Science.gov

Sample records for early embryonic growth

  1. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    PubMed

    Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W

    2012-01-01

    Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility

  2. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa).

    PubMed

    Smith, Geoffrey D; Hopkins, Gareth R; Mohammadi, Shabnam; M Skinner, Heather; Hansen, Tyler; Brodie, Edmund D; French, Susannah S

    2015-07-01

    We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21°C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Profiles of mRNA expression of related genes in the duck hypothalamus-pituitary growth axis during embryonic and early post-hatch development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Song, Chi; Xu, Wenjuan; Ji, Gaige; Zhu, Chunhong; Shu, Jingting; Li, Huifang

    2015-03-15

    In this study, the ontogeny of body and liver weight and the pattern of related gene mRNA expression in the hypothalamus-pituitary growth axis (HPGA) of two different duck breeds (Anas platyrhynchos domestica) were compared during embryonic and post-hatch development. Duck hypothalamic growth hormone release hormone (GHRH), somatostatin (SS), pituitary growth hormone (GH), liver growth hormone receptor (GHR) and insulin-like growth factor-I (IGF-1) mRNA were first detected on the 13th embryonic day. During early duck development, SS maintained a lower expression status, whereas the other four genes exhibited highly significant variations in an age-specific manner. Highly significant breed specificity was observed with respect to hepatic IGF-1 mRNA expression, which showed a significant breed-age interaction effect. Compared with previous studies on chickens, significant species differences were observed regarding the mRNA expression of bird embryonic HPGA-related genes. During early development, highly significant breed and age specificity were observed with respect to developmental changes in body and liver weight, and varying degrees of significant linear correlation were found between these performances and the mRNA expression of HPGA-related genes in the duck HPGA. These results suggest that different genetic backgrounds may lead to differences in duck growth and HPGA-related gene mRNA expression, and the differential mRNA expression of related genes in the duck HPGA may be particularly important in the early growth of ducks. Furthermore, hepatic IGF-1 mRNA expression presented highly significant breed specificity, and evidence suggests the involvement of hepatic IGF-1 in mediating genetic effects on embryo and offspring growth in ducks. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. In vivo loss of function study reveals the short stature homeobox-containing (shox) gene plays indispensable roles in early embryonic growth and bone formation in zebrafish.

    PubMed

    Sawada, Rie; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shimizu, Toshiaki

    2015-02-01

    Congenital loss of the SHOX gene is considered to be a genetic cause of short stature phenotype in Turner syndrome and Leri-Weill dyschondrosteosis patients. Though SHOX expression initiates during early fetal development, little is known about the embryonic roles of SHOX. The evolutionary conservation of the zebrafish shox gene and the convenience of the early developmental stages for analyses make zebrafish a preferred model. Here, we characterized structure, expression, and developmental roles of zebrafish shox through a loss-of-function approach. We found a previously undiscovered Shox protein that has both a homeodomain and an OAR-domain in zebrafish. The shox transcript emerged during the segmentation period and it increased in later stages. The predominant domains of shox expression were mandibular arch, pectoral fin, anterior notochord, rhombencephalon, and mesencephalon, suggesting that Shox is involved in bone and neural development. Translational blockade of Shox mRNA by an antisense morpholino oligo delayed embryonic growth, which was restored by the co-overexpression of morpholino-resistant Shox mRNA. At later stages, impaired Shox expression markedly delayed the calcification process in the anterior vertebral column and craniofacial bones. Our data demonstrate evolutionarily conserved Shox plays roles in early embryonic growth and in later bone formation. © 2014 Wiley Periodicals, Inc.

  5. Expression analysis of the insulin-like growth factors I and II during embryonic and early larval development of turbot ( Scophthalmus maximus)

    NASA Astrophysics Data System (ADS)

    Wen, Haishen; Qi, Qian; Hu, Jian; Si, Yufeng; He, Feng; Li, Jifang

    2015-04-01

    The insulin-like growth factors I and II (IGF-I and IGF-II) are important proteins involved in fish growth and development. Here, we report the isolation of IGF-II and expression analysis of IGFs in turbot Scophthalmus maximus, aiming to clarify their function in embryonic and larval development of fish. The deduced IGF-II gene is 808 bp in full length, which encodes a protein of 219 amino acids and is 93% similar with that of Paralichthys olicaceus in amino acid sequence. The tissue abundance and the expression pattern of IGFs in a turbot at early development stages were investigated via reverse transcription-polymer chain reaction. Result showed that the IGF-I and IGF-II genes were widely expressed in tissues of S. maximus. IGF-I was detected in all tissues except intestines with the highest level in liver, while IGF-II transcript presented in all tissues except muscle. At the stages of embryonic and larval development, the mRNA levels of IGFs sharply increased from the stage of unfertilized egg to post larva, followed by a decrease with larval development. However, there was an increase in IGF-I at the embryonic stage and IGF-II at the gastrula stage, respectively. These results suggested that IGFs play important roles in cell growth and division of the turbot. Our study provides reference data for further investigation of growth regulation in turbot, which can guarantee better understanding of the physiological role that IGFs play in fish.

  6. Remodelling of the bovine placenta: Comprehensive morphological and histomorphological characterization at the late embryonic and early accelerated fetal growth stages.

    PubMed

    Estrella, Consuelo Amor S; Kind, Karen L; Derks, Anna; Xiang, Ruidong; Faulkner, Nicole; Mohrdick, Melina; Fitzsimmons, Carolyn; Kruk, Zbigniew; Grutzner, Frank; Roberts, Claire T; Hiendleder, Stefan

    2017-07-01

    Placental function impacts growth and development with lifelong consequences for performance and health. We provide novel insights into placental development in bovine, an important agricultural species and biomedical model. Concepti with defined genetics and sex were recovered from nulliparous dams managed under standardized conditions to study placental gross morphological and histomorphological parameters at the late embryo (Day48) and early accelerated fetal growth (Day153) stages. Placentome number increased 3-fold between Day48 and Day153. Placental barrier thickness was thinner, and volume of placental components, and surface areas and densities were higher at Day153 than Day48. We confirmed two placentome types, flat and convex. At Day48, there were more convex than flat placentomes, and convex placentomes had a lower proportion of maternal connective tissue (P < 0.01). However, this was reversed at Day153, where convex placentomes were lower in number and had greater volume of placental components (P < 0.01- P < 0.001) and greater surface area (P < 0.001) than flat placentomes. Importantly, embryo (r = 0.50) and fetal (r = 0.30) weight correlated with total number of convex but not flat placentomes. Extensive remodelling of the placenta increases capacity for nutrient exchange to support rapidly increasing embryo-fetal weight from Day48 to Day153. The cellular composition of convex placentomes, and exclusive relationships between convex placentome number and embryo-fetal weight, provide strong evidence for these placentomes as drivers of prenatal growth. The difference in proportion of maternal connective tissue between placentome types at Day48 suggests that this tissue plays a role in determining placentome shape, further highlighting the importance of early placental development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Embryonic vaccines against cancer: an early history.

    PubMed

    Brewer, Bradley G; Mitchell, Robert A; Harandi, Amir; Eaton, John W

    2009-06-01

    Almost 100 years have passed since the seminal observations of Schöne showing that vaccination of animals with fetal tissue would prevent the growth of transplantable tumors. Many subsequent reports have affirmed the general idea that immunologic rejection of transplantable tumors, as well as prevention of carcinogenesis, may be affected by vaccination with embryonic/fetal material. Following a decade of intense research on this phenomenon during approximately 1964-1974, interest appears to have waned. This earlier experimental work may be particularly pertinent in view of the rising interest in so-called cancer stem cells. We believe that further work - perhaps involving the use of embryonic stem cells as immunogens - is warranted and that the results reviewed herein support the concept that vaccination against the appearance of cancers of all kinds is a real possibility.

  8. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest.

    PubMed

    Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph

    2015-01-01

    Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting.

  9. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest

    PubMed Central

    Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph

    2015-01-01

    Background Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. Materials and Methods This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Results Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Conclusion Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting. PMID:26644858

  10. Critical early roles for col27a1a and col27a1b in zebrafish notochord morphogenesis, vertebral mineralization and post-embryonic axial growth.

    PubMed

    Christiansen, Helena E; Lang, Michael R; Pace, James M; Parichy, David M

    2009-12-29

    Fibrillar collagens are well known for their links to human diseases, with which all have been associated except for the two most recently identified fibrillar collagens, type XXIV collagen and type XXVII collagen. To assess functions and potential disease phenotypes of type XXVII collagen, we examined its roles in zebrafish embryonic and post-embryonic development. We identified two type XXVII collagen genes in zebrafish, col27a1a and col27a1b. Both col27a1a and col27a1b were expressed in notochord and cartilage in the embryo and early larva. To determine sites of type XXVII collagen function, col27a1a and col27a1b were knocked down using morpholino antisense oligonucleotides. Knockdown of col27a1a singly or in conjunction with col27a1b resulted in curvature of the notochord at early stages and formation of scoliotic curves as well as dysmorphic vertebrae at later stages. These defects were accompanied by abnormal distributions of cells and protein localization in the notochord, as visualized by transmission electron microscopy, as well as delayed vertebral mineralization as detected histologically. Together, our findings indicate a key role for type XXVII collagen in notochord morphogenesis and axial skeletogenesis and suggest a possible human disease phenotype.

  11. Innovative virtual reality measurements for embryonic growth and development.

    PubMed

    Verwoerd-Dikkeboom, C M; Koning, A H J; Hop, W C; van der Spek, P J; Exalto, N; Steegers, E A P

    2010-06-01

    Innovative imaging techniques, using up-to-date ultrasonic equipment, necessitate specific biometry. The aim of our study was to test the possibility of detailed human embryonic biometry using a virtual reality (VR) technique. In a longitudinal study, three-dimensional (3D) measurements were performed from 6 to 14 weeks gestational age in 32 pregnancies (n = 16 spontaneous conception, n = 16 IVF/ICSI). A total of 125 3D volumes were analysed in the I-Space VR system, which allows binocular depth perception, providing a realistic 3D illusion. Crown-rump length (CRL), biparietal diameter (BPD), occipito-frontal diameter (OFD), head circumference (HC) and abdominal circumference (AC) were measured as well as arm length, shoulder width, elbow width, hip width and knee width. CRL, BPD, OFD and HC could be measured in more than 96% of patients, and AC in 78%. Shoulder width, elbow width, hip width and knee width could be measured in more than 95% of cases, and arm length in 82% of cases. Growth curves were constructed for all variables. Ear and foot measurements were only possible beyond 9 weeks gestation. This study provides a detailed, longitudinal description of normal human embryonic growth, facilitated by a VR system. Growth curves were created for embryonic biometry of the CRL, BPD, HC and AC early in pregnancy and also of several 'new' biometric measurements. Applying virtual embryoscopy will enable us to diagnose growth and/or developmental delay earlier and more accurately. This is especially important for pregnancies at risk of severe complications, such as recurrent late miscarriage and early growth restriction.

  12. Regulation of bone morphogenetic proteins in early embryonic development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  13. Virtual reality imaging techniques in the study of embryonic and early placental health.

    PubMed

    Rousian, Melek; Koster, Maria P H; Mulders, Annemarie G M G J; Koning, Anton H J; Steegers-Theunissen, Régine P M; Steegers, Eric A P

    2018-04-01

    Embryonic and placental growth and development in the first trimester of pregnancy have impact on the health of the fetus, newborn, child and even the adult. This emphasizes the importance of this often neglected period in life. The development of three-dimensional transvaginal ultrasonography in combination with virtual reality (VR) opens the possibility of accurate and reliable visualization of embryonic and placental structures with real depth perception. These techniques enable new biometry and volumetry measurements that contribute to the knowledge of the (patho)physiology of embryonic and early placental health. Examples of such measurements are the length of complex structures like the umbilical cord, vitelline duct, limbs and cerebellum or the volume of the whole embryo and brain cavities. Moreover, for the first time, embryos can now be staged in vivo (Carnegie stages) and vasculature volumes of both the embryo and the early placenta can be measured when VR is combined with power Doppler signals. These innovative developments have already been used to study associations between periconceptional maternal factors, such as age, smoking, alcohol use, diet and vitamin status, and embryonic and early placental growth and development. Future studies will also focus on the identification of abnormal embryonic and early placental development already in the earliest weeks of pregnancy, which provides opportunities for early prevention of pregnancy complications. Copyright © 2018 IFPA, Elsevier Ltd. Published by Elsevier Ltd.. All rights reserved.

  14. Maternal Lifestyle Impairs Embryonic Growth: The Rotterdam Periconception Cohort.

    PubMed

    Van Dijk, Matthijs R; Borggreven, Nicole V; Willemsen, Sten P; Koning, Anton H J; Steegers-Theunissen, Régine P M; Koster, Maria P H

    2018-06-01

    Previously, embryonic growth has been assumed to be uniform, but in recent years, it has become more clear that genetic and environmental factors may influence the intrauterine environment and therefore embryonic growth trajectories as well as pregnancy course and outcome. The objective of this study was to investigate associations between modifiable maternal nutrition and lifestyle factors during the periconception period and embryonic growth. We established a prospective cohort including 342 women less than 13 weeks pregnant. At enrollment, women filled out a questionnaire regarding demographic and medical data and a validated food frequency questionnaire. Participants received multiple 3-dimensional ultrasound examinations up until the 12th week of pregnancy, and crown-rump length (CRL) and embryonic volume (EV) were measured offline using V-Scope Virtual Reality software (version 1.0.0) in a Barco I-Space. Associations between maternal periconception vegetable and fruit intake, folic acid supplement use, smoking, and alcohol consumption and embryonic growth measurements were assessed by linear mixed models adjusted for potential confounders. No or postconception initiation of folic acid supplement use was significantly associated with a 0.76 mm (-7.8%) and 1.63 mm (-3.7%) smaller CRL and a 0.01 cm 3 (-19.5%) and 0.86 cm 3 (-12.2%) smaller EV at 7 +0 and 11 +0 weeks of gestation, respectively. Smoking, alcohol consumption, and inadequate fruit and vegetable intake showed weaker associations with embryonic growth parameters. These results emphasize the influence of periconceptional maternal folic acid supplement use on embryonic growth. Results regarding maternal nutrition and lifestyle factors also suggest an association with embryonic growth, but this has to be confirmed in a larger study.

  15. The roles of ERAS during cell lineage specification of mouse early embryonic development.

    PubMed

    Zhao, Zhen-Ao; Yu, Yang; Ma, Huai-Xiao; Wang, Xiao-Xiao; Lu, Xukun; Zhai, Yanhua; Zhang, Xiaoxin; Wang, Haibin; Li, Lei

    2015-08-01

    Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development. © 2015 The Authors.

  16. GLUT3 gene expression is critical for embryonic growth, brain development and survival.

    PubMed

    Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U

    2014-04-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. GLUT3 Gene Expression is Critical for Embryonic Growth, Brain Development and Survival

    PubMed Central

    Carayannopoulos, Mary O.; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U.

    2015-01-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. PMID:24529979

  18. Growth enhancement by embryonic fibroblasts upon cotransplantation of noncommitted pig embryonic tissues with fully committed organs.

    PubMed

    Cohen, Sivan; Tchorsh-Yutsis, Dalit; Aronovich, Anna; Tal, Orna; Eventov-Friedman, Smadar; Katchman, Helena; Klionsky, Yael; Shezen, Elias; Reisner, Yair

    2010-05-27

    We recently defined the optimal gestational time windows for the transplantation of several embryonic tissues. We showed that the liver and kidney obtained from E28 pig embryos can grow and differentiate normally after transplantation, whereas 1 week earlier in gestation, these tissues develop into teratoma-like structures or fibrotic mass. In this study, we investigated whether cotransplantation of E28 with E21 tissue could control its tumorogenic potential, or alternatively whether the stem cells derived from the earlier tissue contribute to the growth of the more committed one. Pig embryonic precursors from E21 and E28 gestational age were transplanted alone or together, into nonobese diabetic/severe combined immunodeficiency mice, and their growth and differentiation was evaluated by immunohistology. In situ analysis, based on sex disparity between the E21 and E28 tissues, was used to identify the tissue source. In some experiments, mouse embryonic fibroblasts (MEF) were cotransplanted with E28 liver, and their effect was evaluated. E28 tissues could not abrogate the propensity of the cells within the undifferentiated tissue to form teratoma-like structures. However, E21 kidney or liver tissue markedly enhanced the growth and function of E28 kidney, liver, and heart grafts. Moreover, similar growth enhancement was observed on coimplantation of E28 liver tissue with MEF or on infusion of MEF culture medium, indicating that this enhancement is likely mediated through soluble factors secreted by the fibroblasts. Our results suggest a novel approach for the enhancement of growth and differentiation of transplanted embryonic tissues by the use of soluble factors secreted by embryonic fibroblasts.

  19. Ca2+ signalling and early embryonic patterning during zebrafish development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2007-09-01

    1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.

  20. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish

    PubMed Central

    Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui

    2013-01-01

    Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556

  1. [Establishment of sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo].

    PubMed

    Jiang, Hua; Feng, You-Ji; Xie, Yi; Han, Jin-Lan; Wang, Zack; Chen, Tong

    2008-10-14

    To establish a sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo. Human embryonic stem were (hESCs) were cultured on the mouse embryo fibroblasts and then were induced to differentiate to form three-dimensional EB. The hEBs were cultured in media containing various angiogenesis-related factors: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), endostatin, angiostatin, and platelet factor (PF)-4 of different concentrations for 3 days to observe the sprouting of the hEBs. 3, 3, 3', 3'-tetramethylindo-carbocyanine perchlorate labeled acetylated low density lipoprotein (Dil-AcLDL) was added onto the hEBs foe 4 h Immunofluorescence assay was used to observe if Dil-AcLDL was absorbed and if CD31 was expressed so as to determine the existence of embryonic endothelial cells in the sprouting structures. The ideal culturing condition was analyzed. The differentiated EBs formed sprouting structures in the collagen I matrix containing VEGF and FGF. The sprouts among individual EBs were able to link to each other and form vascular network-like structures. In the presence of VEGF and FGF, the sprouts branching from the EBs assimilated Dil-AcLDL, expressed CD31 and formed a 3-dimensional cylindrical organization. The concentrations of growth factors ideally stimulating sprouting growth were 100 ng/ml of VEGF and 50 ng/ml of FGF. The networks among the EBs were abolished by the angiostatin, endostatin, and PF4. The sprouting from hEBs accumulates embryonic endothelial cells and the sprouting network-like structures are indeed endothelial in nature. Inducing of sprouting EBs is an ideal model that mimics early embryonic vasculogenesis in humans.

  2. Aberrant activation of the human sex-determining gene in early embryonic development results in postnatal growth retardation and lethality in mice.

    PubMed

    Kido, Tatsuo; Sun, Zhaoyu; Lau, Yun-Fai Chris

    2017-06-23

    Sexual dimorphisms are prevalent in development, physiology and diseases in humans. Currently, the contributions of the genes on the male-specific region of the Y chromosome (MSY) in these processes are uncertain. Using a transgene activation system, the human sex-determining gene hSRY is activated in the single-cell embryos of the mouse. Pups with hSRY activated (hSRY ON ) are born of similar sizes as those of non-activated controls. However, they retard significantly in postnatal growth and development and all die of multi-organ failure before two weeks of age. Pathological and molecular analyses indicate that hSRY ON pups lack innate suckling activities, and develop fatty liver disease, arrested alveologenesis in the lung, impaired neurogenesis in the brain and occasional myocardial fibrosis and minimized thymus development. Transcriptome analysis shows that, in addition to those unique to the respective organs, various cell growth and survival pathways and functions are differentially affected in the transgenic mice. These observations suggest that ectopic activation of a Y-located SRY gene could exert male-specific effects in development and physiology of multiple organs, thereby contributing to sexual dimorphisms in normal biological functions and disease processes in affected individuals.

  3. Growth trajectories of the human embryonic head and periconceptional maternal conditions.

    PubMed

    Koning, I V; Baken, L; Groenenberg, I A L; Husen, S C; Dudink, J; Willemsen, S P; Gijtenbeek, M; Koning, A H J; Reiss, I K M; Steegers, E A P; Steegers-Theunissen, R P M

    2016-05-01

    studied in the general population. Assessment of growth trajectories of the embryonic head may be of benefit in future early antenatal care. This study was funded by the Department of Obstetrics and Gynaecology, Erasmus MC University Medical Centre and Sophia Foundation for Medical Research, Rotterdam, The Netherlands (SSWO grant number 644). No competing interests are declared. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Behavioral development in embryonic and early juvenile cuttlefish (Sepia officinalis).

    PubMed

    O'Brien, Caitlin E; Mezrai, Nawel; Darmaillacq, Anne-Sophie; Dickel, Ludovic

    2017-03-01

    Though a mollusc, the cuttlefish Sepia officinalis possesses a sophisticated brain, advanced sensory systems, and a large behavioral repertoire. Cuttlefish provide a unique perspective on animal behavior due to their phylogenic distance from more traditional (vertebrate) models. S. officinalis is well-suited to addressing questions of behavioral ontogeny. As embryos, they can perceive and learn from their environment and experience no direct parental care. A marked progression in learning and behavior is observed during late embryonic and early juvenile development. This improvement is concomitant with expansion and maturation of the vertical lobe, the cephalopod analog of the mammalian hippocampus. This review synthesizes existing knowledge regarding embryonic and juvenile development in this species in an effort to better understand cuttlefish behavior and animal behavior in general. It will serve as a guide to future researchers and encourage greater awareness of the utility of this species to behavioral science. © 2016 Wiley Periodicals, Inc.

  5. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    PubMed

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  6. The influence of IVF/ICSI treatment on human embryonic growth trajectories.

    PubMed

    Eindhoven, S C; van Uitert, E M; Laven, J S E; Willemsen, S P; Koning, A H J; Eilers, P H C; Exalto, N; Steegers, E A P; Steegers-Theunissen, R P M

    2014-12-01

    groups (βIVF/ICSI = 6 g; P = 0.36 and βIVF/ICSI = 80 g; P = 0.24, respectively). Variations in embryonic growth trajectories of spontaneously conceived pregnancies with reliable pregnancy dating may partially be a result of less precise pregnancy dating and differences in endometrium receptivity compared with IVF/ICSI pregnancies. The absence of a significant difference in embryonic and fetal growth trajectories suggests safety of IVF/ICSI treatment with regard to early embryonic growth. However, further research is warranted to ascertain the influence of IVF/ICSI treatments in a larger study population, and to estimate the impact of the underlying causes of the subfertility and other periconceptional exposures on human embryonic and fetal growth trajectories. This study was supported by the Department of Obstetrics and Gynaecology of the Erasmus MC, University Medical Centre. No competing interests are declared. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Dual effects of fluoxetine on mouse early embryonic development.

    PubMed

    Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50μM) for different durations. When late 2-cells were incubated with 5μM fluoxetine for 6h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5μM) over 24h showed a reduction in blastocyst formation. The addition of fluoxetine (5μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K(+) channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ~30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Adrenal hormones interact with sympathetic innervation to modulate growth of embryonic heart in oculo.

    PubMed

    Tucker, D C; Torres, A

    1992-02-01

    To allow experimental manipulation of adrenal hormone and autonomic influences on developing myocardium without alteration of hemodynamic load, embryonic rat heart was cultured in the anterior eye chamber of an adult rat. Sympathetic innervation of embryonic day 12 heart grafts was manipulated by surgical sympathectomy of one eye chamber in each host rat. Adrenal hormone exposure was manipulated by host adrenal medullectomy (MEDX) in experiment 1 and by host adrenalectomy (ADX) in experiment 2. In experiment 1, whole heart grafts were larger in MEDX than in sham-operated hosts by 8 wk in oculo (6.14 +/- 0.71 vs. 5.09 +/- 0.69 mm2 with innervation intact and 7.97 +/- 2.07 vs. 3.09 +/- 0.63 mm2 with sympathetic innervation prevented). In experiment 2, host ADX increased growth of embryonic day 12 ventricles grafted into sympathectomized eye chambers (0.69 +/- 0.10 vs. 0.44 +/- 0.04 mm2) but did not affect growth of grafts in intact eye chambers (0.85 +/- 0.09 vs. 1.05 +/- 0.15 mm2). Corticosterone replacement (4 mg/day) entirely reversed the effect of host ADX on graft growth (superior cervical ganglionectomy, 0.47 +/- 0.03 mm2; intact eye chambers, 0.90 +/- 0.91 mm2). Beating rate of grafts was not affected by adrenal hormone manipulations. These experiments indicate that the compromised growth of embryonic heart grafts placed in sympathectomized eye chambers requires exposure to adult levels of glucocorticoids during the early days after grafting. These results suggest that interactions between neural and hormonal stimulation influence cardiac growth in the in oculo culture system and during normal development.

  9. Dual effects of fluoxetine on mouse early embryonic development

    SciTech Connect

    Kim, Chang-Woon; Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723; Choe, Changyong

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetinemore » (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  10. Gene function in early mouse embryonic stem cell differentiation

    PubMed Central

    Sene, Kagnew Hailesellasse; Porter, Christopher J; Palidwor, Gareth; Perez-Iratxeta, Carolina; Muro, Enrique M; Campbell, Pearl A; Rudnicki, Michael A; Andrade-Navarro, Miguel A

    2007-01-01

    Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and

  11. Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes.

    PubMed

    Xu, Ning; Chua, Angela K; Jiang, Hong; Liu, Ning-Ai; Goodarzi, Mark O

    2014-08-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study.

  12. Early Embryonic Androgen Exposure Induces Transgenerational Epigenetic and Metabolic Changes

    PubMed Central

    Xu, Ning; Chua, Angela K.; Jiang, Hong; Liu, Ning-Ai

    2014-01-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study. PMID:24992182

  13. Mineralization and growth of cultured embryonic skeletal tissue in microgravity

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1999-01-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  14. Video bioinformatics analysis of human embryonic stem cell colony growth.

    PubMed

    Lin, Sabrina; Fonteno, Shawn; Satish, Shruthi; Bhanu, Bir; Talbot, Prue

    2010-05-20

    Because video data are complex and are comprised of many images, mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article, we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments, hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies, recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth, three recipes were created. The first segmented the image into the colony and background, the second enhanced the image to define colonies throughout the video sequence accurately, and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes, the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared, results were virtually identical, indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition, other video bioinformatics recipes can be developed in the future for other cell processes such as migration, apoptosis, and cell adhesion.

  15. In vitro differentiation of embryonic stem cells into hepatocytes induced by fibroblast growth factors and bone morphological protein-4.

    PubMed

    Zhou, Qing-Jun; Huang, Yan-Dan; Xiang, Li-Xin; Shao, Jian-Zhong; Zhou, Guo-Shun; Yao, Hang; Dai, Li-Cheng; Lu, Yong-Liang

    2007-01-01

    The feasibility of transforming embryonic endoderm into different cell types is tightly controlled by mesodermal and septum transversumal signalings during early embryonic development. Here, an induction protocol tracing embryonic liver development was designed, in which, three growth factors, acid fibroblast growth factor, basic fibroblast growth factor and bone morphological protein-4 that secreted from pre-cardiac mesoderm and septum transversum mesenchyme, respectively, were employed to investigate their specific potency of modulating the mature hepatocyte proportion during the differentiation process. Results showed that hepatic differentiation took place spontaneously at a low level, however, supplements of the three growth factors gave rise to a significant up-regulation of mature hepatocytes. Bone morphological protein-4 highlighted the differentiation ratio to 40-55%, showing the most effective promotion, and also exhibited a synergistic effect with the other two fibroblast factors, whereas no similar phenomenon was observed between the other two factors, which was reported for the first time. Our study not only provides a high-performance system of embryonic stem cells differentiating into hepatocytes, which would supply a sufficient hepatic population for related studies, but also make it clear of the inductive effects of three important growth factors, which could support for further investigation on the mechanisms of mesodermal and septumal derived signalings that regulate hepatic differentiation.

  16. Localization of basic fibroblast growth factor binding sites in the chick embryonic neural retina.

    PubMed

    Cirillo, A; Arruti, C; Courtois, Y; Jeanny, J C

    1990-12-01

    We have investigated the localization of basic fibroblast growth factor (bFGF) binding sites during the development of the neural retina in the chick embryo. The specificity of the affinity of bFGF for its receptors was assessed by competition experiments with unlabelled growth factor or with heparin, as well as by heparitinase treatment of the samples. Two different types of binding sites were observed in the neural retina by light-microscopic autoradiography. The first type, localized mainly to basement membranes, was highly sensitive to heparitinase digestion and to competition with heparin. It was not developmentally regulated. The second type of binding site, resistant to heparin competition, appeared to be associated with retinal cells from the earliest stages studied (3-day-old embryo, stages 21-22 of Hamburger and Hamilton). Its distribution was found to vary during embryonic development, paralleling layering of the neural retina. Binding of bFGF to the latter sites was observed throughout the retinal neuroepithelium at early stages but displayed a distinct pattern at the time when the inner and outer plexiform layers were formed. During the development of the inner plexiform layer, a banded pattern of bFGF binding was observed. These bands, lying parallel to the vitreal surface, seemed to codistribute with the synaptic bands existing in the inner plexiform layer. The presence of intra-retinal bFGF binding sites whose distribution varies with embryonic development suggests a regulatory mechanism involving differential actions of bFGF on neural retinal cells.

  17. Early first trimester maternal 'high fish and olive oil and low meat' dietary pattern is associated with accelerated human embryonic development.

    PubMed

    Parisi, Francesca; Rousian, Melek; Steegers-Theunissen, Régine P M; Koning, Anton H J; Willemsen, Sten P; de Vries, Jeanne H M; Cetin, Irene; Steegers, Eric A P

    2018-04-20

    Maternal dietary patterns were associated with embryonic growth and congenital anomalies. We aim to evaluate associations between early first trimester maternal dietary patterns and embryonic morphological development among pregnancies with non-malformed outcome. A total of 228 strictly dated, singleton pregnancies without congenital malformations were enrolled in a periconceptional hospital-based cohort. Principal component analysis was performed to extract early first trimester maternal dietary patterns from food frequency questionnaires. Serial transvaginal three-dimensional ultrasound (3D US) scans were performed between 6 +0 and 10 +2 gestational weeks and internal and external morphological criteria were used to define Carnegie stages in a virtual reality system. Associations between dietary patterns and Carnegie stages were investigated using linear mixed models. A total of 726 3D US scans were included (median: three scans per pregnancy). The 'high fish and olive oil and low meat' dietary pattern was associated with accelerated embryonic development in the study population (β = 0.12 (95%CI: 0.00; 0.24), p < 0.05). Weak adherence to this dietary pattern delayed embryonic development by 2.1 days (95%CI: 1.6; 2.6) compared to strong adherence. The 'high vegetables, fruit and grain' dietary pattern accelerated embryonic development in the strictly dated spontaneous pregnancy subgroup without adjustment for energy intake. Early first trimester maternal dietary patterns impacts human embryonic morphological development among pregnancies without congenital malformations. The clinical meaning of delayed embryonic development needs further investigation.

  18. Growth hormone and early treatment.

    PubMed

    Antoniazzi, F; Cavarzere, P; Gaudino, R

    2015-06-01

    Growth hormone (GH) treatment is approved by the US Food and Drug Administration (FDA) not only for GH deficiency (GHD) but also for other childhood growth disorders with growth failure and/or short stature. GHD is the most frequent endocrine disorder presenting with short stature in childhood. During neonatal period, metabolic effects due to congenital GHD require a prompt replacement therapy to avoid possible life-threatening complications. In childhood and adolescence, growth impairment is the most evident effect of GHD and early treatment has the aim of restore normal growth and to reach normal adult height. We reassume in this review the conditions causing GHD and the diagnostic challenge to reach an early diagnosis, and an early treatment, necessary to obtain the best results. Finally, we summarize results obtained in clinical studies about pediatric patients with GHD treated at an early age, in which a marked early catch-up growth and a normalization of adult height were obtained.

  19. Endothelin-1 signalling controls early embryonic heart rate in vitro and in vivo.

    PubMed

    Karppinen, S; Rapila, R; Mäkikallio, K; Hänninen, S L; Rysä, J; Vuolteenaho, O; Tavi, P

    2014-02-01

    Spontaneous activity of embryonic cardiomyocytes originates from sarcoplasmic reticulum (SR) Ca(2+) release during early cardiogenesis. However, the regulation of heart rate during embryonic development is still not clear. The aim of this study was to determine how endothelin-1 (ET-1) affects the heart rate of embryonic mice, as well as the pathway through which it exerts its effects. The effects of ET-1 and ET-1 receptor inhibition on cardiac contraction were studied using confocal Ca(2+) imaging of isolated mouse embryonic ventricular cardiomyocytes and ultrasonographic examination of embryonic cardiac contractions in utero. In addition, the amount of ET-1 peptide and ET receptor a (ETa) and b (ETb) mRNA levels were measured during different stages of development of the cardiac muscle. High ET-1 concentration and expression of both ETa and ETb receptors was observed in early cardiac tissue. ET-1 was found to increase the frequency of spontaneous Ca(2+) oscillations in E10.5 embryonic cardiomyocytes in vitro. Non-specific inhibition of ET receptors with tezosentan caused arrhythmia and bradycardia in isolated embryonic cardiomyocytes and in whole embryonic hearts both in vitro (E10.5) and in utero (E12.5). ET-1-mediated stimulation of early heart rate was found to occur via ETb receptors and subsequent inositol trisphosphate receptor activation and increased SR Ca(2+) leak. Endothelin-1 is required to maintain a sufficient heart rate, as well as to prevent arrhythmia during early development of the mouse heart. This is achieved through ETb receptor, which stimulates Ca(2+) leak through IP3 receptors. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  20. Exogenous transforming growth factor-β1 enhances smooth muscle differentiation in embryonic mouse jejunal explants.

    PubMed

    Coletta, Riccardo; Roberts, Neil A; Randles, Michael J; Morabito, Antonino; Woolf, Adrian S

    2017-01-13

    An ex vivo experimental strategy that replicates in vivo intestinal development would in theory provide an accessible setting with which to study normal and dysmorphic gut biology. The current authors recently described a system in which mouse embryonic jejunal segments were explanted onto semipermeable platforms and fed with chemically defined serum-free media. Over 3 days in organ culture, explants formed villi and they began to undergo spontaneous peristalsis. As defined in the current study, the wall of the explanted gut failed to form a robust longitudinal smooth muscle (SM) layer as it would do in vivo over the same time period. Given the role of transforming growth factor β1 (TGFβ1) in SM differentiation in other organs, it was hypothesized that exogenous TGFβ1 would enhance SM differentiation in these explants. In vivo, TGFβ receptors I and II were both detected in embryonic longitudinal jejunal SM cells and, in organ culture, exogenous TGFβ1 induced robust differentiation of longitudinal SM. Microarray profiling showed that TGFβ1 increased SM specific transcripts in a dose dependent manner. TGFβ1 proteins were detected in amniotic fluid at a time when the intestine was physiologically herniated. By analogy with the requirement for exogenous TGFβ1 for SM differentiation in organ culture, the TGFβ1 protein that was demonstrated to be present in the amniotic fluid may enhance intestinal development when it is physiologically herniated in early gestation. Future studies of embryonic intestinal cultures should include TGFβ1 in the defined media to produce a more faithful model of in vivo muscle differentiation. Copyright © 2017 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons, Ltd. Copyright © 2017 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons, Ltd.

  1. Early embryonic sensitivity to cyclophosphamide in cardiac differentiation from human embryonic stem cells.

    PubMed

    Zhu, Ming-Xia; Zhao, Jin-Yuan; Chen, Gui-An; Guan, Li

    2011-09-01

    hESCs (human embryonic stem cells) can differentiate into tissue derivatives of all three germ layers in vitro and mimic the development of the embryo in vivo. In this study, we have investigated the potential of an hESC-based assay for the detection of toxicity to cardiac differentiation in embryonic development. First of all, we developed the protocol of cardiac induction from hESCs according to our previous work and distinguished cardiac precursor cells and late mature cardiomyocytes from differentiated cells, demonstrated by the Q-PCR (quantitative real-time PCR), immunocytochemistry and flow cytometry analysis. In order to test whether CPA (cyclophosphamide) induces developmental and cellular toxicity in the human embryo, we exposed the differentiating cells from hESCs to CPA (a well-known proteratogen) at different stages. We have found that a high concentration of CPA could inhibit cardiac differentiation of hESCs. Two separate exposure intervals were used to determine the effects of CPA on cardiac precursor cells and late mature cardiomyocytes respectively. The cardiac precursor cells were sensitive to CPA in non-cytotoxic concentrations for the expression of the cardiac-specific mRNA markers Nkx2.5 (NK2 transcription factor related, locus 5), GATA-4 (GATA binding protein 4 transcription factor) and TNNT2 (troponin T type 2). Non-cytotoxic CPA concentrations did not affect the mRNA markers' expression in late mature cardiomyocytes, indicating that cardiac precursors were more sensitive to CPA than late cardiomyocytes in cardiogenesis. We set up the in vitro developmental toxicity test model so as to reduce the number of test animals and expenses without compromising the safety of consumers and patients. Furthermore, such in vitro methods may be possibly suited to test a large number of chemicals than the classical employed in vivo tests.

  2. Circulating microRNAs as biomarkers of early embryonic viability in cattle

    USDA-ARS?s Scientific Manuscript database

    Embryonic mortality (EM) is considered to be the primary factor limiting pregnancy success in cattle and occurs early (< day 28) or late (= day 28) during gestation. The incidence of early EM in cattle is approximately 25% while late EM is approximately 3.2 to 42.7%. In cattle, real time ultrasonog...

  3. Acetylsalicylic acid interferes with embryonic kidney growth and development by a prostaglandin-independent mechanism.

    PubMed

    Welham, Simon J M; Sparrow, Alexander J; Gardner, David S; Elmes, Matthew J

    2017-01-06

    To evaluate the effects of the non-selective, non-steroidal anti-inflammatory drug (NSAID) acetylsalicylic acid (ASA), on ex vivo embryonic kidney growth and development. Pairs of fetal mouse kidneys at embryonic day 12.5 were cultured ex vivo in increasing concentrations of ASA (0.04-0.4 mg/mL) for up to 7 d. One organ from each pair was grown in control media and was used as the internal control for the experimental contralateral organ. In some experiments, organs were treated with ASA for 48 h and then transferred either to control media alone or control media containing 10 μmol/L prostaglandin E 2 (PGE 2 ) for a further 5 d. Fetal kidneys were additionally obtained from prostaglandin synthase 2 homozygous null or heterozygous (PTGS2 -/- and PTGS2 -/+ ) embryos and grown in culture. Kidney cross-sectional area was used to determine treatment effects on kidney growth. Whole-mount labelling to fluorescently detect laminin enabled crude determination of epithelial branching using confocal microscopy. Increasing ASA concentration (0.1, 0.2 and 0.4 mg/mL) significantly inhibited metanephric growth ( P < 0.05). After 7 d of culture, exposure to 0.2 mg/mL and 0.4 mg/mL reduced organ size to 53% and 23% of control organ size respectively ( P < 0.01). Addition of 10 μmol/L PGE 2 to culture media after exposure to 0.2 mg/mL ASA for 48 h resulted in a return of growth area to control levels. Application of control media alone after cessation of ASA exposure showed no benefit on kidney growth. Despite the apparent recovery of growth area with 10 μmol/L PGE 2 , no obvious renal tubular structures were formed. The number of epithelial tips generated after 48 h exposure to ASA was reduced by 40% (0.2 mg/mL; P < 0.05) and 47% (0.4 mg/mL; P < 0.01). Finally, growth of PTGS2 -/- and PTGS2 +/- kidneys in organ culture showed no differences, indicating that PTGS2 derived PGE 2 may at best have a minor role. ASA reduces early renal growth and development but the role of

  4. Convergent evolution of embryonic growth and development in the eastern fence lizard (Sceloporus undulatus).

    PubMed

    Oufieroi, Christopher E; Angilletta, Michael J

    2006-05-01

    Theory predicts that cold environments will select for strategies that enhance the growth of ectotherms, such as early emergence from nests and more efficient use of resources. We used a common garden experiment to detect parallel clines in rates of embryonic growth and development by eastern fence lizards (Sceloporus undulatus). Using realistic thermal conditions, we measured growth efficiencies and incubation periods of lizards from five populations representing two distinct clades. In both clades, embryos from cold environments (Indiana, New Jersey, and Virginia) grew more efficiently and hatched earlier than embryos from warm environments (Florida and South Carolina). Because eggs from cold environments were larger than eggs from warm environments, we experimentally miniaturized eggs from one population (Virginia) to determine whether rapid growth and development were caused by a greater maternal investment. Embryos in miniaturized eggs grew as efficiently and incubated for the same duration as embryos in unmanipulated eggs. Taken together, our results suggest countergradient variation has evolved at least twice in S. undulatus.

  5. Early pregnancy factor (EPF) as a marker for the diagnosis of subclinical embryonic loss.

    PubMed

    Shahani, S K; Moniz, C; Chitlange, S; Meherji, P

    1992-01-01

    The validation of EPF as a possible correlate of early fertilization has made it possible to study and detect fertilization of the ovum in normal fertile women (during the luteal phase) and also in women with infertility, where the fertilization of the ovum may not be affected but there may be impairment in early embryonic development which results in early embryo loss or subclinical embryo loss. Our results have suggested that using EPF as a marker, we could detect subclinical embryonic loss in 57.8% of the infertile women where more than one menstrual cycle was studied and the blood was collected 4-7 days after ovulation. After the missed period, 80% of the patients who were negative for EPF but positive for hCG had spontaneous abortions. It would be interesting to study how EPF behaves as a marker, to detect subclinical embryonic loss in diverse pathological situations such as recurrent abortions, parental age and translocation carrier parents.

  6. Early effects of embryonic movement: ‘a shot out of the dark’

    PubMed Central

    Pitsillides, Andrew A

    2006-01-01

    It has long been appreciated that studying the embryonic chick in ovo provides a variety of advantages, including the potential to control the embryo's environment and its movement independently of maternal influences. This allowed early workers to identify movement as a pivotal factor in the development of the locomotor apparatus. With an increasing focus on the earliest detectable movements, we have exploited this system by developing novel models and schemes to examine the influence of defined periods of movement during musculoskeletal development. Utilizing drugs with known neuromuscular actions to provoke hyperactivity (4-aminopyridine, AP) and either rigid (decamethonium bromide, DMB) or flaccid (pancuronium bromide, PB) paralysis, we have examined the role of movement in joint, osteochondral and muscle development. Our initial studies focusing on the joint showed that AP-induced hyperactivity had little, if any, effect on the timing or scope of joint cavity elaboration, suggesting that endogenous activity levels provide sufficient stimulus, and additional mobilization is without effect. By contrast, imposition of either rigid or flaccid paralysis prior to cavity formation completely blocked this process and, with time, produced fusion of cartilaginous elements and formation of continuous single cartilaginous rods across locations where joints would ordinarily form. The effect of these distinct forms of paralysis differed, however, when treatment was initiated after formation of an overt cavity; rigid, but not flaccid, paralysis partly conserved precavitated joints. This observation suggests that ‘static’ loading derived from ‘spastic’ rigidity can act to preserve joint cavities. Another facet of these studies was the observation that DMB-induced rigid paralysis produces a uniform and specific pattern of limb deformity whereas PB generated a diverse range of fixed positional deformities. Both also reduced limb growth, with different developmental

  7. Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    PubMed Central

    Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl

    2008-01-01

    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875

  8. Growth and differentiation of embryonic stem cells that lack an intact c-fos gene.

    PubMed Central

    Field, S J; Johnson, R S; Mortensen, R M; Papaioannou, V E; Spiegelman, B M; Greenberg, M E

    1992-01-01

    The c-fos protooncogene encodes a transcription factor that is thought to play a critical role in proliferation and differentiation as well as in the physiological response of mature cells to their environment. To test directly the role of c-fos in growth and differentiation, we generated mouse embryonic stem cell lines in which both copies of the c-fos gene were specifically disrupted by homologous recombination. Remarkably, the disruption of both copies of c-fos in these cells has no detectable effect on embryonic stem cell viability, growth rate, or differentiation potential. Embryonic stem cells lacking c-fos can differentiate into a wide range of cell types in tissue culture and also in chimeric mice. We conclude that despite a large body of literature suggesting an important role for c-fos in cell growth and differentiation, in at least some cell types this gene is not essential for these processes. Images PMID:1329091

  9. Extra-embryonic tissue spreading directs early embryo morphogenesis in killifish

    PubMed Central

    Reig, Germán; Cerda, Mauricio; Sepúlveda, Néstor; Flores, Daniela; Castañeda, Victor; Tada, Masazumi; Härtel, Steffen; Concha, Miguel L.

    2017-01-01

    The spreading of mesenchymal-like cell layers is critical for embryo morphogenesis and tissue repair, yet we know little of this process in vivo. Here we take advantage of unique developmental features of the non-conventional annual killifish embryo to study the principles underlying tissue spreading in a simple cellular environment, devoid of patterning signals and major morphogenetic cell movements. Using in vivo experimentation and physical modelling we reveal that the extra-embryonic epithelial enveloping cell layer, thought mainly to provide protection to the embryo, directs cell migration and the spreading of embryonic tissue during early development. This function relies on the ability of embryonic cells to couple their autonomous random motility to non-autonomous signals arising from the expansion of the extra-embryonic epithelium, mediated by cell membrane adhesion and tension. Thus, we present a mechanism of extra-embryonic control of embryo morphogenesis that couples the mechanical properties of adjacent tissues in the early killifish embryo. PMID:28580937

  10. The Lin28/Let-7 System in Early Human Embryonic Tissue and Ectopic Pregnancy

    PubMed Central

    Steffani, Liliana; Martínez, Sebastián; Monterde, Mercedes; Ferri, Blanca; Núñez, Maria Jose; AinhoaRomero-Espinós; Zamora, Omar; Gurrea, Marta; Sangiao-Alvarellos, Susana; Vega, Olivia; Simón, Carlos; Pellicer, Antonio; Tena-Sempere, Manuel

    2014-01-01

    Our objective was to determine the expression of the elements of the Lin28/Let-7 system, and related microRNAs (miRNAs), in early stages of human placentation and ectopic pregnancy, as a means to assess the potential role of this molecular hub in the pathogenesis of ectopic gestation. Seventeen patients suffering from tubal ectopic pregnancy (cases) and forty-three women with normal on-going gestation that desired voluntary termination of pregnancy (VTOP; controls) were recruited for the study. Embryonic tissues were subjected to RNA extraction and quantitative PCR analyses for LIN28B, Let-7a, miR-132, miR-145 and mir-323-3p were performed. Our results demonstrate that the expression of LIN28B mRNA was barely detectable in embryonic tissue from early stages of gestation and sharply increased thereafter to plateau between gestational weeks 7–9. In contrast, expression levels of Let-7, mir-132 and mir-145 were high in embryonic tissue from early gestations (≤6-weeks) and abruptly declined thereafter, especially for Let-7. Opposite trends were detected for mir-323-3p. Embryonic expression of LIN28B mRNA was higher in early stages (≤6-weeks) of ectopic pregnancy than in normal gestation. In contrast, Let-7a expression was significantly lower in early ectopic pregnancies, while miR-132 and miR-145 levels were not altered. Expression of mir-323-3p was also suppressed in ectopic embryonic tissue. We are the first to document reciprocal changes in the expression profiles of the gene encoding the RNA-binding protein, LIN28B, and the related miRNAs, Let-7a, mir-132 and mir-145, in early stages of human placentation. This finding suggests the potential involvement of LIN28B/Let-7 (de)regulated pathways in the pathophysiology of ectopic pregnancy in humans. PMID:24498170

  11. Elevated temperature enhances normal early embryonic development in the coral Platygyra acuta under low salinity conditions

    NASA Astrophysics Data System (ADS)

    Chui, Apple Pui Yi; Ang, Put

    2015-06-01

    To better understand the possible consequences of climate change on reef building scleractinian corals in a marginal environment, laboratory experiments were conducted to examine the interactive effects of changes in salinity and temperature on percent fertilization success and early embryonic development of the coral Platygyra acuta. In the present study, a salinity of 24 psu (ambient 32 psu) reduced fertilization success by 60 %. Normal embryonic development was reduced by >80 % at 26 psu (ambient 33 psu) with 100 % abnormal development at 22 psu under ambient temperature. Elevated temperature (+3 °C) above the ambient spawning temperature did not show any negative effects on fertilization success. However, there was a trend for more abnormal embryos to develop at elevated temperature in the 2 d of the spawning event. The interactive effects between salinity and temperature are statistically significant only on normal embryonic development of P. acuta, but not on its fertilization success. Salinity was revealed to be the main factor affecting both fertilization success and normal embryonic development. Interestingly, the much lower fertilization success (76 %) observed in the second day of spawning (Trial 2) under ambient temperature recovered to 99 % success under elevated (+3 °C) temperature conditions. Moreover, elevated temperature enhanced normal early embryonic development under lowered salinity (26 psu). This antagonistic interactive effect was consistently observed in two successive nights of spawning. Overall, our results indicate that, in terms of its fertilization success and embryonic development, P. acuta is the most tolerant coral species to reduced salinity thus far reported in the literature. Elevated temperature, at least that within the tolerable range of the corals, could apparently alleviate the potential negative effects from salinity stresses. This mitigating role of elevated temperature appears not to have been reported on corals before.

  12. Importance of the pluripotency factor LIN28 in the mammalian nucleolus during early embryonic development.

    PubMed

    Vogt, Edgar J; Meglicki, Maciej; Hartung, Kristina Ilka; Borsuk, Ewa; Behr, Rüdiger

    2012-12-01

    The maternal nucleolus is required for proper activation of the embryonic genome (EGA) and early embryonic development. Nucleologenesis is characterized by the transformation of a nucleolar precursor body (NPB) to a mature nucleolus during preimplantation development. However, the function of NPBs and the involved molecular factors are unknown. We uncover a novel role for the pluripotency factor LIN28, the biological significance of which was previously demonstrated in the reprogramming of human somatic cells to induced pluripotent stem (iPS) cells. Here, we show that LIN28 accumulates at the NPB and the mature nucleolus in mouse preimplantation embryos and embryonic stem cells (ESCs), where it colocalizes with the nucleolar marker B23 (nucleophosmin 1). LIN28 has nucleolar localization in non-human primate (NHP) preimplantation embryos, but is cytoplasmic in NHP ESCs. Lin28 transcripts show a striking decline before mouse EGA, whereas LIN28 protein localizes to NPBs at the time of EGA. Following knockdown with a Lin28 morpholino, the majority of embryos arrest between the 2- and 4-cell stages and never develop to morula or blastocyst. Lin28 morpholino-injected embryos arrested at the 2-cell stage were not enriched with nucleophosmin at presumptive NPB sites, indicating that functional NPBs were not assembled. Based on these results, we propose that LIN28 is an essential factor of nucleologenesis during early embryonic development.

  13. Fucoidan promotes early step of cardiac differentiation from human embryonic stem cells and long-term maintenance of beating areas.

    PubMed

    Hamidi, Sofiane; Letourneur, Didier; Aid-Launais, Rachida; Di Stefano, Antonio; Vainchenker, William; Norol, Françoise; Le Visage, Catherine

    2014-04-01

    Somatic stem cells require specific niches and three-dimensional scaffolds provide ways to mimic this microenvironment. Here, we studied a scaffold based on Fucoidan, a sulfated polysaccharide known to influence morphogen gradients during embryonic development, to support human embryonic stem cells (hESCs) differentiation toward the cardiac lineage. A macroporous (pore 200 μm) Fucoidan scaffold was selected to support hESCs attachment and proliferation. Using a protocol based on the cardiogenic morphogen bone morphogenic protein 2 (BMP2) and transforming growth factor (TGFβ) followed by tumor necrosis factor (TNFα), an effector of cardiopoietic priming, we examined the cardiac differentiation in the scaffold compared to culture dishes and embryoid bodies (EBs). At day 8, Fucoidan scaffolds supported a significantly higher expression of the 3 genes encoding for transcription factors marking the early step of embryonic cardiac differentiation NKX2.5 (p<0.05), MEF2C (p<0.01), and GATA4 (p<0.01), confirmed by flow cytometry analysis for MEF2C and NKX2.5. The ability of Fucoidan scaffolds to locally concentrate and slowly release TGFβ and TNFα was confirmed by Luminex technology. We also found that Fucoidan scaffolds supported the late stage of embryonic cardiac differentiation marked by a significantly higher atrial natriuretic factor (ANF) expression (p<0.001), although only rare beating areas were observed. We postulated that absence of mechanical stress in the soft hydrogel impaired sarcomere formation, as confirmed by molecular analysis of the cardiac muscle myosin MYH6 and immunohistological staining of sarcomeric α-actinin. Nevertheless, Fucoidan scaffolds contributed to the development of thin filaments connecting beating areas through promotion of smooth muscle cells, thus enabling maintenance of beating areas for up to 6 months. In conclusion, Fucoidan scaffolds appear as a very promising biomaterial to control cardiac differentiation from hESCs that

  14. The periconception maternal cardiovascular risk profile influences human embryonic growth trajectories in IVF/ICSI pregnancies.

    PubMed

    Wijnands, K P J; van Uitert, E M; Roeters van Lennep, J E; Koning, A H J; Mulders, A G M G J; Laven, J S E; Steegers, E A P; Steegers-Theunissen, R P M

    2016-06-01

    Is the maternal cardiovascular (CV) risk profile associated with human embryonic growth trajectories and does the mode of conception affect this association? This small study suggests that the maternal CV risk profile is inversely associated with first trimester embryonic growth trajectories in in vitro fertilization (IVF)/intra-cytoplasmic sperm injection (ICSI) pregnancies, but not in spontaneously conceived pregnancies. Maternal high-blood pressure and smoking affect placental function, accompanied by increased risk of fetal growth restriction and low-birthweight. Mothers who experience pregnancies complicated by fetal growth restriction are at increased risk of CV disease in later life. In a prospective periconception birth cohort conducted in a tertiary hospital, 111 singleton ongoing pregnancies with reliable pregnancy dating, no pre-existing maternal disease and no malformed live borns were investigated. Spontaneously conceived pregnancies with a reliable first day of the last menstrual period and a regular menstrual cycle of 25-31 days only (n = 66) and IVF/ICSI pregnancies (n = 45) were included. Women underwent weekly three-dimensional ultrasound scans (3D US) from 6- to 13-week gestational age. To estimate embryonic growth, serial crown-rump length (CRL) measurements were performed using the V-Scope software in a BARCO I-Space. Maternal characteristics and CV risk factors were collected by self-administered questionnaires. The CV risk profile was created based on a score of risk factors, including maternal age, body-mass index, CV disease in the family, diet and smoking. Quartiles of the CV risk score were calculated. Associations between the CV risk score and embryonic growth were assessed using square root transformed CRL in multivariable linear mixed model analyses. From the 111 included pregnancies, 696 3D US data sets were obtained of which 637 (91.5%) CRLs could be measured. In the total group, The CV risk score was inversely, but not significantly

  15. Fine-tuning of chromatin composition and Polycomb recruitment by two Mi2 homologues during C. elegans early embryonic development.

    PubMed

    Käser-Pébernard, Stéphanie; Pfefferli, Catherine; Aschinger, Caroline; Wicky, Chantal

    2016-01-01

    The nucleosome remodeling and deacetylase complex promotes cell fate decisions throughout embryonic development. Its core enzymatic subunit, the SNF2-like ATPase and Helicase Mi2, is well conserved throughout the eukaryotic kingdom and can be found in multiple and highly homologous copies in all vertebrates and some invertebrates. However, the reasons for such duplications and their implications for embryonic development are unknown. Here we studied the two C. elegans Mi2 homologues, LET-418 and CHD-3, which displayed redundant activities during early embryonic development. At the transcriptional level, these two Mi2 homologues redundantly repressed the expression of a large gene population. We found that LET-418 physically accumulated at TSS-proximal regions on transcriptionally active genomic targets involved in growth and development. Moreover, LET-418 acted redundantly with CHD-3 to block H3K4me3 deposition at these genes. Our study also revealed that LET-418 was partially responsible for recruiting Polycomb to chromatin and for promoting H3K27me3 deposition. Surprisingly, CHD-3 displayed opposite activities on Polycomb, as it was capable of moderating its LET-418-dependent recruitment and restricted the amount of H3K27me3 on the studied target genes. Although closely homologous, LET-418 and CHD-3 showed both redundant and opposite functions in modulating the chromatin environment at developmental target genes. We identified the interplay between LET-418 and CHD-3 to finely tune the levels of histone marks at developmental target genes. More than just repressors, Mi2-containing complexes appear as subtle modulators of gene expression throughout development. The study of such molecular variations in vertebrate Mi2 counterparts might provide crucial insights to our understanding of the epigenetic control of early development.

  16. Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.

    PubMed

    Qian, Chen; Wong, Carol Wing Yan; Wu, Zhongluan; He, Qiuming; Xia, Huimin; Tam, Paul Kwong Hang; Wong, Kenneth Kak Yuen; Lui, Vincent Chi Hang

    2017-01-01

    Platelet-derived growth factor receptor alpha (PDGFRα) is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures. To address the temporal requirement of Pdgfra in embryonic development. We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies. Current study showed that (i) conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5) resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii) the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives. Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a) the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b) if mutations / sequence variations of these regulatory elements cause these anomalies.

  17. Early stages of zeolite growth

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep

    Zeolites are crystalline nonporous aluminosilicates with important applications in separation, purification, and adsorption of liquid and gaseous molecules. However, an ability to tailor the zeolite microstructure, such as particle size/shape and pore-size, to make it benign for specific application requires control over nucleation and particle growth processes. But, the nucleation and crystallization mechanisms of zeolites are not fully understood. In this context, the synthesis of an all-silica zeolite with MFI-type framework has been studied extensively as a model system. Throughout chapters 2, 4 and 5, MFI growth process has been investigated by small-angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Of fundamental importance is the role of nanoparticles (~5 nm), which are present in the precursor sol, in MFI nucleation and crystallization. Formation of amorphous aggregates and their internal restructuring are concluded as essential steps in MFI nucleation. Early stage zeolite particles have disordered and less crystalline regions within, which indicates the role of structurally distributed population of nanoparticles in growth. Faceting occurs after the depletion of nanoparticles. The chapter 6 presents growth studies in silica sols prepared by using a dimer of tertaprpylammonium (TPA) and reports that MFI nucleation and crystallization are delayed with a more pronounced delay in crystal growth.

  18. Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice.

    PubMed

    Yamamoto, Kenta; Wang, Yunyue; Jiang, Wenxia; Liu, Xiangyu; Dubois, Richard L; Lin, Chyuan-Sheng; Ludwig, Thomas; Bakkenist, Christopher J; Zha, Shan

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) kinase orchestrates deoxyribonucleic acid (DNA) damage responses by phosphorylating numerous substrates implicated in DNA repair and cell cycle checkpoint activation. A-T patients and mouse models that express no ATM protein undergo normal embryonic development but exhibit pleiotropic DNA repair defects. In this paper, we report that mice carrying homozygous kinase-dead mutations in Atm (Atm(KD/KD)) died during early embryonic development. Atm(KD/-) cells exhibited proliferation defects and genomic instability, especially chromatid breaks, at levels higher than Atm(-/-) cells. Despite this increased genomic instability, Atm(KD/-) lymphocytes progressed through variable, diversity, and joining recombination and immunoglobulin class switch recombination, two events requiring nonhomologous end joining, at levels comparable to Atm(-/-) lymphocytes. Together, these results reveal an essential function of ATM during embryogenesis and an important function of catalytically inactive ATM protein in DNA repair.

  19. Negative regulation of early polyomavirus expression in mouse embryonal carcinoma cells.

    PubMed Central

    Cremisi, C; Babinet, C

    1986-01-01

    Embryonal carcinoma cells are resistant to infection by polyomavirus (Py). We showed that this block was partially removed by inhibiting protein synthesis temporarily. The block was also partially removed when Py was coinfected with simian virus 40. Cycloheximide treatment of cells infected with Py mutants able to grow on PCC4 embryonal carcinoma cells led to 3- to 10-fold increases in the production of T-antigen-positive cells. At 31 degrees C, Py T-antigen expression was enhanced when the cells were treated with cycloheximide. We suggest that a negative labile regulatory protein(s) is synthesized in PCC4 cells, preventing the initiation of early Py transcription by binding to the noncoding sequence, especially the enhancer element B and perhaps also element A, and that the Py mutants retained a binding site(s). PMID:3016339

  20. Chandipura virus growth kinetics in vertebrate cell lines, insect cell lines & embryonated eggs.

    PubMed

    Jadi, R S; Sudeep, A B; Kumar, Satyendra; Arankalle, V A; Mishra, A C

    2010-08-01

    Since not much information on Chandipura virus is available, an attempt was made to study the growth kinetics of the virus in certain vertebrate, invertebrate cell lines and embryonated chicken eggs. Comparative study of Chandipura virus (CHPV) growth kinetics in three vertebrate cell lines [Vero E6, Rhabdo myosarcoma (RD), Porcine stable kidney (PS) cell lines], two insect cell lines [Aedes aegypti (AA) and Phlebotomus papatasi (PP-9) cell lines] and embryonated pathogen free chicken eggs was conducted, by tissue culture infective dose 50 per cent (TCID(50)) and indirect immunofluorescence assay (IFA). All the cell lines and embryonated egg supported the growth of CHPV and yielded high virus titre. The vertebrate cell lines showed distinct cytopathic effect (CPE) within 4-6 h post infection (PI), while no CPE was observed in insect cell lines. PP-9 cell line was the most sensitive system to CHPV as viral antigen could be detected at 1 h PI by IFA. Our results demonstrated that all the systems were susceptible to CHPV and achieved high yield of virus. However, the PP-9 cell line had an edge over the others due to its high sensitivity to the virus which might be useful for detection and isolation of the virus during epidemics.

