Sample records for early endosome motility

  1. Peroxisomes, lipid droplets, and endoplasmic reticulum “hitchhike” on motile early endosomes

    PubMed Central

    Guimaraes, Sofia C.; Schuster, Martin; Bielska, Ewa; Dagdas, Gulay; Kilaru, Sreedhar; Meadows, Ben R.A.; Schrader, Michael

    2015-01-01

    Intracellular transport is mediated by molecular motors that bind cargo to be transported along the cytoskeleton. Here, we report, for the first time, that peroxisomes (POs), lipid droplets (LDs), and the endoplasmic reticulum (ER) rely on early endosomes (EEs) for intracellular movement in a fungal model system. We show that POs undergo kinesin-3– and dynein-dependent transport along microtubules. Surprisingly, kinesin-3 does not colocalize with POs. Instead, the motor moves EEs that drag the POs through the cell. PO motility is abolished when EE motility is blocked in various mutants. Most LD and ER motility also depends on EE motility, whereas mitochondria move independently of EEs. Covisualization studies show that EE-mediated ER motility is not required for PO or LD movement, suggesting that the organelles interact with EEs independently. In the absence of EE motility, POs and LDs cluster at the growing tip, whereas ER is partially retracted to subapical regions. Collectively, our results show that moving EEs interact transiently with other organelles, thereby mediating their directed transport and distribution in the cell. PMID:26620910

  2. PIKfyve mediates the motility of late endosomes and lysosomes in neuronal dendrites.

    PubMed

    Tsuruta, Fuminori; Dolmetsch, Ricardo E

    2015-09-25

    The endosome/lysosome system in the nervous system is critically important for a variety of neuronal functions such as neurite outgrowth, retrograde transport, and synaptic plasticity. In neurons, the endosome/lysosome system is crucial for the activity-dependent internalization of membrane proteins and contributes to the regulation of lipid level on the plasma membrane. Although homeostasis of membrane dynamics plays important roles in the properties of central nervous systems, it has not been elucidated how endosome/lysosome system is regulated. Here, we report that phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) mediates the motility of late endosomes and lysosomes in neuronal dendrites. Endosomes and lysosomes are highly motile in resting neurons, however knockdown of PIKfyve led to a significant reduction in late endosomes and lysosomes motility. We also found that vesicle acidification is crucial for their motility and PIKfyve is associated with this process indirectly. These data suggest that PIKfyve mediates vesicle motility through the regulation of vesicle integrity in neurons. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Rab coupling protein mediated endosomal recycling of N-cadherin influences cell motility.

    PubMed

    Lindsay, Andrew J; McCaffrey, Mary W

    2017-12-01

    Rab coupling protein (RCP) is a Rab GTPase effector that functions in endosomal recycling. The RCP gene is frequently amplified in breast cancer, leading to increased cancer aggressiveness. Furthermore, RCP enhances the motility of ovarian cancer cells by coordinating the recycling of α5β1 integrin and EGF receptor to the leading edge of migrating cells. Here we report that RCP also influences the motility of lung adenocarcinoma cells. Knockdown of RCP inhibits the motility of A549 cells in 2D and 3D migration assays, while its overexpression enhances migration in these assays. Depletion of RCP leads to a reduction in N-cadherin protein levels, which could be restored with lysosomal inhibitors. Trafficking assays revealed that RCP knockdown inhibits the return of endocytosed N-cadherin to the cell surface. We propose that RCP regulates the endosomal recycling of N-cadherin, and in its absence N-cadherin is diverted to the degradative pathway. The increased aggressiveness of tumour cells that overexpress RCP may be due to biased recycling of N-cadherin in metastatic cancer cells.

  4. Signal dependent transport of a membrane cargo from early endosomes to recycling endosomes.

    PubMed

    Mahmoud, Ismail S; Louber, Jade; Dower, Steve K; Verhagen, Anne M; Gleeson, Paul A

    2017-08-01

    Many membrane cargoes undergo endocytosis and intracellular recycling to the plasma membrane via the early endosomes and the recycling endosomes. However whether specific sorting signals are required for transport from early endosomes to recycling endosomes is not known and the current view is that transport to the recycling endosomes is by a passive default process. Here we show that the cytoplasmic tail of the neonatal Fc receptor (FcRn) contains discrete signals for endocytosis and for sorting to the recycling endosomes. The FcRn cytoplasmic tail has previously been shown to contain the unusual WISL motif for AP2/clathrin-mediated endocytosis. By analysing FcRn mutants and CD8/FcRn chimeric molecules, we have identified an extended WISL sequence (GLPAPWISL) which promotes sorting from the early endosomes to the recycling endosomes. The insertion of GLPAPWISL into the cytoplasmic tail of CD8 resulted in efficient endocytosis and trafficking to the recycling endosomes, with only low levels detected in the late endosomes. Replacement of the highly conserved GLAPAP sequence within the GLPAPWISL motif with alanine residues resulted in endocytosis of the CD8/FcRn chimera to the early endosomes which was then trafficked predominantly to the late endosomes rather than the recycling endosomes. These studies demonstrate that signals within the cytoplasmic domains of membrane cargo can mediate active transport from early to recycling endosomes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Hrs regulates early endosome fusion by inhibiting formation of an endosomal SNARE complex

    PubMed Central

    Sun, Wei; Yan, Qing; Vida, Thomas A.; Bean, Andrew J.

    2003-01-01

    Movement through the endocytic pathway occurs principally via a series of membrane fusion and fission reactions that allow sorting of molecules to be recycled from those to be degraded. Endosome fusion is dependent on SNARE proteins, although the nature of the proteins involved and their regulation has not been fully elucidated. We found that the endosome-associated hepatocyte responsive serum phosphoprotein (Hrs) inhibited the homotypic fusion of early endosomes. A region of Hrs predicted to form a coiled coil required for binding the Q-SNARE, SNAP-25, mimicked the inhibition of endosome fusion produced by full-length Hrs, and was sufficient for endosome binding. SNAP-25, syntaxin 13, and VAMP2 were bound from rat brain membranes to the Hrs coiled-coil domain. Syntaxin 13 inhibited early endosomal fusion and botulinum toxin/E inhibition of early endosomal fusion was reversed by addition of SNAP-25(150–206), confirming a role for syntaxin 13, and establishing a role for SNAP-25 in endosomal fusion. Hrs inhibited formation of the syntaxin 13–SNAP-25–VAMP2 complex by displacing VAMP2 from the complex. These data suggest that SNAP-25 is a receptor for Hrs on early endosomal membranes and that the binding of Hrs to SNAP-25 on endosomal membranes inhibits formation of a SNARE complex required for homotypic endosome fusion. PMID:12847087

  6. Endosomal Interactions during Root Hair Growth.

    PubMed

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2015-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth.

  7. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  8. Rab7 Associates with Early Endosomes to Mediate Sorting and Transport of Semliki Forest Virus to Late Endosomes

    PubMed Central

    Vonderheit, Andreas

    2005-01-01

    Semliki forest virus (SFV) is internalized by clathrin-mediated endocytosis, and transported via early endosomes to late endosomes and lysosomes. The intracellular pathway taken by individual fluorescently labeled SFV particles was followed using immunofluorescence in untransfected cells, and by video-enhanced, triple-color fluorescence microscopy in live cells transfected with GFP- and RFP-tagged Rab5, Rab7, Rab4, and Arf1. The viruses progressed from Rab5-positive early endosomes to a population of early endosomes (about 10% of total) that contained both Rab5 and Rab7. SFV were sequestered in the Rab7 domains, and they were sorted away from the early endosomes when these domains detached as separate transport carriers devoid of Rab5, Rab4, EEA1, Arf1, and transferrin. The process was independent of Arf1 and the acidic pH in early endosomes. Nocodazole treatment showed that the release of transport carriers was assisted by microtubules. Expression of constitutively inactive Rab7T22N resulted in accumulation of SFV in early endosomes. We concluded that Rab7 is recruited to early endosomes, where it forms distinct domains that mediate cargo sorting as well as the formation of late-endosome-targeted transport vesicles. PMID:15954801

  9. Discovery of a vezatin-like protein for dynein-mediated early endosome transport

    PubMed Central

    Yao, Xuanli; Arst, Herbert N.; Wang, Xiangfeng; Xiang, Xin

    2015-01-01

    Early endosomes are transported bidirectionally by cytoplasmic dynein and kinesin-3, but how the movements are regulated in vivo remains unclear. Here our forward genetic study led to the discovery of VezA, a vezatin-like protein in Aspergillus nidulans, as a factor critical for early endosome distribution. Loss of vezA causes an abnormal accumulation of early endosomes at the hyphal tip, where microtubule plus ends are located. This abnormal accumulation depends on kinesin-3 and is due to a decrease in the frequency but not the speed of dynein-mediated early endosome movement. VezA-GFP signals are enriched at the hypha tip in an actin-dependent manner but are not obviously associated with early endosomes, thus differing from the early endosome association of the cargo adapter HookA (Hook in A. nidulans). On loss of VezA, HookA associates normally with early endosomes, but the interaction between dynein-dynactin and the early-endosome-bound HookA is significantly decreased. However, VezA is not required for linking dynein-dynactin to the cytosolic ∆C-HookA, lacking the cargo-binding C-terminus. These results identify VezA as a novel regulator required for the interaction between dynein and the Hook-bound early endosomes in vivo. PMID:26378255

  10. A Role for EHD4 in the Regulation of Early Endosomal Transport

    PubMed Central

    Sharma, Mahak; Naslavsky, Naava; Caplan, Steve

    2009-01-01

    All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway. PMID:18331452

  11. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi

    PubMed Central

    McKenzie, Jenna E.; Raisley, Brent; Zhou, Xin; Naslavsky, Naava; Taguchi, Tomohiko; Caplan, Steve; Sheff, David

    2012-01-01

    Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and ER. To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes, recycling endosomes, late endosomes and lysosomes. All cargos pass through early endosomes, but may take different routes to the Golgi. Retromer dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-Mannose-6-Phosphate Receptor, which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CD8-Mannose-6-Phosphate Receptor was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the early endosomes, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB. PMID:22540229

  12. MiniCORVET is a Vps8-containing early endosomal tether in Drosophila.

    PubMed

    Lőrincz, Péter; Lakatos, Zsolt; Varga, Ágnes; Maruzs, Tamás; Simon-Vecsei, Zsófia; Darula, Zsuzsanna; Benkő, Péter; Csordás, Gábor; Lippai, Mónika; Andó, István; Hegedűs, Krisztina; Medzihradszky, Katalin F; Takáts, Szabolcs; Juhász, Gábor

    2016-06-02

    Yeast studies identified two heterohexameric tethering complexes, which consist of 4 shared (Vps11, Vps16, Vps18 and Vps33) and 2 specific subunits: Vps3 and Vps8 (CORVET) versus Vps39 and Vps41 (HOPS). CORVET is an early and HOPS is a late endosomal tether. The function of HOPS is well known in animal cells, while CORVET is poorly characterized. Here we show that Drosophila Vps8 is highly expressed in hemocytes and nephrocytes, and localizes to early endosomes despite the lack of a clear Vps3 homolog. We find that Vps8 forms a complex and acts together with Vps16A, Dor/Vps18 and Car/Vps33A, and loss of any of these proteins leads to fragmentation of endosomes. Surprisingly, Vps11 deletion causes enlargement of endosomes, similar to loss of the HOPS-specific subunits Vps39 and Lt/Vps41. We thus identify a 4 subunit-containing miniCORVET complex as an unconventional early endosomal tether in Drosophila.

  13. MiniCORVET is a Vps8-containing early endosomal tether in Drosophila

    PubMed Central

    Lőrincz, Péter; Lakatos, Zsolt; Varga, Ágnes; Maruzs, Tamás; Simon-Vecsei, Zsófia; Darula, Zsuzsanna; Benkő, Péter; Csordás, Gábor; Lippai, Mónika; Andó, István; Hegedűs, Krisztina; Medzihradszky, Katalin F; Takáts, Szabolcs; Juhász, Gábor

    2016-01-01

    Yeast studies identified two heterohexameric tethering complexes, which consist of 4 shared (Vps11, Vps16, Vps18 and Vps33) and 2 specific subunits: Vps3 and Vps8 (CORVET) versus Vps39 and Vps41 (HOPS). CORVET is an early and HOPS is a late endosomal tether. The function of HOPS is well known in animal cells, while CORVET is poorly characterized. Here we show that Drosophila Vps8 is highly expressed in hemocytes and nephrocytes, and localizes to early endosomes despite the lack of a clear Vps3 homolog. We find that Vps8 forms a complex and acts together with Vps16A, Dor/Vps18 and Car/Vps33A, and loss of any of these proteins leads to fragmentation of endosomes. Surprisingly, Vps11 deletion causes enlargement of endosomes, similar to loss of the HOPS-specific subunits Vps39 and Lt/Vps41. We thus identify a 4 subunit-containing miniCORVET complex as an unconventional early endosomal tether in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.14226.001 PMID:27253064

  14. The early endosome: a busy sorting station for proteins at the crossroads

    PubMed Central

    Jovic, Marko; Sharma, Mahak; Rahajeng, Juliati; Caplan, Steve

    2010-01-01

    Summary Endocytosis marks the entry of internalized receptors into the complex network of endocytic trafficking pathways. Endocytic vesicles are rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early endosome. Despite the existence of numerous internalization routes, early endosomes (EE) serve as a focal point of the endocytic pathway. Sorting events initiated at this compartment determine the subsequent fate of internalized proteins and lipids, destining them either for recycling to the plasma membrane, degradation in lysosomes or delivery to the trans-Golgi network. Sorting of endocytic cargo to the latter compartments is accomplished through the formation of distinct microdomains within early endosomes, through the coordinate recruitment and assembly of the sorting machinery. An elaborate network of interactions between endocytic regulatory proteins ensures synchronized sorting of cargo to microdomains followed by morphological changes at the early endosomal membranes. Consequently, the cargo targeted either for recycling back to the plasma membrane, or for retrograde transport to the trans-Golgi network, localizes to newly-formed tubular membranes. With a high ratio of membrane surface to lumenal volume, these tubules effectively concentrate the recycling cargo, ensuring efficient transport out of the EE. Conversely, receptors sorted for degradation cluster at the flat clathrin lattices involved in invaginations of the limiting membrane, associating with newly formed intralumenal vesicles. In this review we will discuss the characteristics of early endosomes, their role in the regulation of endocytic transport, and their aberrant function in a variety of diseases. PMID:19924646

  15. Promyelocytic leukemia bodies tether to early endosomes during mitosis.

    PubMed

    Palibrk, Vuk; Lång, Emma; Lång, Anna; Schink, Kay Oliver; Rowe, Alexander D; Bøe, Stig Ove

    2014-01-01

    During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.

