fasolo, Mirco

    2017-01-01

    This study aimed to investigate specific associations between structural and acoustic characteristics of infant-directed (ID) speech and word recognition. Thirty Italian-acquiring children and their mothers were tested when the children were 1;3. Children's word recognition was measured with the looking-while-listening task. Maternal ID speech was…

  20. Prediction of Maternal Cytomegalovirus Serostatus in Early Pregnancy: A Retrospective Analysis in Western Europe

    PubMed Central

    Kuessel, Lorenz; Husslein, Heinrich; Marschalek, Julian; Brunner, Julia; Ristl, Robin; Popow-Kraupp, Theresia; Kiss, Herbert

    2015-01-01

    Background Cytomegalovirus (CMV) is the most prevalent congenital viral infection and thus places an enormous disease burden on newborn infants. Seroprevalence of maternal antibodies to CMV due to CMV exposure prior to pregnancy is currently the most important protective factor against congenital CMV disease. The aim of this study was to identify potential predictors, and to develop and evaluate a risk-predicting model for the maternal CMV serostatus in early pregnancy. Methods Maternal and paternal background information, as well as maternal CMV serostatus in early pregnancy from 882 pregnant women were analyzed. Women were divided into two groups based on their CMV serostatus, and were compared using univariate analysis. To predict serostatus based on epidemiological baseline characteristics, a multiple logistic regression model was calculated using stepwise model selection. Sensitivity and specificity were analyzed using ROC curves. A nomogram based on the model was developed. Results 646 women were CMV seropositive (73.2%), and 236 were seronegative (26.8%). The groups differed significantly with respect to maternal age (p = 0.006), gravidity (p<0.001), parity (p<0.001), use of assisted reproduction techniques (p = 0.018), maternal and paternal migration background (p<0.001), and maternal and paternal education level (p<0.001). ROC evaluation of the selected prediction model revealed an area under the curve of 0.83 (95%CI: 0.8–0.86), yielding sensitivity and specificity values of 0.69 and 0.86, respectively. Conclusion We identified predictors of maternal CMV serostatus in early pregnancy and developed a risk-predicting model based on baseline epidemiological characteristics. Our findings provide easy accessible information that can influence the counseling of pregnant woman in terms of their CMV-associated risk. PMID:26693714

  1. Muskmelon embryo rescue techniques using in vitro embryo culture.

    PubMed

    Nuñez-Palenius, Hector Gordon; Ramírez-Malagón, Rafael; Ochoa-Alejo, Neftalí

    2011-01-01

    Among the major cucurbit vegetables, melon (Cucumis melo) has one of the greatest polymorphic fruit types and botanical varieties. Some melon fruits have excellent aroma, variety of flesh colors, deeper flavor, and more juice compared to other cucurbits. Despite numerous available melon cultivars, some of them are exceedingly susceptible to several diseases. The genetic background carrying the genes for tolerance and/or resistance for those diseases is found in wild melon landraces. Unfortunately, the commercial melon varieties are not able to produce viable hybrids when crossed with their wild melon counterparts. Plant tissue culture techniques are needed to surpass those genetic barriers. In vitro melon embryo rescue has played a main role to obtain viable hybrids originated from commercial versus wild melon crosses. In this chapter, an efficient and simple embryo rescue melon protocol is thoroughly described.

  2. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    PubMed

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  3. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy

    PubMed Central

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I.; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling. PMID:26020623

  4. Paternal involvement and early infant neurodevelopment: the mediation role of maternal parenting stress.

    PubMed

    Kim, Minjeong; Kang, Su-Kyoung; Yee, Bangsil; Shim, So-Yeon; Chung, Mira

    2016-12-12

    Father-child interactions are associated with improved developmental outcomes among infants. However, to the best of our knowledge, no study has addressed the effects of paternal involvement on the neurodevelopment of infants who are less than 6 months of age, and no study has reported how maternal parenting stress mediates the relationship between paternal involvement and infant neurodevelopment during early infancy. This study investigates the direct and indirect relationship between paternal involvement and infant neurodevelopment at 3-4 months of age. The indirect relationship was assessed through the mediating factor of maternal parenting stress. The participants were recruited through the Sesalmaul Research Center's website from April to June 2014. The final data included 255 mothers and their healthy infants, who were aged 3-4 months. The mothers reported paternal involvement and maternal parenting stress by using Korean Parenting Alliance Inventory (K-PAI) and Parenting Stress Index (PSI), respectively. Experts visited the participants' homes to observe infant neurodevelopment, and completed a developmental examination using Korean version of the Ages and Stages Questionnaire II (K-ASQ II). A hierarchical multiple regression analysis was used for data analysis. Infants' mean ages were 106 days and girls accounted for 46.3%. The mean total scores (reference range) of the K-PAI, PSI, and the K-ASQ II were 55.5 (17-68), 45.8 (25-100), and 243.2 (0-300), respectively. Paternal involvement had a positive relationship with K-ASQ II scores (β = 0.29, p < 0.001) at 3-4 months of age, whereas maternal parenting stress was negatively related with K-ASQ II scores (β = -0.32, p < 0.001). Maternal parenting stress mediated the relationship between paternal involvement and early infant neurodevelopment (Z = 3.24, p < 0.001). A hierarchical multiple regression analysis showed that paternal involvement reduced maternal parenting stress (

  5. Improvements in maternal depression as a mediator of intervention effects on early childhood problem behavior

    PubMed Central

    Shaw, Daniel S.; Connell, Arin; Dishion, Thomas J.; Wilson, Melvin N.; Gardner, Frances

    2009-01-01

    Maternal depression has been consistently linked to the development of child problem behavior, particularly in early childhood, but few studies have examined whether reductions in maternal depression serve as a mediator in relation to changes associated with a family-based intervention. The current study addressed this issue with a sample of 731 families receiving services from a national food supplement and nutrition program. Families with toddlers between ages 2 and 3 were sereened and then randomized to a brief family intervention, the Family Check-Up, which included linked interventions that were tailored and adapted to the families needs. Follow-up intervention services were provided at age 3 and follow-up of child outcomes oecurred at ages 3 and 4. Latent growth models revealed intervention effects for early externalizing and internalizing problems from 2 to 4, and reductions in maternal depression from ages 2 to 3. In addition, reductions in maternal depression mediated improvements in both child externalizing and internalizing problem behavior after accounting for the potential mediating effects of improvements in positive parenting. The results are discussed with respect to targeting maternal depression in future intervention studies aimed at improving early child problem behavior. PMID:19338691

  6. Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Liu, Xing; Qin, Jiaqiang; Luo, Qing; Bi, Yang; Zhu, Gaohui; Jiang, Wei; Kim, Stephanie H; Li, Mi; Su, Yuxi; Nan, Guoxin; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Rogers, Mary Rose; Zhang, Hongyu; Shui, Wei; Zhao, Chen; Wang, Ning; Liang, Xi; Wu, Ningning; He, Yunfeng; Luu, Hue H; Haydon, Rex C; Shi, Lewis L; Li, Tingyu; He, Tong-Chuan; Li, Ming

    2013-09-01

    Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross-talks with BMP9 and regulates BMP9-induced osteogenic differentiation. We find that EGF potentiates BMP9-induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG-1478 and AG-494 in a dose- and time-dependent manner. Furthermore, EGF significantly augments BMP9-induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9-induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up-regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross-talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  7. Maternal Predictors of Preschool Child-Eating Behaviours, Food Intake and Body Mass Index: A Prospective Study

    ERIC Educational Resources Information Center

    McPhie, Skye; Skouteris, Helen; Fuller-Tyszkiewicz, Matthew; McCabe, Marita; Ricciardelli, Lina A.; Milgrom, Jeannette; Baur, Louise A.; Dell'Aquila, Daniela

    2012-01-01

    This study extends McPhie et al. (2011)'s [Maternal correlates of preschool child eating behaviours and body mass index: A cross-sectional study. "International Journal of Pediatric Obesity", Early Online, 1-5.] McPhie et al. (2011)'s cross-sectional research, by prospectively evaluating maternal child-feeding practices, parenting style and…

  8. Fast Mapping in Late-Talking Toddlers

    ERIC Educational Resources Information Center

    Weismer, Susan Ellis; Venker, Courtney E.; Evans, Julia L.; Moyle, Maura Jones

    2013-01-01

    This study investigated fast mapping in late-talking (LT) toddlers and toddlers with normal language (NL) development matched on age, nonverbal cognition, and maternal education. The fast-mapping task included novel object labels and familiar words. The LT group scored significantly lower than the NL group on novel word comprehension and…

  9. Maternal experience with predation risk influences genome-wide embryonic gene expression in threespined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Mommer, Brett C; Bell, Alison M

    2014-01-01

    There is growing evidence for nongenetic effects of maternal experience on offspring. For example, previous studies have shown that female threespined stickleback fish (Gasterosteus aculeatus) exposed to predation risk produce offspring with altered behavior, metabolism and stress physiology. Here, we investigate the effect of maternal exposure to predation risk on the embryonic transcriptome in sticklebacks. Using RNA-sequencing we compared genome-wide transcription in three day post-fertilization embryos of predator-exposed and control mothers. There were hundreds of differentially expressed transcripts between embryos of predator-exposed mothers and embryos of control mothers including several non-coding RNAs. Gene Ontology analysis revealed biological pathways involved in metabolism, epigenetic inheritance, and neural proliferation and differentiation that differed between treatments. Interestingly, predation risk is associated with an accelerated life history in many vertebrates, and several of the genes and biological pathways that were identified in this study suggest that maternal exposure to predation risk accelerates the timing of embryonic development. Consistent with this hypothesis, embryos of predator-exposed mothers were larger than embryos of control mothers. These findings point to some of the molecular mechanisms that might underlie maternal effects.