  1. Changes in Acetyl CoA Levels during the Early Embryonic Development of Xenopus laevis

    PubMed Central

    Tsuchiya, Yugo; Pham, Uyen; Hu, Wanzhou; Ohnuma, Shin-ichi; Gout, Ivan

    2014-01-01

    Coenzyme A (CoA) is a ubiquitous and fundamental intracellular cofactor. CoA acts as a carrier of metabolically important carboxylic acids in the form of CoA thioesters and is an obligatory component of a multitude of catabolic and anabolic reactions. Acetyl CoA is a CoA thioester derived from catabolism of all major carbon fuels. This metabolite is at a metabolic crossroads, either being further metabolised as an energy source or used as a building block for biosynthesis of lipids and cholesterol. In addition, acetyl CoA serves as the acetyl donor in protein acetylation reactions, linking metabolism to protein post-translational modifications. Recent studies in yeast and cultured mammalian cells have suggested that the intracellular level of acetyl CoA may play a role in the regulation of cell growth, proliferation and apoptosis, by affecting protein acetylation reactions. Yet, how the levels of this metabolite change in vivo during the development of a vertebrate is not known. We measured levels of acetyl CoA, free CoA and total short chain CoA esters during the early embryonic development of Xenopus laevis using HPLC. Acetyl CoA and total short chain CoA esters start to increase around midblastula transition (MBT) and continue to increase through stages of gastrulation, neurulation and early organogenesis. Pre-MBT embryos contain more free CoA relative to acetyl CoA but there is a shift in the ratio of acetyl CoA to CoA after MBT, suggesting a metabolic transition that results in net accumulation of acetyl CoA. At the whole-embryo level, there is an apparent correlation between the levels of acetyl CoA and levels of acetylation of a number of proteins including histones H3 and H2B. This suggests the level of acetyl CoA may be a factor, which determines the degree of acetylation of these proteins, hence may play a role in the regulation of embryogenesis. PMID:24831956

  2. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth ofmore » undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.« less

  3. High-Frequency Ultrasound for the Study of Early Mouse Embryonic Cardiovascular System.

    PubMed

    Greco, Adelaide; Coda, Anna Rita Daniela; Albanese, Sandra; Ragucci, Monica; Liuzzi, Raffaele; Auletta, Luigi; Gargiulo, Sara; Lamagna, Francesco; Salvatore, Marco; Mancini, Marcello

    2015-12-01

    An accurate diagnosis of congenital heart defects during fetal development is critical for interventional planning. Mice can be used to generate animal models with heart defects, and high-frequency ultrasound (HFUS) imaging enables in utero imaging of live mouse embryos. A wide range of physiological measurements is possible using Doppler-HFUS imaging; limitations of any single measurement warrant a multiparameter approach to characterize cardiovascular function. Doppler-HFUS was used to explore the embryonic (heart, aorta) and extraembryonic (umbilical blood flow) circulatory systems to create a database in normal mouse embryos between 9.5 and 16.5 days of gestation. Multivariate analyses were performed to explore correlations between gestational age and embryo echocardiographic parameters. Heart rate and peak velocity in the aorta were positively correlated with gestational time, whereas cardiac cycle length, isovolumetric relaxation time, myocardial performance index, and arterial deceleration time of the umbilical cord were negatively correlated with it. Doppler-HFUS facilitated detailed characterization of the embryonic mouse circulation and represents a useful tool for investigation of the early mouse embryonic cardiovascular system. © The Author(s) 2015.

  4. Selection and dynamics of embryonic stem cell integration into early mouse embryos

    PubMed Central

    Alexandrova, Stoyana; Kalkan, Tuzer; Humphreys, Peter; Riddell, Andrew; Scognamiglio, Roberta; Trumpp, Andreas; Nichols, Jennifer

    2016-01-01

    The process by which pluripotent cells incorporate into host embryos is of interest to investigate cell potency and cell fate decisions. Previous studies suggest that only a minority of the embryonic stem cell (ESC) inoculum contributes to the adult chimaera. How incoming cells are chosen for integration or elimination remains unclear. By comparing a heterogeneous mix of undifferentiated and differentiating ESCs (serum/LIF) with more homogeneous undifferentiated culture (2i/LIF), we examine the role of cellular heterogeneity in this process. Time-lapse ex vivo imaging revealed a drastic elimination of serum/LIF ESCs during early development in comparison with 2i/LIF ESCs. Using a fluorescent reporter for naive pluripotency (Rex1-GFP), we established that the acutely eliminated serum/LIF ESCs had started to differentiate. The rejected cells were apparently killed by apoptosis. We conclude that a selection process exists by which unwanted differentiating cells are eliminated from the embryo. However, occasional Rex1− cells were able to integrate. Upregulation of Rex1 occurred in a proportion of these cells, reflecting the potential of the embryonic environment to expedite diversion from differentiation priming to enhance the developing embryonic epiblast. PMID:26586221

  5. Triennial Reproduction Symposium: influence of follicular characteristics at ovulation on early embryonic survival.

    PubMed

    Geary, T W; Smith, M F; MacNeil, M D; Day, M L; Bridges, G A; Perry, G A; Abreu, F M; Atkins, J A; Pohler, K G; Jinks, E M; Madsen, C A

    2013-07-01

    Reproductive failure in livestock can result from failure to fertilize the oocyte or embryonic loss during gestation. Although fertilization failure occurs, embryonic mortality represents a greater contribution to reproductive failure. Reproductive success varies among species and production goals but is measured as a binomial trait (i.e., pregnancy), derived by the success or failure of multiple biological steps. This review focuses primarily on follicular characteristics affecting oocyte quality, fertilization, and embryonic health that lead to pregnancy establishment in beef cattle. When estrous cycles are manipulated with assisted reproductive technologies and ovulation is induced, duration of proestrus (i.e., interval from induced luteolysis to induced ovulation), ovulatory follicle growth rate, and ovulatory follicle size are factors that affect the maturation of the follicle and oocyte at induced ovulation. The most critical maturational component of the ovulatory follicle is the production of sufficient estradiol to prepare follicular cells for luteinization and progesterone synthesis and prepare the uterus for pregnancy. The exact roles of estradiol in oocyte maturation remain unclear, but cows that have lesser serum concentrations of estradiol have decreased fertilization rates and decreased embryo survival on d 7 after induced ovulation. When length of proestrus is held constant, perhaps the most practical follicular measure of fertility is ovulatory follicle size because it is an easily measured attribute of the follicle that is highly associated with its ability to produce estradiol.

  6. [Early childhood growth and development].

    PubMed

    Arce, Melitón

    2015-01-01

    This article describes and discusses issues related to the process of childhood growth and development, with emphasis on the early years, a period in which this process reaches critical speed on major structures and functions of the human economy. We reaffirm that this can contribute to the social availability of a generation of increasingly better adults, which in turn will be able to contribute to building a better world and within it a society that enjoys greater prosperity. In the first chapter, we discuss the general considerations on the favorable evolution of human society based on quality of future adults, meaning the accomplishments that today’s children will gain. A second chapter mentions the basics of growth and development in the different fields and the various phenomena that occur in it. In the third we refer to lost opportunities and negative factors that can affect delaying the process and thereby result in not obtaining the expected accomplishments. In the fourth, conclusions and recommendations are presented confirming the initial conception that good early child care serves to build a better society and some recommendations are formulated to make it a good practice.

  7. [Effects of temperature on the embryonic development and larval growth of Sepia lycidas].

    PubMed

    Jiang, Xia-Min; Peng, Rui-Bing; Luo, Jiang; Tang, Feng

    2013-05-01

    A single-factor experiment was conducted to study the effects of different temperature (15, 18, 21, 24, 27, 30, and 33 degrees C) on the embryonic development and larval growth of Sepia lycidas, aimed to search for the optimum temperature for the development and growth of S. lycidas. The results showed that temperature had significant effects on the embryonic development and larval growth of S. lycidas (P < 0.05). The suitable temperature for hatching ranged from 21 degrees C to 30 degrees C, and the optimum temperature was 24 degrees C. At the optimum temperature, the hatching rate was (93.3 +/- 2.9)%, incubation period was (24.33 +/- 0.58) d, hatching period was (6.00 +/- 1.00) d, completely absorked rate of yolk sac was (96.4 +/- 3.1)%, and newly hatched larvae mass was (0.258 +/- 0.007) g. The effective accumulated temperature model was N = 284.42/(T-12.57). The suitable temperature for the larval survival and growth ranged from 21 degrees C to 30 degrees C, and the optimum temperature was from 24 degrees C to 27 degrees C. At the optimum temperature, the survival rate ranged from 70.0% to 73.3%, and the specific growth rate was from 2.4% to 3.8%.

  8. Stage-dependent remodeling of the nuclear envelope and lamina during rabbit early embryonic development.

    PubMed

    Popken, Jens; Schmid, Volker J; Strauss, Axel; Guengoer, Tuna; Wolf, Eckhard; Zakhartchenko, Valeri

    2016-04-22

    Utilizing 3D structured illumination microscopy, we investigated the quality and quantity of nuclear invaginations and the distribution of nuclear pores during rabbit early embryonic development and identified the exact time point of nucleoporin 153 (NUP153) association with chromatin during mitosis. Contrary to bovine early embryonic nuclei, featuring almost exclusively nuclear invaginations containing a small volume of cytoplasm, nuclei in rabbit early embryonic stages show additionally numerous invaginations containing a large volume of cytoplasm. Small-volume invaginations frequently emanated from large-volume nuclear invaginations but not vice versa, indicating a different underlying mechanism. Large- and small-volume nuclear envelope invaginations required the presence of chromatin, as they were restricted to chromatin-positive areas. The chromatin-free contact areas between nucleolar precursor bodies (NPBs) and large-volume invaginations were free of nuclear pores. Small-volume invaginations were not in contact with NPBs. The number of invaginations and isolated intranuclear vesicles per nucleus peaked at the 4-cell stage. At this stage, the nuclear surface showed highly concentrated clusters of nuclear pores surrounded by areas free of nuclear pores. Isolated intranuclear lamina vesicles were usually NUP153 negative. Cytoplasmic, randomly distributed NUP153-positive clusters were highly abundant at the zygote stage and decreased in number until they were almost absent at the 8-cell stage and later. These large NUP153 clusters may represent a maternally provided NUP153 deposit, but they were not visible as clusters during mitosis. Major genome activation at the 8- to 16-cell stage may mark the switch from a necessity for a deposit to on-demand production. NUP153 association with chromatin is initiated during metaphase before the initiation of the regeneration of the lamina. To our knowledge, the present study demonstrates for the first time major remodeling

  9. Understanding the role of growth factors in embryonic development: insights from the lens

    PubMed Central

    Lovicu, F. J.; McAvoy, J. W.; de Iongh, R. U.

    2011-01-01

    Growth factors play key roles in influencing cell fate and behaviour during development. The epithelial cells and fibre cells that arise from the lens vesicle during lens morphogenesis are bathed by aqueous and vitreous, respectively. Vitreous has been shown to generate a high level of fibroblast growth factor (FGF) signalling that is required for secondary lens fibre differentiation. However, studies also show that FGF signalling is not sufficient and roles have been identified for transforming growth factor-β and Wnt/Frizzled families in regulating aspects of fibre differentiation. In the case of the epithelium, key roles for Wnt/β-catenin and Notch signalling have been demonstrated in embryonic development, but it is not known if other factors are required for its formation and maintenance. This review provides an overview of current knowledge about growth factor regulation of differentiation and maintenance of lens cells. It also highlights areas that warrant future study. PMID:21402581

  10. Optical mapping of conduction in early embryonic quail hearts with light-sheet microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ma, Pei; Gu, Shi; Wang, Yves T.; Jenkins, Michael W.; Rollins, Andrew M.

    2016-03-01

    Optical mapping (OM) using fluorescent voltage-sensitive dyes (VSD) to measure membrane potential is currently the most effective method for electrophysiology studies in early embryonic hearts due to its noninvasiveness and large field-of-view. Conventional OM acquires bright-field images, collecting signals that are integrated in depth and projected onto a 2D plane, not capturing the 3D structure of the sample. Early embryonic hearts, especially at looping stages, have a complicated, tubular geometry. Therefore, conventional OM cannot provide a full picture of the electrical conduction circumferentially around the heart, and may result in incomplete and inaccurate measurements. Here, we demonstrate OM of Hamburger and Hamilton stage 14 embryonic quail hearts using a new commercially-available VSD, Fluovolt, and depth sectioning using a custom built light-sheet microscopy system. Axial and lateral resolution of the system is 14µm and 8µm respectively. For OM imaging, the field-of-view was set to 900µm×900µm to cover the entire heart. 2D over time OM image sets at multiple cross-sections through the looping-stage heart were recorded. The shapes of both atrial and ventricular action potentials acquired were consistent with previous reports using conventional VSD (di-4-ANNEPS). With Fluovolt, signal-to-noise ratio (SNR) is improved significantly by a factor of 2-10 (compared with di-4-ANNEPS) enabling light-sheet OM, which intrinsically has lower SNR due to smaller sampling volumes. Electrophysiologic parameters are rate dependent. Optical pacing was successfully integrated into the system to ensure heart rate consistency. This will also enable accurately gated reconstruction of full four dimensional conduction maps and 3D conduction velocity measurements.

  11. Early embryonic programming of neuronal left/right asymmetry in C. elegans.

    PubMed

    Poole, Richard J; Hobert, Oliver

    2006-12-05

    Nervous systems are largely bilaterally symmetric on a morphological level but often display striking degrees of functional left/right (L/R) asymmetry. How L/R asymmetric functional features are superimposed onto an essentially bilaterally symmetric structure and how nervous-system laterality relates to the L/R asymmetry of internal organs are poorly understood. We address these questions here by using the establishment of L/R asymmetry in the ASE chemosensory neurons of C. elegans as a paradigm. This bilaterally symmetric neuron pair is functionally lateralized in that it senses a distinct class of chemosensory cues and expresses a putative chemoreceptor family in a L/R asymmetric manner. We show that the directionality of the asymmetry of the two postmitotic ASE neurons ASE left (ASEL) and ASE right (ASER) in adults is dependent on a L-/R-symmetry-breaking event at a very early embryonic stage, the six-cell stage, which also establishes the L/R asymmetric placement of internal organs. However, the L/R asymmetry of the ASE neurons per se is dependent on an even earlier anterior-posterior (A/P) Notch signal that specifies embryonic ABa/ABp blastomere identities at the four-cell stage. This Notch signal, which functions through two T box genes, acts genetically upstream of a miRNA-controlled bistable feedback loop that regulates the L/R asymmetric gene-expression program in the postmitotic ASE cells. Our results link adult neuronal laterality to the generation of the A/P axis at the two-cell stage and raise the possibility that neural asymmetries observed across the animal kingdom are similarly established by very early embryonic interactions.

  12. Polo-like kinase 1 is essential for early embryonic development and tumor suppression.

    PubMed

    Lu, Lin-Yu; Wood, Jamie L; Minter-Dykhouse, Katherine; Ye, Lin; Saunders, Thomas L; Yu, Xiaochun; Chen, Junjie

    2008-11-01

    Polo-like kinases (Plks) are serine/threonine kinases that are highly conserved in organisms from yeasts to humans. Previous reports have shown that Plk1 is critical for all stages of mitosis and may play a role in DNA replication during S phase. While much work has focused on Plk1, little is known about the physiological function of Plk1 in vivo. To address this question, we generated Plk1 knockout mice. Plk1 homozygous null mice were embryonic lethal, and early Plk1(-/-) embryos failed to survive after the eight-cell stage. Immunocytochemistry studies revealed that Plk1-null embryos were arrested outside the mitotic phase, suggesting that Plk1 is important for proper cell cycle progression. It has been postulated that Plk1 is a potential oncogene, due to its overexpression in a variety of tumors and tumor cell lines. While the Plk1 heterozygotes were healthy at birth, the incidence of tumors in these animals was threefold greater than that in their wild-type counterparts, demonstrating that the loss of one Plk1 allele accelerates tumor formation. Collectively, our data support that Plk1 is important for early embryonic development and may function as a haploinsufficient tumor suppressor.

  13. Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming.

    PubMed

    Zhao, Ting; Fu, Yao; Zhu, Jialiang; Liu, Yifang; Zhang, Qian; Yi, Zexuan; Chen, Shi; Jiao, Zhonggang; Xu, Xiaochan; Xu, Junquan; Duo, Shuguang; Bai, Yun; Tang, Chao; Li, Cheng; Deng, Hongkui

    2018-06-12

    Chemical reprogramming provides a powerful platform for exploring the molecular dynamics that lead to pluripotency. Although previous studies have uncovered an intermediate extraembryonic endoderm (XEN)-like state during this process, the molecular underpinnings of pluripotency acquisition remain largely undefined. Here, we profile 36,199 single-cell transcriptomes at multiple time points throughout a highly efficient chemical reprogramming system using RNA-sequencing and reconstruct their progression trajectories. Through identifying sequential molecular events, we reveal that the dynamic early embryonic-like programs are key aspects of successful reprogramming from XEN-like state to pluripotency, including the concomitant transcriptomic signatures of two-cell (2C) embryonic-like and early pluripotency programs and the epigenetic signature of notable genome-wide DNA demethylation. Moreover, via enhancing the 2C-like program by fine-tuning chemical treatment, the reprogramming process is remarkably accelerated. Collectively, our findings offer a high-resolution dissection of cell fate dynamics during chemical reprogramming and shed light on mechanistic insights into the nature of induced pluripotency. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Characterizing early embryonic development of Brown Tsaiya Ducks (Anas platyrhynchos) in comparison with Taiwan Country Chicken (Gallus gallus domestics)

    PubMed Central

    Lumsangkul, Chompunut; Fan, Yang-Kwang; Chang, Shen-Chang; Ju, Jyh-Cherng

    2018-01-01

    Avian embryos are among the most convenient and the primary representatives for the study of classical embryology. It is well-known that the hatching time of duck embryos is approximately one week longer than that of chicken embryos. However, the key features associated with the slower embryonic development in ducks have not been adequately described. This study aimed to characterize the pattern and the speed of early embryogenesis in Brown Tsaiya Ducks (BTD) compared with those in Taiwan Country Chicken (TCC) by using growth parameters including embryonic crown-tail length (ECTL), primitive streak formation, somitogenesis, and other development-related parameters, during the first 72 h of incubation. Three hundred and sixty eggs from BTD and TCC, respectively, were incubated at 37.2°C, and were then dissected hourly to evaluate their developmental stages. We found that morphological changes of TCC embryos shared a major similarity with that of the Hamburger and Hamilton staging system during early chick embryogenesis. The initial primitive streak in TCC emerged between 6 and 7 h post-incubation, but its emergence was delayed until 10 to 13 h post-incubation in BTD. Similarly, the limb primordia (wing and limb buds) were observed at 51 h post-incubation in TCC embryos compared to 64 h post-incubation in BTD embryos. The allantois first appeared around 65 to 68 h in TCC embryos, but it was not observed in BTD embryos. At the 72 h post-incubation, 40 somites were clearly formed in TCC embryos while only 32 somites in BTD embryos. Overall, the BTD embryos developed approximately 16 h slower than the chicken embryo during the first 72 h of development. To our best knowledge, this is the first study to describe two distinct developmental time courses between TCC and BTD, which would facilitate future embryogenesis-related studies of the two important avian species in Taiwan. PMID:29742160

  15. Heparanase confers a growth advantage to differentiating murine embryonic stem cells, and enhances oligodendrocyte formation.

    PubMed

    Xiong, Anqi; Kundu, Soumi; Forsberg, Maud; Xiong, Yuyuan; Bergström, Tobias; Paavilainen, Tanja; Kjellén, Lena; Li, Jin-Ping; Forsberg-Nilsson, Karin

    2017-10-01

    Heparan sulfate proteoglycans (HSPGs), ubiquitous components of mammalian cells, play important roles in development and homeostasis. These molecules are located primarily on the cell surface and in the pericellular matrix, where they interact with a multitude of macromolecules, including many growth factors. Manipulation of the enzymes involved in biosynthesis and modification of HSPG structures alters the properties of stem cells. Here, we focus on the involvement of heparanase (HPSE), the sole endo-glucuronidase capable of cleaving of HS, in differentiation of embryonic stem cells into the cells of the neural lineage. Embryonic stem (ES) cells overexpressing HPSE (Hpse-Tg) proliferated more rapidly than WT ES cells in culture and formed larger teratomas in vivo. In addition, differentiating Hpse-Tg ES cells also had a higher growth rate, and overexpression of HPSE in NSPCs enhanced Erk and Akt phosphorylation. Employing a two-step, monolayer differentiation, we observed an increase in HPSE as wild-type (WT) ES cells differentiated into neural stem and progenitor cells followed by down-regulation of HPSE as these NSPCs differentiated into mature cells of the neural lineage. Furthermore, NSPCs overexpressing HPSE gave rise to more oligodendrocytes than WT cultures, with a concomitant reduction in the number of neurons. Our present findings emphasize the importance of HS, in neural differentiation and suggest that by regulating the availability of growth factors and, or other macromolecules, HPSE promotes differentiation into oligodendrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Monoamine Oxidases Regulate Telencephalic Neural Progenitors in Late Embryonic and Early Postnatal Development

    PubMed Central

    Cheng, Aiwu; Scott, Anna L.; Ladenheim, Bruce; Chen, Kevin; Ouyang, Xin; Lathia, Justin D.; Mughal, Mohamed; Cadet, Jean Lud; Mattson, Mark P.; Shih, Jean C.

    2010-01-01

    Monoamine neurotransmitters play major roles in regulating a range of brain functions in adults and increasing evidence suggests roles for monoamines in brain development. Here we show that mice lacking the monoamine metabolic enzymes MAO A and MAO B (MAO AB-deficient mice) exhibit diminished proliferation of neural stem cells (NSC) in the developing telencephalon beginning in late gestation [embryonic day (E) 17.5], a deficit that persists in neonatal and adult mice. These mice showed significantly increased monoamine levels and anxiety-like behaviors as adults. Assessments of markers of intermediate progenitor cells (IPC) and mitosis showed that NSC in the subventricular zone (SVZ), but not in the ventricular zone, are reduced in MAO AB-deficient mice. A developmental time course of monoamines in frontal cortical tissues revealed increased serotonin levels as early as E14.5, and a further large increase was found between E17.5 and postnatal day 2. Administration of an inhibitor of serotonin synthesis (parachlorophenylalanine) between E14.5 and E19.5 restored the IPC numbers and SVZ thickness, suggesting the role of serotonin in the suppression of IPC proliferation. Studies of neurosphere cultures prepared from the telencephalon at different embryonic and postnatal ages showed that serotonin stimulates proliferation in wild-type, but not in MAO AB-deficient, NSC. Together, these results suggest that a MAO-dependent long-lasting alteration in the proliferation capacity of NSC occurs late in embryonic development and is mediated by serotonin. Our findings reveal novel roles for MAOs and serotonin in the regulation of IPC proliferation in the developing brain. PMID:20702706

  17. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    PubMed

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  18. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy

    PubMed Central

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I.; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling. PMID:26020623

  19. Radiation hazards of radio frequency waves on the early embryonic development of Zebrafish

    NASA Astrophysics Data System (ADS)

    Harkless, Ryan; Al-Quraishi, Muntather; Vagula, Mary C.

    2014-06-01

    With the growing use of wireless devices in almost all day-to-day activities, exposure to radio-frequency radiation has become an immediate health concern. It is imperative that the effects of such radiation not only on humans, but also on other organisms be well understood. In particular, it is critical to understand if RF radiation has any bearing on the gene expression during embryonic development, as this is a crucial and delicate phase for any organism. Owing to possible effects that RF radiation may have on gene expression, it is essential to explore the carcinogenic or teratogenic properties that it may show. This study observed the effects of RF radiation emitted from a cellular telephone on the embryonic development of zebra fish. The expression of the gene shha plays a key role in the early development of the fish. This gene has homologs in humans as well as in other model organisms. Additionally, several biomarkers indicative of cell stress were examined: including lactate dehydrogenase (LDH), superoxide dismutase (SOD), and lipid peroxidation (LPO). Results show a significant decrease in the expression of shha, a significant decrease in LDH activity. There was no significant increase in SOD and LPO activity. No morphological abnormalities were observed in the developing embryos. At present, these results indicate that exposure to cell phone radiation may have a suppressive effect on expression of shha in D. rerio, though such exposure does not appear to cause morphological detriments. More trials are underway to corroborate these results.

  20. Early embryonic demise: no evidence of abnormal spiral artery transformation or trophoblast invasion.

    PubMed

    Ball, E; Robson, S C; Ayis, S; Lyall, F; Bulmer, J N

    2006-03-01

    Invasion by extravillous trophoblast of uterine decidua and myometrium and the associated spiral artery 'transformation' are essential for the development of normal pregnancy. Small pilot studies of placental bed and basal plate tissues from miscarriages have suggested that impaired interstitial and endovascular trophoblast invasion may play a role in the pathogenesis of miscarriage. The hypothesis that early miscarriage is associated with reduced extravillous trophoblast invasion and spiral artery transformation was tested in a large series of placental bed biopsies containing decidua and myometrium and at least one spiral artery from early, karyotyped embryonic miscarriages (early miscarriage and also did not differ significantly from normal pregnancy. These findings suggest that failed trophoblast invasion and spiral artery transformation do not have a pivotal role in the pathogenesis of early miscarriage.

  1. Inducible overexpression of RUNX1b/c in human embryonic stem cells blocks early hematopoiesis from mesoderm.

    PubMed

    Chen, B; Teng, Jiawen; Liu, Hongwei; Pan, X; Zhou, Y; Huang, Shu; Lai, Mowen; Bian, Guohui; Mao, Bin; Sun, Wencui; Zhou, Qiongxiu; Yang, Shengyong; Nakahata, Tatsutoshi; Ma, Feng

    2017-08-01

    RUNX1 is absolutely required for definitive hematopoiesis, but the function of RUNX1b/c, two isoforms of human RUNX1, is unclear. We established inducible RUNX1b/c-overexpressing human embryonic stem cell (hESC) lines, in which RUNX1b/c overexpression prevented the emergence of CD34+ cells from early stage, thereby drastically reducing the production of hematopoietic stem/progenitor cells. Simultaneously, the expression of hematopoiesis-related factors was downregulated. However, such blockage effect disappeared from day 6 in hESC/AGM-S3 cell co-cultures, proving that the blockage occurred before the generation of hemogenic endothelial cells. This blockage was partially rescued by RepSox, an inhibitor of the transforming growth factor (TGF)-β signaling pathway, indicating a close relationship between RUNX1b/c and TGF-β pathway. Our results suggest a unique inhibitory function of RUNX1b/c in the development of early hematopoiesis and may aid further understanding of its biological function in normal and diseased models. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  2. Anterograde Tracing Method using DiI to Label Vagal Innervation of the Embryonic and Early Postnatal Mouse Gastrointestinal Tract

    PubMed Central

    Murphy, Michelle C.; Fox, Edward A.

    2007-01-01

    The mouse is an extremely valuable model for studying vagal development in relation to strain differences, genetic variation, gene manipulations, or pharmacological manipulations. Therefore, a method using 1, 1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) was developed for labeling vagal innervation of the gastrointestinal (GI) tract in embryonic and postnatal mice. DiI labeling was adapted and optimized for this purpose by varying several facets of the method. For example, insertion and crushing of DiI crystals into the nerve led to faster DiI diffusion along vagal axons and diffusion over longer distances as compared with piercing the nerve with a micropipette tip coated with dried DiI oil. Moreover, inclusion of EDTA in the fixative reduced leakage of DiI out of nerve fibers that occurred with long incubations. Also, mounting labeled tissue in PBS was superior to glycerol with n-propyl gallate, which resulted in reduced clarity of DiI labeling that may have been due to DiI leaking out of fibers. Optical sectioning of flattened wholemounts permitted examination of individual tissue layers of the GI tract wall. This procedure aided identification of nerve ending types because in most instances each type innervates a different tissue layer. Between embryonic day 12.5 and postnatal day 8, growth of axons into the GI tract, formation and patterning of fiber bundles in the myenteric plexus and early formation of putative afferent and efferent nerve terminals were observed. Thus, the DiI tracing method developed here has opened up a window for investigation during an important phase of vagal development. PMID:17418900

  3. Florfenicol induces early embryonic death in eggs collected from treated hens.

    PubMed

    Al-Shahrani, S; Naidoo, V

    2015-08-18

    Florfenicol, a commonly used veterinary antibiotic, was reported to have caused a severe drop in egg hatchability following its off-label use on a broiler breeder farm in South Africa. According to the pharmacovigilance report, hatchability dropped by 80 % for up to a week following a five day course at 10 mg/kg (both males and females treated metaphylactically) to manage an Escherichia coli infection. While mammalian toxicity studies indicate the potential for early embryonic death in utero or testicular damage, no literature is available on the avian toxicity of florfenicol. For this study we investigated the effects of florfenicol at various doses from 10 to 90 mg/kg on the egg hatchability in a breeder flock we kept and established under controlled conditions, with the same cockerels and hens being exposed in a phased manner. Following five days of oral exposure, no toxic signs were evident in any of the cockerels or hens treated at doses up to 90 mg/kg. Treatment of only the cockerels had no effect on egg hatchability, while treatment of only the hens at doses of 60 and 90 mg/kg resulted in decreased hatchability of 0 % in comparison to 70 % of the control as early 24 h after treatment. In all cases, decreased hatchability was associated with embryonic death at 5 days of development. The toxic effects of florfenicol were completely reversible with comparable hatchability being present by day 4 post-treatment withdrawal. Toxicity correlated with total egg florfenicol concentrations with an LC50 of 1.07 μg/g. Florfenicol appears to be toxic to the developing chick embryo at around day 5 of incubation, in the absence of related toxicity in the hen or cockerel.

  4. Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development.

    PubMed

    Rabatel, Andréane; Febvay, Gérard; Gaget, Karen; Duport, Gabrielle; Baa-Puyoulet, Patrice; Sapountzis, Panagiotis; Bendridi, Nadia; Rey, Marjolaine; Rahbé, Yvan; Charles, Hubert; Calevro, Federica; Colella, Stefano

    2013-04-10

    Nutritional symbioses play a central role in insects' adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are essential for the switch

  5. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.

    PubMed

    Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B

    2014-03-01

    Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  6. Function of FEZF1 during early neural differentiation of human embryonic stem cells.

    PubMed

    Liu, Xin; Su, Pei; Lu, Lisha; Feng, Zicen; Wang, Hongtao; Zhou, Jiaxi

    2018-01-01

    The understanding of the mechanism underlying human neural development has been hampered due to lack of a cellular system and complicated ethical issues. Human embryonic stem cells (hESCs) provide an invaluable model for dissecting human development because of unlimited self-renewal and the capacity to differentiate into nearly all cell types in the human body. In this study, using a chemical defined neural induction protocol and molecular profiling, we identified Fez family zinc finger 1 (FEZF1) as a potential regulator of early human neural development. FEZF1 is rapidly up-regulated during neural differentiation in hESCs and expressed before PAX6, a well-established marker of early human neural induction. We generated FEZF1-knockout H1 hESC lines using CRISPR-CAS9 technology and found that depletion of FEZF1 abrogates neural differentiation of hESCs. Moreover, loss of FEZF1 impairs the pluripotency exit of hESCs during neural specification, which partially explains the neural induction defect caused by FEZF1 deletion. However, enforced expression of FEZF1 itself fails to drive neural differentiation in hESCs, suggesting that FEZF1 is necessary but not sufficient for neural differentiation from hESCs. Taken together, our findings identify one of the earliest regulators expressed upon neural induction and provide insight into early neural development in human.

  7. Student Learning of Early Embryonic Development via the Utilization of Research Resources from the Nematode "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Lu, Fong-Mei; Eliceiri, Kevin W.; Squirrell, Jayne M.; White, John G.; Stewart, James

    2008-01-01

    This study was undertaken to gain insights into undergraduate students' understanding of early embryonic development, specifically, how well they comprehend the concepts of volume constancy, cell lineages, body plan axes, and temporal and spatial dimensionality in development. To study student learning, a curriculum was developed incorporating…

  8. Physiology and Endocrinology Symposium: The current status of heat shock in early embryonic survival and reproductive efficiency

    USDA-ARS?s Scientific Manuscript database

    The Physiology and Endocrinology Symposium entitled “The Current Status of Heat Shock in Early Embryonic Survival and Reproductive Efficiency” was held at the Joint ADSA-CSAS-AMPA-WSAS-ASAS Meeting in Phoenix, Arizona, July 15 to 19, 2012. In recent years, data has accumulated suggesting a role for...

  9. Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: relating tissue engineering using adult mesenchymal stem cells to embryonic development.

    PubMed

    Hellingman, Catharine A; Koevoet, Wendy; Kops, Nicole; Farrell, Eric; Jahr, Holger; Liu, Wei; Baatenburg de Jong, Robert J; Frenz, Dorothy A; van Osch, Gerjo J V M

    2010-02-01

    Adult mesenchymal stem cells (MSCs) are considered promising candidate cells for therapeutic cartilage and bone regeneration. Because tissue regeneration and embryonic development may involve similar pathways, understanding common pathways may lead to advances in regenerative medicine. In embryonic limb development, fibroblast growth factor receptors (FGFRs) play a role in chondrogenic differentiation. The aim of this study was to investigate and compare FGFR expression in in vivo embryonic limb development and in vitro chondrogenesis of MSCs. Our study showed that in in vitro chondrogenesis of MSCs three sequential stages can be found, as in embryonic limb development. A mesenchymal condensation (indicated by N-cadherin) is followed by chondrogenic differentiation (indicated by collagen II), and hypertrophy (indicated by collagen X). FGFR1-3 are expressed in a stage-dependent pattern during in vitro differentiation and in vivo embryonic limb development. In both models FGFR2 is clearly expressed by cells in the condensation phase. No FGFR expression was observed in differentiating and mature hyaline chondrocytes, whereas hypertrophic chondrocytes stained strongly for all FGFRs. To evaluate whether stage-specific modulation of chondrogenic differentiation in MSCs is possible with different subtypes of FGF, FGF2 and FGF9 were added to the chondrogenic medium during different stages in the culture process (early or late). FGF2 and FGF9 differentially affected the amount of cartilage formed by MSCs depending on the stage in which they were added. These results will help us understand the role of FGF signaling in chondrogenesis and find new tools to monitor and control chondrogenic differentiation.

  10. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development

    PubMed Central

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V.; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K.; Bellusci, Saverio

    2015-01-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. PMID:26511927

  11. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development.

    PubMed

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K; Bellusci, Saverio

    2015-12-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. © 2015. Published by The Company of Biologists Ltd.

  12. Distinct requirements for C.elegans TAF(II)s in early embryonic transcription.

    PubMed

    Walker, A K; Rothman, J H; Shi, Y; Blackwell, T K

    2001-09-17

    TAF(II)s are conserved components of the TFIID, TFTC and SAGA-related mRNA transcription complexes. In yeast (y), yTAF(II)17 is required broadly for transcription, but various other TAF(II)s appear to have more specialized functions. It is important to determine how TAF(II)s contribute to transcription in metazoans, which have larger and more diverse genomes. We have examined TAF(II) functions in early Caenorhabditis elegans embryos, which can survive without transcription for several cell generations. We show that taf-10 (yTAF(II)17) and taf-11 (yTAF(II)25) are required for a significant fraction of transcription, but apparently are not needed for expression of multiple developmental and other metazoan-specific genes. In contrast, taf-5 (yTAF(II)48; human TAF(II)130) seems to be required for essentially all early embryonic mRNA transcription. We conclude that TAF-10 and TAF-11 have modular functions in metazoans, and can be bypassed at many metazoan-specific genes. The broad involvement of TAF-5 in mRNA transcription in vivo suggests a requirement for either TFIID or a TFTC-like complex.

  13. Early embryonic survival and embryo development in two lines of rabbits divergently selected for uterine capacity.

    PubMed

    Peiró, R; Santacreu, M A; Climent, A; Blasco, A

    2007-07-01

    The aim of this work is to study early embryo survival and development in 2 lines divergently selected for high and low uterine capacity throughout 10 generations. A total of 162 female rabbits from the high line and 133 from the low line were slaughtered at 25, 48, or 62 h of gestation. There were no differences in ovulation rate and fertilization rate between lines in any of the 3 stages of gestation. Embryo survival, estimated as the number of normal embryos recovered at a constant ovulation rate, was similar in both lines at 25 and 48 h. Embryo survival was greater in the high line [D (posterior mean of the difference between the high and low lines) = 0.57 embryos] at 62 h of gestation. There was no difference in embryonic stage of development at 25 h, but at 48 and 62 h of gestation, the high line, compared with the low line, had a greater percentage of early morulae (83 vs. 72%) and compacted morulae (55 vs. 38%). Divergent selection for uterine capacity appeared to modify embryo development, at least from 48 h of gestation, and embryo survival from 62 h.

  14. Bone characteristics of late-term embryonic and hatchling broilers: bone development under extreme growth rate.

    PubMed

    Yair, R; Uni, Z; Shahar, R

    2012-10-01

    The development of broilers is an extreme example of rapid growth, increasing in weight from 40 g at hatch to 2,000 g 5 to 6 wk later. Such rapid growth requires a correspondingly fast development of the skeleton. Bone development is a genetically programmed process that is modified by epigenetic factors, mainly muscle-induced stresses and strains. In this study, we describe the temporal changes in bone morphology and material properties during the prehatch period [embryonic day (E) 14, E17, E19, E21] and posthatch d 3 and 7. The bones were examined for their weight, length, ash content, mechanical properties, and cortical structure. We show that the cross-sectional shape of the tibia and femur changes during the examination period from circular to elliptical. Additionally, the changes in bone properties are time-dependent and nonuniform: from E14 to E17 and from d 3 to 7, fast bone growth was noted, with major increases in both mechanical properties (stiffness, ultimate load, and energy to fracture) and geometric properties (cross-sectional area and thickness, medullary area, and moment of inertia). On the other hand, during the last days of incubation, most mechanical and geometric properties remain unchanged or even decrease. The reasons for this finding may relate to the hatching process but also to mineral shortage during the last days of incubation. This study leads to better understanding of bone development in ovo and posthatch in fast-growing broilers.

  15. Early recognition of growth abnormalities permitting early intervention

    USDA-ARS?s Scientific Manuscript database

    Normal growth is a sign of good health. Monitoring for growth disturbances is fundamental to children's health care. Early detection and diagnosis of the causes of short stature allows management of underlying medical conditions, optimizing attainment of good health and normal adult height. This rev...

  16. Periconception Maternal Folate Status and Human Embryonic Cerebellum Growth Trajectories: The Rotterdam Predict Study

    PubMed Central

    Koning, Irene V.; Groenenberg, Irene A. L.; Gotink, Anniek W.; Willemsen, Sten P.; Gijtenbeek, Manon; Dudink, Jeroen; Go, Attie T. J. I.; Reiss, Irwin K. M.; Steegers, Eric A. P.; Steegers-Theunissen, Régine P. M.

    2015-01-01

    We aimed to investigate whether periconceptional maternal folate status affects human embryonic cerebellar size and growth trajectories. In a prospective periconceptional cohort participants filled out questionnaires and received weekly transvaginal 3D-ultrasounds between 7+0 and 12+6 weeks gestational age (GA). Viable non-malformed singleton pregnancies were selected for cerebellar measurements; transcerebellar diameter, (TCD), left and right cerebellar diameters (LCD, RCD). Linear mixed models were performed to estimate associations between questionnaire data on the timing of maternal folic acid supplement initiation and longitudinal cerebellar measurements as a function of crown-rump length (CRL) and GA. Maternal red blood cell folate concentrations were analysed before 8 weeks GA to validate the associations. A total of 263 serial high quality three-dimensional ultrasound scans of 135 pregnancies were studied. Preconceptional compared to postconceptional initiation of folic acid use was associated with slightly larger cerebellar diameters per millimetre increase of CRL (TCD: β = 0.260mm, 95%CI = 0.023–0.491, p<0.05; LCD: β = 0.171mm, 95%CI = 0.038–0.305, p<0.05; RCD: β = 0.156mm, 95%CI = 0.032–0.280, p<0.05) and with proportional cerebellar growth (TCD/CRL:β = 0.015mm/mm, 95%CI = 0.005–0.024, p<0.01; LCD/CRL:β = 0.012mm/mm, 95%CI = 0.005–0.018, p<0.01; RCD/CRL:β = 0.011mm/mm, 95%CI = 0.005–0.017, p<0.01). Cerebellar growth was significantly highest in the third quartile of maternal red blood cell folate levels (1538–1813 nmol/L). These first findings show that periconceptional maternal folate status is associated with human embryonic cerebellar development. Implications of these small but significant variations for fetal cerebellar growth trajectories and the child’s neurodevelopmental outcome are yet unknown and warrant further investigation. PMID:26491876

  17. The influence of early embryo traits on human embryonic stem cell derivation efficiency.

    PubMed

    O'Leary, Thomas; Heindryckx, Björn; Lierman, Sylvie; Van der Jeught, Margot; Menten, Björn; Deforce, Dieter; Cornelissen, Ria; de Sousa Lopes, Susana Chuva; De Sutter, Petra

    2011-05-01

    Despite its prognostic value in in vitro fertilization, early embryo morphology is not reported on in the derivation of human embryonic stem cell (hESC) lines. Standard hESC derivation does rely on blastocyst development and its efficiency is highly correlated to inner cell mass (ICM) quality. Poor-quality embryos (PQEs) donated for hESC derivation may have a range of cleavage-stage abnormalities that are known to compromise further development. This study was implemented to determine whether specific PQEs traits influence the efficiency of good-quality ICMs to derive new hESC lines. We found that although the types of PQEs investigated were all able to make blastocysts with good-quality ICMs, the ICMs were unequal in their ability to derive hESCs. Good-quality ICMs from embryos with multiple poor-quality traits were unable to generate hESC lines, in contrast to good-quality ICMs from embryos with a single poor-quality trait. In addition, our data suggest a direct correlation between the number of ICM cells present in the blastocyst and its capacity to derive new hESC lines. This study is the first to demonstrate that ICM quality alone is an incomplete indicator of hESC derivation and that application of in vitro fertilization-based early embryo scoring can help predict hESC derivation efficiency. Experiments aiming to quantify, improve upon, or compare hESC derivation efficiency should thus take into consideration early embryo morphology scoring for the comparison of groups with equal developmental competence.

  18. Chronology of early embryonic development and embryo uterine migration in alpacas.

    PubMed

    Picha, Y; Tibary, A; Memon, M; Kasimanickam, R; Sumar, J

    2013-03-01

    The objectives were to: (1) describe the chronology of early embryonic development from ovulation to entry into the uterus; and (2) to determine the timing of embryo migration to the left uterine horn when ovulation occurred from the right ovary. The experiment was conducted in Peru. Females (n = 132) were randomly assigned to 15 experimental groups. All females were mated to an intact male, given 50 μg GnRH im (Cystorelin) and ovulation time determined by transrectal ultrasonography, conducted every 6 hours, starting 24 hours postmating. Animals were slaughtered at a specific intervals postovulation and reproductive tracts were recovered and subjected to oviductal and uterine flushing for females slaughtered between 1 and 6 days postovulation (dpo; Day 0 = ovulation) and uterine flushing for females slaughtered from 7 to 15 dpo for recovery of oocytes/embryos. Season of mating did not influence the interval from mating to ovulation (winter: 29 ± 6 hours vs. summer: 30 ± 6 hours; P = 0.49). Ovulation rates for females mated during winter and summer were 92% versus 100%, respectively (P = 0.05). Fertilization rates for winter and summer mated females were 72% and 82% (P = 0.29). Unfertilized ova were not retained in the uterine tube. All embryos collected were in the uterine tube ipsilateral to the side of ovulation between 1 and 5 dpo. Embryos reached the uterus on 6 dpo. Embryos began to elongate on 9 dpo; at this time, 83% of embryos derived from right-ovary ovulations were collected from the left uterine horn. Embryos occupied the entire uterine cavity by 10 dpo. In conclusion, we characterized early embryo development and location of embryo during its early developmental stages in alpaca. This was apparently the first report regarding chronology of embryo development and migration to the left horn in alpaca which merits further investigation regarding its role in maternal recognition of pregnancy. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Three-dimensional microCT imaging of murine embryonic development from immediate post-implantation to organogenesis: application for phenotyping analysis of early embryonic lethality in mutant animals.

    PubMed

    Ermakova, Olga; Orsini, Tiziana; Gambadoro, Alessia; Chiani, Francesco; Tocchini-Valentini, Glauco P

    2018-04-01

    In this work, we applied three-dimensional microCT imaging to study murine embryogenesis in the range from immediate post-implantation period (embryonic day 5.5) to mid-gestation (embryonic day 12.5) with the resolution up to 1.4 µm/voxel. Also, we introduce an imaging procedure for non-invasive volumetric estimation of an entire litter of embryos within the maternal uterine structures. This method allows for an accurate, detailed and systematic morphometric analysis of both embryonic and extra-embryonic components during embryogenesis. Three-dimensional imaging of unperturbed embryos was performed to visualize the egg cylinder, primitive streak, gastrulation and early organogenesis stages of murine development in the C57Bl6/N mouse reference strain. Further, we applied our microCT imaging protocol to determine the earliest point when embryonic development is arrested in a mouse line with knockout for tRNA splicing endonuclease subunit Tsen54 gene. Our analysis determined that the embryonic development in Tsen54 null embryos does not proceed beyond implantation. We demonstrated that application of microCT imaging to entire litter of non-perturbed embryos greatly facilitate studies to unravel gene function during early embryogenesis and to determine the precise point at which embryonic development is arrested in mutant animals. The described method is inexpensive, does not require lengthy embryos dissection and can be applicable for detailed analysis of mutant mice at laboratory scale as well as for high-throughput projects.

  20. Omega-3 polyunsaturated fatty acids provided during embryonic development improve the growth performance and welfare of Muscovy ducks (Cairina moschata).

    PubMed

    Baéza, E; Chartrin, P; Bordeau, T; Lessire, M; Thoby, J M; Gigaud, V; Blanchet, M; Alinier, A; Leterrier, C

    2017-09-01

    The welfare of ducks can be affected by unwanted behaviors such as excessive reactivity and feather pecking. Providing long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) during gestation and early life has been shown to improve the brain development and function of human and rodent offspring. The aim of this study was to test whether the pecking behavior of Muscovy ducks during rearing could be reduced by providing LC n-3 PUFA during embryonic and/or post-hatching development of ducklings. Enrichment of eggs, and consequently embryos, with LC n-3 PUFA was achieved by feeding female ducks (n-3F) a diet containing docosahexaenoic (DHA) and linolenic acids (microalgae and linseed oil). A control group of female ducks (CF) was fed a diet containing linoleic acid (soybean oil). Offspring from both groups were fed starter and grower diets enriched with DHA and linolenic acid or only linoleic acid, resulting in four treatment groups with 48 ducklings in each. Several behavioral tests were performed between 1 and 3 weeks of age to analyze the adaptation ability of ducklings. The growth performance, time budget, social interactions, feather growth, and pecking behavior of ducklings were recorded regularly during the rearing period. No significant interaction between maternal and duckling feeding was found. Ducklings from n-3F ducks had a higher body weight at day 0, 28, and 56, a lower feed conversion ratio during the growth period, and lower reactivity to stress than ducklings from CF ducks. Ducklings from n-3F ducks also exhibited a significantly reduced feather pecking frequency at 49 and 56 days of age and for the whole rearing period. Moreover, consumption of diets enriched with n-3 PUFA during the starter and grower post-hatching periods significantly improved the tibia mineralization of ducklings and the fatty acid composition of thigh muscles at 84 days of age by increasing the n-3 FA content. © 2017 Poultry Science Association Inc.

  1. FANCA knockout in human embryonic stem cells causes a severe growth disadvantage.

    PubMed

    Vanuytsel, Kim; Cai, Qing; Nair, Nisha; Khurana, Satish; Shetty, Swati; Vermeesch, Joris R; Ordovas, Laura; Verfaillie, Catherine M

    2014-09-01

    Fanconi anemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure (BMF) during childhood, aside from numerous congenital abnormalities. FA mouse models have been generated; however, they do not fully mimic the hematopoietic phenotype. As there is mounting evidence that the hematopoietic impairment starts already in utero, a human pluripotent stem cell model would constitute a more appropriate system to investigate the mechanisms underlying BMF in FA and its developmental basis. Using zinc finger nuclease (ZFN) technology, we have created a knockout of FANCA in human embryonic stem cells (hESC). We introduced a selection cassette into exon 2 thereby disrupting the FANCA coding sequence and found that whereas mono-allelically targeted cells retain an unaltered proliferation potential, disruption of the second allele causes a severe growth disadvantage. As a result, heterogeneous cultures arise due to the presence of cells still carrying an unaffected FANCA allele, quickly outgrowing the knockout cells. When pure cultures of FANCA knockout hESC are pursued either through selection or single cell cloning, this rapidly results in growth arrest and such cultures cannot be maintained. These data highlight the importance of a functional FA pathway at the pluripotent stem cell stage. Copyright © 2014. Published by Elsevier B.V.

  2. Single-cell transcriptome of early embryos and cultured embryonic stem cells of cynomolgus monkeys

    PubMed Central

    Nakamura, Tomonori; Yabuta, Yukihiro; Okamoto, Ikuhiro; Sasaki, Kotaro; Iwatani, Chizuru; Tsuchiya, Hideaki; Saitou, Mitinori

    2017-01-01

    In mammals, the development of pluripotency and specification of primordial germ cells (PGCs) have been studied predominantly using mice as a model organism. However, divergences among mammalian species for such processes have begun to be recognized. Between humans and mice, pre-implantation development appears relatively similar, but the manner and morphology of post-implantation development are significantly different. Nevertheless, the embryogenesis just after implantation in primates, including the specification of PGCs, has been unexplored due to the difficulties in analyzing the embryos at relevant developmental stages. Here, we present a comprehensive single-cell transcriptome dataset of pre- and early post-implantation embryo cells, PGCs and embryonic stem cells (ESCs) of cynomolgus monkeys as a model of higher primates. The identities of each transcriptome were also validated rigorously by other way such as immunofluorescent analysis. The information reported here will serve as a foundation for our understanding of a wide range of processes in the developmental biology of primates, including humans. PMID:28649393

  3. Effects of temperature on the embryonic and early larval development in tropical species of black sea urchin, Diadema setosum (Leske, 1778).

    PubMed

    Sarifudin, M; Rahman, M A; Yusoff, F M; Arshad, Aziz; Tan, Soon Guan

    2016-07-01

    Influence of temperature on the embryonic and early development and growth performance of larva in tropical sea urchin, Diadema setosum was investigated in water temperature ranging between 16 and 34?C under controlled laboratory conditions. The critical lower and higher temperature for embryonic development was found at 16 and 34?C, respectively. Embryos reared in both of these two temperatures exhibited 100% abnormality within 48 hrs post-insemination. The time required to reach these embryonic and larval stages increased with temperature from 28 followed by 31, 25, 22 and 19?C in that order. The developmental times of 2-cell stage until 4-arm pluteus larva showed significant differences (P < 0.05) among the tested temperatures. The larvae in the state of prism and 2-arm pluteus, survived at temperature ranging from 19 to 31?C, while the 4-arm pluteus larvae survived at temperature between 22? to 31?C. However, larval development within a temperature range of 22? to 31?C was acceptable since no abnormalities occurred. The morphometric characteristics from prism to 4-arm pluteus larvae in all the temperatures differed significantly (P > 0.05). Among them, 28?C was found to be the best temperature with respect of the highest larval growth and development at all stages. The findings of the study will not only be helpful to understand the critical limits of temperature, but also to identify the most appropriate temperature for optimum growth and development of embryos and larvae, as well as to facilitate the development of captive breeding and mass seed production of D. setosum and other important sea urchins for commercial aquaculture.

  4. Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway.

    PubMed

    Yu, Minli; Wang, Huan; Xu, Yali; Yu, Debing; Li, Dongfeng; Liu, Xiuhong; Du, Wenxing

    2015-08-01

    During embryonic development, IGF-1 fulfils crucial roles in skeletal myogenesis. However, the involvement of IGF-1-induced myoblast proliferation in muscle growth is still unclear. In the present study, we have characterised the role of IGF-1 in myoblast proliferation both in vitro and in vivo and have revealed novel details of how exogenous IGF-1 influences myogenic genes in chicken embryos. The results show that IGF-1 significantly induces the proliferation of cultured myoblasts in a dose-dependent manner. Additionally, the IGF-1 treatment significantly promoted myoblasts entering a new cell cycle and increasing the mRNA expression levels of cell cycle-dependent genes. However, these effects were inhibited by the PI3K inhibitor LY294002 and the Akt inhibitor KP372-1. These data indicated that the pro-proliferative effect of IGF-1 was mediated in response to the PI3K/Akt signalling pathway. Moreover, we also showed that exogenous IGF-1 stimulated myoblast proliferation in vivo. IGF-1 administration obviously promoted the incorporation of BrdU and remarkably increased the number of PAX7-positive cells in the skeletal muscle of chicken embryos. Administration of IGF-1 also significantly induced the upregulation of myogenic factors gene, the enhancement of c-Myc and the inhibition of myostatin (Mstn) expression. These findings demonstrate that IGF-1 has strong activity as a promoter of myoblast expansion and muscle fiber formation during early myogenesis. Therefore, this study offers insight into the mechanisms responsible for IGF-1-mediated stimulation of embryonic skeletal muscle development, which could have important implications for the improvement of chicken meat production. © 2015 International Federation for Cell Biology.

  5. Changing Nuclear Landscape and Unique PML Structures During Early Epigenetic Transitions of Human Embryonic Stem Cells

    PubMed Central

    Butler, John T.; Hall, Lisa L.; Smith, Kelly P.; Lawrence, Jeanne B.

    2010-01-01

    The complex nuclear structure of somatic cells is important to epigenomic regulation, yet little is known about nuclear organization of human embryonic stem cells (hESC). Here we surveyed several nuclear structures in pluripotent and transitioning hESC. Observations of centromeres, telomeres, SC35 speckles, Cajal Bodies, lamin A/C and emerin, nuclear shape and size demonstrate a very different “nuclear landscape” in hESC. This landscape is remodeled during a brief transitional window, concomitant with or just prior to differentiation onset. Notably, hESC initially contain abundant signal for spliceosome assembly factor, SC35, but lack discrete SC35 domains; these form as cells begin to specialize, likely reflecting cell-type specific genomic organization. Concomitantly, nuclear size increases and shape changes as lamin A/C and emerin incorporate into the lamina. During this brief window, hESC exhibit dramatically different PML-defined structures, which in somatic cells are linked to gene regulation and cancer. Unlike the numerous, spherical somatic PML bodies, hES cells often display ~1–3 large PML structures of two morphological types: long linear “rods” or elaborate “rosettes”, which lack substantial SUMO-1, Daxx, and Sp100.These occur primarily between Day 0–2 of differentiation and become rare thereafter. PML rods may be “taut” between other structures, such as centromeres, but clearly show some relationship with the lamina, where PML often abuts or fills a “gap” in early lamin A/C staining. Findings demonstrate that pluripotent hES cells have a markedly different overall nuclear architecture, remodeling of which is linked to early epigenomic programming and involves formation of unique PML-defined structures. PMID:19449340

  6. Efficient embryonic culture method for the Japanese striped snake, Elaphe quadrivirgata, and its early developmental stages.

    PubMed

    Matsubara, Yoshiyuki; Sakai, Atsushi; Kuroiwa, Atsushi; Suzuki, Takayuki

    2014-10-01

    The morphogenesis of snake embryos is an elusive yet fascinating research target for developmental biologists. However, few data exist on development of early snake embryo due to limited availability of pregnant snakes, and the need to harvest early stage embryos directly from pregnant snakes before oviposition without knowing the date of fertilization. We established an ex vivo culture method for early snake embryos using the Japanese striped snake, Elaphe quadrivirgata. This method, which we named "sausage-style (SS) culture", allows us to harvest snake embryos at specific stages for each experiment. Using this SS culture system, we calculated somite formation rate at early stages before oviposition. The average somite formation rate between 6/7 and 12/13 somite stages was 145.9 min, between 60/70 and 80/91 somite stages 42.4 min, and between 113-115 and 126/127 somite stages 71 min. Thus, somite formation rate that we observed during early snake embryogenesis was changed over time. We also describe a developmental staging series for E. quadrivirgata. This is the first report of a developmental series of early snake embryogenesis prior to oviposition by full-color images with high-resolution. We propose that the SS culture system is an easy method for treating early snake embryos ex vivo. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.

  7. Overexpression of COUP-TF1 in murine embryonic stem cells reduces retinoic acid-associated growth arrest and increases extraembryonic endoderm gene expression.

    PubMed

    Zhuang, Yong; Gudas, Lorraine J

    2008-09-01

    Vitamin A (retinol [Rol]) and its metabolites are essential for embryonic development. The Rol metabolite all-trans retinoic acid (RA) is a biologically active form of Rol. The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription-factors (COUP-TF) proteins have been implicated in the regulation of several important biological processes, such as embryonic development and neuronal cell differentiation. Because there is evidence that COUP-TFs function in the retinoid signaling network during development and differentiation, we generated murine embryonic stem (ES) cell lines which stably and constitutively overexpress COUP-TF1 (NR2F1) and we analyzed RA-induced differentiation. COUP-TF1 overexpression resulted in reduced RA-associated growth arrest. A 2.4+/-0.17-fold higher Nanog mRNA level was seen in COUP-TF1 overexpressing lines, as compared with wild-type (WT) ES cells, after a 72 hr RA treatment. We also showed that COUP-TF1 overexpression enhanced RA-induced extraembryonic endoderm gene expression. Specifically, COUP-TF1 overexpression increased mRNA levels of GATA6 by 3.3+/-0.3-fold, GATA4 by 3.6+/-0.1-fold, laminin B1 (LAMB1) by 3.4+/-0.1-fold, LAMC1 by 3.4+/-0.2-fold, Dab2 by 2.4+0.1-fold, and SOX17 by 2.5-fold at 72 hr after RA treatment plus LIF, as compared with the increases seen in WT ES cells. However, RA-induced neurogenesis was unaffected by COUP-TF1 overexpression, as shown by the equivalent levels of expression of NeuroD1, nestin, GAP43 and other neuronal markers. Our results revealed for the first time that COUP-TF1 is an important signaling molecule during vitamin A (Rol)-mediated very early stage of embryonic development.

  8. Glycogen and Glucose Metabolism Are Essential for Early Embryonic Development of the Red Flour Beetle Tribolium castaneum

    PubMed Central

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen. PMID:23750237

  9. Early pregnancy factor (EPF) as a marker for detecting subclinical embryonic loss in clomiphene citrate-treated women.

    PubMed

    Shahani, S K; Moniz, C L; Gokral, J S; Meherji, P K

    1995-05-01

    A discrepancy exists between the apparently normal ovulation and the pregnancy rates in women treated with clomiphene citrate (CC). Our previous studies have indicated that immuno-suppressive "early pregnancy factor" (EPF) is a novel marker to detect subclinical embryonic loss in infertile women. In the present study EPF was used as a marker to detect subclinical embryonic loss in women treated with CC with/without gonadotropins. In some of the women treated with CC, conception was assisted by artificial insemination with husband's semen (AIH). Our results have indicated that fertilization occurred (EPF + ve) in 47.7% (52/109) of women treated with CC with/without gonadotropins; 13.46% (7/52) retained the fetus and continued pregnancy till full term, whereas 78.9% (41/52) did not retain the fetuses. In the group where after stimulation, conception was assisted by AIH, fertilization was observed in 38.24% (26/68), retention in 11.54% (3/26) but subclinical embryonic loss was observed in 80.8% (21/26) cases. Thus, our results have indicated that subclinical embryonic loss may account for some of the discrepancy observed between the apparently normal ovulation and the pregnancy rates in women treated with clomiphene citrate.

  10. COMPARISONS OF THE EFFECTS OF TCDD AND HYDROCORTISONE (HC) ON GROWTH FACTOR EXPRESSION PROVIDE INSIGHT INTO THE SYNERGISTIC INTERACTION OCCURRING IN EMBRYONIC PALATES

    EPA Science Inventory

    Cleft palate (CP) can be Induced In embryonic mice by a Wide range of compounds, including glucocorticoids and 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD). ydrocortisone (HC), a glucocorticoid, retards embryonic growth producing small palatal shelves, while TCDD exposure blocks t...

  11. Falls, sarcopenia and growth in early life

    PubMed Central

    Sayer, Avan Aihie; Syddall, Holly E; Martin, Helen J; Dennison, Elaine M; Anderson, Frazer H; Cooper, Cyrus

    2007-01-01

    Recent studies have shown that people with poor early growth have an increased risk of sarcopenia. Sarcopenia is an important risk factor for falls but it is not known whether poor early growth is related to falls. We investigated this in the Hertfordshire Cohort Study where 2148 participants completed a falls history. Grip strength was used as a marker of sarcopenia. Birth weight, weight at one year and conditional infant growth were analysed in relation to falls history. The prevalence of any fall in the last year was 14.3% for men and 22.5% for women. Falls in the last year were inversely related to adult grip strength, height and walking speed in men and women as well as to lower conditional infant growth in men (OR 1.27 [95% CI 1.04, 1.56] per SD decrease in conditional infant growth, p=0.02). This association was attenuated after adjustment for grip strength. Our findings support an association between poor early growth and falls in older men which appears to be mediated partly through sarcopenia. The lack of relationship with birth weight suggests that postnatal rather than prenatal influences on muscle growth and development may be important for risk of falls in later life. PMID:16905644

  12. Insulin-like growth factors I and II in starry flounder (Platichthys stellatus): molecular cloning and differential expression during embryonic development.

    PubMed

    Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying

    2015-02-01

    In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder.

  13. Cadmium affects muscle type development and axon growth in zebrafish embryonic somitogenesis.

    PubMed

    Hen Chow, Elly Suk; Cheng, Shuk Han

    2003-05-01

    We have previously reported that exposure to cadmium during zebrafish embryonic development caused morphological malformations of organs and ectopic expression of genes involved in regulating developmental process. One of the most common developmental defects observed was altered axial curvature resulting from defects in the myotomes of the somites. In this study, we investigated the mechanisms of cadmium-induced toxicity in zebrafish somitogenesis. We showed that the critical period of exposure was the gastrulation period, which actually preceded the formation of the first morphologically distinct somites. The somites thus formed lost the typical chevron V-shape and are packed disorderly. The myogenic lineage commitment of the axial mesodermal cells was not affected, as the myogenic regulatory transcription factors were expressed normally. There were, however, losses of fast and slow muscle fibers in the myotomes. The innervation of the muscle blocks by spinal motoneurons is an important process of the somitogenesis. Both primary and secondary motoneurons appear to form normally while the axon growth is affected in cadmium-treated embryos. The notochord, which is essential in the patterning of the somites and the central nervous system, showed abnormal morphological features and failed to extend to the tail region. Taken together, it appears that cadmium exposure led to abnormal somite patterning of the muscle fibers and defects in axonogenesis.