  16. Mouse Polyomavirus Enters Early Endosomes, Requires Their Acidic pH for Productive Infection, and Meets Transferrin Cargo in Rab11-Positive Endosomes

    PubMed Central

    Liebl, David; Difato, Francesco; Horníková, Lenka; Mannová, Petra; Štokrová, Jitka; Forstová, Jitka

    2006-01-01

    Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments. PMID:16611921

  17. The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes.

    PubMed

    Castonguay, Jan; Orth, Joachim H C; Müller, Thomas; Sleman, Faten; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Mallmann, Robert Theodor; Bildl, Wolfgang; Schulte, Uwe; Klugbauer, Norbert

    2017-08-30

    Two-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes. Toxin uptake and activation through early endosomes but not processing through other compartments were reduced in TPC1 knockout cells. Detailed co-localization studies with subcellular markers confirmed predominant localization of TPC1 to early and recycling endosomes. Proteomic analysis of native TPC1 channels finally identified direct interaction with a distinct set of syntaxins involved in fusion of intracellular vesicles. Together, our results demonstrate a general role of TPC1 for uptake and processing of proteins in early and recycling endosomes, likely by providing high local Ca 2+ concentrations required for SNARE-mediated vesicle fusion.

  18. Development of a Kinetic Assay for Late Endosome Movement.

    PubMed

    Esner, Milan; Meyenhofer, Felix; Kuhn, Michael; Thomas, Melissa; Kalaidzidis, Yannis; Bickle, Marc

    2014-08-01

    Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering. © 2014 Society for Laboratory Automation and Screening.

  19. OCRL controls trafficking through early endosomes via PtdIns4,5P2-dependent regulation of endosomal actin

    PubMed Central

    Vicinanza, Mariella; Di Campli, Antonella; Polishchuk, Elena; Santoro, Michele; Di Tullio, Giuseppe; Godi, Anna; Levtchenko, Elena; De Leo, Maria Giovanna; Polishchuk, Roman; Sandoval, Lisette; Marzolo, Maria-Paz; De Matteis, Maria Antonietta

    2011-01-01

    Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P2 in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P2 and F-actin at the EEs is essential for exporting cargoes that transit this compartment. PMID:21971085

  20. The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics.

    PubMed

    O'Loughlin, Thomas; Masters, Thomas A; Buss, Folma

    2018-04-01

    The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes.

    PubMed

    Dubé, Mathieu; Etienne, Loïc; Fels, Maximilian; Kielian, Margaret

    2016-07-15

    The E1 membrane protein of rubella virus (RuV) is a class II membrane fusion protein structurally related to the fusion proteins of the alphaviruses, flaviviruses, and phleboviruses. Virus entry is mediated by a low pH-dependent fusion reaction through E1's insertion into the cell membrane and refolding to a stable homotrimer. Unlike the other described class II proteins, RuV E1 contains 2 fusion loops, which complex a metal ion between them by interactions with residues N88 and D136. Insertion of the E1 protein into the target membrane, fusion, and infection require calcium and are blocked by alanine substitution of N88 or D136. Here we addressed the requirements of E1 for calcium binding and the intracellular location of the calcium requirement during virus entry. Our results demonstrated that N88 and D136 are optimally configured to support RuV fusion and are strongly selected for during the virus life cycle. While E1 has some similarities with cellular proteins that bind calcium and anionic lipids, RuV binding to the membrane was independent of anionic lipids. Virus fusion occurred within early endosomes, and chelation of intracellular calcium showed that calcium within the early endosome was required for virus fusion and infection. Calcium triggered the reversible insertion of E1 into the target membrane at neutral pH, but E1 homotrimer formation and fusion required a low pH. Thus, RuV E1, unlike other known class II fusion proteins, has distinct triggers for membrane insertion and fusion protein refolding mediated, respectively, by endosomal calcium and low pH. Rubella virus causes a mild disease of childhood, but infection of pregnant women frequently results in miscarriage or severe birth defects. In spite of an effective vaccine, RuV disease remains a serious problem in many developing countries. RuV infection of host cells involves endocytic uptake and low pH-triggered membrane fusion and is unusual in its requirement for calcium binding by the membrane

  2. Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes

    PubMed Central

    Dubé, Mathieu; Etienne, Loïc; Fels, Maximilian

    2016-01-01

    ABSTRACT The E1 membrane protein of rubella virus (RuV) is a class II membrane fusion protein structurally related to the fusion proteins of the alphaviruses, flaviviruses, and phleboviruses. Virus entry is mediated by a low pH-dependent fusion reaction through E1's insertion into the cell membrane and refolding to a stable homotrimer. Unlike the other described class II proteins, RuV E1 contains 2 fusion loops, which complex a metal ion between them by interactions with residues N88 and D136. Insertion of the E1 protein into the target membrane, fusion, and infection require calcium and are blocked by alanine substitution of N88 or D136. Here we addressed the requirements of E1 for calcium binding and the intracellular location of the calcium requirement during virus entry. Our results demonstrated that N88 and D136 are optimally configured to support RuV fusion and are strongly selected for during the virus life cycle. While E1 has some similarities with cellular proteins that bind calcium and anionic lipids, RuV binding to the membrane was independent of anionic lipids. Virus fusion occurred within early endosomes, and chelation of intracellular calcium showed that calcium within the early endosome was required for virus fusion and infection. Calcium triggered the reversible insertion of E1 into the target membrane at neutral pH, but E1 homotrimer formation and fusion required a low pH. Thus, RuV E1, unlike other known class II fusion proteins, has distinct triggers for membrane insertion and fusion protein refolding mediated, respectively, by endosomal calcium and low pH. IMPORTANCE Rubella virus causes a mild disease of childhood, but infection of pregnant women frequently results in miscarriage or severe birth defects. In spite of an effective vaccine, RuV disease remains a serious problem in many developing countries. RuV infection of host cells involves endocytic uptake and low pH-triggered membrane fusion and is unusual in its requirement for calcium

  3. Small Molecules for Early Endosome-Specific Patch Clamping.

    PubMed

    Chen, Cheng-Chang; Butz, Elisabeth S; Chao, Yu-Kai; Grishchuk, Yulia; Becker, Lars; Heller, Stefan; Slaugenhaupt, Susan A; Biel, Martin; Wahl-Schott, Christian; Grimm, Christian

    2017-07-20

    To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evidence for a role of SNX16 in regulating traffic between the early and later endosomal compartments.

    PubMed

    Hanson, Brendon J; Hong, Wanjin

    2003-09-05

    Sorting nexins (SNXs) are a growing family of proteins characterized by the presence of a PX domain. The PX domain mediates membrane association by interaction with phosphoinositides. The SNXs are generally believed to participate in membrane trafficking, but information regarding the function of individual proteins is limited. In this report, we describe the major characteristics of one member, SNX16. SNX16 is a novel 343-amino acid protein consisting of a central PX domain followed by a potential coiled-coil domain and a C-terminal region. Like other sorting nexins, SNX16 associates with the membrane via the PX domain which interacts with the phospholipid phosphatidylinositol 3-phosphate. We show via biochemical and cellular studies that SNX16 is distributed in both early and late endosome/lysosome structures. The coiled-coil domain is necessary for localization to the later endosomal structures, as mutant SNX16 lacking this domain was found only in early endosomes. Trafficking of internalized epidermal growth factor was also delayed by this SNX16 mutant, as these cells showed a delay in the segregation of epidermal growth factor in the early endosome for its delivery to later compartments. In addition, the coiled-coil domain is shown here to be important for homo-oligomerization of SNX16. Taken together, these results suggest that SNX16 is a sorting nexin that may function in the trafficking of proteins between the early and late endosomal compartments.

  5. PKCzeta is required for microtubule-based motility of vesicles containing the ntcp transporter.

    PubMed

    Sarkar, Souvik; Bananis, Eustratios; Nath, Sangeeta; Anwer, M Sawkat; Wolkoff, Allan W; Murray, John W

    2006-08-01

    Intracellular trafficking regulates the abundance and therefore activity of transporters present at the plasma membrane. The transporter, Na+-taurocholate co-transporting polypeptide (ntcp), is increased at the plasma membrane upon treatment of cells with cAMP, for which microtubules (MTs) are required and the PI3K pathway and PKCzeta have been implicated. However, trafficking of ntcp on MTs has not been demonstrated directly and the regulation and intracellular localization of ntcp is not well understood. Here, we utilize in vitro and whole-cell immunofluorescence microscopy assays to demonstrate that ntcp is present on intracellular vesicles that bind MTs and move bidirectionally, using kinesin-1 and dynein. These vesicles co-localize with markers for recycling endosomes and early but not late endosomes. They frequently undergo fission, providing a mechanism for the exclusion of ntcp from late endosomes. PI(3,4,5)P3 activates PKCzeta and enhances motility of the ntcp vesicles and overcomes the partial inhibition produced by a PI3-kinase inhibitor. Specific inhibition of PKCzeta blocks the motility of ntcp-containing vesicles but has no effect on late vesicles as shown both in vitro and in living cells transfected with ntcp-GFP. These data indicate that PKCzeta is required specifically for the intracellular movement of vesicles that contain the ntcp transporter.

  6. Long-distance endosome trafficking drives fungal effector production during plant infection

    PubMed Central

    Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J.; Steinberg, Gero

    2014-01-01

    To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion. PMID:25283249

  7. Long-distance endosome trafficking drives fungal effector production during plant infection.

    PubMed

    Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J; Steinberg, Gero

    2014-10-06

    To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion.

  8. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane

    PubMed Central

    Truschel, Steven T.; Simoes, Sabrina; Setty, Subba Rao Gangi; Harper, Dawn C.; Tenza, Danièle; Thomas, Penelope C.; Herman, Kathryn E.; Sackett, Sara D.; Cowan, David C.; Theos, Alexander C.; Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome (HPS) that lack BLOC-1, melanosomal proteins such as Tyrp1 accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverses early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle. PMID:19624486

  9. Rab4b controls an early endosome sorting event by interacting with the γ-subunit of the clathrin adaptor complex 1.

    PubMed

    Perrin, Laura; Laura, Perrin; Lacas-Gervais, Sandra; Sandra, Lacas-Gervais; Gilleron, Jérôme; Jérôme, Gilleron; Ceppo, Franck; Franck, Ceppo; Prodon, François; François, Prodon; Benmerah, Alexandre; Alexandre, Benmerah; Tanti, Jean-François; Jean-François, Tanti; Cormont, Mireille; Mireille, Cormont

    2013-11-01

    The endocytic pathway is essential for cell homeostasis and numerous small Rab GTPases are involved in its control. The endocytic trafficking step controlled by Rab4b has not been elucidated, although recent data suggested it could be important for glucose homeostasis, synaptic homeostasis or adaptive immunity. Here, we show that Rab4b is required for early endosome sorting of transferrin receptors (TfRs) to the recycling endosomes, and we identified the AP1γ subunit of the clathrin adaptor AP-1 as a Rab4b effector and key component of the machinery of early endosome sorting. We show that internalised transferrin (Tf) does not reach Vamp3/Rab11 recycling endosomes in the absence of Rab4b, whereas it is rapidly recycled back to the plasma membrane. By contrast, overexpression of Rab4b leads to the accumulation of internalised Tf within AP-1- and clathrin-coated vesicles. These vesicles are poor in early and recycling endocytic markers except for TfR and require AP1γ for their formation. Furthermore, the targeted overexpression of the Rab4b-binding domain of AP1γ to early endosome upon its fusion with FYVE domains inhibited the interaction between Rab4b and endogenous AP1γ, and perturbed Tf traffic. We thus proposed that the interaction between early endocytic Rab4b and AP1γ could allow the budding of clathrin-coated vesicles for subsequent traffic to recycling endosomes. The data also uncover a novel type of endosomes, characterised by low abundance of either early or recycling endocytic markers, which could potentially be generated in cell types that naturally express high level of Rab4b.

  10. A Novel Type III Endosome Transmembrane Protein, TEMP

    PubMed Central

    Aturaliya, Rajith N.; Kerr, Markus C.; Teasdale, Rohan D.

    2012-01-01

    As part of a high-throughput subcellular localisation project, the protein encoded by the RIKEN mouse cDNA 2610528J11 was expressed and identified to be associated with both endosomes and the plasma membrane. Based on this, we have assigned the name TEMP for Type III Endosome Membrane Protein. TEMP encodes a short protein of 111 amino acids with a single, alpha-helical transmembrane domain. Experimental analysis of its membrane topology demonstrated it is a Type III membrane protein with the amino-terminus in the lumenal, or extracellular region, and the carboxy-terminus in the cytoplasm. In addition to the plasma membrane TEMP was localized to Rab5 positive early endosomes, Rab5/Rab11 positive recycling endosomes but not Rab7 positive late endosomes. Video microscopy in living cells confirmed TEMP’s plasma membrane localization and identified the intracellular endosome compartments to be tubulovesicular. Overexpression of TEMP resulted in the early/recycling endosomes clustering at the cell periphery that was dependent on the presence of intact microtubules. The cellular function of TEMP cannot be inferred based on bioinformatics comparison, but its cellular distribution between early/recycling endosomes and the plasma membrane suggests a role in membrane transport. PMID:24710541

  11. Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes

    PubMed Central

    Bielska, Ewa; Schuster, Martin; Roger, Yvonne; Berepiki, Adokiye; Soanes, Darren M.; Talbot, Nicholas J.

    2014-01-01

    Bidirectional membrane trafficking along microtubules is mediated by kinesin-1, kinesin-3, and dynein. Several organelle-bound adapters for kinesin-1 and dynein have been reported that orchestrate their opposing activity. However, the coordination of kinesin-3/dynein-mediated transport is not understood. In this paper, we report that a Hook protein, Hok1, is essential for kinesin-3– and dynein-dependent early endosome (EE) motility in the fungus Ustilago maydis. Hok1 binds to EEs via its C-terminal region, where it forms a complex with homologues of human fused toes (FTS) and its interactor FTS- and Hook-interacting protein. A highly conserved N-terminal region is required to bind dynein and kinesin-3 to EEs. To change the direction of EE transport, kinesin-3 is released from organelles, and dynein binds subsequently. A chimaera of human Hook3 and Hok1 rescues the hok1 mutant phenotype, suggesting functional conservation between humans and fungi. We conclude that Hok1 is part of an evolutionarily conserved protein complex that regulates bidirectional EE trafficking by controlling attachment of both kinesin-3 and dynein. PMID:24637326

  12. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors.