  10. Photodiode arrays having minimized cross-talk between diodes

    DOEpatents

    Guckel, Henry; McNamara, Shamus P.

    2000-10-17

    Photodiode arrays are formed with close diode-to-diode spacing and minimized cross-talk between diodes in the array by isolating the diodes from one another with trenches that are formed between the photodiodes in the array. The photodiodes are formed of spaced regions in a base layer, each spaced region having an impurity type opposite to that of the base layer to define a p-n junction between the spaced regions and the base layer. The base layer meets a substrate at a boundary, with the substrate being much more heavily doped than the base layer with the same impurity type. The trenches extend through the base layer and preferably into the substrate. Minority carriers generated by absorption of light photons in the base layer can only migrate to an adjacent photodiode through the substrate. The lifetime and the corresponding diffusion length of the minority carriers in the substrate is very short so that all minority carriers recombine in the substrate before reaching an adjacent photodiode.

  11. Induction of autophagy improves embryo viability in cloned mouse embryos

    PubMed Central

    Shen, XingHui; Zhang, Na; Wang, ZhenDong; Bai, GuangYu; Zheng, Zhong; Gu, YanLi; Wu, YanShuang; Liu, Hui; Zhou, DongJie; Lei, Lei

    2015-01-01

    Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P < 0.05). Furthermore, the treatment of rapamycin and pp242 accelerates active DNA demethylation indicated by the conversion of 5 mC to 5 hmC, and treatment of rapamycin improves degradation of maternal mRNA as well. Thus, our findings reveal that autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT. PMID:26643778

  12. Cytoskeletal changes in oocytes and early embryos during in vitro fertilization process in mice.

    PubMed

    Gumus, E; Bulut, H E; Kaloglu, C

    2010-02-01

    The cytoskeleton plays crucial roles in the development and fertilization of germ cells and in the early embryo development. The growth, maturation and fertilization of oocytes require an active movement and a correct localization of cellular organelles. This is performed by the re-organization of microtubules and actin filaments. Therefore, the aim of the present study was to determine the changes in cytoskeleton during in vitro fertilization process using appropriate immunofluorescence techniques. While the chromatin content was found to be scattered throughout the nucleus during the oocyte maturation period, it was seen only around nucleolus following the completion of the maturation. Microtubules, during oocyte maturation, were regularly distributed throughout the ooplasm which was then localized in the subcortical region of oocytes. Similarly microfilaments were scattered throughout the ooplasm during the oocyte maturation period whereas they were seen in the subcortical region around the polar body and above the meiotic spindle throughout the late developmental stages. In conclusion, those changes occurred in microtubules and microfilaments might be closely related to the re-organization of the genetic material during the oocyte maturation and early embryo development.

  13. Maternal Metabolic Health Parameters During Pregnancy in Relation to Early Childhood BMI Trajectories.

    PubMed

    Montazeri, Parisa; Vrijheid, Martine; Martinez, David; Basterrechea, Mikel; Fernandez-Somoano, Ana; Guxens, Monica; Iñiguez, Carmen; Lertxundi, Aitana; Murcia, Mario; Tardon, Adonina; Sunyer, Jordi; Valvi, Damaskini

    2018-03-01

    The objective of this study was to evaluate the associations between maternal metabolic parameters and early childhood BMI trajectories. Two thousand two hundred fifty-one children born in Spain between 2004 and 2008 were analyzed. Five BMI z score trajectories from birth to age 4 years were identified by using latent class growth analysis. Multinomial regression assessed the associations between maternal metabolic parameters and offspring's BMI trajectories. Children in the reference BMI trajectory had average size at birth followed by a slower BMI gain. Maternal prepregnancy obesity was associated with trajectories of accelerated BMI gain departing from either higher (relative risk ratio [RRR] = 1.77; 95% CI: 1.07-2.91) or lower size at birth (RRR = 1.91; 95% CI: 1.17-3.12). Gestational weight gain (GWG) above clinical guidelines was associated with a trajectory of higher birth size followed by accelerated BMI gain (RRR = 2.14; 95% CI: 1.53-2.97). Maternal serum triglycerides were negatively associated with BMI trajectories departing from lower birth sizes. Gestational diabetes, maternal serum cholesterol, and C-reactive protein were unrelated to children's BMI trajectories. Maternal prepregnancy obesity, GWG, and serum triglycerides are associated with longitudinal BMI trajectories in early childhood that may increase disease risk in later life. Health initiatives should promote healthy weight status before and during pregnancy to improve maternal and child health. © 2018 The Obesity Society.

  14. Maternal buffering beyond glucocorticoids: impact of early life stress on corticolimbic circuits that control infant responses to novelty

    PubMed Central

    Howell, Brittany R.; McMurray, Matthew S.; Guzman, Dora B.; Nair, Govind; Shi, Yundi; McCormack, Kai M.; Hu, Xiaoping; Styner, Martin A.; Sanchez, Mar M.

    2017-01-01

    Maternal presence has a potent buffering effect on infant fear and stress responses in primates. We previously reported that maternal presence is not effective in buffering the endocrine stress response in infant rhesus monkeys reared by maltreating mothers. We have also reported that maltreating mothers show low maternal responsiveness and permissiveness/secure-base behavior. Although still not understood, it is possible that this maternal buffering effect is mediated, at least partially, through deactivation of amygdala response circuits when mothers are present. Here we studied rhesus monkey infants that differed in the quality of early maternal care to investigate how this early experience modulated maternal buffering effects on behavioral responses to novelty during the weaning period. We also examined the relationship between these behavioral responses and structural connectivity in one of the underlying regulatory neural circuits: amygdala-prefrontal pathways. Our findings suggest that infant exploration in a novel situation is predicted by maternal responsiveness and structural integrity of amygdala-prefrontal white matter depending on maternal presence (positive relationships when mother is absent). These results provide evidence that maternal buffering of infant behavioral inhibition is dependent on the quality of maternal care and structural connectivity of neural pathways that are sensitive to early life stress. PMID:27295326

  15. Early maternal language use during book sharing in families from low-income environments.

    PubMed

    Abraham, Linzy M; Crais, Elizabeth; Vernon-Feagans, Lynne

    2013-02-01

    The authors examined the language used by mothers from low-income and rural environments with their infants at ages 6 and 15 months to identify predictors of maternal language use at the 15-month time point. Maternal language use by 82 mothers with their children was documented during book-sharing interactions within the home in a prospective longitudinal study. The authors analyzed transcripts for maternal language strategies and maternal language productivity. Analyses indicated variability across mothers in their language use and revealed some stability within mothers, as maternal language use at the 6-month time point significantly predicted later maternal language. Mothers who used more language strategies at the 6-month time point were likely to use more of these language strategies at the 15-month time point, even after accounting for maternal education, family income, maternal language productivity, and children's communicative attempts. Mothers' language use with their children was highly predictive of later maternal language use, as early as age 6 months. Children's communication also influenced concurrent maternal language productivity. Thus, programs to enhance maternal language use would need to begin in infancy, promoting varied and increased maternal language use and also encouraging children's communication.

  16. Development of the embryonic heat shock response and the impact of repeated thermal stress in early stage lake whitefish (Coregonus clupeaformis) embryos.

    PubMed

    Whitehouse, Lindy M; McDougall, Chance S; Stefanovic, Daniel I; Boreham, Douglas R; Somers, Christopher M; Wilson, Joanna Y; Manzon, Richard G

    2017-10-01

    Lake whitefish (Coregonus clupeaformis) embryos were exposed to thermal stress (TS) at different developmental stages to determine when the heat shock response (HSR) can be initiated and if it is altered by exposure to repeated TS. First, embryos were subject to one of three different TS temperatures (6, 9, or 12°C above control) at 4 points in development (21, 38, 60 and 70 days post-fertilisation (dpf)) for 2h followed by a 2h recovery to understand the ontogeny of the HSR. A second experiment explored the effects of repeated TS on the HSR in embryos from 15 to 75 dpf. Embryos were subjected to one of two TS regimes; +6°C TS for 1h every 6 days or +9°C TS for 1h every 6 days. Following a 2h recovery, a subset of embryos was sampled. Our results show that embryos could initiate a HSR via upregulation of heat shock protein 70 (hsp70) mRNA at all developmental ages studied, but that this response varied with age and was only observed with a TS of +9 or +12°C. In comparison, when embryos received multiple TS treatments, hsp70 was not induced in response to the 1h TS and 2h recovery, and a downregulation was observed at 39 dpf. Downregulation of hsp47 and hsp90α mRNA was also observed in early age embryos. Collectively, these data suggest that embryos are capable of initiating a HSR at early age and throughout embryogenesis, but that repeated TS can alter the HSR, and may result in either reduced responsiveness or a downregulation of inducible hsps. Our findings warrant further investigation into both the short- and long-term effects of repeated TS on lake whitefish development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Seed development in Trimenia (Trimeniaceae) and its bearing on the evolution of embryo-nourishing strategies in early flowering plant lineages.