  14. Development and morphogenesis of human wrist joint during embryonic and early fetal period

    PubMed Central

    Hita-Contreras, Fidel; Martínez-Amat, Antonio; Ortiz, Raúl; Caba, Octavio; Álvarez, Pablo; Prados, José C; Lomas-Vega, Rafael; Aránega, Antonia; Sánchez-Montesinos, Indalecio; Mérida-Velasco, Juan A

    2012-01-01

    The development of the human wrist joint has been studied widely, with the main focus on carpal chondrogenesis, ligaments and triangular fibrocartilage. However, there are some discrepancies concerning the origin and morphogenetic time-table of these structures, including nerves, muscles and vascular elements. For this study we used serial sections of 57 human embryonic (n = 30) and fetal (n = 27) specimens from O’Rahilly stages 17–23 and 9–14 weeks, respectively. The following phases in carpal morphogenesis have been established: undifferentiated mesenchyme (stage 17), condensated mesenchyme (stages 18 and 19), pre-chondrogenic (stages 19 and 20) and chondrogenic (stages 21 and over). Carpal chondrification and osteogenic processes are similar, starting with capitate and hamate (stage 19) and ending with pisiform (stage 22). In week 14, a vascular bud penetrates into the lunate cartilaginous mold, early sign of the osteogenic process that will be completed after birth. In stage 18, median, ulnar and radial nerves and thenar eminence appear in the hand plate. In stage 21, there are indications of the interosseous muscles, and in stage 22 flexor digitorum superficialis, flexor digitorum profundus and lumbrical muscles, transverse carpal ligament and collateral ligaments emerge. In stage 23, the articular disc, radiocarpal and ulnocarpal ligaments and deep palmar arterial arch become visible. Radiate carpal and interosseous ligaments appear in week 9, and in week 10, dorsal radiocarpal ligament and articular capsule are evident. Finally, synovial membrane is observed in week 13. We have performed a complete analysis of the morphogenesis of the structures of the human wrist joint. Our results present new data on nervous and arterial elements and provide the basis for further investigations on anatomical pathology, comparative morphology and evolutionary anthropology. PMID:22428933

  15. Mapping conduction velocity of early embryonic hearts with a robust fitting algorithm

    PubMed Central

    Gu, Shi; Wang, Yves T; Ma, Pei; Werdich, Andreas A; Rollins, Andrew M; Jenkins, Michael W

    2015-01-01

    Cardiac conduction maturation is an important and integral component of heart development. Optical mapping with voltage-sensitive dyes allows sensitive measurements of electrophysiological signals over the entire heart. However, accurate measurements of conduction velocity during early cardiac development is typically hindered by low signal-to-noise ratio (SNR) measurements of action potentials. Here, we present a novel image processing approach based on least squares optimizations, which enables high-resolution, low-noise conduction velocity mapping of smaller tubular hearts. First, the action potential trace measured at each pixel is fit to a curve consisting of two cumulative normal distribution functions. Then, the activation time at each pixel is determined based on the fit, and the spatial gradient of activation time is determined with a two-dimensional (2D) linear fit over a square-shaped window. The size of the window is adaptively enlarged until the gradients can be determined within a preset precision. Finally, the conduction velocity is calculated based on the activation time gradient, and further corrected for three-dimensional (3D) geometry that can be obtained by optical coherence tomography (OCT). We validated the approach using published activation potential traces based on computer simulations. We further validated the method by adding artificially generated noise to the signal to simulate various SNR conditions using a curved simulated image (digital phantom) that resembles a tubular heart. This method proved to be robust, even at very low SNR conditions (SNR = 2-5). We also established an empirical equation to estimate the maximum conduction velocity that can be accurately measured under different conditions (e.g. sampling rate, SNR, and pixel size). Finally, we demonstrated high-resolution conduction velocity maps of the quail embryonic heart at a looping stage of development. PMID:26114034

  16. Transforming Growth Factor Beta (TGFβ1, TGFβ2 and TGFβ3) Null-Mutant Phenotypes in Embryonic Gonadal Development

    PubMed Central

    Memon, Mushtaq A.; Anway, Matthew D.; Covert, Trevor R.; Uzumcu, Mehmet; Skinner, Michael K.

    2008-01-01

    The role transforming growth factor beta (TGFb) isoforms TGFb1, TGFb2 and TGFb3 have in the regulation of embryonic gonadal development was investigated with the use of null-mutant (i.e. knockout) mice for each of the TGFb isoforms. Late embryonic gonadal development was investigated because homozygote TGFb null-mutant mice generally die around birth, with some embryonic loss as well. In the testis, the TGFb1 null-mutant mice had a decrease in the number of germ cells at birth, postnatal day 0 (P0). In the testis, the TGFb2 null-mutant mice had a decrease in the number of seminiferous cords at embryonic day 15 (E15). In the ovary, the TGFb2 null-mutant mice had an increase in the number of germ cells at P0. TGFb isoforms appear to have a role in gonadal development, but interactions between the isoforms is speculated to compensate in the different TGFb isoform null-mutant mice. PMID:18790002

  17. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen genemore » expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.« less

  18. Vacuolar status and water relations in embryonic axes of recalcitrant Aesculus hippocastanum seeds during stratification and early germination.

    PubMed

    Obroucheva, Natalie V; Lityagina, Snezhana V; Novikova, Galina V; Sin'kevich, Irina A

    2012-01-01

    In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H(+)-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H(+)-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant seeds, overlooked when studying tropical recalcitrants due

  19. Vacuolar status and water relations in embryonic axes of recalcitrant Aesculus hippocastanum seeds during stratification and early germination

    PubMed Central

    Obroucheva, Natalie V.; Lityagina, Snezhana V.; Novikova, Galina V.; Sin'kevich, Irina A.

    2012-01-01

    Backgrounds and aims In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Methodology Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H+-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Principal results Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H+-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Conclusions Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant

  20. Embryonic-only arsenic exposure in killifish (Fundulus heteroclitus) reduces growth and alters muscle IGF levels one year later.

    PubMed

    Szymkowicz, Dana B; Sims, Kaleigh C; Castro, Noemi M; Bridges, William C; Bain, Lisa J

    2017-05-01

    Arsenic is a contaminant of drinking water and crops in many parts of the world. Epidemiological studies have shown that arsenic exposure is linked to decreased birth weight, weight gain, and proper skeletal muscle function. The goal of this study was to use killifish (Fundulus heteroclitus) as a model to determine the long-term effects of embryonic-only arsenic exposure on muscle growth and the insulin-like growth factor (IGF) pathway. Killifish embryos were exposed to 0, 50, 200 or 800ppb As III from fertilization until hatching. Juvenile fish were reared in clean water and muscle samples were collected at 16, 28, 40 and 52 weeks of age. There were significant reductions in condition factors, ranging from 12 to 17%, in the fish exposed to arsenic at 16, 28 and 40 weeks of age. However, by 52 weeks, no significant changes in condition factors were seen. Alterations in IGF-1R and IGF-1 levels were assessed as a potential mechanism by which growth was reduced. While there no changes in hepatic IGF-1 transcripts, skeletal muscle cells can also produce their own IGF-1 and/or alter IGF-1 receptor levels to help enhance growth. After a 200 and 800ppb embryonic exposure, fish grown in clean water for 16 weeks had IGF-1R transcripts that were 2.8-fold and 2-fold greater, respectively, than unexposed fish. Through 40 weeks of age, IGF1-R remained elevated in the 200ppb and 800ppb embryonic exposure groups by 1.8-3.9-fold, while at 52 weeks of age, IGF-1R levels were still significantly increased in the 800ppb exposure group. Skeletal muscle IGF-1 transcripts were also significantly increased by 1.9-5.1 fold through the 52 weeks of grow-out in clean by water in the 800ppb embryonic exposure group. Based on these results, embryonic arsenic exposure has long-term effects in that it reduces growth and increases both IGF-1 and IGF-1R levels in skeletal muscle even 1year after the exposure has ended. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana.

    PubMed

    Tatematsu, Kiyoshi; Nakabayashi, Kazumi; Kamiya, Yuji; Nambara, Eiji

    2008-01-01

    To understand the molecular mechanisms underlying regulation of seed germination, we searched enriched cis elements in the upstream regions of Arabidopsis genes whose transcript levels increased during seed germination. Using available published microarray data, we found that two cis elements, Up1 or Up2, which regulate outgrowth of Arabidopsis axillary shoots, were significantly over-represented. Classification of Up1- and Up2-containing genes by gene ontology revealed that protein synthesis-related genes, especially ribosomal protein genes, were highly over-represented. Expression analysis using a reporter gene driven by a synthetic promoter regulated by these elements showed that the Up1 is necessary and sufficient for germination-associated gene induction, whereas Up2 acts as an enhancer of Up1. Up1-mediated gene expression was suppressed by treatments that blocked germination. Up1 is almost identical to the site II motif, which is the predicted target of TCP transcription factors. Of 24 AtTCP genes, AtTCP14, which showed the highest transcript level just prior to germination, was functionally characterized to test its involvement in the regulation of seed germination. Transposon-tagged lines for AtTCP14 showed delayed germination. In addition, germination of attcp14 mutants exhibited hypersensitivity to exogenously applied abscisic acid and paclobutrazol, an inhibitor of gibberellin biosynthesis. AtTCP14 was predominantly expressed in the vascular tissues of the embryo, and affected gene expression in radicles in a non-cell-autonomous manner. Taken together, these results indicate that AtTCP14 regulates the activation of embryonic growth potential in Arabidopsis seeds.

  2. Generation of the Dimensional Embryology Application (App) for Visualization of Early Chick and Frog Embryonic Development

    ERIC Educational Resources Information Center

    Webb, Rebecca L.; Bilitski, James; Zerbee, Alyssa; Symans, Alexandra; Chop, Alexandra; Seitz, Brianne; Tran, Cindy

    2015-01-01

    The study of embryonic development of multiple organisms, including model organisms such as frogs and chicks, is included in many undergraduate biology programs, as well as in a variety of graduate programs. As our knowledge of biological systems increases and the amount of material to be taught expands, the time spent instructing students about…

  3. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    SciTech Connect

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNELmore » staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.« less

  4. Ca2+ signaling and early embryonic patterning during the blastula and gastrula periods of zebrafish and Xenopus development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2006-11-01

    It has been proposed that Ca(2+) signaling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern forming events during early vertebrate development [L.F. Jaffe, Organization of early development by calcium patterns, BioEssays 21 (1999) 657-667; M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signaling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21; S.E. Webb, A.L. Miller, Calcium signalling during embryonic development, Nat. Rev. Mol. Cell Biol. 4 (2003) 539-551]. With reference to the embryos of zebrafish (Danio rerio) and the frog, Xenopus laevis, we review the Ca(2+) signals reported during the Blastula and Gastrula Periods. This developmental window encompasses the major pattern forming events of epiboly, involution, and convergent extension, which result in the establishment of the basic germ layers and body axes [C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310]. Data will be presented to support the suggestion that propagating waves (both long and short range) of Ca(2+) release, followed by sequestration, may play a crucial role in: (1) Coordinating cell movements during these pattern forming events and (2) Contributing to the establishment of the basic embryonic axes, as well as (3) Helping to define the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen [E. Gilland, A.L. Miller, E. Karplus, R. Baker, S.E. Webb, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96 (1999) 157-161; J.B. Wallingford, A.J. Ewald, R.M. Harland, S.E. Fraser, Calcium signaling during convergent extension in Xenopus, Curr. Biol. 11 (2001) 652-661]. The various potential targets of these Ca(2+) transients will also be discussed, as well as how they might integrate with other known pattern forming

  5. Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development.

    PubMed

    Mora-Lorca, José Antonio; Sáenz-Narciso, Beatriz; Gaffney, Christopher J; Naranjo-Galindo, Francisco José; Pedrajas, José Rafael; Guerrero-Gómez, David; Dobrzynska, Agnieszka; Askjaer, Peter; Szewczyk, Nathaniel J; Cabello, Juan; Miranda-Vizuete, Antonio

    2016-07-01

    Glutathione is the most abundant thiol in the vast majority of organisms and is maintained in its reduced form by the flavoenzyme glutathione reductase. In this work, we describe the genetic and functional analysis of the Caenorhabditis elegans gsr-1 gene that encodes the only glutathione reductase protein in this model organism. By using green fluorescent protein reporters we demonstrate that gsr-1 produces two GSR-1 isoforms, one located in the cytoplasm and one in the mitochondria. gsr-1 loss of function mutants display a fully penetrant embryonic lethal phenotype characterized by a progressive and robust cell division delay accompanied by an aberrant distribution of interphasic chromatin in the periphery of the cell nucleus. Maternally expressed GSR-1 is sufficient to support embryonic development but these animals are short-lived, sensitized to chemical stress, have increased mitochondrial fragmentation and lower mitochondrial DNA content. Furthermore, the embryonic lethality of gsr-1 worms is prevented by restoring GSR-1 activity in the cytoplasm but not in mitochondria. Given the fact that the thioredoxin redox systems are dispensable in C. elegans, our data support a prominent role of the glutathione reductase/glutathione pathway in maintaining redox homeostasis in the nematode. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Identification of positional candidates for bovine placental genes responsible for early embryonic death during cloning-attempted pregnancy.

    PubMed

    Yamada, Takahisa; Muramatsu, Youji; Taniguchi, Yukio; Sasaki, Yoshiyuki

    Our previous study detected 291 and 77 genes showing early embryonic death-associated elevation and reduction of expression, respectively, in the fetal placenta of the cow carrying somatic nuclear transfer-derived cloned embryo. In this study, we mapped the 10 genes showing the elevation and the 10 genes doing the reduction most significantly, using somatic cell hybrid and bovine draft genome sequence. We then compared the mapped positions for these genes with the genomic locations of bovine quantitative trait loci for still-birth and/or abortion. Among the mapped genes, peptidylglycine alpha-amidating monooxygenase (PAM), spectrin, beta, nonerythrocytic 1 (SPTBNI), and an unknown novel gene containing AU277832 expressed sequence tag were intriguing, in that the mapped positions were consistent with the genomic locations of bovine still-birth and/or abortion quantitative trait loci, and thus identified as positional candidates for bovine placental genes responsible for the early embryonic death during the pregnancy attempted by somatic nuclear transfer-derived cloning.

  7. Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state.

    PubMed

    Schokraie, Elham; Warnken, Uwe; Hotz-Wagenblatt, Agnes; Grohme, Markus A; Hengherr, Steffen; Förster, Frank; Schill, Ralph O; Frohme, Marcus; Dandekar, Thomas; Schnölzer, Martina

    2012-01-01

    Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state.

  8. Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state

    PubMed Central

    Schokraie, Elham; Warnken, Uwe; Hotz-Wagenblatt, Agnes; Grohme, Markus A.; Hengherr, Steffen; Förster, Frank; Schill, Ralph O.; Frohme, Marcus; Dandekar, Thomas; Schnölzer, Martina

    2012-01-01

    Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state. PMID:23029181

  9. [Influence of the activator of transcription GAL4 on growth and development of embryos and embryonic cells in primary cultures of sand dollar].

    PubMed

    Odintsova, N A; Kiselev, K V; Bulgakov, V P; Kol'tsova, E A; Iakovlev, K V

    2003-01-01

    In order to solve many tasks of biotechnology, constant lines of the cells of marine invertebrates with a high growth potential are required, which are absent at present. We used the universal activator of transcription gal4 to change the degree of expression of genes of growth factors in embryonic sea urchin cells and, thereby, increase their proliferative activity. The fertilized sea urchin eggs and dissociated embryonic cells at the blastula stage were treated with plasmids containing both the functional gene gal4 and the gene devoid of the regions encoding the activator domain. The transfection of embryonic sea urchin eggs with the functional gene led to cell dedifferentiation and formation of tumor-like structures in the embryos or increased number of embryonic cells in culture. In the cells obtained from the transfected embryos, the pigments were found within two months of cultivation, whose absorption spectrum coincided with that of echinochrome.

  10. Fundamentals of human embryonic growth in vitro and the selection of high-quality embryos for transfer.

    PubMed

    Boiso, Irene; Veiga, Anna; Edwards, Robert G

    2002-01-01

    Knowledge of the nature of embryo growth, and the handling and scoring of quality in human embryos are significant aspects for embryologists in IVF clinics. This review describes the formation, growth and maturation of human oocytes, many aspects of fertilization in vitro, embryonic transcription during preimplantation stages, and the formation of polarities, timing controls, role of mitochondria and functions of endocrine and paracrine systems. Modern concepts are fully discussed, together with their significance in the practice of IVF. This knowledge is essential for the correct clinical care of human embryos growing in vitro, especially in view of their uncharacteristic tendency to vary widely in implantation potential. Underlying causes of such variation have not been identified. Stringent tests must be enforced to ensure human embryos develop under optimal conditions, and are scored for quality using the most advanced techniques. Optimal methods of culture are described, including methods such as co-culture introduced to improve embryo quality but less important today. Detailed attention is given to quality as assessed from embryonic characteristics determined by timers, polarities, disturbed embryo growth and anomalous cell cycles. Methods for classification are described. Approaches to single embryo transfers are described, including the use of sequential media to produce high-quality blastocysts. These approaches, and others involved in surgical methods to remove fragments, transfer ooplasm or utilize newer approaches such as preimplantation diagnosis of chromosomal complements in embryos are covered. New outlooks in this field are summarized.

  11. An assessment of early mandibular growth.

    PubMed

    Hutchinson, E F; L'Abbé, E N; Oettlé, A C

    2012-04-10

    Quantification of skeletal data has been shown to be an effective and reliable method of demonstrating variation in human growth as well as for monitoring and interpreting growth. In South Africa as well as internationally, few researchers have assessed mandibular growth in late fetal period and early childhood and therefore standards for growth and age determination in these groups are limited. The purpose of this study was to evaluate growth in the mandible from the period of 31 gestational weeks to 36 months postnatal. A total of 74 mandibles were used. Dried mandibles were sourced from the Raymond A. Dart Collection (University of Witwatersrand), and cadaveric remains were obtained from the Universities of Pretoria and the Witwatersrand. The sample was divided into four groups; 31-40 gestational weeks (group 1), 0-11 months (group 2), 12-24 months (group 3), and 25-36 months (group 4). Twenty-one osteological landmarks were digitized using a MicroScribe G2. Ten standard measurements were created and included: the maximum length of mandible, mandibular body length and width, mandibular notch width and depth, mental foramen to inferior border of mandible, mandibular basilar widths bigonial and biantegonial, bigonial width of mental foramen and mental angle. Data were analyzed using PAST statistical software and Morphologika2 v2.5. Statistically significant differences were noted in the linear measurements for all group comparisons except between groups 3 and 4. The mandible morphologically changed from a round, smooth contour anteriorly to adopt a more sharp and narrow adult shape. A progressive increase in the depth and definition of the mandibular arch was also noted. In conclusion, the mandible initially grows to accommodate the developing tongue (up to 11 months), progressive dental eruption and mastication from 12 to 36 months. Mastication is associated with muscle mass development; this would necessitate an increase in the dimensions of the mandibular notch

  12. Embryonic exposure to model naphthenic acids delays growth and hatching in the pond snail Lymnaea stagnalis.

    PubMed

    Johnston, Christina U; Clothier, Lindsay N; Quesnel, Dean M; Gieg, Lisa M; Chua, Gordon; Hermann, Petra M; Wildering, Willem C

    2017-02-01

    Naphthenic acids (NAs), a class of structurally diverse carboxylic acids with often complex ring structures and large aliphatic tail groups, are important by-products of many petrochemical processes including the oil sands mining activity of Northern Alberta. While it is evident that NAs have both acute and chronic harmful effects on many organisms, many aspects of their toxicity remain to be clarified. Particularly, while substantive data sets have been collected on NA toxicity in aquatic prokaryote and vertebrate model systems, to date, nothing is known about the toxic effects of these compounds on the embryonic development of aquatic invertebrate taxa, including freshwater mollusks. This study examines under laboratory conditions the toxicity of NAs extracted from oil sands process water (OSPW) and the low-molecular weight model NAs cyclohexylsuccinic acid (CHSA), cyclohexanebutyric acid (CHBA), and 4-tert-butylcyclohexane carboxylic acid (4-TBCA) on embryonic development of the snail Lymnaea stagnalis, a common freshwater gastropod with a broad Palearctic distribution. Evidence is provided for concentration-dependent teratogenic effects of both OSPW-derived and model NAs with remarkably similar nominal threshold concentrations between 15 and 20 mg/L and 28d EC 50 of 31 mg/L. In addition, the data provide evidence for substantial toxicokinetic differences between CHSA, CHBA and 4-TBCA. Together, our study introduces Lymnaea stagnalis embryonic development as an effective model to assay NA-toxicity and identifies molecular architecture as a potentially important toxicokinetic parameter in the toxicity of low-molecular weight NA in embryonic development of aquatic gastropods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cdx and T Brachyury Co-activate Growth Signaling in the Embryonic Axial Progenitor Niche.

    PubMed

    Amin, Shilu; Neijts, Roel; Simmini, Salvatore; van Rooijen, Carina; Tan, Sander C; Kester, Lennart; van Oudenaarden, Alexander; Creyghton, Menno P; Deschamps, Jacqueline

    2016-12-20

    In vertebrate embryos, anterior tissues are generated early, followed by the other axial structures that emerge sequentially from a posterior growth zone. The genetic network driving posterior axial elongation in mice, and its disturbance in mutants with posterior truncation, is not yet fully understood. Here, we show that the combined expression of Cdx2 and T Brachyury is essential to establish the core signature of posterior axial progenitors. Cdx2 and T Brachyury are required for extension of a similar trunk portion of the axis. Simultaneous loss of function of these two genes disrupts axial elongation to a much greater extent than each single mutation alone. We identify and validate common targets for Cdx2 and T Brachyury in vivo, including Wnt and Fgf pathway components active in the axial progenitor niche. Our data demonstrate that integration of the Cdx/Hox and T Brachyury transcriptional networks controls differential axial growth during vertebrate trunk elongation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Early embryonic brain development in rats requires the trophic influence of cerebrospinal fluid.

    PubMed

    Martin, C; Alonso, M I; Santiago, C; Moro, J A; De la Mano, A; Carretero, R; Gato, A

    2009-11-01

    Cerebrospinal fluid has shown itself to be an essential brain component during development. This is particularly evident at the earliest stages of development where a lot of research, performed mainly in chick embryos, supports the evidence that cerebrospinal fluid is involved in different mechanisms controlling brain growth and morphogenesis, by exerting a trophic effect on neuroepithelial precursor cells (NPC) involved in controlling the behaviour of these cells. Despite it being known that cerebrospinal fluid in mammals is directly involved in corticogenesis at fetal stages, the influence of cerebrospinal fluid on the activity of NPC at the earliest stages of brain development has not been demonstrated. Here, using "in vitro" organotypic cultures of rat embryo brain neuroepithelium in order to expose NPC to or deprive them of cerebrospinal fluid, we show that the neuroepithelium needs the trophic influence of cerebrospinal fluid to undergo normal rates of cell survival, replication and neurogenesis, suggesting that NPC are not self-sufficient to induce their normal activity. This data shows that cerebrospinal fluid is an essential component in chick and rat early brain development, suggesting that its influence could be constant in higher vertebrates.

  15. Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species

    PubMed Central

    Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.

    2016-01-01

    The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527

  16. Early embryonic development of the head region of Gryllus assimilis Fabricius, 1775 (Orthoptera, Insecta).

    PubMed

    Liu, Yu; Maas, Andreas; Waloszek, Dieter

    2010-09-01

    We report our investigations on the embryonic development of Gryllus assimilis, with particular attention to the head. Significant findings revealed with scanning electron microscopy (SEM) images include: (1) the pre-antennal lobes represent the anterior-most segment that does not bear any appendages; (2) each of the lobes consists of central and marginal regions; (3) the central region thereof develops into the protocerebrum and the optic lobes, whereas the marginal region thereof becomes the anterior portion of the head capsule; (4) the initial position of the antennal segment is posterior to the mouth region; (5) appendage anlagen are transitorily present in the intercalary segment, and they later vanish together with the segment itself; (6) a bulged sternum appears to develop from the ventral surface of the mandibular, maxillary and labial segments. Embryonic features are then compared across the Insecta and further extended to the embryos of a spider (Araneae, Chelicerata). Striking similarities shared by the anterior-most region of the insect and spider embryos lead the authors to conclude that such comparison should be further undertaken to cover the entire Euarthropoda. This will help us to understand the embryology and evolution of the arthropod head. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development.

    PubMed

    Brown, Aaron C; Adams, Derek; de Caestecker, Mark; Yang, Xuehui; Friesel, Robert; Oxburgh, Leif

    2011-12-01

    Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor cells through stages of increasing differentiation are poorly understood, and their elucidation will provide key insights into normal and dysregulated nephrogenesis, as well as into regenerative processes that follow kidney injury. In this study, we found that the mouse CITED1(+) progenitor compartment is maintained in response to receptor tyrosine kinase (RTK) ligands that activate both FGF and EGF receptors. This RTK signaling function is dependent on RAS and PI3K signaling but not ERK. In vivo, RAS inactivation by expression of sprouty 1 (Spry1) in CITED1(+) nephron progenitors results in loss of characteristic molecular marker expression and in increased death of progenitor cells. Lineage tracing shows that surviving Spry1-expressing progenitor cells are impaired in their subsequent epithelial differentiation, infrequently contributing to epithelial structures. These findings demonstrate that the survival and developmental potential of cells in the earliest embryonic nephron progenitor cell compartment are dependent on FGF/EGF signaling through RAS.

  18. Ets-1 is a target of MAPK signaling in the embryonic anterior pituitary gland during glucocorticoid initiation of pituitary growth hormone expression

    USDA-ARS?s Scientific Manuscript database

    Glucocorticoids play a critical role in functional differentiation of somatotrophs, the growth hormone (GH)-producing cells within the anterior pituitary gland. In chicken embryonic day 11 (e11) pituitary cells, premature induction of growth hormone (GH) resulting from corticosterone (CORT) treatmen...

  19. GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis

    PubMed Central

    Srivastava, Ritesh K.; Kaylani, Samer Zaid; Edrees, Nayf; Li, Changzhao; Talwelkar, Sarang S.; Xu, Jianmin; Palle, Komaraiah; Pressey, Joseph G.; Athar, Mohammad

    2014-01-01

    Rhabdomyosarcoma (RMS) typically arises from skeletal muscle. Currently, RMS in patients with recurrent and metastatic disease have no successful treatment. The molecular pathogenesis of RMS varies based on cancer sub-types. Some embryonal RMS but not other sub-types are driven by sonic hedgehog (Shh) signaling pathway. However, Shh pathway inhibitors particularly smoothened inhibitors are not highly effective in animals. Here, we show that Shh pathway effectors GLI1 and/or GLI2 are over-expressed in the majority of RMS cells and that GANT-61, a specific GLI1/2 inhibitor dampens the proliferation of both embryonal and alveolar RMS cells-derived xenograft tumors thereby blocking their growth. As compared to vehicle-treated control, about 50% tumor growth inhibition occurs in mice receiving GANT-61 treatment. The proliferation inhibition was associated with slowing of cell cycle progression which was mediated by the reduced expression of cyclins D1/2/3 & E and the concomitant induction of p21. GANT-61 not only reduced expression of GLI1/2 in these RMS but also significantly diminished AKT/mTOR signaling. The therapeutic action of GANT-61 was significantly augmented when combined with chemotherapeutic agents employed for RMS therapy such as temsirolimus or vincristine. Finally, reduced expression of proteins driving epithelial mesenchymal transition (EMT) characterized the residual tumors. PMID:25432075

  20. Growth and morphogenesis of embryonic mouse organs on non-coated and extracellular matrix-coated Biopore membrane

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.

  1. Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage.

    PubMed

    Tulpule, Asmin; Lensch, M William; Miller, Justine D; Austin, Karyn; D'Andrea, Alan; Schlaeger, Thorsten M; Shimamura, Akiko; Daley, George Q

    2010-04-29

    Fanconi anemia (FA) is a genetically heterogeneous, autosomal recessive disorder characterized by pediatric bone marrow failure and congenital anomalies. The effect of FA gene deficiency on hematopoietic development in utero remains poorly described as mouse models of FA do not develop hematopoietic failure and such studies cannot be performed on patients. We have created a human-specific in vitro system to study early hematopoietic development in FA using a lentiviral RNA interference (RNAi) strategy in human embryonic stem cells (hESCs). We show that knockdown of FANCA and FANCD2 in hESCs leads to a reduction in hematopoietic fates and progenitor numbers that can be rescued by FA gene complementation. Our data indicate that hematopoiesis is impaired in FA from the earliest stages of development, suggesting that deficiencies in embryonic hematopoiesis may underlie the progression to bone marrow failure in FA. This work illustrates how hESCs can provide unique insights into human development and further our understanding of genetic disease.

  2. Nitric oxide synthase during early embryonic development in silkworm Bombyx mori: Gene expression, enzyme activity, and tissue distribution.

    PubMed

    Kitta, Ryo; Kuwamoto, Marina; Yamahama, Yumi; Mase, Keisuke; Sawada, Hiroshi

    2016-12-01

    To elucidate the mechanism for embryonic diapause or the breakdown of diapause in Bombyx mori, we biochemically analyzed nitric oxide synthase (NOS) during the embryogenesis of B. mori. The gene expression and enzyme activity of B. mori NOS (BmNOS) were examined in diapause, non-diapause, and HCl-treated diapause eggs. In the case of HCl-treated diapause eggs, the gene expression and enzyme activity of BmNOS were induced by HCl treatment. However, in the case of diapause and non-diapause eggs during embryogenesis, changes in the BmNOS activity and gene expressions did not coincide except 48-60 h after oviposition in diapause eggs. The results imply that changes in BmNOS activity during the embryogenesis of diapause and non-diapause eggs are regulated not only at the level of transcription but also post-transcription. The distribution and localization of BmNOS were also investigated with an immunohistochemical technique using antibodies against the universal NOS; the localization of BmNOS was observed mainly in the cytoplasm of yolk cells in diapause eggs and HCl-treated diapause eggs. These data suggest that BmNOS has an important role in the early embryonic development of the B. mori. © 2016 Japanese Society of Developmental Biologists.

  3. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation

    PubMed Central

    Merrick, Deborah; Stadler, Lukas Kurt Josef; Larner, Dean; Smith, Janet

    2009-01-01

    SUMMARY Examination of embryonic myogenesis of two distinct, but functionally related, skeletal muscle dystrophy mutants (mdx and cav-3−/−) establishes for the first time that key elements of the pathology of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy type 1C (LGMD-1c) originate in the disruption of the embryonic cardiac and skeletal muscle patterning processes. Disruption of myogenesis occurs earlier in mdx mutants, which lack a functional form of dystrophin, than in cav-3−/− mutants, which lack the Cav3 gene that encodes the protein caveolin-3; this finding is consistent with the milder phenotype of LGMD-1c, a condition caused by mutations in Cav3, and the earlier [embryonic day (E)9.5] expression of dystrophin. Myogenesis is severely disrupted in mdx embryos, which display developmental delays; myotube morphology and displacement defects; and aberrant stem cell behaviour. In addition, the caveolin-3 protein is elevated in mdx embryos. Both cav-3−/− and mdx mutants (from E15.5 and E11.5, respectively) exhibit hyperproliferation and apoptosis of Myf5-positive embryonic myoblasts; attrition of Pax7-positive myoblasts in situ; and depletion of total Pax7 protein in late gestation. Furthermore, both cav-3−/− and mdx mutants have cardiac defects. In cav-3−/− mutants, there is a more restricted phenotype comprising hypaxial muscle defects, an excess of malformed hypertrophic myotubes, a twofold increase in myonuclei, and reduced fast myosin heavy chain (FMyHC) content. Several mdx mutant embryo pathologies, including myotube hypotrophy, reduced myotube numbers and increased FMyHC, have reciprocity with cav-3−/− mutants. In double mutant (mdxcav-3+/−) embryos that are deficient in dystrophin (mdx) and heterozygous for caveolin-3 (cav-3+/−), whereby caveolin-3 is reduced to 50% of wild-type (WT) levels, these phenotypes are severely exacerbated: intercostal muscle fibre density is reduced by 71%, and Pax7-positive

  4. Hemodynamic flow visualization of early embryonic great vessels using μPIV.

    PubMed

    Goktas, Selda; Chen, Chia-Yuan; Kowalski, William J; Pekkan, Kerem

    2015-01-01

    Microparticle image velocimetry (μPIV) is an evolving quantitative methodology to closely and accurately monitor the cardiac flow dynamics and mechanotransduction during vascular morphogenesis. While PIV technique has a long history, contemporary developments in advanced microscopy have significantly expanded its power. This chapter includes three new methods for μPIV acquisition in selected embryonic structures achieved through advanced optical imaging: (1) high-speed confocal scanning of transgenic zebrafish embryos, where the transgenic erythrocytes act as the tracing particles; (2) microinjection of artificial seeding particles in chick embryos visualized with stereomicroscopy; and (3) real-time, time-resolved optical coherence tomography acquisition of vitelline vessel flow profiles in chick embryos, tracking the erythrocytes.

  5. Data on the potential impact of food supplements on the growth of mouse embryonic stem cells.

    PubMed

    Correia, Marcelo; Sousa, Maria I; Rodrigues, Ana S; Perestrelo, Tânia; Pereira, Sandro L; Ribeiro, Marcelo F; Ramalho-Santos, João

    2016-06-01

    The use of new compounds as dietary supplements is increasing, but little is known in terms of possible consequences of their use. Pluripotent stem cells are a promising research tool for citotoxicological research for evaluation of proliferation, cell death, pluripotency and differentiation. Using the mouse embryonic stem cell (mESC) model, we present data on three different compounds that have been proposed as new potential supplements for co-adjuvant disease treatments: kaempferol, berberine and Tauroursodeoxycholic acid (TUDCA). Cell number and viability were monitored following treatment with increased concentrations of each drug in pluripotent culture conditions.

  6. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development.

    PubMed

    Zhang, Jinglin; Upadhya, Dinesh; Lu, Lin; Reneker, Lixing W

    2015-01-01

    Fibroblast growth factors (FGFs) play important roles in many aspects of embryonic development. During eye development, the lens and corneal epithelium are derived from the same surface ectodermal tissue. FGF receptor (FGFR)-signaling is essential for lens cell differentiation and survival, but its role in corneal development has not been fully investigated. In this study, we examined the corneal defects in Fgfr2 conditional knockout mice in which Cre expression is activated at lens induction stage by Pax6 P0 promoter. The cornea in LeCre, Fgfr2(loxP/loxP) mice (referred as Fgfr2(CKO)) was analyzed to assess changes in cell proliferation, differentiation and survival. We found that Fgfr2(CKO) cornea was much thinner in epithelial and stromal layer when compared to WT cornea. At embryonic day 12.5-13.5 (E12.5-13.5) shortly after the lens vesicle detaches from the overlying surface ectoderm, cell proliferation (judged by labeling indices of Ki-67, BrdU and phospho-histone H3) was significantly reduced in corneal epithelium in Fgfr2(CKO) mice. At later stage, cell differentiation markers for corneal epithelium and underlying stromal mesenchyme, keratin-12 and keratocan respectively, were not expressed in Fgfr2(CKO) cornea. Furthermore, Pax6, a transcription factor essential for eye development, was not present in the Fgfr2(CKO) mutant corneal epithelial at E16.5 but was expressed normally at E12.5, suggesting that FGFR2-signaling is required for maintaining Pax6 expression in this tissue. Interestingly, the role of FGFR2 in corneal epithelial development is independent of ERK1/2-signaling. In contrast to the lens, FGFR2 is not required for cell survival in cornea. This study demonstrates for the first time that FGFR2 plays an essential role in controlling cell proliferation and differentiation, and maintaining Pax6 levels in corneal epithelium via ERK-independent pathways during embryonic development.

  7. Zeb1-Hdac2-eNOS circuitry identifies early cardiovascular precursors in naive mouse embryonic stem cells.

    PubMed

    Cencioni, Chiara; Spallotta, Francesco; Savoia, Matteo; Kuenne, Carsten; Guenther, Stefan; Re, Agnese; Wingert, Susanne; Rehage, Maike; Sürün, Duran; Siragusa, Mauro; Smith, Jacob G; Schnütgen, Frank; von Melchner, Harald; Rieger, Michael A; Martelli, Fabio; Riccio, Antonella; Fleming, Ingrid; Braun, Thomas; Zeiher, Andreas M; Farsetti, Antonella; Gaetano, Carlo

    2018-03-29

    Nitric oxide (NO) synthesis is a late event during differentiation of mouse embryonic stem cells (mESC) and occurs after release from serum and leukemia inhibitory factor (LIF). Here we show that after release from pluripotency, a subpopulation of mESC, kept in the naive state by 2i/LIF, expresses endothelial nitric oxide synthase (eNOS) and endogenously synthesizes NO. This eNOS/NO-positive subpopulation (ESNO+) expresses mesendodermal markers and is more efficient in the generation of cardiovascular precursors than eNOS/NO-negative cells. Mechanistically, production of endogenous NO triggers rapid Hdac2 S-nitrosylation, which reduces association of Hdac2 with the transcriptional repression factor Zeb1, allowing mesendodermal gene expression. In conclusion, our results suggest that the interaction between Zeb1, Hdac2, and eNOS is required for early mesendodermal differentiation of naive mESC.

  8. The fine structure of human germ layers in vivo: clues to the early differentiation of embryonic stem cells in vitro.

    PubMed

    Sathananthan, Henry; Selvaraj, Kamala; Clark, Joan

    2011-08-01

    The fine structure of the three germ layers in human ectopic embryos (stage 7) have been documented by digital light and electron microscopy. The formation of ectoderm, endoderm and mesoderm and notochordal cells, and also the extraembryonic membranes, amnion and yolk sac, are imaged. The germ layers give rise to all the cells and tissues of the human body. Possible clues to the early differentiation of embryonic stem cells (ESC) in vitro were obtained, since these events are more or less mimicked in cultures of ESC derived from the inner cell mass of human blastocysts. The findings are discussed with reference to previous studies on the fine structure of ESC using the same technique. Copyright © 2011. Published by Elsevier Ltd.

  9. Cloning, expression pattern, and potential role of apoptosis inhibitor 5 in the termination of embryonic diapause and early embryo development of Artemia sinica.

    PubMed

    Zhang, Shuang; Yao, Feng; Jing, Ting; Zhang, Mengchen; Zhao, Wei; Zou, Xiangyang; Sui, Linlin; Hou, Lin

    2017-09-10

    During the embryonic development of Artemia sinica, the diapause phenomenon can be induced by high salinity or low temperature conditions. The diapause embryo at the gastrula stage is maintained under the threat of apoptosis to guarantee the embryo's normal development. In this process, apoptosis inhibitor proteins play vital roles in protecting embryos against apoptosis. Apoptosis inhibitor5 (API5) plays a pivotal role in regulating the cell cycle and preventing programmed cell death after growth factor starvation. In the present study, we cloned the full-length cDNA representing the api5 gene from A. sinica (As-api5), which encodes a 372-amino acid protein. In situ hybridization experiments revealed that As-api5 expression is not tissue or organ specific. Quantitative real-time PCR analyses of the developmental expression of As-api5 showed that it reached its highest level at 10h, after which its expression decreased. High salinity and low temperature treatments increased the expression of As-api5. Western blotting was used to assess the abundance of As-API5 and related proteins (As-CyclinA, As-CyclinE, As-E2F1, As-CDK2, As-APAF1, and As-Caspase9). Downregulation of As-api5 expression using a short interfering RNA resulted in increased mortality and embryo malformation of A. sinica. Taken together, the results indicated that API5 plays a crucial role in embryonic diapause termination and early embryo development of A. sinica. Copyright © 2017. Published by Elsevier B.V.

  10. Gestational sac and embryonic growth are not useful as criteria to define miscarriage: a multicenter observational study.

    PubMed

    Abdallah, Y; Daemen, A; Guha, S; Syed, S; Naji, O; Pexsters, A; Kirk, E; Stalder, C; Gould, D; Ahmed, S; Bottomley, C; Timmerman, D; Bourne, T

    2011-11-01

    We studied changes in mean gestational sac diameter (MSD) and embryonic crown-rump length (CRL) in intrauterine pregnancies of uncertain viability (IPUVs). We aimed to establish cut-off values for MSD and CRL growth that could be definitively associated with either viability or miscarriage, and to establish the relationship between growth in MSD and appearance of embryonic structures in the gestational sac. One thousand and sixty consecutive IPUVs were recruited prospectively from four London University hospitals: 462 with no yolk sac or embryo, 419 with a yolk sac but no embryo, and 179 with an embryo but no heartbeat visible. IPUV was defined as an empty gestational sac with or without a yolk sac but no embryo seen with MSD < 20 or < 30 mm (depending on center) or an embryo with no heartbeat and CRL < 6 mm or < 8 mm (depending on center). Scans were repeated 7-14 days later. The endpoint was viability at first-trimester screening ultrasonography between 11 and 14 weeks. Change in MSD and CRL between the first and second scans of each pregnancy was compared with respect to viability and appearance of embryonic structures using the two-sample t-test. The study included 359 pregnancies in which a gestational sac with or without embryo was identified at the follow-up scan 7-14 days later. Of these, 192 were viable and 167 non-viable at the 11-14-week scan. MSD growth was significantly higher in viable than non-viable pregnancies (mean 1.003 vs. 0.503 mm/day; P < 0.001, 95% CI of difference 0.403-0.596). A difference in CRL growth was found between the two groups (mean 0.673 vs. 0.148 mm/day; P < 0.001, 95% CI of difference 0.345-0.703). MSD growth of 0.6 mm/day was associated with a specificity for diagnosing miscarriage of 90.1%, a sensitivity of 61.7% and 19 false-positive test results. A cut-off of CRL growth rate of 0.2 mm/day gave a sensitivity of 76.3% and there were no false-positive test results for miscarriage. On repeat scan the failure of either a yolk sac

  11. The Potential Role of As-sumo-1 in the Embryonic Diapause Process and Early Embryo Development of Artemia sinica

    PubMed Central

    Chu, Bing; Yao, Feng; Cheng, Cheng; Wu, Yang; Mei, Yanli; Li, Xuejie; Liu, Yan; Wang, Peisheng; Hou, Lin; Zou, Xiangyang

    2014-01-01

    During embryonic development of Artemia sinica, environmental stresses induce the embryo diapause phenomenon, required to resist apoptosis and regulate cell cycle activity. The small ubiquitin-related modifier-1 (SUMO), a reversible post-translational protein modifier, plays an important role in embryo development. SUMO regulates multiple cellular processes, including development and other biological processes. The molecular mechanism of diapause, diapause termination and the role of As-sumo-1 in this processes and in early embryo development of Artemia sinica still remains unknown. In this study, the complete cDNA sequences of the sumo-1 homolog, sumo ligase homolog, caspase-1 homolog and cyclin B homolog from Artemia sinica were cloned. The mRNA expression patterns of As-sumo-1, sumo ligase, caspase-1, cyclin B and the location of As-sumo-1 were investigated. SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E proteins were analyzed during different developmental stages of the embryo of A. sinica. Small interfering RNA (siRNA) was used to verify the function of sumo-1 in A. sinica. The full-length cDNA of As-sumo-1 was 476 bp, encoding a 92 amino acid protein. The As-caspases-1 cDNA was 966 bp, encoding a 245 amino-acid protein. The As-sumo ligase cDNA was 1556 bp encoding, a 343 amino acid protein, and the cyclin B cDNA was 739 bp, encoding a 133 amino acid protein. The expressions of As-sumo-1, As-caspase-1 and As-cyclin B were highest at the 10 h stage of embryonic development, and As-sumo ligase showed its highest expression at 0 h. The expression of As-SUMO-1 showed no tissue or organ specificity. Western blotting showed high expression of As-SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E at the 10 h stage. The siRNA caused abnormal development of the embryo, with increased malformation and mortality. As-SUMO-1 is a crucial regulation and modification protein resumption of embryonic diapause and early embryo development of A. sinica. PMID:24404204

  12. Growth and Electrophysiological Properties of Rat Embryonic Cardiomyocytes on Hydroxyl- and Carboxyl-Modified Surfaces

    PubMed Central

    NATARAJAN, ANUPAMA; CHUN, CHANGJU; HICKMAN, JAMES J.; MOLNAR, PETER

    2010-01-01

    Biodegradable scaffolds such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) or poly(glycolic acid) (PGA) are commonly used materials in tissue engineering. The chemical composition of these scaffolds changes during degradation which provides a changing environment for the seeded cells. In this study we have developed a simple and relatively high-throughput method in order to test the physiological effects of this varying chemical environment on rat embryonic cardiac myocytes. In order to model the different degradation stages of the scaffold, glass coverslips were functionalized with 11-mercaptoundecanoic acid (MUA) and 11-mercapto-1-undecanol (MUL) as carboxyl- and hydroxyl-group presenting surfaces and also with trimethoxysilylpropyldiethylenetriamine (DETA) and (3-aminopropyl)triethoxysilane (APTES) as controls. Embryonic cardiac myocytes formed beating islands on all tested surfaces but the number of attached cells and beating patches was significantly lower on MUL compared to any of the other functionalized surfaces. Moreover, whole cell patch clamp experiments showed that the average length of action potentials generated by the beating cardiac myocytes were significantly longer on MUL compared to the other surfaces. Our results, using our simple test system, are in agreement with earlier observations that utilized the complex 3D biodegradable scaffold. Thus, surface functionalization with self-assembled monolayers combined with histological/physiological testing could be a relatively high throughput method for biocompatibility studies and for the optimization of the material/tissue interface in tissue engineering. PMID:18854125

  13. NSrp70 is significant for embryonic growth and development, being a crucial factor for gastrulation and mesoderm induction.

    PubMed

    Lee, Soo-Ho; Kim, Chowon; Lee, Hyun-Kyung; Kim, Yoo-Kyung; Ismail, Tayaba; Jeong, Youngeun; Park, Kyungyeon; Park, Mae-Ja; Park, Do-Sim; Lee, Hyun-Shik

    2016-10-14

    NSrp70 (nuclear speckle-related protein 70), a recently discovered protein and it belongs to the serine/arginine (SR) rich related protein family. NSrp70 is recognized as an important splicing factor comprising RNA recognition motif (RRM) and arginine/serine (RS)-like regions at the N- and C-terminus respectively, along with two coiled coil domains at each terminus. However, other functions of NSrp70 remain unelucidated. In this study, we investigated the role of NSrp70 in Xenopus embryogenesis and found that its maternal expression plays a critical role in embryonic development. Knockdown of NSrp70 resulted in dramatic reduction in the length of developing tadpoles and mild to severe malformation in Xenopus embryos. In addition, knockdown of NSrp70 resulted in an extremely short axis by blocking gastrulation and convergent extension. Further, animal cap assays along with activin A treatment revealed that NSrp70 is an essential factor for dorsal mesoderm induction as knockdown of NSrp70 caused a dramatic down-regulation of dorsal mesoderm specific genes and its loss significantly shortened the elongation region of animal caps. In conclusion, NSrp70 is crucial for early embryonic development, influencing gastrulation and mesoderm induction. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effect of transforming growth factor-beta1 on decorin expression and muscle morphology during chicken embryonic and posthatch growth and development.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.

  15. The first whole transcriptomic exploration of pre-oviposited early chicken embryos using single and bulked embryonic RNA-sequencing.

    PubMed

    Hwang, Young Sun; Seo, Minseok; Choi, Hee Jung; Kim, Sang Kyung; Kim, Heebal; Han, Jae Yong

    2018-04-01

    The chicken is a valuable model organism, especially in evolutionary and embryology research because its embryonic development occurs in the egg. However, despite its scientific importance, no transcriptome data have been generated for deciphering the early developmental stages of the chicken because of practical and technical constraints in accessing pre-oviposited embryos. Here, we determine the entire transcriptome of pre-oviposited avian embryos, including oocyte, zygote, and intrauterine embryos from Eyal-giladi and Kochav stage I (EGK.I) to EGK.X collected using a noninvasive approach for the first time. We also compare RNA-sequencing data obtained using a bulked embryo sequencing and single embryo/cell sequencing technique. The raw sequencing data were preprocessed with two genome builds, Galgal4 and Galgal5, and the expression of 17,108 and 26,102 genes was quantified in the respective builds. There were some differences between the two techniques, as well as between the two genome builds, and these were affected by the emergence of long intergenic noncoding RNA annotations. The first transcriptome datasets of pre-oviposited early chicken embryos based on bulked and single embryo sequencing techniques will serve as a valuable resource for investigating early avian embryogenesis, for comparative studies among vertebrates, and for novel gene annotation in the chicken genome.

  16. RBP-Jκ-Dependent Notch Signaling Is Dispensable for Mouse Early Embryonic Development

    PubMed Central

    Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-01-01

    The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jκ-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion. PMID:16782866

  17. RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development.

    PubMed

    Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-07-01

    The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jkappa-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.

  18. Growth and differentiation of mammalian embryonic tissues exposed to hypergravity in vivo and in vitro

    NASA Technical Reports Server (NTRS)

    Duke, J.; Janer, L.; Moore, J.

    1985-01-01

    Decreased cartilage areas in embryonic limbs developing under excess g in vitro, is reported, as well as delayed skeletal development in embryos and fetuses exposed to excess g in utero. 12.5-day mouse limb buds were cultured at 2.6 g, and fixed at two days and six days of culture. In vivo experiments used alizarin-stained 18-day fetuses exposed to 2.3 g. In all studies, cartilage areas were determined using a digitized tablet. Form factor analysis determined that the main effect of in vitro centrifugation was a reduction in length of the limb elements, probably due to the precocious chondrogenesis seen in the upper regions of centrifuged limbs. Similar reductions in length of ossified areas was seen in the in utero studies.

  19. Growth and differentiation of mammalian embryonic tissues exposed to hypergravity in vivo and in vitro

    NASA Technical Reports Server (NTRS)

    Duke, P. J.

    1984-01-01

    In about 10 years or so, men and women from Earth will be long-term inhabitants of a space station aboard which plants and animals will be growing and developing in gravities other than that of Earth. The effect of gravitational changes on development was examined. It is indicated that differentiation is speeded up under excess G and slowed in low or null G. The effects of exposure to excess gravity on fusion of the embryonic mouse secondary palate were studied. During fusion, the palatal shelves first adhere by means of glycoproteins appearing along the medial epithelial edge (MEE). The contacting epithelia then reorganize and undergo programmed cell death, allowing the underlying mesenchymes to come in contact. The process of cell death occurs in vitro at about the same rate that it occurs in vivo.

  20. Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development.

    PubMed

    Erickson, Gregory M; Zelenitsky, Darla K; Kay, David Ian; Norell, Mark A

    2017-01-17

    Birds stand out from other egg-laying amniotes by producing relatively small numbers of large eggs with very short incubation periods (average 11-85 d). This aspect promotes high survivorship by limiting exposure to predation and environmental perturbation, allows for larger more fit young, and facilitates rapid attainment of adult size. Birds are living dinosaurs; their rapid development has been considered to reflect the primitive dinosaurian condition. Here, nonavian dinosaurian incubation periods in both small and large ornithischian taxa are empirically determined through growth-line counts in embryonic teeth. Our results show unexpectedly slow incubation (2.8 and 5.8 mo) like those of outgroup reptiles. Developmental and physiological constraints would have rendered tooth formation and incubation inherently slow in other dinosaur lineages and basal birds. The capacity to determine incubation periods in extinct egg-laying amniotes has implications for dinosaurian embryology, life history strategies, and survivorship across the Cretaceous-Paleogene mass extinction event.

  1. Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development

    PubMed Central

    Erickson, Gregory M.; Zelenitsky, Darla K.; Kay, David Ian; Norell, Mark A.

    2017-01-01

    Birds stand out from other egg-laying amniotes by producing relatively small numbers of large eggs with very short incubation periods (average 11–85 d). This aspect promotes high survivorship by limiting exposure to predation and environmental perturbation, allows for larger more fit young, and facilitates rapid attainment of adult size. Birds are living dinosaurs; their rapid development has been considered to reflect the primitive dinosaurian condition. Here, nonavian dinosaurian incubation periods in both small and large ornithischian taxa are empirically determined through growth-line counts in embryonic teeth. Our results show unexpectedly slow incubation (2.8 and 5.8 mo) like those of outgroup reptiles. Developmental and physiological constraints would have rendered tooth formation and incubation inherently slow in other dinosaur lineages and basal birds. The capacity to determine incubation periods in extinct egg-laying amniotes has implications for dinosaurian embryology, life history strategies, and survivorship across the Cretaceous–Paleogene mass extinction event. PMID:28049837

  2. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages.

    PubMed

    Fatehi, A N; Bevers, M M; Schoevers, E; Roelen, B A J; Colenbrander, B; Gadella, B M

    2006-01-01

    The main goal of this study was to investigate whether and at what level damage of paternal DNA influences fertilization of oocytes and early embryonic development. We hypothesized that posttesticular sperm DNA damage will only marginally affect sperm physiology due to the lack of gene expression, but that it will affect embryo development at the stage that embryo genome (including the paternal damaged DNA) expression is initiated. To test this, we artificially induced sperm DNA damage by irradiation with x- or gamma rays (doses of 0-300 Gy). Remarkably, sperm cells survived the irradiation quite well and, when compared with nonirradiated cells, sperm motility and integrity of plasma membrane, acrosome, and mitochondria were not altered by this irradiation treatment. In contrast, a highly significant logarithmic relation between irradiation dose and induced DNA damage to sperm cells was found by both terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and the acridin orange assay. Despite the DNA damage, irradiated sperm cells did not show any sign of apoptosis (nuclear fragmentation, depolarization of inner mitochondrial membranes, or phospholipid scrambling) and were normally capable of fertilizing oocytes, as there was no reduction in cleavage rates when compared with nonirradiated sperm samples up to irradiation doses of less than 10 Gy. Further embryonic development was completely blocked as the blastocyst rates at days 7 and 9 dropped from 28% (nonirradiated sperm) to less than 3% by greater than 2.5-Gy-irradiated sperm. This block in embryonic development was accompanied with the initiation of apoptosis after the second or third cleavage. Specific signs of apoptosis, such as nuclear fragmentation and aberrations in spindle formation, were observed in all embryos resulting from in vitro fertilization with irradiated sperm (irradiation doses >1.25 Gy). The results show that sperm DNA damage does not impair fertilization of the

  3. Teratogenic effects of 4-nonylphenol on early embryonic and larval development of the catfish Heteropneustes fossilis.

    PubMed

    Chaube, Radha; Gautam, Geeta J; Joy, Keerikattil P

    2013-05-01

    Alkylphenol polyethoxylates (APEs), which are widely used in detergents, paints, herbicides, insecticides, and in many other formulations, have been widely detected in aquatic environments. 4-Nonylphenol (NP) is an important APE detected at microgram levels per litre (0.1-336 μg/L) in water. The objective of the present study was to evaluate NP's toxic effects at low and high sublethal concentrations (0.1 and 1 μg/L) on embryonic development of the catfish Heteropneustes fossilis at different time intervals. The data show that fertilization rate was decreased and cleavage and blastula were severely affected leading to complete mortality of embryos. NP exposure resulted in various body malformations in larvae, such as vertebral deformations, e.g., fin blistering/necrosis, axial deformities (lordosis, kyphosis, and scoliosis) of the spine in the abdominal and caudal region, tail curved completely backward, shortened body, severe spinal and yolk sac malformations, C-shaped severe spinal curvature, cranial malformation with undeveloped head, and failure of eye development. The level of body malformations increased with the concentration and exposure time. After 72 h of exposure, all larvae were dead at both concentrations. Scanning electron microscope study showed that epidermal cells (keratinocytes) were severely damaged in both low- and high-dose treatments throughout development, leading to development of numerous depressions representing sinking holes on the skin. Mucous glands increased significantly in treatment groups compared with control groups. The present study highlights the severe teratogenic effects of NP. The prevalence of the contaminant, if not checked, can lead to decreased population and ultimate disappearance of the species.

  4. Abnormal placental development and early embryonic lethality in EpCAM-null mice.

    PubMed

    Nagao, Keisuke; Zhu, Jianjian; Heneghan, Mallorie B; Hanson, Jeffrey C; Morasso, Maria I; Tessarollo, Lino; Mackem, Susan; Udey, Mark C

    2009-12-31

    EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.

  5. Embryo-endometrial interactions during early development after embryonic diapause in the marsupial tammar wallaby.

    PubMed

    Renfree, Marilyn B; Shaw, Geoff

    2014-01-01

    The marsupial tammar wallaby has the longest period of embryonic diapause of any mammal. Reproduction in the tammar is seasonal, regulated by photoperiod and also lactation. Reactivation is triggered by falling daylength after the austral summer solstice in December. Young are born late January and commence a 9-10-month lactation. Females mate immediately after birth. The resulting conceptus develops over 6- 7 days to form a unilaminar blastocyst of 80-100 cells and enters lactationally, and later seasonally, controlled diapause. The proximate endocrine signal for reactivation is an increase in progesterone which alters uterine secretions. Since the diapausing blastocyst is surrounded by the zona and 2 other acellular coats, the mucoid layer and shell coat, the uterine signals that maintain or terminate diapause must involve soluble factors in the secretions rather than any direct cellular interaction between uterus and embryo. Our studies suggest involvement of a number of cytokines in the regulation of diapause in tammars. The endometrium secretes platelet activating factor (PAF) and leukaemia inhibitory factor, which increase after reactivation. Receptors for PAF are low on the blastocyst during diapause but are upregulated at reactivation. Conversely, there is endometrial expression of the muscle segment homeobox gene MSX2 throughout diapause, but it is rapidly downregulated at reactivation. These patterns are consistent with those observed in diapausing mice and mink after reactivation, despite the very different patterns of endocrine control of diapause in these 3 divergent species. These common patterns suggest a similar underlying mechanism for diapause, perhaps common to all mammals, but which is activated in only a few.

  6. ACTIONS OF THE ENDOCRINE DISRUPTOR METHOXYCHLOR AND ITS ESTROGENIC METABOLITE ON IN VITRO EMBRYONIC RAT SEMINIFEROUS CORD FORMATION AND PERINATAL TESTIS GROWTH. (R827405)

    EPA Science Inventory

    Abstract

    The current study examines the actions of methoxychlor and its estrogenic metabolite, 2, 2-bis-(p-hydroxyphenyl)-1, 1, 1-trichloroethane (HPTE), on seminiferous cord formation and growth of the developing rat testis. The developing testis in the embryonic and ...

  7. Early intrauterine embryonic development in Khawia sinensis Hsü, 1935 (Cestoda, Caryophyllidea, Lytocestidae), an invasive tapeworm of carp (Cyprinus carpio): an ultrastructural study.

    PubMed

    Bruňanská, Magdaléna; Mackiewicz, John S; Młocicki, Daniel; Swiderski, Zdzisław; Nebesářová, Jana

    2012-02-01

    Intrauterine embryonic development in the caryophyllidean tapeworm Khawia sinensis has been investigated using transmission electron microscopy and cytochemical staining with periodic acid-thiosemicarbazide-silver proteinate for glycogen. Contrary to previous light microscopy findings that reported the release of non-embryonated eggs of K. sinenesis to the external environment, the present study documents various stages of embryonation (ovoviviparity) within the intrauterine eggs of this cestode. At the initial stage of embryonic development, each fertilised oocyte is accompanied by several vitellocytes that become enclosed within the operculate, electrondense shell. Cleavage divisions result in formation of blastomeres (up to about 24 cells) of various sizes. Mitotic divisions and apparent rosette arrangment of the blastomeres, the latter atypical within the Eucestoda, are observed for the first time in the intrauterine eggs of K. sinenesis. The early embryo enclosed within the electrondense shell is surrounded by a thin membraneous layer which in some enlarged regions shows presence of nuclei. Simultaneously to multiplication and differentiation, some of the blastomeres undergo deterioration. A progressive degeneration of the vitellocytes within eggs provides nutritive reserves, including lipids, for the developing embryo. The possible significance of this atypical timing of the intrauterine embryonic development to (1) the ecology of K. sinensis and that of a recent introduction of another invasive tapeworm, the caryophyllidean Atractolytocestus huronensis Anthony, 1958 to Europe; and (2) the affiliation of caryophyllideans with other lower cestodes, are discussed.

  8. Reactivation of Embryonic Nodal Signaling is Associated with Tumor Progression and Promotes the Growth of Prostate Cancer Cells

    PubMed Central

    Lawrence, Mitchell G.; Margaryan, Naira V.; Loessner, Daniela; Collins, Angus; Kerr, Kris M.; Turner, Megan; Seftor, Elisabeth A.; Stephens, Carson R.; Lai, John; BioResource, APC; Postovit, Lynne-Marie; Clements, Judith A.; Hendrix, Mary J.C.

    2011-01-01

    Background Nodal is a member of the Transforming Growth Factor β (TGFβ) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFβ ligands, it modulates androgen receptor (AR) activity. Methods Nodal expression was investigated using immunohistochemistry of tissue microarrays and Western blots of prostate cell lines. The functional role of Nodal was examined using Matrigel and soft agar growth assays. Cross-talk between Nodal and AR signaling was assessed with luciferase reporter assays and expression of endogenous androgen regulated genes. Results Significantly increased Nodal expression was observed in cancer compared with benign prostate specimens. Nodal was only expressed by DU145 and PC3 cells. All cell lines expressed Nodal’s co-receptor, Cripto-1, but lacked Lefty, a critical negative regulator of Nodal signaling. Recombinant human Nodal triggered downstream Smad2 phosphorylation in DU145 and LNCaP cells, and stable transfection of pre-pro-Nodal enhanced the growth of LNCaP cells in Matrigel and soft agar. Finally, Nodal attenuated AR signaling, reducing the activity of a PSA promoter construct in luciferase assays and down-regulating the endogenous expression of androgen regulated genes. Conclusions An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells. PMID:21656830

  9. Effect of transforming growth factor-beta1 on embryonic and posthatch muscle growth and development in normal and low score normal chicken.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. The TGF-beta1 signal is carried by Smad proteins into the cell nucleus, inhibiting the expression of key myogenic regulatory factors including MyoD and myogenin. However, the molecular mechanism by which TGF-beta1 inhibits muscle cell proliferation and differentiation has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on in vivo skeletal muscle growth and development. A chicken line, Low Score Normal (LSN) with reduced muscling and upregulated TGF-beta1 expression, was used and compared to a normal chicken line. The injection of TGF-beta1 at embryonic day (ED) 3 significantly reduced the pectoralis major (p. major) muscle weight in the normal birds at 1 wk posthatch, whereas no significant difference was observed in the LSN birds. The difference between normal and LSN birds in response to TGF-beta1 is likely due to different levels of endogenous TGF-beta1 where the LSN birds have increased TGF-beta1 expression in their p. major muscle at both 17 ED and 6 wk posthatch. Smad3 expression was reduced by TGF-beta1 from 10 ED to 1 wk posthatch in normal p. major muscle. Unlike Smad3, Smad7 expression was not significantly affected by TGF-beta1 until posthatch in both normal and LSN p. major muscle. Expression of MyoD was reduced 35% by TGF-beta1 during embryonic development in normal p. major muscle, whereas LSN p. major muscle showed a delayed decrease at 1 d posthatch in MyoD expression in response to the TGF-beta1 treatment. Myogenin expression was reduced 29% by TGF-beta1 after hatch in normal p. major muscle. In LSN p. major muscle, TGF-beta1 treatment significantly decreased myogenin expression by 43% at 1 d posthatch and 32% at 1 wk posthatch. These data suggested that TGF-beta1 reduced p. major muscle growth by inhibiting MyoD and myogenin expression during both embryonic

  10. High resolution ultrasound-guided microinjection for interventional studies of early embryonic and placental development in vivo in mice

    PubMed Central

    Slevin, John C; Byers, Lois; Gertsenstein, Marina; Qu, Dawei; Mu, Junwu; Sunn, Nana; Kingdom, John CP; Rossant, Janet; Adamson, S Lee

    2006-01-01

    similar in sham experiments, 54% (33/61), for which procedures were identical but no microinjection was performed, suggesting that surgery and manipulation of the uterus were the main causes of embryonic death. Conclusion Ultrasound-guided microinjection into the ectoplacental cone region at E6.5 or E7.5 and the amniotic cavity at E7.5 was achieved with a 7 day postnatal survival of ≥60%. Target accuracy of these sites and of the exocoelomic cavity at E7.5 was ≥51%. We suggest that this approach may be useful for exploring gene function during early placental and embryonic development. PMID:16504164

  11. Embryonic development during chronic acceleration

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Abbott, U. K.