    PubMed

    Mari, Muriel; Bujny, Miriam V; Zeuschner, Dagmar; Geerts, Willie J C; Griffith, Janice; Petersen, Claus M; Cullen, Pete J; Klumperman, Judith; Geuze, Hans J

    2008-03-01

    Mannose-6-phosphate receptors (MPRs) transport lysosomal hydrolases from the trans Golgi network (TGN) to endosomes. Recently, the multi-ligand receptor sortilin has also been implicated in this transport, but the transport carriers involved herein have not been identified. By quantitative immuno-electron microscopy, we localized endogenous sortilin of HepG2 cells predominantly to the TGN and endosomes. In the TGN, sortilin colocalized with MPRs in the same clathrin-coated vesicles. In endosomes, sortilin and MPRs concentrated in sorting nexin 1 (SNX1)-positive buds and vesicles. SNX1 depletion by small interfering RNA resulted in decreased pools of sortilin in the TGN and an increase in lysosomal degradation. These data indicate that sortilin and MPRs recycle to the TGN in SNX1-dependent carriers, which we named endosome-to-TGN transport carriers (ETCs). Notably, ETCs emerge from early endosomes (EE), lack recycling plasma membrane proteins and by three-dimensional electron tomography exhibit unique structural features. Hence, ETCs are distinct from hitherto described EE-derived membranes involved in recycling. Our data emphasize an important role of EEs in recycling to the TGN and indicate that different, specialized exit events occur on the same EE vacuole.

  13. Endocytosis and Endosomal Trafficking in Plants.

    PubMed

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

  14. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin

    PubMed Central

    Chia, Pei Zhi Cheryl; Gasnereau, Isabelle; Lieu, Zi Zhao; Gleeson, Paul A.

    2011-01-01

    The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin–TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail. PMID:21693586

  15. Spatiotemporal Dynamics of Adenovirus Membrane Rupture and Endosomal Escape

    PubMed Central

    Maier, Oana; Marvin, Shauna A.; Wodrich, Harald; Campbell, Edward M.

    2012-01-01

    A key step in adenovirus cell entry is viral penetration of cellular membranes to gain access to the cytoplasm and deliver the genome to the nucleus. Yet little is known about this important event in the adenoviral life cycle. Using the cytosolic protein galectin-3 (gal3) as a marker of membrane rupture with both live- and fixed-cell imaging, we demonstrate that in the majority of instances, exposure of pVI and recruitment of gal3 to ruptured membranes occur early at or near the cell surface and occur minimally in EEA-1-positive (EEA-1+) early endosomes or LAMP-1+ late endosomes/lysosomes. Live-cell imaging of Ad5 egress from gal3+ endosomes occurs most frequently from perinuclear locations. While the Ad5 capsid is observed escaping from gal3+ endosomes, pVI appears to remain associated with the gal3+ ruptured endosomes. Thus, Ad5 membrane rupture and endosomal escape appear to be both spatially and temporally distinct events. PMID:22855481

  16. Genetic dissection of early endosomal recycling highlights a TORC1-independent role for Rag GTPases

    PubMed Central

    2017-01-01

    Endocytosed cell surface membrane proteins rely on recycling pathways for their return to the plasma membrane. Although endosome-to-plasma membrane recycling is critical for many cellular processes, much of the required machinery is unknown. We discovered that yeast has a recycling route from endosomes to the cell surface that functions efficiently after inactivation of the sec7-1 allele of Sec7, which controls transit through the Golgi. A genetic screen based on an engineered synthetic reporter that exclusively follows this pathway revealed that recycling was subject to metabolic control through the Rag GTPases Gtr1 and Gtr2, which work downstream of the exchange factor Vam6. Gtr1 and Gtr2 control the recycling pathway independently of TORC1 regulation through the Gtr1 interactor Ltv1. We further show that the early-endosome recycling route and its control though the Vam6>Gtr1/Gtr2>Ltv1 pathway plays a physiological role in regulating the abundance of amino acid transporters at the cell surface. PMID:28768685

  17. Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport

    PubMed Central

    Carlton, Jez G.; Bujny, Miriam V.; Peter, Brian J.; Oorschot, Viola M. J.; Rutherford, Anna; Arkell, Rebecca S.; Klumperman, Judith; McMahon, Harvey T.; Cullen, Peter J.

    2006-01-01

    Summary Sorting nexins are a large family of phox-homology-domain-containing proteins that have been implicated in the control of endosomal sorting. Sorting nexin-1 is a component of the mammalian retromer complex that regulates retrieval of the cation-independent mannose 6-phosphate receptor from endosomes to the trans-Golgi network. In yeast, retromer is composed of Vps5p (the orthologue of sorting nexin-1), Vps17p (a related sorting nexin) and a cargo selective subcomplex composed of Vps26p, Vps29p and Vps35p. With the exception of Vps17p, mammalian orthologues of all yeast retromer components have been identified. For Vps17p, one potential mammalian orthologue is sorting nexin-2. Here we show that, like sorting nexin-1, sorting nexin-2 binds phosphatidylinositol 3-monophosphate and phosphatidylinositol 3,5-bisphosphate, and possesses a Bin/Amphiphysin/Rvs domain that can sense membrane curvature. However, in contrast to sorting nexin-1, sorting nexin-2 could not induce membrane tubulation in vitro or in vivo. Functionally, we show that endogenous sorting nexin-1 and sorting nexin-2 co-localise on high curvature tubular elements of the 3-phosphoinositide-enriched early endosome, and that suppression of sorting nexin-2 does not perturb the degradative sorting of receptors for epidermal growth factor or transferrin, nor the steady-state distribution of the cation-independent mannose 6-phosphate receptor. However, suppression of sorting nexin-2 results in a subtle alteration in the kinetics of cation-independent mannose 6-phosphate receptor retrieval. These data suggest that although sorting nexin-2 may be a component of the retromer complex, its presence is not essential for the regulation of endosome-to-trans Golgi network retrieval of the cation-independent mannose 6-phosphate receptor. PMID:16179610

  18. Protein Kinase Cδ and Calmodulin Regulate Epidermal Growth Factor Receptor Recycling from Early Endosomes through Arp2/3 Complex and Cortactin

    PubMed Central

    Lladó, Anna; Timpson, Paul; Vilà de Muga, Sandra; Moretó, Jemina; Pol, Albert; Grewal, Thomas; Daly, Roger J.

    2008-01-01

    The intracellular trafficking of the epidermal growth factor receptor (EGFR) is regulated by a cross-talk between calmodulin (CaM) and protein kinase Cδ (PKCδ). On inhibition of CaM, PKCδ promotes the formation of enlarged early endosomes and blocks EGFR recycling and degradation. Here, we show that PKCδ impairs EGFR trafficking due to the formation of an F-actin coat surrounding early endosomes. The PKCδ-induced polymerization of actin is orchestrated by the Arp2/3 complex and requires the interaction of cortactin with PKCδ. Accordingly, inhibition of actin polymerization by using cytochalasin D or by overexpression of active cofilin, restored the normal morphology of the organelle and the recycling of EGFR. Similar results were obtained after down-regulation of cortactin and the sequestration of the Arp2/3 complex. Furthermore we demonstrate an interaction of cortactin with CaM and PKCδ, the latter being dependent on CaM inhibition. In summary, this study provides the first evidence that CaM and PKCδ organize actin dynamics in the early endosomal compartment, thereby regulating the intracellular trafficking of EGFR. PMID:17959830

  19. Rabies virus co-localizes with early (Rab5) and late (Rab7) endosomal proteins in neuronal and SH-SY5Y cells.

    PubMed

    Ahmad, Waqas; Li, Yingying; Guo, Yidi; Wang, Xinyu; Duan, Ming; Guan, Zhenhong; Liu, Zengshan; Zhang, Maolin

    2017-06-01

    Rabies virus (RABV) is a highly neurotropic virus that follows clathrin-mediated endocytosis and pH-dependent pathway for trafficking and invasion into endothelial cells. Early (Rab5, EEA1) and late (Rab7, LAMP1) endosomal proteins play critical roles in endosomal sorting, maturity and targeting various molecular cargoes, but their precise functions in the early stage of RABV neuronal infection remain elusive. In this study, the relationship between enigmatic entry of RABV with these endosomal proteins into neuronal and SH-SY5Y cells was investigated. Immunofluorescence, TCID 50 titers, electron microscopy and western blotting were carried out to determine the molecular interaction of the nucleoprotein (N) of RABV with early or late endosomal proteins in these cell lines. The expression of N was also determined by down-regulating Rab5 and Rab7 in both cell lines through RNA interference. The results were indicative that N proficiently colocalized with Rab5/EEA1 and Rab7/LAMP1 in both cell lines at 24 and 48 h post-infection, while N titers significantly decreased in early infection of RABV. Down-regulation of Rab5 and Rab7 did not inhibit N expression, but it prevented productive infection via blocking the normal trafficking of RABV in a low pH environment. Ultrathin sections of cells studied by electron microscope also verified the close association of RABV with Rab5 and Rab7 in neurons. From the data it was concluded that primary entry of RABV strongly correlates with the kinetics of Rab-proteins present on early and late vesicles, which provides helpful clues to explain the early events of RABV in nerve cells.

  20. APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments

    PubMed Central

    Kalaidzidis, Inna; Miaczynska, Marta; Brewińska-Olchowik, Marta; Hupalowska, Anna; Ferguson, Charles; Parton, Robert G.; Kalaidzidis, Yannis

    2015-01-01

    Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes. Here, we tested this model by analyzing the ultrastructural morphology, kinetics of cargo transport, and stability of the APPL1 compartment over time. We found that APPL1 resides on a tubulo-vesicular compartment that is capable of sorting cargo for recycling or degradation and that displays long lifetimes, all features typical of early endosomes. Fitting mathematical models to experimental data rules out maturation of APPL1 vesicles into EEA1 endosomes as a primary mechanism for cargo transport. Our data suggest instead that APPL1 endosomes represent a distinct population of Rab5-positive sorting endosomes, thus providing important insights into the compartmental organization of the early endocytic pathway. PMID:26459602

  1. The Recycling Endosome of Madin-Darby Canine Kidney Cells Is a Mildly Acidic Compartment Rich in Raft Components

    PubMed Central

    Gagescu, Raluca; Demaurex, Nicolas; Parton, Robert G.; Hunziker, Walter; Huber, Lukas A.; Gruenberg, Jean

    2000-01-01

    We present a biochemical and morphological characterization of recycling endosomes containing the transferrin receptor in the epithelial Madin-Darby canine kidney cell line. We find that recycling endosomes are enriched in molecules known to regulate transferrin recycling but lack proteins involved in early endosome membrane dynamics, indicating that recycling endosomes are distinct from conventional early endosomes. We also find that recycling endosomes are less acidic than early endosomes because they lack a functional vacuolar ATPase. Furthermore, we show that recycling endosomes can be reached by apically internalized tracers, confirming that the apical endocytic pathway intersects the transferrin pathway. Strikingly, recycling endosomes are enriched in the raft lipids sphingomyelin and cholesterol as well as in the raft-associated proteins caveolin-1 and flotillin-1. These observations may suggest that a lipid-based sorting mechanism operates along the Madin-Darby canine kidney recycling pathway, contributing to the maintenance of cell polarity. Altogether, our data indicate that recycling endosomes and early endosomes differ functionally and biochemically and thus that different molecular mechanisms regulate protein sorting and membrane traffic at each step of the receptor recycling pathway. PMID:10930469

  2. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    PubMed

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  3. Characterization of early and late endocytic compartments of the transferrin cycle. Transferrin receptor antibody blocks erythroid differentiation by trapping the receptor in the early endosome.

    PubMed

    Killisch, I; Steinlein, P; Römisch, K; Hollinshead, R; Beug, H; Griffiths, G

    1992-09-01

    We describe a detailed morphological characterization of the endocytic pathway in differentiating chicken erythroblasts transformed by a temperature-sensitive mutant of avian erythroblastosis virus (AEV). These cells express high levels of transferrin receptors (TfR) when induced to differentiate at 42 degrees C. Biochemical analysis showed that most (approximately 90%) of the internalized 125I-Tf recycled within approximately 30 min while a smaller fraction of 125I-Tf required up to 2 h for recycling. By immunocytochemistry, the bulk of Tf and TfR was localized at the plasma membrane and in tubuloreticular early endosomes. This structure contained coated buds that labelled with an antibody specific for the clathrin light chain. Decreasing amounts of both Tf and TfR were detected in two distal compartments, spherical endosome vesicles resembling multivesicular bodies and the prelysosomal compartment (PLC) enriched in cation-independent mannose 6-phosphate receptor. As shown by fluorescent (FITC-Tf) labelling of living cells, the movement of Tf/TfR complex into these late structures was accompanied by a significant drop in pH from about 6, the value displayed by early endosomes, to values below pH 5.0. Since no detectable 125I-Tf degradation was observed during a 4 h period we believe that the Tf/TfR detected in these late endocytic structures avoids degradation and recycles back to the cell surface. The addition of an anti-TfR monoclonal antibody to the culture medium of these cells blocks their differentiation. Under this condition the antibody-TfR complex was trapped in an early endosome compartment that enlarged to more than twice its normal size. However, this condition did not affect the transport kinetics of horseradish peroxidase from the medium to the PLC.

  4. Enhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities.

    PubMed

    Gauthier, Sébastien A; Pérez-González, Rocío; Sharma, Ajay; Huang, Fang-Ke; Alldred, Melissa J; Pawlik, Monika; Kaur, Gurjinder; Ginsberg, Stephen D; Neubert, Thomas A; Levy, Efrat

    2017-08-29

    A dysfunctional endosomal pathway and abnormally enlarged early endosomes in neurons are an early characteristic of Down syndrome (DS) and Alzheimer's disease (AD). We have hypothesized that endosomal material can be released by endosomal multivesicular bodies (MVBs) into the extracellular space via exosomes to relieve neurons of accumulated endosomal contents when endosomal pathway function is compromised. Supporting this, we found that exosome secretion is enhanced in the brains of DS patients and a mouse model of the disease, and by DS fibroblasts. Furthermore, increased levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Importantly, CD63 knockdown diminished exosome release and worsened endosomal pathology in DS fibroblasts. Taken together, these data suggest that increased CD63 expression enhances exosome release as an endogenous mechanism mitigating endosomal abnormalities in DS. Thus, the upregulation of exosome release represents a potential therapeutic goal for neurodegenerative disorders with endosomal pathology.