    PubMed

    Friedman, William E; Bachelier, Julien B

    2013-05-01

    Seeds of most families in the ancient angiosperm lineage Austrobaileyales produce a full-fledged genetically biparental embryo-nourishing endosperm. However, seeds of fossil and extant Trimeniaceae have been described as having a perisperm, a maternal nutrient-storing and embryo-nourishing tissue derived from the nucellus of the ovule. Because perisperm is also found in Nymphaeales, another ancient angiosperm clade, the presence of a perisperm in Trimeniaceae, if confirmed, would be congruent with the hypothesis that the first angiosperms used a perisperm in addition to a minute (nutrient-transferring) endosperm. • Seed development was studied from fertilization through maturity/dormancy in Trimenia moorei and in maturing fruits of T. neocaledonica. • A persistent layer of nucellar tissue surrounds the endosperm but does not contain stored nutrients and does not function as a perisperm. The nutrient-storing and embryo-nourishing tissue in Trimenia seeds is an endosperm, as is the case in all other members of the Austrobaileyales studied to date. • The absence of a perisperm and the presence of a typical nutrient-storing and embryo-nourishing endosperm in Trimeniaceae may represent the ancestral condition for angiosperms. However, the combination of a copious nutrient-storing and embryo-nourishing perisperm with a minute endosperm, as in Nymphaeales, remains a plausible plesiomorphic condition for angiosperms as a whole. In either case, the developmental and functional biology of the diploid endosperm of Trimenia (and other Austrobaileyales) differs markedly from the diploid endosperm of Nymphaeales, and is fundamentally similar to the triploid endosperms of most other angiosperms.

  18. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE PAGES

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz; ...

    2017-03-22

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  19. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  20. Body Weight Relationships in Early Marriage: Weight Relevance, Weight Comparisons, and Weight Talk

    PubMed Central

    Bove, Caron F.; Sobal, Jeffery

    2011-01-01

    This investigation uncovered processes underlying the dynamics of body weight and body image among individuals involved in nascent heterosexual marital relationships in Upstate New York. In-depth, semi-structured qualitative interviews conducted with 34 informants, 20 women and 14 men, just prior to marriage and again one year later were used to explore continuity and change in cognitive, affective, and behavioral factors relating to body weight and body image at the time of marriage, an important transition in the life course. Three major conceptual themes operated in the process of developing and enacting informants’ body weight relationships with their partner: weight relevance, weight comparisons, and weight talk. Weight relevance encompassed the changing significance of weight during early marriage and included attracting and capturing a mate, relaxing about weight, living healthily, and concentrating on weight. Weight comparisons between partners involved weight relativism, weight competition, weight envy, and weight role models. Weight talk employed pragmatic talk, active and passive reassurance, and complaining and critiquing criticism. Concepts emerging from this investigation may be useful in designing future studies of and approaches to managing body weight in adulthood. PMID:21864601

  1. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Yan; Liu, Chunying; Lu, Wenwen

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysismore » revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.« less

  2. The effects of maternal folic acid and vitamin C nutrition in early pregnancy on reproductive performance in the guinea-pig.

    PubMed

    Habibzadeh, N; Schorah, C J; Smithells, R W

    1986-01-01

    1. The effect of different intakes of folic acid (FA) and vitamin C on pregnancy in the Dunkin-Hartley guinea-pig was examined. Female guinea-pigs were subjected to three graded intakes of FA and vitamin C ('deficient', 'intermediate' similar to recommended daily intakes (RDI), and 'supplemented') during early gestation and up to the time of neural tube closure (17th day of gestation), and then returned to the RDI of these vitamins. 2. Plasma and blood cell concentrations of these vitamins were measured once before and at the end of the dietary treatments. Reproductive performance was assessed in terms of the number of resorbed and aborted embryos and weight and size of the live fetuses on the 36th day of gestation. 3. The short-term deficiency of either of these two vitamins, insufficient to affect maternal health, had a dramatic effect on the reproductive performance. 4. The RDI of FA was significantly less effective than the supplemented intake in preventing embryonic deaths. The RDI of vitamin C produced lighter and smaller live fetuses than the supplemented intake. 5. The implications of these findings with regard to vitamin status in early pregnancy in man are discussed.

  3. Risk of Contamination of Gametes and Embryos during Cryopreservation and Measures to Prevent Cross-Contamination

    PubMed Central

    Joaquim, Daniel C.; Navarro, Paula A.

    2017-01-01

    The introduction and widespread application of vitrification are one of the most important achievements in human assisted reproduction techniques (ART) of the past decade despite controversy and unclarified issues, mostly related to concerns about disease transmission. Guidance documents published by US Food and Drug Administration, which focused on the safety of tissue/organ donations during Zika virus spread in 2016, as well as some reports of virus, bacteria, and fungi survival to cryogenic temperatures, highlighted the need for a review of the way how potentially infectious material is handled and stored in ART-related procedures. It was experimentally demonstrated that cross-contamination between liquid nitrogen (LN2) and embryos may occur when infectious agents are present in LN2 and oocytes/embryos are not protected by a hermetically sealed device. Thus, this review summarizes pertinent data and opinions regarding the potential hazard of infectious transmission through cryopreserved and banked reproductive cells and tissues in LN2. Special attention is given to the survival of pathogens in LN2, the risk of cross-contamination, vitrification methods, sterility of LN2, and the risks associated with the use of straws, cryovials, and storage dewars. PMID:28890894

  4. Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo.

    PubMed

    Gandhi, Shashank; Piacentino, Michael L; Vieceli, Felipe M; Bronner, Marianne E

    2017-12-01

    The advent of CRISPR/Cas9 has made genome editing possible in virtually any organism, including those not previously amenable to genetic manipulations. Here, we present an optimization of CRISPR/Cas9 for application to early avian embryos with improved efficiency via a three-fold strategy. First, we employed Cas9 protein flanked with two nuclear localization signal sequences for improved nuclear localization. Second, we used a modified guide RNA (gRNA) scaffold that obviates premature termination of transcription and unstable Cas9-gRNA interactions. Third, we used a chick-specific U6 promoter that yields 4-fold higher gRNA expression than the previously utilized human U6. For rapid screening of gRNAs for in vivo applications, we also generated a chicken fibroblast cell line that constitutively expresses Cas9. As proof of principle, we performed electroporation-based loss-of-function studies in the early chick embryo to knock out Pax7 and Sox10, key transcription factors with known functions in neural crest development. The results show that CRISPR/Cas9-mediated deletion causes loss of their respective proteins and transcripts, as well as predicted downstream targets. Taken together, the results reveal the utility of this optimized CRISPR/Cas9 method for targeted gene knockout in chicken embryos in a manner that is reproducible, robust and specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cross-talk between clinical and host-response parameters of periodontitis in smokers.

    PubMed

    Nagarajan, R; Miller, C S; Dawson, D; Al-Sabbagh, M; Ebersole, J L

    2017-06-01

    Periodontal diseases are a major public health concern leading to tooth loss and have also been shown to be associated with several chronic systemic diseases. Smoking is a major risk factor for the development of numerous systemic diseases, as well as periodontitis. While it is clear that smokers have a significantly enhanced risk for developing periodontitis leading to tooth loss, the population varies regarding susceptibility to disease associated with smoking. This investigation focused on identifying differences in four broad sets of variables, consisting of: (i) host-response molecules; (ii) periodontal clinical parameters; (iii) antibody responses to periodontal pathogens and oral commensal bacteria; and (iv) other variables of interest, in a population of smokers with (n = 171) and without (n = 117) periodontitis. Bayesian network structured learning (BNSL) techniques were used to investigate potential associations and cross-talk between the four broad sets of variables. BNSL revealed two broad communities with markedly different topology between the populations of smokers, with and without periodontitis. Confidence of the edges in the resulting network also showed marked variations within and between the periodontitis and nonperiodontitis groups. The results presented validated known associations and discovered new ones with minimal precedence that may warrant further investigation and novel hypothesis generation. Cross-talk between the clinical variables and antibody profiles of bacteria were especially pronounced in the case of periodontitis and were mediated by the antibody response profile to Porphyromonas gingivalis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Cross-talk between Clinical and Host Response Parameters of Periodontitis in Smokers

    PubMed Central

    Nagarajan, R.; Miller, C.S.; Dawson, D.; Al-Sabbagh, M.; Ebersole, J.L.