    1982-01-01

    Experiments carried out on chicken eggs indicate that the embryo is affected during very early development, especially over the first four days, and during hatching. In the first four days, the brain develops as well as the anlage for all other organs. In addition, the heart commences to function and the extraembryonic membranes that compartmentalize the egg contents form. The latter require an appreciable extension and folding of tissue which may be disrupted by the mechanical load. Observations of embryonic abnormalities that occur during chronic acceleration suggest an inhibition of development of the axial skeleton, which is rarely seen otherwise, a general retardation of embryonic growth, and circulatory problems. The final stages of development (after 18 days) involve the uptake of fluids, the transition to aerial respiration, and the reorientation of the embryo into a normal hatching position. At 4 G mortality is very high during this period, with a majority of embryos failing to reorient into the normal hatching position.

  12. Cep55 regulates embryonic growth and development by promoting Akt stability in zebrafish.

    PubMed

    Jeffery, Jessie; Neyt, Christine; Moore, Wade; Paterson, Scott; Bower, Neil I; Chenevix-Trench, Georgia; Verkade, Heather; Hogan, Benjamin M; Khanna, Kum Kum

    2015-05-01

    CEP55 was initially described as a centrosome- and midbody-associated protein and a key mediator of cytokinesis. More recently, it has been implicated in PI3K/AKT pathway activation via an interaction with the catalytic subunit of PI3K. However, its role in embryonic development is unknown. Here we describe a cep55 nonsense mutant zebrafish with which we can study the in vivo physiologic role of Cep55. Homozygous mutants underwent extensive apoptosis by 24 hours postfertilization (hpf) concomitant with cell cycle defects, and heterozygous carriers were indistinguishable from their wild-type siblings. A similar phenotype was also observed in zebrafish injected with a cep55 morpholino, suggesting the mutant is a cep55 loss-of-function model. Further analysis revealed that Akt was destabilized in the homozygous mutants, which partially phenocopied Akt1 and Akt2 knockdown. Expression of either constitutively activated PIK3CA or AKT1 could partially rescue the homozygous mutants. Consistent with a role for Cep55 in regulation of Akt stability, treatment with proteasome inhibitor, MG132, partially rescued the homozygous mutants. Taken together, these results provide the first description of Cep55 in development and underline the importance of Cep55 in the regulation of Pi3k/Akt pathway and in particular Akt stability. © FASEB.

  13. A branching morphogenesis program governs embryonic growth of the thyroid gland

    PubMed Central

    Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L.; Fagman, Henrik

    2018-01-01

    ABSTRACT The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1+ cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. PMID:29361553

  14. A branching morphogenesis program governs embryonic growth of the thyroid gland.

    PubMed

    Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L; Fagman, Henrik; Nilsson, Mikael

    2018-01-25

    The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1 + cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. © 2018. Published by The Company of Biologists Ltd.

  15. Early pregnancy factor as a marker for assessing embryonic viability in threatened and missed abortions.

    PubMed

    Shahani, S K; Moniz, C L; Bordekar, A D; Gupta, S M; Naik, K

    1994-01-01

    It is now well recognized that the presence of early pregnancy factor (EPF) can signify the occurrence of fertilization, continuation of pregnancy and the existence of a viable embryo. With this in view, a study was undertaken to observe the potential of EPF as a marker in assessing embryo viability in cases complicated with vaginal bleeding during early pregnancy. The results indicated that the sensitivity of EPF as a marker in predicting threatened or missed abortion was 78.9% and the specificity 95.6%. The positive predictive value was observed to be 93.8% and the negative predictive value 84.6%. Our studies have shown that since EPF is present in viable but absent in non-viable pregnancies, it could be a useful marker of prognostic value in threatened abortions.

  16. Cationic Surface Charge Combined with Either Vitronectin or Laminin Dictates the Evolution of Human Embryonic Stem Cells/Microcarrier Aggregates and Cell Growth in Agitated Cultures

    PubMed Central

    Lam, Alan Tin-Lun; Li, Jian; Chen, Allen Kuan-Liang; Reuveny, Shaul

    2014-01-01

    The expansion of human pluripotent stem cells (hPSC) for biomedical applications generally compels a defined, reliable, and scalable platform. Bioreactors offer a three-dimensional culture environment that relies on the implementation of microcarriers (MC), as supports for cell anchorage and their subsequent growth. Polystyrene microspheres/MC coated with adhesion-promoting extracellular matrix (ECM) protein, vitronectin (VN), or laminin (LN) have been shown to support hPSC expansion in a static environment. However, they are insufficient to promote human embryonic stem cells (hESC) seeding and their expansion in an agitated environment. The present study describes an innovative technology, consisting of a cationic charge that underlies the ECM coatings. By combining poly-L-lysine (PLL) with a coating of ECM protein, cell attachment efficiency and cell spreading are improved, thus enabling seeding under agitation in a serum-free medium. This coating combination also critically enables the subsequent formation and evolution of hPSC/MC aggregates, which ensure cell viability and generate high yields. Aggregate dimensions of at least 300 μm during early cell growth give rise to ≈15-fold expansion at 7 days' culture. Increasing aggregate numbers at a quasi-constant size of ≈300 μm indicates hESC growth within a self-regulating microenvironment. PLL+LN enables cell seeding and aggregate evolution under constant agitation, whereas PLL+VN requires an intermediate 2-day static pause to attain comparable aggregate sizes and correspondingly high expansion yields. The cells' highly reproducible bioresponse to these defined and characterized MC surface properties is universal across multiple cell lines, thus confirming the robustness of this scalable expansion process in a defined environment. PMID:24641164

  17. The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma.

    PubMed

    Ignatius, Myron S; Hayes, Madeline N; Lobbardi, Riadh; Chen, Eleanor Y; McCarthy, Karin M; Sreenivas, Prethish; Motala, Zainab; Durbin, Adam D; Molodtsov, Aleksey; Reeder, Sophia; Jin, Alexander; Sindiri, Sivasish; Beleyea, Brian C; Bhere, Deepak; Alexander, Matthew S; Shah, Khalid; Keller, Charles; Linardic, Corinne M; Nielsen, Petur G; Malkin, David; Khan, Javed; Langenau, David M

    2017-06-13

    Tumor-propagating cells (TPCs) share self-renewal properties with normal stem cells and drive continued tumor growth. However, mechanisms regulating TPC self-renewal are largely unknown, especially in embryonal rhabdomyosarcoma (ERMS)-a common pediatric cancer of muscle. Here, we used a zebrafish transgenic model of ERMS to identify a role for intracellular NOTCH1 (ICN1) in increasing TPCs by 23-fold. ICN1 expanded TPCs by enabling the de-differentiation of zebrafish ERMS cells into self-renewing myf5+ TPCs, breaking the rigid differentiation hierarchies reported in normal muscle. ICN1 also had conserved roles in regulating human ERMS self-renewal and growth. Mechanistically, ICN1 upregulated expression of SNAIL1, a transcriptional repressor, to increase TPC number in human ERMS and to block muscle differentiation through suppressing MEF2C, a myogenic differentiation transcription factor. Our data implicate the NOTCH1/SNAI1/MEF2C signaling axis as a major determinant of TPC self-renewal and differentiation in ERMS, raising hope of therapeutically targeting this pathway in the future. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain

    PubMed Central

    Nieto-Estévez, Vanesa; Defterali, Çağla; Vicario-Abejón, Carlos

    2016-01-01

    The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs). This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I) exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type, and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP) and the subventricular zone-olfactory bulb (SVZ-OB). By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis, and neuron integration in synaptic circuits. PMID:26941597

  19. Stock size affects early growth of a loblolly pine

    Treesearch

    David B. South; Al Lyons; Russ Pohl

    2015-01-01

    For decades, forest researchers in the South have known that early gains in survival and growth of loblolly pine (Pinus taeda L.) can be achieved by planting large-diameter seedlings (South 1993; Wakeley 1949). For P. radiata, increasing size of planting stock also increases early growth of both seedlings (Mason and others 1996) and cuttings (South and others 2005)....

  20. Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality.

    PubMed

    Müller, J M M; Deinhardt, K; Rosewell, I; Warren, G; Shima, D T

    2007-03-09

    The highly conserved AAA ATPase p97 (VCP/CDC48) has well-established roles in cell cycle progression, proteasome degradation and membrane dynamics. Gene disruption in Saccromyces cerevisiae, Drosophila melanogaster and Trypanosoma brucei demonstrated that p97 is essential in unicellular and multicellular organisms. To explore the requirement for p97 in mammalian cell function and embryogenesis, we disrupted the p97 locus by gene targeting. Heterozygous p97+/- mice were indistinguishable from their wild-type littermates, whereas homozygous mutants did not survive to birth and died at a peri-implantation stage. These results show that p97 is an essential gene for early mouse development.

  1. New insights into human primordial germ cells and early embryonic development from single-cell analysis.

    PubMed

    Otte, Jörg; Wruck, Wasco; Adjaye, James

    2017-08-01

    Human preimplantation developmental studies are difficult to accomplish due to associated ethical and moral issues. Preimplantation cells are rare and exist only in transient cell states. From a single cell, it is very challenging to analyse the origination of the heterogeneity and complexity inherent to the human body. However, recent advances in single-cell technology and data analysis have provided new insights into the process of early human development and germ cell specification. In this Review, we examine the latest single-cell datasets of human preimplantation embryos and germ cell development, compare them to bulk cell analyses, and interpret their biological implications. © 2017 Federation of European Biochemical Societies.

  2. Differential gene expression during early embryonic development in diapause and non-diapause eggs of multivoltine silkworm Bombyx mori.

    PubMed

    Ponnuvel, Kangayam M; Murthy, Geetha N; Awasthi, Arvind K; Rao, Guruprasad; Vijayaprakash, Nanjappa B

    2010-11-01

    ) revealed differential levels of expression in both the eggs at all stages of embryonic development. The present study thus provides an overview of the differential expression levels of metabolic enzyme and Hsp genes in non-diapause and diapause induced eggs of multivoltine silkworm B. mori within 48 h after oviposition, confirming the major role of in early embryogenesis.

  3. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  4. Behavioral alterations of zebrafish larvae after early embryonic exposure to ketamine.

    PubMed

    Félix, Luís M; Antunes, Luís M; Coimbra, Ana M; Valentim, Ana M

    2017-02-01

    Ketamine has been associated with pediatric risks that include neurocognitive impairment and long-term behavioral disorders. However, the neurobehavioral effects of ketamine exposure in early development remain uncertain. This study aimed to test stage- and dose-dependent effects of ketamine exposure on certain brain functions by evaluating alterations in locomotion, anxiety-like and avoidance behaviors, as well as socialization. Embryos were exposed to different concentrations of ketamine (0, 0.2, 0.4, and 0.8 mg mL -1 ) for 20 min during the 256-cell (2.5 h post fertilization-hpf), 50% epiboly (5.5 hpf), and 1-4 somites (10.5 hpf) stages. General exploratory activities, natural escape-like responses, and social interactions were analyzed under continuous light or under a moving light stimulus. A dose-dependent decrease in the overall mean speed was perceived in the embryos exposed during the 256-cell stage. These results were related to previously observed head and eye malformations, following ketamine exposure at this stage and may indicate possible neurobehavioral disorders when ketamine exposure is performed at this stage. Results also showed that ketamine exposure during the 50% epiboly and 1-4 somites stages induced a significant increment of the anxiety-like behavior and a decrease in avoidance behavior in all exposed groups. Overall, the results validate the neurodevelopmental risks of early-life exposure to ketamine.

  5. Immunohistochemical Markers of Neural Progenitor Cells in the Early Embryonic Human Cerebral Cortex

    PubMed Central

    Vinci, L.; Ravarino, A.; Fanos, V.; Naccarato, A.G.; Senes, G.; Gerosa, C.; Bevilacqua, G.; Faa, G.; Ambu, R.

    2016-01-01

    The development of the human central nervous system represents a delicate moment of embryogenesis. The purpose of this study was to analyze the expression of multiple immunohistochemical markers in the stem/progenitor cells in the human cerebral cortex during the early phases of development. To this end, samples from cerebral cortex were obtained from 4 human embryos of 11 weeks of gestation. Each sample was formalin-fixed, paraffin embedded and immunostained with several markers including GFAP, WT1, Nestin, Vimentin, CD117, S100B, Sox2, PAX2, PAX5, Tβ4, Neurofilament, CD44, CD133, Synaptophysin and Cyclin D1. Our study shows the ability of the different immunohistochemical markers to evidence different zones of the developing human cerebral cortex, allowing the identification of the multiple stages of differentiation of neuronal and glial precursors. Three important markers of radial glial cells are evidenced in this early gestational age: Vimentin, Nestin and WT1. Sox2 was expressed by the stem/progenitor cells of the ventricular zone, whereas the postmitotic neurons of the cortical plate were immunostained by PAX2 and NSE. Future studies are needed to test other important stem/progenitor cells markers and to better analyze differences in the immunohistochemical expression of these markers during gestation. PMID:26972711

  6. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    PubMed Central

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  7. A model of early human embryonic stem cell differentiation reveals inter- and intracellular changes on transition to squamous epithelium.

    PubMed

    Galat, Vasiliy; Malchenko, Sergey; Galat, Yekaterina; Ishkin, Alex; Nikolsky, Yuri; Kosak, Steven T; Soares, Bento Marcelo; Iannaccone, Philip; Crispino, John D; Hendrix, Mary J C

    2012-05-20

    The molecular events leading to human embryonic stem cell (hESC) differentiation are the subject of considerable scrutiny. Here, we characterize an in vitro model that permits analysis of the earliest steps in the transition of hESC colonies to squamous epithelium on basic fibroblast growth factor withdrawal. A set of markers (GSC, CK18, Gata4, Eomes, and Sox17) point to a mesendodermal nature of the epithelial cells with subsequent commitment to definitive endoderm (Sox17, Cdx2, nestin, and Islet1). We assayed alterations in the transcriptome in parallel with the distribution of immunohistochemical markers. Our results indicate that the alterations of tight junctions in pluripotent culture precede the beginning of differentiation. We defined this cell population as "specified," as it is committed toward differentiation. The transitional zone between "specified" pluripotent and differentiated cells displays significant up-regulation of keratin-18 (CK18) along with a decrease in the functional activity of gap junctions and the down-regulation of 2 gap junction proteins, connexin 43 (Cx43) and connexin 45 (Cx45), which is coincidental with substantial elevation of intracellular Ca2+ levels. These findings reveal a set of cellular changes that may represent the earliest markers of in vitro hESC transition to an epithelial phenotype, before the induction of gene expression networks that guide hESC differentiation. Moreover, we hypothesize that these events may be common during the primary steps of hESC commitment to functionally varied epithelial tissue derivatives of different embryological origins.

  8. The Relationship between Early Growth and Survival of Hatchling Saltwater Crocodiles (Crocodylus porosus) in Captivity

    PubMed Central

    Brien, Matthew L.; Webb, Grahame J.; McGuinness, Keith; Christian, Keith A.

    2014-01-01

    Hatchling fitness in crocodilians is affected by “runtism” or failure to thrive syndrome (FTT) in captivity. In this study, 300 hatchling C. porosus, artificially incubated at 32°C for most of their embryonic development, were raised in semi-controlled conditions, with growth criteria derived for the early detection of FTT (within 24 days). Body mass, four days after hatching (BM4d), was correlated with egg size and was highly clutch specific, while snout-vent length (SVL4d) was much more variable within and between clutches. For the majority of hatchlings growth trajectories within the first 24 days continued to 90 days and could be used to predict FTT affliction up to 300 days, highlighting the importance of early growth. Growth and survival of hatchling C. porosus in captivity was not influenced by initial size (BM4d), with a slight tendency for smaller hatchlings to grow faster in the immediate post-hatching period. Strong clutch effects (12 clutches) on affliction with FTT were apparent, but could not be explained by measured clutch variables or other factors. Among individuals not afflicted by FTT (N = 245), mean growth was highly clutch specific, and the variation could be explained by an interaction between clutch and season. FTT affliction was 2.5 times higher among clutches (N = 7) that hatched later in the year when mean minimum air temperatures were lower, compared with those clutches (N = 5) that hatched early in the year. The results of this study highlight the importance of early growth in hatchling C. porosus, which has implications for the captive management of this species. PMID:24960026

  9. Localization of DNA methyltransferase-1 during oocyte differentiation, in vitro maturation and early embryonic development in cow

    PubMed Central

    Lodde, V.; Modina, S.C.; Franciosi, F.; Zuccari, E.; Tessaro, I.; Luciano, A.M.

    2009-01-01

    DNA methyltransferase-1 (Dnmt1) is involved in the maintenance of DNA methylation patterns and is crucial for normal mammalian development. The aim of the present study was to assess the localization of Dnmt1 in cow, during the latest phases of oocyte differentiation and during the early stages of segmentation. Dnmt1 expression and localization were assessed in oocytes according to the chromatin configuration, which in turn provides an important epigenetic mechanism for the control of global gene expression and represents a morphological marker of oocyte differentiation. We found that the initial chromatin condensation was accompanied by a slight increase in the level of global DNA methylation, as assessed by 5-methyl-cytosine immunostaining followed by laser scanning confocal microscopy analysis (LSCM). RT-PCR confirmed the presence of Dnmt1 transcripts throughout this phase of oocyte differentiation. Analogously, Dnmt1 immunodetection and LSCM indicated that the protein was always present and localized in the cytoplasm, regardless the chromatin configuration and the level of global DNA methylation. Moreover, our data indicate that while Dnmt1 is retained in the cytoplasm in metaphase II stage oocytes and zygotes, it enters the nuclei of 8–16 cell stage embryos. As suggested in mouse, the functional meaning of the presence of Dnmt1 in the bovine embryo nuclei could be the maintainement of the methylation pattern of imprinted genes. In conclusion, the present work provides useful elements for the study of Dnmt1 function during the late stage of oocyte differentiation, maturation and early embryonic development in mammals. PMID:22073356

  10. Effects of breed, parity, and folic Acid supplement on the expression of folate metabolism genes in endometrial and embryonic tissues from sows in early pregnancy.

    PubMed

    Vallée, Maud; Guay, Frédéric; Beaudry, Danièle; Matte, Jacques; Blouin, Richard; Laforest, Jean-Paul; Lessard, Martin; Palin, Marie-France

    2002-10-01

    Folic acid and glycine are factors of great importance in early gestation. In sows, folic acid supplement can increase litter size through a decrease in embryonic mortality, while glycine, the most abundant amino acid in the sow oviduct, uterine, and allantoic fluids, is reported to act as an organic osmoregulator. In this study, we report the characterization of cytoplasmic serine hydroxymethyltransferase (cSHMT), T-protein, and vT-protein (variant T-protein) mRNA expression levels in endometrial and embryonic tissues in gestating sows on Day 25 of gestation according to the breed, parity, and folic acid + glycine supplementation. Expression levels of cSHMT, T-protein, and vT-protein mRNA in endometrial and embryonic tissues were performed using semiquantitative reverse transcription-polymerase chain reaction. We also report, for the first time, an alternative splicing event in the porcine T-protein gene. Results showed that a T-protein splice variant, vT-protein, is present in all the tested sow populations. Further characterizations revealed that this T-protein splice variant contains a coding intron that can adopt a secondary structure. Results demonstrated that cSHMT mRNA expression levels were significantly higher in sows receiving the folic acid + glycine supplementation, independently of the breed or parity and in both endometrial and embryonic tissues. Upon receiving the same treatment, the vT-protein and T-protein mRNA expression levels were significantly reduced in the endometrial tissue of Yorkshire-Landrace sows only. These results indicate that modulation of specific gene expression levels in endometrial and embryonic tissues of sows in early gestation could be one of the mechanism involved with the role of folic acid on improving swine reproduction traits.

  11. Growth factor expression pattern of homologous feeder layer for culturing buffalo embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Kamble, Nitin M; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat

    2012-01-01

    The present study examined the expression profile of buffalo fetal fibroblasts (BFF) used as a feeder layer for embryonic stem (ES) cell-like cells. The expression of important growth factors was detected in cells at different passages. Mitomycin-C inactivation increased relative expression levels of ACTIVIN-A, TGF-β1, BMP-4 and GREMLIN but not of fibroblast growth factor-2 (FGF-2). The expression level of ACTIVIN-A, transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-4 (BMP-4) and FGF-2 was similar in buffalo fetal fibroblast (BFF) cultured in stem cell medium (SCM), SCM+1000IU mL(-1) leukemia inhibitory factor (LIF), SCM+5 ngmL(-1) FGF-2 or SCM+LIF+FGF-2 for 24 h whereas GREMLIN expression was higher in FGF-2-supplemented groups. In spent medium, the concentration of ACTIVIN-A was higher in FGF-2-supplemented groups whereas that of TGF-β1 was similar in SCM and LIF+FGF-2, which was higher than when either LIF or FGF-2 was used alone. Following culture of ES cell-like cells on a feeder layer for 24 h, the TGF-β1 concentration was higher with LIF+FGF-2 than with LIF or FGF-2 alone which, in turn, was higher than that in SCM. In the LIF+FGF-2 group, the concentration of TGF-β1 was lower and that of ACTIVIN-A was higher in spent medium at 24 h than at 48 h of culture. These results suggest that BFF produce signalling molecules that may help in self-renewal of buffalo ES cell-like cells.

  12. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells.

    PubMed

    Guo, Fan; Li, Lin; Li, Jingyun; Wu, Xinglong; Hu, Boqiang; Zhu, Ping; Wen, Lu; Tang, Fuchou

    2017-08-01

    Single-cell epigenome sequencing techniques have recently been developed. However, the combination of different layers of epigenome sequencing in an individual cell has not yet been achieved. Here, we developed a single-cell multi-omics sequencing technology (single-cell COOL-seq) that can analyze the chromatin state/nucleosome positioning, DNA methylation, copy number variation and ploidy simultaneously from the same individual mammalian cell. We used this method to analyze the reprogramming of the chromatin state and DNA methylation in mouse preimplantation embryos. We found that within < 12 h of fertilization, each individual cell undergoes global genome demethylation together with the rapid and global reprogramming of both maternal and paternal genomes to a highly opened chromatin state. This was followed by decreased openness after the late zygote stage. Furthermore, from the late zygote to the 4-cell stage, the residual DNA methylation is preferentially preserved on intergenic regions of the paternal alleles and intragenic regions of maternal alleles in each individual blastomere. However, chromatin accessibility is similar between paternal and maternal alleles in each individual cell from the late zygote to the blastocyst stage. The binding motifs of several pluripotency regulators are enriched at distal nucleosome depleted regions from as early as the 2-cell stage. This indicates that the cis-regulatory elements of such target genes have been primed to an open state from the 2-cell stage onward, long before pluripotency is eventually established in the ICM of the blastocyst. Genes may be classified into homogeneously open, homogeneously closed and divergent states based on the chromatin accessibility of their promoter regions among individual cells. This can be traced to step-wise transitions during preimplantation development. Our study offers the first single-cell and parental allele-specific analysis of the genome-scale chromatin state and DNA

  13. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells

    PubMed Central

    Guo, Fan; Li, Lin; Li, Jingyun; Wu, Xinglong; Hu, Boqiang; Zhu, Ping; Wen, Lu; Tang, Fuchou

    2017-01-01

    Single-cell epigenome sequencing techniques have recently been developed. However, the combination of different layers of epigenome sequencing in an individual cell has not yet been achieved. Here, we developed a single-cell multi-omics sequencing technology (single-cell COOL-seq) that can analyze the chromatin state/nucleosome positioning, DNA methylation, copy number variation and ploidy simultaneously from the same individual mammalian cell. We used this method to analyze the reprogramming of the chromatin state and DNA methylation in mouse preimplantation embryos. We found that within < 12 h of fertilization, each individual cell undergoes global genome demethylation together with the rapid and global reprogramming of both maternal and paternal genomes to a highly opened chromatin state. This was followed by decreased openness after the late zygote stage. Furthermore, from the late zygote to the 4-cell stage, the residual DNA methylation is preferentially preserved on intergenic regions of the paternal alleles and intragenic regions of maternal alleles in each individual blastomere. However, chromatin accessibility is similar between paternal and maternal alleles in each individual cell from the late zygote to the blastocyst stage. The binding motifs of several pluripotency regulators are enriched at distal nucleosome depleted regions from as early as the 2-cell stage. This indicates that the cis-regulatory elements of such target genes have been primed to an open state from the 2-cell stage onward, long before pluripotency is eventually established in the ICM of the blastocyst. Genes may be classified into homogeneously open, homogeneously closed and divergent states based on the chromatin accessibility of their promoter regions among individual cells. This can be traced to step-wise transitions during preimplantation development. Our study offers the first single-cell and parental allele-specific analysis of the genome-scale chromatin state and DNA

  14. Early events in xenograft development from the human embryonic stem cell line HS181--resemblance with an initial multiple epiblast formation.

    PubMed

    Gertow, Karin; Cedervall, Jessica; Jamil, Seema; Ali, Rouknuddin; Imreh, Marta P; Gulyas, Miklos; Sandstedt, Bengt; Ahrlund-Richter, Lars

    2011-01-01

    Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structures of single or pseudostratified columnar epithelium surrounding small cavities. The striking histological resemblance to developing embryonic ectoderm, and the formation of epiblast-like structures was supported by the expression of the markers OCT4, NANOG, SSEA-4 and KLF4, but a lack of REX1. The early neural marker NESTIN was uniformly expressed, while markers linked to gastrulation, such as BMP-4, NODAL or BRACHYURY were not detected. Thus, observations on day 5 indicated differentiation comparable to the most early transient cell populations in human post implantation development. Confirming and expanding on previous findings from HS181 xenografts, these early events were followed by an increasingly chaotic development, incorporated in the formation of a benign teratoma with complex embryonic components. In the mature HS181 teratomas not all types of organs/tissues were detected, indicating a restricted differentiation, and a lack of adequate spatial developmental cues during the further teratoma formation. Uniquely, a kinetic alignment of rare complex structures was made to human embryos at diagnosed gestation stages, showing minor kinetic deviations between HS181 teratoma and the human counterpart.

  15. Two independent forms of endocytosis maintain embryonic cell surface homeostasis during early development

    PubMed Central

    Covian-Nares, J. Fernando; Smith, Robert M.; Vogel, Steven S.

    2008-01-01

    Eukaryotic cells have multiple forms of endocytosis which maintain cell surface homeostasis. One explanation for this apparent redundancy is to allow independent retrieval of surface membranes derived from different types of vesicles. Consistent with this hypothesis we find that sea urchin eggs have at least two types of compensatory endocytosis. One is associated with retrieving cortical vesicle membranes, and formed large endosomes by a mechanism that was inhibited by agatoxin, cadmium, staurosporine and FK506. The second type is thought to compensate for constitutive exocytosis, and formed small endosomes using a mechanism that was insensitive to the above mentioned reagents, but was inhibited by phenylarsine oxide (PAO), and by microinjection of mRNA encoding Src kinase. Both mechanisms could act concurrently, and account for all of the endocytosis occurring during early development. Inhibition of either form did not trigger compensation by the other form, and phorbol ester treatment rescued the endocytotic activity blocked by agatoxin, but not the retrieval blocked by PAO. PMID:18281031

  16. Physiological roles of glucocorticoids during early embryonic development of the zebrafish (Danio rerio)

    PubMed Central

    Wilson, K S; Matrone, G; Livingstone, D E W; Al-Dujaili, E A S; Mullins, J J; Tucker, C S; Hadoke, P W F; Kenyon, C J; Denvir, M A

    2013-01-01

    While glucocorticoids (GCs) are known to be present in the zebrafish embryo, little is known about their physiological roles at this stage. We hypothesised that GCs play key roles in stress response, hatching and swim activity during early development. To test this, whole embryo cortisol (WEC) and corticosteroid-related genes were measured in embryos from 6 to 120 h post fertilisation (hpf) by enzyme linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Stress response was assessed by change in WEC following stirring, hypoxia or brief electrical impulses applied to the bathing water. The impact of pharmacological and molecular GC manipulation on the stress response, spontaneous hatching and swim activity at different stages of development was also assessed. WEC levels demonstrated a biphasic pattern during development with a decrease from 0 to 36 hpf followed by a progressive increase towards 120 hpf. This was accompanied by a significant and sustained increase in the expression of genes encoding cyp11b1 (GC biosynthesis), hsd11b2 (GC metabolism) and gr (GC receptor) from 48 to 120 hpf. Metyrapone (Met), an inhibitor of 11β-hydroxylase (encoded by cyp11b1), and cyp11b1 morpholino (Mo) knockdown significantly reduced basal and stress-induced WEC levels at 72 and 120 hpf but not at 24 hpf. Spontaneous hatching and swim activity were significantly affected by manipulation of GC action from approximately 48 hpf onwards. We have identified a number of key roles of GCs in zebrafish embryos contributing to adaptive physiological responses under adverse conditions. The ability to alter GC action in the zebrafish embryo also highlights its potential value for GC research. PMID:24167225

  17. Ovulation, Fertilization and Early Embryonic Development in the Menstruating Fruit Bat, Carollia perspicillata

    PubMed Central

    Rasweiler IV, John J.; Badwaik, Nilima K.; Mechineni, Kiranmayi V.

    2010-01-01

    To characterize periovulatory events, reproductive tracts were collected at 12 hr intervals from captive-bred, short-tailed fruit bats, Carollia perspicillata, on days 1-3 post coitum and examined histologically. Most bats bred readily. Graafian follicles developed large antra and exhibited preovulatory expansion of the cumulus oophorus. Ovulation had occurred in some on the morning, and in most by the evening, of day 1. The single ovum was released as a secondary oocyte and fertilized in the oviductal ampulla. Ovulated secondary oocytes were loosely associated with their cumulus cells, which were lost around the initiation of fertilization. Supernumerary spermatozoa were occasionally noted attached to the zonae pellucidae of oviductal ova, but never within the perivitelline space. By day 2, most ova had reached the pronuclear stage and by day 3, early cleavage stages. Several lines of evidence indicate that C. perspicillata is a spontaneous ovulator with a functional luteal phase. Most newly-mated females had recently-formed, but regressing corpora lutea, and thickened (albeit menstrual) uteri despite having been housed with males only for brief periods (< 23 days). Menstruation is usually periovulatory in this species. Furthermore, the interval between successive estrus periods in most mated females that failed to establish ongoing pregnancies at the first was 21 – 27 days. Menstruation involved substantial endometrial desquamation, plus associated bleeding, and generally extended to the evening of day 3, the last time point studied. In nearly all females with a recent corpus luteum (n=24/25; 96%), the preovulatory or newly-ruptured follicle was in the opposite ovary. PMID:21337714

  18. Effective growth-suppressive activity of maternal embryonic leucine-zipper kinase (MELK) inhibitor against small cell lung cancer.

    PubMed

    Inoue, Hiroyuki; Kato, Taigo; Olugbile, Sope; Tamura, Kenji; Chung, Suyoun; Miyamoto, Takashi; Matsuo, Yo; Salgia, Ravi; Nakamura, Yusuke; Park, Jae-Hyun

    2016-03-22

    Maternal embryonic leucine zipper kinase (MELK), that plays a critical role in maintenance of cancer stem cells (CSCs), is predominantly expressed in various types of human cancer including small cell lung cancer (SCLC). SCLC usually acquires resistance to anti-cancer drugs and portends dismal prognosis. We have delineated roles of MELK in development/progression of SCLC and examined anti-tumor efficacy of OTS167, a highly potent MELK inhibitor, against SCLC. MELK expression was highly upregulated in both SCLC cell lines and primary tumors. siRNA-mediated MELK knockdown induced significant growth inhibition in SCLC cell lines. Concordantly, treatment with OTS167 exhibited strong cytotoxicity against eleven SCLC cell lines with IC50 of < 10 nM. As similar to siRNA knockdown, OTS167 treatment induced cytokinetic defects with intercellular bridges, and in some cell lines we observed formation of neuronal protrusions accompanied with increase of a neuronal differentiation marker (CD56), indicating that the compound induced differentiation of cancer cells to neuron-like cells. Furthermore, the MELK inhibition decreased its downstream FOXM1 activity and Akt expression in SCLC cells, and led to apoptotic cell death. OTS167 appeared to be more effective to CSCs as measured by the sphere formation assay, thus MELK inhibition might become a promising treatment modality for SCLC.

  19. Effective growth-suppressive activity of maternal embryonic leucine-zipper kinase (MELK) inhibitor against small cell lung cancer

    PubMed Central

    Inoue, Hiroyuki; Kato, Taigo; Olugbile, Sope; Tamura, Kenji; Chung, Suyoun; Miyamoto, Takashi; Matsuo, Yo; Salgia, Ravi; Nakamura, Yusuke; Park, Jae-Hyun

    2016-01-01

    Maternal embryonic leucine zipper kinase (MELK), that plays a critical role in maintenance of cancer stem cells (CSCs), is predominantly expressed in various types of human cancer including small cell lung cancer (SCLC). SCLC usually acquires resistance to anti-cancer drugs and portends dismal prognosis. We have delineated roles of MELK in development/progression of SCLC and examined anti-tumor efficacy of OTS167, a highly potent MELK inhibitor, against SCLC. MELK expression was highly upregulated in both SCLC cell lines and primary tumors. siRNA-mediated MELK knockdown induced significant growth inhibition in SCLC cell lines. Concordantly, treatment with OTS167 exhibited strong cytotoxicity against eleven SCLC cell lines with IC50 of < 10 nM. As similar to siRNA knockdown, OTS167 treatment induced cytokinetic defects with intercellular bridges, and in some cell lines we observed formation of neuronal protrusions accompanied with increase of a neuronal differentiation marker (CD56), indicating that the compound induced differentiation of cancer cells to neuron-like cells. Furthermore, the MELK inhibition decreased its downstream FOXM1 activity and Akt expression in SCLC cells, and led to apoptotic cell death. OTS167 appeared to be more effective to CSCs as measured by the sphere formation assay, thus MELK inhibition might become a promising treatment modality for SCLC. PMID:26871945

  20. The role of growth factors in embryonic induction in Xenopus laevis.

    PubMed

    Dawid, I B; Taira, M; Good, P J; Rebagliati, M R

    1992-06-01

    Establishment of the body pattern in all animals, and especially in vertebrate embryos, depends on cell interactions. During the cleavage and blastula stages in amphibians, signal(s) from the vegetal region induce the equatorial region to become mesoderm. Two types of peptide growth factors have been shown by explant culture experiments to be active in mesoderm induction. First, there are several isoforms of fibroblast growth factor (FGF), including aFGF, bFGF, and hst/kFGF. FGF induces ventral, but not the most dorsal, levels of mesodermal tissue; bFGF and its mRNA, and an FGF receptor and its mRNA, are present in the embryo. Thus, FGF probably has a role in mesoderm induction, but is unlikely to be the sole inducing agent in vivo. Second, members of the transforming growth factor-beta (TGF-beta) family. TGF-beta 2 and TGF-beta 3 are active in induction, but the most powerful inducing factors are the distant relatives of TGF-beta named activin A and activin B, which are capable of inducing all types of mesoderm. An important question relates to the establishment of polarity during the induction of mesoderm. While all regions of the animal hemisphere of frog embryos are competent to respond to activins by mesoderm differentiation, only explants that include cells close to the equator form structures with some organization along dorsoventral and anteroposterior axes. These observations suggest that cells in the blastula animal hemisphere are already polarized to some extent, although inducers are required to make this polarity explicit.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Comparison of the early response of human embryonic stem cells and human induced pluripotent stem cells to ionizing radiation.

    PubMed

    Suchorska, Wiktoria Maria; Augustyniak, Ewelina; Łukjanow, Magdalena

    2017-04-01

    Despite the well-demonstrated efficacy of stem cell (SC) therapy, this approach has a number of key drawbacks. One important concern is the response of pluripotent SCs to treatment with ionizing radiation (IR), given that SCs used in regenerative medicine will eventually be exposed to IR for diagnostic or treatment‑associated purposes. Therefore, the aim of the present study was to examine and compare early IR‑induced responses of pluripotent SCs to assess their radioresistance and radiosensitivity. In the present study, 3 cell lines; human embryonic SCs (hESCs), human induced pluripotent SCs (hiPSCs) and primary human dermal fibroblasts (PHDFs); were exposed to IR at doses ranging from 0 to 15 gray (Gy). Double strand breaks (DSBs), and the gene expression of the following DNA repair genes were analyzed: P53; RAD51; BRCA2; PRKDC; and XRCC4. hiPSCs demonstrated greater radioresistance, as fewer DSBs were identified, compared with hESCs. Both pluripotent SC lines exhibited distinct gene expression profiles in the most common DNA repair genes that are involved in homologous recombination, non‑homologous end‑joining and enhanced DNA damage response following IR exposure. Although hESCs and hiPSCs are equivalent in terms of capacity for pluripotency and differentiation into 3 germ layers, the results of the present study indicate that these 2 types of SCs differ in gene expression following exposure to IR. Consequently, further research is required to determine whether hiPSCs and hESCs are equally safe for application in clinical practice. The present study contributes to a greater understanding of DNA damage response (DDR) mechanisms activated in pluripotent SCs and may aid in the future development of safe SC‑based clinical protocols.

  2. TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells.

    PubMed

    Jeon, Yoon; Ko, Eun; Lee, Kyung Yong; Ko, Min Ji; Park, Seo Young; Kang, Jeeheon; Jeon, Chang Hwan; Lee, Ho; Hwang, Deog Su

    2011-02-18

    TopBP1 plays important roles in chromosome replication, DNA damage response, and other cellular regulatory functions in vertebrates. Although the roles of TopBP1 have been studied mostly in cancer cell lines, its physiological function remains unclear in mice and untransformed cells. We generated conditional knock-out mice in which exons 5 and 6 of the TopBP1 gene are flanked by loxP sequences. Although TopBP1-deficient embryos developed to the blastocyst stage, no homozygous mutant embryos were recovered at E8.5 or beyond, and completely resorbed embryos were frequent at E7.5, indicating that mutant embryos tend to die at the peri-implantation stage. This finding indicated that TopBP1 is essential for cell proliferation during early embryogenesis. Ablation of TopBP1 in TopBP1(flox/flox) mouse embryonic fibroblasts and 3T3 cells using Cre recombinase-expressing retrovirus arrests cell cycle progression at the G(1), S, and G(2)/M phases. The TopBP1-ablated mouse cells exhibit phosphorylation of H2AX and Chk2, indicating that the cells contain DNA breaks. The TopBP1-ablated mouse cells enter cellular senescence. Although RNA interference-mediated knockdown of TopBP1 induced cellular senescence in human primary cells, it induced apoptosis in cancer cells. Therefore, TopBP1 deficiency in untransformed mouse and human primary cells induces cellular senescence rather than apoptosis. These results indicate that TopBP1 is essential for cell proliferation and maintenance of chromosomal integrity.

  3. A Model of Early Human Embryonic Stem Cell Differentiation Reveals Inter- and Intracellular Changes on Transition to Squamous Epithelium

    PubMed Central

    Malchenko, Sergey; Galat, Yekaterina; Ishkin, Alex; Nikolsky, Yuri; Kosak, Steven T.; Soares, Bento Marcelo; Iannaccone, Philip; Crispino, John D.; Hendrix, Mary J.C.

    2012-01-01

    The molecular events leading to human embryonic stem cell (hESC) differentiation are the subject of considerable scrutiny. Here, we characterize an in vitro model that permits analysis of the earliest steps in the transition of hESC colonies to squamous epithelium on basic fibroblast growth factor withdrawal. A set of markers (GSC, CK18, Gata4, Eomes, and Sox17) point to a mesendodermal nature of the epithelial cells with subsequent commitment to definitive endoderm (Sox17, Cdx2, nestin, and Islet1). We assayed alterations in the transcriptome in parallel with the distribution of immunohistochemical markers. Our results indicate that the alterations of tight junctions in pluripotent culture precede the beginning of differentiation. We defined this cell population as “specified,” as it is committed toward differentiation. The transitional zone between “specified” pluripotent and differentiated cells displays significant up-regulation of keratin-18 (CK18) along with a decrease in the functional activity of gap junctions and the down-regulation of 2 gap junction proteins, connexin 43 (Cx43) and connexin 45 (Cx45), which is coincidental with substantial elevation of intracellular Ca2+ levels. These findings reveal a set of cellular changes that may represent the earliest markers of in vitro hESC transition to an epithelial phenotype, before the induction of gene expression networks that guide hESC differentiation. Moreover, we hypothesize that these events may be common during the primary steps of hESC commitment to functionally varied epithelial tissue derivatives of different embryological origins. PMID:21861759

  4. Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells.

    PubMed Central

    Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X

    2004-01-01

    Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613

  5. Human embryonic growth and development of the cerebellum using 3-dimensional ultrasound and virtual reality.

    PubMed

    Rousian, M; Groenenberg, I A L; Hop, W C; Koning, A H J; van der Spek, P J; Exalto, N; Steegers, E A P

    2013-08-01

    The aim of our study was to evaluate the first trimester cerebellar growth and development using 2 different measuring techniques: 3-dimensional (3D) and virtual reality (VR) ultrasound visualization. The cerebellum measurements were related to gestational age (GA) and crown-rump length (CRL). Finally, the reproducibility of both the methods was tested. In a prospective cohort study, we collected 630 first trimester, serially obtained, 3D ultrasound scans of 112 uncomplicated pregnancies between 7 + 0 and 12 + 6 weeks of GA. Only scans with high-quality images of the fossa posterior were selected for the analysis. Measurements were performed offline in the coronal plane using 3D (4D view) and VR (V-Scope) software. The VR enables the observer to use all available dimensions in a data set by visualizing the volume as a "hologram." Total cerebellar diameter, left, and right hemispheric diameter, and thickness were measured using both the techniques. All measurements were performed 3 times and means were used in repeated measurements analysis. After exclusion criteria were applied 177 (28%) 3D data sets were available for further analysis. The median GA was 10 + 0 weeks and the median CRL was 31.4 mm (range: 5.2-79.0 mm). The cerebellar parameters could be measured from 7 gestational weeks onward. The total cerebellar diameter increased from 2.2 mm at 7 weeks of GA to 13.9 mm at 12 weeks of GA using VR and from 2.2 to 13.8 mm using 3D ultrasound. The reproducibility, established in a subset of 35 data sets, resulted in intraclass correlation coefficient values ≥0.98. It can be concluded that cerebellar measurements performed by the 2 methods proved to be reproducible and comparable with each other. However, VR-using all three dimensions-provides a superior method for the visualization of the cerebellum. The constructed reference values can be used to study normal and abnormal cerebellar growth and development.

  6. Pipette-based Method to Study Embryoid Body Formation Derived from Mouse and Human Pluripotent Stem Cells Partially Recapitulating Early Embryonic Development Under Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Shinde, Vaibhav; Brungs, Sonja; Hescheler, Jürgen; Hemmersbach, Ruth; Sachinidis, Agapios

    2016-06-01

    The in vitro differentiation of pluripotent stem cells partially recapitulates early in vivo embryonic development. More recently, embryonic development under the influence of microgravity has become a primary focus of space life sciences. In order to integrate the technique of pluripotent stem cell differentiation with simulated microgravity approaches, the 2-D clinostat compatible pipette-based method was experimentally investigated and adapted for investigating stem cell differentiation processes under simulated microgravity conditions. In order to keep residual accelerations as low as possible during clinorotation, while also guaranteeing enough material for further analysis, stem cells were exposed in 1-mL pipettes with a diameter of 3.5 mm. The differentiation of mouse and human pluripotent stem cells inside the pipettes resulted in the formation of embryoid bodies at normal gravity (1 g) after 24 h and 3 days. Differentiation of the mouse pluripotent stem cells on a 2-D pipette-clinostat for 3 days also resulted in the formation of embryoid bodies. Interestingly, the expression of myosin heavy chain was downregulated when cultivation was continued for an additional 7 days at normal gravity. This paper describes the techniques for culturing and differentiation of pluripotent stem cells and exposure to simulated microgravity during culturing or differentiation on a 2-D pipette clinostat. The implementation of these methodologies along with -omics technologies will contribute to understand the mechanisms regulating how microgravity influences early embryonic development.

  7. Maternal TET3 is dispensable for embryonic development but is required for neonatal growth.

    PubMed

    Tsukada, Yu-Ichi; Akiyama, Tomohiko; Nakayama, Keiichi I

    2015-10-28

    The development of multicellular organisms is accompanied by reprogramming of the epigenome in specific cells, with the epigenome of most cell types becoming fixed after differentiation. Genome-wide reprogramming of DNA methylation occurs in primordial germ cells and in fertilized eggs during mammalian embryogenesis. The 5-methylcytosine (5mC) content of DNA thus undergoes a marked decrease in the paternal pronucleus of mammalian zygotes. This loss of DNA methylation has been thought to be mediated by an active demethylation mechanism independent of replication and to be required for development. TET3-mediated sequential oxidation of 5mC has recently been shown to contribute to the genome-wide loss of 5mC in the paternal pronucleus of mouse zygotes. We now show that TET3 localizes not only to the paternal pronucleus but also to the maternal pronucleus and oxidizes both paternal and maternal DNA in mouse zygotes, although these phenomena are less pronounced in the female pronucleus. Genetic ablation of TET3 in oocytes had no significant effect on oocyte development, maturation, or fertilization or on pregnancy, but it resulted in neonatal sublethality. Our results thus indicate that zygotic 5mC oxidation mediated by maternal TET3 is required for neonatal growth but is not essential for development.

  8. Parental care mitigates carry-over effects of poor early conditions on offspring growth

    USGS Publications Warehouse

    Auer, Sonya K.; Martin, Thomas E.

    2017-01-01

    Poor developmental conditions can have long-lasting negative effects on offspring phenotypes, but impacts often differ among species. Contrasting responses may reflect disparities in experimental protocols among single-species studies or inherent differences among species in their sensitivity to early conditions and/or ability to mitigate negative impacts. We used a common experimental protocol to assess and compare the role of parental care in mitigating effects of poor early conditions on offspring among 4 sympatric bird species in the wild. We experimentally induced low incubation temperatures and examined effects on embryonic developmental rates, hatching success, nestling growth rates, and parental responses. We examined the generality of these effects across 4 species that differ in their phylogenetic history, breeding ecology, and life histories. We found that cooling led to delayed hatching in all species, but carry-over effects on offspring differed among species. Parents of some but not all species increased their offspring provisioning rates in response to experimental cooling with critical benefits for offspring growth rates. Our study shows for the first time that species exhibit clear differences in the degree to which they are affected by poor early conditions. Observed differences among species demonstrate that parental care is a critical mechanism for mitigating potential negative effects on offspring and suggest that parental responses may be constrained to varying degrees by ecology and life histories.

  9. Organogenesis of heart-vascular system derived from mouse 2 cell stage embryos and from early embryonic stem cells in vitro.

    PubMed

    Ishiwata, Isamu; Tamagawa, Tomoharu; Tokieda, Yuko; Iguchi, Megumi; Sato, Kahei; Ishikawa, Hiroshi

    2003-03-01

    Regenerative medical treatment with embryonic stem cells (an ES cell) is a goal for organ transplantation. Structures that are tubular in nature (i.e. blood capillaries) were induced from early embryonic stem (EES) cells in vitro using embryotrophic factor (ETFs). In addition, cardiac muscle cells could be identified as well. However, differentiation of EES cells into a complete cardiovascular system was difficult because 3 germ layer primordial organs are directed embryologically in various ways and it is not possible to guide only cardiovascular organs. Thus, we introduced ETFs after the formation of an embryoid body and were successful in cloning cell clusters that beat, thus deriving only cardiovascular organs. The application of this to the treatment of various cardiovascular diseases is promising.

  10. Conceptual basis for prescriptive growth standards from conception to early childhood: present and future.

    PubMed

    Uauy, R; Casanello, P; Krause, B; Kuzanovic, J P; Corvalan, C

    2013-09-01

    maternal uterine environment from the time before conception, through embryonic development until fetal growth is complete. The remaining challenge is how 'early' will we be able to act, now that we can better monitor fetal growth. © 2013 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2013 RCOG.

  11. Transcriptomic profile of leg muscle during early growth in chicken

    PubMed Central

    Zhang, Genxi; Li, Tingting; Ling, Jiaojiao; Zhang, Xiangqian; Wang, Jinyu

    2017-01-01

    The early growth pattern, especially the age of peak growth, of broilers affects the time to market and slaughter weight, which in turn affect the profitability of the poultry industry. However, the underlying mechanisms regulating chicken growth and development have rarely been studied. This study aimed to identify candidate genes involved in chicken growth and investigated the potential regulatory mechanisms of early growth in chicken. RNA sequencing was applied to compare the transcriptomes of chicken muscle tissues at three developmental stages during early growth. In total, 978 differentially expressed genes (DEGs) (fold change ≥ 2; false discovery rate < 0.05) were detected by pairwise comparison. Functional analysis showed that the DEGs are mainly involved in the processes of cell growth, muscle development, and cellular activities (such as junction, migration, assembly, differentiation, and proliferation). Many of the DEGs are well known to be related to chicken growth, such as MYOD1, GH, IGF2BP2, IGFBP3, SMYD1, CEBPB, FGF2, and IGFBP5. KEGG pathway analysis identified that the DEGs were significantly enriched in five pathways (P < 0.1) related to growth and development: extracellular matrix–receptor interaction, focal adhesion, tight junction, insulin signaling pathway, and regulation of the actin cytoskeleton. A total of 42 DEGs assigned to these pathways are potential candidate genes inducing the difference in growth among the three developmental stages, such as MYH10, FGF2, FGF16, FN1, CFL2, MAPK9, IRS1, PHKA1, PHKB, and PHKG1. Thus, our study identified a series of genes and several pathways that may participate in the regulation of early growth in chicken. These results should serve as an important resource revealing the molecular basis of chicken growth and development. PMID:28291821

  12. Early Onset Intrauterine Growth Restriction in a Mouse Model of Gestational Hypercholesterolemia and Atherosclerosis

    PubMed Central

    Busso, Dolores; Mascareño, Lilian; Salas, Francisca; Berkowitz, Loni; Santander, Nicolás; Quiroz, Alonso; Amigo, Ludwig; Valdés, Gloria; Rigotti, Attilio

    2014-01-01

    The susceptibility to develop atherosclerosis is increased by intrauterine growth restriction and prenatal exposure to maternal hypercholesterolemia. Here, we studied whether mouse gestational hypercholesterolemia and atherosclerosis affected fetal development and growth at different stages of gestation. Female LDLR KO mice fed a proatherogenic, high cholesterol (HC) diet for 3 weeks before conception and during pregnancy exhibited a significant increase in non-HDL cholesterol and developed atherosclerosis. At embryonic days 12.5 (E12.5), E15.5, and E18.5, maternal gestational hypercholesterolemia and atherosclerosis were associated to a 22–24% reduction in male and female fetal weight without alterations in fetal number/litter or morphology nor placental weight or structure. Feeding the HC diet exclusively at the periconceptional period did not alter fetal growth, suggesting that maternal hypercholesterolemia affected fetal weight only after implantation. Vitamin E supplementation (1,000 UI of α-tocopherol/kg) of HC-fed females did not change the mean weight of E18.5 fetuses but reduced the percentage of fetuses exhibiting body weights below the 10th percentile of weight (HC: 90% vs. HC/VitE: 68%). In conclusion, our results showed that maternal gestational hypercholesterolemia and atherosclerosis in mice were associated to early onset fetal growth restriction and that dietary vitamin E supplementation had a beneficial impact on this condition. PMID:25295255

  13. How the embryonic chick brain twists.

    PubMed

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A

    2016-11-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain. © 2016 The Author(s).

  14. Embryonic delay in growth and development related to confined placental trisomy 16 mosaicism, diagnosed by I-Space Virtual Reality.

    PubMed

    Verwoerd-Dikkeboom, Christine M; van Heesch, Peter N A C M; Koning, Anton H J; Galjaard, Robert-Jan H; Exalto, Niek; Steegers, Eric A P

    2008-11-01

    To demonstrate the use of a novel three-dimensional (3D) virtual reality (VR) system in the visualization of first trimester growth and development in a case of confined placental trisomy 16 mosaicism (CPM+16). Case report. Prospective study on first trimester growth using a 3D VR system. A 34-year-old gravida 1, para 0 was seen weekly in the first trimester for 3D ultrasound examinations. Chorionic villus sampling was performed because of an enlarged nuchal translucency (NT) measurement and low pregnancy-associated plasma protein-A levels, followed by amniocentesis. Amniocentesis revealed a CPM+16. On two-dimensional (2D) and 3D ultrasound no structural anomalies were found with normal fetal Dopplers. Growth remained below the 2.3 percentile. At 37 weeks, a female child of 2010 g (<2.5 percentile) was born. After birth, growth climbed to the 50th percentile in the first 2 months. The I-Space VR system provided information about phenotypes not obtainable by standard 2D ultrasound. In this case, the delay in growth and development could be observed very early in pregnancy. Since first trimester screening programs are still improving and becoming even more important, systems such as the I-Space open a new era for in vivo studies on the physiologic and pathologic processes involved in embryogenesis.

  15. Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter.

    PubMed

    Sartori, R; Sartor-Bergfelt, R; Mertens, S A; Guenther, J N; Parrish, J J; Wiltbank, M C

    2002-11-01

    Two experiments in two seasons evaluated fertilization rate and embryonic development in dairy cattle. Experiment 1 (summer) compared lactating Holstein cows (n = 27; 97.3 +/- 4.1 d postpartum [dppl; 40.0 +/- 1.5 kg milk/d) to nulliparous heifers (n = 28; 11 to 17 mo old). Experiment 2 (winter) compared lactating cows (n = 27; 46.4 +/- 1.6 dpp; 45.9 +/- 1.4 kg milk/d) to dry cows (n = 26). Inseminations based on estrus included combined semen from four high-fertility bulls. Embryos and oocytes recovered 5 d after ovulation were evaluated for fertilization, embryo quality (1 = excellent to 5 = degenerate), nuclei/embryo, and accessory sperm. In experiment 1, 21 embryos and 17 unfertilized oocytes (UFO) were recovered from lactating cows versus 32 embryos and no UFO from heifers (55% vs. 100% fertilization). Embryos from lactating cows had inferior quality scores (3.8 +/- 0.4 vs. 2.2 +/- 0.3), fewer nuclei/embryo (19.3 +/- 3.7 vs. 36.8 +/- 3.0) but more accessory sperm (37.3 +/- 5.8 vs. 22.4 +/- 5.5/embryo) than embryos from heifers. Sperm were attached to 80% of UFO (17.8 +/- 12.1 sperm/UFO). In experiment 2, lactating cows yielded 36 embryos and 5 UFO versus 34 embryos and 4 UFO from dry cows (87.8 vs. 89.5% fertilization). Embryo quality from lactating cows was inferior to dry cows (3.1 +/- 0.3 vs. 2.2 +/- 0.3), but embryos had similar numbers of nuclei (27.2 +/- 2.7 vs. 30.6 +/- 2.1) and accessory sperm (42.0 +/- 9.4 vs. 36.5 +/- 6.3). From 53% of the flushings from lactating cows and 28% from dry cows, only nonviable embryos were collected. Thus, embryos of lactating dairy cows were detectably inferior to embryos from nonlactating females as early as 5 d after ovulation, with a surprisingly high percentage of nonviable embryos. In addition, fertilization rate was reduced only in summer, apparently due to an effect of heat stress on the oocyte.

  16. Post-embryonic development of Camallanus cotti (Nematoda: Camallanidae), with emphasis on growth of some taxonomically important somatic characters.

    PubMed

    Levsen, Arne; Berland, Bjørn

    2002-01-01

    In this paper, the quantitative post-embryonic development of the Asian freshwater fish nematode Camallanus cotti Fujita, 1927, is described. Larval and adult morphometrics were obtained by following the parasite's life cycle experimentally using copepods Macrocyclops albidus (Jurine) as intermediate host and guppies Poecilia reticulata (Peters), southern platyfish Xiphophorus maculatus (Günther) and paradise fish Macropodus opercularis (L.) as definitive host. Additionally, adult worms were obtained from heavily infected paradise fish imported from Singapore. It is suggested that the gradual change in proportions of the worm's somatic body parts reflects the specific ecological role of each developmental stage. The free-living infective first-stage larva seems to be adapted for transmission, as indicated by its relatively long tail, designed to generate host-attracting movements, and its non-functional intestine. The second- and third-stage larvae from the copepod intermediate host seem mainly to invest in trophic functionality, i.e., the development of the buccal capsule and the oesophagus, which are crucial structures for the worm's successful establishment in the definitive fish host. Once in the fish intestine, the larvae enter a period of considerable growth. After the fourth (i.e., last) moult, a 72% increase in average female body length occurs. This is accompanied by doubling the average vulva-tail tip distance and the average tail length. The length of the female hind body expands in an accelerating allometric fashion, and seems to be closely linked to the posterior-wards expansion of the uterus. In the males however, growth seems to cease after the final moult. We conclude that female post-maturational body size, but especially the length of the hind body and the tail, are closely related to reproductive state, i.e., the developmental stage of the offspring in the uterus, and, probably, the worms' age. Any future taxonomical studies of camallanids in

  17. Effect of Antibiotics against Mycoplasma sp. on Human Embryonic Stem Cells Undifferentiated Status, Pluripotency, Cell Viability and Growth

    PubMed Central

    Romorini, Leonardo; Riva, Diego Ariel; Blüguermann, Carolina; Videla Richardson, Guillermo Agustin; Scassa, Maria Elida; Sevlever, Gustavo Emilio; Miriuka, Santiago Gabriel

    2013-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that can differentiate into specialized cells and hold great promise as models for human development and disease studies, cell-replacement therapies, drug discovery and in vitro cytotoxicity tests. The culture and differentiation of these cells are both complex and expensive, so it is essential to extreme aseptic conditions. hESCs are susceptible to Mycoplasma sp. infection, which is hard to detect and alters stem cell-associated properties. The purpose of this work was to evaluate the efficacy and cytotoxic effect of PlasmocinTM and ciprofloxacin (specific antibiotics used for Mycoplasma sp. eradication) on hESCs. Mycoplasma sp. infected HUES-5 884 (H5 884, stable hESCs H5-brachyury promoter-GFP line) cells were effectively cured with a 14 days PlasmocinTM 25 µg/ml treatment (curative treatment) while maintaining stemness characteristic features. Furthermore, cured H5 884 cells exhibit the same karyotype as the parental H5 line and expressed GFP, through up-regulation of brachyury promoter, at day 4 of differentiation onset. Moreover, H5 cells treated with ciprofloxacin 10 µg/ml for 14 days (mimic of curative treatment) and H5 and WA09 (H9) hESCs treated with PlasmocinTM 5 µg/ml (prophylactic treatment) for 5 passages retained hESCs features, as judged by the expression of stemness-related genes (TRA1-60, TRA1-81, SSEA-4, Oct-4, Nanog) at mRNA and protein levels. In addition, the presence of specific markers of the three germ layers (brachyury, Nkx2.5 and cTnT: mesoderm; AFP: endoderm; nestin and Pax-6: ectoderm) was verified in in vitro differentiated antibiotic-treated hESCs. In conclusion, we found that PlasmocinTM and ciprofloxacin do not affect hESCs stemness and pluripotency nor cell viability. However, curative treatments slightly diminished cell growth rate. This cytotoxic effect was reversible as cells regained normal growth rate upon antibiotic withdrawal. PMID:23936178

  18. Early intestinal growth and development in poultry.

    PubMed

    Lilburn, M S; Loeffler, S

    2015-07-01

    While there are many accepted "facts" within the field of poultry science that are in truth still open for discussion, there is little debate with respect to the tremendous genetic progress that has been made with commercial broilers and turkeys (Havenstein et al., 2003, 2007). When one considers the changes in carcass development in poultry meat strains, these genetic "improvements" have not always been accompanied by correlated changes in other physiological systems and this can predispose some birds to developmental anomalies (i.e. ascites; Pavlidis et al., 2007; Wideman et al., 2013). Over the last decade, there has been increased interest in intestinal growth/health as poultry nutritionists have attempted to adopt new approaches to deal with the broader changes in the overall nutrition landscape. This landscape includes not only the aforementioned genetic changes but also a raft of governmental policies that have focused attention on the environment (phosphorus and nitrogen excretion), consumer pressure on the use of antibiotics, and renewable biofuels with its consequent effects on ingredient costs. Intestinal morphology has become a common research tool for assessing nutritional effects on the intestine but it is only one metric among many that can be used and histological results can often be interpreted in a variety of ways. This study will address the broader body of research on intestinal growth and development in commercial poultry and will attempt to integrate the topics of the intestinal: microbial interface and the role of the intestine as an immune tissue under the broad umbrella of intestinal physiology. © 2015 Poultry Science Association Inc.

  19. Mathematical models to characterize early epidemic growth: A review

    NASA Astrophysics Data System (ADS)

    Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile

    2016-09-01

    There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-2015 Ebola epidemic in West Africa.

  20. Mathematical models to characterize early epidemic growth: A Review

    PubMed Central

    Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile

    2016-01-01

    There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-15 Ebola epidemic in West Africa. PMID:27451336

  1. Limiting factors to encapsulation: the combined effects of dissolved protein and oxygen availability on embryonic growth and survival of species with contrasting feeding strategies.