  5. Melanosomes – dark organelles enlighten endosomal membrane transport

    PubMed Central

    Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are tissue-specific “lysosome-related” organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light into the molecular machinery that controls specialized endosomal sorting events. PMID:17878918

  6. The ESCRT regulator Did2 maintains the balance between long-distance endosomal transport and endocytic trafficking

    PubMed Central

    Haag, Carl

    2017-01-01

    In highly polarised cells, like fungal hyphae, early endosomes function in both endocytosis as well as long-distance transport of various cargo including mRNA and protein complexes. However, knowledge on the crosstalk between these seemingly different trafficking processes is scarce. Here, we demonstrate that the ESCRT regulator Did2 coordinates endosomal transport in fungal hyphae of Ustilago maydis. Loss of Did2 results in defective vacuolar targeting, less processive long-distance transport and abnormal shuttling of early endosomes. Importantly, the late endosomal protein Rab7 and vacuolar protease Prc1 exhibit increased shuttling on these aberrant endosomes suggesting defects in endosomal maturation and identity. Consistently, molecular motors fail to attach efficiently explaining the disturbed processive movement. Furthermore, the endosomal mRNP linker protein Upa1 is hardly present on endosomes resulting in defects in long-distance mRNA transport. In conclusion, the ESCRT regulator Did2 coordinates precise maturation of endosomes and thus provides the correct membrane identity for efficient endosomal long-distance transport. PMID:28422978

  7. Neuron Specific Rab4 Effector GRASP-1 Coordinates Membrane Specialization and Maturation of Recycling Endosomes

    PubMed Central

    Hoogenraad, Casper C.; Popa, Ioana; Futai, Kensuke; Sanchez-Martinez, Emma; Wulf, Phebe S.; van Vlijmen, Thijs; Dortland, Bjorn R.; Oorschot, Viola; Govers, Roland; Monti, Maria; Heck, Albert J. R.; Sheng, Morgan; Klumperman, Judith; Rehmann, Holger; Jaarsma, Dick; Kapitein, Lukas C.; van der Sluijs, Peter

    2010-01-01

    The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking. PMID:20098723

  8. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the Caenorhabditis elegans intestine

    PubMed Central

    Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.

    2016-01-01

    Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264

  9. Integrin-linked kinase and ELMO2 modulate recycling endosomes in keratinocytes.

    PubMed

    Ho, Ernest; Ivanova, Iordanka A; Dagnino, Lina

    2016-12-01

    The formation of tight cell-cell junctions is essential in the epidermis for its barrier properties. In this tissue, keratinocytes follow a differentiation program tightly associated with their movement from the innermost basal to the outer suprabasal layers, and with changes in their cell-cell adhesion profile. Intercellular adhesion in keratinocytes is mediated through cell-cell contacts, including E-cadherin-based adherens junctions. Although the mechanisms that mediate E-cadherin delivery to the plasma membrane have been widely studied in simple epithelia, this process is less well understood in the stratified epidermis. In this study, we have investigated the role of Engulfment and Cell Motility 2 (ELMO2) and integrin-linked kinase (ILK) in the positioning of E-cadherin-containing recycling endosomes during establishment of cell-cell contacts in differentiating keratinocytes. We now show that induction of keratinocyte differentiation by Ca 2+ is accompanied by localization of ELMO2 and ILK to Rab4- and Rab11a-containing recycling endosomes. The positioning of long-loop Rab11a-positive endosomes at areas adjacent to cell-cell contacts is disrupted in ELMO2- or ILK-deficient keratinocytes, and is associated with impaired localization of E-cadherin to cell borders. Our studies show a previously unrecognized role for ELMO2 and ILK in modulation of endosomal positioning, which may play key roles in epidermal sheet maintenance and permeability barrier function. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. P4-ATPase Requirement for AP-1/Clathrin Function in Protein Transport from the trans-Golgi Network and Early Endosomes

    PubMed Central

    Liu, Ke; Surendhran, Kavitha; Nothwehr, Steven F.

    2008-01-01

    Drs2p is a resident type 4 P-type ATPase (P4-ATPase) and potential phospholipid translocase of the trans-Golgi network (TGN) where it has been implicated in clathrin function. However, precise protein transport pathways requiring Drs2p and how it contributes to clathrin-coated vesicle budding remain unclear. Here we show a functional codependence between Drs2p and the AP-1 clathrin adaptor in protein sorting at the TGN and early endosomes of Saccharomyces cerevisiae. Genetic criteria indicate that Drs2p and AP-1 operate in the same pathway and that AP-1 requires Drs2p for function. In addition, we show that loss of AP-1 markedly increases Drs2p trafficking to the plasma membrane, but does not perturb retrieval of Drs2p from the early endosome back to the TGN. Thus AP-1 is required at the TGN to sort Drs2p out of the exocytic pathway, presumably for delivery to the early endosome. Moreover, a conditional allele that inactivates Drs2p phospholipid translocase (flippase) activity disrupts its own transport in this AP-1 pathway. Drs2p physically interacts with AP-1; however, AP-1 and clathrin are both recruited normally to the TGN in drs2Δ cells. These results imply that Drs2p acts independently of coat recruitment to facilitate AP-1/clathrin-coated vesicle budding from the TGN. PMID:18508916

  11. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes

    PubMed Central

    Liu, Ou; Grant, Barth D.

    2015-01-01

    The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions. PMID:26393361

  12. Elevated aminopeptidase N affects sperm motility and early embryo development

    PubMed Central

    Ryu, Do-Yeal; Kwon, Woo-Sung

    2017-01-01

    Aminopeptidase N (APN) is a naturally occurring ectopeptidase present in mammalian semen. Previous studies have demonstrated that APN adversely affects male fertility through the alteration of sperm motility. This enzyme constitutes 0.5 to 1% of the seminal plasma proteins, which can be transferred from the prostasomes to sperms by a fusion process. In the present study, we investigated the molecular mechanism of action of APN and its role in regulating sperm functions and male fertility. In this in vitro study, epididymal mouse spermatozoa were incubated in a capacitating media (pH 7) containing 20 ng/mL of recombinant mouse APN for 90 min. Our results demonstrated that the supplementation of recombinant APN in sperm culture medium significantly increased APN activity, and subsequently altered motility, hyperactivated motility, rapid and medium swimming speeds, viability, and the acrosome reaction of mouse spermatozoa. These effects were potentially caused by increased toxicity in the spermatozoa. Further, altered APN activity in sperm culture medium affected early embryonic development. Interestingly, the effect of elevated APN activity in sperm culture medium was independent of protein tyrosine phosphorylation and protein kinase A activity. On the basis of these results, we concluded that APN plays a significant role in the regulation of several sperm functions and early embryonic development. In addition, increased APN activity could potentially lead to several adverse consequences related to male fertility. PMID:28859152

  13. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production

    PubMed Central

    Toh, Wei Hong; Chia, Pei Zhi Cheryl; Hossain, Mohammed Iqbal; Gleeson, Paul A.

    2018-01-01

    The diversion of the membrane-bound β-site amyloid precursor protein–(APP) cleaving enzyme (BACE1) from the endolysosomal pathway to recycling endosomes represents an important transport step in the regulation of amyloid beta (Aβ) production. However, the mechanisms that regulate endosome sorting of BACE1 are poorly understood. Here we assessed the transport of BACE1 from early to recycling endosomes and have identified essential roles for the sorting nexin 4 (SNX4)-mediated, signal-independent pathway and for a novel signal-mediated pathway. The signal-mediated pathway is regulated by the phosphorylation of the DXXLL-motif sequence DISLL in the cytoplasmic tail of BACE1. The phosphomimetic S498D BACE1 mutant was trafficked to recycling endosomes at a faster rate compared with wild-type BACE1 or the nonphosphorylatable S498A mutant. The rapid transit of BACE1 S498D from early endosomes was coupled with reduced levels of amyloid precursor protein processing and Aβ production, compared with the S498A mutant. We show that the adaptor, GGA1, and retromer are essential to mediate rapid trafficking of phosphorylated BACE1 to recycling endosomes. In addition, the BACE1 DISLL motif is phosphorylated and regulates endosomal trafficking, in primary neurons. Therefore, post-translational phosphorylation of DISLL enhances the exit of BACE1 from early endosomes, a pathway mediated by GGA1 and retromer, which is important in regulating Aβ production. PMID:29142073

  14. Determinants of [Cl−] in recycling and late endosomes and Golgi complex measured using fluorescent ligands

    PubMed Central

    Sonawane, N.D.; Verkman, A.S.

    2003-01-01

    Chloride concentration ([Cl−]) was measured in defined organellar compartments using fluorescently labeled transferrin, α2-macroglobulin, and cholera toxin B-subunit conjugated with Cl−-sensitive and -insensitive dyes. In pulse-chase experiments, [Cl−] in Tf-labeled early/recycling endosomes in J774 cells was 20 mM just after internalization, increasing to 41 mM over ∼10 min in parallel to a drop in pH from 6.91 to 6.05. The low [Cl−] just after internalization (compared with 137 mM solution [Cl−]) was prevented by reducing the interior-negative Donnan potential. [Cl−] in α2-macroglobulin–labeled endosomes, which enter a late compartment, increased from 28 to 58 mM at 1–45 min after internalization, whereas pH decreased from 6.85 to 5.20. Cl− accumulation was prevented by bafilomycin but restored by valinomycin. A Cl− channel inhibitor slowed endosomal acidification and Cl− accumulation by ∼2.5-fold. [Cl−] was 49 mM and pH was 6.42 in cholera toxin B subunit–labeled Golgi complex in Vero cells; Golgi compartment Cl− accumulation and acidification were reversed by bafilomycin. Our experiments provide evidence that Cl− is the principal counter ion accompanying endosomal and Golgi compartment acidification, and that an interior-negative Donnan potential is responsible for low endosomal [Cl−] early after internalization. We propose that reduced [Cl−] and volume in early endosomes permits endosomal acidification and [Cl−] accumulation without lysis. PMID:12668661

  15. Stochastic acidification, activation of hemagglutinin and escape of influenza viruses from an endosome

    NASA Astrophysics Data System (ADS)

    Lagache, Thibault; Sieben, Christian; Meyer, Tim; Herrmann, Andreas; Holcman, David

    2017-06-01

    Influenza viruses enter the cell inside an endosome. During the endosomal journey, acidification triggers a conformational change of the virus spike protein hemagglutinin (HA) that results in escape of the viral genome from the endosome into the cytoplasm. It is still unclear how the interplay between acidification and HA conformation changes affects the kinetics of the viral endosomal escape. We develop here a stochastic model to estimate the change of conformation of HAs inside the endosome nanodomain. Using a Markov process, we model the arrival of protons to HA binding sites and compute the kinetics of their accumulation. We compute the Mean First Passage Time (MFPT) of the number of HA bound sites to a threshold, which is used to estimate the HA activation rate for a given pH concentration. The present analysis reveals that HA proton binding sites possess a high chemical barrier, ensuring a stability of the spike protein at sub-acidic pH. We predict that activating more than 3 adjacent HAs is necessary to trigger endosomal fusion and this configuration prevents premature release of viruses from early endosomes

  16. Engagement of the small GTPase Rab31 protein and its effector, early endosome antigen 1, is important for trafficking of the ligand-bound epidermal growth factor receptor from the early to the late endosome.

    PubMed

    Chua, Christelle En Lin; Tang, Bor Luen

    2014-05-02

    Rab31 is a member of the Rab5 subfamily of Rab GTPases. Although localized largely to the trans-Golgi network, it shares common guanine nucleotide exchange factors and effectors with other Rab5 subfamily members that have been implicated in endocytic membrane traffic. We investigated whether Rab31 also has a role in the trafficking of the ligand-bound EGF receptor (EGFR) internalized through receptor-mediated endocytosis. We found that loss of Rab31 inhibits, but overexpression enhances, EGFR trafficking to the late endosomes and that the effect of Rab31 silencing could be specifically rescued by overexpression of a silencing-resistant form of Rab31. Rab31 was found to interact with the EGFR by coimmunoprecipitation and affinity pulldown analyses, and the primarily trans-Golgi network-localized Rab31 has increased colocalization with the EGFR in A431 cells 30 min after pulsing with EGF. A glycerol gradient sedimentation assay suggested that Rab31 is sequestered into a high molecular weight complex after stimulation with EGF, as was early endosome antigen 1 (EEA1), a factor responsible for endosomal tethering and fusion events. We found that loss of EEA1 reduced the interaction between Rab31 and the EGFR and abrogated the effect of Rab31 overexpression on the trafficking of the EGFR. Likewise, loss of GAPex5, a Rab31 guanine nucleotide exchange factor that has a role in ubiquitination and degradation of the EGFR, reduced the interaction of Rab31 with the EGFR and its effect on EGFR trafficking. Taken together, our results suggest that Rab31 is an important regulator of endocytic trafficking of the EGFR and functions in an EGFR trafficking complex that includes EEA1 and GAPex5.

  17. Engagement of the Small GTPase Rab31 Protein and Its Effector, Early Endosome Antigen 1, Is Important for Trafficking of the Ligand-bound Epidermal Growth Factor Receptor from the Early to the Late Endosome*

    PubMed Central

    Chua, Christelle En Lin; Tang, Bor Luen

    2014-01-01

    Rab31 is a member of the Rab5 subfamily of Rab GTPases. Although localized largely to the trans-Golgi network, it shares common guanine nucleotide exchange factors and effectors with other Rab5 subfamily members that have been implicated in endocytic membrane traffic. We investigated whether Rab31 also has a role in the trafficking of the ligand-bound EGF receptor (EGFR) internalized through receptor-mediated endocytosis. We found that loss of Rab31 inhibits, but overexpression enhances, EGFR trafficking to the late endosomes and that the effect of Rab31 silencing could be specifically rescued by overexpression of a silencing-resistant form of Rab31. Rab31 was found to interact with the EGFR by coimmunoprecipitation and affinity pulldown analyses, and the primarily trans-Golgi network-localized Rab31 has increased colocalization with the EGFR in A431 cells 30 min after pulsing with EGF. A glycerol gradient sedimentation assay suggested that Rab31 is sequestered into a high molecular weight complex after stimulation with EGF, as was early endosome antigen 1 (EEA1), a factor responsible for endosomal tethering and fusion events. We found that loss of EEA1 reduced the interaction between Rab31 and the EGFR and abrogated the effect of Rab31 overexpression on the trafficking of the EGFR. Likewise, loss of GAPex5, a Rab31 guanine nucleotide exchange factor that has a role in ubiquitination and degradation of the EGFR, reduced the interaction of Rab31 with the EGFR and its effect on EGFR trafficking. Taken together, our results suggest that Rab31 is an important regulator of endocytic trafficking of the EGFR and functions in an EGFR trafficking complex that includes EEA1 and GAPex5. PMID:24644286

  18. PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading.

    PubMed

    Roberts, M; Barry, S; Woods, A; van der Sluijs, P; Norman, J

    2001-09-18

    It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.