    2016-01-01

    Periodontal diseases are a major public health concern leading to tooth loss and also shown to be associated with several chronic systemic diseases. Smoking is a major risk factor for developing numerous systemic diseases, as well as periodontitis. While it is clear that smokers have a significantly enhanced risk for developing periodontitis leading to tooth loss, the population varies with regards to susceptibility to disease associated with smoking. This investigation focuses on identifying differences in four broad sets of variables consisting of: (a) host response molecules, (b) periodontal clinical parameters, (c) antibody measures for periodontal pathogens and oral commensal bacteria challenge, and (d) other variables of interest in a smoking population with (n = 171) and without periodontitis (n = 117). Subsequently, Bayesian network structured learning techniques (BNSL) techniques were used to investigate potential associations and cross-talk between the four broad sets of variables. BNSL revealed two broad communities with markedly different topology between the non-periodontitis and periodontitis smoking population. Confidence of the edges in the resulting network also showed marked variations within and between the periodontitis and non-periodontitis groups. The results presented validated known associations, as well as discovered new ones with minimal precedence that may warrant further investigation and novel hypothesis generation. Cross-talk between the clinical variables and antibody profiles of bacteria were especially pronounced in the case of periodontitis and mediated by the antibody response profile to P. gingivalis. PMID:27431617

  7. Feasibility of maternity protection in early pregnancy.

    PubMed

    Von Busch, Tammy A; Frazier, Linda M; Sigler, Samantha J; Molgaard, Craig A

    2002-01-01

    Many countries have maternity protection laws for women who need job modification or medical leave during pregnancy. This approach will prevent birth defects only if maternal job changes can be made before the critical period of organogenesis, which begins at three weeks' gestation. The authors studied the gestational ages at which pregnant women working with chemicals, radiation, and noise presented for occupational safety and health consultations. The work setting promoted early presentation because the consultation was free, convenient, mandatory, and would not result in job loss. Among the 213 pregnant women evaluated between 1996 and 2000, most (89.5%) had their occupational safety evaluations in the first trimester. Although this sounds ideal, the mean gestational age at presentation was 7.5 weeks, and only 3.3% of occupational health evaluations were initiated by three weeks' gestation. Environmental and biological monitoring showed that none of the women was exposed over occupational limits. These data suggest that a workplace free from reproductive hazards needs to be provided before conception.

  8. The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis.

    PubMed

    Dilkes, Brian P; Spielman, Melissa; Weizbauer, Renate; Watson, Brian; Burkart-Waco, Diana; Scott, Rod J; Comai, Luca

    2008-12-09

    The molecular mechanisms underlying lethality of F1 hybrids between diverged parents are one target of speciation research. Crosses between diploid and tetraploid individuals of the same genotype can result in F1 lethality, and this dosage-sensitive incompatibility plays a role in polyploid speciation. We have identified variation in F1 lethality in interploidy crosses of Arabidopsis thaliana and determined the genetic architecture of the maternally expressed variation via QTL mapping. A single large-effect QTL, DR. STRANGELOVE 1 (DSL1), was identified as well as two QTL with epistatic relationships to DSL1. DSL1 affects the rate of postzygotic lethality via expression in the maternal sporophyte. Fine mapping placed DSL1 in an interval encoding the maternal effect transcription factor TTG2. Maternal parents carrying loss-of-function mutations in TTG2 suppressed the F1 lethality caused by paternal excess interploidy crosses. The frequency of cellularization in the endosperm was similarly affected by both natural variation and ttg2 loss-of-function mutants. The simple genetic basis of the natural variation and effects of single-gene mutations suggests that F1 lethality in polyploids could evolve rapidly. Furthermore, the role of the sporophytically active TTG2 gene in interploidy crosses indicates that the developmental programming of the mother regulates the viability of interploidy hybrid offspring.

  9. BALB/c alleles at modifier loci increase the severity of the maternal effect of the "DDK syndrome".

    PubMed Central

    Le Bras, S; Cohen-Tannoudji, M; Kress, C; Vandormael-Pournin, S; Babinet, C; Baldacci, P

    2000-01-01

    The Om locus was first described in the DDK inbred mouse strain: DDK mice carry a mutation at Om resulting in a parental effect lethality of F(1) embryos. When DDK females are mated with males of other (non-DDK) inbred strains, e.g., BALB/c, they exhibit a low fertility, whereas the reciprocal cross, non-DDK females x DDK males, is fertile (as is the DDK intrastrain cross). The low fertility is due to the death of (DDK x non-DDK)F(1) embryos at the late-morula to blastocyst stage, which is referred to as the "DDK syndrome." The death of these F(1) embryos is caused by an incompatibility between a DDK maternal factor and the non-DDK paternal pronucleus. Previous genetic studies showed that F(1) mice have an intermediate phenotype compared to parental strains: crosses between F(1) females and non-DDK males are semisterile, as are crosses between DDK females and F(1) males. In the present studies, we have examined the properties of mice heterozygous for BALB/c and DDK Om alleles on an essentially BALB/c genetic background. Surprisingly, we found that the females are quasi-sterile when mated with BALB/c males and, thus, present a phenotype similar to DDK females. These results indicate that BALB/c alleles at modifier loci increase the severity of the DDK syndrome. PMID:10655231

  10. R-spondin 3 regulates dorsoventral and anteroposterior patterning by antagonizing Wnt/β-catenin signaling in zebrafish embryos.

    PubMed

    Rong, Xiaozhi; Chen, Chen; Zhou, Pin; Zhou, Yumei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng; Duan, Cunming

    2014-01-01

    The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos.

  11. R-Spondin 3 Regulates Dorsoventral and Anteroposterior Patterning by Antagonizing Wnt/β-Catenin Signaling in Zebrafish Embryos

    PubMed Central

    Zhou, Pin; Zhou, Yumei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng; Duan, Cunming

    2014-01-01

    The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos. PMID:24918770

  12. Radiation induced abnormalities in early in vitro mouse embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, J.F.

    1973-08-01

    Female mice were superovulated and mated, and the two-cell embryos were collected and cultured in vitro. The embryos were exposed to x-irradiation (0 to 491 rads) during the two-cell stage before the appearance of the next cleavage plate, placed in new unirradiated culture medium and observed during subsequent development. Morphological abnormalities, which occurred as a result of irradiation, included fragmentation, disintegration, granlation, incomplete cleavage, cleavage cessation, nuclear degeneration and pycnosis and cytoplasmic vacuolization. There was no damage to the zona pellucida. The types of abnormalities indicate an agreement with the results of previous in vivo studies. A distinct correlation existedmore » between morphological abnormalities and embryo death. The greatest number of abnormalities resulted within five hours following irradiation, but increased through 20 hours post-exposure. At doses above 300 rads, the magnitude of damage was greater in the in vitro embryos than that shown in previous in vivo studies. (auth)« less

  13. Natural Selection of Human Embryos: Decidualizing Endometrial Stromal Cells Serve as Sensors of Embryo Quality upon Implantation

    PubMed Central

    Teklenburg, Gijs; Salker, Madhuri; Molokhia, Mariam; Lavery, Stuart; Trew, Geoffrey; Aojanepong, Tepchongchit; Mardon, Helen J.; Lokugamage, Amali U.; Rai, Raj; Landles, Christian; Roelen, Bernard A. J.; Quenby, Siobhan; Kuijk, Ewart W.; Kavelaars, Annemieke; Heijnen, Cobi J.; Regan, Lesley; Brosens, Jan J.; Macklon, Nick S.

    2010-01-01

    Background Pregnancy is widely viewed as dependent upon an intimate dialogue, mediated by locally secreted factors between a developmentally competent embryo and a receptive endometrium. Reproductive success in humans is however limited, largely because of the high prevalence of chromosomally abnormal preimplantation embryos. Moreover, the transient period of endometrial receptivity in humans uniquely coincides with differentiation of endometrial stromal cells (ESCs) into highly specialized decidual cells, which in the absence of pregnancy invariably triggers menstruation. The role of cyclic decidualization of the endometrium in the implantation process and the nature of the decidual cytokines and growth factors that mediate the crosstalk with the embryo are unknown. Methodology/Principal Findings We employed a human co-culture model, consisting of decidualizing ESCs and single hatched blastocysts, to identify the soluble factors involved in implantation. Over the 3-day co-culture period, approximately 75% of embryos arrested whereas the remainder showed normal development. The levels of 14 implantation factors secreted by the stromal cells were determined by multiplex immunoassay. Surprisingly, the presence of a developing embryo had no significant effect on decidual secretions, apart from a modest reduction in IL-5 levels. In contrast, arresting embryos triggered a strong response, characterized by selective inhibition of IL-1β, -6, -10, -17, -18, eotaxin, and HB-EGF secretion. Co-cultures were repeated with undifferentiated ESCs but none of the secreted cytokines were affected by the presence of a developing or arresting embryo. Conclusions Human ESCs become biosensors of embryo quality upon differentiation into decidual cells. In view of the high incidence of gross chromosomal errors in human preimplantation embryos, cyclic decidualization followed by menstrual shedding may represent a mechanism of natural embryo selection that limits maternal investment in