    PubMed

    Brante, Antonio; Fernández, Miriam; Viard, Frédérique

    2009-07-01

    Encapsulation is a common strategy among marine invertebrate species. It has been shown that oxygen and food availability independently constrain embryo development during intracapsular development. However, it is unclear how embryos of species with different feeding strategies perceive these two constraints when operating jointly. In the present study, we examined the relative importance of dissolved albumen, as a food source, oxygen condition and their interaction on embryonic growth and the survival of two calyptraeid species, Crepidula coquimbensis and Crepidula fornicata, exhibiting different embryo feeding behaviours (i.e. presence vs absence of intracapsular cannibalism). Two oxygen condition treatments (normoxia and hypoxia) and three albumen concentrations (0, 1 and 2 mg l(-1)) were studied. In addition, albumen intake by embryos was observed using fluorescence microscopy. Our study shows that embryos of both species incorporated dissolved albumen but used a different set of embryonic organs. We observed that embryo growth rates in C. coquimbensis were negatively affected only by hypoxic conditions. Conversely, a combination of low albumen concentration and oxygen availability slowed embryo growth in C. fornicata. These findings suggest that oxygen availability is a limiting factor for the normal embryo development of encapsulated gastropod species, regardless of feeding behaviour or developmental mode. By contrast, the effect of dissolved albumen as an alternative food source on embryo performance may depend on the feeding strategy of the embryos.

  2. Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3'-triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura).

    PubMed

    Park, Chan Jin; Kang, Han Seung; Gye, Myung Chan

    2010-11-01

    Nonylphenol (NP) is an estrogenic endocrine disruptor in many aquatic species. In an effort to highlight the developmental toxicity of NP in amphibians, we examined the effects of NP on the embryonic survival, tadpole growth, melanophore development and metamorphosis of a native Korean amphibian species, Bombina orientalis (Anura). When treated to fertilized eggs, 1 μM NP significantly decreased embryonic survival at 48 h post fertilization (p.f.), suggesting that 1 μM NP can exert systemic toxicity in B. orientalis embryos. In the surviving embryos, there were no significant differences in malformation rates between NP-treated embryos and controls at 240 h p.f., suggesting no or low teratogenicity of NP in B. orientalis embryos. Below LC(50) NP significantly decreased body growth and development of melanophores at 0.1 μM, suggesting that NP far below the LC(50) targets multiple developmental events in tadpoles of this frog species. In metamorphosis assay using the premetamorphic tadpoles (corresponding to Nieuwkoop Faber stage 53 in Xenopus laevis) exogenous 3,5,3'-triiodothyronine (T3)-induced tail resorption was significantly decreased by 1 μM NP. However, NP (0.1 and 1 μM)-only treatment did not affected total body T3 and T4 levels, suggesting that NP at tested concentrations inhibits thyroid hormones action but not the synthesis of hormones during metamorphosis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Haploinsufficiency of E-selectin ligand-1 is Associated with Reduced Atherosclerotic Plaque Macrophage Content while Complete Deficiency Leads to Early Embryonic Lethality in Mice

    PubMed Central

    Luo, Wei; Wang, Hui; Guo, Chiao; Wang, Jintao; Kwak, Jeffrey; Bahrou, Kristina L; Eitzman, Daniel T.

    2012-01-01

    E-selectin-1 (ESL-1), also known as golgi complex-localized glycoprotein-1 (GLG1), homocysteine-rich fibroblast growth factor receptor (CGR-1), and latent transforming growth factor-β complex protein 1 (LTCP-1), is a multifunctional protein with widespread tissue distribution. To determine the functional consequences of ESL-1 deficiency, mice were generated carrying an ESL-1 gene trap. After backcrossing to C57BL6/J for 6 generations, mice heterozygous for the gene trap (ESL-1+/-) were intercrossed to produce ESL-1-/- mice, however ESL-1-/- mice were not viable, even at embryonic day E10.5. To determine the effect of heterozygous ESL-1 deficiency on atherosclerosis, apolipoprotein E deficient (ApoE-/-), ESL-1+/- mice were generated and fed western diet. Compared to ApoE-/-, ESL-1++ mice, atherosclerotic lesions from ApoE-/-, ESL-1+/- contained more collagen and fewer macrophages, suggesting increased plaque stability. In conclusion, heterozygous deficiency of ESL-1 is associated with features of increased atherosclerotic plaque stability while complete deficiency of ESL-1 leads to embryonic lethality. PMID:22939356

  4. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    PubMed Central

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  5. Germination and early seedling growth of Pinus densata Mast. provenances

    Treesearch

    Yulan Xu; Nianhui Cai; Bin He; Ruili Zhang; Wei Zhao; Jianfeng Mao; Anan Duan; Yue Li; Keith Woeste

    2016-01-01

    We studied seed germination and early seedling growth of Pinus densata to explore the range of variability within the species and to inform afforestation practices. Phenotypes were evaluated at a forest tree nursery under conditions that support Pinus yunnanensis, one of the presumed parental species of P. densata...

  6. The early growth of the first black holes

    SciTech Connect

    Johnson, Jarrett L.; Haardt, Francesco

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur atmore » super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.« less

  7. The early growth of the first black holes

    DOE PAGES

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-04

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur atmore » super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.« less

  8. The Early Growth of the First Black Holes

    NASA Astrophysics Data System (ADS)

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-01

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur at super-Eddington rates. Finally, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.

  9. Behavioural responses to novelty or to a predator stimulus are not altered in adult zebrafish by early embryonic alcohol exposure

    PubMed Central

    Seguin, Diane; Shams, Soaleha; Gerlai, Robert

    2016-01-01

    Background Fetal Alcohol Spectrum Disorders (FASD) may vary in symptoms and severity. In the milder and more prevalent forms of the disease, behavioural abnormalities may include impaired social behaviour, e.g. difficulty interpreting social cues. FASD patients remain often undiagnosed due to lack of biomarkers, and treatment is unavailable because the mechanisms of the disease are not yet understood. Animal models have been proposed to facilitate addressing these problems. More recently, short exposure of the zebrafish embryo to low concentrations of alcohol was shown to lead to significant and lasting impairment of behaviour in response to social stimuli. The impairment may be the result of abnormal social behaviour or altered fear/anxiety. The goal of the current study was to investigate the latter. Methods Here, we employed the alcohol exposure regimen used previously (exposure of 24th hour post-fertilization embryos to 0.00, 0.25, 0.50, 0.75 or 1.00 vol/vol % alcohol for 2 hours), allowed the fish to reach adulthood, and measured the behavioural responses of these adults to a novel tank (anxiety related behaviours) as well as to an animated image of a sympatric predator of zebrafish (fear related behaviours). Results We found behavioural responses of embryonic alcohol exposed adult fish to remain statistically indistinguishable from those of controls, suggesting unaltered anxiety and fear in the embryonic alcohol treated fish. Conclusions Given that motor and perceptual function was previously shown to be also unaltered in the adults after embryonic alcohol exposure, our current results suggest that the impaired response of these fish to social stimuli may be the result of abnormal social behaviour. PMID:27790739

  10. Beta-hydroxybutyrate increases reactive oxygen species in late but not in early postimplantation embryonic cells in vitro.

    PubMed

    Forsberg, H; Eriksson, U J; Melefors, O; Welsh, N

    1998-02-01

    Embryonic dysmorphogenesis has been blocked by antioxidant treatment in vivo and in vitro, suggesting that embryonic excess of reactive oxygen species (ROS) has a role in the teratogenic process of diabetic pregnancy. We report that the basal levels of ROS in dispersed rat embryonic cells in vitro, as determined by fluorescence of dichlorofluorescein (DCF), were not different in cells from control and diabetic pregnancy at day 10 or 12. Beta-hydroxybutyrate (beta-HB) and succinic acid monomethyl ester both augmented DCF fluorescence in cells from day 12 embryos of normal and diabetic rats but not from day 10 embryos. Cells of day 10 and day 12 embryos from normal and diabetic rats responded to increasing glucose concentrations with a dosage-dependent alleviation of DCF fluorescence. Day 10 embryonic cells exhibited high glucose utilization rates and high pentose phosphate shunt rates, but low mitochondrial oxidation rates. Moreover, in vitro culture of embryos between gestational days 9 and 10 in the presence of 20% oxygen induced an increased and glucose-sensitive oxidation of glucose compared with embryos not cultured in vitro. At gestation day 12, however, pentose phosphate shunt rates showed a decrease, whereas the mitochondrial beta-HB oxidation rates were increased compared with those at gestation day 10. This was paralleled by a lower expression of glucose 6-phosphate dehydrogenase- and phosphofructokinase-mRNA levels at day 12 than at day 10. On the other hand, H-ferritin mRNA expression at day 12 was high compared with day 10. None of the mRNA species investigated were affected by the diabetic state of the mother. It was concluded that beta-HB-induced stimulation of mitochondrial oxidative events may lead to the generation of ROS at gestational day 12, but probably not at day 10, when only a minute amount of mitochondrial activity occurs. Thus our results do not support the notion of diabetes-induced mitochondrial oxidative stress before the development of

  11. Expression of growth hormone and its transcription factor, Pit-1, in early bovine development.

    PubMed

    Joudrey, E M; Lechniak, D; Petrik, J; King, W A

    2003-03-01

    During bovine embryogenesis, bovine growth hormone (bGH) contributes to proliferation, differentiation, and modulation of embryo metabolism. Pituitary-specific transcription factor-1 (Pit-1) is a transcription factor that binds to promoters of GH, prolactin (PRL), and thyroid-stimulating hormone-beta (TSHbeta) encoding genes. A polymorphism in the fifth exon of the bGH gene resulting in a leucine (Leu) to valine (Val) substitution provides an Alu I restriction site when the Leu allele is present. To determine the onset of embryonic expression of the bGH gene, oocytes derived from ovaries homozygous for Leu alleles were fertilized in vitro with spermatozoa obtained from a Val homozygote. For each developmental stage examined, three separate pools of embryos composed of approximately 100 cell samples underwent RNA isolation, reverse transcription to cDNA, and amplification by nested PCR (nPCR). Bovine GH gene transcripts were identified at 2- to 4-cell (n = 162), 8- to 16-cell (n = 73), morulae (n = 51), and blastocyst (n = 15) stages. Likewise, transcripts for Pit-1 were detected at 2-cell (n = 125), 4-cell (n = 114), 8-cell (n = 56), 12-to-32-cell (n = 32), morulae (n = 68), and blastocyst (n = 14) stages. After digestion with Alu1, bGH cDNA was genotyped by restriction fragment length polymorphism (RFLP) analysis. Bovine GH mRNA was present in all pools of stages examined. Both Leu and Val alleles (maternal and paternal) were only detected in pools of embryos that had reached 8- to 16-cell stage. Results suggest that transcription of the bGH gene begins at the 8- to 16-cell stage in bovine embryos, possibly under control of the transcription factor, Pit-1, and that RFLP analysis of the bGH gene can be used to determine parental origin of transcripts in early embryonic development. Copyright 2003 Wiley-Liss, Inc.

  12. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

    PubMed Central

    Fleming, J V; Hay, S M; Harries, D N; Rees, W D

    1998-01-01

    The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress. PMID:9461558

  13. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

    PubMed

    Fleming, J V; Hay, S M; Harries, D N; Rees, W D

    1998-02-15

    The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress.

  14. Effect of exogenous transforming growth factor β1 (TGF-β1) on early bovine embryo development.

    PubMed

    Barrera, Antonio D; García, Elina V; Miceli, Dora C

    2018-06-08

    SummaryDuring preimplantation development, embryos are exposed and have the capacity to respond to different growth factors present in the maternal environment. Among these factors, transforming growth factor β1 (TGF-β1) is a well known modulator of embryonic growth and development. However, its action during the first stages of development, when the embryo transits through the oviduct, has not been yet elucidated. The objective of the present study was to examine the effect of early exposure to exogenous TGF-β1 on embryo development and expression of pluripotency (OCT4, NANOG) and DNA methylation (DNMT1, DNMT3A, DNMT3B) genes in bovine embryos produced in vitro. First, gene expression analysis of TGF-β receptors confirmed a stage-specific expression pattern, showing greater mRNA abundance of TGFBR1 and TGFBR2 from the 2- to the 8-cell stage, before embryonic genome activation. Second, embryo culture for the first 48 h in serum-free CR1aa medium supplemented with 50 or 100 ng/ml recombinant TGF-β1 did not affect the cleavage and blastocyst rate (days 7 and 8). However, RT-qPCR analysis showed a significant increase in the relative abundance of NANOG and DNMT3A in the 8-cell stage embryos and expanded blastocysts (day 8) derived from TGF-β1 treated embryos. These results suggest an early action of exogenous TGF-β1 on the bovine embryo, highlighting the importance to provide a more comprehensive understanding of the role of TGF-β signalling during early embryogenesis.

  15. Comparisons of the effects of TCDD and hydrocortisone on growth factor expression provide insight into their interaction in the embryonic mouse palate

    SciTech Connect

    Abbott, B.D.; Harris, M.W.; Birnbaum, L.S.

    Cleft palate (CP) can be induced in embryonic mice by a wide range of compounds, including glucocorticoids and 2,3,7,8-tyetrachlorodibenzo-p-dioxin (TCDD). Hydrocortisone (HC), a glucocorticoid, retards embryonic growth producing small palatal shelves, while TCDD exposure blocks the fusion of normally sized shelves. TCDD induction of CP involves altered differentiation of the medial epithelial cells. Recent studies indicate that growth factors such as EGF, TGF-alpha, TGF-beta1, and TGF-beta2 are involved in palatogenesis, regulating proliferation, differentiation, and extracellular matrix production. A synergism has been observed between HC and TCDD in which doses too low to induce CP alone are able to produce >90%more » incidence when coadministered. In the present study a standard teratology protocol was performed in C57BL/6N mice to examine the synergism at doses lower than those previously published. Data from the study indicate synergistic interactions at doses as low as 3 micrograms TCDD/kg + 1 mg HC/kg. This extreme sensitivity suggests the involvement of a receptor-mediated mechanism possibly resulting in altered regulation of gene expression. (Copyright (c) 1992 Wiley-Liss, Inc.)« less

  16. Feeder & basic fibroblast growth factor-free culture of human embryonic stem cells: Role of conditioned medium from immortalized human feeders.

    PubMed

    Teotia, Pooja; Sharma, Shilpa; Airan, Balram; Mohanty, Sujata

    2016-12-01

    Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.

  17. Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition.

    PubMed

    Butcher, Jonathan T; McQuinn, Tim C; Sedmera, David; Turner, Debi; Markwald, Roger R

    2007-05-25

    Endocardial cushions are critical to maintain unidirectional blood flow under constantly increasing hemodynamic forces, but the interrelationship between endocardial cushion structure and the mechanics of atrioventricular junction function is poorly understood. Atrioventricular (AV) canal motions and blood velocities of embryonic chicks at Hamburger and Hamilton (HH) stages 17, 21, and 25 were quantified using ultrasonography. Similar to the embryonic zebrafish heart, the HH17 AV segment functions like a suction pump, with the cushions expanding in a wave during peak myocardial contraction and becoming undetectable during the relaxation phase. By HH25, the AV canal contributes almost nothing to the piston-like propulsion of blood, but the cushions function as stoppers apposing blood flow with near constant thickness. Using a custom built mesomechanical testing system, we quantified the nonlinear pseudoelastic biomechanics of developing AV cushions, and found that both AV cushions increased in effective modulus between HH17 and HH25. Enzymatic digestion of major structural constituent collagens or glycosaminoglycans resulted in distinctly different stress-strain curves suggestive of their individual contributions. Mixture theory using histologically determined volume fractions of cells, collagen, and glycosaminoglycans showed good prediction of cushion material properties regardless of stage and cushion position. These results have important implications in valvular development, as biomechanics may play a larger role in stimulating valvulogenic events than previously thought.

  18. Predictors of Longitudinal Growth in Inhibitory Control in Early Childhood

    PubMed Central

    Moilanen, Kristin L.; Shaw, Daniel S.; Dishion, Thomas J.; Gardner, Frances; Wilson, Melvin

    2009-01-01

    In the current study, we examined latent growth in 731 young children’s inhibitory control from ages 2 to 4, and whether demographic characteristics or parenting behaviors were related to initial levels and growth in inhibitory control. As part of an ongoing longitudinal evaluation of the Family Check-Up (FCU), children’s inhibitory control was assessed yearly at ages 2, 3, and 4. Inhibitory control was initially low and increased linearly to age 4. High levels of harsh parenting and male gender were associated with low initial status in inhibitory control. High levels of supportive parenting were associated with faster growth. Extreme family poverty and African American ethnicity were also associated with slower growth. The results highlight parenting as a target for early interventions in contexts of high socioeconomic risk. PMID:20376201

  19. [Correlation of the DNA fragmentation index and malformation rate of optimized sperm with embryonic development and early spontaneous abortion in IVF-ET].

    PubMed

    Jiang, Wei-Jie; Jin, Fan; Zhou, Li-Ming

    2016-06-01

    To investigate the effects of the DNA fragmentation index (DFI) and malformation rate (SMR) of optimized sperm on embryonic development and early spontaneous abortion in conventional in vitro fertilization and embryo transfer (IVF-ET). We selected 602 cycles of conventional IVF-ET for pure oviductal infertility that had achieved clinical pregnancies, including 505 cycles with ongoing pregnancy and 97 cycles with early spontaneous abortion. On the day of ovum retrieval, we examined the DNA integrity and morphology of the rest of the optimized sperm using the SCD and Diff-Quik methods, established the joint predictor (JP) by logistic equation, and assessed the value of DFI and SMR in predicting early spontaneous abortion using the ROC curve. The DFI, SMR, and high-quality embryo rate were (15.91±3.69)%, (82.85±10.24)%, and 46.53% (342/735) in the early spontaneous abortion group and (9.30±4.22)%, (77.32±9.19)%, and 56.43% (2263/4010) respectively in the ongoing pregnancy group, all with statistically significant differences between the two groups (P<0.05 ). Both the DFI and SMR were the risk factors of early spontaneous abortion (OR = 5.96 and 1.66; both P< 0.01). The areas under the ROC curve for DFI, SMR and JP were 0.893±0.019, 0.685±0.028, and 0.898±0.018, respectively. According to the Youden index, the optimal cut-off values of the DFI and SMR obtained for the prediction of early spontaneous abortion were approximately 15% and 80%. The DFI was correlated positively with SMR (r= 0.31, P<0.01) but the high-quality embryo rate negatively with both the DFI (r= -0.45, P<0.01) and SMR (r= -0.22, P<0.01). The DFI and SMR of optimized sperm are closely associated with embryonic development in IVF. The DFI has a certain value for predicting early spontaneous abortion with a threshold of approximately 15%, but SMR may have a lower predictive value.

  20. Effect of egg weight on composition, embryonic growth, and expression of amino acid transporter genes in yolk sac membranes and small intestines of the domestic pigeon (Columba livia).

    PubMed

    Chen, M X; Li, X G; Yan, H C; Wang, X Q; Gao, C Q

    2016-06-01

    The objective of this study was to investigate the effect of egg weight on the composition of the egg, the growth of the embryo, and the expression of amino acid transporter genes in the yolk sac membranes and small intestines of the domestic pigeon (Columba livia). A total of 240 fertilized eggs were collected and divided into two groups based on the weight of the eggs, light (LE) and heavy (HE). The composition of 20 eggs from each group was measured, and the remaining eggs were weighed and placed in an incubator. On embryonic days (E) 9, 11, 13, and 15 and day of hatch (DOH), 15 embryos/hatchlings from each group were measured for embryonic growth, and samples were collected. The HE had heavier yolk and albumen weights than the LE (P < 0.01). Compared with the LE, the HE had heavier yolk-free embryonic body and yolk sac weights from E13 to DOH (P < 0.05). Additionally, the HE had larger yolk sac membrane weights from E13 to E15 (P < 0.05) and had more residual yolk sac content on DOH than those of the LE (P < 0.01). The yolk absorption was greater for the HE than for the LE from E11 to E13 (P < 0.05). Furthermore, the abundance of CAT2 and PepT1 mRNA in the yolk sac membranes was greater in the HE than in the LE on E13 (P < 0.05). Compared with the LE, the gene expression of EAAT2 in the intestine on E13 was greater in the HE, whereas the expression of EAAT3 was lower in the HE (P < 0.05). Taken together, our results suggest that egg weight influenced the composition of the eggs, embryonic development, and expression of amino acid transporter genes in the yolk sac membranes and small intestines of pigeon embryos. © 2016 Poultry Science Association Inc.

  1. The birth of embryonic pluripotency

    PubMed Central

    Boroviak, Thorsten; Nichols, Jennifer

    2014-01-01

    Formation of a eutherian mammal requires concurrent establishment of embryonic and extraembryonic lineages. The functions of the trophectoderm and primitive endoderm are to enable implantation in the maternal uterus, axis specification and delivery of nutrients. The pluripotent epiblast represents the founding cell population of the embryo proper, which is protected from ectopic and premature differentiation until it is required to respond to inductive cues to form the fetus. While positional information plays a major role in specifying the trophoblast lineage, segregation of primitive endoderm from epiblast depends upon gradual acquisition of transcriptional identity, directed but not initiated by fibroblast growth factor (FGF) signalling. Following early cleavage divisions and formation of the blastocyst, cells of the inner cell mass lose totipotency. Developing epiblast cells transiently attain the state of naive pluripotency and competence to self-renew in vitro as embryonic stem cells and in vivo by means of diapause. This property is lost after implantation as the epiblast epithelializes and becomes primed in preparation for gastrulation and subsequent organogenesis. PMID:25349450

  2. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents

    USGS Publications Warehouse

    Martin, Thomas E.; Oteyza, Juan C.; Mitchell, Adam E.; Potticary, Ahva L.; Lloyd, P.

    2016-01-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.

  3. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents.

    PubMed

    Martin, Thomas E; Oteyza, Juan C; Mitchell, Adam E; Potticary, Ahva L; Lloyd, Penn

    2015-03-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.

  4. High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring.

    PubMed

    Bahous, Renata H; Jadavji, Nafisa M; Deng, Liyuan; Cosín-Tomás, Marta; Lu, Jessica; Malysheva, Olga; Leung, Kit-Yi; Ho, Ming-Kai; Pallàs, Mercè; Kaliman, Perla; Greene, Nicholas D E; Bedell, Barry J; Caudill, Marie A; Rozen, Rima

    2017-03-01

    Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid. © The Author 2017. Published by Oxford University Press.

  5. Early growth and chronic disease: a public health overview.

    PubMed

    Law, Catherine

    2005-07-01

    Infant and childhood growth result from and reflect a range of influences in pre- and postnatal life. These include nutrition, burden of infection and the psycho-social environment. Nutrition in young children is dependent on individual level factors such as fetal experience, infant feeding and weaning practices, and on societal factors such as education of women and economic conditions. The relationship of early postnatal growth to adult disease may be indicative or causal, and may reveal both biological and sociological processes. Although non-insulin-dependent diabetes mellitus (NIDDM) and obesity are risk factors for ischaemic heart disease, the relationships of these three conditions to infant growth differ. Poor infant growth has been associated with higher levels of NIDDM and ischaemic heart disease, but lower levels of adult obesity. Most research has been of populations living in developed countries at different stages of nutritional transition. However, differences in context are not simply limited to the stage of the nutritional transition. They also need to consider the nature of that transition and its social correlates, which may result in the clustering of aetiological influences such as increased body mass and poverty. The size of effect of the relationship of infant growth to adult disease is important not only to determine its relative aetiological importance but also for its potential for public health policy. Such policy also needs to consider the relationships of infant growth to a range of outcomes, both health and human capital, which are not the subject of this workshop.

  6. Developmental effects of tobacco smoke exposure during human embryonic stem cell differentiation are mediated through the transforming growth factor-β superfamily member, Nodal

    PubMed Central

    Liszewski, Walter; Ritner, Carissa; Aurigui, Julian; Wong, Sharon S. Y.; Hussain, Naveed; Krueger, Winfried; Oncken, Cheryl; Bernstein, Harold S.

    2012-01-01

    While the pathologies associated with in utero smoke exposure are well established, their underlying molecular mechanisms are incompletely understood. We differentiated human embryonic stem cells in the presence of physiological concentrations of tobacco smoke and nicotine. Using post hoc microarray analysis, quantitative PCR, and immunoblot analysis, we demonstrated that tobacco smoke has lineage- and stage-specific effects on human embryonic stem cell differentiation, through both nicotine-dependent and -independent pathways. We show that three major stem cell pluripotency/differentiation pathways, Notch, canonical Wnt, and transforming growth factor-β, are affected by smoke exposure, and that Nodal signaling through SMAD2 is specifically impacted by effects on Lefty1, Nodal, and FoxH1. These events are associated with upregulation of microRNA-302a, a post-transcriptional silencer of Lefty1. The described studies provide insight into the mechanisms by which tobacco smoke influences fetal development at the cellular level, and identify specific transcriptional, post-transcriptional, and signaling pathways by which this likely occurs. PMID:22381624

  7. Serum replacement with a growth factor-free synthetic substance in culture medium contributes to effective establishment of mouse embryonic stem cells of various origins.

    PubMed

    Lee, Seung Tae; Oh, Se Woong; Kim, Dae Yong; Han, Jae Yong; Moon, Shin Yong; Lim, Jeong Mook

    2006-10-01

    To evaluate whether serum replacement with growth factor-free synthetic substances contributed to the effective establishment of embryonic stem (ES) cells. Randomized, prospective model study. Gamete and stem cell biotechnology laboratory at Seoul National University in Korea. F1 (C57BL6 x DBA2) mice. Blastocysts of different origins were cultured in serum-replaced media. Embryonic stem cell establishment. Eight batches of ES cells were established from colony-forming inner cell mass cells after the replacement of fetal bovine serum (FBS) with synthetic knockout serum replacement (KSR) in mkDMEM. The established cells were positive for ES cell markers and formed both embryoid bodies in vitro and teratomas in vivo, but the established cell batches and control (transformed) ES cells responded differently to the culture media. Higher levels of cell viability were detected after the replacement with the 75:25 FBS-KSR mixture than with any other mixtures, and a gradual decrease in viability was detected as the KSR volume ratio was increased. The 75:25 FBS-KSR mixture-containing medium supported ES cell establishment of outbred ICR, F1, and F2 of C57BL6/DBA2; F1 parthenogenetic and ES cell-complemented tetraploid blastocysts; and single ES-cell cultures. A serum-replaced medium could be used for effective ES-cell establishment of various origins.

  8. Alterations in biosynthetic accumulation of collagen types I and III during growth and morphogenesis of embryonic mouse salivary glands

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    We examined the biosynthetic patterns of interstitial collagens in mouse embryonic submandibular and sublingual glands cultured in vitro. Rudiments explanted on day 13 of gestation and cultured for 24, 48, and 72 h all synthesized collagen types I, III, and V. However, while the total incorporation of label into collagenous proteins did not change over the three-day culture period, the rate of accumulation of newly synthesized types I and III did change. At 24 h, the ratio of newly synthesized collagen types I:III was approximately 2, whereas at 72 h, the ratio was approximately 5. These data suggest that collagen types I and III may be important in initiation of branching in this organ, but that type I may become dominant in the later stages of development and in maintenance of the adult organ.

  9. Recurrent sublethal warming reduces embryonic survival, inhibits juvenile growth, and alters species distribution projections under climate change.

    PubMed

    Carlo, Michael A; Riddell, Eric A; Levy, Ofir; Sears, Michael W

    2018-01-01

    The capacity to tolerate climate change often varies across ontogeny in organisms with complex life cycles. Recently developed species distribution models incorporate traits across life stages; however, these life-cycle models primarily evaluate effects of lethal change. Here, we examine impacts of recurrent sublethal warming on development and survival in ecological projections of climate change. We reared lizard embryos in the laboratory under temperature cycles that simulated contemporary conditions and warming scenarios. We also artificially warmed natural nests to mimic laboratory treatments. In both cases, recurrent sublethal warming decreased embryonic survival and hatchling sizes. Incorporating survivorship results into a mechanistic species distribution model reduced annual survival by up to 24% compared to models that did not incorporate sublethal warming. Contrary to models without sublethal effects, our model suggests that modest increases in developmental temperatures influence species ranges due to effects on survivorship. © 2017 John Wiley & Sons Ltd/CNRS.

  10. Embryonic and larval development and early behavior in grass carp, Ctenopharyngodon idella: implications for recruitment in rivers

    USGS Publications Warehouse

    George, Amy E.; Chapman, Duane C.

    2015-01-01

    With recent findings of grass carp Ctenopharyngodon idella in tributaries of the Great Lakes, information on developmental rate and larval behavior is critical to efforts to assess the potential for establishment within the tributaries of that region. In laboratory experiments, grass carp were spawned and eggs and larvae reared at two temperature treatments, one "cold" and one "warm", and tracked for developmental rate, egg size, and behavior. Developmental rate was quantified using Yi's (1988) developmental stages and the cumulative thermal units method. Grass carp had a thermal minimum of 13.5°C for embryonic stages and 13.3°C for larval stages. Egg size was related to temperature and maternal size, with the largest eggs coming from the largest females, and eggs were generally larger in warmer treatments. Young grass carp larvae exhibited upward and downward swimming interspersed with long periods of lying on the bottom. Swimming capacity increased with ontogeny, and larvae were capable of horizontal swimming and position holding with gas bladder emergence. Developmental rates, behavior, and egg attributes can be used in combination with physical parameters of a river to assess the risk that grass carp are capable of reproduction and recruitment in rivers.

  11. Interkinetic and migratory behavior of a cohort of neocortical neurons arising in the early embryonic murine cerebral wall

    NASA Technical Reports Server (NTRS)

    Takahashi, T.; Nowakowski, R. S.; Caviness, V. S. Jr

    1996-01-01

    Neocortical neuronogenesis occurs in the pseudostratified ventricular epithelium (PVE) where nuclei of proliferative cells undergo interkinetic nuclear movement. A fraction of daughter cells exits the cell cycle as neurons (the quiescent, or Q, fraction), whereas a complementary fraction remains in the cell cycle (the proliferative, or P, fraction). By means of sequential thymidine and bromodeoxyuridine injections in mouse on embryonic day 14, we have monitored the proliferative and post-mitotic migratory behaviors of 1 and 2 hr cohorts of PVE cells defined by the injection protocols. Soon after mitosis, the Q fraction partitions into a rapidly exiting (up to 50 microns/hr) subpopulation (Qr) and a more slowly exiting (6 microns/hr) subpopulation (Qs). Qr and Qs are separated as two distributions on exit from the ventricular zone with an interpeak distance of approximately 40 microns. Cells in Qr and Qs migrate through the intermediate zone with no significant change in the interpeak distance, suggesting that they migrate at approximately the same velocities. The rate of migration increases with ascent through the intermediate zone (average 2-6.4 microns/hr) slowing only transiently on entry into the developing cortex. Within the cortex, Qr and Qs merge to form a single distribution most concentrated over layer V.

  12. Complications of growth-sparing surgery in early onset scoliosis.

    PubMed

    Akbarnia, Behrooz A; Emans, John B

    2010-12-01

    Review of available literature, authors' opinion. To describe complications associated with growth-sparing surgical treatment of early onset scoliosis (EOS). EOS has many potential etiologies and is often associated with thoracic insufficiency syndrome. The growth of the spine, thorax, and lungs are interrelated, and severe EOS typically involves disturbance of the normal development of all 3. Severe EOS may be treated during growth with surgical techniques, intended to preserve growth while controlling deformity, the most common of which are spinal "growing rods" (GR) or "vertical expandable prosthetic titanium rib" (VEPTR). Although presently popular, there is minimal long-term data on the outcome of growth-sparing surgical techniques on EOS. Review. Potential adverse outcomes of GR or VEPTR treatment of EOS include failure to prevent progressive deformity or thoracic insufficiency syndrome, an unacceptably short or stiff spine or deformed thorax, increased family burden of care, and potentially negative psychological consequences from repeated surgical interventions. Neither technique reliably controls all deformity over the entirety of growth period. Infections are common to both GR and VEPTR. Rod breakage and spontaneous premature spinal fusion beneath rods are troublesome complications in GR, whereas drift of rib attachments and chest wall scarring are anticipated complications in VEPTR treatment. Indications for GR and VEPTR overlap, but thoracogenic scoliosis and severe upper thoracic kyphosis are best treated by VEPTR and GR, respectively. Surgeons planning treatment of EOS should anticipate the many complications common to growth-sparing surgery, share their knowledge with families, and use complications as one factor in the complex decision as to when and whether to initiate the repetitive surgeries associated with GR or VEPTR in the treatment of severe EOS.

  13. VISUALIZATION OF TISSUE DISTRIBUTION AND METABOLISM OF BENZO[A]PYRENE IN EARLY EMBRYONIC MEDAKA (ORYZIAS LATIPES)

    EPA Science Inventory

    Fish early life stages are highly sensitive to exposure to persistent bioaccumulative toxicants (PBTs). The factors that contribute to this are unknown, but may include the distribution of PBTs to sensitive tissues during critical stages of development. Multiphoton laser scannin...

  14. Deiodinase Knockdown during Early Zebrafish Development Affects Growth, Development, Energy Metabolism, Motility and Phototransduction

    PubMed Central

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M.; Esguerra, Camila V.; Blust, Ronny; Darras, Veerle M.; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  15. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction.

    PubMed

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M; Esguerra, Camila V; Blust, Ronny; Darras, Veerle M; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  16. Cryo-survival, fertilization and early embryonic development of vitrified oocytes derived from mice of different reproductive age

    PubMed Central

    Yan, Jie; Suzuki, Joao; Yu, Xiaomin; Kan, Frederick W. K.

    2010-01-01

    Purpose To evaluate the effect of female reproductive age on oocyte cryo-survival, fertilization and the subsequent embryonic development following vitrification using the mouse model in order to address the question of how maternal reproductive age is related to fertility preservation. Methods Oocytes were collected from mice of different reproductive age: (1) 8–10 weeks, (2) 16–20 weeks, (3) 32–36 weeks, and (4) 44–48 weeks. Following vitrification and warming, the oocytes in each group were assessed for cryo-survival, fertilization and embryonic development as well as for the quality of blastocysts. Fresh oocytes without undergoing vitrification were used in each age group as controls. Results The mean number of oocytes retrieved following superovulation was found to reduce significantly (P < 0.05) in mice from 32–36 weeks of age (18.1 ± 8.5) compared with 8–10 weeks of age (26.8 ± 9.8) and 16–20 weeks of age (23.9 ± 4.2) respectively. The cryo-survival rate of oocytes was reduced significantly (P < 0.05) in mice of 44–48 weeks of age (90.4% ± 7.9) compared with the other 3 groups (98.8% ± 2.1, 98.0% ± 3.3 and 98.5% ± 2.2, respectively). The cleavage rate of vitrified oocytes declined significantly following the increase in maternal age in mice of 32–36 weeks of age (69.7% ± 20.8) forward (63.6% ± 9.2). However, no significant difference in the cleavage rate was found among the control groups of different maternal ages. The rate of embryo development to the blastocyst stage in the vitrified oocytes also significantly declined following the increase in maternal age (71.8% ± 8.8, 66.4% ± 10.7, 64.2% ± 17.4 and 4.1% ± 8.3 respectively). There were no such differences in the rates of embryo development to the blastocyst stage among the control groups following the increase in maternal age (75.9% ± 12.2, 79.5% ± 28.9, 70.2% ± 17.4 and 69.3% ± 19

  17. Late effects of early growth hormone treatment in Down syndrome.

    PubMed

    Myrelid, Å; Bergman, S; Elfvik Strömberg, M; Jonsson, B; Nyberg, F; Gustafsson, J; Annerén, G

    2010-05-01

    Down syndrome (DS) is associated with short stature and psychomotor delay. We have previously shown that growth hormone (GH) treatment during infancy and childhood normalizes growth velocity and improves fine motor skill performance in DS. The aim of this study was to investigate late effects of early GH treatment on growth and psychomotor development in the DS subjects from the previous trial. Twelve of 15 adolescents with DS (3 F) from the GH group and 10 of 15 controls (5 F) participated in this follow-up study. Fifteen other subjects with DS (6 F) were included as controls in anthropometric analyses. Cognitive function was assessed with the Leiter International Performance Scale-Revised (Leiter-R) and selected subtests of the Wechsler Intelligence Scale for Children, Third edition (WISC-III). The Bruininks-Oseretsky Test of Motor Proficiency, Second edition (BOT-2), was used to assess general motor ability. Although early GH treatment had no effect on final height, the treated subjects had a greater head circumference standard deviation score (SDS) than the controls (-1.6 SDS vs. -2.2 SDS). The adolescents previously treated with GH had scores above those of the controls in all subtests of Leiter-R and WISC-III, but no difference in Brief IQ-score was seen between the groups. The age-adjusted motor performance of all subjects was below -2 SD, but the GH-treated subjects performed better than the controls in all but one subtest. The combined finding of a greater head circumference SDS and better psychomotor performance indicates that DS subjects may benefit from early GH treatment.

  18. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression.

    PubMed

    Ihara, Motomasa; Meyer-Ficca, Mirella L; Leu, N Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D; Zalenskaya, Irina A; Schultz, Richard M; Meyer, Ralph G

    2014-05-01

    To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo.

  19. Paternal Poly (ADP-ribose) Metabolism Modulates Retention of Inheritable Sperm Histones and Early Embryonic Gene Expression

    PubMed Central

    Leu, N. Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D.; Zalenskaya, Irina A.; Schultz, Richard M.; Meyer, Ralph G.

    2014-01-01

    To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo. PMID:24810616

  20. The Growth of Early Galaxies and Reionization of Hydrogen

    NASA Astrophysics Data System (ADS)

    Chary, Ranga Ram

    2012-07-01

    The reionization of the intergalactic medium about a billion years after the Big Bang was an important event which occurred due to the release of ionizing photons from the growth of stellar mass and black holes in the early Universe. By leveraging the benefits of field galaxy surveys, I will present some recent breakthroughs in our understanding of how the earliest galaxies in the Universe evolved. I will present evidence that unlike in the local Universe where galaxy growth occurs through intermittent cannibalism, star-formation in the distant Universe is a more continuous if violent process with an overabundance of massive stars. Implications for the reionization history of the Universe will also be discussed.

  1. Elongator promotes germination and early post-germination growth.

    PubMed

    Woloszynska, Magdalena; Gagliardi, Olimpia; Vandenbussche, Filip; Van Lijsebettens, Mieke

    2018-01-02

    The Elongator complex interacts with RNA polymerase II and via histone acetylation and DNA demethylation facilitates epigenetically the transcription of genes involved in diverse processes in plants, including growth, development, and immune response. Recently, we have shown that the Elongator complex promotes hypocotyl elongation and photomorphogenesis in Arabidopsis thaliana by regulating the photomorphogenesis and growth-related gene network that converges on genes implicated in cell wall biogenesis and hormone signaling. Here, we report that germination in the elo mutant was delayed by 6 h in the dark when compared to the wild type in a time lapse and germination assay. A number of germination-correlated genes were down-regulated in the elo transcriptome, suggesting a transcriptional regulation by Elongator. We also show that the hypocotyl elongation defect observed in the elo mutants in darkness originates very early in the post-germination development and is independent from the germination delay.

  2. The effect of excess expression of GFP in a novel heart-specific green fluorescence zebrafish regulated by nppa enhancer at early embryonic development.

    PubMed

    Huang, Wen; Deng, Yun; Dong, Wei; Yuan, Wuzhou; Wan, Yongqi; Mo, Xiaoyan; Li, Yongqing; Wang, Zequn; Wang, Yuequn; Ocorr, Karen; Zhang, Bo; Lin, Shuo; Wu, Xiushan

    2011-02-01

    In order to study the impalpable effect of GFP in homozygous heart-specific GFP-positive zebrafish during the early stage, the researchers analyzed the heart function of morphology and physiology at the first 3 days after fertilization. This zebrafish line was produced by a large-scale Tol2 transposon mediated enhancer trap screen that generated a transgenic zebrafish with a heart-specific expression of green fluorescent protein (GFP)-tagged under control of the nppa enhancer. In situ hybridization experiments showed that the nppa:GFP line faithfully recapitulated both the spatial and temporal expressions of the endogenous nppa. Green fluorescence was intensively and specifically expressed in the myocardial cells located both in the heart chambers and in the atrioventricular canal. The embryonic heart of nppa:GFP line developed normally compared with those in the wild type. There was no difference between the nappa:GFP and wild type lines with respect to heart rate, overall size, ejection volume, and fractional shortening. Thus the excess expression of GFP in this transgenic line seemed to exert no detrimental effects on zebrafish hearts during the early stages.

  3. Effect of recombinant-LH and hCG in the absence of FSH on in vitro maturation (IVM) fertilization and early embryonic development of mouse germinal vesicle (GV)-stage oocytes.

    PubMed

    Dinopoulou, Vasiliki; Drakakis, Peter; Kefala, Stella; Kiapekou, Erasmia; Bletsa, Ritsa; Anagnostou, Elli; Kallianidis, Konstantinos; Loutradis, Dimitrios

    2016-06-01

    During in vitro maturation (IVM), intrinsic and extrinsic factors must co-operate properly in order to ensure cytoplasmic and nuclear maturation. We examined the possible effect of LH/hCG in the process of oocyte maturation in mice with the addition of recombinant LH (r-LH) and hCG in our IVM cultures of mouse germinal vesicle (GV)-stage oocytes. Moreover, the effects of these hormones on fertilization, early embryonic development and the expression of LH/hCG receptor were examined. Nuclear maturation of GV-stage oocytes was evaluated after culture in the presence of r-LH or hCG. Fertilization rates and embryonic development were assessed after 24h. Total RNA was isolated from oocytes of different stages of maturation and from zygotes and embryos of different stages of development in order to examine the expression of LH/hCG receptor, using RT-PCR. The in vitro nuclear maturation rate of GV-stage oocytes that received hCG was significantly higher compared to the control group. Early embryonic development was increased in the hCG and LH cultures of GV oocytes when LH was further added. The LH/hCG receptor was expressed in all stages of in vitro matured mouse oocytes and in every stage of early embryonic development. Addition of hCG in IVM cultures of mouse GV oocytes increased maturation rates significantly. LH, however, was more beneficial to early embryonic development than hCG. This suggests a promising new technique in basic science research or in clinical reproductive medicine. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Telomere dynamics in wild brown trout: effects of compensatory growth and early growth investment.

    PubMed

    Näslund, Joacim; Pauliny, Angela; Blomqvist, Donald; Johnsson, Jörgen I

    2015-04-01

    After a period of food deprivation, animals often respond with a period of faster than normal growth. Such responses have been suggested to result in decreased chromosomal maintenance, which in turn may affect the future fitness of an individual. Here, we present a field experiment in which a food deprivation period of 24 days was enforced on fish from a natural population of juvenile brown trout (Salmo trutta) at the start of the high-growth season in spring. The growth of the food-deprived fish and a non-deprived control group was then monitored in the wild during 1 year. Fin tissue samples were taken at the start of the experiment and 1 year after food deprivation to monitor the telomere dynamics, using reduced telomere length as an indicator of maintenance cost. The food-deprived fish showed partial compensatory growth in both mass and length relative to the control group. However, we found no treatment effects on telomere dynamics, suggesting that growth-compensating brown trout juveniles are able to maintain their telomeres during their second year in the stream. However, body size at the start of the experiment, reflecting growth rate during their first year of life, was negatively correlated with change in telomere length over the following year. This result raises the possibility that rapid growth early in life induces delayed costs in cellular maintenance.

  5. Disruption of insulin-like growth factor-II imprinting during embryonic development rescues the dwarf phenotype of mice null for pregnancy-associated plasma protein-A.

    PubMed

    Bale, Laurie K; Conover, Cheryl A

    2005-08-01

    Pregnancy-associated plasma protein-A (PAPP-A), an insulin-like growth factor-binding protein (IGFBP) protease, increases insulin-like growth factor (IGF) activity through cleavage of inhibitory IGFBP-4 and the consequent release of IGF peptide for receptor activation. Mice homozygous for targeted disruption of the PAPP-A gene are born as proportional dwarfs and exhibit retarded bone ossification during fetal development. Phenotype and in vitro data support a model in which decreased IGF-II bioavailability during embryogenesis results in growth retardation and reduction in overall body size. To test the hypothesis that an increase in IGF-II during embryogenesis would overcome the growth deficiencies, PAPP-A-null mice were crossed with DeltaH19 mutant mice, which have increased IGF-II expression and fetal overgrowth due to disruption of IgfII imprinting. DeltaH19 mutant mice were 126% and PAPP-A-null mice were 74% the size of controls at birth. These size differences were evident at embryonic day 16.5. Importantly, double mutants were indistinguishable from controls both in terms of size and skeletal development. Body size programmed during embryo development persisted post-natally. Thus, disruption of IgfII imprinting and consequent elevation in IGF-II during fetal development was associated with rescue of the dwarf phenotype and ossification defects of PAPP-A-null mice. These data provide strong genetic evidence that PAPP-A plays an essential role in determining IGF-II bioavailability for optimal fetal growth and development.

  6. Synthesis of embryonic tendon-like tissue by human marrow stromal/mesenchymal stem cells requires a three-dimensional environment and transforming growth factor β3.

    PubMed

    Kapacee, Zoher; Yeung, Ching-Yan Chloé; Lu, Yinhui; Crabtree, David; Holmes, David F; Kadler, Karl E

    2010-10-01

    Tendon-like tissue generated from stem cells in vitro has the potential to replace tendons and ligaments lost through injury and disease. However, thus far, no information has been available on the mechanism of tendon formation in vitro and how to accelerate the process. We show here that human mesenchymal stem cells (MSCs) and bone marrow-derived mononuclear cells (BM-MNCs) can generate tendon-like tissue in 7days mediated by transforming growth factor (TGF) β3. MSCs cultured in fixed-length fibrin gels spontaneously synthesized narrow-diameter collagen fibrils and exhibited fibripositors (actin-rich, collagen fibril-containing plasma membrane protrusions) identical to those that occur in embryonic tendon. In contrast, BM-MNCs did not synthesize tendon-like tissue under these conditions. We performed real-time PCR analysis of MSCs and BM-MNCs. MSCs upregulated genes encoding type I collagen, TGFβ3, and Smad2 at the time of maximum contraction of the tendon-like tissue (7days). Western blot analysis showed phosphorylation of Smad2 at maximum contraction. The TGFβ inhibitor SB-431542, blocked the phosphorylation of Smad2 and stopped the formation of tendon-like tissue. Quantitative PCR showed that BM-MNCs expressed very low levels of TGFβ3 compared to MSCs. Therefore we added exogenous TGFβ3 protein to BM-MNCs in fibrin gels, which resulted in phosphorylation of Smad2, synthesis of collagen fibrils, the appearance of fibripositors at the plasma membrane, and the formation of tendon-like tissue. In conclusion, MSCs that self-generate TGFβ signaling or the addition of TGFβ3 protein to BM-MNCs in fixed-length fibrin gels spontaneously make embryonic tendon-like tissue in vitro within 7days. Copyright © 2010 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  7. Early childhood neurodevelopment after intrauterine growth restriction: a systematic review.

    PubMed

    Levine, Terri A; Grunau, Ruth E; McAuliffe, Fionnuala M; Pinnamaneni, RagaMallika; Foran, Adrienne; Alderdice, Fiona A

    2015-01-01

    Children who experienced intrauterine growth restriction (IUGR) may be at increased risk for adverse developmental outcomes in early childhood. The objective of this study was to carry out a systematic review of neurodevelopmental outcomes from 6 months to 3 years after IUGR. PubMed, Embase, PsycINFO, Maternity and Infant Care, and CINAHL databases were searched by using the search terms intrauterine, fetal, growth restriction, child development, neurodevelopment, early childhood, cognitive, motor, speech, language. Studies were eligible for inclusion if participants met specified criteria for growth restriction, follow-up was conducted within 6 months to 3 years, methods were adequately described, non-IUGR comparison groups were included, and full English text of the article was available. A specifically designed data extraction form was used. The methodological quality of included studies was assessed using well-documented quality-appraisal guidelines. Of 731 studies reviewed, 16 were included. Poorer neurodevelopmental outcomes after IUGR were described in 11. Ten found motor, 8 cognitive, and 7 language delays. Other delays included social development, attention, and adaptive behavior. Only 8 included abnormal Doppler parameters in their definitions of IUGR. Evidence suggests that children are at risk for poorer neurodevelopmental outcomes following IUGR from 6 months to 3 years of age. The heterogeneity of primary outcomes, assessment measures, adjustment for confounding variables, and definitions of IUGR limits synthesis and interpretation. Sample sizes in most studies were small, and some examined preterm IUGR children without including term IUGR or AGA comparison groups, limiting the value of extant studies. Copyright © 2015 by the American Academy of Pediatrics.

  8. FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells

    SciTech Connect

    Sui, Lina, E-mail: linasui@vub.ac.be; Mfopou, Josue K.; Geens, Mieke

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Deep study the FGF signaling role during DE specification in the context of hESCs. Black-Right-Pointing-Pointer DE differentiation from hESCs has an early dependence on FGF signaling. Black-Right-Pointing-Pointer A serum-free DE protocol is developed based on the findings. Black-Right-Pointing-Pointer The DE cells showed potential to differentiate into pancreatic progenitor cells. -- Abstract: Considering their unlimited proliferation and pluripotency properties, human embryonic stem cells (hESCs) constitute a promising resource applicable for cell replacement therapy. To facilitate this clinical translation, it is critical to study and understand the early stage of hESCs differentiation wherein germ layers are defined. In this study,more » we examined the role of FGF signaling in Activin A-induced definitive endoderm (DE) differentiation in the absence of supplemented animal serum. We found that activated FGF/MAPK signaling is required at the early time point of Activin A-induced DE formation. In addition, FGF activation increased the number of DE cells compared to Activin A alone. These DE cells could further differentiate into PDX1 and NKX6.1 positive pancreatic progenitors in vitro. We conclude that Activin A combined with FGF/MAPK signaling efficiently induce DE cells in the absence of serum. These findings improve our understanding of human endoderm formation, and constitute a step forward in the generation of clinical grade hESCs progenies for cell therapy.« less

  9. Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy.

    PubMed

    Pillekamp, Frank; Haustein, Moritz; Khalil, Markus; Emmelheinz, Markus; Nazzal, Rewa; Adelmann, Roland; Nguemo, Filomain; Rubenchyk, Olga; Pfannkuche, Kurt; Matzkies, Matthias; Reppel, Michael; Bloch, Wilhelm; Brockmeier, Konrad; Hescheler, Juergen

    2012-08-10

    Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide the unique opportunity to study the very early development of the human heart. The aim of this study was to investigate the effect of calcium and beta-adrenergic stimulation on the contractile properties of early hESC-CMs. Beating clusters containing hESC-CMs were co-cultured in vitro with noncontractile slices of neonatal murine ventricles. After 5-7 days, when beating clusters had integrated morphologically into the damaged tissue, isometric force measurements were performed during spontaneous beating as well as during electrical field stimulation. Spontaneous beating stopped when extracellular calcium ([Ca²⁺](ec)) was removed or after administration of the Ca²⁺ channel blocker nifedipine. During field stimulation at a constant rate, the developed force increased with incremental concentrations of [Ca²⁺](ec). During spontaneous beating, rising [Ca²⁺](ec) increased beating rate and developed force up to a [Ca²⁺](ec) of 2.5 mM. When [Ca²⁺](ec) was increased further, spontaneous beating rate decreased, whereas the developed force continued to increase. The beta-adrenergic agonist isoproterenol induced a dose-dependent increase of the frequency of spontaneous beating; however, it did not significantly change the developed force during spontaneous contractions or during electrical stimulation at a constant rate. Force developed by early hESC-CMs depends on [Ca²⁺](ec) and on the L-type Ca²⁺ channel. The lack of an inotropic reaction despite a pronounced chronotropic response after beta-adrenergic stimulation most likely indicates immaturity of the sarcoplasmic reticulum. For cell-replacement strategies, further maturation of cardiac cells has to be achieved either in vitro before or in vivo after transplantation.

  10. Early Permian mafic dikes in the Nagqu area, central Tibet, China, associated with embryonic oceanic crust of the Meso-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Fan, W. M.; Shi, R. D.; Gong, X. H.

    2017-12-01

    During the latest Carboniferous to early Permian, a mantle plume initiated continental rifting along the northern Gondwana margin, which subsequently developed into the Meso-Tethys Ocean. However, the nature and timing of the embryonic oceanic crust of the Meso-Tethys Ocean remains poorly understood. Here, we present for the first time a combined analysis of petrological, geochronological, geochemical, and Sr-Nd isotopic data for mafic rocks from the Nagqu area, central Tibet. Zircons from the mafic rocks yield a concordant age of ca. 277.8±1.8 Ma, which is slightly younger than the age of mantle plume activity (ca. 300-279 Ma), as represented by the large igneous province (LIP) on the northern Gondwana margin. Geochemical features suggest that the Nagqu mafic rocks, which display normal mid ocean ridge basalt (N-MORB) affinities, are different from those of the LIP, which display oceanic island basalt (OIB)-type affinities. The Nagqu mafic rocks result from a relatively high degree of melting of depleted asthenospheric mantle. Combined with observations from previous studies, we suggest that the late early Permian Nagqu magmatism fully records processes of early stage rifting and incipient formation of oceanic crust. Moreover, the patterns of magmatism are consistent with patterns of rift-related sedimentation that records the transition from predominantly continental to marine deposition in the region during the Carboniferous-Permian. We therefore suggest that rifting of the eastern Cimmerian and northern Gondwana continents started at ca. 277.8 Ma, and the rifting culminated in the opening of the Meso-Tethys Ocean.

  11. [Effects of postnatal growth retardation on early neurodevelopment in premature infants with intrauterine growth retardation].

    PubMed

    Cai, Yue-Ju; Song, Yan-Yan; Huang, Zhi-Jian; Li, Jian; Qi, Jun-Ye; Xiao, Xu-Wen; Wang, Lan-Xiu

    2015-09-01

    To study the effects of postnatal growth retardation on early neurodevelopment in premature infants with intrauterine growth retardation (IUGR). A retrospective analysis was performed on the clinical data of 171 premature infants who were born between May 2008 and May 2012 and were followed up until a corrected gestational age of 6 months. These infants were classified into two groups: IUGR group (n=40) and appropriate for gestational age (AGA) group (n=131). The growth retardation rates at the corrected gestational ages of 40 weeks, 3 months, and 6 months, as well as the neurodevelopmental outcome (evaluated by Gesell Developmental Scale) at corrected gestational ages of 3 and 6 months, were compared between the two groups. The growth retardation rate in the IUGR group was significantly higher than in the AGA group at the corrected gestational ages of 40 weeks, 3 months, and 6 months. All five developmental quotients evaluated by Gesell Developmental Scale (gross motor, fine motor, language, adaptability and individuality) in the IUGR group were significantly lower than in the AGA group at the corrected gestational ages of 3 months. At the corrected gestational age of 6 months, the developmental quotients of fine motor and language in the IUGR group were significantly lower than in the AGA group, however, there were no significant differences in the developmental quotients of gross motor, adaptability and individuality between the two groups. All five developmental quotients in IUGR infants with catch-up lag in weight were significantly lower than in IUGR and AGA infants who had caught up well. Growth retardation at early postnatal stages may adversely affect the early neurodevelopment in infants with IUGR.

  12. Impact of maternal heat stress in conjunction with dietary zinc supplementation on hatchability, embryonic development, and growth performance in offspring broilers.

    PubMed

    Zhu, Y W; Li, W X; Lu, L; Zhang, L Y; Ji, C; Lin, X; Liu, H C; Odle, J; Luo, X G

    2017-07-01

    The aim of this study was to investigate whether maternal dietary supplementations with different zinc (Zn) sources could reduce the deleterious effect of maternal heat stress on hatchability performance and progeny growth performance. A completely randomized design (n = 6) with 2 maternal environmental temperatures [normal 21 ± 1°C (NT) vs. high 32 ± 1°C (HT)] × 3 maternal dietary supplemental Zn levels [Zn-unsupplemented control diet (CON), the control diet + 110 mg of Zn/kg of diet as either inorganic ZnSO4 (iZn) or organic Zn with a moderate chelation strength (oZn)] was used. HT decreased (P < 0.05) fertility, hatchability, chick hatch weight, and embryonic survival. HT also decreased (P ≤ 0.05) progeny BW, ADG, and ADFI at one to 21, 22 to 28, and 29 to 42 d of age as well as breast muscle ratio and plasma aspartate aminotransferase and creatine kinase activities at 42 d of age. Maternal dietary Zn supplementation with either iZn or oZn increased (P < 0.004) Zn contents in yolk and liver, non-weak chick ratio, as well as progeny BW, ADFI, and survivability at one to 21 d of age. Notably, the addition of oZn increased (P < 0.05) hatchability and progeny thigh meat quality by reducing b* value. The progeny ADG at one to 21 d and 22 to 28 d of age and BW at 28 d of age from maternal NT were not affected (P > 0.46) by maternal dietary Zn supplementation, but the above 3 indices from HT-iZn (P < 0.05) and HT-oZn (P < 0.003) were higher than those from HT-CON. Our results indicate that maternal heat stress impairs hatching performance, embryonic development, and progeny growth performance, inducing metabolic changes, while supplementation of Zn in maternal diets regardless of Zn sources improved hatch chick quality and survivability of offspring and alleviated the negative effect of maternal heat stress on growth performance of offspring during the starter period. In addition, maternal dietary supplementation with the organic Zn improved

  13. A general theory of early growth?. Comment on: "Mathematical models to characterize early epidemic growth: A review" by Gerardo Chowell et al.

    NASA Astrophysics Data System (ADS)

    House, Thomas

    2016-09-01

    Chowell et al. [1] consider the early growth behaviour of various epidemic models that range from phenomenological approaches driven by data to mechanistic descriptions of complex interactions between individuals. This is particularly timely given the recent Ebola epidemic, although non-exponential early growth may be more common (but less immediately evident) than we realise.

  14. Delimitation of the embryonic thermosensitive period for sex determination using an embryo growth model reveals a potential bias for sex ratio prediction in turtles.

    PubMed

    Girondot, Marc; Monsinjon, Jonathan; Guillon, Jean-Michel

    2018-04-01

    The sexual phenotype of the gonad is dependent on incubation temperature in many turtles, all crocodilians, and some lepidosaurians. At hatching, identification of sexual phenotype is impossible without sacrificing the neonates. For this reason, a general method to infer sexual phenotype from incubation temperatures is needed. Temperature influences sex determination during a specific period of the embryonic development, starting when the gonad begins to form. At constant incubation temperatures, this thermosensitive period for sex determination (TSP) is located at the middle third of incubation duration (MTID). When temperature fluctuates, the position of the thermosensitive period for sex determination can be shifted from the MTID because embryo growth is affected by temperature. A method is proposed to locate the thermosensitive period for sex determination based on modelling the embryo growth, allowing its precise identification from a natural regime of temperatures. Results from natural nests and simulations show that the approximation of the thermosensitive period for sex determination to the middle third of incubation duration may create a quasi-systematic bias to lower temperatures when computing the average incubation temperature during this period and thus a male-bias for sex ratio estimate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Metabolic Profiling and Flux Analysis of MEL-2 Human Embryonic Stem Cells during Exponential Growth at Physiological and Atmospheric Oxygen Concentrations

    PubMed Central

    Titmarsh, Drew; Krömer, Jens O.; Kao, Li-Pin; Nielsen, Lars; Wolvetang, Ernst; Cooper-White, Justin

    2014-01-01

    As human embryonic stem cells (hESCs) steadily progress towards regenerative medicine applications there is an increasing emphasis on the development of bioreactor platforms that enable expansion of these cells to clinically relevant numbers. Surprisingly little is known about the metabolic requirements of hESCs, precluding the rational design and optimisation of such platforms. In this study, we undertook an in-depth characterisation of MEL-2 hESC metabolic behaviour during the exponential growth phase, combining metabolic profiling and flux analysis tools at physiological (hypoxic) and atmospheric (normoxic) oxygen concentrations. To overcome variability in growth profiles and the problem of closing mass balances in a complex environment, we developed protocols to accurately measure uptake and production rates of metabolites, cell density, growth rate and biomass composition, and designed a metabolic flux analysis model for estimating internal rates. hESCs are commonly considered to be highly glycolytic with inactive or immature mitochondria, however, whilst the results of this study confirmed that glycolysis is indeed highly active, we show that at least in MEL-2 hESC, it is supported by the use of oxidative phosphorylation within the mitochondria utilising carbon sources, such as glutamine to maximise ATP production. Under both conditions, glycolysis was disconnected from the mitochondria with all of the glucose being converted to lactate. No difference in the growth rates of cells cultured under physiological or atmospheric oxygen concentrations was observed nor did this cause differences in fluxes through the majority of the internal metabolic pathways associated with biogenesis. These results suggest that hESCs display the conventional Warburg effect, with high aerobic activity despite high lactate production, challenging the idea of an anaerobic metabolism with low mitochondrial activity. The results of this study provide new insight that can be used in

  16. Expression profile of IGF-I-calcineurin-NFATc3-dependent pathway genes in skeletal muscle during early development between duck breeds differing in growth rates.

    PubMed

    Shu, Jingting; Li, Huifang; Shan, Yanju; Xu, Wenjuan; Chen, Wenfeng; Song, Chi; Song, Weitao

    2015-06-01

    The insulin-like growth factor I (IGF-I)-calcineurin (CaN)-NFATc signaling pathways have been implicated in the regulation of myocyte hypertrophy and fiber-type specificity. In the present study, the expression of the CnAα, NFATc3, and IGF-I genes was quantified by RT-PCR for the first time in the breast muscle (BM) and leg muscle (LM) on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days posthatching (PH), in Gaoyou and Jinding ducks, which differ in their muscle growth rates. Consistent expression patterns of CnAα, NFATc3, and IGF-I were found in the same anatomical location at different development stages in both duck breeds, showing significant differences in an age-specific fashion. However, the three genes were differentially expressed in the two different anatomical locations (BM and LM). CnAα, NFATc3, and IGF-I messenger RNA (mRNA) could be detected as early as embryonic day 13 (ED13), and the highest level appeared at this stage in both BM and LM. Significant positive relationships were observed in the expression of the studied genes in the BM and LM of both duck breeds. Also, the expression of these three genes showed a positive relationship with the percentage of type IIb fibers and a negative relationship with the percentage of type I fibers and type IIa fibers. Our data indicate differential expression and coordinated developmental regulation of the selected genes involved in the IGF-I-calcineurin-NFATc3 pathway in duck skeletal muscle during embryonic and early PH growth and development; these data also indicate that this signaling pathway might play a role in the regulation of myofiber type transition.