  19. Mechanisms of Entry and Endosomal Pathway of African Swine Fever Virus

    PubMed Central

    G. Sánchez, Elena; Pérez-Núñez, Daniel; Revilla, Yolanda

    2017-01-01

    African Swine Fever Virus (ASFV) causes a serious swine disease that is endemic in Africa and Sardinia and presently spreading in Russia and neighboring countries, including Poland and recently, the Czech Republic. This uncontrolled dissemination is a world-wide threat, as no specific protection or vaccine is available. ASFV is a very complex icosahedral, enveloped virus about 200 nm in diameter, which infects several members of pigs. The virus enters host cells by receptor-mediated endocytosis that depends on energy, vacuolar pH and temperature. The specific receptor(s) and attachment factor(s) involved in viral entry are still unknown, although macropinocytosis and clathrin-dependent mechanisms have been proposed. After internalization, ASFV traffics through the endolysosomal system. The capsid and inner envelope are found in early endosomes or macropinosomes early after infection, colocalizing with EEA1 and Rab5, while at later times they co-localize with markers of late endosomes and lysosomes, such as Rab7 or Lamp 1. A direct relationship has been established between the maturity of the endosomal pathway and the progression of infection in the cell. Finally, ASFV uncoating first involves the loss of the outer capsid layers, and later fusion of the inner membrane with endosomes, releasing the nude core into the cytosol. PMID:29117102

  20. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro.

    PubMed

    Canfrán-Duque, Alberto; Barrio, Luis C; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A; Busto, Rebeca

    2016-03-18

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.

  1. Generation of Rab-based transgenic lines for in vivo studies of endosome biology in zebrafish

    PubMed Central

    Clark, Brian S.; Winter, Mark; Cohen, Andrew R.; Link, Brian A.

    2011-01-01

    The Rab family of small GTPases function as molecular switches regulating membrane and protein trafficking. Individual Rab isoforms define and are required for specific endosomal compartments. To facilitate in vivo investigation of specific Rab proteins, and endosome biology in general, we have generated transgenic zebrafish lines to mark and manipulate Rab proteins. We also developed software to track and quantify endosome dynamics within time-lapse movies. The established transgenic lines ubiquitously express EGFP fusions of Rab5c (early endosomes), Rab11a (recycling endosomes), and Rab7 (late endosomes) to study localization and dynamics during development. Additionally, we generated UAS-based transgenic lines expressing constitutive active (CA) and dominant negative (DN) versions for each of these Rab proteins. Predicted localization and functional consequences for each line were verified through a variety of assays, including lipophilic dye uptake and Crumbs2a localization. In summary, we have established a toolset for in vivo analyses of endosome dynamics and functions. PMID:21976318

  2. Early Endosomal Escape of a Cyclic Cell-Penetrating Peptide Allows Effective Cytosolic Cargo Delivery

    PubMed Central

    2015-01-01

    Cyclic heptapeptide cyclo(FΦRRRRQ) (cFΦR4, where Φ is l-2-naphthylalanine) was recently found to be efficiently internalized by mammalian cells. In this study, its mechanism of internalization was investigated by perturbing various endocytic events through the introduction of pharmacologic agents and genetic mutations. The results show that cFΦR4 binds directly to membrane phospholipids, is internalized into human cancer cells through endocytosis, and escapes from early endosomes into the cytoplasm. Its cargo capacity was examined with a wide variety of molecules, including small-molecule dyes, linear and cyclic peptides of various charged states, and proteins. Depending on the nature of the cargos, they may be delivered by endocyclic (insertion of cargo into the cFΦR4 ring), exocyclic (attachment of cargo to the Gln side chain), or bicyclic approaches (fusion of cFΦR4 and cyclic cargo rings). The overall delivery efficiency (i.e., delivery of cargo into the cytoplasm and nucleus) of cFΦR4 was 4–12-fold higher than those of nonaarginine, HIV Tat-derived peptide, or penetratin. The higher delivery efficiency, coupled with superior serum stability, minimal toxicity, and synthetic accessibility, renders cFΦR4 a useful transporter for intracellular cargo delivery and a suitable system for investigating the mechanism of endosomal escape. PMID:24896852

  3. Ankyrin-B is a PI3P effector that promotes polarized α5β1-integrin recycling via recruiting RabGAP1L to early endosomes

    PubMed Central

    Qu, Fangfei; Lorenzo, Damaris N; King, Samantha J; Brooks, Rebecca; Bear, James E; Bennett, Vann

    2016-01-01

    Endosomal membrane trafficking requires coordination between phosphoinositide lipids, Rab GTPases, and microtubule-based motors to dynamically determine endosome identity and promote long-range organelle transport. Here we report that ankyrin-B (AnkB), through integrating all three systems, functions as a critical node in the protein circuitry underlying polarized recycling of α5β1-integrin in mouse embryonic fibroblasts, which enables persistent fibroblast migration along fibronectin gradients. AnkB associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles in fibroblasts and binds dynactin to promote their long-range motility. We demonstrate that AnkB binds to Rab GTPase Activating Protein 1-Like (RabGAP1L) and recruits it to PI3P-positive organelles, where RabGAP1L inactivates Rab22A, and promotes polarized trafficking to the leading edge of migrating fibroblasts. We further determine that α5β1-integrin depends on an AnkB/RabGAP1L complex for polarized recycling. Our results reveal AnkB as an unexpected key element in coordinating polarized transport of α5β1-integrin and likely of other specialized endocytic cargos. DOI: http://dx.doi.org/10.7554/eLife.20417.001 PMID:27718357

  4. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    PubMed Central

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  5. Fusion of Enveloped Viruses in Endosomes

    PubMed Central

    White, Judith M.; Whittaker, Gary R.

    2016-01-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH, and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion triggering mechanisms. A key take home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors, and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. PMID:26935856

  6. Endosomal Redox Signaling in the Antiphospholipid Syndrome.

    PubMed

    Lackner, Karl J; Manukyan, Davit; Müller-Calleja, Nadine

    2017-04-01

    It is well established that the antiphospholipid syndrome (APS) is caused by antiphospholipid antibodies (aPL). While several underlying mechanisms have been described in the past, many open questions remain. Here, we will review data on endosomal signaling and, in particular, redox signaling in APS. Endosomal redox signaling has been implicated in several cellular processes including signaling of proinflammatory cytokines. We have shown that certain aPL can activate endosomal NADPH-oxidase (NOX) in several cell types followed by induction of proinflammatory and procoagulant cellular responses in vitro. Involvement of endosomes in aPL signaling has also been reported by others. In wild-type mice but not in NOX-deficient mice, aPL accelerate venous thrombus formation underscoring the relevance of endosomal NOX. Furthermore, hydroxychloroquine (HCQ) inhibits activation of endosomal NOX and prevents thrombus formation in aPL-treated mice. Endosomal redox signaling is an important novel mechanism involved in APS pathogenesis. This makes endosomes a potential target for future treatment approaches of APS.

  7. Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity*

    PubMed Central

    van der Kant, Rik; Jonker, Caspar T. H.; Wijdeven, Ruud H.; Bakker, Jeroen; Janssen, Lennert; Klumperman, Judith; Neefjes, Jacques

    2015-01-01

    Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway. PMID:26463206

  8. A non-aggregating Surfactant Protein C mutant is misdirected to early endosomes and disrupts phospholipid recycling

    PubMed Central

    Beers, Michael F.; Hawkins, Arie; Maguire, Jean Ann; Kotorashvili, Adam; Zhao, Ming; Newitt, Jennifer L.; Ding, Wenge; Russo, Scott; Guttentag, Susan; Gonzales, Linda; Mulugeta, Surafel

    2011-01-01

    Interstitial lung disease in both children and adults has been linked to mutations in the lung-specific Surfactant protein C gene (SFTPC). Among these, the missense mutation (isoleucine to threonine at codon 73 = hSP-CI73T) accounts for ~30% of all described SFTPC mutations. We reported previously that unlike the BRICHOS misfolding SFTPC mutants, expression of hSP-CI73T induces lung remodeling and alveolar lipoproteinosis without a substantial ER stress response or ER-mediated intrinsic apoptosis. We show here that, in contrast to its wild type counterpart that is directly routed to lysosomal-like organelles for processing, SP-CI73T is misdirected to the plasma membrane and subsequently internalized to the endocytic pathway via early endosomes, leading to the accumulation of abnormally processed proSP-C isoforms. Functionally, cells expressing hSP-CI73T demonstrated both impaired uptake and degradation of surfactant phospholipid, thus providing a molecular mechanism for the observed lipid accumulation in patients expressing hSP-CI73T through the disruption of normal phospholipid recycling. Our data provide evidence for a novel cellular mechanism for conformational protein associated diseases, and suggest a paradigm for mistargeted proteins involved in the disruption of the endosomal/lysosomal sorting machinery. PMID:21707890

  9. The structure and function of presynaptic endosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jähne, Sebastian, E-mail: sebastian.jaehne1@stud.uni-goettingen.de; International Max Planck Research School for Neurosciences, 37077 Göttingen; Rizzoli, Silvio O.

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in themore » sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.« less

  10. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, L.; Xu, F.; Reinhard, B. M.

    2016-07-01

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF

  11. Endothelin-converting enzyme 1 degrades neuropeptides in endosomes to control receptor recycling.

    PubMed

    Roosterman, Dirk; Cottrell, Graeme S; Padilla, Benjamin E; Muller, Laurent; Eckman, Christopher B; Bunnett, Nigel W; Steinhoff, Martin

    2007-07-10

    Neuropeptide signaling requires the presence of G protein-coupled receptors (GPCRs) at the cell surface. Activated GPCRs interact with beta-arrestins, which mediate receptor desensitization, endocytosis, and mitogenic signaling, and the peptide-receptor-arrestin complex is sequestered into endosomes. Although dissociation of beta-arrestins is required for receptor recycling and resensitization, the critical event that initiates this process is unknown. Here we report that the agonist availability in the endosomes, controlled by the membrane metalloendopeptidase endothelin-converting enzyme 1 (ECE-1), determines stability of the peptide-receptor-arrestin complex and regulates receptor recycling and resensitization. Substance P (SP) binding to the tachykinin neurokinin 1 receptor (NK1R) induced membrane translocation of beta-arrestins followed by trafficking of the SP-NK1R-beta-arrestin complex to early endosomes containing ECE-1a-d. ECE-1 degraded SP in acidified endosomes, disrupting the complex; beta-arrestins returned to the cytosol, and the NK1R, freed from beta-arrestins, recycled and resensitized. An ECE-1 inhibitor, by preventing NK1R recycling in endothelial cells, inhibited resensitization of SP-induced inflammation. This mechanism is a general one because ECE-1 similarly regulated NK3R resensitization. Thus, peptide availability in endosomes, here regulated by ECE-1, determines the stability of the peptide-receptor-arrestin complex. This mechanism regulates receptor recycling, which is necessary for sustained signaling, and it may also control beta-arrestin-dependent mitogenic signaling of endocytosed receptors. We propose that other endosomal enzymes and transporters may similarly control the availability of transmitters in endosomes to regulate trafficking and signaling of GPCRs. Antagonism of these endosomal processes represents a strategy for inhibiting sustained signaling of receptors, and defects may explain the tachyphylaxis of drugs that are

  12. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes.

    PubMed

    Wang, Chensu; Zhao, Tian; Li, Yang; Huang, Gang; White, Michael A; Gao, Jinming

    2017-04-01

    Endosomes and lysosomes play a critical role in various aspects of cell physiology such as nutrient sensing, receptor recycling, protein/lipid catabolism, and cell death. In drug delivery, endosomal release of therapeutic payloads from nanocarriers is also important in achieving efficient delivery of drugs to reach their intracellular targets. Recently, we invented a library of ultra pH-sensitive (UPS) nanoprobes with exquisite fluorescence response to subtle pH changes. The UPS nanoprobes also displayed strong pH-specific buffer effect over small molecular bases with broad pH responses (e.g., chloroquine and NH 4 Cl). Tunable pH transitions from 7.4 to 4.0 of UPS nanoprobes cover the entire physiological pH of endocytic organelles (e.g., early and late endosomes) and lysosomes. These unique physico-chemical properties of UPS nanoprobes allowed a 'detection and perturbation' strategy for the investigation of luminal pH in cell signaling and metabolism, which introduces a nanotechnology-enabled paradigm for the biological studies of endosomes and lysosomes. Published by Elsevier B.V.

  13. Functions of Adaptor Protein (AP)-3 and AP-1 in Tyrosinase Sorting from Endosomes to MelanosomesD⃞

    PubMed Central

    Theos, Alexander C.; Tenza, Danièle; Martina, José A.; Hurbain, Ilse; Peden, Andrew A.; Sviderskaya, Elena V.; Stewart, Abigail; Robinson, Margaret S.; Bennett, Dorothy C.; Cutler, Daniel F.; Bonifacino, Juan S.; Marks, Michael S.; Raposo, Graça

    2005-01-01

    Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies. PMID:16162817

  14. Rab1a regulates sorting of early endocytic vesicles

    PubMed Central

    Mukhopadhyay, Aparna; Quiroz, Jose A.