  14. Maternal prenatal smoking, parental antisocial behavior, and early childhood physical aggression.

    PubMed

    Huijbregts, Stephan C J; Séguin, Jean R; Zoccolillo, Mark; Boivin, Michel; Tremblay, Richard E

    2008-01-01

    This study investigated joint effects of maternal prenatal smoking and parental history of antisocial behavior on physical aggression between ages 17 and 42 months in a population sample of children born in Québec (N = 1,745). An analysis of variance (ANOVA) showed significant main effects of maternal prenatal smoking and a significant interaction between maternal prenatal smoking and mother's history of antisocial behavior in the prediction of children's probability to display high and rising physical aggression. The interaction indicated that the effects of heavy smoking during pregnancy (> or =10 cigarettes/day) were greater when the mother also had a serious history of antisocial behavior. The effects remained significant after the introduction of control variables (e.g., hostile-reactive parenting, family functioning, parental separation/divorce, family income, and maternal education). Another significant interaction not accounted for by control variables was observed for maternal prenatal smoking and family income, indicating more serious effects of maternal prenatal smoking under relatively low-income, conditions. Both interactions indicate critical adversities that, in combination with maternal prenatal smoking, have supra-additive effects on (the development of) physical aggression during early childhood. These findings may have implications for the selection of intervention targets and strategies.

  15. Maternal and Early-Life Circadian Disruption Have Long-Lasting Negative Consequences on Offspring Development and Adult Behavior in Mice.

    PubMed

    Smarr, Benjamin L; Grant, Azure D; Perez, Luz; Zucker, Irving; Kriegsfeld, Lance J

    2017-06-12

    Modern life involves chronic circadian disruption through artificial light and these disruptions are associated with numerous mental and physical health maladies. Because the developing nervous system is particularly vulnerable to perturbation, we hypothesized that early-life circadian disruption would negatively impact offspring development and adult function. Pregnant mice were subjected to chronic circadian disruption from the time of uterine implantation through weaning. To dissociate in utero from postnatal effects, a subset of litters was cross-fostered at birth from disrupted dams to control dams and vice versa. Postnatal circadian disruption was associated with reduced adult body mass, social avoidance, and hyperactivity. In utero disruption resulted in more pronounced social avoidance and hyperactivity, phenotypes not abrogated by cross-fostering to control mothers. To examine whether circadian disruption affects development by acting as an early life stressor, we examined birthweight, litter size, maternal cannibalism, and epigenetic modifications. None of these variables differed between control and disrupted dams, or resembled patterns seen following early-life stress. Our findings indicate that developmental chronic circadian disruption permanently affects somatic and behavioral development in a stage-of-life-dependent manner, independent of early life stress mechanisms, underscoring the importance of temporal structure during development, both in utero and early postnatal life.

  16. Shorter Exposures to Harder X-Rays Trigger Early Apoptotic Events in Xenopus laevis Embryos

    PubMed Central

    Dong, JiaJia; Mury, Sean P.; Drahos, Karen E.; Moscovitch, Marko

    2010-01-01

    Background A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. Methodology/Principal Findings We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. Conclusions/Significance Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and utilized for therapeutic

  17. Maternal-foetal attachment during early pregnancy in Taiwanese women pregnant by in vitro fertilization.

    PubMed

    Kuo, Pi-Chao; Bowers, Beverly; Chen, Yueh-Chih; Chen, Chung-Hey; Tzeng, Ya-Ling; Lee, Maw-Sheng

    2013-11-01

    The aim of this study was to investigate maternal-foetal attachment at 9, 12 and 20 weeks gestation and to identify factors that influenced maternal-foetal attachment in Taiwanese women who conceived by in vitro fertilization. Development of maternal-foetal attachment is an important part of taking on the maternal role. However, evidence about maternal-foetal attachment after assisted conception is inconclusive. A longitudinal design with repeated measures. A prospective, longitudinal design with repeated measures was used. Over an 18-month period in 2006-2008, a convenience sample of 160 women who conceived after undergoing successful in vitro fertilization were recruited from a major infertility care centre in Taiwan. Data were collected by self-reported measures, including: (1) Maternal-Foetal Attachment Scale; (2) Symptoms Checklist; (3) Pregnancy-related Anxiety Scale; (4) Social Support Apgar; (5) Chinese childbearing attitude Questionnaire; and (6) Awareness of Foetus Scale. The selected instruments to measure each variable were administered to participants at 9, 12 and 20 weeks gestation. Maternal-foetal attachment increased as pregnancy progressed from 9 to 20 weeks gestation. General linear mixed model showed predictors of maternal-foetal attachment included Chinese childbearing attitude, awareness of the foetus, and social support. Health provider awareness of cultural influences on the development of early maternal-foetal attachment of women pregnant by in vitro fertilization is needed. Prenatal education in early pregnancy might incorporate more information about foetal development to allow the mother to visualize her unborn child. Providing social support for women who were conceived by in vitro fertilization is beneficial to the development of maternal-foetal attachment. © 2013 Blackwell Publishing Ltd.

  18. Role of nucleation-promoting factors in mouse early embryo development.

    PubMed

    Wang, Qiao-Chu; Liu, Jun; Wang, Fei; Duan, Xing; Dai, Xiao-Xin; Wang, Teng; Liu, Hong-Lin; Cui, Xiang-Shun; Sun, Shao-Chen; Kim, Nam-Hyung

    2013-06-01

    During mitosis nucleation-promoting factors (NPFs) bind to the Arp2/3 complex and activate actin assembly. JMY and WAVE2 are two critical members of the NPFs. Previous studies have demonstrated that NPFs promote multiple processes such as cell migration and cytokinesis. However, the role of NPFs in development of mammalian embryos is still unknown. Results of the present study show that the NPFs JMY and WAVE2 are critical for cytokinesis during development of mouse embryos. Both JMY and WAVE2 are expressed in mouse embryos. After injection of JMY or WAVE2 siRNA, all embryos failed to develop to the morula or blastocyst stages. Moreover, using fluorescence intensity analysis, we found that the expression of actin decreased, and multiple nuclei were observed within a single cell indicating that NPFs-induced actin reduction caused the failure of cell division. In addition, injection of JMY and WAVE2 siRNA also caused ARP2 degradation, indicating that involvement of NPFs in development of mouse embryos is mainly through regulation of ARP2/3-induced actin assembly. Taken together, these data suggested that WAVE2 and JMY are involved in development of mouse embryos, and their regulation may be through a NPFs-Arp2/3-actin pathway.

  19. Divergent RNA Localisation Patterns of Maternal Genes Regulating Embryonic Patterning in the Butterfly Pararge aegeria

    PubMed Central

    Carter, Jean-Michel; Gibbs, Melanie; Breuker, Casper J.

    2015-01-01

    The maternal effect genes responsible for patterning the embryo along the antero-posterior (AP) axis are broadly conserved in insects. The precise function of these maternal effect genes is the result of the localisation of their mRNA in the oocyte. The main developmental mechanisms involved have been elucidated in Drosophila melanogaster, but recent studies have shown that other insect orders often diverge in RNA localisation patterns. A recent study has shown that in the butterfly Pararge aegeria the distinction between blastodermal embryonic (i.e. germ band) and extra-embryonic tissue (i.e. serosa) is already specified in the oocyte during oogenesis in the ovariole, long before blastoderm cellularisation. To examine the extent by which a female butterfly specifies and patterns the AP axis within the region fated to be the germ band, and whether she specifies a germ plasm, we performed in situ hybridisation experiments on oocytes in P. aegeria ovarioles and on early embryos. RNA localisation of the following key maternal effect genes were investigated: caudal (cad), orthodenticle (otd), hunchback (hb) and four nanos (nos) paralogs, as well as TDRD7 a gene containing a key functional domain (OST-HTH/LOTUS) shared with oskar. TDRD7 was mainly confined to the follicle cells, whilst hb was exclusively zygotically transcribed. RNA of some of the nos paralogs, otd and cad revealed complex localisation patterns within the cortical region prefiguring the germ band (i.e. germ cortex). Rather interestingly, otd was localised within and outside the anterior of the germ cortex. Transcripts of nos-O formed a distinct granular ring in the middle of the germ cortex possibly prefiguring the region where germline stem cells form. These butterfly RNA localisation patterns are highly divergent with respect to other insects, highlighting the diverse ways in which different insect orders maternally regulate early embryogenesis of their offspring. PMID:26633019

  20. Early Intervention and Its Effects on Maternal and Child Development.

    ERIC Educational Resources Information Center

    Slaughter, Diana T.