  17. Early Life Growth Predicts Pubertal Development in South African Adolescents.

    PubMed

    Lundeen, Elizabeth A; Norris, Shane A; Martorell, Reynaldo; Suchdev, Parminder S; Mehta, Neil K; Richter, Linda M; Stein, Aryeh D

    2016-03-01

    Given global trends toward earlier onset of puberty and the adverse psychosocial consequences of early puberty, it is important to understand the childhood predictors of pubertal timing and tempo. We examined the association between early growth and the timing and tempo of puberty in adolescents in South Africa. We analyzed prospectively collected data from 1060 boys and 1135 girls participating in the Birth-to-Twenty cohort in Soweto, South Africa. Height-for-age z scores (HAZs) and body mass index-for-age z scores (BMIZs) were calculated based on height (centimeters) and body mass index (kilograms per meter squared) at ages 5 y and 8 y. The development of genitals, breasts, and pubic hair was recorded annually from 9 to 16 y of age with the use of the Tanner sexual maturation scale (SMS). We used latent class growth analysis to identify pubertal trajectory classes and also characterized children as fast or slow developers based on the SMS score at 12 y of age. We used multinomial logistic regression to estimate associations of HAZ and BMIZ at ages 5 and 8 y with pubertal development. We identified 3 classes for pubic hair development (for both girls and boys) and 4 classes for breast (for girls) and genital (for boys) development. In girls, both HAZ and BMIZ at age 5 y were positively associated with pubic hair development [relative risk ratio (RRR): 1.57, P < 0.001 and RRR: 1.51, P < 0.01, respectively], as was BMI at age 8 y (RRR: 2.06, P = 0.03); similar findings were observed for breast development. In boys, HAZ and BMIZ at age 5 y were positively associated with pubic hair development (RRR: 1.78, P < 0.001 and RRR: 1.43, P < 0.01, respectively); HAZ at age 5 y was associated with development of genitals (RRR: 2.19, P < 0.01). In boys and girls, both height and body mass index in early childhood predicted the trajectory of pubertal development. This may provide a tool to identify children at risk of early pubertal onset.

  18. A Non-Reciprocal Autosomal Translocation 64,XX, t(4;10)(q21;p15) in an Arabian Mare with Repeated Early Embryonic Loss.

    PubMed

    Ghosh, S; Das, P J; Avila, F; Thwaits, B K; Chowdhary, B P; Raudsepp, T

    2016-02-01

    Balanced autosomal translocations are a known cause for repeated early embryonic loss (REEL) in horses. In most cases, carriers of such translocations are phenotypically normal, but the chromosomal aberration negatively affects gametogenesis giving rise to both genetically balanced and unbalanced gametes. The latter, if involved in fertilization, result in REEL, whereas gametes with the balanced form of translocation will pass the defect into next generation. Therefore, in order to reduce the incidence of REEL, identification of translocation carriers is critical. Here, we report about a phenotypically normal 3-year-old Arabian mare that had repeated resorption of conceptuses prior to day 45 of gestation and was diagnosed with REEL. Conventional and molecular cytogenetic analyses revealed that the mare had normal chromosome number 64,XX but carried a non-mosaic and non-reciprocal autosomal translocation t(4;10)(q21;p15). This is a novel translocation described in horses with REEL and the first such report in Arabians. Previous cases of REEL due to autosomal translocations have exclusively involved Thoroughbreds. The findings underscore the importance of routine cytogenetic screening of breeding animals. © 2015 Blackwell Verlag GmbH.

  19. Expression of genes involved in early cell fate decisions in human embryos and their regulation by growth factors.

    PubMed

    Kimber, S J; Sneddon, S F; Bloor, D J; El-Bareg, A M; Hawkhead, J A; Metcalfe, A D; Houghton, F D; Leese, H J; Rutherford, A; Lieberman, B A; Brison, D R

    2008-05-01

    Little is understood about the regulation of gene expression in human preimplantation embryos. We set out to examine the expression in human preimplantation embryos of a number of genes known to be critical for early development of the murine embryo. The expression profile of these genes was analysed throughout preimplantation development and in response to growth factor (GF) stimulation. Developmental expression of a number of genes was similar to that seen in murine embryos (OCT3B/4, CDX2, NANOG). However, GATA6 is expressed throughout preimplantation development in the human. Embryos were cultured in IGF-I, leukaemia inhibitory factor (LIF) or heparin-binding EGF-like growth factor (HBEGF), all of which are known to stimulate the development of human embryos. Our data show that culture in HBEGF and LIF appears to facilitate human embryo expression of a number of genes: ERBB4 (LIF) and LIFR and DSC2 (HBEGF) while in the presence of HBEGF no blastocysts expressed EOMES and when cultured with LIF only two out of nine blastocysts expressed TBN. These data improve our knowledge of the similarities between human and murine embryos and the influence of GFs on human embryo gene expression. Results from this study will improve the understanding of cell fate decisions in early human embryos, which has important implications for both IVF treatment and the derivation of human embryonic stem cells.

  20. Partial albumen removal early during embryonic development of layer-type chickens has negative consequences on laying performance in adult life.

    PubMed

    Willems, E; Wang, Y; Willemsen, H; Lesuisse, J; Franssens, L; Guo, X; Koppenol, A; Buyse, J; Decuypere, E; Everaert, N

    2013-07-01

    To examine the importance of albumen as a protein source during embryonic development on the posthatch performance of laying hens, 3 mL of the albumen was removed. At hatch, no difference in BW could be observed. Chicks from the albumen-deprived group had a lower residual yolk weight due to higher yolk utilization. During the rearing phase (hatch to 17 wk of age), the BW of the albumen-deprived pullets was lower compared with the control and sham pullets. The feed intake of the albumen-deprived pullets was also lower than the control pullets. However, during the laying phase (18 to 55 wk of age) these hens exceeded the control and sham hens in BW, although this was not accompanied by a higher feed intake. The albumen-deprived hens exhibited a lower egg production capacity as demonstrated by the reduced egg weight, laying rate, and egg mass and increased number of second grade eggs. In addition, the eggs laid by the albumen-deprived hens had a higher proportional yolk and lower proportional albumen weight. In conclusion, prenatal protein deprivation by albumen removal caused a long-lasting programming effect, possibly by differences in energy allocation, in favor of growth and maintenance and impairing reproductive performance.

  1. Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos.

    PubMed

    Imai, Kaoru S; Satoh, Nori; Satou, Yutaka

    2002-04-01

    In early Ciona savignyi embryos, nuclear localization of beta-catenin is the first step of endodermal cell specification, and triggers the activation of various target genes. A cDNA for Cs-FGF4/6/9, a gene activated downstream of beta-catenin signaling, was isolated and shown to encode an FGF protein with features of both FGF4/6 and FGF9/20. The early embryonic expression of Cs-FGF4/6/9 was transient and the transcript was seen in endodermal cells at the 16- and 32-cell stages, in notochord and muscle cells at the 64-cell stage, and in nerve cord and muscle cells at the 110-cell stage; the gene was then expressed again in cells of the nervous system after neurulation. When the gene function was suppressed with a specific antisense morpholino oligo, the differentiation of mesenchyme cells was completely blocked, and the fate of presumptive mesenchyme cells appeared to change into that of muscle cells. The inhibition of mesenchyme differentiation was abrogated by coinjection of the morpholino oligo and synthetic Cs-FGF4/6/9 mRNA. Downregulation of beta-catenin nuclear localization resulted in the absence of mesenchyme cell differentiation due to failure of the formation of signal-producing endodermal cells. Injection of synthetic Cs-FGF4/6/9 mRNA in beta-catenin-downregulated embryos evoked mesenchyme cell differentiation. These results strongly suggest that Cs-FGF4/6/9 produced by endodermal cells acts an inductive signal for the differentiation of mesenchyme cells. On the other hand, the role of Cs-FGF4/6/9 in the induction of notochord cells is partial; the initial process of the induction was inhibited by Cs-FGF4/6/9 morpholino oligo, but notochord-specific genes were expressed later to form a partial notochord.

  2. Cryopreserved mouse fetal liver stromal cells treated with mitomycin C are able to support the growth of human embryonic stem cells.

    PubMed

    Zhang, Wei; Hu, Jiabo; Ma, Quanhui; Hu, Sanqiang; Wang, Yanyan; Wen, Xiangmei; Ma, Yongbin; Xu, Hong; Qian, Hui; Xu, Wenrong

    2014-09-01

    An immortalized mouse fetal liver stromal cell line, named KM3, has demonstrated the potential to support the growth and maintenance of human embryonic stem cells (hESCs). In this study, the characteristics of KM3 cells were examined following cryopreservation at -70°C and in liquid nitrogen for 15, 30 and 60 days following treatment with 10 μg/ml mitomycin C. In addition, whether the KM3 cells were suitable for use as feeder cells to support the growth of hESCs was evaluated. The inhibition of mitosis without cell death was observed when the KM3 cells were treated with 10 μg/ml mitomycin C for 2 h. The morphology of the KM3 cells cryopreserved in liquid nitrogen for 60 days was not markedly changed, and the cell survival rate was 84.60±1.14%. By contrast, the survival rate of the KM3 cells was 66.40±2.88% following cryopreservation at -70°C for 60 days; the cells readily detached, were maintained for a shorter time, and had a reduced expression level of basic fibroblast growth factor. hESCs cultured on KM3 cells cryopreserved in liquid nitrogen for 60 days showed the typical bird's nest structure, with clear boundaries and a differentiation rate of 16.33±2.08%. The differentiation rate of hESCs cultured on KM3 cells cryopreserved at -70°C for 60 days was 37.67±3.51%. These results indicate that the cryopreserved KM3 cells treated with mitomycin C may be directly used in the subculture of hESCs, and the effect is relatively good with -70°C short-term or liquid nitrogen cryopreservation.

  3. Resveratrol inhibits uveal melanoma tumor growth via early mitochondrial dysfunction.

    PubMed

    van Ginkel, Paul R; Darjatmoko, Soesiawati R; Sareen, Dhruv; Subramanian, Lalita; Bhattacharya, Saswati; Lindstrom, Mary J; Albert, Daniel M; Polans, Arthur S

    2008-04-01

    To test the efficacy of resveratrol, a nontoxic plant product, in the treatment of uveal melanoma. The effect of oral administration and peritumor injection of resveratrol was tested on tumor growth in two animal models of uveal melanoma. The mechanism of resveratrol action on uveal melanoma cells was studied in vitro in a cell-viability assay: with JC-1 dye, to measure mitochondrial membrane potential; by Western blot analysis, to analyze the cellular redistribution of cytochrome c and Smac/diablo; and in a fluorescence assay with specific substrates, to measure activation of different caspases. Resveratrol treatment inhibited tumor growth in animal models of uveal melanoma. Since oral administration resulted in relatively low bioavailability of resveratrol, the effect of increased local levels was tested by peritumor injection of the drug. This method resulted in tumor cell death and tumor regression. In vitro experiments with multiple uveal melanoma cell lines demonstrate that resveratrol causes a decrease in cell viability, resulting at least in part from an increase in apoptosis through a mitochondrial pathway. An early event in drug action is the direct targeting of mitochondria by resveratrol, which leads to a decrease in mitochondrial membrane potential and the eventual activation of caspase-3. These data suggest that resveratrol can inhibit tumor growth and can induce apoptosis via the intrinsic mitochondrial pathway and that by further increasing bioavailability of resveratrol the potency of the drug can be increased, leading to tumor regression. The nontoxic nature of the drug at levels needed for therapy make resveratrol an attractive candidate for the treatment of uveal melanoma.

  4. Embryonic death and the creation of human embryonic stem cells.

    PubMed

    Landry, Donald W; Zucker, Howard A

    2004-11-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ donation.

  5. Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro.

    PubMed

    Wang, Tian-ren; Yan, Li-ying; Yan, Jie; Lu, Cui-ling; Xia, Xi; Yin, Tai-lang; Zhu, Xiao-hui; Gao, Jiang-man; Ding, Ting; Hu, Wei-hong; Guo, Hong-yan; Li, Rong; Qiao, Jie

    2014-03-01

    What is the effect of basic fibroblast growth factor (bFGF) on the growth of individual early human follicles in a three-dimensional (3D) culture system in vitro? The addition of 200 ng bFGF/ml improves human early follicle growth, survival and viability during growth in vitro. It has been demonstrated that bFGF enhances primordial follicle development in human ovarian tissue culture. However, the growth and survival of individual early follicles in encapsulated 3D culture have not been reported. The maturation in vitro of human ovarian follicles was investigated. Ovarian tissue (n= 11) was obtained from 11 women during laparoscopic surgery for gynecological disease, after obtaining written informed consent. One hundred and fifty-four early follicles were isolated by enzymic digestion and mechanical disruption. They were individually encapsulated into alginate (1% w/v) and randomly assigned to be cultured with 0, 100, 200 or 300 ng bFGF/ml for 8 days. Individual follicles were cultured in minimum essential medium α (αMEM) supplemented with bFGF. Follicle survival and growth were assessed by microscopy. Follicle viability was evaluated under confocal laser scanning microscope following Calcein-AM and Ethidium homodimer-I (Ca-AM/EthD-I) staining. After 8 days in culture, all 154 follicles had increased in size. The diameter and survival rate of the follicles and the percentage with good viability were significantly higher in the group cultured with 200 ng bFGF/ml than in the group without bFGF (P < 0.05). The percentage of follicles in the pre-antral stage was significantly higher in the 200 ng bFGF/ml group than in the group without bFGF (P < 0.05), while the percentages of primordial and primary follicles were significantly lower (P < 0.05). The study focuses on the effect of bFGF on the development of individual human early follicles in 3D culture in vitro and has limited ability to reveal the specific effect of bFGF at each different stage. The findings

  6. PTBP1 Is Required for Embryonic Development before Gastrulation

    PubMed Central

    Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A. Francis; Solimena, Michele

    2011-01-01

    Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures. PMID:21423341

  7. PTBP1 is required for embryonic development before gastrulation.

    PubMed

    Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A Francis; Solimena, Michele

    2011-02-17

    Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.

  8. Early Activation of Growth Pathways in Mitral Leaflets Exposed to Aortic Regurgitation: New Insights from an Animal Model.

    PubMed

    Marsit, Ons; Royer, Olivier; Drolet, Marie-Claude; Arsenault, Marie; Couet, Jacques; Morin, Stéphane; Levine, Robert A; Pibarot, Philippe; Beaudoin, Jonathan

    2017-05-01

    Mitral leaflet enlargement in patients with chronic aortic regurgitation (AR) has been identified as an adaptive mechanism potentially able to prevent functional mitral regurgitation (FMR) in response to left ventricular (LV) dilatation. The timing of valve enlargement is not known, and the related mechanisms are largely unexplored. AR was induced in 58 rats, and another 54 were used as sham controls. Animals were euthanized at different time points after AR creation (48 h, one week, and three months), and AR severity, FMR and LV dilatation were assessed using echocardiography. Mitral valves were harvested to document the reactivation of embryonic growth pathways. AR animals had increased LV dimensions and mitral annulus size. No animal developed FMR. No change in leaflet length or thickness was seen at 48 h; however, anterior mitral leaflets were longer and thicker in AR animals at one week and three months. Molecular changes were present early (at 48 h and at one week), with positive staining for transforming growth factor-b1 (TGF-b1), Alpha-smooth muscle actin (α-SMA) and matrix metalloproteinase-2 (MMP-2), which suggested active matrix remodeling. Increased gene expression for collagen 1, TGF-β1, α-SMA and MMP-2 was found in the mitral valve at 48 h and at one week, but after three months their expression had returned to normal. This model of AR induces active expansion and thickening of the mitral leaflets. Growth signals are expressed acutely, but not at three months, which suggests that most of this enlargement occurs at an early stage. The stimulation of valvular growth could represent a new strategy for the prevention of FMR.

  9. Decreased levels of embryonic retinoic acid synthesis accelerate recovery from arterial growth delay in a mouse model of DiGeorge syndrome.

    PubMed

    Ryckebüsch, Lucile; Bertrand, Nicolas; Mesbah, Karim; Bajolle, Fanny; Niederreither, Karen; Kelly, Robert G; Zaffran, Stéphane

    2010-03-05

    Loss of Tbx1 and decrease of retinoic acid (RA) synthesis result in DiGeorge/velocardiofacial syndrome (DGS/VCFS)-like phenotypes in mouse models, including defects in septation of the outflow tract of the heart and anomalies of pharyngeal arch-derived structures including arteries of the head and neck, laryngeal-tracheal cartilage, and thymus/parathyroid. Wild-type levels of T-box transcription factor (Tbx)1 and RA signaling are required for normal pharyngeal arch artery development. Recent studies have shown that reduction of RA or loss of Tbx1 alters the contribution of second heart field (SHF) progenitor cells to the elongating heart tube. Here we tested whether Tbx1 and the RA signaling pathway interact during the deployment of the SHF and formation of the mature aortic arch. Molecular markers of the SHF, neural crest and smooth muscle cells, were analyzed in Raldh2;Tbx1 compound heterozygous mutants. Our results revealed that the SHF and outflow tract develop normally in Raldh2(+/-);Tbx1(+/-) embryos. However, we found that decreased levels of RA accelerate the recovery from arterial growth delay observed in Tbx1(+/-) mutant embryos. This compensation coincides with the differentiation of smooth muscle cells in the 4th pharyngeal arch arteries, and is associated with severity of neural crest cell migration defects observed in these mutants. Our data suggest that differences in levels of embryonic RA may contribute to the variability in great artery anomalies observed in DGS/VCFS patients.

  10. Effects of the Transforming Growth Factor Beta Signaling Pathway on the Differentiation of Chicken Embryonic Stem Cells into Male Germ Cells

    PubMed Central

    Zhang, Yani; Wang, Yingjie; Zuo, Qisheng; Li, Dong; Zhang, Wenhui; Lian, Chao; Tang, Beibei; Xiao, Tianrong; Wang, Man; Wang, Kehua

    2016-01-01

    Abstract The objectives of the present study were to screen for key gene and signaling pathways involved in the production of male germ cells in poultry and to investigate the effects of the transforming growth factor beta (TGF-β) signaling pathway on the differentiation of chicken embryonic stem cells (ESCs) into male germ cells. The ESCs, primordial germ cells, and spermatogonial stem cells (SSCs) were sorted using flow cytometry for RNA sequencing (RNA-seq) technology. Male chicken ESCs were induced using 40 ng/mL of bone morphogenetic protein 4 (BMP4). The effects of the TGF-β signaling pathway on the production of chicken SSCs were confirmed by morphology, quantitative real-time polymerase chain reaction, and immunocytochemistry. One hundred seventy-three key genes relevant to development, differentiation, and metabolism and 20 signaling pathways involved in cell reproduction, differentiation, and signal transduction were identified by RNA-seq. The germ cells formed agglomerates and increased in number 14 days after induction by BMP4. During the induction process, the ESCs, Nanog, and Sox2 marker gene expression levels decreased, whereas expression of the germ cell-specific genes Stra8, Dazl, integrin-α6, and c-kit increased. The results indicated that the TGF-β signaling pathway participated in the differentiation of chicken ESCs into male germ cells. PMID:27906584

  11. Skeletal Myogenic Progenitors Originating from Embryonic Dorsal Aorta Coexpress Endothelial and Myogenic Markers and Contribute to Postnatal Muscle Growth and Regeneration

    PubMed Central

    De Angelis, Luciana; Berghella, Libera; Coletta, Marcello; Lattanzi, Laura; Zanchi, Malvina; Gabriella, M.; Ponzetto, Carola; Cossu, Giulio

    1999-01-01

    Skeletal muscle in vertebrates is derived from somites, epithelial structures of the paraxial mesoderm, yet many unrelated reports describe the occasional appearance of myogenic cells from tissues of nonsomite origin, suggesting either transdifferentiation or the persistence of a multipotent progenitor. Here, we show that clonable skeletal myogenic cells are present in the embryonic dorsal aorta of mouse embryos. This finding is based on a detailed clonal analysis of different tissue anlagen at various developmental stages. In vitro, these myogenic cells show the same morphology as satellite cells derived from adult skeletal muscle, and express a number of myogenic and endothelial markers. Surprisingly, the latter are also expressed by adult satellite cells. Furthermore, it is possible to clone myogenic cells from limbs of mutant c-Met−/− embryos, which lack appendicular muscles, but have a normal vascular system. Upon transplantation, aorta-derived myogenic cells participate in postnatal muscle growth and regeneration, and fuse with resident satellite cells. The potential of the vascular system to generate skeletal muscle cells may explain observations of nonsomite skeletal myogenesis and raises the possibility that a subset of satellite cells may derive from the vascular system. PMID:10562287

  12. Anti-Müllerian Hormone Is Required for Chicken Embryonic Urogenital System Growth but Not Sexual Differentiation.

    PubMed

    Lambeth, Luke S; Ayers, Katie; Cutting, Andrew D; Doran, Timothy J; Sinclair, Andrew H; Smith, Craig A

    2015-12-01

    In mammals, the primary role of anti-Müllerian hormone (AMH) during development is the regression of Müllerian ducts in males. These structures otherwise develop into fallopian tubes, oviducts, and upper vagina, as in females. This highly conserved function is retained in birds and is supported by the high levels of AMH expression in developing testes. In mammals, AMH expression is controlled partly by the transcription factor, SOX9. However, in the chicken, AMH mRNA expression precedes that of SOX9 , leading to the view that AMH may lie upstream of SOX9 and play a more central role in avian testicular development. To help define the role of AMH in chicken gonad development, we suppressed AMH expression in chicken embryos using RNA interference. In males, AMH knockdown did not affect the expression of key testis pathway genes, and testis cords developed normally. However, a reduction in the size of the mesonephros and gonads was observed, a phenotype that was evident in both sexes. This growth defect occurred as a result of the reduced proliferative capacity of the cells of these tissues, and male gonads also had a significant reduction in germ cell numbers. These data suggest that although AMH does not directly contribute to testicular or ovarian differentiation, it is required in a sex-independent manner for proper cell proliferation and urogenital system growth. © 2015 by the Society for the Study of Reproduction, Inc.

  13. Appl1 Is Dispensable for Mouse Development, and Loss of Appl1 Has Growth Factor-selective Effects on Akt Signaling in Murine Embryonic Fibroblasts*

    PubMed Central

    Tan, Yinfei; You, Huihong; Wu, Chao; Altomare, Deborah A.; Testa, Joseph R.

    2010-01-01

    The adaptor protein APPL1 (adaptor protein containing pleckstrin homology (PH), phosphotyrosine binding (PTB), and leucine zipper motifs) was first identified as a binding protein of AKT2 by yeast two-hybrid screening. APPL1 was subsequently found to bind to several membrane-bound receptors and was implicated in their signal transduction through AKT and/or MAPK pathways. To determine the unambiguous role of Appl1 in vivo, we generated Appl1 knock-out mice. Here we report that Appl1 knock-out mice are viable and fertile. Appl1-null mice were born at expected Mendelian ratios, without obvious phenotypic abnormalities. Moreover, Akt activity in various fetal tissues was unchanged compared with that observed in wild-type littermates. Studies of isolated Appl1−/− murine embryonic fibroblasts (MEFs) showed that Akt activation by epidermal growth factor, insulin, or fetal bovine serum was similar to that observed in wild-type MEFs, although Akt activation by HGF was diminished in Appl1−/− MEFs. To rule out a possible redundant role played by the related Appl2, we used small interfering RNA to knock down Appl2 expression in Appl1−/− MEFs. Unexpectedly, cell survival was unaffected under normal culture conditions, and activation of Akt was unaltered following epidermal growth factor stimulation, although Akt activity did decrease further after HGF stimulation. Furthermore, we found that Appl proteins are required for HGF-induced cell survival and migration via activation of Akt. Our studies suggest that Appl1 is dispensable for development and only participate in Akt signaling under certain conditions. PMID:20040596

  14. Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens.

    PubMed

    Zhang, L; Zhang, H J; Wang, J; Wu, S G; Qiao, X; Yue, H Y; Yao, J H; Qi, G H

    2014-01-01

    Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight (BW) and pectoral muscle growth of broilers. In this experiment, we further investigated the morphological and molecular basis of this phenomenon. Fertile broiler eggs (Arbor Acres, n=880) were pre-weighed and randomly assigned to 1 of the 2 incubation treatment groups: (1) dark condition (control group), and (2) monochromatic green light group (560 nm). The monochromatic lighting systems sourced from light-emitting diode lamps and were equalized at the intensity of 15 lx at eggshell level. The dark condition was set as a commercial control from day 1 until hatching. After hatch, 120 male 1-day-old chicks from each group were housed under incandescent white light with an intensity of 30 lx at bird-head level. No effects of light stimuli during embryogenesis on hatching time, hatchability, hatching weight and bird mortality during the feeding trial period were observed in the present study. Compared with the dark condition, the BW, pectoral muscle weight and myofiber cross-sectional areas were significantly greater on 7-day-old chicks incubated under green light. Green light also increased the satellite cell mitotic activity of pectoral muscle on 1- and 3-day-old birds. In addition, green light upregulated MyoD, myogenin and myostatin mRNA expression in late embryos and/ or newly hatched chicks. These data suggest that stimulation with monochromatic green light during incubation promote muscle growth by enhancing proliferation and differentiation of satellite cells in late embryonic and newly hatched stages. Higher expression of myostatin may ultimately help prevent excessive proliferation and differentiation of satellite cells in birds incubated under green light.

  15. Adult consequences of growth failure in early childhood123

    PubMed Central

    Hoddinott, John; Behrman, Jere R; Maluccio, John A; Melgar, Paul; Quisumbing, Agnes R; Ramirez-Zea, Manuel; Stein, Aryeh D; Yount, Kathryn M

    2013-01-01

    Background: Growth failure is associated with adverse consequences, but studies need to control adequately for confounding. Objective: We related height-for-age z scores (HAZs) and stunting at age 24 mo to adult human capital, marriage, fertility, health, and economic outcomes. Design: In 2002–2004, we collected data from 1338 Guatemalan adults (aged 25–42 y) who were studied as children in 1969–1977. We used instrumental variable regression to correct for estimation bias and adjusted for potentially confounding factors. Results: A 1-SD increase in HAZ was associated with more schooling (0.78 grades) and higher test scores for reading and nonverbal cognitive skills (0.28 and 0.25 SDs, respectively), characteristics of marriage partners (1.39 y older, 1.02 grade more schooling, and 1.01 cm taller) and, for women, a higher age at first birth (0.77 y) and fewer number of pregnancies and children (0.63 and 0.43, respectively). A 1-SD increase in HAZ was associated with increased household per capita expenditure (21%) and a lower probability of living in poverty (10 percentage points). Conversely, being stunted at 2 y was associated with less schooling, a lower test performance, a lower household per capita expenditure, and an increased probability of living in poverty. For women, stunting was associated with a lower age at first birth and higher number of pregnancies and children. There was little relation between either HAZ or stunting and adult health. Conclusion: Growth failure in early life has profound adverse consequences over the life course on human, social, and economic capital. PMID:24004889

  16. Nuclei fluorescence microscopic observation on early embryonic development of mitogynogenetic diploid induced by hydrostatic pressure treatment in olive flounder (Paralichthys olivaceus).

    PubMed

    Lin, Zhengmei; Zhu, Xiangping; You, Feng; Wu, Zhihao; Cao, Yuanshui

    2015-05-01

    Sperm genetic material of olive flounder (Paralichthys olivaceus) was inactivated by ultraviolet irradiation. The nuclear phase changes during early embryonic development of diploid, haploid, and mitogynogenetic diploid induced by hydrostatic pressure treatment were observed under fluorescent microscope with 4',6-diamidino-2-phenylindole staining. The parameters of hydrostatic pressure treatment were 600 kg/cm(2) for 6 minutes at prometaphase stage. The data showed that developmental timing sequence of diploid and haploid fertilized eggs was similar. The cell cycle was about 48 minutes, including interphase (about 21 minutes), prophase (about 3 minutes), prometaphase (about 6 minutes), metaphase (about 6 minutes), anaphase (around 9 minutes), and telophase (about 3 minutes). After entering the fertilized egg, ultraviolet-inactivated sperm formed a male pronucleus and became a dense chromatin body in the cytoplasm. Dense chromatin body did not participate in nuclear division and unchanged all the time. For hydrostatic pressure-treated embryos, the first nuclear division and cytokinesis after treatment proceeded normally after about 15 minutes recovery. During the second mitosis, having undergone interphase, prophase, and prometaphase stage, chromosomes began to slowly spread around and scattered in the cell but not entered into metaphase and anaphase. The second nuclear division and cytokinesis was inhibited. The occurrence frequency of developmentally delayed embryos also showed that the second cleavage of about 80% treated eggs was inhibited. The inhibition of the second cleavage resulted to chromosome set doubling. So chromosome set doubling for mitogynogenetic flounder diploid induced by hydrostatic pressure treatment, performed at prometaphase stage, was mainly due to inhibition of the second mitosis rather than the first one. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Expression profiling of the solute carrier gene family in chicken intestine from the late embryonic to early post-hatch stages.

    PubMed

    Li, H; Gilbert, E R; Zhang, Y; Crasta, O; Emmerson, D; Webb, K E; Wong, E A

    2008-08-01

    Intestinal development during late embryogenesis and early post-hatch has a long-term influence on digestive and absorptive capacity in chickens. The objective of this research was to obtain a global view of intestinal solute carrier (SLC) gene family member expression from late embryogenesis until 2 weeks post-hatch with a focus on SLC genes involved in uptake of sugars and amino acids. Small intestine samples from male chicks were collected on embryonic days 18 (E18) and 20 (E20), day of hatch and days 1, 3, 7 and 14 post-hatch. The expression profiles of 162 SLC genes belonging to 41 SLC families were determined using Affymetrix chicken genome microarrays. The majority of SLC genes showed little or no difference in level of expression during E18-D14. A number of well-known intestinal transporters were upregulated between E18 and D14 including the amino acid transporters rBAT, y(+)LAT-2 and EAAT3, the peptide transporter PepT1 and the sugar transporters SGLT1, GLUT2 and GLUT5. The amino acid transporters CAT-1 and CAT-2 were downregulated. In addition, several glucose and amino acid transporters that are novel to our understanding of nutrient absorption in the chicken intestine were discovered through the arrays (SGLT6, SNAT1, SNAT2 and AST). These results represent a comprehensive characterization of the expression profiles of the SLC family of genes at different stages of development in the chicken intestine and lay the ground work for future nutritional studies.

  18. Reproductive and Developmental Toxicity of Orally Administered Botanical Composition, UP446-Part III: Effects on Fertility and Early Embryonic Development to Implantation in Sprague Dawley Rats.

    PubMed

    Yimam, Mesfin; Lee, Young-Chul; Hyun, Eu-Jin; Jia, Qi

    2015-08-01

    In recent years, high prevalence of adverse effects associated to the use of traditional medicines during pregnancy is becoming alarming due to the self-medication of oral supplements by expecting mothers without supervision. Many expectant mothers use alternative and complementary medicines as a supplement to conventional pregnancy management with an inherent belief of considering herbal remedies as harmless. To the contrary, herbal remedies could incur a potential teratogenic risk both to the child bearing mother and the developing fetuses when consumed before or at the time of gestation. Here, we describe the potential adverse effects of orally administered UP446, a standardized bioflavonoid composition from the roots of Scutellaria baicalensis and the heartwoods of Acacia catechu, on fertility and early embryonic development to implantation in Sprague Dawley rats at doses of 250, 500, and 1000 mg/kg. Besides body weight and food consumption, reproductive functions, sperm motility and morphology, estrus cycle, and fertility rate were monitored. There were no statistically significant differences in reproductive function in all UP446 treated groups in both genders. Test substance impacts on reproductive parameters were very minimal. Neither sperm motility nor morphology was affected as a result of oral UP446 administrations in males. There were no treatment-related effects on estrus cycle stages in females. No significant changes in necropsy or histopathology were observed for all the groups. Therefore, the no observed adverse effect level (NOAEL) of UP446 was considered to be 1000 mg/kg, the highest dose tested, in both genders. © 2015 Wiley Periodicals, Inc.

  19. The early growth and development study: a prospective adoption design.

    PubMed

    Leve, Leslie D; Neiderhiser, Jenae M; Ge, Xiaojia; Scaramella, Laura V; Conger, Rand D; Reid, John B; Shaw, Daniel S; Reiss, David

    2007-02-01

    The Early Growth and Development Study is a prospective adoption study of birth parents, adoptive parents, and adopted children (N=359 triads) that was initiated in 2003. The primary study aims are to examine how family processes mediate or moderate the expression of genetic influences in order to aid in the identification of specific family processes that could serve as malleable targets for intervention. Participants in the study are recruited through adoption agencies located throughout the United States, following the birth of a child. Assessments occur at 6-month intervals until the child reaches 3 years of age. Data collection includes the following primary constructs: infant and toddler temperament, social behavior, and health; birth and adoptive parent personality characteristics, psychopathology, competence, stress, and substance use; adoptive parenting and marital relations; and prenatal exposure to drugs and maternal stress. Preliminary analyses suggest the representativeness of the sample and minimal confounding effects of current trends in adoption practices, including openness and selective placement. Future plans are described.

  20. Growth problems of stellar black holes in early galaxies

    NASA Astrophysics Data System (ADS)

    Orofino, M. C.; Ferrara, A.; Gallerani, S.

    2018-06-01

    The nature of the seeds of the observed high-z super-massive black holes (SMBH) is unknown. Although different options have been proposed, involving e.g. intermediate mass direct collapse black holes, BH remnants of massive stars remain the most natural explanation. To identify the most favorable conditions (if any) for their rapid growth, we study the accretion rate of a M• = 100M⊙ BH formed in a typical z = 10 galaxy under different conditions (e.g. galaxy structure, BH initial position and velocity). We model the galaxy baryonic content and follow the BH orbit and accretion history for 300 Myr (the time span in 10 > z > 7), assuming the radiation-regulated accretion model by Park & Ricotti (2013). We find that, within the limits of our model, BH seeds cannot grow by more than 30%, suggesting that accretion on light-seed models are inadequate to explain high-z SMBH. We also compute the X-ray emission from such accreting stellar BH population in the [0.5 - 8] keV band and find it comparable to the one produced by high-mass X-ray binaries. This study suggests that early BHs, by X-ray pre-heating of the intergalactic medium at cosmic dawn, might leave a specific signature on the HI 21 cm line power spectrum potentially detectable with SKA.

  1. The public health challenge of early growth failure in India.

    PubMed

    Young, M F; Martorell, R

    2013-05-01

    Recent recognition of the early onset and high prevalence of wasting (30%) and stunting (20%) among infants 0-5 months in India draws attention to the need to understand the causes and develop prevention strategies. Such growth failure has dire consequences in the short (increased mortality) and long-term (loss of human capital and increased risk of chronic diseases). Food interventions before 6 months will increase morbidity/mortality through contamination in settings of poor sanitation and hygiene. Waiting to improve nutrition only after the initiation of complementary feeding at 6 months is a missed opportunity and may permanently alter life trajectory and potential. This underscores the importance of maternal nutrition. Iron and folic acid and protein energy supplementation during pregnancy are interventions that can improve maternal nutrition and birth outcomes. Maternal supplementation during lactation should be considered as a means to improve maternal and child outcomes, although the evidence needs strengthening. Support and counseling are also required to improve maternal diets and promote exclusive breastfeeding. Programs focused on improving maternal nutrition across the continuum of preconception, pregnancy and lactation are likely to have the greatest impact as mothers are central gatekeepers to the health and future of their children.

  2. The Early Growth and Development Study: A Prospective Adoption Design

    PubMed Central

    Leve, Leslie D.; Neiderhiser, Jenae M.; Ge, Xiaojia; Scaramella, Laura V.; Conger, Rand D.; Reid, John B.; Shaw, Daniel S.; Reiss, David

    2014-01-01

    The Early Growth and Development Study is a prospective adoption study of birth parents, adoptive parents, and adopted children (N = 350 triads) that was initiated in 2003. The primary study aims are to examine how family processes mediate or moderate the expression of genetic influences in order to aid in the identification of specific family processes that could serve as malleable targets for intervention. Participants in the study were recruited following the birth of the child through adoption agencies located throughout the United States. Assessments occur at 6-month intervals until child age 3 years. Data collection includes the following primary constructs: infant/toddler temperament, social behavior, and health; birth and adoptive parent personality characteristics, psychopathology, competence, stress, and substance use; adoptive parenting and marital relations; and prenatal exposure to drugs and maternal stress. Preliminary analyses suggest the representativeness of the sample and minimal confounding effects of current trends in adoption practices, including openness and selective placement. Future plans are described. PMID:17539368

  3. Influence of egg shell embryonic incubation temperature and broiler breeder flock age on posthatch growth performance and carcass characteristics.

    PubMed

    Hulet, R; Gladys, G; Hill, D; Meijerhof, R; El-Shiekh, T

    2007-02-01

    A study was conducted to examine the posthatch growth performance of high-yielding broilers when eggs were incubated at 3 different embryo temperatures from 2 flocks of breeders at different ages (different egg size). Two thousand, four hundred eggs from 2 broiler breeder flocks (29 and 57 wk of age) of the same high-yielding strain (Cobb x Cobb) were incubated in the same incubator for 16 d at 37.5 degrees C. Following candling, the eggs from the 2 flocks were transferred into 3 hatcher cabinets at starting temperatures of 36.5 degrees C (low, L), 37.6 degrees C (middle, M), and 38.7 degrees C (high, H) and adjusted to achieve a shell temperature of 37.5 degrees C (L), 38.6 degrees C (M), and 39.7 degrees C (H) using an infrared thermometer. All chicks were taken off at 21 d of incubation, randomized into floor pens, and reared for 44 d. Body weights, feed intake, and feed conversion were determined at 21, 35, and 44 d of age. Body weight of birds from the H treatment was significantly less at 21, 35, and 44 d compared with the M birds. Birds in the L group weighed significantly less at 35 and 44 d compared with the M birds. Progeny from the older breeder flock had significantly greater BW at 1, 21, and 35 d of age, but had only numerically greater BW at 44 d when compared with birds from the younger flock. Feed conversion for the H birds was significantly higher from 0 to 21 d of age compared with the M and L birds. Broilers from the 29-wk-old breeder flock had lower cumulative feed conversion values than the birds from the 57-wk-old flock. No significant differences in mortality were observed. Posthatch performance appears to be affected by hatcher environment as determined by embryo shell temperature.

  4. NFκB signaling regulates embryonic and adult neurogenesis

    PubMed Central

    ZHANG, Yonggang; HU, Wenhui

    2013-01-01

    Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also crosstalks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells. PMID:24324484

  5. Simultaneous targeting of insulin-like growth factor-1 receptor and anaplastic lymphoma kinase in embryonal and alveolar rhabdomyosarcoma: a rational choice.

    PubMed

    van Gaal, J Carlijn; Roeffen, Melissa H S; Flucke, Uta E; van der Laak, Jeroen A W M; van der Heijden, Gwen; de Bont, Eveline S J M; Suurmeijer, Albert J H; Versleijen-Jonkers, Yvonne M H; van der Graaf, Winette T A

    2013-11-01

    Rhabdomyosarcoma (RMS) is an aggressive soft tissue tumour mainly affecting children and adolescents. Since survival of high-risk patients remains poor, new treatment options are awaited. The aim of this study is to investigate anaplastic lymphoma kinase (ALK) and insulin-like growth factor-1 receptor (IGF-1R) as potential therapeutic targets in RMS. One-hundred-and-twelve primary tumours (embryonal RMS (eRMS)86; alveolar RMS (aRMS)26) were collected. Expression of IGF-1R, ALK and downstream pathway proteins was evaluated by immunohistochemistry. The effect of ALK inhibitor NVP-TAE684 (Novartis), IGF-1R antibody R1507 (Roche) and combined treatment was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in cell lines (aRMS Rh30, Rh41; eRMS Rh18, RD). IGF-1R and ALK expression was observed in 72% and 92% of aRMS and 61% and 39% of eRMS, respectively. Co-expression was observed in 68% of aRMS and 32% of eRMS. Nuclear IGF-1R expression was an adverse prognostic factor in eRMS (5-year survival 46.9 ± 18.7% versus 84.4 ± 5.9%, p=0.006). In vitro, R1507 showed diminished viability predominantly in Rh41. NVP-TAE684 showed diminished viability in Rh41 and Rh30, and to a lesser extent in Rh18 and RD. Simultaneous treatment revealed synergistic activity against Rh41 and Rh30. Co-expression of IGF-1R and ALK is detected in eRMS and particularly in aRMS. As combined inhibition reveals synergistic cytotoxic effects, this combination seems promising and needs further investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Decreased levels of embryonic retinoic acid synthesis accelerate recovery from arterial growth delay in a mouse model of DiGeorge syndrome

    PubMed Central

    Ryckebüsch, Lucile; Bertrand, Nicolas; Mesbah, Karim; Bajolle, Fanny; Niederreither, Karen; Kelly, Robert G.; Zaffran, Stéphane

    2010-01-01

    Rationale Loss of Tbx1 and decrease of retinoic acid (RA) synthesis result in DiGeorge/Velo-Cardio-Facial syndrome (DGS/VCFS)-like phenotypes in mouse models, including defects in septation of the outflow tract (OFT) of the heart and anomalies of pharyngeal arch-derived structures including arteries of the head and neck, laryngeal-tracheal cartilage, and thymus/parathyroid. Wild-type levels of Tbx1 and RA signaling are required for normal pharyngeal arch artery (PAA) development. Recent studies have shown that reduction of RA or loss of Tbx1 alters the contribution of second heart field (SHF) progenitor cells to the elongating heart tube. Objective Here we tested whether Tbx1 and the RA signaling pathway interact during the deployment of the SHF and formation of the mature aortic arch. Methods and Results Molecular markers of the SHF, neural crest cells (NCC) and smooth muscle cells (SMC) were analyzed in Raldh2;Tbx1 compound heterozygous mutants. Our results revealed that the SHF and OFT develop normally in Raldh2+/−;Tbx1+/− embryos. However, we found that decreased levels of RA accelerate the recovery from arterial growth delay observed in Tbx1+/− mutant embryos. This compensation coincides with the differentiation of SMC in the 4th PAAs, and is associated with severity of NCC migration defects observed in these mutants. Conclusions Our data suggest that differences in levels of embryonic RA may contribute to the variability in great artery anomalies observed in DGS/VCFS patients. PMID:20110535

  7. Embryonic toxico-pathological effects of meglumine antimoniate using a chick embryo model.

    PubMed

    Khosravi, Ahmad; Sharifi, Iraj; Tavakkoli, Hadi; Derakhshanfar, Amin; Keyhani, Ali Reza; Salari, Zohreh; Mosallanejad, Seyedeh Saedeh; Bamorovat, Mehdi

    2018-01-01

    Leishmaniasis is one of the diverse and neglected tropical diseases. Embryo-toxicity of drugs has always been a major concern. Chick embryo is a preclinical model relevant in the assessment of adverse effects of drugs. The current study aimed to assess embryonic histopathological disorders and amniotic fluid biochemical changes following meglumine antimoniate treatment. The alteration of vascular branching pattern in the chick's extra-embryonic membrane and exploration of molecular cues to early embryonic vasculogenesis and angiogenesis were also quantified. Embryonated chicken eggs were treated with 75 or 150 mg/kg of meglumine antimoniate. Embryo malformations, growth retardation and haemorrhages on the external body surfaces were accompanied by histopathological lesions in the brain, kidney, liver and heart in a dose-dependent manner. Significant rise occurred in the biochemical indices of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase and amylase in the amniotic fluid. Quantification of the extra-embryonic membrane vasculature showed that the anti-angiogenic and anti-vasculogenic effects of the drug were revealed by a significant decrease in fractal dimension value and mean capillary area. The relative expression levels of vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 mRNA also significantly reduced. Concerns of a probable teratogenicity of meglumine antimoniate were established by data presented in this study. It is concluded that tissue lesions, amniotic fluid disturbance, altered early extra-embryonic vascular development and gene expression as well as the consecutive cascade of events, might eventually lead to developmental defects in embryo following meglumine antimoniate treatment. Therefore, the use of meglumine antimoniate during pregnancy should be considered as potentially embryo-toxic. Hence, physicians should be aware of such teratogenic effects and limit the use of this drug

  8. Annual Growth of Contract Costs for Major Programs in Development and Early Production

    DTIC Science & Technology

    2016-03-21

    changes, we can identify some underlying drivers and rule out others. Development and Early Production Differences BBP-era drops are driven by dropping...Annual Growth of Contract Costs for Major Programs in Development and Early Production Dan Davis and Philip S...Growth of Contract Costs for Major Programs in Development and Early Production Dan Davis and Philip S. Antón March 21, 2016 SUMMARY Cost is

  9. Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes

    PubMed Central

    Basma, Hesham; Soto-Gutiérrez, Alejandro; Yannam, Govardhana Rao; Liu, Liping; Ito, Ryotaro; Yamamoto, Toshiyuki; Ellis, Ewa; Carson, Steven D.; Sato, Shintaro; Chen, Yong; Muirhead, David; Navarro-Álvarez, Nalu; Wong, Ron; Roy-Chowdhury, Jayanta; Platt, Jeffrey L.; Mercer, David F.; Miller, John D.; Strom, Stephen C.; Kobayashi, Noaya; Fox, Ira J.

    2009-01-01

    Background & Aims The ability to obtain unlimited numbers of human hepatocytes would improve development of cell-based therapies for liver diseases, facilitate the study of liver biology and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, can potentially differentiate into any cell type and could therefore be developed as a source of human hepatocytes. Methods To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human Activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein receptor expression. Characterization was performed by real-time PCR, imunohistochemistry, immunoblot, functional assays and transplantation. Results Embryonic stem cell-derived hepatocytes expressed liver-specific genes but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes and demonstrated human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha-1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. Conclusion Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein receptor expression and could potentially be used in drug discovery research and developed as therapeutics. PMID:19026649

  10. Root-zone temperature and water availability affect early root growth of planted longleaf pine

    Treesearch

    M.A. Sword

    1995-01-01

    Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...

  11. Effects of In Ovo feeding of dextrin-iodinated casein in broilers: I. Hatch weights and early growth performance.

    PubMed

    Abousaad, S; Lassiter, K; Piekarski, A; Chary, P; Striplin, K; Christensen, K; Bielke, L R; Hargis, B M; Dridi, S; Bottje, W G

    2017-05-01

    This study was conducted to determine the effect of in ovo feeding of dextrin (Dext) and iodinated casein (IC) on hatch and early growth in broilers. Three experiments were conducted at a commercial hatchery using a commercial Inovoject™ system with treatments occurring in conjunction with vaccination at transfer from incubator to hatcher units (18.5 to 19 d embryonic development). In all 3 experiments, approximately 15,000 eggs (2,500 eggs per group) were treated and transferred to a single hatcher unit. Treatments in Exp. 1 consisted of buffered saline solution alone (Control, Cont) or a dextrin solution (Dext, 18% maltodextrin, 10% potato starch dextrin) containing zero, 80, 240, 720, or 2,160 μg IC/mL. The results of this initial experiment indicated that broiler chicks at hatch that received 240 and 720 μg IC/mL in Dext were heavier (P < 0.05) compared to the other treatment groups; there were no differences in hatchability between groups. Based on these findings, subsequent studies used treatments of zero, 240, and 480 μg/mL IC in Dext or Cont. In Exp. 2, hatch weights in all treatment groups were higher (P < 0.05) compared to those receiving Cont. In Exp. 3, chicks given Dext alone or 240 and 480 μg/mL in saline weighed less at hatch compared to the other treatment groups. However, chicks provided Dext alone in Exp. 3 had less weight loss after a 24-hour holding period compared to the other groups. All treatment groups exhibited greater weight gain from one to 10 d compared to the Cont group. The results indicate that in ovo feeding of broiler embryos with Dext containing 240 and 480 μg IC/mL may have beneficial effects on broiler hatch weights and early growth rate. © 2016 Poultry Science Association Inc.

  12. Delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Meenakumari, Karukayil J; Krishna, Amitabh

    2005-01-01

    The unusual feature of the breeding cycle of Cynopterus sphinx at Varanasi is the significant variation in gestation length of the two successive pregnancies of the year. The aim of this study was to investigate whether the prolongation of the first pregnancy in C. sphinx is due to delayed embryonic development. The first (winter) pregnancy commences in late October and lasts until late March and has a gestation period of about 150 days. The second (summer) pregnancy commences in April and lasts until the end of July or early August with a gestation period of about 125 days. Changes in the size and weight of uterine cornua during the two successive pregnancies suggest retarded embryonic growth during November and December. Histological analysis during the period of retarded embryonic development in November and December showed a slow gastrulation process. The process of amniogenesis was particularly slow. When the embryos attained the early primitive streak stage, their developmental rate suddenly increased considerably. During the summer pregnancy, on the other hand, the process of gastrulation was much faster and proceeded quickly. A comparison of the pattern of embryonic development for 4 consecutive years consistently showed retarded or delayed embryonic development during November and December. The time of parturition and post-partum oestrus showed only a limited variation from 1 year to another. This suggests that delayed embryonic development in C. sphinx may function to synchronize parturition among females. The period of delayed embryonic development in this species clearly coincides with the period of fat deposition. The significance of this correlation warrants further investigation.

  13. Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae.

    PubMed

    Di Paolo, Carolina; Groh, Ksenia J; Zennegg, Markus; Vermeirssen, Etiënne L M; Murk, Albertinka J; Eggen, Rik I L; Hollert, Henner; Werner, Inge; Schirmer, Kristin

    2015-12-01

    The occurrence of chronic or delayed toxicity resulting from the exposure to sublethal chemical concentrations is an increasing concern in environmental risk assessment. The Fish Embryo Toxicity (FET) test with zebrafish provides a reliable prediction of acute toxicity in adult fish, but it cannot yet be applied to predict the occurrence of chronic or delayed toxicity. Identification of sublethal FET endpoints that can assist in predicting the occurrence of chronic or delayed toxicity would be advantageous. The present study characterized the occurrence of delayed toxicity in zebrafish larvae following early exposure to PCB126, previously described to cause delayed effects in the common sole. The first aim was to investigate the occurrence and temporal profiles of delayed toxicity during zebrafish larval development and compare them to those previously described for sole to evaluate the suitability of zebrafish as a model fish species for delayed toxicity assessment. The second aim was to examine the correlation between the sublethal endpoints assessed during embryonal and early larval development and the delayed effects observed during later larval development. After exposure to PCB126 (3-3000ng/L) until 5 days post fertilization (dpf), larvae were reared in clean water until 14 or 28 dpf. Mortality and sublethal morphological and behavioural endpoints were recorded daily, and growth was assessed at 28 dpf. Early life exposure to PCB126 caused delayed mortality (300 ng/L and 3000 ng/L) as well as growth impairment and delayed development (100 ng/L) during the clean water period. Effects on swim bladder inflation and cartilaginous tissues within 5 dpf were the most promising for predicting delayed mortality and sublethal effects, such as decreased standard length, delayed metamorphosis, reduced inflation of swim bladder and column malformations. The EC50 value for swim bladder inflation at 5 dpf (169 ng/L) was similar to the LC50 value at 8 dpf (188 and 202 ng/L in

  14. Growth in Early Reading Skills from Kindergarten to Third Grade

    ERIC Educational Resources Information Center

    Speece, Deborah L.; Ritchey, Kristen D.; Cooper, David H.; Roth, Froma P.; Schatschneider, Christopher

    2004-01-01

    We examined models of individual change and correlates of change in the growth of reading skills in a sample of 40 children from kindergarten through third grade. A broad range of correlates was examined and included family literacy, oral language, emergent reading, intelligence, spelling, and demographic variables. Individual growth curve…

  15. Regulation of early human growth: impact on long-term health.

    PubMed

    Koletzko, Berthold; Chourdakis, Michael; Grote, Veit; Hellmuth, Christian; Prell, Christine; Rzehak, Peter; Uhl, Olaf; Weber, Martina

    2014-01-01

    Growth and development are central characteristics of childhood. Deviations from normal growth can indicate serious health challenges. The adverse impact of early growth faltering and malnutrition on later health has long been known. In contrast, the impact of rapid early weight and body fat gain on programming of later disease risk have only recently received increased attention. Numerous observational studies related diet in early childhood and rapid early growth to the risk of later obesity and associated disorders. Causality was confirmed in a large, double-blind randomised trial testing the 'Early Protein Hypothesis'. In this trial we found that attenuation of protein supply in infancy normalized early growth and markedly reduced obesity prevalence in early school age. These results indicate the need to describe and analyse growth patterns and their regulation through diet in more detail and to characterize the underlying metabolic and epigenetic mechanisms, given the potential major relevance for public health and policy. Better understanding of growth patterns and their regulation could have major benefits for the promotion of public health, consumer-orientated nutrition recommendations, and the development of improved food products for specific target populations. © 2014 S. Karger AG, Basel.

  16. Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth.

    PubMed

    Liu, Jinwen; Hai, Guanghui; Wang, Chong; Cao, Shenquan; Xu, Wenjing; Jia, Zhigang; Yang, Chuanping; Wang, Jack P; Dai, Shaojun; Cheng, Yuxiang

    2015-08-03

    Wood is derived from the secondary growth of tree stems. In this study, we investigated the global changes of protein abundance in Populus early stems using a proteomic approach. Morphological and histochemical analyses revealed three typical stages during Populus early stems, which were the primary growth stage, the transition stage from primary to secondary growth and the secondary growth stage. A total of 231 spots were differentially abundant during various growth stages of Populus early stems. During Populus early stem lignifications, 87 differential spots continuously increased, while 49 spots continuously decreased. These two categories encompass 58.9% of all differential spots, which suggests significant molecular changes from primary to secondary growth. Among 231 spots, 165 unique proteins were identified using LC-ESI-Q-TOF-MS, which were classified into 14 biological function groups. The proteomic characteristics indicated that carbohydrate metabolism, oxido-reduction, protein degradation and secondary cell wall metabolism were the dominantly occurring biochemical processes during Populus early stem development. This study helps in elucidating biochemical processes and identifies potential wood formation-related proteins during tree early stem development. It is a comprehensive proteomic investigation on tree early stem development that, for the first time, reveals the overall molecular networks that occur during Populus early stem lignifications. Copyright © 2015. Published by Elsevier B.V.

  17. The effects of 1α, 25-dihydroxyvitamin D3 and transforming growth factor-β3 on bone development in an ex vivo organotypic culture system of embryonic chick femora.

    PubMed

    Smith, Emma L; Rashidi, Hassan; Kanczler, Janos M; Shakesheff, Kevin M; Oreffo, Richard O C

    2015-01-01

    Transforming growth factor-beta3 (TGF-β3) and 1α,25-dihydroxyvitamin D3 (1α,25 (OH) 2D3) are essential factors in chondrogenesis and osteogenesis respectively. These factors also play a fundamental role in the developmental processes and the maintenance of skeletal integrity, but their respective direct effects on these processes are not fully understood. Using an organotypic bone rudiment culture system the current study has examined the direct roles the osteotropic factors 1α,25 (OH)2D3 and TGF-β3 exert on the development and modulation of the three dimensional structure of the embryonic femur. Isolated embryonic chick femurs (E11) were organotypically cultured for 10 days in basal media, or basal media supplemented with either 1α,25 (OH) 2D3 (25 nM) or TGF-β3 (5 ng/mL & 15 ng/mL). Analyses of the femurs were undertaken using micro-computed tomography (μCT), histology and immunohistochemistry. 1α,25 (OH)2D3 supplemented cultures enhanced osteogenesis directly in the developing femurs with elevated levels of osteogenic markers such as type 1 collagen. In marked contrast organotypic femur cultures supplemented with TGF-β3 (5 ng/mL & 15 ng/mL) demonstrated enhanced chondrogenesis with a reduction in osteogenesis. These studies demonstrate the efficacy of the ex vivo organotypic embryonic femur culture employed to elucidate the direct roles of these molecules, 1α,25 (OH) 2D3 and TGF-β3 on the structural development of embryonic bone within a three dimensional framework. We conclude that 1α,25(OH)2D and TGF-β3 modify directly the various cell populations in bone rudiment organotypic cultures effecting tissue metabolism resulting in significant changes in embryonic bone growth and modulation. Understanding the roles of osteotropic agents in the process of skeletal development is integral to developing new strategies for the recapitulation of bone tissue in later life.

  18. Impaired Embryonic Development in Mice Overexpressing the RNA-Binding Protein TIAR

    PubMed Central

    Kharraz, Yacine; Salmand, Pierre-Adrien; Camus, Anne; Auriol, Jacques; Gueydan, Cyril; Kruys, Véronique; Morello, Dominique

    2010-01-01

    Background TIA-1-related (TIAR) protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs). Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation. Methodology/Principal Findings To examine potential TIAR tissue-specificity in various cellular contexts, either embryonic or adult, we constructed a TIAR transgenic allele (loxPGFPloxPTIAR) allowing the conditional expression of TIAR protein upon Cre recombinase activity. Here, we report the role of TIAR during mouse embryogenesis. We observed that early TIAR overexpression led to low transgene transmission associated with embryonic lethality starting at early post-implantation stages. Interestingly, while pre-implantation steps evolved correctly in utero, in vitro cultured embryos were very sensitive to culture medium. Control and transgenic embryos developed equally well in the G2 medium, whereas culture in M16 medium led to the phosphorylation of eIF2α that accumulated in cytoplasmic granules precluding transgenic blastocyst hatching. Our results thus reveal a differential TIAR-mediated embryonic response following artificial or natural growth environment. Conclusions/Significance This study reports the importance of the tightly balanced expression of the RNA-binding protein TIAR for normal embryonic development, thereby emphasizing the role of post-transcriptional regulations in early embryonic programming. PMID:20596534

  19. Early growth, dominance acquisition and lifetime reproductive success in male and female cooperative meerkats

    PubMed Central

    English, Sinead; Huchard, Elise; Nielsen, Johanna F; Clutton-Brock, Tim H

    2013-01-01

    In polygynous species, variance in reproductive success is higher in males than females. There is consequently stronger selection for competitive traits in males and early growth can have a greater influence on later fitness in males than in females. As yet, little is known about sex differences in the effect of early growth on subsequent breeding success in species where variance in reproductive success is higher in females than males, and competitive traits are under stronger selection in females. Greater variance in reproductive success has been documented in several singular cooperative breeders. Here, we investigated consequences of early growth for later reproductive success in wild meerkats. We found that, despite the absence of dimorphism, females who exhibited faster growth until nutritional independence were more likely to become dominant, whereas early growth did not affect dominance acquisition in males. Among those individuals who attained dominance, there was no further influence of early growth on dominance tenure or lifetime reproductive success in males or females. These findings suggest that early growth effects on competitive abilities and fitness may reflect the intensity of intrasexual competition even in sexually monomorphic species. PMID:24340181

  20. Changes in the antioxidant metabolism in the embryonic development of the common South American toad Bufo arenarum: differential responses to pesticide in early embryos and autonomous-feeding larvae.

    PubMed

    Ferrari, Ana; Anguiano, Liliana; Lascano, Cecilia; Sotomayor, Verónica; Rosenbaum, Enrique; Venturino, Andrés

    2008-01-01

    Amphibians may be critically challenged by aquatic contaminants during their embryonic development. Many classes of compounds, including organophosphorus pesticides, are able to cause oxidative stress that affects the delicate cellular redox balance regulating tissue modeling. We determined the progression of antioxidant defenses during the embryonic development of the South American common toad, Bufo arenarum. Superoxide dismutase (SOD) and catalase (CAT) activities were high in the unfertilized eggs, and remained constant during the first stages of development. SOD showed a significant increase when the gills were completely active and opercular folds began to form. Reductase (GR) activity was low in the oocytes and increased significantly when gills and mouth were entirely developed and the embryos presented a higher exposure to pro-oxidant conditions suggesting an environmental control. Reduced glutathione (GSH) content was also initially low, and rose continuously pointing out an increasing participation of GSH-related enzymes in the control of oxidative stress. GSH peroxidases and GSH-S-transferases showed relatively high and constant activities, probably related to lipid peroxide control. B. arenarum embryos have plenty of yolk platelets containing lipids, which provide the energy and are actively transferred to the newly synthesized membranes during the early embryonic development. Exposure to the pro-oxidant pesticide malathion during 48 h did not significantly affect the activity of antioxidant enzymes in early embryos, but decreased the activities of CAT, GR, and the pool of GSH in larvae. Previous work indicated that lipid peroxide levels were kept low in malathion-exposed larvae, thus we conclude that oxidative stress is overcome by the antioxidant defenses. The increase in the antioxidant metabolism observed in the posthatching phase of development of B. arenarum embryo, thus constitutes a defense against natural and human-generated pro

  1. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways.

    PubMed

    Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei

    2017-06-27

    The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.

  2. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways

    PubMed Central

    Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei

    2017-01-01

    The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use. PMID:28487501

  3. Derivation, propagation and differentiation of human embryonic stem cells.

    PubMed

    Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard

    2004-04-01

    Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug

  4. Short periods of incubation, egg turning during storage and broiler breeder hens age for early development of embryos, hatching results, chicks quality and juvenile growth.

    PubMed

    Damaziak, K; Paweska, M; Gozdowski, D; Niemiec, J

    2018-05-14

    An effect of modification of storage conditions of the eggs of broiler breeder flocks at the age of 49-, 52- and 70-, 73-wks of life on an early embryonic development, hatching time and synchronization, hatchability rates, chicks quality and broiler growth was investigated. The eggs were divided into 4 experimental groups: COI = eggs storage 5 d, at turning every 12 h; NSP = eggs storage 12 d, at turning every 12 h; SPIDES = were treated with 4 h pre-incubation at 30°C and 50-55% air humidity, delivered at 5 and 10 d over of 12 d of storage, and turning every 12 h; NCOI = eggs storage 12 d, no turning and no pre-incubation. Eggs from older hens were characterized by poorer hatchability and poorer chicks quality. The use of 2 × 4 h pre-incubation in 12 d of eggs storage could have an effect on the initial acceleration of embryonic development in eggs of young hens, contributing to the alignment of embryos development in eggs from young and older hens to 72 h of incubation. Pre-incubation had no effect on the length of incubation period, hatching window, but it increased the hatchability of the set and apparently fertilized eggs and decreased the number of eggs not hatched, and also improved chicks quality. Eggs turning by 90° every 12 h during the storage positively affected the embryonic development, shortening the incubation time and the quality of chicks, but had no effect on hatchability rates and body weight in 42 d of life. Based on the obtained results, it can be concluded that the applied modifications can be effective in counteracting the negative effects of storage of hatching eggs from both young and older birds.