    2014-01-01

    We previously reported that Rab1a is associated with asialoorosomucoid (ASOR)-containing early endocytic vesicles, where it is required for their microtubule-based motility. In Rab1a knockdown (KD) cell lines, ASOR failed to segregate from its receptor and, consequently, did not reach lysosomes for degradation, indicating a defect in early endosome sorting. Although Rab1 is required for Golgi/endoplasmic reticulum trafficking, this process was unaffected, likely due to retained expression of Rab1b in these cells. The present study shows that Rab1a has a more general role in endocytic vesicle processing that extends to EGF and transferrin (Tfn) trafficking. Compared with results in control Huh7 cells, EGF accumulated in aggregates within Rab1a KD cells, failing to reach lysosomal compartments. Tfn, a prototypical example of recycling cargo, accumulated in a Rab11-mediated slow-recycling compartment in Rab1a KD cells, in contrast to control cells, which sort Tfn into a fast-recycling Rab4 compartment. These data indicate that Rab1a is an important regulator of early endosome sorting for multiple cargo species. The effectors and accessory proteins recruited by Rab1a to early endocytic vesicles include the minus-end-directed kinesin motor KifC1, while others remain to be discovered. PMID:24407591

  15. Solo/Trio8, a membrane-associated short isoform of Trio, modulates endosome dynamics and neurite elongation.

    PubMed

    Sun, Ying-Jie; Nishikawa, Kaori; Yuda, Hideki; Wang, Yu-Lai; Osaka, Hitoshi; Fukazawa, Nobuna; Naito, Akira; Kudo, Yoshihisa; Wada, Keiji; Aoki, Shunsuke

    2006-09-01

    With DNA microarrays, we identified a gene, termed Solo, that is downregulated in the cerebellum of Purkinje cell degeneration mutant mice. Solo is a mouse homologue of rat Trio8-one of multiple Trio isoforms recently identified in rat brain. Solo/Trio8 contains N-terminal sec14-like and spectrin-like repeat domains followed by a single guanine nucleotide exchange factor 1 (GEF1) domain, but it lacks the C-terminal GEF2, immunoglobulin-like, and kinase domains that are typical of Trio. Solo/Trio8 is predominantly expressed in Purkinje neurons of the mouse brain, and expression begins following birth and increases during Purkinje neuron maturation. We identified a novel C-terminal membrane-anchoring domain in Solo/Trio8 that is required for enhanced green fluorescent protein-Solo/Trio8 localization to early endosomes (positive for both early-endosome antigen 1 [EEA1] and Rab5) in COS-7 cells and primary cultured neurons. Solo/Trio8 overexpression in COS-7 cells augmented the EEA1-positive early-endosome pool, and this effect was abolished via mutation and inactivation of the GEF domain or deletion of the C-terminal membrane-anchoring domain. Moreover, primary cultured neurons transfected with Solo/Trio8 showed increased neurite elongation that was dependent on these domains. These results suggest that Solo/Trio8 acts as an early-endosome-specific upstream activator of Rho family GTPases for neurite elongation of developing Purkinje neurons.

  16. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494

    PubMed Central

    Verma, Jitender Kumar; Rastogi, Ruchir

    2017-01-01

    Several intracellular pathogens arrest the phagosome maturation in the host cells to avoid transport to lysosomes. In contrast, the Leishmania containing parasitophorous vacuole (PV) is shown to recruit lysosomal markers and thus Leishmania is postulated to be residing in the phagolysosomes in macrophages. Here, we report that Leishmania donovani specifically upregulates the expression of Rab5a by degrading c-Jun via their metalloprotease gp63 to downregulate the expression of miR-494 in THP-1 differentiated human macrophages. Our results also show that miR-494 negatively regulates the expression of Rab5a in cells. Subsequently, L. donovani recruits and retains Rab5a and EEA1 on PV to reside in early endosomes and inhibits transport to lysosomes in human macrophages. Similarly, we have also observed that Leishmania PV also recruits Rab5a by upregulating its expression in human PBMC differentiated macrophages. However, the parasite modulates the endosome by recruiting Lamp1 and inactive pro-CathepsinD on PV via the overexpression of Rab5a in infected cells. Furthermore, siRNA knockdown of Rab5a or overexpression of miR-494 in human macrophages significantly inhibits the survival of the parasites. These results provide the first mechanistic insights of parasite-mediated remodeling of endo-lysosomal trafficking to reside in a specialized early endocytic compartment. PMID:28650977

  17. Activation of PI3K, Akt, and ERK during early rotavirus infection leads to V-ATPase-dependent endosomal acidification required for uncoating

    PubMed Central

    Kim, Deok-Song; Kim, Ji-Yun; Park, Jun-Gyu; Alfajaro, Mia Madel; Baek, Yeong-Bin; Cho, Eun-Hyo; Kwon, Joseph; Choi, Jong-Soon; Kang, Mun-Il; Park, Sang-Ik; Cho, Kyoung-Oh

    2018-01-01

    The cellular PI3K/Akt and/or MEK/ERK signaling pathways mediate the entry process or endosomal acidification during infection of many viruses. However, their roles in the early infection events of group A rotaviruses (RVAs) have remained elusive. Here, we show that late-penetration (L-P) human DS-1 and bovine NCDV RVA strains stimulate these signaling pathways very early in the infection. Inhibition of both signaling pathways significantly reduced production of viral progeny due to blockage of virus particles in the late endosome, indicating that neither of the two signaling pathways is involved in virus trafficking. However, immunoprecipitation assays using antibodies specific for pPI3K, pAkt, pERK and the subunit E of the V-ATPase co-immunoprecipitated the V-ATPase in complex with pPI3K, pAkt, and pERK. Moreover, Duolink proximity ligation assay revealed direct association of the subunit E of the V-ATPase with the molecules pPI3K, pAkt, and pERK, indicating that both signaling pathways are involved in V-ATPase-dependent endosomal acidification. Acidic replenishment of the medium restored uncoating of the RVA strains in cells pretreated with inhibitors specific for both signaling pathways, confirming the above results. Isolated components of the outer capsid proteins, expressed as VP4-VP8* and VP4-VP5* domains, and VP7, activated the PI3K/Akt and MEK/ERK pathways. Furthermore, psoralen-UV-inactivated RVA and CsCl-purified RVA triple-layered particles triggered activation of the PI3K/Akt and MEK/ERK pathways, confirming the above results. Our data demonstrate that multistep binding of outer capsid proteins of L-P RVA strains with cell surface receptors phosphorylates PI3K, Akt, and ERK, which in turn directly interact with the subunit E of the V-ATPase to acidify the late endosome for uncoating of RVAs. This study provides a better understanding of the RVA-host interaction during viral uncoating, which is of importance for the development of strategies aiming at

  18. Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity.

    PubMed

    LaMontagne, Erica D; Heese, Antje

    2017-12-01

    In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses. Copyright © 2017. Published by Elsevier Ltd.

  19. Calnuc Function in Endosomal Sorting of Lysosomal Receptors.

    PubMed

    Larkin, Heidi; Costantino, Santiago; Seaman, Matthew N J; Lavoie, Christine

    2016-04-01

    Calnuc is a ubiquitous Ca(2+)-binding protein present on the trans-Golgi network (TGN) and endosomes. However, the precise role of Calnuc in these organelles is poorly characterized. We previously highlighted the role of Calnuc in the transport of LRP9, a new member of a low-density lipoprotein (LDL) receptor subfamily that cycles between the TGN and endosomes. The objective of this study was to explore the role of Calnuc in the endocytic sorting of mannose-6-phosphate receptor (MPR) and Sortilin, two well-characterized lysosomal receptors that transit between the TGN and endosomes. Using biochemical and microscopy assays, we showed that Calnuc depletion [by small interfering RNA (siRNA)] causes the misdelivery to and degradation in lysosomes of cationic-independent mannose-6-phosphate receptor (CI-MPR) and Sortilin due to a defect in the endosomal recruitment of retromers, which are key components of the endosome-to-Golgi retrieval machinery. Indeed, we demonstrated that Calnuc depletion impairs the activation and membrane association of Rab7, a small G protein required for the endosomal recruitment of retromers. Overall, our data indicate a novel role for Calnuc in the endosome-to-TGN retrograde transport of lysosomal receptors through the regulation of Rab7 activity and the recruitment of retromers to endosomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    PubMed Central

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  1. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans

    PubMed Central

    Grussendorf, Kelly A.; Trezza, Christopher J.; Salem, Alexander T.; Al-Hashimi, Hikmat; Mattingly, Brendan C.; Kampmeyer, Drew E.; Khan, Liakot A.; Hall, David H.; Göbel, Verena; Ackley, Brian D.; Buechner, Matthew

    2016-01-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans. In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn’s disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  2. AP-1/σ1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory

    PubMed Central

    Glyvuk, Nataliya; Tsytsyura, Yaroslav; Geumann, Constanze; D'Hooge, Rudi; Hüve, Jana; Kratzke, Manuel; Baltes, Jennifer; Böning, Daniel; Klingauf, Jürgen; Schu, Peter

    2010-01-01

    Synaptic vesicle recycling involves AP-2/clathrin-mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue-specific AP-1–σ1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP-1–σ1A complex mediates protein sorting between the trans-Golgi network and early endosomes. Vertebrates express three σ1 subunit isoforms: A, B and C. The expressions of σ1A and σ1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from σ1B-deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The σ1B-deficient mice have reduced motor coordination and severely impaired long-term spatial memory. These data reveal a molecular mechanism for a severe human X-chromosome-linked mental retardation. PMID:20203623

  3. MHC class II presentation of gp100 epitopes in melanoma cells requires the function of conventional endosomes, and is influenced by melanosomes1

    PubMed Central

    Robila, Valentina; Ostankovitch, Marina; Altrich-VanLith, Michelle L.; Theos, Alexander C.; Drover, Sheila; Marks, Michael S.; Restifo, Nicholas; Engelhard, Victor H.

    2009-01-01

    Many human solid tumors express MHC II molecules, and proteins normally localized to melanosomes give rise to MHC II restricted epitopes in melanoma. However, the pathways by which this occurs have not been defined. We analyzed the processing of one such epitope, gp10044-59, derived from gp100/Pmel17. In melanomas that have down-regulated components of the melanosomal pathway, but constitutively express HLA-DR*0401, the majority of gp100 is sorted to LAMP-1hi/MHC II+ late endosomes. Using mutant gp100 molecules with altered intracellular trafficking, we demonstrate that endosomal localization is necessary for gp10044-59 presentation. By depletion of the AP2 adaptor protein using siRNA, we demonstrate that gp100 protein internalized from the plasma membrane to such endosomes is a major source for gp10044-59 epitope production. Gp100 trapped in early endosomes gives rise to epitopes that are indistinguishable from those produced in late endosomes but their production is less sensitive to inhibition of lysosomal proteases. In melanomas containing melanosomes, gp100 is underrepresented in late endosomes, and accumulates in stage II melanosomes devoid of MHC II molecules. Gp10044-59 presentation is dramatically reduced, and processing occurs entirely in early endosomes / stage I melanosomes. This suggests that melanosomes are inefficient antigen processing compartments. Thus, melanoma de-differentiation may be accompanied by increased presentation of MHC II restricted epitopes from gp100 and other melanosome-localized proteins, leading to enhanced immune recognition. PMID:19017974

  4. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    PubMed

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-04-12

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

  5. The Na+/H+ Exchanger NHE6 Modulates Endosomal pH to Control Processing of Amyloid Precursor Protein in a Cell Culture Model of Alzheimer Disease*

    PubMed Central

    Prasad, Hari; Rao, Rajini

    2015-01-01

    Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na+/H+ exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na+/H+ ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na+/H+ exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology. PMID:25561733

  6. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    PubMed Central

    Arnold, Miranda; Cross, Rebecca; Singleton, Kaela S.; Zlatic, Stephanie; Chapleau, Christopher; Mullin, Ariana P.; Rolle, Isaiah; Moore, Carlene C.; Theibert, Anne; Pozzo-Miller, Lucas; Faundez, Victor; Larimore, Jennifer

    2016-01-01

    AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function. PMID:27713690

  7. Motility of the oesophagus and small bowel in adults treated for Hirschsprung's disease during early childhood.

    PubMed

    Medhus, A W; Bjørnland, K; Emblem, R; Husebye, E

    2010-02-01

    Dysmotility of the upper gastrointestinal (GI) tract has been reported in children with Hirschsprung's disease (HD). In the present study, motility of the oesophagus and the small bowel was studied in adults treated for HD during early childhood to elucidate whether there are alterations in motility of the upper GI tract in this patient group. [Correction added after online publication 15 Sep: The preceding sentence has been rephrased for better clarity.] Ambulatory small bowel manometry with recording sites in duodenum/jejunum was performed in 16 adult patients with surgically treated HD and 17 healthy controls. In addition, oesophageal manometry was performed with station pull-through technique. The essential patterns of small bowel motility were recognized in all patients and controls. During fasting, phase III of the migrating motor complex (MMC) was more prominent in patients with HD than in controls when accounting for duration and propagation velocity (P = 0.006). Phase I of the MMC was of shorter duration (P = 0.008), and phase II tended to be of longer duration (P = 0.05) in the patients. During daytime fasting, propagated clustered contractions (PCCs) were more frequent in the patients (P = 0.01). Postprandially, the patients demonstrated a higher contractile frequency (P = 0.02), a shorter duration of contractions (P = 0.008) and more frequent PCCs (P < 0.001). The patients had normal oesophageal motility. This study demonstrates that adult patients with HD have preserved essential patterns of oesophageal and small bowel motility. However, abnormalities mainly characterized by increased contractile activity of the small bowel during fasting and postprandially are evident. These findings indicate alterations in neuronal control of motility and persistent involvement of the upper GI tract in this disease.

  8. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  9. Endothelin-converting enzyme-1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones

    PubMed Central

    Pelayo, Juan-Carlos; Poole, Daniel P; Steinhoff, Martin; Cottrell, Graeme S; Bunnett, Nigel W

    2011-01-01

    Abstract Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by β-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by β-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK1R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nm, 10 min) induced interaction of NK1R and β-arrestin at the plasma membrane, and the SP–NK1R–β-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK1R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H+ATPase inhibitor bafilomycin A1, which prevent endosomal SP degradation, suppressed NK1R recycling by >50%. Preincubation of neurones with SP (10 nm, 5 min) desensitized Ca2+ transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK1R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP–NK1R–β-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK1R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating β-arrestin-mediated endosomal signalling. PMID:21878523

  10. A novel assay reveals preferential binding between Rabs, kinesins, and specific endosomal subpopulations

    PubMed Central

    Bentley, Marvin; Decker, Helena; Luisi, Julie

    2015-01-01

    Identifying the proteins that regulate vesicle trafficking is a fundamental problem in cell biology. In this paper, we introduce a new assay that involves the expression of an FKBP12-rapamycin–binding domain–tagged candidate vesicle-binding protein, which can be inducibly linked to dynein or kinesin. Vesicles can be labeled by any convenient method. If the candidate protein binds the labeled vesicles, addition of the linker drug results in a predictable, highly distinctive change in vesicle localization. This assay generates robust and easily interpretable results that provide direct experimental evidence of binding between a candidate protein and the vesicle population of interest. We used this approach to compare the binding of Kinesin-3 family members with different endosomal populations. We found that KIF13A and KIF13B bind preferentially to early endosomes and that KIF1A and KIF1Bβ bind preferentially to late endosomes and lysosomes. This assay may have broad utility for identifying the trafficking proteins that bind to different vesicle populations. PMID:25624392

  11. Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction.