    1983-01-01

    The longitudinal study reported used an intervention strategy to test the thesis that sociocultural background, mediated by maternal attitudes and behaviors, influences Black children's early development in educationally significant ways. Two models of parent education were contrasted: the Levenstein toy demonstration program and the…

  1. [Evoked potentials extraction based on cross-talk resistant adaptive noise cancellation].

    PubMed

    Zeng, Qingning; Li, Ling; Liu, Qinghua; Yao, Dezhong

    2004-06-01

    As Evoked Potentials are much lower in amplitude with respect to the on-going EEC, many trigger-related signals are needed for common averaging technique to enable the extraction of single-trail evoked potentials (EP). How to acquire EP through fewer evocations is an important research project. This paper proposes a cross-talk resistant adaptive noise cancellation method to extract EP. Together with the use of filtering technique and the common averaging technique, the present method needs much less evocations to acquire EP signals. According to the simulating experiment, it needs only several evocations or even only one evocation to get EP signals in good quality.

  2. Do working mothers raise couch potato kids? Maternal employment and children's lifestyle behaviours and weight in early childhood.

    PubMed

    Brown, Judith E; Broom, Dorothy H; Nicholson, Jan M; Bittman, Michael

    2010-06-01

    Alarm about the increasing prevalence of childhood obesity has focussed attention on individual lifestyle behaviours that may contribute to unhealthy weight. More distal predictors such as maternal employment may also be implicated since working mothers have less time to supervise children's daily activities. The research reported here used two waves of data from the Longitudinal Study of Australian Children to investigate whether mothers' hours in paid work shape young children's television viewing, snacking and physical activity, and through those lifestyle behaviours, children's weight at ages 4-5 years and 6-7 years. At both ages, children's lifestyle behaviours were interrelated and associated with weight status. Cross-sectional analysis confirmed small, direct associations between longer hours of maternal employment and child weight at age 4-5 years, but not with child's weight measured two years later. In both the cross-sectional and prospective analyses, the children of mothers who worked part-time watched less television and were less likely to be overweight than children of mothers who were not employed or who worked full-time. While associations were small, they remained significant after adjustment for maternal weight, household income and other factors. The combination of direct and indirect relationships between mothers' work hours and the weight status of their young children provides additional support to calls for family-friendly work policies as an important means for promoting healthy family lifestyles and early childhood wellbeing. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. PITX2 and NODAL expression during axis formation in the early rabbit embryo.

    PubMed

    Plöger, Ruben; Viebahn, Christoph

    2018-04-26

    Attaining molecular and morphological axial polarity during gastrulation is a fundamental early requirement for normal development of the embryo. In mammals, the first morphological sign of the anterior-posterior axis appears anteriorly in the form of the anterior marginal crescent (or anterior visceral endoderm) while in the avian the first such sign is the Koller's sickle at the posterior pole of the embryonic disc. Despite this inverse mode of axis formation many genes and molecular pathways involved in various steps of this process seem to be evolutionary conserved amongst amniotes, the nodal gene being a well-known example with its functional involvement prior and during gastrulation. The pitx2 gene, however, is a new candidate described in the chick as an early marker for anterior-posterior polarity and as regulator of axis formation including twinning. To find out whether pitx2 has retained its inductive and early marker function during the evolution of mammals, this study analyzes pitx2 and nodal expression at parallel stages during formation of the anterior-posterior polarity in the early rabbit embryo using whole-mount in situ hybridization and serial light-microscopical sections. At a late pre-gastrulation stage a localized reduction of nodal expression presages the position of the anterior pole of the embryonic disc and thus serves as the earliest molecular marker of anterior-posterior polarity known so far. pitx2 is expressed in a polarized manner in the anterior marginal crescent and in the posterior half of the embryonic disc during further development only while nodal expression in the anterior segment of the posterior pitx2 expression domain helps to define the so-called anterior streak domain (ASD), a novel progenitor region of the anterior half of the primitive streak. The expression patterns of both genes thus serve as signs of a conserved involvement in early axis formation in amniotes and, possibly, in twinning in mammals as well. Copyright

  4. Maternal postnatal psychiatric symptoms and infant temperament affect early mother-infant bonding.

    PubMed

    Nolvi, Saara; Karlsson, Linnea; Bridgett, David J; Pajulo, Marjukka; Tolvanen, Mimmi; Karlsson, Hasse

    2016-05-01

    Postnatal mother-infant bonding refers to the early emotional bond between mothers and infants. Although some factors, such as maternal mental health, especially postnatal depression, have been considered in relation to mother-infant bonding, few studies have investigated the role of infant temperament traits in early bonding. In this study, the effects of maternal postnatal depressive and anxiety symptoms and infant temperament traits on mother-infant bonding were examined using both mother and father reports of infant temperament. Data for this study came from the first phase of the FinnBrain Birth Cohort Study (n=102, father reports n=62). After controlling for maternal symptoms of depression and anxiety, mother-reported infant positive emotionality, measured by infant smiling was related to better mother-infant bonding. In contrast, infant negative emotionality, measured by infant distress to limitations was related to lower quality of bonding. In regards to father-report infant temperament, only infant distress to limitations (i.e., frustration/anger) was associated with lower quality of mother-infant bonding. These findings underline the importance of infant temperament as one factor contributing to early parent-infant relationships, and counseling parents in understanding and caring for infants with different temperament traits. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Influence of maternal thyroid hormones during gestation on fetal brain development

    PubMed Central

    Moog, Nora K.; Entringer, Sonja; Heim, Christine; Wadhwa, Pathik D.; Kathmann, Norbert; Buss, Claudia

    2015-01-01

    Thyroid hormones (TH) play an obligatory role in many fundamental processes underlying brain development and maturation. The developing embryo/fetus is dependent on maternal supply of TH. The fetal thyroid gland does not commence THs synthesis until mid gestation, and the adverse consequences of severe maternal TH deficiency on offspring neurodevelopment are well established. Recent evidence suggests that even more moderate forms of maternal thyroid dysfunction, particularly during early gestation, may have a long-lasting influence on child cognitive development and risk of neurodevelopmental disorders. Moreover, these observed alterations appear to be largely irreversible after birth. It is, therefore, important to gain a better understanding of the role of maternal thyroid dysfunction on offspring neurodevelopment in terms of the nature, magnitude, time-specificity, and context-specificity of its effects. With respect to the issue of context specificity, it is possible that maternal stress and stress-related biological processes during pregnancy may modulate maternal thyroid function. The possibility of an interaction between the thyroid and stress systems in the context of fetal brain development has, however, not been addressed to date. We begin this review with a brief overview of TH biology during pregnancy and a summary of the literature on its effect on the developing brain. Next, we consider and discuss whether and how processes related to maternal stress and stress biology may interact with and modify the effects of maternal thyroid function on offspring brain development. We synthesize several research areas and identify important knowledge gaps that may warrant further study. The scientific and public health relevance of this review relates to achieving a better understanding of the timing, mechanisms and contexts of thyroid programming of brain development, with implications for early identification of risk, primary prevention and intervention. PMID

  6. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture.

    PubMed

    Miller-Pinsler, Lutfiya; Wells, Peter G

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p<0.001). Maternal pretreatment of C57BL/6 WT dams with 50kU/kg PEG-catalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p<0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p<0.01), and trends for reduced anterior neuropore closure, turning and crown-rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p<0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds

    PubMed Central

    Coen, Olivier; Fiume, Elisa; Xu, Wenjia; De Vos, Delphine; Lu, Jing; Pechoux, Christine; Lepiniec, Loïc

    2017-01-01

    Angiosperm seed development is a paradigm of tissue cross-talk. Proper seed formation requires spatial and temporal coordination of the fertilization products – embryo and endosperm – and the surrounding seed coat maternal tissue. In early Arabidopsis seed development, all seed integuments were thought to respond homogenously to endosperm growth. Here, we show that the sub-epidermal integument cell layer has a unique developmental program. We characterized the cell patterning of the sub-epidermal integument cell layer, which initiates a previously uncharacterized extra cell layer, and identified TRANSPARENT TESTA 16 and SEEDSTICK MADS box transcription factors as master regulators of its polar development and cell architecture. Our data indicate that the differentiation of the sub-epidermal integument cell layer is insensitive to endosperm growth alone and to the repressive mechanism established by FERTILIZATION INDEPENDENT ENDOSPERM and MULTICOPY SUPPRESSOR OF IRA1 Polycomb group proteins. This work demonstrates the different responses of epidermal and sub-epidermal integument cell layers to fertilization. PMID:28348169

  8. Are Early Somatic Embryos of the Norway Spruce (Picea abies (L.) Karst.) Organised?

    PubMed Central

    Petrek, Jiri; Zitka, Ondrej; Adam, Vojtech; Bartusek, Karel; Anjum, Naser A.; Pereira, Eduarda; Havel, Ladislav; Kizek, Rene