  5. Gestational Weight Gain and Offspring Longitudinal Growth in Early Life.

    PubMed

    Diesel, Jill C; Eckhardt, Cara L; Day, Nancy L; Brooks, Maria M; Arslanian, Silva A; Bodnar, Lisa M

    2015-01-01

    Excessive gestational weight gain (GWG) increases the risk of childhood obesity, but little is known about its association with infant growth patterns. The aim of this study was to examine the association between GWG and infant growth patterns. Pregnant women (n = 743) self-reported GWG at delivery, which we classified as inadequate, adequate or excessive based on the current guidelines. Offspring weight-for-age z-score (WAZ), length-for-age z-score (LAZ (with height-for-age (HAZ) in place of length at 36 months)) and body mass index z-score (BMIZ) were calculated at birth, 8, 18 and 36 months using the 2006 World Health Organization growth standards. Linear mixed models estimated the change in z-score from birth to 36 months by GWG. The mean (SD) WAZ was -0.22 (1.20) at birth. Overall, WAZ and BMIZ increased from birth to, approximately, 24 months and decreased from 24 to 36 months, while LAZ/HAZ decreased from birth through 36 months. Excessive GWG was associated with higher offspring WAZ and BMIZ at birth, 8 and 36 months, and higher HAZ at 36 months, compared with adequate GWG. Compared with the same referent, inadequate GWG was associated with smaller WAZ and BMIZ at birth and 8 months. Excessive GWG may predispose infants to obesogenic growth patterns, while inadequate GWG may not have a lasting impact on infant growth.

  6. Gestational weight gain and offspring longitudinal growth in early life

    PubMed Central

    Diesel, Jill C.; Eckhardt, Cara L.; Day, Nancy L.; Brooks, Maria M.; Arslanian, Silva A.; Bodnar, Lisa M.

    2015-01-01

    Background Excessive gestational weight gain (GWG) increases the risk of childhood obesity, but little is known about its association with infant growth patterns. Aim To examine the GWG-infant growth association. Methods Pregnant women (n=743) self-reported GWG at delivery, which we classified as inadequate, adequate, or excessive based on current guidelines. Offspring weight-for-age z-scores (WAZ), length-for-age z-scores (LAZ (with height-for-age (HAZ) in place of length at 36 months)), and body mass index z-scores (BMIZ) were calculated at birth, 8, 18, and 36 months using the 2006 WHO growth standards. Linear mixed models estimated the change in z-scores from birth to 36 months by GWG. Results The mean (SD) WAZ was −0.22 (1.20) at birth. Overall, WAZ and BMIZ increased from birth to approximately 24 months and decreased from 24 to 36 months, while LAZ/HAZ decreased from birth through 36 months. Excessive GWG was associated with higher offspring WAZ and BMIZ at birth, 8, and 36 months, and higher HAZ at 36 months, compared with adequate GWG. Compared with the same referent, inadequate GWG was associated with smaller WAZ and BMIZ at birth and 8 months. Conclusion Excessive GWG may predispose infants to obesogenic growth patterns while inadequate GWG may not have a lasting impact on infant growth. PMID:26279171

  7. Reduced heart rate and cardiac output differentially affect angiogenesis, growth, and development in early chicken embryos (Gallus domesticus).

    PubMed

    Branum, Sylvia R; Yamada-Fisher, Miho; Burggren, Warren

    2013-01-01

    An increase in both vascular circumferential tension and shear stress in the developing vasculature of the chicken embryo has been hypothesized to stimulate angiogenesis in the developing peripheral circulation chorioallantoic membrane (CAM). To test this hypothesis, angiogenesis in the CAM, development, and growth were measured in the early chicken embryo, following acute and chronic topical application of the purely bradycardic drug ZD7288. At hour 56, ZD7288 reduced heart rate (f(H)) by ~30% but had no significant effect on stroke volume (~0.19 ± 0.2 μL), collectively resulting in a significant fall in cardiac output (CO) from ~27 ± 3 to 18 ± 2 μL min(-1). Mean f(H) at 72 h of development was similarly significantly lowered by acute ZD7288 treatment (250 μM) to 128 ± 0.3 beats min(-1), compared with 174.5 ± 0.3 and 174.7 ± 0.8 beats min(-1) in control and Pannett-Compton (P-C) saline-treated embryos, respectively. Chronic dosing with ZD7288-and the attendant decreases in f(H) and CO-did not change eye diameter or cervical flexion (key indicators of development rate) at 120 h but significantly reduced overall growth (wet and dry body mass decreased by 20%). CAM vessel density index (reflecting angiogenesis) measured 200-400 μm from the umbilical stalk was not altered, but ZD7288 reduced vessel numbers-and therefore vessel density-by 13%-16% more distally (500-600 μm from umbilical stalk) in the CAM. In the ZD7288-treated embryos, a decrease in vessel length was found within the second branch order (~300-400 μm from the umbilical stock), while a decrease in vessel diameter was found closer to the umbilical stock, beginning in the first branch order (~200-300 μm). Paradoxically, chronic application of P-C saline also reduced peripheral CAM vessel density index at 500 and 600 μm by 13% and 7%, respectively, likely from washout of local angiogenic factors. In summary, decreased f(H) with reduced CO did not slow development rate but reduced embryonic

  8. A case of functional growth hormone deficiency and early growth retardation in a child with IFT172 mutations.

    PubMed

    Lucas-Herald, Angela K; Kinning, Esther; Iida, Aritoshi; Wang, Zheng; Miyake, Noriko; Ikegawa, Shiro; McNeilly, Jane; Ahmed, S Faisal

    2015-04-01

    Ciliopathies are a group of rare conditions that present through a wide range of manifestations. Given the relative common occurrence of defects of the GH/IGF-I axis in children with short stature and growth retardation, the association between ciliopathies and these defects needs further attention. Our patient is a boy who was born at term and noted to have early growth retardation and weight gain within the first 18 months of life. Biochemical tests demonstrated low IGF-I but a normal peak GH on stimulation and an adequate increase in IGF-I on administration of recombinant human growth hormone (rhGH). A magnetic resonance imaging scan revealed pituitary hypoplasia and an ectopic posterior pituitary. His growth responded well to rhGH therapy. Subsequently he also developed a retinopathy of his rods and cones, metaphyseal dysplasia, and hypertension with renal failure requiring renal replacement therapy. Whole-exome sequencing demonstrated compound heterozygous mutations of IFT172, thus consistent with a ciliopathy. This is the first reported case of a child with a mutation in IFT172 who presented with growth retardation in early childhood and was initially managed as a case of functional GH deficiency that responded to rhGH therapy. This case highlights the importance of ciliary function in pituitary development and the link between early onset growth failure and ciliopathies.

  9. Frequent Daytime Naps Predict Vocabulary Growth in Early Childhood

    ERIC Educational Resources Information Center

    Horváth, Klára; Plunkett, Kim

    2016-01-01

    Background: The facilitating role of sleep for language learning is well-attested in adults and to a lesser extent in infants and toddlers. However, the longitudinal relationship between sleep patterns and early vocabulary development is not well understood. Methods: This study investigates how measures of sleep are related to the development of…

  10. Early Growth of Black Walnut Trees From Twenty Seed Sources

    Treesearch

    Calvin F. Bey; John R. Toliver; Paul L. Roth

    1971-01-01

    Early results of a black walnut cornseed source study conducted in southern Illinois suggest that seed should be collected from local or south-of-local areas. Trees from southern sources grew faster and longer than trees from northern sources. Trees from southern sources flushed slightly earlier and held their leaves longer than trees from northern sources. For the...

  11. Avoid Early Selection for Growth Rate in Cottonwood

    Treesearch

    D. T. Cooper; Robert B. Ferguson

    1971-01-01

    A sample of 37 cottonwood clones from a selection program was compared with a sample of 40 random clones in a 14-year test at two sites near Stoneville, Mississippi. Throughout the test period, the select sample was slightly better in mean growth rate, but this difference decreased with age. Performance of ''blue tag" clones selected at age 5 and planted...

  12. Effects of embryo size at transfer (whole versus demi) and early pregnancy progesterone supplementation on embryo growth and pregnancy-specific protein bovine concentrations in recipient dairy heifers.

    PubMed

    Lopes-da-Costa, L; Chagas e Silva, J; Deloche, M C; Jeanguyot, N; Humblot, P; Horta, A E M

    2011-08-01

    Day 21 samples, 41% of Day 25, 95% of Day 35, 96% of Day 42, 99% of Day 49 and in 100% of samples of Days 56 and 63. Concentrations of PSPB increased (P < 0.05) from Days 21 to 42 and from Days 56 to 63, with a plateau between Days 42 to 56. Demi embryo pregnancies had higher (P < 0.05) plasma PSPB concentrations on Days 35 and 42 than whole embryo pregnancies. Progesterone supplementation had a positive effect (P < 0.01) on PSPB concentrations from Days 35 to 63. Concentrations of PSPB were similar in non-supplemented whole and demi embryo pregnancies from Days 7 to Day 63. In contrast, in supplemented recipients, demi embryo pregnancies had higher (P < 0.05) PSPB concentrations on Days 25 to 42 than whole embryo pregnancies. No significant correlation was found between P4 and PSPB concentrations or between the concentrations of these hormones and embryonic measurements on Day 42. In conclusion, demi embryos experienced a compensatory growth until Day 42 of pregnancy, attaining a similar size to that of whole embryos and originating conceptuses producing similar plasma PSPB concentrations to those of whole embryo derived conceptuses. Embryonic growth and conceptus secretion of PSPB were positively stimulated by early pregnancy exogenous P4 treatment. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Insulin-like growth factor (IGF) signalling is required for early dorso-anterior development of the zebrafish embryo.

    PubMed

    Eivers, Edward; McCarthy, Karena; Glynn, Catherine; Nolan, Catherine M; Byrnes, Lucy

    2004-12-01

    The insulin-like growth factor (IGF) signalling pathway has been highly conserved in animal evolution and, in mammals and Xenopus, plays a key role in embryonic growth and development, with the IGF-1 receptor (IGF-1R) being a crucial regulator of the signalling cascade. Here we report the first functional role for the IGF pathway in zebrafish. Expression of mRNA coding for a dominant negative IGF-1R resulted in embryos that were small in size compared to controls and had disrupted head and CNS development. At its most extreme, this phenotype was characterized by a complete loss of head and eye structures, an absence of notochord and the presence of abnormal somites. In contrast, up-regulation of IGF signalling following injection of IGF-1 mRNA, resulted in a greatly expanded development of anterior structures at the expense of trunk and tail. IGF-1R knockdown caused a significant decrease in the expression of Otx2, Rx3, FGF8, Pax6.2 and Ntl, while excess IGF signalling expanded Otx2 expression in presumptive forebrain tissue and widened the Ntl expression domain in the developing notochord. The observation that IGF-1R knockdown reduced expression of two key organizer genes (chordin and goosecoid) suggests that IGF signalling plays a role in regulating zebrafish organizer activity. This is supported by the expression of IGF-1, IGF-2 and IGF-1R in shield-stage zebrafish embryos and the demonstration that IGF signalling influences expression of BMP2b, a gene that plays an important role in zebrafish pattern formation. Our data is consistent with a common pathway for integration of IGF, FGF8 and anti-BMPs in early vertebrate development.

  14. Early exposure of bay scallops (Argopecten irradians) to high CO₂ causes a decrease in larval shell growth.

    PubMed

    White, Meredith M; McCorkle, Daniel C; Mullineaux, Lauren S; Cohen, Anne L

    2013-01-01

    Ocean acidification, characterized by elevated pCO₂ and the associated decreases in seawater pH and calcium carbonate saturation state (Ω), has a variable impact on the growth and survival of marine invertebrates. Larval stages are thought to be particularly vulnerable to environmental stressors, and negative impacts of ocean acidification have been seen on fertilization as well as on embryonic, larval, and juvenile development and growth of bivalve molluscs. We investigated the effects of high CO₂ exposure (resulting in pH = 7.39, Ω(ar) = 0.74) on the larvae of the bay scallop Argopecten irradians from 12 h to 7 d old, including a switch from high CO₂ to ambient CO₂ conditions (pH = 7.93, Ω(ar) = 2.26) after 3 d, to assess the possibility of persistent effects of early exposure. The survival of larvae in the high CO₂ treatment was consistently lower than the survival of larvae in ambient conditions, and was already significantly lower at 1 d. Likewise, the shell length of larvae in the high CO₂ treatment was significantly smaller than larvae in the ambient conditions throughout the experiment and by 7 d, was reduced by 11.5%. This study also demonstrates that the size effects of short-term exposure to high CO₂ are still detectable after 7 d of larval development; the shells of larvae exposed to high CO₂ for the first 3 d of development and subsequently exposed to ambientCO₂ were not significantly different in size at 3 and 7 d than the shells of larvae exposed to high CO₂ throughout the experiment.

  15. Genetic and Environmental Influences on the Growth of Early Reading Skills

    ERIC Educational Resources Information Center

    Petrill, Stephen A.; Hart, Sara A.; Harlaar, Nicole; Logan, Jessica; Justice, Laura M.; Schatschneider, Christopher; Thompson, Lee; DeThorne, Laura S.; Deater-Deckard, Kirby; Cutting, Laurie

    2010-01-01

    Background: Studies have suggested genetic and environmental influences on overall level of early reading whereas the larger reading literature has shown environmental influences on the rate of growth of early reading skills. This study is the first to examine the genetic and environmental influences on both initial level of performance and rate…

  16. A Longitudinal Assessment of Early Acceleration of Students in Mathematics on Growth in Mathematics Achievement

    ERIC Educational Resources Information Center

    Ma, X.

    2005-01-01

    Early acceleration of students in mathematics (in the form of early access to formal abstract algebra) has been a controversial educational issue. The current study examined the rate of growth in mathematics achievement of accelerated gifted, honors, and regular students across the entire secondary years (Grades 7-12), in comparison to their…

  17. 9-Cis-Retinoic Acid Induces Growth Inhibition in Retinoid-Sensitive Breast Cancer and Sea Urchin Embryonic Cells via Retinoid X Receptor α and Replication Factor C3

    PubMed Central

    Maeng, Sejung; Kim, Gil Jung; Choi, Eun Ju; Yang, Hyun Ok; Lee, Dong-Sup

    2012-01-01

    There is widespread interest in defining factors and mechanisms that suppress the proliferation of cancer cells. Retinoic acid (RA) is a potent suppressor of mammary cancer and developmental embryonic cell proliferation. However, the molecular mechanisms by which 9-cis-RA signaling induces growth inhibition in RA-sensitive breast cancer and embryonic cells are not apparent. Here, we provide evidence that the inhibitory effect of 9-cis-RA on cell proliferation depends on 9-cis-RA-dependent interaction of retinoid X receptor α (RXRα) with replication factor C3 (RFC3), which is a subunit of the RFC heteropentamer that opens and closes the circular proliferating cell nuclear antigen (PCNA) clamp on DNA. An RFC3 ortholog in a sea urchin cDNA library was isolated by using the ligand-binding domain of RXRα as bait in a yeast two-hybrid screening. The interaction of RFC3 with RXRα depends on 9-cis-RA and bexarotene, but not on all-trans-RA or an RA receptor (RAR)-selective ligand. Truncation and mutagenesis experiments demonstrated that the C-terminal LXXLL motifs in both human and sea urchin RFC3 are critical for the interaction with RXRα. The transient interaction between 9-cis-RA-activated RXRα and RFC3 resulted in reconfiguration of the PCNA-RFC complex. Furthermore, we found that knockdown of RXRα or overexpression of RFC3 impairs the ability of 9-cis-RA to inhibit proliferation of MCF-7 breast cancer cells and sea urchin embryogenesis. Our results indicate that 9-cis-RA-activated RXRα suppresses the growth of RA-sensitive breast cancer and embryonic cells through RFC3. PMID:22949521

  18. Grass control improves early growth of black walnut more than either deep ripping or irrigation

    Treesearch

    J.W. Van Sambeek; F.D. McBride

    1991-01-01

    Chemical control of a tall fescue sod (Festuca arundinacea Schreb.) using glyphosate and simazine improved early tree growth of black walnut (Juglans nigra L.) more than either deep ripping or irrigation on an upland old field site in southern Illinois. Growth of trees with irrigation and grass control was less than with grass...

  19. Early Literacy Individual Growth and Development Indicators (EL-IGDIs): Growth Trajectories Using a Large, Internet-Based Sample

    ERIC Educational Resources Information Center

    Roseth, Cary J.; Missall, Kristen N.; McConnell, Scott R.

    2012-01-01

    Early literacy individual growth and development indicators (EL-IGDIs) assess preschoolers' expressive vocabulary development and phonological awareness. This study investigated longitudinal change in EL-IGDIs using a large (N=7355), internet-based sample of 36- to 60-month-old United States preschoolers without identified risks for later…

  20. Excess iron: considerations related to development and early growth.

    PubMed

    Wessling-Resnick, Marianne

    2017-12-01

    What effects might arise from early life exposures to high iron? This review considers the specific effects of high iron on the brain, stem cells, and the process of erythropoiesis and identifies gaps in our knowledge of what molecular damage may be incurred by oxidative stress that is imparted by high iron status in early life. Specific areas to enhance research on this topic include the following: longitudinal behavioral studies of children to test associations between iron exposures and mood, emotion, cognition, and memory; animal studies to determine epigenetic changes that reprogram brain development and metabolic changes in early life that could be followed through the life course; and the establishment of human epigenetic markers of iron exposures and oxidative stress that could be monitored for early origins of adult chronic diseases. In addition, efforts to understand how iron exposure influences stem cell biology could be enhanced by establishing platforms to collect biological specimens, including umbilical cord blood and amniotic fluid, to be made available to the research community. At the molecular level, there is a need to better understand stress erythropoiesis and changes in iron metabolism during pregnancy and development, especially with respect to regulatory control under high iron conditions that might promote ineffective erythropoiesis and iron-loading anemia. These investigations should focus not only on factors such as hepcidin and erythroferrone but should also include newly identified interactions between transferrin receptor-2 and the erythropoietin receptor. Finally, despite our understanding that several key micronutrients (e.g., vitamin A, copper, manganese, and zinc) support iron's function in erythropoiesis, how these nutrients interact remains, to our knowledge, unknown. It is necessary to consider many factors when formulating recommendations on iron supplementation. © 2017 American Society for Nutrition.

  1. Plantation Spacing Affects Early Growth of Planted Virginia Pine

    Treesearch

    T.E. Russell

    1979-01-01

    Spacings ranging from 4 x 4 to 8 x 8 ft did not affect 15 year height growth of Virginia pines planted on a cutover Cumberland Plateau site. Wider spacings produced trees of larger diameters than did closer spacings; closer spacings had more basal area and volume. Although height to the base of the live crown increased as spacing narrowed, self-pruning was poor at all...

  2. Bioagents and silicon promoting fast early upland rice growth.

    PubMed

    de Sousa, Thatyane Pereira; de Souza, Alan Carlos Alves; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; Cortês, Marcio Vinicius; Pinheiro, Hugo Alves; da Silva, Gisele Barata

    2018-02-01

    Upland rice can overcome major challenges through the insertion of silicate fertilization and the presence of plant growth-promoting microorganisms (PGPMs) during its cultivation, as these factors promote an increase in vigor and plant disease resistance. Two consecutive experiments were conducted to evaluate the beneficial effects of silicon fertilization combined with the PGPM, Pseudomonas fluorensces, Burkholderia pyrrocinia, and a pool of Trichoderma asperellum, in upland rice seedlings, cultivar BRS Primavera CL: (a) E1, selecting PGPM type and Si doses for rice growth promotion and leaf blast supression, and (b) E2, evaluating physiological characteristics correlated with mechanisms involved in the higher vegetative growth in highlighted treatments from E1. In E1, 2 Si t ha -1 combined with the application of T. asperellum pool or PGPM mixture increased 54% in root dry matter biomass and 35 and 65% in shoot and root lengths, respectively; it also suppressed 99% of rice blast severity. In E2, shoot and root dry matter biomass and length, photosynthetic rate, water use efficiency, total soluble sugar, and chloroplastidic pigments were superior in BRS Primavera CL seedlings treated with 2 Si t ha -1 and T. asperellum pool or PGPM mixture. Higher salicilic and jasmonic acid levels were found in seedlings treated with Si and T. asperellum pool, individually. These physiological characteristics may explain, in part, the higher vigor of upland rice seedlings promoted by the synergistic effect between silicate fertilization and beneficial microorganisms.

  3. The Early Communication Indicator for Infants and Toddlers: Early Head Start Growth Norms from Two States

    ERIC Educational Resources Information Center

    Greenwood, Charles R.; Walker, Dale; Buzhardt, Jay

    2010-01-01

    The Early Communication Indicator (ECI) is a measure relevant to intervention decision making and progress monitoring for infants and toddlers. With increasing recognition of the importance of quality early childhood education and intervention for all children, measurement plays an important role in documenting children's progress and outcomes of…

  4. Mars’ Growth Stunted by an Early Giant Planet Instability

    NASA Astrophysics Data System (ADS)

    Clement, Matthew; Kaib, Nathan A.; Raymond, Sean N.; Walsh, Kevin J.

    2017-10-01

    Many dynamical aspects of the solar system can be explained by the outer planets experiencing a period of orbital instability. Though often correlated with a perceived delayed spike in the lunar cratering record known as the Late Heavy Bombardment (LHB), recent work suggests that this event may have occurred during the epoch of terrestrial planet formation. Though current simulations of terrestrial accretion can reproduce many observed qualities of the solar system, replicating the small mass of Mars requires modification to standard planet formation models. Here we use direct numerical simulations to show that an early instability in the outer solar system regularly yields properly sized Mars analogues. In 80% of simulations, we produce a Mars of the appropriate mass. Our most successful outcomes occur when the terrestrial planets evolve 10 million years (Myr), and accrete several Mars sized embryos in the Mars forming region before the instability takes place. Mars is left behind as a stranded embryo, while the remainder of these bodies are either ejected from the system or scattered towards the inner solar system where they deliver water to Earth. An early giant planet instability can thus replicate both the inner and outer solar system in a single model.

  5. Nerve Growth Factor: Early Studies And Recent Clinical Trials.

    PubMed

    Rocco, Maria Luisa; Soligo, Marzia; Manni, Luigi; Aloe, Luigi

    2018-04-11

    Since its discovery, nerve growth factor (NGF) has long occupied a critical role in developmental and adult neurobiology for its many important regulatory functions on the survival, growth and differentiation of nerve cells in the peripheral and central nervous system. NGF is the first discovered member of a family of neurotrophic factors, collectively indicated as neurotrophins, (which include brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin 4/5). NGF was discovered for its action on the survival and differentiation of selected populations of peripheral neurons. Since then, an enormous number of basic and human studies were undertaken to explore the role of purified NGF to prevent the death of NGF-receptive cells. These studies revealed that NGF possesses important therapeutic properties, after topical administration, on human cutaneous pressure ulcer, corneal ulcers, glaucoma, retinal maculopathy, Retinitis Pigmentosa and in pediatric optic gliomas and brain traumas. The aim of this review is to present our previous, recent and ongoing clinical studies on the therapeutic properties of NGF. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Identification of cells expressing OLFM4 and LGR5 mRNA by in situ hybridization in the yolk sac and small intestine of embryonic and early post-hatch chicks.

    PubMed

    Zhang, H; Wong, E A

    2018-02-01

    The chicken yolk sac (YS) and small intestine are essential for nutrient absorption during the pre-hatch and post-hatch periods, respectively. Absorptive enterocytes and secretory cells line the intestinal villi and originate from stem cells located in the intestinal crypts. Similarly, in the YS, there are absorptive and secretory cells that presumably originate from a stem cell population. Leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5) and olfactomedin 4 (Olfm4) are 2 widely used markers for intestinal stem cells. The objective of this study was to map the distribution of putative stem cells expressing LGR5 and OLFM4 mRNA in the chicken small intestine from the late embryonic period to early post hatch and the YS during embryogenesis. At embryonic d 11, 13, 15, 17, and 19, the YS was collected (n = 3), and small intestine was collected at embryonic d 19, d of hatch (doh), and d 1, 4, and 7 post hatch (n = 3). Cells expressing OLFM4 and LGR5 mRNA were identified by in situ hybridization. In the YS, cells expressing only LGR5 and not OLFM4 mRNA were localized to the vascular endothelial cells lining the blood vessels. In the small intestine, cells in the intestinal crypt expressed both LGR5 and OLFM4 mRNA. Staining for OLFM4 mRNA was more intense than LGR5 mRNA, demonstrating that Olfm4 is a more robust marker for stem cells than Lgr5. At embryonic d 19 and doh, cells staining for OLFM4 mRNA were already present in the rudimentary crypts, with the greatest staining in the duodenal crypts. The intensity of OLFM4 mRNA staining increased from doh to d 7 post hatch. Dual label staining at doh for the peptide transporter PepT1 and Olfm4 revealed a population of cells above the crypts that did not express Olfm4 or PepT1 mRNA. These cells are likely progenitor transit amplifying cells. Thus, avians and mammals share similarity in the ontogeny of stem cells in the intestinal crypts. © 2017 Poultry Science Association Inc.

  7. Early treatment with metformin induces resistance against tumor growth in adult rats

    PubMed Central

    Trombini, Amanda B; Franco, Claudinéia CS; Miranda, Rosiane A; de Oliveira, Júlio C; Barella, Luiz F; Prates, Kelly V; de Souza, Aline A; Pavanello, Audrei; Malta, Ananda; Almeida, Douglas L; Tófolo, Laize P; Rigo, Kesia P; Ribeiro, Tatiane AS; Fabricio, Gabriel S; de Sant’Anna, Juliane R; Castro-Prado, Marialba AA; de Souza, Helenir Medri; de Morais, Hely; Mathias, Paulo CF

    2015-01-01

    It is known that antidiabetic drug metformin, which is used worldwide, has anti-cancer effects and can be used to prevent cancer growth. We tested the hypothesis that tumor cell growth can be inhibited by early treatment with metformin. For this purpose, adult rats chronically treated with metformin in adolescence or in adulthood were inoculated with Walker 256 carcinoma cells. Adult rats that were treated with metformin during adolescence presented inhibition of tumor growth, and animals that were treated during adult life did not demonstrate any changes in tumor growth. Although we do not have data to disclose a molecular mechanism to the preventive metformin effect, we present, for the first time, results showing that cancer growth in adult life is dependent on early life intervention, thus supporting a new therapeutic prevention for cancer. PMID:26024008

  8. Signs of Early-stage Disk Growth Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Yen, Hsi-Wei; Koch, Patrick M.; Takakuwa, Shigehisa; Krasnopolsky, Ruben; Ohashi, Nagayoshi; Aso, Yusuke

    2017-01-01

    We present ALMA 1.3 mm continuum, 12CO, C18O, and SO data for the Class 0 protostars Lupus 3 MMS, IRAS 15398-3559, and IRAS 16253-2429 at resolutions of ˜100 au. By measuring a rotational profile in C18O, a 100 au Keplerian disk around a 0.3 M⊙ protostar is observed in Lupus 3 MMS. No 100 au Keplerian disks are observed in IRAS 15398-3559 and IRAS 16253-2429. Nevertheless, embedded compact (<30 au) continuum components are detected. The C18O emission in IRAS 15398-3559 shows signatures of infall with a constant angular momentum. IRAS 16253-2429 exhibits signatures of infall and rotation, but its rotational profile is unresolved. By fitting the C18O data with our kinematic models, the protostellar masses and the disk radii are inferred to be 0.01 M⊙ and 20 au in IRAS 15398-3559, and 0.03 M⊙ and 6 au in IRAS 16253-2429. By comparing the specific angular momentum profiles from 10,000 au to 100 au in eight Class 0 and I protostars, we find that the evolution of envelope rotation can be described with conventional inside-out collapse models. In comparison with a sample of 18 protostars with known disk radii, our results reveal signs of disk growth, with the disk radius increasing as {{M}* }0.8+/- 0.14 or {t}1.09+/- 0.37 in the Class 0 stage, where M* is the protostellar mass and t is the age. The disk growth rate slows down in the Class I stage. In addition, we find a hint that the mass accretion rate declines as {t}-0.26+/- 0.04 from the Class 0 to the Class I stages.

  9. IVF culture medium affects human intrauterine growth as early as the second trimester of pregnancy.

    PubMed

    Nelissen, Ewka C M; Van Montfoort, Aafke P A; Smits, Luc J M; Menheere, Paul P C A; Evers, Johannes L H; Coonen, Edith; Derhaag, Josien G; Peeters, Louis L; Coumans, Audrey B; Dumoulin, John C M

    2013-08-01

    When does a difference in human intrauterine growth of singletons conceived after IVF and embryo culture in two different culture media appear? Differences in fetal development after culture of embryos in one of two IVF media were apparent as early as the second trimester of pregnancy. Abnormal fetal growth patterns are a major risk factor for the development of chronic diseases in adult life. Previously, we have shown that the medium used for culturing embryos during the first few days after fertilization significantly affects the birthweight of the resulting human singletons. The exact onset of this growth difference was unknown. In this retrospective cohort study, all 294 singleton live births after fresh embryo transfer in the period July 2003 to December 2006 were included. These embryos originated from IVF treatments that were part of a previously described clinical trial. Embryos were allocated to culture in either Vitrolife or Cook commercially available sequential culture media. We analysed ultrasound examinations at 8 (n = 290), 12 (n = 83) and 20 weeks' (n = 206) gestation and used first-trimester serum markers [pregnancy-associated plasma protein-A (PAPP-A) and free β-hCG]. Differences between study groups were tested by the Student's t-test, χ(2) test or Fisher's exact test, and linear multivariable regression analysis to adjust for possible confounders (for example, parity, gestational age at the time of ultrasound and fetal gender). A total of 294 singleton pregnancies (Vitrolife group nVL = 168, Cook group: nC = 126) from 294 couples were included. At 8 weeks' gestation, there was no difference between crown-rump length-based and ovum retrieval-based gestational age (ΔGA) (nVL = 163, nC = 122, adjusted mean difference, -0.04 days, P = 0.84). A total of 83 women underwent first-trimester screening at 12 weeks' gestation (nVL = 45, nC = 38). ΔGA, nuchal translucency (multiples of median, MoM) and PAPP-A (MoM) did not differ between the study

  10. DYZ1 copy number variation, Y chromosome polymorphism and early recurrent spontaneous abortion/early embryo growth arrest.

    PubMed

    Yan, Junhao; Fan, Lingling; Zhao, Yueran; You, Li; Wang, Laicheng; Zhao, Han; Li, Yuan; Chen, Zi-Jiang

    2011-12-01

    To find the association between recurrent spontaneous abortion (RSA)/early embryo growth arrest and Y chromosome polymorphism. Peripheral blood samples of the male patients of big Y chromosome, small Y chromosome and other male patients whose partners suffered from unexplained RSA/early embryo growth arrest were collected. PCR and real-time fluorescent quantitative PCR were used to test the deletion and the copy number variation of DYZ1 region in Y chromosome of the patients. A total of 79 big Y chromosome patients (48 of whose partners suffered from RSA or early embryo growth arrest), 7 small Y chromosome patients, 106 other male patients whose partners had suffered from unexplained RSA or early embryo growth arrest, and 100 normal male controls were enrolled. There was no fraction deletion of DYZ1 detected both in big Y patients and in normal men. Of RSA patients, 1 case showed deletion of 266bp from the gene locus 25-290bp, and 2 cases showed deletion of 773bp from 1347 to 2119bp. Of only 7 small Y chromosome patients, 2 cases showed deletion of 266bp from 25 to 290bp, and 4 cases showed deletion of 773bp from 1347 to 2119bp and 275bp from 3128 to 3420bp. The mean of DYZ1 copies was 3900 in normal control men; the mean in big Y patients was 5571, in RSA patients was 2655, and in small Y patients was 1059. All of the others were significantly different (P<0.01) compared with normal control men, which meant that DYZ1 copy number in normal control men was less than that of big Y chromosome patients, and was more than that of unexplained early RSA patients and small Y patients. The integrity and copy number variation of DYZ1 are closely related to the Y chromosome length under microscope. The cause of RSA/early embryo growth arrest in some couples may be the increase (big Y patients) or decrease of DYZ1 copy number in the husbands' Y chromosome. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Growth curve analyses of the relationship between early maternal age and children's mathematics and reading performance.

    PubMed

    Torres, D Diego

    2015-03-01

    Regarding the methods used to examine the early maternal age-child academic outcomes relationship, the extant literature has tended to examine change using statistical analyses that fail to appreciate that individuals vary in their rates of growth. Of the one study I have been able to find that employs a true growth model to estimate this relationship, the authors only controlled for characteristics of the maternal household after family formation; confounding background factors of mothers that might select them into early childbearing, a possible source of bias, were ignored. The authors' findings nonetheless suggested an inverse relationship between early maternal age, i.e., a first birth between the ages of 13 and 17, and Canadian adolescents' mean math performance at age 10. Early maternal age was not related to the linear slope of age. To elucidate whether the early maternal age-child academic outcomes association, treated in a growth context, is consistent with this finding, the present study built on it using US data and explored children's mathematics and reading trajectories from age 5 on. Its unique contribution is that it further explicitly controlled for maternal background factors and employed a three-level growth model with repeated measures of children nested within their mothers. Though the strength of the relationship varied between mean initial academic performance and mean academic growth, results confirmed that early maternal age was negatively related to children's mathematics and reading achievement, net of post-teen first birth child-specific and maternal household factors. Once maternal background factors were included, there was no statistically significant relationship between early maternal age and either children's mean initial mathematics and reading scores or their mean mathematics and reading growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Growth of early continental crust by partial melting of eclogite.

    PubMed

    Rapp, Robert P; Shimizu, Nobumichi; Norman, Marc D

    2003-10-09

    The tectonic setting in which the first continental crust formed, and the extent to which modern processes of arc magmatism at convergent plate margins were operative on the early Earth, are matters of debate. Geochemical studies have shown that felsic rocks in both Archaean high-grade metamorphic ('grey gneiss') and low-grade granite-greenstone terranes are comprised dominantly of sodium-rich granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. Here we present direct experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG, including the low Nb/Ta and high Zr/Sm ratios of 'average' Archaean TTG, but from a source with initially subchondritic Nb/Ta. In modern environments, basalts with low Nb/Ta form by partial melting of subduction-modified depleted mantle, notably in intraoceanic arc settings in the forearc and back-arc regimes. These observations suggest that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking and tectonic accretion of a diversity of subduction-related terranes. Partial melting accompanying dehydration of these generally basaltic source materials at the base of thickened, 'arc-like' crust would produce compositionally appropriate TTG granitoids in equilibrium with eclogite residues.

  13. Overview: early history of crop growth and photosynthesis modeling.

    PubMed

    El-Sharkawy, Mabrouk A

    2011-02-01

    As in industrial and engineering systems, there is a need to quantitatively study and analyze the many constituents of complex natural biological systems as well as agro-ecosystems via research-based mechanistic modeling. This objective is normally addressed by developing mathematically built descriptions of multilevel biological processes to provide biologists a means to integrate quantitatively experimental research findings that might lead to a better understanding of the whole systems and their interactions with surrounding environments. Aided with the power of computational capacities associated with computer technology then available, pioneering cropping systems simulations took place in the second half of the 20th century by several research groups across continents. This overview summarizes that initial pioneering effort made to simulate plant growth and photosynthesis of crop canopies, focusing on the discovery of gaps that exist in the current scientific knowledge. Examples are given for those gaps where experimental research was needed to improve the validity and application of the constructed models, so that their benefit to mankind was enhanced. Such research necessitates close collaboration among experimentalists and model builders while adopting a multidisciplinary/inter-institutional approach. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. A novel approach for studying the temporal modulation of embryonic skeletal development using organotypic bone cultures and microcomputed tomography.

    PubMed

    Kanczler, Janos M; Smith, Emma L; Roberts, Carol A; Oreffo, Richard O C

    2012-10-01

    Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal

  15. A Novel Approach for Studying the Temporal Modulation of Embryonic Skeletal Development Using Organotypic Bone Cultures and Microcomputed Tomography

    PubMed Central

    Smith, Emma L.; Roberts, Carol A.

    2012-01-01

    Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal

  16. EGFR Ligands Drive Multipotential Stromal Cells to Produce Multiple Growth Factors and Cytokines via Early Growth Response-1

    PubMed Central

    Kerpedjieva, Svetoslava S.; Kim, Duk Soo; Barbeau, Dominique J.

    2012-01-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)–EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase–extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands. PMID:22316125

  17. EGFR ligands drive multipotential stromal cells to produce multiple growth factors and cytokines via early growth response-1.

    PubMed

    Kerpedjieva, Svetoslava S; Kim, Duk Soo; Barbeau, Dominique J; Tamama, Kenichi

    2012-09-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)-EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase-extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands.

  18. Food, growth and time: Elsie Widdowson's and Robert McCance's research into prenatal and early postnatal growth.

    PubMed

    Buklijas, Tatjana

    2014-09-01

    Cambridge scientists Robert McCance and Elsie Widdowson are best known for their work on the British food tables and wartime food rations, but it is their research on prenatal and early postnatal growth that is today seen as a foundation of the fields studying the impact of environment upon prenatal development and, consequently, adult disease. In this essay I situate McCance's and Widdowson's 1940s human and 1950s experimental studies in the context of pre-war concerns with fetal growth and development, especially within biochemistry, physiology and agriculture; and the Second World War and post-war focus on the effects of undernutrition during pregnancy upon the fetus. I relate Widdowson's and McCance's research on the long-term effects of early undernutrition to the concern with recovery from early trauma so pertinent in post-war Europe and with sensitive (critical) periods, a concept of high importance across different fields. Finally I discuss how, following a hiatus in which fetal physiology engaged with different questions and stressed fetal autonomy, interest in the impact of environment upon prenatal growth and development revived towards the end of the twentieth century. The new field of "developmental origins of health and disease", I suggest, has provided a context in which Widdowson's and McCance's work has regained importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Early release improves long-term growth and development of direct-seeded nuttall oak saplings

    Treesearch

    James S. Meadows; Robert L. Johnson; Roger M. Krinard

    2015-01-01

    Early growth of bottomland oaks is typically slow, and many oaks eventually become overtopped by trees of other species. Removal of these larger competitors in a young stand might improve growth of the oaks and lead to more free-to-grow oaks as the stand matures. Release treatments were applied in 1980 to an 11-year-old, direct-seeded Nuttall oak (Quercus texana Buckl...

  20. Characterizing the reproduction number of epidemics with early subexponential growth dynamics

    PubMed Central

    Viboud, Cécile; Simonsen, Lone; Moghadas, Seyed M.

    2016-01-01

    Early estimates of the transmission potential of emerging and re-emerging infections are increasingly used to inform public health authorities on the level of risk posed by outbreaks. Existing methods to estimate the reproduction number generally assume exponential growth in case incidence in the first few disease generations, before susceptible depletion sets in. In reality, outbreaks can display subexponential (i.e. polynomial) growth in the first few disease generations, owing to clustering in contact patterns, spatial effects, inhomogeneous mixing, reactive behaviour changes or other mechanisms. Here, we introduce the generalized growth model to characterize the early growth profile of outbreaks and estimate the effective reproduction number, with no need for explicit assumptions about the shape of epidemic growth. We demonstrate this phenomenological approach using analytical results and simulations from mechanistic models, and provide validation against a range of empirical disease datasets. Our results suggest that subexponential growth in the early phase of an epidemic is the rule rather the exception. Mechanistic simulations show that slight modifications to the classical susceptible–infectious–removed model result in subexponential growth, and in turn a rapid decline in the reproduction number within three to five disease generations. For empirical outbreaks, the generalized-growth model consistently outperforms the exponential model for a variety of directly and indirectly transmitted diseases datasets (pandemic influenza, measles, smallpox, bubonic plague, cholera, foot-and-mouth disease, HIV/AIDS and Ebola) with model estimates supporting subexponential growth dynamics. The rapid decline in effective reproduction number predicted by analytical results and observed in real and synthetic datasets within three to five disease generations contrasts with the expectation of invariant reproduction number in epidemics obeying exponential growth. The

  1. Perturbations in growth trajectory due to early diet affect age-related deterioration in performance.

    PubMed

    Lee, Who-Seung; Monaghan, Pat; Metcalfe, Neil B

    2016-04-01

    Fluctuations in early developmental conditions can cause changes in growth trajectories that subsequently affect the adult phenotype. Here, we investigated whether compensatory growth has long-term consequences for patterns of senescence.Using three-spined sticklebacks ( Gasterosteus aculeatus ), we show that a brief period of dietary manipulation in early life affected skeletal growth rate not only during the manipulation itself, but also during a subsequent compensatory phase when fish caught up in size with controls.However, this growth acceleration influenced swimming endurance and its decline over the course of the breeding season, with a faster decline in fish that had undergone faster growth compensation.Similarly, accelerated growth led to a more pronounced reduction in the breeding period (as indicated by the duration of sexual ornamentation) over the following two breeding seasons, suggesting faster reproductive senescence. Parallel experiments showed a heightened effect of accelerated growth on these age-related declines in performance if the fish were under greater time stress to complete their compensation prior to the breeding season.Compensatory growth led to a reduction in median life span of 12% compared to steadily growing controls. While life span was independent of the eventual adult size attained, it was negatively correlated with the age-related decline in swimming endurance and sexual ornamentation.These results, complementary to those found when growth trajectories were altered by temperature rather than dietary manipulations, show that the costs of accelerated growth can last well beyond the time over which growth rates differ and are affected by the time available until an approaching life-history event such as reproduction.

  2. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda:Palinuridae)

    PubMed Central

    Day, Ryan D.; McCauley, Robert D.; Fitzgibbon, Quinn P.; Semmens, Jayson M.

    2016-01-01

    Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8–12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 μPa2·s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages. PMID:26947006

  3. Association Between Early Life Growth and Blood Pressure Trajectories in Black South African Children.

    PubMed

    Kagura, Juliana; Adair, Linda S; Munthali, Richard J; Pettifor, John M; Norris, Shane A

    2016-11-01

    Early growth is associated with blood pressure measured on one occasion, but whether early life growth patterns are associated with longitudinal blood pressure trajectories is under-researched. Therefore, we sought to examine the association between early growth and blood pressure trajectories from childhood to adulthood. Blood pressure was measured on 7 occasions between ages 5 and 18 years in the Birth to Twenty cohort study, and conditional variables for growth in infancy and mid-childhood were computed from anthropometric measures (n=1937, 52% girls). We used a group-based trajectory modeling approach to identify distinct height-adjusted blood pressure trajectories and then tested their association with growth between birth and mid-childhood adjusting for several covariates. Three trajectory groups were identified for systolic and diastolic blood pressure: lower, middle, and upper in boys and girls, separately. In boys, predictors of the middle or upper systolic blood pressure trajectories versus the lower trajectory were in birth weight (odds ratio 0.75 [95% confidence interval 0.58-0.96] per SD) and relative weight gain in infancy (4.11 [1.25-13.51] per SD). In girls, greater relative weight gain and linear growth in both infancy and mid-childhood were consistently associated with an almost 2-fold higher likelihood of being in the upper versus lower systolic blood pressure trajectory. The associations for the diastolic blood pressure trajectories were inconsistent. These findings emphasize the importance of identifying children at risk of progression to high blood pressure. Accelerated growth in infancy and mid-childhood may be a key target for early life intervention in prevention of elevated blood pressure progression. © 2016 American Heart Association, Inc.

  4. STATISTICAL GROWTH MODELING OF LONGITUDINAL DT-MRI FOR REGIONAL CHARACTERIZATION OF EARLY BRAIN DEVELOPMENT.

    PubMed

    Sadeghi, Neda; Prastawa, Marcel; Fletcher, P Thomas; Gilmore, John H; Lin, Weili; Gerig, Guido

    2012-01-01

    A population growth model that represents the growth trajectories of individual subjects is critical to study and understand neurodevelopment. This paper presents a framework for jointly estimating and modeling individual and population growth trajectories, and determining significant regional differences in growth pattern characteristics applied to longitudinal neuroimaging data. We use non-linear mixed effect modeling where temporal change is modeled by the Gompertz function. The Gompertz function uses intuitive parameters related to delay, rate of change, and expected asymptotic value; all descriptive measures which can answer clinical questions related to growth. Our proposed framework combines nonlinear modeling of individual trajectories, population analysis, and testing for regional differences. We apply this framework to the study of early maturation in white matter regions as measured with diffusion tensor imaging (DTI). Regional differences between anatomical regions of interest that are known to mature differently are analyzed and quantified. Experiments with image data from a large ongoing clinical study show that our framework provides descriptive, quantitative information on growth trajectories that can be directly interpreted by clinicians. To our knowledge, this is the first longitudinal analysis of growth functions to explain the trajectory of early brain maturation as it is represented in DTI.

  5. Embryonic Stem Cells: Isolation, Characterization and Culture

    NASA Astrophysics Data System (ADS)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  6. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish.

    PubMed

    Leerberg, Dena M; Sano, Kaori; Draper, Bruce W

    2017-09-01

    The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.

  7. The Groove of Growth: How Early Gains in Math Ability Influence Adolescent Achievement

    ERIC Educational Resources Information Center

    Watts, Tyler W.; Duncan, Greg J.; Siegler, Robert S.; Davis-Kean, Pamela E.

    2014-01-01

    A number of studies, both small scale and of nationally-representative student samples, have reported substantial associations between school entry math ability and later elementary school achievement. However, questions remain regarding the persistence of the association between early growth in math ability and later math achievement due to the…

  8. Cutting Diameter Influences Early Survival and Growth of Several Populus Clones

    Treesearch

    Donald Dickmann; Howard Phipps; Daniel Netzer

    1980-01-01

    The effects of cutting diameter on early survival and growth of several Populus clones were studied in field tests in Wisconsin and Michigan. Generally, large diameter cuttings survived and grew better than small diameter cuttings. Response differences among clones were evident.

  9. Early Childhood Memory and Attention as Predictors of Academic Growth Trajectories

    ERIC Educational Resources Information Center

    Stipek, Deborah; Valentino, Rachel A.

    2015-01-01

    Longitudinal data from the children of the National Longitudinal Survey of Youth (NLSY) were used to assess how well measures of short-term and working memory and attention in early childhood predicted longitudinal growth trajectories in mathematics and reading comprehension. Analyses also examined whether changes in memory and attention were more…

  10. Early competitive effects on growth of loblolly pine grown in co-culture with switchgrass

    Treesearch

    Kurt J. Krapfl; Scott D. Roberts; Randall J. Rosseau; Jeff A. Hatten

    2015-01-01

    This study: (1) examined competitive interactions between switchgrass and loblolly pine grown in co-culture, and (2) assessed early growth rates of loblolly pine as affected by differing switchgrass competition treatments. Co-cultures were established and monitored on two Upper Coastal Plain sites for 2 years. The Pontotoc site has a history of agricultural use with...

  11. Early brush control promotes growth of ponderosa pine planted on bulldozed site

    Treesearch

    Jay R. Bentley; Stanley B. Carpenter; David A. Blakeman

    1971-01-01

    Test plots in a brushfield near Mount Shasta, California, were cleared by bulldozing in 1961, and planted with ponderosa pine seedlings in 1962. Brush regrowth was subjected to varying levels of control by spraying with herbicides. In the first 5 years, brush control definitely promoted the growth of pine seedlings. And this early control also promises to reduce the...

  12. Germination and early growth of coastal tree species on organic seed beds.

    Treesearch

    Don Minore

    1972-01-01

    Germination and early growth on rotten wood and duff under several shade levels were observed for Douglas-fir, Sitka spruce, western hemlock, western redcedar, lodgepole pine, Pacific silver fir, and red alder. Nutrients were more abundant in duff than in rotten wood. Seedlings usually were larger and more abundant on duff-covered rotten logs than on duff-covered...

  13. Autophagy in Human Embryonic Stem Cells

    PubMed Central

    Tra, Thien; Gong, Lan; Kao, Lin-Pin; Li, Xue-Lei; Grandela, Catarina; Devenish, Rodney J.; Wolvetang, Ernst; Prescott, Mark

    2011-01-01

    Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC. PMID:22110659

  14. Sildenafil citrate therapy for severe early-onset intrauterine growth restriction.

    PubMed

    von Dadelszen, P; Dwinnell, S; Magee, L A; Carleton, B C; Gruslin, A; Lee, B; Lim, K I; Liston, R M; Miller, S P; Rurak, D; Sherlock, R L; Skoll, M A; Wareing, M M; Baker, P N

    2011-04-01

    Sildenafil citrate therapy for severe early-onset intrauterine growth restriction. BJOG 2011;118:624-628. Currently, there is no effective therapy for severe early-onset intrauterine growth restriction (IUGR). Sildenafil citrate vasodilates the myometrial arteries isolated from women with IUGR-complicated pregnancies. Women were offered Sildenafil (25 mg three times daily until delivery) if their pregnancy was complicated by early-onset IUGR [abdominal circumference (AC)< 5th percentile] and either the gestational age was <25(+0) weeks or an estimate of the fetal weight was <600 g (excluding known fetal anomaly/syndrome and/or planned termination). Sildenafil treatment was associated with increased fetal AC growth [odds ratio, 12.9; 95% confidence interval (CI), 1.3, 126; compared with institutional Sildenafil-naive early-onset IUGR controls]. Randomised controlled trial data are required to determine whether Sildenafil improves perinatal outcomes for early-onset IUGR-complicated pregnancies. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.

  15. Germination and Early Growth of Brassica juncea in Copper Mine Tailings Amended with Technosol and Compost

    PubMed Central

    González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602

  16. Developmental plasticity of growth and digestive efficiency in dependence of early-life food availability

    PubMed Central

    Kotrschal, Alexander; Szidat, Sönke; Taborsky, Barbara

    2014-01-01

    Nutrition is a potent mediator of developmental plasticity. If food is scarce, developing organisms may invest into growth to outgrow size-dependent mortality (short-term benefit) and/or into an efficient digestion system (long-term benefit). We investigated this potential trade-off, by determining the influence of food availability on juvenile body and organ growth, and on adult digestive efficiency in the cichlid fish Simochromis pleurospilus. We reared two groups of fish at constant high or low food rations, and we switched four other groups between these two rations at an early and late juvenile period. We measured juvenile growth and organ sizes at different developmental stages and determined adult digestive efficiency. Fish kept at constant, high rations grew considerably faster than low-food fish. Nevertheless, S. pleurospilus partly buffered the negative effects of low food availability by developing heavier digestive organs, and they were therefore more efficient in digesting their food as adults. Results of fish exposed to a ration switch during either the early or late juvenile period suggest (i) that the ability to show compensatory growth after early exposure to low food availability persists during the juvenile period, (ii) that digestive efficiency is influenced by varying juvenile food availability during the late juvenile phase and (iii) that the efficiency of the adult digestive system is correlated with the growth rate during a narrow time window of juvenile period. PMID:25866430

  17. Studying Individual Plant AOX Gene Functionality in Early Growth Regulation: A New Approach.

    PubMed

    Arnholdt-Schmitt, Birgit; Patil, Vinod Kumar

    2017-01-01

    AOX1 and AOX2 genes are thought to play different physiological roles. Whereas AOX1 is typically expected to associate to stress and growth responses, AOX2 was more often found to be linked to development and housekeeping functions. However, this view is questioned by several adverse observations. For example, co-regulated expression for DcAOX1 and DcAOX2a genes was recently reported during growth induction in carrot (Daucus carota L.). Early expression peaks for both genes during the lag phase of growth coincided with a critical time point for biomass prediction, a result achieved by applying calorespirometry. The effect of both AOX family member genes cannot easily be separated. However, separate functional analysis is required in order to identify important gene-specific polymorphisms or patterns of polymorphisms for functional marker development and its use in breeding. Specifically, a methodology is missing that enables studying functional effects of individual genes or polymorphisms/polymorphic patterns on early growth regulation.This protocol aims to provide the means for identifying plant alternative oxidase (AOX) gene variants as functional markers for early growth regulation. Prerequisite for applying this protocol is available Schizosaccharomyces pombe strains that were transformed with individual AOX genes following published protocols from Anthony Moore's group (Albury et al., J Biol Chem 271:17062-17066, 1996; Affourtit et al., J Biol Chem 274:6212-6218, 1999). The novelty of the present protocol comes by modifying yeast cell densities in a way that allows studying critical qualitative and quantitative effects of AOX gene variants (isoenzymes or polymorphic genes) during the early phase of growth. Calorimetry is used as a novel tool to confirm differences obtained by optical density measurements in early growth regulation by metabolic phenotyping (released heat rates). This protocol enables discriminating between AOX genes that inhibit growth and

  18. Computer-assisted stereological analysis of gastric volume during the human embryonic period.

    PubMed Central

    Macarulla-Sanz, E; Nebot-Cegarra, J; Reina-de la Torre, F

    1996-01-01

    Morphometric data concerning human embryos and fetuses have become more clinically informative since ultrasound was employed to make prenatal measurements and software preprocessing techniques improved the previous fuzzy ultrasound signals (Mahoney, 1992). The aim of this study was to determine the volume of the human stomach during the embryonic period and to compare its rate of growth with that during the early fetal period. To calculate gastric volume, computer imaging techniques were applied on cross sections of a graded series of human embryos (from Carnegie stage 11) and fetuses. Gastric volume increased progressively, except for a decrease between stages 12 and 13 due principally to the reduction of the right gastric wall. The growth of the left wall of the stomach was predominant over that of the right. Until stage 20 the stomach volume increased due to the predominant growth of the walls, after this stage the gastric cavity volume increased rapidly, and the rate of growth of the gastric volume reached similar values to that of the early fetal period. We concluded that in the beginning the human stomach grows due to the predominant growth of its walls, chiefly of the left, and from stage 20 because of the predominant expansion of its cavity, which may be related to the capacity to swallow amniotic fluid at the end of the embryonic period. The diminution of the right gastric wall volume (stages 12-13) is consistent with an extension of the omental bursa into the mesodermal anlage of the stomach. PMID:8621339

  19. The embryonic origin of the ampullate silk glands of the spider Cupiennius salei.

    PubMed

    Hilbrant, Maarten; Damen, Wim G M

    2015-05-01

    Silk production in spiders is considered a key innovation, and to have been vital for the diversification of the clade. The evolutionary origin of the organs involved in spider silk production, however, and in particular of the silk glands, is poorly understood. Homologies have been proposed between these and other glands found in arachnids, but lacking knowledge of the embryonic development of spider silk glands hampers an evaluation of hypotheses. This study focuses on the embryonic origin of the largest silk glands of the spider Cupiennius salei, the major and minor ampullate glands. We show how the ampullate glands originate from ectodermal invaginations on the embryonic spinneret limb buds, in relation to morphogenesis of these buds. Moreover, we visualize the subsequent growth of the ampullate glands in sections of the early postembryonic stages. The invaginations are shown to correlate with expression of the proneural gene CsASH2, which is remarkable since it has been proposed that spider silk glands and their nozzles originate from sensory bristles. Hence, by confirming the ectodermal origin of spider silk glands, and by describing the (post-)embryonic morphogenesis of the ampullate glands, this work provides a starting point for further investigating into the genetic program that underlies their development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A staging table for the embryonic development of the brownbanded bamboo shark (Chiloscyllium punctatum)

    PubMed Central

    Onimaru, Koh; Motone, Fumio; Kiyatake, Itsuki; Nishida, Kiyonori

    2018-01-01

    Background: Studying cartilaginous fishes (chondrichthyans) has helped us understand vertebrate evolution and diversity. However, resources such as genome sequences, embryos, and detailed staging tables are limited for species within this clade. To overcome these limitations, we have focused on a species, the brownbanded bamboo shark (Chiloscyllium punctatum), which is a relatively common aquarium species that lays eggs continuously throughout the year. In addition, because of its relatively small genome size, this species is promising for molecular studies. Results: To enhance biological studies of cartilaginous fishes, we establish a normal staging table for the embryonic development of the brownbanded bamboo shark. Bamboo shark embryos take around 118 days to reach the hatching period at 25°C, which is approximately 1.5 times as fast as the small‐spotted catshark (Scyliorhinus canicula) takes. Our staging table divides the embryonic period into 38 stages. Furthermore, we found culture conditions that allow early embryos to grow in partially opened egg cases. Conclusions: In addition to the embryonic staging table, we show that bamboo shark embryos exhibit relatively fast embryonic growth and are amenable to culture, key characteristics that enhance their experimental utility. Therefore, the present study is a foundation for cartilaginous fish research. Developmental Dynamics 247:712–723, 2018. © 2017 Wiley Periodicals, Inc. PMID:29396887

  1. Transcriptional Profiling of Ectoderm Specification to Keratinocyte Fate in Human Embryonic Stem Cells

    PubMed Central

    Tadeu, Ana Mafalda Baptista; Lin, Samantha; Hou, Lin; Chung, Lisa; Zhong, Mei; Zhao, Hongyu; Horsley, Valerie

    2015-01-01

    In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ–secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions. PMID:25849374

  2. The FHA domain determines Drosophila Chk2/Mnk localization to key mitotic structures and is essential for early embryonic DNA damage responses.

    PubMed

    Takada, Saeko; Collins, Eric R; Kurahashi, Kayo

    2015-05-15

    DNA damage responses, including mitotic centrosome inactivation, cell-cycle delay in mitosis, and nuclear dropping from embryo cortex, maintain genome integrity in syncytial Drosophila embryos. A conserved signaling kinase, Chk2, known as Mnk/Loki, is essential for the responses. Here we demonstrate that functional EGFP-Mnk expressed from a transgene localizes to the nucleus, centrosomes, interkinetochore/centromere region, midbody, and pseudocleavage furrows without DNA damage and in addition forms numerous foci/aggregates on mitotic chromosomes upon DNA damage. We expressed EGFP-tagged Mnk deletion or point mutation variants and investigated domain functions of Mnk in vivo. A triple mutation in the phosphopeptide-binding site of the forkhead-associated (FHA) domain disrupted normal Mnk localization except to the nucleus. The mutation also disrupted Mnk foci formation on chromosomes upon DNA damage. FHA mutations and deletion of the SQ/TQ-cluster domain (SCD) abolished Mnk transphosphorylations and autophosphorylations, indicative of kinase activation after DNA damage. A potent NLS was found at the C-terminus, which is required for normal Mnk function. We propose that the FHA domain in Mnk plays essential dual functions in mediating embryonic DNA damage responses by means of its phosphopeptide-binding ability: activating Mnk in the nucleus upon DNA damage and recruiting Mnk to multiple subcellular structures independently of DNA damage. © 2015 Takada et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Structural Complexity of Non-acid Glycosphingolipids in Human Embryonic Stem Cells Grown under Feeder-free Conditions*

    PubMed Central

    Barone, Angela; Benktander, John; Ångström, Jonas; Aspegren, Anders; Björquist, Petter; Teneberg, Susann; Breimer, Michael. E.

    2013-01-01

    Due to their pluripotency and growth capability, there are great expectations for human embryonic stem cells, both as a resource for functional studies of early human development and as a renewable source of cells for use in regenerative medicine and transplantation. However, to bring human embryonic stem cells into clinical applications, their cell surface antigen expression and its chemical structural complexity have to be defined. In the present study, total non-acid glycosphingolipid fractions were isolated from two human embryonic stem cell lines (SA121 and SA181) originating from leftover in vitro fertilized human embryos, using large amounts of starting material (1 × 109 cells/cell line). The total non-acid glycosphingolipid fractions were characterized by antibody and lectin binding, mass spectrometry, and proton NMR. In addition to the globo-series and type 1 core chain glycosphingolipids previously described in human embryonic stem cells, a number of type 2 core chain glycosphingolipids (neo-lactotetraosylceramide, the H type 2 pentaosylceramide, the Lex pentaosylceramide, and the Ley hexaosylceramide) were identified as well as the blood group A type 1 hexaosylceramide. Finally, the mono-, di-, and triglycosylceramides were characterized as galactosylceramide, glucosylceramide, lactosylceramide, galabiaosylceramide, globotriaosylceramide, and lactotriaosylceramide. Thus, the glycan diversity of human embryonic stem cells, including cell surface immune determinants, is more complex than previously appreciated. PMID:23404501

  4. Impacts of Parasites in Early Life: Contrasting Effects on Juvenile Growth for Different Family Members

    PubMed Central

    Reed, Thomas E.; Daunt, Francis; Kiploks, Adam J.; Burthe, Sarah J.; Granroth-Wilding, Hanna M. V.; Takahashi, Emi A.; Newell, Mark; Wanless, Sarah; Cunningham, Emma J. A.

    2012-01-01

    Parasitism experienced early in ontogeny can have a major impact on host growth, development and future fitness, but whether siblings are affected equally by parasitism is poorly understood. In birds, hatching asynchrony induced by hormonal or behavioural mechanisms largely under parental control might predispose young to respond to infection in different ways. Here we show that parasites can have different consequences for offspring depending on their position in the family hierarchy. We experimentally treated European Shag (Phalacrocorax aristoteli) nestlings with the broad-spectrum anti-parasite drug ivermectin and compared their growth rates with nestlings from control broods. Average growth rates measured over the period of linear growth (10 days to 30 days of age) and survival did not differ for nestlings from treated and control broods. However, when considering individuals within broods, parasite treatment reversed the patterns of growth for individual family members: last-hatched nestlings grew significantly slower than their siblings in control nests but grew faster in treated nests. This was at the expense of their earlier-hatched brood-mates, who showed an overall growth rate reduction relative to last-hatched nestlings in treated nests. These results highlight the importance of exploring individual variation in the costs of infection and suggest that parasites could be a key factor modulating within-family dynamics, sibling competition and developmental trajectories from an early age. PMID:22384190

  5. Engraftment and Differentiation of Embryonic Stem Cell–Derived Neural Progenitor Cells in the Cochlear Nerve Trunk: Growth of Processes into the Organ of Corti

    PubMed Central

    Corrales, C. Eduardo; Pan, Luying; Li, Huawei; Liberman, M. Charles; Heller, Stefan; Edge, Albert S.B.

    2007-01-01

    Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP-expressing embryonic stem cell–derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea in gerbils. At 3 days post transplantation, small grafts were seen that expressed endogenous EYFP and could be immunolabeled for neuron-specific markers. Twelve days after transplantation, the grafts had neurons that extended processes from the nerve core toward the denervated organ of Corti. By 64–98 days, the grafts had sent out abundant processes that occupied a significant portion of the space formerly occupied by the cochlear nerve. The neurites grew in fasciculating bundles projecting through Rosenthal’s canal, the former site of spiral ganglion cells, into the osseous spiral lamina and ultimately into the organ of Corti, where they contacted hair cells. Neuronal counts showed a significant increase in neuronal processes near the sensory epithelium, compared to animals that were denervated without subsequent stem cell transplantation. The regeneration of these neurons shows that neurons differentiated from stem cells have the capacity to grow to a specific target in an animal model of neuronal degeneration. PMID:17013931

  6. Seagrass ( Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress

    NASA Astrophysics Data System (ADS)

    Marbà, Núria; Santiago, Rocío; Díaz-Almela, Elena; Álvarez, Elvira; Duarte, Carlos M.