    PubMed

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Vázquez-Chávez, Elena; Lasserre, Rémi; Agüera-González, Sonia; Cuche, Céline; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2017-04-01

    The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease.

    PubMed

    Prasad, Hari; Rao, Rajini

    2015-02-27

    Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na(+)/H(+) exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na(+)/H(+) ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na(+)/H(+) exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Crucial role of neuron-enriched endosomal protein of 21 kDa in sorting between degradation and recycling of internalized G-protein-coupled receptors.

    PubMed

    Debaigt, Colin; Hirling, Harald; Steiner, Pascal; Vincent, Jean-Pierre; Mazella, Jean

    2004-08-20

    Recycling of endocytosed G-protein-coupled receptors involves a series of molecular events through early and recycling endosomes. The purpose of this work was to study the role of neuron-enriched endosomal protein of 21 kDa (NEEP21) in the recycling process of neurotensin receptors-1 and -2. Here we showed that suppression of NEEP21 expression does not modify the internalization rate of both receptors but strongly inhibited the recycling of the neurotensin receptor-2. In contrast, overexpression of NEEP21 changes the behavior of the neurotensin receptor-1 from a non-recycling to a recycling state. Recycling of the neurotensin receptor-2 involves both the phosphatidylinositol 3-kinase and the recycling endosome pathways, whereas recycling of the neurotensin receptor-1 induced by overexpression of NEEP21 only occurs by the phosphatidylinositol 3-kinase-dependent pathway. Taken together, these results confirm the essential role of NEEP21 in the recycling mechanism and show that this protein acts at the level of early endosomes to promote sorting of receptors toward a recycling pathway.

  14. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  15. Cholesterol transfer at endosomal-organelle membrane contact sites.

    PubMed

    Ridgway, Neale D; Zhao, Kexin

    2018-06-01

    Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.

  16. Endocytosis of wheat germ agglutinin binding sites from the cell surface into a tubular endosomal network.

    PubMed

    Raub, T J; Koroly, M J; Roberts, R M

    1990-04-01

    By using fluorescence and electron microscopy, the endocytic pathway encountered by cell surface components after they had bound wheat germ agglutinin (WGA) was visualized. The majority of these components are thought to consist of sialylated glycoproteins (HMWAG) that represent a subpopulation of the total cell surface proteins but most of the externally disposed plasma membrane proteins of the cell. Examination of semi-thin sections by medium- and high-voltage electron microscopy revealed the three-dimensional organization of vesicular and tubular endosomes. Binding of either fluorescein isothiocyanate-, horseradish peroxidase-, or ferritin-conjugated WGA to cells at 4 degrees C showed that the HMWAG were distributed uniformly over the cell surface. Warming of surface-labeled cells to 37 degrees C resulted in the endocytosis of WGA into peripheral endosomes via invagination of regions of both coated and uncoated membrane. The peripheral endosome appeared as isolated complexes comprising a vesicular element (300-400 nm diam.) surrounded by and continuous with tubular cisternae (45-60 nm diam.), which did not interconnect the endosomes. After 30 min or more label also became localized in a network of anastomosing tubules (45-60 nm diam.) that were located in the centrosomal region of the cell. Endocytosed WGA-HMWAG complexes did not become associated with cisternae of the Golgi apparatus, although tubular and vesicular endosomes were noted in the vicinity of the trans-Golgi region. The accumulation of WGA-HMWAG in the endosomes within the centrosomal region was inhibited when cells were incubated at 18 degrees C. None of these compartments contained acid phosphatase activity, a result that is consistent with other data that the HMWAG do not pass through lysosomes initially. The kinetics of labeling were consistent with the interpretation that recycling of most of the WGA binding surface glycoproteins occurred rapidly from early peripheral endosomes followed by the

  17. Beclin 1 Is Required for Neuron Viability and Regulates Endosome Pathways via the UVRAG-VPS34 Complex

    PubMed Central

    Wold, Mitchell S.; Gong, Shiaoching; Phillips, Greg R.; Dou, Zhixun; Zhao, Yanxiang; Heintz, Nathaniel; Zong, Wei-Xing; Yue, Zhenyu

    2014-01-01

    Deficiency of autophagy protein beclin 1 is implicated in tumorigenesis and neurodegenerative diseases, but the molecular mechanism remains elusive. Previous studies showed that Beclin 1 coordinates the assembly of multiple VPS34 complexes whose distinct phosphatidylinositol 3-kinase III (PI3K-III) lipid kinase activities regulate autophagy at different steps. Recent evidence suggests a function of beclin 1 in regulating multiple VPS34-mediated trafficking pathways beyond autophagy; however, the precise role of beclin 1 in autophagy-independent cellular functions remains poorly understood. Herein we report that beclin 1 regulates endocytosis, in addition to autophagy, and is required for neuron viability in vivo. We find that neuronal beclin 1 associates with endosomes and regulates EEA1/early endosome localization and late endosome formation. Beclin 1 maintains proper cellular phosphatidylinositol 3-phosphate (PI(3)P) distribution and total levels, and loss of beclin 1 causes a disruption of active Rab5 GTPase-associated endosome formation and impairment of endosome maturation, likely due to a failure of Rab5 to recruit VPS34. Furthermore, we find that Beclin 1 deficiency causes complete loss of the UVRAG-VPS34 complex and associated lipid kinase activity. Interestingly, beclin 1 deficiency impairs p40phox-linked endosome formation, which is rescued by overexpressed UVRAG or beclin 1, but not by a coiled-coil domain-truncated beclin 1 (a UVRAG-binding mutant), Atg14L or RUBICON. Thus, our study reveals the essential role for beclin 1 in neuron survival involving multiple membrane trafficking pathways including endocytosis and autophagy, and suggests that the UVRAG-beclin 1 interaction underlies beclin 1's function in endocytosis. PMID:25275521

  18. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A

    PubMed Central

    Phillips-Krawczak, Christine A.; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G.; Li, Haiying; Dick, Christopher J.; Gomez, Timothy S.; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F.; Geng, Linda N.; Kaufmann, Scott H.; Hein, Marco Y.; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; van de Sluis, Bart; Billadeau, Daniel D.; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling. PMID:25355947

  19. The endocytic recycling compartment maintains cargo segregation acquired upon exit from the sorting endosome

    PubMed Central

    Xie, Shuwei; Bahl, Kriti; Reinecke, James B.; Hammond, Gerald R. V.; Naslavsky, Naava; Caplan, Steve

    2016-01-01

    The endocytic recycling compartment (ERC) is a series of perinuclear tubular and vesicular membranes that regulates recycling to the plasma membrane. Despite evidence that cargo is sorted at the early/sorting endosome (SE), whether cargo mixes downstream at the ERC or remains segregated is an unanswered question. Here we use three-dimensional (3D) structured illumination microscopy and dual-channel and 3D direct stochastic optical reconstruction microscopy (dSTORM) to obtain new information about ERC morphology and cargo segregation. We show that cargo internalized either via clathrin-mediated endocytosis (CME) or independently of clathrin (CIE) remains segregated in the ERC, likely on distinct carriers. This suggests that no further sorting occurs upon cargo exit from SE. Moreover, 3D dSTORM data support a model in which some but not all ERC vesicles are tethered by contiguous “membrane bridges.” Furthermore, tubular recycling endosomes preferentially traffic CIE cargo and may originate from SE membranes. These findings support a significantly altered model for endocytic recycling in mammalian cells in which sorting occurs in peripheral endosomes and segregation is maintained at the ERC. PMID:26510502

  20. Modulation of Endosomal Escape of IRQ-PEGylated Nano-carrier

    NASA Astrophysics Data System (ADS)

    Mudhakir, Diky; Akita, Hidetaka; Harashima, Hideyoshi

    2011-12-01

    The novel IRQ peptide is one of cell penetrating peptides (CPPs) that has ability to induce endosomal escape. It has been demonstrated that IRQ ligand had ability to facilitate an escape of liposomes encapsulating siRNA from the endosomes presumably by fusion-independent mechanism [1,2]. In the present study, we attempted to modulate the intracellular trafficking of IRQ-modified nano-carrier in term of escaping process by changing the lipid composition. The peptide was attached to the terminal end of maleimide group of polyethylene glycol-modified liposomes (IRQ-PEG-Lip). The liposomes were composed of DOTAP, DOPE and cholesterol and it was labeled by water soluble sulpho-rhodamine B (Sr-B). The escape of PEG-coated liposomes was then observed by confocal laser scanning microscope after the endosomes were stained with Lysosensor. The results exhibited that IRQ-PEG-Lip was escaped from endosomal compartment after 1 h transfection when 40% of DOPE was incorporated into the nanostructure comparing to that of PEG-Lip. These results are consistent with the previous results that the IRQ facilitates endosomal escape via independent-mechanism. However, IRQ-PEG-Lip were then completely co-localized in the acidic compartment when density of DOPE was reduced approximately 20%. These results indicated that the utilizing of DOPE is important for the escape process even in the presence of hydrophilic PEG polymer. In conclusion, the regulation of endosomal escape ability of the PEGylated-IRQ nano-carrier was induced by fusion-independent manner as well as fusogenic lipid.

  1. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes.

    PubMed

    Sonawane, N D; Szoka, Francis C; Verkman, A S

    2003-11-07

    The "proton sponge hypothesis" postulates enhanced transgene delivery by cationic polymer-DNA complexes (polyplexes) containing H+ buffering polyamines by enhanced endosomal Cl- accumulation and osmotic swelling/lysis. To test this hypothesis, we measured endosomal Cl- concentration, pH, and volume after internalization of polyplexes composed of plasmid DNA and polylysine (POL), a non-buffering polyamine, or the strongly buffering polyamines polyethylenimine (PEI) or polyamidoamine (PAM). [Cl-] and pH were measured by ratio imaging of fluorescently labeled polyplexes containing Cl- or pH indicators. [Cl-] increased from 41 to 80 mM over 60 min in endosomes-contained POL-polyplexes, whereas pH decreased from 6.8 to 5.3. Endosomal Cl- accumulation was enhanced (115 mM at 60 min) and acidification was slowed (pH 5.9 at 60 min) for PEI and PAM-polyplexes. Relative endosome volume increased 20% over 75 min for POL-polyplexes versus 140% for PEI-polyplexes. Endosome lysis was seen at >45 min for PEI but not POL-containing endosomes, and PEI-containing endosomes showed increased osmotic fragility in vitro. The slowed endosomal acidification and enhanced Cl- accumulation and swelling/lysis were accounted for by the greater H+ buffering capacity of endosomes containing PEI or PAM versus POL (>90 mM versus 46 H+/pH unit). Our results provide direct support for the proton sponge hypothesis and thus a rational basis for the design of improved non-viral vectors for gene delivery.

  2. Overcoming endosomal barrier by amphotericin B-loaded dual pH-responsive PDMA-b-PDPA micelleplexes for siRNA delivery.

    PubMed

    Yu, Haijun; Zou, Yonglong; Wang, Yiguang; Huang, Xiaonan; Huang, Gang; Sumer, Baran D; Boothman, David A; Gao, Jinming

    2011-11-22

    The endosomal barrier is a major bottleneck for the effective intracellular delivery of siRNA by nonviral nanocarriers. Here, we report a novel amphotericin B (AmB)-loaded, dual pH-responsive micelleplex platform for siRNA delivery. Micelles were self-assembled from poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diisopropylamino)ethyl methacrylate) (PDMA-b-PDPA) diblock copolymers. At pH 7.4, AmB was loaded into the hydrophobic PDPA core, and siRNA was complexed with a positively charged PDMA shell to form the micelleplexes. After cellular uptake, the PDMA-b-PDPA/siRNA micelleplexes dissociated in early endosomes to release AmB. Live cell imaging studies demonstrated that released AmB significantly increased the ability of siRNA to overcome the endosomal barrier. Transfection studies showed that AmB-loaded micelleplexes resulted in significant increase in luciferase (Luc) knockdown efficiency over the AmB-free control. The enhanced Luc knockdown efficiency was abolished by bafilomycin A1, a vacuolar ATPase inhibitor that inhibits the acidification of the endocytic organelles. These data support the central hypothesis that membrane poration by AmB and increased endosomal swelling and membrane tension by a "proton sponge" polymer provided a synergistic strategy to disrupt endosomes for improved intracellular delivery of siRNA. © 2011 American Chemical Society

  3. Endosome-to-Plasma Membrane Recycling of VEGFR2 Receptor Tyrosine Kinase Regulates Endothelial Function and Blood Vessel Formation

    PubMed Central

    Jopling, Helen M.; Odell, Adam F.; Pellet-Many, Caroline; Latham, Antony M.; Frankel, Paul; Sivaprasadarao, Asipu; Walker, John H.; Zachary, Ian C.; Ponnambalam, Sreenivasan

    2014-01-01

    Rab GTPases are implicated in endosome-to-plasma membrane recycling, but how such membrane traffic regulators control vascular endothelial growth factor receptor 2 (VEGFR2/KDR) dynamics and function are not well understood. Here, we evaluated two different recycling Rab GTPases, Rab4a and Rab11a, in regulating endothelial VEGFR2 trafficking and signalling with implications for endothelial cell migration, proliferation and angiogenesis. In primary endothelial cells, VEGFR2 displays co-localisation with Rab4a, but not Rab11a GTPase, on early endosomes. Expression of a guanosine diphosphate (GDP)-bound Rab4a S22N mutant caused increased VEGFR2 accumulation in endosomes. TfR and VEGFR2 exhibited differences in endosome-to-plasma membrane recycling in the presence of chloroquine. Depletion of Rab4a, but not Rab11a, levels stimulated VEGF-A-dependent intracellular signalling. However, depletion of either Rab4a or Rab11a levels inhibited VEGF-A-stimulated endothelial cell migration. Interestingly, depletion of Rab4a levels stimulated VEGF-A-regulated endothelial cell proliferation. Rab4a and Rab11a were also both required for endothelial tubulogenesis. Evaluation of a transgenic zebrafish model showed that both Rab4 and Rab11a are functionally required for blood vessel formation and animal viability. Rab-dependent endosome-to-plasma membrane recycling of VEGFR2 is important for intracellular signalling, cell migration and proliferation during angiogenesis. PMID:24785348

  4. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    PubMed Central

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-01-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. PMID:27251117

  5. Stargazin-related protein γ7 is associated with signalling endosomes in superior cervical ganglion neurons and modulates neurite outgrowth

    PubMed Central

    Waithe, Dominic; Ferron, Laurent; Dolphin, Annette C.