    2015-01-01

    Background Somatic embryogenesis in conifer species has great potential for the forestry industry. Hence, a number of methods have been developed for their efficient and rapid propagation through somatic embryogenesis. Although information is available regarding the previous process-mediated generation of embryogenic cells to form somatic embryos, there is a dearth of information in the literature on the detailed structure of these clusters. Methodology/Principal Findings The main aim of this study was to provide a more detailed structure of the embryogenic tissue clusters obtained through the in vitro propagation of the Norway spruce (Picea abies (L.) Karst.). We primarily focused on the growth of early somatic embryos (ESEs). The data on ESE growth suggested that there may be clear distinctions between their inner and outer regions. Therefore, we selected ESEs collected on the 56th day after sub-cultivation to dissect the homogeneity of the ESE clusters. Two colourimetric assays (acetocarmine and fluorescein diacetate/propidium iodide staining) and one metabolic assay based on the use of 2,3,5-triphenyltetrazolium chloride uncovered large differences in the metabolic activity inside the cluster. Next, we performed nuclear magnetic resonance measurements. The ESE cluster seemed to be compactly aggregated during the first four weeks of cultivation; thereafter, the difference between the 1H nuclei concentration in the inner and outer clusters was more evident. There were clear differences in the visual appearance of embryos from the outer and inner regions. Finally, a cluster was divided into six parts (three each from the inner and the outer regions of the embryo) to determine their growth and viability. The innermost embryos (centripetally towards the cluster centre) could grow after sub-cultivation but exhibited the slowest rate and required the longest time to reach the common growth rate. To confirm our hypothesis on the organisation of the ESE cluster, we

  9. Early Cambrian Pentamerous Cubozoan Embryos from South China

    PubMed Central

    Han, Jian; Kubota, Shin; Li, Guoxiang; Yao, Xiaoyong; Yang, Xiaoguang; Shu, Degan; Li, Yong; Kinoshita, Shunichi; Sasaki, Osamu; Komiya, Tsuyoshi; Yan, Gang

    2013-01-01

    Background Extant cubozoans are voracious predators characterized by their square shape, four evenly spaced outstretched tentacles and well-developed eyes. A few cubozoan fossils are known from the Middle Cambrian Marjum Formation of Utah and the well-known Carboniferous Mazon Creek Formation of Illinois. Undisputed cubozoan fossils were previously unknown from the early Cambrian; by that time probably all representatives of the living marine phyla, especially those of basal animals, should have evolved. Methods Microscopic fossils were recovered from a phosphatic limestone in the Lower Cambrian Kuanchuanpu Formation of South China using traditional acetic-acid maceration. Seven of the pre-hatched pentamerous cubozoan embryos, each of which bears five pairs of subumbrellar tentacle buds, were analyzed in detail through computed microtomography (Micro-CT) and scanning electron microscopy (SEM) without coating. Results The figured microscopic fossils are unequivocal pre-hatching embryos based on their spherical fertilization envelope and the enclosed soft-tissue that has preserved key anatomical features arranged in perfect pentaradial symmetry, allowing detailed comparison with modern cnidarians, especially medusozoans. A combination of features, such as the claustrum, gonad-lamella, suspensorium and velarium suspended by the frenula, occur exclusively in the gastrovascular system of extant cubozoans, indicating a cubozoan affinity for these fossils. Additionally, the interior anatomy of these embryonic cubozoan fossils unprecedentedly exhibits the development of many new septum-derived lamellae and well-partitioned gastric pockets unknown in living cubozoans, implying that ancestral cubozoans had already evolved highly specialized structures displaying unexpected complexity at the dawn of the Cambrian. The well-developed endodermic lamellae and gastric pockets developed in the late embryonic stages of these cubozoan fossils are comparable with extant pelagic

  10. A technique for sexing fully developed embryos and early-instar larvae of the gypsy moth

    Treesearch

    Gilbert Levesque

    1963-01-01

    Because variation in sex ratio is an important factor in the population dynamics of the gypsy moth (Porthetria dispar), it is necessary to have some means of determining the ratio of males to females in a population at the beginning of the larval period as well as in the later stages. For determining the sex of fully developed embryos and early-...

  11. Molecular cross-talk of IL-6 in tumors and new progress in combined therapy.

    PubMed

    Song, Zuoqing; Ren, Dian; Xu, Xiaohong; Wang, Yuxin

    2018-06-01

    IL-6, a cytokine activated by type I interferons (IFNs), is encoded by the IL-6 gene, and secreted by T cells and macrophages. It serves many purposes in the human body and is significant to pathological and physiological activities, such as acute inflammatory responses, autoimmune diseases, and tumor formation. The wide range of IL-6 actions on tumors rely on more than one specific pathway. Advances in modern research have determined that to fulfill its complex physiological functions, IL-6 must be involved in cross-talk with a number of other molecular pathways. Therefore, it is important to clarify the comprehensive pathway network associated with IL-6 activity and to explore the mechanisms to inhibit its pathological activity in order to develop corresponding treatment plans. This study is a simple review of the pathological and physiological actions of IL-6 on the human body. It explains in detail the molecular pathways involved in cross-talk between IL-6 and tumors, summarizing and discussing the latest progress made in IL-6-related internal medicine treatments in recent years, including chemotherapies, targeted therapies, and immunotherapies. Our results provide new insight into the treatment of tumors. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  12. Nuancing the role of social skills- a longitudinal study of early maternal psychological distress and adolescent depressive symptoms.

    PubMed

    Nilsen, Wendy; Karevold, Evalill Bølstad; Kaasbøll, Jannike; Kjeldsen, Anne

    2018-04-10

    Social skills might play an important role for the relationship between maternal psychological distress and subsequent development of depressive symptoms. The majority perspective is that social skills is adaptive and protective, but there is a need to also highlight the potential maladaptive effect of social skills in some settings or for some sub groups. The current study examined the longitudinal interplay between maternal-reported psychological distress in early childhood (age 1.5), and offspring reports on social skills and depressive symptoms in early (age 12.5) and middle adolescence (age 14.5). We used data from the Tracking Opportunities and Problems Study (TOPP), a community-based longitudinal study following Norwegian families to examine direct links and interactions between early maternal distress (measured with the Hopkins Symptom Checklist) and early adolescent offspring social skills (measured with the Social Skills Rating System) and middle adolescent depressive symptoms (measured with the Moods and Feelings Questionnaire) in 370 families (in total 740 mothers and adolescents). Exposure to childhood maternal distress predicted offspring depressive symptoms in middle adolescence. Higher social skills in early adolescence predicted lower levels of depressive symptoms for girls, but not for boys, in middle adolescence. An interaction effect was found in which adolescents exposed to early maternal distress who reported high social skills in early adolescence had the highest level of depressive symptoms in middle adolescence. The findings highlight the nuances in the role of social skills for adolescent depressive symptoms - having the potential to be both adaptive as well as maladaptive for some subgroups (those experiencing maternal psychological distress). This has important implications for social skill programs.

  13. Maternal, fetal, and placental conditions associated with medically indicated late preterm and early term delivery: a retrospective study.

    PubMed

    Brown, H K; Speechley, K N; Macnab, J; Natale, R; Campbell, M K

    2016-04-01

    Our objectives were: (1) to examine the association between maternal, fetal, and placental phenotypes of preterm delivery and medically indicated early delivery of singletons during the late preterm and early term periods; and (2) to identify the specific maternal, fetal, and placental conditions associated with these early deliveries. Retrospective study. City of London and Middlesex County, Ontario, Canada. Singleton live deliveries, at 34-41 weeks of gestation to women in London and Middlesex. We obtained data from a city-wide perinatal database (2002-2011; n = 25 699). We used multinomial logistic regression for multivariable analyses. The outcome was the occurrence of medically indicated late preterm (34-36 weeks of gestation) and early term (37-38 weeks of gestation) delivery, versus delivery at full term (39-41 weeks of gestation). After controlling for confounding factors, all phenotypes were associated with increased odds of medically indicated late preterm and early term delivery. Within the maternal phenotype, chronic maternal medical conditions were associated with increased odds of medically indicated early term delivery (e.g. for gastrointestinal disease, adjusted odds ratio, aOR 1.72, 95% CI 1.47-2.00; for anaemia, aOR 1.40, 95% CI 1.20-1.63), but not late preterm delivery. The aetiology of medically indicated early delivery close to full term is heterogeneous. Patterns of associations suggest slightly different conditions underlying the late preterm and early term phenotypes, with chronic maternal medical conditions being associated with early term delivery but not with late preterm delivery. These results have implications for the prevention of early delivery as well as the identification of high-risk groups among those born early. The aetiology of medically indicated late preterm and early term delivery is heterogeneous. © 2015 Royal College of Obstetricians and Gynaecologists.