    2006-04-01

    The usefulness of vertical rhizome growth as an early indicator of fish farm impacts to Posidonia oceanica meadows was tested by comparing annual estimates of vertical rhizome growth, quantified retrospectively, at distances ranging between 5 and 1200 m from fish cages at four Mediterranean locations (Cyprus, Greece, Italy and Spain). The studied fish farms had been operating since, at least, 1997, producing between 150 and 1150 tons yr -1 of sea bream ( Sparus aurata) and sea bass ( Dicentrachus labrax), and, at Italy, also sharpsnout sea bream ( Diplodus puntazzo). The reconstructed vertical rhizome growth spanned from 19 to 25 years of growth, depending on sites, and the average vertical rhizome growth before the onset of fish farm operations ranged between 4.48 and 8.79 mm yr -1. The vertical rhizome growth after the onset of farming activities declined significantly ( t-test, P < 0.05) from the control station (at >800 m from the farm; vertical growth rate averaged 6.79, 5.52, 3.89 and 3.70 mm yr -1 at Cyprus, Greece, Italy and Spain control stations, respectively) to the impacted one (at 5-300 m from the farm; vertical growth rate was 4.82, 3.52, 2.77 and 1.92 mm yr -1 at Cyprus, Greece, Italy and Spain impacted stations, respectively) at each farm. Moreover, vertical growth significantly ( t-test, P < 0.05) declined by about twofold following the onset of fish farm operations for the extant meadow nearest to the cages, as well as those supporting intermediate impacts at distances 35-400 m from the cages. Vertical rhizome growth was not significantly affected after the onset of fish farm operations for the meadows located more than 800 m from the farm, except in those from the Italian site, the largest farm. Examination of the time course of vertical growth for individual rhizomes in the areas of the meadow nearest to the farms, except for those at Cyprus, showed that the decline in vertical growth was initiated within the year of the onset of farming

  7. Beyond birth-weight: early growth and adolescent blood pressure in a Peruvian population.

    PubMed

    Sterling, Robie; Checkley, William; Gilman, Robert H; Cabrera, Lilia; Sterling, Charles R; Bern, Caryn; Miranda, J Jaime

    2014-01-01

    Background. Longitudinal investigations into the origins of adult essential hypertension have found elevated blood pressure in children to accurately track into adulthood, however the direct causes of essential hypertension in adolescence and adulthood remains unclear. Methods. We revisited 152 Peruvian adolescents from a birth cohort tracked from 0 to 30 months of age, and evaluated growth via monthly anthropometric measurements between 1995 and 1998, and obtained anthropometric and blood pressure measurements 11-14 years later. We used multivariable regression models to study the effects of infantile and childhood growth trends on blood pressure and central obesity in early adolescence. Results. In regression models adjusted for interim changes in weight and height, each 0.1 SD increase in weight for length from 0 to 5 months of age, and 1 SD increase from 6 to 30 months of age, was associated with decreased adolescent systolic blood pressure by 1.3 mm Hg (95% CI -2.4 to -0.1) and 2.5 mm Hg (95% CI -4.9 to 0.0), and decreased waist circumference by 0.6 (95% CI -1.1 to 0.0) and 1.2 cm (95% CI -2.3 to -0.1), respectively. Growth in infancy and early childhood was not significantly associated with adolescent waist-to-hip ratio. Conclusions. Rapid compensatory growth in early life has been posited to increase the risk of long-term cardiovascular morbidities such that nutritional interventions may do more harm than good. However, we found increased weight growth during infancy and early childhood to be associated with decreased systolic blood pressure and central adiposity in adolescence.

  8. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development.

    PubMed

    Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina

    2017-04-01

    Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O 2 , 6 h; postnatal day 7 , P7) at P14. Exposure to hypoxia led to reduced body weight ( P < 0.001) and length ( P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH ( P < 0.01) and IGF-1 ( P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain. Copyright © 2017 the American Physiological Society.

  9. Predictors of early growth in academic achievement: the head-toes-knees-shoulders task

    PubMed Central

    McClelland, Megan M.; Cameron, Claire E.; Duncan, Robert; Bowles, Ryan P.; Acock, Alan C.; Miao, Alicia; Pratt, Megan E.

    2014-01-01

    Children's behavioral self-regulation and executive function (EF; including attentional or cognitive flexibility, working memory, and inhibitory control) are strong predictors of academic achievement. The present study examined the psychometric properties of a measure of behavioral self-regulation called the Head-Toes-Knees-Shoulders (HTKS) by assessing construct validity, including relations to EF measures, and predictive validity to academic achievement growth between prekindergarten and kindergarten. In the fall and spring of prekindergarten and kindergarten, 208 children (51% enrolled in Head Start) were assessed on the HTKS, measures of cognitive flexibility, working memory (WM), and inhibitory control, and measures of emergent literacy, mathematics, and vocabulary. For construct validity, the HTKS was significantly related to cognitive flexibility, working memory, and inhibitory control in prekindergarten and kindergarten. For predictive validity in prekindergarten, a random effects model indicated that the HTKS significantly predicted growth in mathematics, whereas a cognitive flexibility task significantly predicted growth in mathematics and vocabulary. In kindergarten, the HTKS was the only measure to significantly predict growth in all academic outcomes. An alternative conservative analytical approach, a fixed effects analysis (FEA) model, also indicated that growth in both the HTKS and measures of EF significantly predicted growth in mathematics over four time points between prekindergarten and kindergarten. Results demonstrate that the HTKS involves cognitive flexibility, working memory, and inhibitory control, and is substantively implicated in early achievement, with the strongest relations found for growth in achievement during kindergarten and associations with emergent mathematics. PMID:25071619

  10. Based serum metabolomics analysis reveals simultaneous interconnecting changes during chicken embryonic development.

    PubMed

    Peng, M L; Li, S N; He, Q Q; Zhao, J L; Li, L L; Ma, H T

    2018-05-28

    Metabolic disorder is a major health problem and is associated with a number of metabolic diseases. Due to native hyperglycaemia and resistance to exogenous insulin, chickens as a model had used in the studies of adipose tissue biology, metabolism and obesity. But no detailed information is available about the comprehensive changes of serum metabolites at different stages of chicken embryonic development. This study employed LC/MS-QTOF to determine the changes of major functional metabolites at incubation day 14 (E14d), 19 (E19d) and hatching day 1 (H1d), and the associated pathways of differential metabolites during chicken embryonic development were analysed using Metabolite Set Enrichment Analysis method. Results showed that 39 metabolites were significantly changed from E14d to E19d and 68 metabolites were significantly altered from E19d to H1d in chicken embryos. Protein synthesis was promoted by increasing the concentrations of L-glutamine and threonine, and gonadal development was promoted through increasing oestrone content from E14d to E19d in chicken embryos, which indicated that serum glutamine, threonine and oestrone contents may be considered as the candidate indicators for assessment of early embryonic development. 2-oxoglutaric acid mainly contributed to enhancing the citric cycle, and it plays an important role in improving the growth of chicken embryos at the late development; the decreasing of L-glutamine, L-isoleucine and L-leucine contents from E19d to H1d in chicken embryonic development implied their possible functions as the feed additive during early posthatch period of broiler chickens to satisfy the growth. These results provided insights into understand the roles of serum metabolites at different developmental stages of chicken embryos, it also provides available information for chicken as a model to study metabolic disease or human obesity. © 2018 Blackwell Verlag GmbH.

  11. Assessing the Effects of Soil Humic and Fulvic Acids on Germination and Early Growth of Native and Introduced Grass Varieties

    DTIC Science & Technology

    2007-01-15

    period (8 months) research plans are the following: (a) Germination and early growth experiments of the three remaining combinations by two of the...remainder of the contract period (8 months) research plans are the following: (a) Germination and early growth experiments of the three remaining... GROWTH OF NATIVE AND INTRODUCED GRASS VARIETIES NAME OF PRINCIPAL INVESTIGATOR: SENESI NICOLA-PROFESSOR NAME OF CONTRACTOR: UNIVERSITA’ DI BARI

  12. Cell phone radiations affect early growth of Vigna radiata (mung bean) through biochemical alterations.

    PubMed

    Sharma, Ved Parkash; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2010-01-01

    The indiscriminate use of wireless technologies, particularly of cell phones, has increased the health risks among living organisms including plants. We investigated the impact of cell phone electromagentic field (EMF) radiations (power density, 8.55 microW cm(-2)) on germination, early growth, proteins and carbohydrate contents, and activities of some enzymes in Vigna radiata. Cell phone EMF radiations significantly reduced the seedling length and dry weight of V radiata after exposure for 0.5, 1, 2, and 4 h. Furthermore, the contents of proteins and carbohydrates were reduced in EMF-exposed plants. However, the activities of proteases, alpha-amylases, beta-amylases, polyphenol oxidases, and peroxidases were enhanced in EMF-exposed radicles indicating their role in providing protection against EMF-induced stress. The study concludes that cell phone EMFs impair early growth of V radiata seedlings by inducing biochemical changes.

  13. Early wide spacing in red alder (Alnus rubra Bong.): effects on stem form and stem growth.

    Treesearch

    Bernard T. Bormann

    1985-01-01

    A thinning trial was established in 1962 in a 7-year-old red alder stand in northwestern Washington. Spacings were 8 x 8 ft (dense), 12 x 12 it (intermediate), and 16 x 16 ft (open). The effect of early thinning on growth and stem form was measured in 1982, 20 years after spacing treatment. There was negligible tree lean and sweep in open and intermediate stands except...

  14. Alternative Student Growth Measures for Teacher Evaluation: Implementation Experiences of Early-Adopting Districts. REL 2015-093

    ERIC Educational Resources Information Center

    McCullough, Moira; English, Brittany; Angus, Megan Hague; Gill, Brian

    2015-01-01

    Alternative student growth measures for teacher evaluation: Implementation experiences of early-adopting districts: State requirements to include student achievement growth in teacher evaluations are prompting the development of alternative ways to measure growth in grades and subjects not covered by state assessments. These alternative growth…

  15. Rate of Language Growth in Children with Hearing Loss in an Auditory-Verbal Early Intervention Program

    ERIC Educational Resources Information Center

    Jackson, Carla Wood; Schatschneider, Christopher

    2013-01-01

    This longitudinal study explored the rate of language growth of children in an early intervention program providing auditory-verbal therapy. A retrospective investigation, the study applied a linear growth model to estimate a mean growth curve and the extent of individual variation in language performance on the Preschool Language Scale, 4th ed.…

  16. Effect of maternal smoking cessation before and during early pregnancy on fetal and childhood growth.

    PubMed

    Suzuki, Kohta; Sato, Miri; Zheng, Wei; Shinohara, Ryoji; Yokomichi, Hiroshi; Yamagata, Zentaro

    2014-01-01

    Maternal smoking during pregnancy is a major cause of intrauterine growth restriction and childhood obesity, but only a few studies have examined the association of smoking cessation before and during pregnancy with fetal and childhood growth. We examined this association in a prospective cohort study in Japan. Our study included children born between 1991 and 2006 and their mothers. Using a questionnaire, maternal smoking status was recorded at pregnancy. The anthropometric data of the children were collected during a medical check-up at age 3 years. Multiple linear and logistic regression models were used for data analysis stratified by sex. In total, 2663 mothers reported their smoking status during early pregnancy, and data were collected from 2230 (83.7%) children at age 3 years. Maternal smoking during pregnancy was associated with a significant reduction in birth weight (approximately 120-150 g). Body mass index at age 3 years was significantly higher among boys born to smoking mothers than among boys born to nonsmoking mothers. Maternal smoking during pregnancy was associated with overweight at age 3 years among boys (adjusted odds ratio, 2.4; 95% CI, 1.03-5.4). However, among women who stopped smoking in early pregnancy, there was no increase in the risks of a small for gestational age birth or childhood overweight at age 3 years. Children born to mothers who stopped smoking before or during early pregnancy had appropriate fetal and childhood growth.

  17. Differences between WHO AND CDC early growth measurements in the assessment of Cystic Fibrosis clinical outcomes.

    PubMed

    Usatin, Danielle; Yen, Elizabeth H; McDonald, Catherine; Asfour, Fadi; Pohl, John; Robson, Jacob

    2017-07-01

    Early childhood growth status has been used to predict long-term clinical outcomes in Cystic Fibrosis (CF) patients. Adulthood CF outcomes based on early weight-for-length (WFL) measurements, using either World Health Organization (WHO) or Centers for Disease Control (CDC) scales, have not been compared. Cystic Fibrosis Foundation registry patients were studied (n=3014). Participants were categorized at age two years as WFL <50th percentile on both WHO and CDC scales, ≥50th percentile on WHO but not CDC, or ≥50th percentile on both. Pulmonary function and overall survival were assessed at age 18years. Stepwise gains in pulmonary function and lung transplant-free survival were noted across the three increasing WFL categories. Children with CF who achieve higher WFL at age two years have improved pulmonary and survival outcomes into adulthood. CF providers should continue to utilize current early growth recommendations, with goal WFL ≥50th percentile on CDC growth charts before age two. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  18. Early growth patterns are associated with intelligence quotient scores in children born small-for-gestational age.

    PubMed

    Varella, Marcia H; Moss, William J

    2015-08-01

    To assess whether patterns of growth trajectory during infancy are associated with intelligence quotient (IQ) scores at 4 years of age in children born small-for-gestational age (SGA). Children in the Collaborative Perinatal Project born SGA were eligible for analysis. The primary outcome was the Stanford-Binet IQ score at 4 years of age. Growth patterns were defined based on changes in weight-for-age z-scores from birth to 4 months and 4 to 12 months of age and consisted of steady, early catch-up, late catch-up, constant catch-up, early catch-down, late catch-down, constant catch-down, early catch-up & late catch-down, and early catch-down & late catch-up. Multivariate linear regression was used to assess associations between patterns of growth and IQ. We evaluated patterns of growth and IQ in 5640 children. Compared with children with steady growth, IQ scores were 2.9 [standard deviation (SD)=0.54], 1.5 (SD=0.63), and 2.2 (SD=0.9) higher in children with early catch-up, early catch-up and later catch-down, and constant catch-up growth patterns, respectively, and 4.4 (SD=1.4) and 3.9 (SD=1.5) lower in children with early catch-down & late catch-up, and early catch-down growth patterns, respectively. Patterns in weight gain before 4 months of age were associated with differences in IQ scores at 4 years of age, with children with early catch-up having slightly higher IQ scores than children with steady growth and children with early catch-down having slightly lower IQ scores. These findings have implications for early infant nutrition in children born SGA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Dietary protein intake and quality in early life: impact on growth and obesity.

    PubMed

    Lind, Mads V; Larnkjær, Anni; Mølgaard, Christian; Michaelsen, Kim F

    2017-01-01

    Obesity is an increasing problem and high-protein intake early in life seems to increase later risk of obesity. This review summarizes recent publications in the area including observational and intervention studies and publications on underlying mechanisms. Recent observational and randomized controlled trials confirmed that high-protein intake in early life seems to increase early weight gain and the risk of later overweight and obesity. Recent studies have looked at the effect of different sources of protein, and especially high-animal protein intake seems to have an effect on obesity. Specific amino acids, such as leucine, have also been implicated in increasing later obesity risk maybe via specific actions on insulin-like growth factor I. Furthermore, additional underlying mechanisms including epigenetics have been linked to long-term obesogenic programming. Finally, infants with catch-up growth or specific genotypes might be particularly vulnerable to high-protein intake. Recent studies confirm the associations between high-protein intake during the first 2 years and later obesity. Furthermore, knowledge of the mechanisms involved and the role of different dietary protein sources and amino acids has increased, but intervention studies are needed to confirm the mechanisms. Avoiding high-protein intake in early life holds promise as a preventive strategy for childhood obesity.

  20. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae.

    PubMed

    Pecenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-09-01

    Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root

  1. Transcriptional activation is a conserved feature of the early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-complexity activation domain.

    PubMed

    Hamm, Danielle C; Bondra, Eliana R; Harrison, Melissa M

    2015-02-06

    Delayed transcriptional activation of the zygotic genome is a nearly universal phenomenon in metazoans. Immediately following fertilization, development is controlled by maternally deposited products, and it is not until later stages that widespread activation of the zygotic genome occurs. Although the mechanisms driving this genome activation are currently unknown, the transcriptional activator Zelda (ZLD) has been shown to be instrumental in driving this process in Drosophila melanogaster. Here we define functional domains of ZLD required for both DNA binding and transcriptional activation. We show that the C-terminal cluster of four zinc fingers mediates binding to TAGteam DNA elements in the promoters of early expressed genes. All four zinc fingers are required for this activity, and splice isoforms lacking three of the four zinc fingers fail to activate transcription. These truncated splice isoforms dominantly suppress activation by the full-length, embryonically expressed isoform. We map the transcriptional activation domain of ZLD to a central region characterized by low complexity. Despite relatively little sequence conservation within this domain, ZLD orthologs from Drosophila virilis, Anopheles gambiae, and Nasonia vitripennis activate transcription in D. melanogaster cells. Transcriptional activation by these ZLD orthologs suggests that ZLD functions through conserved interactions with a protein cofactor(s). We have identified distinct DNA-binding and activation domains within the critical transcription factor ZLD that controls the initial activation of the zygotic genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Berberine impairs embryonic development in vitro and in vivo through oxidative stress-mediated apoptotic processes.

    PubMed

    Huang, Chien-Hsun; Huang, Zi-Wei; Ho, Feng-Ming; Chan, Wen-Hsiung

    2018-03-01

    Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines, has been shown to suppress growth and induce apoptosis in some tumor cell lines. However, berberine has also been reported to attenuate H 2 O 2 -induced oxidative injury and apoptosis. The basis for these ambiguous effects of berberine-triggering or preventing apoptosis-has not been well characterized to date. In the current investigation, we examined whether berberine exerts cytotoxic effects on mouse embryos at the blastocyst stage and affects subsequent embryonic development in vitro and in vivo. Treatment of blastocysts with berberine (2.5-10 μM) induced a significant increase in apoptosis and a corresponding decrease in trophectoderm cell number. Moreover, the implantation success rate of blastocysts pretreated with berberine was lower than that of their control counterparts. Pretreatment with berberine was also associated with increased resorption of postimplantation embryos and decreased fetal weight. In an animal model, intravenous injection of berberine (2, 4, or 6 mg/kg body weight/d) for 4 days resulted in apoptosis of blastocyst cells and early embryonic developmental injury. Berberine-induced injury of mouse blastocysts appeared to be attributable to oxidative stress-triggered intrinsic apoptotic signaling processes that impaired preimplantation and postimplantation embryonic development. Taken together, our results clearly demonstrate that berberine induces apoptosis and retards early preimplantation and postimplantation development of mouse embryos, both in vitro and in vivo. © 2017 Wiley Periodicals, Inc.

  3. Embryonic demise caused by targeted disruption of a cysteine protease Dub-2.

    PubMed

    Baek, Kwang-Hyun; Lee, Heyjin; Yang, Sunmee; Lim, Soo-Bin; Lee, Wonwoo; Lee, Jeoung Eun; Lim, Jung-Jin; Jun, Kisun; Lee, Dong-Ryul; Chung, Young

    2012-01-01

    A plethora of biological metabolisms are regulated by the mechanisms of ubiquitination, wherein this process is balanced with the action of deubiquitination system. Dub-2 is an IL-2-inducible, immediate-early gene that encodes a deubiquitinating enzyme with growth regulatory activity. DUB-2 presumably removes ubiquitin from ubiquitin-conjugated target proteins regulating ubiquitin-mediated proteolysis, but its specific target proteins are unknown yet. To elucidate the functional role of Dub-2, we generated genetically modified mice by introducing neo cassette into the second exon of Dub-2 and then homologous recombination was done to completely abrogate the activity of DUB-2 proteins. We generated Dub-2+/- heterozygous mice showing a normal phenotype and are fertile, whereas new born mouse of Dub-2-/- homozygous alleles could not survive. In addition, Dub-2-/- embryo could not be seen between E6.5 and E12.5 stages. Furthermore, the number of embryos showing normal embryonic development for further stages is decreased in heterozygotes. Even embryonic stem cells from inner cell mass of Dub-2-/- embryos could not be established. Our study suggests that the targeted disruption of Dub-2 may cause embryonic lethality during early gestation, possibly due to the failure of cell proliferation during hatching process.

  4. Dietary nucleotides and early growth in formula-fed infants: a randomized controlled trial.

    PubMed

    Singhal, Atul; Kennedy, Kathy; Lanigan, J; Clough, Helen; Jenkins, Wendy; Elias-Jones, Alun; Stephenson, Terrence; Dudek, Peter; Lucas, Alan

    2010-10-01

    Dietary nucleotides are nonprotein nitrogenous compounds that are found in high concentrations in breast milk and are thought to be conditionally essential nutrients in infancy. A high nucleotide intake has been suggested to explain some of the benefits of breastfeeding compared with formula feeding and to promote infant growth. However, relatively few large-scale randomized trials have tested this hypothesis in healthy infants. We tested the hypothesis that nucleotide supplementation of formula benefits early infant growth. Occipitofrontal head circumference, weight, and length were assessed in infants who were randomly assigned to groups fed nucleotide-supplemented (31 mg/L; n=100) or control formula without nucleotide supplementation (n=100) from birth to the age of 20 weeks, and in infants who were breastfed (reference group; n=101). Infants fed with nucleotide-supplemented formula had greater occipitofrontal head circumference at ages 8, 16, and 20 weeks than infants fed control formula (mean difference in z scores at 8 weeks: 0.4 [95% confidence interval: 0.1-0.7]; P=.006) even after adjustment for potential confounding factors (P=.002). Weight at 8 weeks and the increase in both occipitofrontal head circumference and weight from birth to 8 weeks were also greater in infants fed nucleotide-supplemented formula than in those fed control formula. Our data support the hypothesis that nucleotide supplementation leads to increased weight gain and head growth in formula-fed infants. Therefore, nucleotides could be conditionally essential for optimal infant growth in some formula-fed populations. Additional research is needed to test the hypothesis that the benefits of nucleotide supplementation for early head growth, a critical period for brain growth, have advantages for long-term cognitive development.

  5. Effect of insulin-like growth factor-I during the early postnatal period in intrauterine growth-restricted rats.

    PubMed

    Ikeda, Naho; Shoji, Hiromichi; Suganuma, Hiroki; Ohkawa, Natsuki; Kantake, Masato; Murano, Yayoi; Sakuraya, Koji; Shimizu, Toshiaki

    2016-05-01

    Insulin-like growth factor-I (IGF-I) is essential for perinatal growth and development; low serum IGF-I has been observed during intrauterine growth restriction (IUGR). We investigated the effects of recombinant human (rh) IGF-I in IUGR rats during the early postnatal period. Intrauterine growth restriction was induced by bilateral uterine artery ligation in pregnant rats. IUGR pups were divided into two groups injected daily with rhIGF-I (2 mg/kg; IUGR/IGF-I, n = 16) or saline (IUGR/physiologic saline solution (PSS), n = 16) from postnatal day (PND) 7 to 13. Maternal sham-operated pups injected with saline were used as controls (control, n = 16). Serum IGF-I and IGF binding proteins (IGFBP) 3 and 5 were measured on PND25. The expression of Igf-i, IGF-I receptor (Igf-ir), Igfbp3, and 5 mRNA in the liver and brain was measured using real-time polymerase chain reaction on PND25. Immunohistochemical staining of the liver for IGF expression was performed. Mean bodyweight on PND3 and PND25 in the IUGR pups (IUGR/IGF-I and IUGR/PSS) was significantly lower than that of the control pups. Serum IGF-I and hepatic Igf-ir mRNA in the IUGR pups were significantly lower than those in the control pups. In the IUGR/IGF-I group, hepatic Igfbp3 mRNA and liver immunohistochemical staining were increased. In the IUGR/PSS and control pups, there were no significant differences between these two groups in serum IGFBP3 and IGFBP5, hepatic Igf-i and Igfbp-5 mRNA, or brain Igf mRNA. No benefits on body and brain weight gain but an effective increase in hepatic IGFBP-3 was observed after treatment with 2 mg/kg rhIGF-I during the early postnatal period. © 2015 Japan Pediatric Society.

  6. Early Head Growth in Infants at Risk of Autism: A Baby Siblings Research Consortium Study

    PubMed Central

    Zwaigenbaum, Lonnie; Young, Gregory S.; Stone, Wendy L.; Dobkins, Karen; Ozonoff, Sally; Brian, Jessica; Bryson, Susan E.; Carver, Leslie J.; Hutman, Ted; Iverson, Jana M.; Landa, Rebecca J.; Messinger, Daniel

    2014-01-01

    Objective: While early brain overgrowth is frequently reported in autism spectrum disorder (ASD), the relationship between ASD and head circumference (HC) is less clear, with inconsistent findings from longitudinal studies that include community controls. Our aim was to examine whether head growth in the first 3 years differed between children with ASD from a high-risk (HR) sample of infant siblings of children with ASD (by definition, multiplex), HR siblings not diagnosed with ASD, and low-risk (LR) controls. Method: Participants included 442 HR and 253 LR infants from 12 sites of the international Baby Siblings Research Consortium. Longitudinal HC data were obtained prospectively, supplemented by growth records. Random effects non-linear growth models were used to compare HC in HR infants and LR infants. Additional comparisons were conducted with the HR group stratified by diagnostic status at age 3: ASD (n=77), developmental delay (DD; n=32), and typical development (TD; n=333). Nonlinear growth models were also developed for height to assess general overgrowth associated with ASD. Results: There was no overall difference in head circumference growth over the first 3 years between HR and LR infants, although secondary analyses suggested possible increased total growth in HR infants, reflected by the model asymptote. Analyses stratifying the HR group by 3-year outcomes did not detect differences in head growth or height between HR infants who developed ASD and those who did not, nor between infants with ASD and LR controls. Conclusion: Head growth was uninformative as an ASD risk marker within this HR cohort. PMID:25245349

  7. Net mineral requirements for growth of Saanen goat kids in early life are similar among genders.

    PubMed

    Mendonça, A N; Härter, C J; Souza, S F; Oliveira, D; Boaventura Neto, O; Biagioli, B; Resende, K T; Teixeira, I A M A

    2017-02-01

    The current mineral requirements for growing goat kids are based on sheep and cattle studies without differentiating between the stages of development or gender. The aims of this study were to determine the net requirements for growth of Ca, P, Mg, Na and K of Saanen goat kids during the initial stages of growth and to analyse the effect of gender on the net requirements for growth of these macrominerals. Eighteen female, 19 intact male and 10 castrated male Saanen goat kids were studied. The kids were selected applying a completely randomized design and slaughtered when their body weight (BW) reached approximately 5, 10 and 15 kg to determine the mineral requirements for growth at these stages. The net mineral requirements for growth were similar among genders. The goat kids had slightly increased net requirements of Ca, P and Mg for growth with increasing BW from 5 to 15 kg. The net requirements for growth of Ca, P, Mg, Na and K ranged from 9.61 to 9.67 g/kg of BW gain, 7.14 to 7.56 g/kg of BW gain, 0.34 to 0.37 g/kg of BW gain, 1.26 to 1.13 g/kg of BW gain, 1.88 to 1.82 g/kg of BW gain as the animals grew from 5 to 15 kg respectively. In conclusion, when formulating diets for Saanen goat kids in early growth stage mineral levels do not need to adjusted based on gender. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  8. Culture of porcine embryonic germ cells in serum-supplemented and serum-free conditions: the effects of serum and growth factors on primary and long-term culture.

    PubMed

    Petkov, Stoyan G; Anderson, Gary B

    2008-06-01

    Fetal bovine serum (FBS) is a commonly used medium supplement with variable and undefined composition, which presents problems in culture of pluripotent stem cells. The purpose of this study was to determine if FBS can be replaced with Knockout Serum Replacement (KSR), a defined medium supplement, and to examine the effects of FBS and growth factors on short- and long-term culture of pig embryonic germ cells (EGC). No significant differences were observed in total and mean colony areas in primary cultures between FBS- and KSR-supplemented medium (421 x 10(3) mum(2) vs. 395 x 10(3) microm(2), p = 0.68, n = 11, and 6375 microm(2) vs. 6407 microm(2), p = 0.885, respectively). Total and mean colony areas were significantly larger in KSR-supplemented medium compared with medium supplemented with KSR and growth factors (505 x 10(3) microm(2) vs. 396 x 10(3) microm(2), p = 0.016, n = 12, and 8769 microm(2) vs. 6513 microm(2), p = 0.003, respectively). The cultures proliferated for significantly higher numbers of passages in FBS-supplemented medium and in medium supplemented with KSR and growth factors compared with medium containing KSR alone (31.1 vs. 21.9, p = 0.004, n = 10, and 35.5 vs. 21.6, p = 002, n = 10, respectively). Porcine EGC maintained in serum-free conditions were positive for pluripotent stem cell markers, maintained stable karyotypes for up to 54 passages, and were capable of differentiating in vitro into cells from the three primary germ layers. These results will help improve and standardize culture of pluripotent stem cells in the pig.

  9. Development of the embryonic heat shock response and the impact of repeated thermal stress in early stage lake whitefish (Coregonus clupeaformis) embryos.

    PubMed

    Whitehouse, Lindy M; McDougall, Chance S; Stefanovic, Daniel I; Boreham, Douglas R; Somers, Christopher M; Wilson, Joanna Y; Manzon, Richard G

    2017-10-01

    Lake whitefish (Coregonus clupeaformis) embryos were exposed to thermal stress (TS) at different developmental stages to determine when the heat shock response (HSR) can be initiated and if it is altered by exposure to repeated TS. First, embryos were subject to one of three different TS temperatures (6, 9, or 12°C above control) at 4 points in development (21, 38, 60 and 70 days post-fertilisation (dpf)) for 2h followed by a 2h recovery to understand the ontogeny of the HSR. A second experiment explored the effects of repeated TS on the HSR in embryos from 15 to 75 dpf. Embryos were subjected to one of two TS regimes; +6°C TS for 1h every 6 days or +9°C TS for 1h every 6 days. Following a 2h recovery, a subset of embryos was sampled. Our results show that embryos could initiate a HSR via upregulation of heat shock protein 70 (hsp70) mRNA at all developmental ages studied, but that this response varied with age and was only observed with a TS of +9 or +12°C. In comparison, when embryos received multiple TS treatments, hsp70 was not induced in response to the 1h TS and 2h recovery, and a downregulation was observed at 39 dpf. Downregulation of hsp47 and hsp90α mRNA was also observed in early age embryos. Collectively, these data suggest that embryos are capable of initiating a HSR at early age and throughout embryogenesis, but that repeated TS can alter the HSR, and may result in either reduced responsiveness or a downregulation of inducible hsps. Our findings warrant further investigation into both the short- and long-term effects of repeated TS on lake whitefish development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mass and size growth of early-type galaxies by dry mergers in cluster environments

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao; Ishiyama, Tomoaki

    2016-02-01

    We perform dry merger simulations to investigate the role of dry mergers in the size growth of early-type galaxies in high-density environments. We replace the virialized dark matter haloes obtained by a large cosmological N-body simulation with N-body galaxy models consisting of two components, a stellar bulge and a dark matter halo, which have higher mass resolution than the cosmological simulation. We then resimulate nine cluster-forming regions, whose masses range from 1 × 1014 to 5 × 1014 M⊙. Masses and sizes of stellar bulges are also assumed to satisfy the stellar mass-size relation of high-z compact massive early-type galaxies. We find that dry major mergers considerably contribute to the mass and size growth of central massive galaxies. One or two dry major mergers double the average stellar mass and quadruple the average size between z = 2 and 0. These growths favourably agree with observations. Moreover, the density distributions of our simulated central massive galaxies grow from the inside-out, which is consistent with recent observations. The mass-size evolution is approximated as R∝ M_{{ast }}^{α }, with α ˜ 2.24. Most of our simulated galaxies are efficiently grown by dry mergers, and their stellar mass-size relations match the ones observed in the local Universe. Our results show that the central galaxies in the cluster haloes are potential descendants of high-z (z ˜ 2-3) compact massive early-type galaxies. This conclusion is consistent with previous numerical studies which investigate the formation and evolution of compact massive early-type galaxies.

  11. Effects of glucocorticoid treatment given in early or late gestation on growth and development in sheep.

    PubMed

    Li, S; Sloboda, D M; Moss, T J M; Nitsos, I; Polglase, G R; Doherty, D A; Newnham, J P; Challis, J R G; Braun, T

    2013-04-01

    Antenatal corticosteroids are used to augment fetal lung maturity in human pregnancy. Dexamethasone (DEX) is also used to treat congenital adrenal hyperplasia of the fetus in early pregnancy. We previously reported effects of synthetic corticosteroids given to sheep in early or late gestation on pregnancy length and fetal cortisol levels and glucocorticoids alter plasma insulin-like growth factor (IGF) and insulin-like growth factor binding protein (IGFBP) concentrations in late pregnancy and reduce fetal weight. The effects of administering DEX in early pregnancy on fetal organ weights and betamethasone (BET) given in late gestation on weights of fetal brain regions or organ development have not been reported. We hypothesized that BET or DEX administration at either stage of pregnancy would have deleterious effects on fetal development and associated hormones. In early pregnancy, DEX was administered as four injections at 12-hourly intervals over 48 h commencing at 40-42 days of gestation (dG). There was no consistent effect on fetal weight, or individual fetal organ weights, except in females at 7 months postnatal age. When BET was administered at 104, 111 and 118 dG, the previously reported reduction in total fetal weight was associated with significant reductions in weights of fetal brain, cerebellum, heart, kidney and liver. Fetal plasma insulin, leptin and triiodothyronine were also reduced at different times in fetal and postnatal life. We conclude that at the amounts given, the sheep fetus is sensitive to maternal administration of synthetic glucocorticoid in late gestation, with effects on growth and metabolic hormones that may persist into postnatal life.

  12. Impact of Early Versus Late Diuretic Exposure on Metabolic Bone Disease and Growth in Premature Neonates.

    PubMed

    Orth, Lucas E; O'Mara, Keliana L

    2018-01-01

    This study aimed to determine whether there are differences in the incidence of metabolic bone disease (MBD) between preterm neonates first exposed to diuretics prior to 2 weeks of life versus those exposed after 2 weeks. This study was a retrospective analysis of premature neonates born at a tertiary care center between 2011 and 2015 who received either furosemide or chlorothiazide. The primary outcome was incidence of MBD. Secondary outcomes included growth, electrolyte disturbances, oxygen requirement, and length of stay. A total of 147 patients were included. Early initiation (n = 90) and late initiation (n = 57) arms were balanced with respect to birth weight and gestational age. There was no difference in incidence of MBD in the early group (76%) versus the late group (65%; p = 0.164). Stratification by cumulative dose showed incidence of 85% in patients receiving ≥8 mg/kg of furosemide, compared with 68% and 64% of those in the <4 mg/kg and 4 to 7.9 mg/kg strata, respectively (p = 0.06). The early group experienced greater reductions in length-for-age growth during diuretic therapy (-70% versus -40%; p = 0.009). Electrolyte abnormalities were more prevalent in the early group. Although there was no difference in duration of mechanical ventilation, duration of supplemental oxygen requirement was reduced in the late group (75 versus 89 days; p = 0.003). Timing of diuretic initiation did not affect incidence of MBD. Increased cumulative furosemide exposure may be associated with higher incidence. Patients first exposed to diuretics within 2 weeks of life are at higher risk for electrolyte abnormalities and reduced growth velocity.

  13. Early cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Gang; Hu, Xiumian; Garzanti, Eduardo; Ji, Wei-Qiang; Liu, Zhi-Chao; Liu, Xiao-Chi; Wu, Fu-Yuan

    2017-07-01

    Constraining the timing of early topographic growth on the Tibetan plateau is critical for any models of India-Asia collision, Himalayan orogeny and subsequent plateau development in the Cenozoic. Stratigraphic, sedimentological and provenance analysis of the Lower Cretaceous red-beds of the Damxung Conglomerate provide new key information to reconstruct the paleogeography and the tectonic evolution of the Lhasa terrane at the time. The over 700-m-thick Damxung Conglomerate documents distal alluvial fan to braidplain sedimentation passing upward to proximal alluvial fan sedimentation. Deposition began near sea level, as documented by limestone beds occurring at the base of the unit. Zircon U-Pb dating of interbedded tuff layers constrain deposition age at ca. 111 Ma. Abundance of volcanic clasts, Cretaceous U-Pb ages and Hf isotopes of detrital zircons yielding mainly negative ɛHf(t) values together with paleocurrent data indicate an active volcanic source located in the North Lhasa subterrane. Pre-Mesozoic-aged zircon, recycled quartz and (meta) sedimentary rock fragments increase up-section, indicating progressive erosional exhumation of the Paleozoic sedimentary/metasedimentary basement. The Damxung Conglomerate thus records a significant uplift and unroofing stage in the source region, implying initial topographic growth on the Lhasa terrane at early Albian time. Early Cretaceous topographic growth on the Lhasa terrane is supported by the stratigraphic record in the Linzhou basin, the Xigaze forearc basin and the southern Nima basin. In contrast, marine strata in the central-western Lhasa terrane lasted until the early Cenomanian (ca. 96 Ma), indicating diachronous marine regression on the Lhasa terrane from east to west.

  14. Effects of high versus standard early protein intake on growth of extremely low birth weight infants.

    PubMed

    Maggio, Luca; Cota, Francesco; Gallini, Francesca; Lauriola, Valeria; Zecca, Chiara; Romagnoli, Costantino

    2007-01-01

    Early provision of protein has been shown to limit catabolism and could improve growth. Our objective was to determine whether early aggressive protein intake improved growth outcomes of extremely low birth weight (ELBW) infants. ELBW infants were included in the study if they had no major congenital anomalies or renal failure and were still hospitalized at 36 weeks postmenstrual age. In 25 infants (HP) the early protein intake was planned to be 20% greater than in 31 historical controls (SP). The 2 groups were similar in the baseline characteristics. The mean protein intake during the first 14 days of life was significantly greater in the HP group (3.1 +/- 0.2 vs 2.5 +/- 0.2 g/kg/d; P<0.0001). HP group showed lower postnatal weight loss (-3.1%; 95% confidence interval [CI] -5.9, -0.2) and earlier regain of birth weight (-4.1 days; 95% CI -6.6, -1.7). Mean blood urea nitrogen and bicarbonate levels were similar; mean serum glucose level was lower in the HP group (-21,7 mg/dL; 95% CI -41.9,-1.5). HP infants had a reduced fall in weight z score (-0.57; 95% CI -1.01, -0.12) and in length z score (-0.51; 95% CI -0.97, -0.05) from birth to discharge. Early high protein intake was associated with improved weight and length growth outcomes at discharge. These findings highlight the benefits of aggressive protein intake immediately after birth.

  15. Antenatal and early infant predictors of postnatal growth in rural Vietnam: a prospective cohort study

    PubMed Central

    Hanieh, Sarah; Ha, Tran T; De Livera, Alysha M; Simpson, Julie A; Thuy, Tran T; Khuong, Nguyen C; Thoang, Dang D; Tran, Thach D; Tuan, Tran; Fisher, Jane; Biggs, Beverley-Ann

    2015-01-01

    Objective To determine which antenatal and early-life factors were associated with infant postnatal growth in a resource-poor setting in Vietnam. Study design Prospective longitudinal study following infants (n=1046) born to women who had previously participated in a cluster randomised trial of micronutrient supplementation (ANZCTR:12610000944033), Ha Nam province, Vietnam. Antenatal and early infant factors were assessed for association with the primary outcome of infant length-for-age z scores at 6 months of age using multivariable linear regression and structural equation modelling. Results Mean length-for-age z score was −0.58 (SD 0.94) and stunting prevalence was 6.4%. Using structural equation modelling, we highlighted the role of infant birth weight as a predictor of infant growth in the first 6 months of life and demonstrated that maternal body mass index (estimated coefficient of 45.6 g/kg/m2; 95% CI 34.2 to 57.1), weight gain during pregnancy (21.4 g/kg; 95% CI 12.6 to 30.1) and maternal ferritin concentration at 32 weeks' gestation (−41.5 g per twofold increase in ferritin; 95% CI −78 to −5.0) were indirectly associated with infant length-for-age z scores at 6 months of age via birth weight. A direct association between 25-(OH) vitamin D concentration in late pregnancy and infant length-for-age z scores (estimated coefficient of −0.06 per 20 nmol/L; 95% CI −0.11 to −0.01) was observed. Conclusions Maternal nutritional status is an important predictor of early infant growth. Elevated antenatal ferritin levels were associated with suboptimal infant growth in this setting, suggesting caution with iron supplementation in populations with low rates of iron deficiency. PMID:25246090

  16. Physiological and morphological changes during early and later stages of fruit growth in Capsicum annuum.

    PubMed

    Tiwari, Aparna; Vivian-Smith, Adam; Ljung, Karin; Offringa, Remko; Heuvelink, Ep

    2013-03-01

    Fruit-set involves a series of physiological and morphological changes that are well described for tomato and Arabidopsis, but largely unknown for sweet pepper (Capsicum annuum). The aim of this paper is to investigate whether mechanisms of fruit-set observed in Arabidopsis and tomato are also applicable to C. annuum. To do this, we accurately timed the physiological and morphological changes in a post-pollinated and un-pollinated ovary. A vascular connection between ovule and replum was observed in fertilized ovaries that undergo fruit development, and this connection was absent in unfertilized ovaries that abort. This indicates that vascular connection between ovule and replum is an early indicator for successful fruit development after pollination and fertilization. Evaluation of histological changes in the carpel of a fertilized and unfertilized ovary indicated that increase in cell number and cell diameter both contribute to early fruit growth. Cell division contributes more during early fruit growth while cell expansion contributes more at later stages of fruit growth in C. annuum. The simultaneous occurrence of a peak in auxin concentration and a strong increase in cell diameter in the carpel of seeded fruits suggest that indole-3-acetic acid stimulates a major increase in cell diameter at later stages of fruit growth. The series of physiological and morphological events observed during fruit-set in C. annuum are similar to what has been reported for tomato and Arabidopsis. This indicates that tomato and Arabidopsis are suitable model plants to understand details of fruit-set mechanisms in C. annuum. Copyright © Physiologia Plantarum 2012.

  17. Gravity and embryonic development

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1976-01-01

    The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.

  18. Maternal pelvic dimensions and neonatal size: Implications for growth plasticity in early life as adaptation.

    PubMed

    Wells, Jonathan C K; Figueiroa, José N; Alves, Joao G

    2017-01-01

    Patterns of fetal growth predict non-communicable disease risk in adult life, but fetal growth variability appears to have a relatively weak association with maternal nutritional dynamics during pregnancy. This challenges the interpretation of fetal growth variability as 'adaptation'. We hypothesized that associations of maternal size and nutritional status with neonatal size are mediated by the dimensions of the maternal pelvis. We analysed data on maternal height, body mass index (BMI) and pelvic dimensions (conjugate, inter-spinous and inter-cristal diameters) and neonatal gestational age, weight, length, thorax girth and head girth ( n = 224). Multiple regression analysis was used to identify independent maternal predictors of neonatal size, and the mediating role of neonatal head girth in these associations. Pelvic dimensions displaced maternal BMI as a predictor of birth weight, explaining 11.6% of the variance. Maternal conjugate and inter-spinous diameters predicted neonatal length, thorax girth and head girth, whereas inter-cristal diameter only predicted neonatal length. Associations of pelvic dimensions with birth length, but not birth weight, were mediated by neonatal head girth. Pelvic dimensions predicted neonatal size better than maternal BMI, and these associations were mostly independent of maternal height. Sensitivity of fetal growth to pelvic dimensions reduces the risk of cephalo-pelvic disproportion, potentially a strong selective pressure during secular trends in height. Selection on fetal adaptation to relatively inflexible components of maternal phenotype, rather than directly to external ecological conditions, may help explain high levels of growth plasticity during late fetal life and early infancy.

  19. Early growth and development impairments in patients with ganglioside GM3 synthase deficiency.

    PubMed

    Wang, H; Wang, A; Wang, D; Bright, A; Sency, V; Zhou, A; Xin, B

    2016-05-01

    Ganglioside GM3 synthase is a key enzyme involved in the biosynthesis of gangliosides. GM3 synthase deficiency (GSD) causes a complete absence of GM3 and all downstream biosynthetic derivatives. The individuals affected by this disorder manifest severe irritability, intractable seizures and profound intellectual disability. However, we have found that most newborns seem symptom-free for a period of time after birth. In order to further understand the onset of the disease, we investigated the early growth and development of patients with this condition through this study. We compared 37 affected individuals with their normal siblings and revealed that all children with GSD had relatively normal intrauterine growth and development, as their weight, length and head circumference were similar to their normal siblings at birth. However, the disease progresses quickly after birth and causes significant constitutional impairments of growth and development by 6 months of age. Neither breastfeeding nor gastrostomy tube placement made significant difference on growth and development as all groups of patients showed the similar pattern. We conclude that GSD causes significant postnatal growth and developmental impairments and the amount of gangliosides in breast milk and general nutritional intervention do not seem to alter these outcomes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Exploring the association between maternal prenatal multivitamin use and early infant growth: The Healthy Start Study.

    PubMed

    Sauder, K A; Starling, A P; Shapiro, A L; Kaar, J L; Ringham, B M; Glueck, D H; Dabelea, D

    2016-10-01

    Prenatal multivitamin supplementation is recommended to improve offspring outcomes, but effects on early infant growth are unknown. We examined whether multivitamin supplementation in the year before delivery predicts offspring mass, body composition and early infant growth. Multivitamin use was assessed longitudinally in 626 women from the Healthy Start Study. Offspring body size and composition was measured with air displacement plethysmography at birth (<3 days) and postnatally (median 5.2 months). Separate multiple linear regressions assessed the relationship of weeks of daily multivitamin use with offspring mass, body composition and postnatal growth, after adjustment for potential confounders (maternal age, race, pre-pregnant body mass index; offspring gestational age at birth, sex; breastfeeding exclusivity). Maternal multivitamin use was not related to offspring mass or body composition at birth, or rate of change in total or fat-free mass in the first 5 months. Multivitamin use was inversely associated with average monthly growth in offspring percent fat mass (β = -0.009, p = 0.049) between birth and postnatal exam. Offspring of non-users had a monthly increase in percent fat mass of 3.45%, while offspring at the top quartile of multivitamin users had a monthly increase in percent fat mass of 3.06%. This association was not modified by exclusive breastfeeding. Increased multivitamin use in the pre-conception and prenatal periods was associated with a slower rate of growth in offspring percent fat mass in the first 5 months of life. This study provides further evidence that in utero nutrient exposures may affect offspring adiposity beyond birth. © 2015 World Obesity.

  1. Effects of early vitamin D deficiency rickets on bone and dental health, growth and immunity.

    PubMed

    Zerofsky, Melissa; Ryder, Mark; Bhatia, Suruchi; Stephensen, Charles B; King, Janet; Fung, Ellen B

    2016-10-01

    Vitamin D deficiency is associated with adverse health outcomes, including impaired bone growth, gingival inflammation and increased risk for autoimmune disease, but the relationship between vitamin D deficiency rickets in childhood and long-term health has not been studied. In this study, we assessed the effect of early vitamin D deficiency on growth, bone density, dental health and immune function in later childhood to determine if children previously diagnosed with rickets were at greater risk of adverse health outcomes compared with healthy children. We measured serum 25-hydroxyvitamin D, calcium, parathyroid hormone, bone mineral density, anthropometric measures, dietary habits, dental health, general health history, and markers of inflammation in 14 previously diagnosed rickets case children at Children's Hospital Oakland Research Center. We compared the findings in the rickets cases with 11 healthy children selected from the population of CHO staff families. Fourteen mothers of the rickets cases, five siblings of the rickets cases, and seven mothers of healthy children also participated. Children diagnosed with vitamin D deficiency rickets had a greater risk of fracture, greater prevalence of asthma, and more dental enamel defects compared with healthy children. Given the widespread actions of vitamin D, it is likely that early-life vitamin D deficiency may increase the risk of disease later in childhood. Further assessment of the long-term health effects of early deficiency is necessary to make appropriate dietary recommendations for infants at risk of deficiency. © 2015 John Wiley & Sons Ltd.

  2. Effects of early vitamin D deficiency rickets on bone and dental health, growth and immunity

    PubMed Central

    Zerofsky, Melissa; Ryder, Mark; Bhatia, Suruchi; Stephensen, Charles B.; King, Janet; Fung, Ellen B.

    2015-01-01

    Vitamin D deficiency is associated with adverse health outcomes, including impaired bone growth, gingival inflammation and increased risk for autoimmune disease, but the relationship between vitamin D deficiency rickets in childhood and long-term health has not been studied. In this study, we assessed the effect of early vitamin D deficiency on growth, bone density, dental health and immune function in later childhood to determine if children previously diagnosed with rickets were at greater risk of adverse health outcomes compared with healthy children. We measured serum 25-hydroxyvitamin D, calcium, parathyroid hormone, bone mineral density, anthropometric measures, dietary habits, dental health, general health history, and markers of inflammation in 14 previously diagnosed rickets case children at Children’s Hospital Oakland Research Center. We compared the findings in the rickets cases with 11 healthy children selected from the population of CHO staff families. Fourteen mothers of the rickets cases, five siblings of the rickets cases, and seven mothers of healthy children also participated. Children diagnosed with vitamin D deficiency rickets had a greater risk of fracture, greater prevalence of asthma, and more dental enamel defects compared with healthy children. Given the widespread actions of vitamin D, it is likely that early-life vitamin D deficiency may increase the risk of disease later in childhood. Further assessment of the long-term health effects of early deficiency is necessary to make appropriate dietary recommendations for infants at risk of deficiency. PMID:25850574

  3. Growth from birth to early adolescence in offspring prenatally exposed to cigarettes and marijuana.

    PubMed

    Fried, P A; Watkinson, B; Gray, R

    1999-01-01

    Weight, height, and head circumference were examined in children from birth to early adolescence for whom prenatal exposure to marijuana and cigarettes had been ascertained. The subjects were from a low-risk, predominantly middle-class sample participating in an ongoing longitudinal study. The negative association between growth measures at birth and prenatal cigarette exposure was overcome, sooner in males than females, within the first few years, and by the age of six, the children of heavy smokers were heavier than control subjects. Pre and postnatal environmental tobacco smoke did not have a negative effect upon the growth parameters; however, the choice of bottle-feeding or shorter duration of breast-feeding by women who smoked during pregnancy appeared to play an important positive role in the catch-up observed among the infants of smokers. Prenatal exposure to marijuana was not significantly related to any growth measures at birth, although a smaller head circumference observed at all ages reached statistical significance among the early adolescents born to the heavy marijuana users.

  4. Contraction and stress-dependent growth shape the forebrain of the early chicken embryo.

    PubMed

    Garcia, Kara E; Okamoto, Ruth J; Bayly, Philip V; Taber, Larry A

    2017-01-01

    During early vertebrate development, local constrictions, or sulci, form to divide the forebrain into the diencephalon, telencephalon, and optic vesicles. These partitions are maintained and exaggerated as the brain tube inflates, grows, and bends. Combining quantitative experiments on chick embryos with computational modeling, we investigated the biophysical mechanisms that drive these changes in brain shape. Chemical perturbations of contractility indicated that actomyosin contraction plays a major role in the creation of initial constrictions (Hamburger-Hamilton stages HH11-12), and fluorescent staining revealed that F-actin is circumferentially aligned at all constrictions. A finite element model based on these findings shows that the observed shape changes are consistent with circumferential contraction in these regions. To explain why sulci continue to deepen as the forebrain expands (HH12-20), we speculate that growth depends on wall stress. This idea was examined by including stress-dependent growth in a model with cerebrospinal fluid pressure and bending (cephalic flexure). The results given by the model agree with observed morphological changes that occur in the brain tube under normal and reduced eCSF pressure, quantitative measurements of relative sulcal depth versus time, and previously published patterns of cell proliferation. Taken together, our results support a biphasic mechanism for forebrain morphogenesis consisting of differential contractility (early) and stress-dependent growth (late). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae)

    PubMed Central

    He, Tianhua; Fowler, William M.; Causley, Casey L.

    2015-01-01

    Several hypotheses have been proposed to explain the rich floristic diversity in regions characterised by nutrient-impoverished soils; however, none of these hypotheses have been able to explain the rapid diversification over a relatively short evolutionary time period of Grevillea, an Australian plant genus with 452 recognised species/subspecies and only 11 million years of evolutionary history. Here, we hypothesise that the apparent evolutionary success of Grevillea might have been triggered by the highly efficient use of key nutrients. The nutrient content in the seeds and nutrient-use efficiency during early seedling growth of 12 species of Grevillea were compared with those of 24 species of Hakea, a closely related genus. Compared with Hakea, the Grevillea species achieved similar growth rates (root and shoot length) during the early stages of seedling growth but contained only approximately half of the seed nutrient content. We conclude that the high nutrient-use efficiency observed in Grevillea might have provided a selective advantage in nutrient-poor ecosystems during evolution and that this property likely contributed to the evolutionary success in Grevillea. PMID:26607493

  6. Early vs. asymptotic growth responses of herbaceous plants to elevated CO[sub 2

    SciTech Connect

    Thomas, S.C.; Jasienski, M.; Bazzaz, F.A.

    1999-07-01

    Although many studies have examined the effects of elevated carbon dioxide on plant growth,'' the dynamics of growth involve at least two parameters, namely, an early rate of exponential size increase and an asymptotic size reached late in plant ontogeny. The common practice of quantifying CO[sub 2] responses as a single response ratio thus obscures two qualitatively distinct kinds of effects. The present experiment examines effects of elevated CO[sub 2] on both early and asymptotic growth parameters in eight C[sub 3] herbaceous plant species (Abutilon theophrasti, Cassia obtusifolia, Plantago major, Rumex crispus, Taraxacum officinale, Dactylis glomerata, Lolium multiflorum, and Panicummore » dichotomoflorum). Plants were grown for 118--172 d in a factorial design of CO[sub 2] (350 and 700 [micro]L/L) and plant density (individually grown vs. high-density monocultures) under edaphic conditions approximating those of coastal areas in Massachusetts. For Abutilon theophrasti, intraspecific patterns of plant response were also assessed using eight genotypes randomly sampled from a natural population and propagated as inbred lines.« less

  7. Contrasting shrub species respond to early summer temperatures leading to correspondence of shrub growth patterns

    NASA Astrophysics Data System (ADS)

    Weijers, Stef; Pape, Roland; Löffler, Jörg; Myers-Smith, Isla H.

    2018-03-01

    The Arctic-alpine biome is warming rapidly, resulting in a gradual replacement of low statured species by taller woody species in many tundra ecosystems. In northwest North America, the remotely sensed normalized difference vegetation index (NDVI), suggests an increase in productivity of the Arctic and alpine tundra and a decrease in productivity of boreal forests. However, the responses of contrasting shrub species growing at the same sites to climate drivers remain largely unexplored. Here, we test growth, climate, and NDVI relationships of two contrasting species: the expanding tall deciduous shrub Salix pulchra and the circumarctic evergreen dwarf shrub Cassiope tetragona from an alpine tundra site in the Pika valley in the Kluane Region, southwest Yukon Territories, Canada. We found that annual growth variability of both species at this site is strongly driven by early summer temperatures, despite their contrasting traits and habitats. Shrub growth chronologies for both species were correlated with the regional climate signal and showed spatial correspondence with interannual variation in NDVI in surrounding alpine and Arctic regions. Our results suggest that early summer warming represents a common driver of vegetation change for contrasting shrub species growing in different habitats in the same alpine environments.

  8. The Not-so-Dark Ages: ecology for human growth in medieval and early twentieth century Portugal as inferred from skeletal growth profiles.

    PubMed

    Cardoso, Hugo F V; Garcia, Susana

    2009-02-01

    This study attempts to address the issue of relative living standards in Portuguese medieval and early 20th century periods. Since the growth of children provides a good measure of environmental quality for the overall population, the skeletal growth profiles of medieval Leiria and early 20th century Lisbon were compared. Results show that growth in femur length of medieval children did not differ significantly from that of early 20th century children, but after puberty medieval adolescents seem to have recovered, as they have significantly longer femora as adults. This is suggestive of greater potential for catch-up growth in medieval adolescents. We suggest that this results from distinct child labor practices, which impact differentially on the growth of Leiria and Lisbon adolescents. Work for medieval children and adolescents were related to family activities, and care and attention were provided by family members. Conversely, in early 20th century Lisbon children were more often sent to factories at around 12 years of age as an extra source of family income, where they were exploited for their labor. Since medieval and early 20th century children were stunted at an early age, greater potential for catch-up growth in medieval adolescents results from exhausting work being added to modern adolescent's burdens of disease and poor diet, when they entered the labor market. Although early 20th century Lisbon did not differ in overall unfavorable living conditions from medieval Leiria, after puberty different child labor practices may have placed modern adolescents at greater risk of undernutrition and poor growth. 2008 Wiley-Liss, Inc.

  9. A Small RNA-Catalytic Argonaute Pathway Tunes Germline Transcript Levels to Ensure Embryonic Divisions

    PubMed Central

    Gerson-Gurwitz, Adina; Wang, Shaohe; Sathe, Shashank; Green, Rebecca; Yeo, Gene W.; Oegema, Karen; Desai, Arshad

    2016-01-01

    SUMMARY Multiple division cycles without growth are a characteristic feature of early embryogenesis. The female germline loads proteins and RNAs into oocytes to support these divisions, which lack many quality control mechanisms operating in somatic cells undergoing growth. Here we describe a small RNA-Argonaute pathway that ensures early embryonic divisions in C. elegans by employing catalytic slicing activity to broadly tune, instead of silence, germline gene expression. Misregulation of one target, a kinesin-13 microtubule depolymerase, underlies a major phenotype associated with pathway loss. Tuning of target transcript levels is guided by density of homologous small RNAs, whose generation must ultimately be related to target sequence. Thus, the tuning action of a small RNA-catalytic Argonaute pathway generates oocytes capable of supporting embryogenesis. We speculate that the specialized nature of germline chromatin led to emergence of small RNA-catalytic Argonaute pathways in the female germline as a post-transcriptional control layer to optimize oocyte composition. PMID:27020753

  10. The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning.

    PubMed

    Plackett, Andrew R G; Powers, Stephen J; Phillips, Andy L; Wilson, Zoe A; Hedden, Peter; Thomas, Stephen G

    2018-06-01

    Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning.

  11. Early childhood growth patterns and school-age respiratory resistance, fractional exhaled nitric oxide and asthma.

    PubMed

    Casas, Maribel; den Dekker, Herman T; Kruithof, Claudia J; Reiss, Irwin K; Vrijheid, Martine; de Jongste, Johan C; Jaddoe, Vincent W V; Duijts, Liesbeth

    2016-12-01

    Greater infant weight gain is associated with lower lung function and increased risk of childhood asthma. The role of early childhood peak growth patterns is unclear. We assessed the associations of individually derived early childhood peak growth patterns with respiratory resistance, fractional exhaled nitric oxide, wheezing patterns, and asthma until school-age. We performed a population-based prospective cohort study among 5364 children. Repeated growth measurements between 0 and 3 years of age were used to derive standard deviation scores (s.d.s) of peak height and weight velocities (PHV and PWV, respectively), and body mass index (BMI) and age at adiposity peak. Respiratory resistance and fractional exhaled nitric oxide were measured at 6 years of age. Wheezing patterns and asthma were prospectively assessed by annual questionnaires. We also assessed whether any association was explained by childhood weight status. Greater PHV was associated with lower respiratory resistance [Z-score (95% CI): -0.03 (-0.04, -0.01) per s.d.s increase] (n = 3382). Greater PWV and BMI at adiposity peak were associated with increased risks of early wheezing [relative risk ratio (95% CI): 1.11 (1.06, 1.16), 1.26 (1.11, 1.43), respectively] and persistent wheezing [relative risk ratio (95% CI): 1.09 (1.03, 1.16), 1.37 (1.17, 1.60), respectively] (n = 3189 and n = 3005, respectively). Childhood weight status partly explained these associations. No other associations were observed. PWV and BMI at adiposity peak are critical for lung developmental and risk of school-age wheezing. Follow-up studies at older ages are needed to elucidate whether these effects persist at later ages. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Neighborhood Violent Crime and Academic Growth in Chicago: Lasting Effects of Early Exposure*

    PubMed Central

    Burdick-Will, Julia

    2017-01-01

    A large body of research documents the importance of early experiences for later academic, social, and economic success. Exposure to an unsafe neighborhood is no exception. Living in a violent neighborhood can influence the stress levels, protective behaviors, and community interactions of both parents and children in ways that generate cumulative educational disadvantage. Using nine years (2002–2011) of detailed crime data from the Chicago Police Department and longitudinal administrative data from the Chicago Public Schools, I estimate the influence of early exposure to neighborhood violence on growth in standardized test scores over time. Student fixed-effects are included to remove any bias due to constant differences between students. The results show that children from more violent neighborhoods fall farther behind their peers from safer neighborhoods as they progress through school. These effects are comparable in size to the independent association with socioeconomic disadvantage and an annual measure of more recent neighborhood violence exposure. PMID:29129943

  13. [Local injection of exogenous nerve growth factor improves early bone maturation of implants].

    PubMed

    Yao, Yang; Du, Yu; Gu, Xia; Guang, Meng-Kai; Huang, Bo; Gong, Ping

    2018-04-01

    To investigate the effects of nerve growth factor (NGF) in the osteogenic action of implants and the maturation and reconstruction changes in bone tissues in the early stage of osseointegration. The mouse implant model was established by placing titanium in the femoral head of the mouse and locally injecting NGF in the implant zone. On 1, 2 and 4 weeks after operation, stain samples were collected from animals using hematoxylin-eosin (HE) staining and Masson staining. The effect of NGF on the bone maturation was compared at different time points of early stage osseointegration. The results of HE and Masson staining indicated that the local injection of external NGF can up-regulate bone mass, amount of bone trabecula, and bone maturity in the mouse model. The mature bone rate in treatment group of 1 week and 4 weeks after operation were significantly higher than those in the control group (P<0.05). NGF can shorten the period of bone maturation.

  14. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    PubMed

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  15. Early Acceleration of Mathematics Students and its Effect on Growth in Self-esteem: A Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Ma, Xin

    2002-11-01

    The Longitudinal Study of American Youth (LSAY) database was employed to examine the educational practice of early acceleration of students of mathematics on the development of their self-esteem across the entire secondary grade levels. Students were classified into three different academic categories (gifted, honors, and regular). Results indicated that, in terms of the development of their self-esteem, gifted students benefited from early acceleration, honors students neither benefited nor were harmed by early acceleration, and regular students were harmed by early acceleration. Early acceleration in mathematics promoted significant growth in self-esteem among gifted male students and among gifted, honors, and regular minority students. When students were accelerated, schools showed similar average growth in self-esteem among gifted students and regular students and a large effect of general support for mathematics on the average growth in self-esteem among honors students.

  16. Input Subject Diversity Enhances Early Grammatical Growth: Evidence from a Parent-Implemented Intervention