  14. Recognizing Maternal Depressive Symptoms: An Opportunity to Improve Outcomes in Early Intervention Programs.

    PubMed

    Beeber, Linda S; Meltzer-Brody, Samantha; Martinez, Maria; Matsuda, Yui; Wheeler, Anne C; Mandel, Marcia; LaForett, Dore; Waldrop, Julee

    2017-04-01

    Objective A higher rate of depressive symptoms is found among mothers of children with disabilities compared to other parents. However, there is a lack of study of mothers with children <3 years of age participating in Early Intervention (EI) programs. This study aims to more fully describe the extent of mood disorders in these mothers including estimated prevalence, severity and factors associated with maternal mental health, using gold standard clinical diagnostic and symptom measures, and test models associating depressive symptoms with contextual factors and child behavior. Methods A cross-sectional study was conducted with 106 women who had at least one child enrolled in EI. Mothers were interviewed and completed reliable, valid measures to evaluate mental health, health status, family conflict, parent-child interaction, self-efficacy, social support, child behavioral problems, hardship, endangerment, and child disability. Descriptive statistics and multivariate analyses were performed. Results We found 8 % of participants met all criteria for a Major Depressive Episode (MDE) with 44 % of the sample reporting a past episode and 43 % endorsing recurrent episodes. Using the CES-D to assess depressive symptom severity approximately 34 % of mothers screened in a clinically significant range. Using linear regression to predict severity of current depressive symptoms demonstrated that current depression severity was primarily predicted by poorer maternal health status, lower self-efficacy and past MDE (p < 0.05). Conclusions for practice A brief assessment of maternal mood, health and self-efficacy are important factors to assess when evaluating how to support mothers of children in EI.

  15. Behavior problems in late childhood: the roles of early maternal attachment and teacher-child relationship trajectories.

    PubMed

    O'Connor, Erin E; Collins, Brian A; Supplee, Lauren

    2012-01-01

    The purposes of the current study were: (1) to examine the roles of early maternal attachment relationships and teacher-child relationships during childhood for externalizing and internalizing behaviors in late childhood, and (2) to investigate teacher-child relationships, as well as externalizing and internalizing behaviors in early childhood as possible mechanisms linking early maternal attachment relationships to behavior problems in late childhood. Longitudinal data from the National Institute of Child Health and Human Development Early Child Care Research Network Study of Early Child Care and Youth Development (N = 1140 mothers and children) were used in this investigation. There were three main findings. First, insecure/other maternal attachment relationships in early childhood (i.e., 36 months) were associated with externalizing and internalizing behaviors in late childhood (Grade 5). Second, elevated levels of teacher-child conflict during childhood were associated with externalizing behaviors in late childhood whereas low levels of teacher-child closeness were associated with internalizing behaviors. Third, the effects of insecure/other attachment on externalizing and internalizing behaviors in late childhood were mediated through teacher-child relationships during childhood and early externalizing and internalizing behaviors. Implications for attachment theory are discussed.

  16. Maternal Smoking and the Risk of Cancer in Early Life - A Meta-Analysis.

    PubMed

    Rumrich, Isabell Katharina; Viluksela, Matti; Vähäkangas, Kirsi; Gissler, Mika; Surcel, Heljä-Marja; Hänninen, Otto

    2016-01-01

    In spite of the well-known harmful effects on the fetus, many women continue smoking during pregnancy. Smoking as an important source of toxic chemicals may contribute to the developmental origin of diseases. The aim of this work was to pursue the possible association between maternal smoking and cancer in early life. Specifically, we wanted to identify the associated early life cancer types, and to quantify the associations. In a systematic literature search 825 articles were identified in PubMed and Web of Science, and 55 more through the reference lists. Of these 62 fulfilled the criteria for inclusion in meta-analyses. Using Mantel-Haenszel or DerSimonian and Laird method, depending on heterogeneity of the studies, pooled estimates and 95% confidence intervals for eight cancer types were calculated. Smoking during pregnancy was associated with an increased risk for for brain and central nervous system tumors (OR = 1.09; 95% CI = 1.02-1.17). Although the risk for lymphoma was also associated (OR = 1.21; 95% CI = 1.05-1.34), it did not hold up in subgroup analyses. Leukemia was not found to be associated with maternal smoking. Five other cancer types (bone, soft tissue, renal, hepatic, and germ cell cancer) were also examined, but the number of studies was too limited to exclude the possibility of maternal smoking as a risk factor for cancer in offspring. According to our meta-analyses, maternal smoking is associated with nervous system cancers, but not with leukemia in early life. Confirming or rejecting associations of maternal smoking with lymphoma and the five other cancer types requires further studies.

  17. Longitudinal associations between maternal feeding and overweight in low-income toddlers.

    PubMed

    Lumeng, Julie C; Kaciroti, Niko; Retzloff, Lauren; Rosenblum, Katherine; Miller, Alison L

    2017-06-01

    Maternal feeding is a frequent intervention target for the prevention of early childhood obesity but longitudinal associations between feeding and child overweight are poorly understood. This observational cohort study sought to examine the cross-lagged associations between maternal feeding and overweight across ages 21, 27, and 33 months. Feeding was measured by maternal self-report (n = 222) at each age. Child weight and length were measured. Cross-lagged analysis was used to evaluate longitudinal associations between feeding and overweight, adjusting for infant birth weight, maternal body mass index, maternal education, and maternal depressive symptoms. The sample was 50.5% white, 52.3% male and 37.8% of mothers had a high school education or less. A total of 30.6%, 29.2%, and 26.3% of the sample was overweight at each age, respectively. Pressuring to Finish, Restrictive with regard to Amount, Restrictive with regard to Diet Quality, Laissez-Faire with regard to Diet Quality, Responsiveness to Satiety, Indulgent Permissive, Indulgent Coaxing, Indulgent Soothing, and Indulgent Pampering each tracked strongly across toddlerhood. There were no significant associations between maternal feeding and child overweight either in cross-sectional or cross-lagged associations. Our results do not support a strong causal role for feeding in childhood overweight. Future work longitudinal work should consider alternative approaches to conceptualizing feeding and alternative measurement approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Longitudinal Associations between Maternal Feeding and Overweight in Low-Income Toddlers

    PubMed Central

    Lumeng, Julie C.; Kaciroti, Niko; Retzloff, Lauren; Rosenblum, Katherine; Miller, Alison L.

    2017-01-01

    Maternal feeding is a frequent intervention target for the prevention of early childhood obesity but longitudinal associations between feeding and child overweight are poorly understood. This observational cohort study sought to examine the cross-lagged associations between maternal feeding and overweight across ages 21, 27, and 33 months. Feeding was measured by maternal self-report (n=222) at each age. Child weight and length were measured. Cross-lagged analysis was used to evaluate longitudinal associations between feeding and overweight, adjusting for infant birth weight, maternal body mass index, maternal education, and maternal depressive symptoms. The sample was 50.5% white, 52.3% male and 37.8% of mothers had a high school education or less. A total of 30.6%, 29.2%, and 26.3% of the sample was overweight at each age, respectively. Pressuring to Finish, Restrictive with regard to Amount, Restrictive with regard to Diet Quality, Laissez-Faire with regard to Diet Quality, Responsiveness to Satiety, Indulgent Permissive, Indulgent Coaxing, Indulgent Soothing, and Indulgent Pampering each tracked strongly across toddlerhood. There were no significant associations between maternal feeding and child overweight either in cross-sectional or cross-lagged associations. Our results do not support a strong causal role for feeding in childhood overweight. Future work longitudinal work should consider alternative approaches to conceptualizing feeding and alternative measurement approaches. PMID:28212827

  19. Early Maternal Employment and Children's School Readiness in Contemporary Families

    ERIC Educational Resources Information Center

    Lombardi, Caitlin McPherran; Coley, Rebekah Levine

    2014-01-01

    This study assessed whether previous findings linking early maternal employment to lower cognitive and behavioral skills among children generalized to modern families. Using a representative sample of children born in the United States in 2001 (N = 10,100), ordinary least squares regression models weighted with propensity scores assessed links…

  20. A Cascade of Sequentially Expressed Sucrose Transporters in the Seed Coat and Endosperm Provides Nutrition for the Arabidopsis Embryo[OPEN

    PubMed Central

    Chen, Li-Qing; Lin, I Winnie; Qu, Xiao-Qing; Sosso, Davide; McFarlane, Heather E.; Londoño, Alejandra; Samuels, A. Lacey; Frommer, Wolf B.

    2015-01-01

    Developing plant embryos depend on nutrition from maternal tissues via the seed coat and endosperm, but the mechanisms that supply nutrients to plant embryos have remained elusive. Sucrose, the major transport form of carbohydrate in plants, is delivered via the phloem to the maternal seed coat and then secreted from the seed coat to feed the embryo. Here, we show that seed filling in Arabidopsis thaliana requires the three sucrose transporters SWEET11, 12, and 15. SWEET11, 12, and 15 exhibit specific spatiotemporal expression patterns in developing seeds, but only a sweet11;12;15 triple mutant showed severe seed defects, which include retarded embryo development, reduced seed weight, and reduced starch and lipid content, causing a “wrinkled” seed phenotype. In sweet11;12;15 triple mutants, starch accumulated in the seed coat but not the embryo, implicating SWEET-mediated sucrose efflux in the transfer of sugars from seed coat to embryo. This cascade of sequentially expressed SWEETs provides the feeding pathway for the plant embryo, an important feature for yield potential. PMID:25794936