    2011-01-01

    The role(s) of the newly discovered stargazin-like γ-subunit proteins remains unclear; although they are now widely accepted to be transmembrane AMPA receptor regulatory proteins (TARPs), rather than Ca2+ channel subunits, it is possible that they have more general roles in trafficking within neurons. We previously found that γ7 subunit is associated with vesicles when it is expressed in neurons and other cells. Here, we show that γ7 is present mainly in retrogradely transported organelles in sympathetic neurons, where it colocalises with TrkA–YFP, and with the early endosome marker EEA1, suggesting that γ7 localises to signalling endosomes. It was not found to colocalise with markers of the endoplasmic reticulum, mitochondria, lysosomes or late endosomes. Furthermore, knockdown of endogenous γ7 by short hairpin RNA transfection into sympathetic neurons reduced neurite outgrowth. The same was true in the PC12 neuronal cell line, where neurite outgrowth was restored by overexpression of human γ7. These findings open the possibility that γ7 has an essential trafficking role in relation to neurite outgrowth as a component of endosomes involved in neurite extension and growth cone remodelling. PMID:21610096

  6. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis.

    PubMed

    Marsh, M; Schmid, S; Kern, H; Harms, E; Male, P; Mellman, I; Helenius, A

    1987-04-01

    Endosomes are prelysosomal organelles that serve as an intracellular site for the sorting, distribution, and processing of receptors, ligands, fluid phase components, and membrane proteins internalized by endocytosis. Whereas the overall functions of endosomes are increasingly understood, little is known about endosome structure, composition, or biogenesis. In this paper, we describe a rapid procedure that permits analytical and preparative isolation of endosomes from a variety of tissue culture cells. The procedure relies on a combination of density gradient centrifugation and free flow electrophoresis. It yields a fraction of highly purified, functionally intact organelles. As markers for endosomes in Chinese hamster ovary cells, we used endocytosed horseradish peroxidase, FITC-conjugated dextran, and [35S]methionine-labeled Semliki Forest virus. Total postnuclear supernatants, crude microsomal pellets, or partially purified Golgi fractions were subjected to free flow electrophoresis. Endosomes and lysosomes migrated together as a single anodally deflected peak separated from most other organelles (plasma membrane, mitochondria, endoplasmic reticulum, and Golgi). The endosomes and lysosomes were then resolved by centrifugation in Percoll density gradients. Endosomes prepared in this way were enriched up to 70-fold relative to the initial homogenate and were still capable of ATP-dependent acidification. By electron microscopy, the isolated organelles were found to consist of electron lucent vacuoles and tubules, many of which could be shown to contain an endocytic tracer (e.g., horseradish peroxidase). SDS PAGE analysis of integral and peripheral membrane proteins (separated from each other by condensation in Triton X-114) revealed a unique and restricted subset of proteins when compared with lysosomes, the unshifted free flow electrophoresis peak, and total cell protein. Altogether, the purification procedure takes 5-6 h and yields amounts of endosomes (150

  7. Trans-infection but not infection from within endosomal compartments after cell-to-cell HIV-1 transfer to CD4+ T cells.

    PubMed

    Permanyer, Marc; Ballana, Ester; Badia, Roger; Pauls, Eduardo; Clotet, Bonaventura; Esté, José A

    2012-09-14

    Cellular contacts between HIV-1-infected donor cells and uninfected primary CD4(+) T lymphocytes lead to virus transfer into endosomes. Recent evidence suggests that HIV particles may fuse with endosomal membranes to initiate a productive infection. To explore the role of endocytosis in the entry and replication of HIV, we evaluated the infectivity of transferred HIV particles in a cell-to-cell culture model of virus transmission. Endocytosed virus led to productive infection of cells, except when cells were cultured in the presence of the anti-gp120 mAb IgGb12, an agent that blocks virus attachment to CD4, suggesting that endocytosed virus was recycled to the outer cell surface. Confocal microscopy confirmed the colocalization of internalized virus antigen and the endosomal marker dynamin. Additionally, virus transfer, fusion, or productive infection was not blocked by dynasore, dynamin-dependent endosome-scission inhibitor, at subtoxic concentrations, suggesting that the early capture of virus into intracellular compartments did not depend on endosomal maturation. Our results suggest that endocytosis is not a mechanism of infection of primary CD4 T cells, but may serve as a reservoir capable of inducing trans-infection of cells after the release of HIV particles to the extracellular environment.

  8. Regulation of EGFR signal transduction by analogue-to-digital conversion in endosomes

    PubMed Central

    Villaseñor, Roberto; Nonaka, Hidenori; Del Conte-Zerial, Perla; Kalaidzidis, Yannis; Zerial, Marino

    2015-01-01

    An outstanding question is how receptor tyrosine kinases (RTKs) determine different cell-fate decisions despite sharing the same signalling cascades. Here, we uncovered an unexpected mechanism of RTK trafficking in this process. By quantitative high-resolution FRET microscopy, we found that phosphorylated epidermal growth factor receptor (p-EGFR) is not randomly distributed but packaged at constant mean amounts in endosomes. Cells respond to higher EGF concentrations by increasing the number of endosomes but keeping the mean p-EGFR content per endosome almost constant. By mathematical modelling, we found that this mechanism confers both robustness and regulation to signalling output. Different growth factors caused specific changes in endosome number and size in various cell systems and changing the distribution of p-EGFR between endosomes was sufficient to reprogram cell-fate decision upon EGF stimulation. We propose that the packaging of p-RTKs in endosomes is a general mechanism to ensure the fidelity and specificity of the signalling response. DOI: http://dx.doi.org/10.7554/eLife.06156.001 PMID:25650738

  9. Receptor-mediated endocytosis of asialoglycoproteins by rat liver hepatocytes: biochemical characterization of the endosomal compartments

    PubMed Central

    1985-01-01

    The endocytic compartments of the asialoglycoprotein (ASGP) pathway in rat hepatocytes were studied using a combined morphological and biochemical approach in the isolated perfused liver. Use of electron microscopic tracers and a temperature-shift protocol to synchronize ligand entry confirmed the route of ASGP internalization observed in our previous in vivo studies (1) and established conditions under which we could label the contents of successive compartments in the pathway for subcellular fractionation studies. Three endosomal compartments were demonstrated in which ASGPs appear after they enter the cell via coated pits and vesicles but before they reach their site of degradation in lysosomes. These three compartments could be distinguished by their location within the hepatocyte, by their morphological appearance in situ, and by their density in sucrose gradients. The distributions of ASGP receptors, both accessible and latent (revealed by detergent permeabilization), were also examined and compared with that of ligand during subcellular fractionation. Most accessible ASGP receptors co-distributed with conventional plasma membrane markers. However, hepatocytes contain a substantial intracellular pool of latent ASGP binding sites that exceeds the number of cell surface receptors and whose presence is not dependent on ASGP exposure. The distribution of these latent ASGP receptors on sucrose gradients (detected either immunologically or by binding assays) was coincident with that of ligand sequestered within the early endosome compartments. In addition, both early endosomes and the membrane vesicles containing latent ASGP receptors had high cholesterol content, because both shifted markedly in density upon exposure to digitonin. PMID:2866191

  10. Characterizing motility dynamics in human RPE cells

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Miller, Donald T.

    2017-02-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, however, are often compromised in ageing and ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, but while in vivo biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. Recently we addressed this problem by using organelle motility as a novel contrast agent to enhance the RPE cell in conjunction with 3D resolution of adaptive optics-optical coherence tomography (AO-OCT) to section the RPE layer. In this study, we expand on the central novelty of our method - organelle motility - by characterizing the dynamics of the motility in individual RPE cells, important because of its direct link to RPE physiology. To do this, AO-OCT videos of the same retinal patch were acquired at approximately 1 min intervals or less, time stamped, and registered in 3D with sub-cellular accuracy. Motility was quantified by an exponential decay time constant, the time for motility to decorrelate the speckle field across an RPE cell. In two normal subjects, we found the decay time constant to be just 3 seconds, thus indicating rapid motility in normal RPE cells.

  11. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis

    PubMed Central

    Delevoye, Cédric; Hurbain, Ilse; Tenza, Danièle; Sibarita, Jean-Baptiste; Uzan-Gafsou, Stéphanie; Ohno, Hiroshi; Geerts, Willie J.C.; Verkleij, Arie J.; Salamero, Jean; Marks, Michael S.

    2009-01-01

    Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type–specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1– and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type–specific positioning of endosomes that facilitate endosome–LRO contacts and are required for organelle maturation. PMID:19841138

  12. On the entry of an emerging arbovirus into host cells: Mayaro virus takes the highway to the cytoplasm through fusion with early endosomes and caveolae-derived vesicles

    PubMed Central

    Carvalho, Carlos A.M.; Silva, Jerson L.; Oliveira, Andréa C.

    2017-01-01

    Mayaro virus (MAYV) is an emergent sylvatic alphavirus in South America, related to sporadic outbreaks of a chikungunya-like human febrile illness accompanied by severe arthralgia. Despite its high potential for urban emergence, MAYV is still an obscure virus with scarce information about its infection cycle, including the corresponding early events. Even for prototypical alphaviruses, the cell entry mechanism still has some rough edges to trim: although clathrin-mediated endocytosis is quoted as the putative route, alternative paths as distinct as direct virus genome injection through the cell plasma membrane seems to be possible. Our aim was to clarify crucial details on the entry route exploited by MAYV to gain access into the host cell. Tracking the virus since its first contact with the surface of Vero cells by fluorescence microscopy, we show that its entry occurs by a fast endocytic process and relies on fusion with acidic endosomal compartments. Moreover, blocking clathrin-mediated endocytosis or depleting cholesterol from the cell membrane leads to a strong inhibition of viral infection, as assessed by plaque assays. Following this clue, we found that early endosomes and caveolae-derived vesicles are both implicated as target membranes for MAYV fusion. Our findings unravel the very first events that culminate in a productive infection by MAYV and shed light on potential targets for a rational antiviral therapy, besides providing a better comprehension of the entry routes exploited by alphaviruses to get into the cell. PMID:28462045

  13. Global Analysis of Yeast Endosomal Transport Identifies the Vps55/68 Sorting Complex

    PubMed Central

    Schluter, Cayetana; Lam, Karen K.Y.; Brumm, Jochen; Wu, Bella W.; Saunders, Matthew; Stevens, Tom H.

    2008-01-01

    Endosomal transport is critical for cellular processes ranging from receptor down-regulation and retroviral budding to the immune response. A full understanding of endosome sorting requires a comprehensive picture of the multiprotein complexes that orchestrate vesicle formation and fusion. Here, we use unsupervised, large-scale phenotypic analysis and a novel computational approach for the global identification of endosomal transport factors. This technique effectively identifies components of known and novel protein assemblies. We report the characterization of a previously undescribed endosome sorting complex that contains two well-conserved proteins with four predicted membrane-spanning domains. Vps55p and Vps68p form a complex that acts with or downstream of ESCRT function to regulate endosomal trafficking. Loss of Vps68p disrupts recycling to the TGN as well as onward trafficking to the vacuole without preventing the formation of lumenal vesicles within the MVB. Our results suggest the Vps55/68 complex mediates a novel, conserved step in the endosomal maturation process. PMID:18216282

  14. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    PubMed

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  15. Venezuelan equine encephalitis virus entry mechanism requires late endosome formation and resists cell membrane cholesterol depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolokoltsov, Andrey A.; Fleming, Elisa H.; Davey, Robert A.

    2006-04-10

    Virus envelope proteins determine receptor utilization and host range. The choice of receptor not only permits specific targeting of cells that express it, but also directs the virus into specific endosomal trafficking pathways. Disrupting trafficking can result in loss of virus infectivity due to redirection of virions to non-productive pathways. Identification of the pathway or pathways used by a virus is, thus, important in understanding virus pathogenesis mechanisms and for developing new treatment strategies. Most of our understanding of alphavirus entry has focused on the Old World alphaviruses, such as Sindbis and Semliki Forest virus. In comparison, very little ismore » known about the entry route taken by more pathogenic New World alphaviruses. Here, we use a novel contents mixing assay to identify the cellular requirements for entry of a New World alphavirus, Venezuelan equine encephalitis virus (VEEV). Expression of dominant negative forms of key endosomal trafficking genes shows that VEEV must access clathrin-dependent endocytic vesicles for membrane fusion to occur. Unexpectedly, the exit point is different from Old World alphaviruses that leave from early endosomes. Instead, VEEV also requires functional late endosomes. Furthermore, unlike the Old World viruses, VEEV entry is insensitive to cholesterol sequestration from cell membranes and may reflect a need to access an endocytic compartment that lacks cholesterol. This indicates fundamental differences in the entry route taken by VEEV compared to Old World alphaviruses.« less

  16. Endosomal-sorting complexes required for transport (ESCRT) pathway-dependent endosomal traffic regulates the localization of active Src at focal adhesions.

    PubMed

    Tu, Chun; Ortega-Cava, Cesar F; Winograd, Paul; Stanton, Marissa Jo; Reddi, Alagarsamy Lakku; Dodge, Ingrid; Arya, Ranjana; Dimri, Manjari; Clubb, Robert J; Naramura, Mayumi; Wagner, Kay-Uwe; Band, Vimla; Band, Hamid

    2010-09-14

    Active Src localization at focal adhesions (FAs) is essential for cell migration. How this pool is linked mechanistically to the large pool of Src at late endosomes (LEs)/lysosomes (LY) is not well understood. Here, we used inducible Tsg101 gene deletion, TSG101 knockdown, and dominant-negative VPS4 expression to demonstrate that the localization of activated cellular Src and viral Src at FAs requires the endosomal-sorting complexes required for transport (ESCRT) pathway. Tsg101 deletion also led to impaired Src-dependent activation of STAT3 and focal adhesion kinase and reduced cell migration. Impairment of the ESCRT pathway or Rab7 function led to the accumulation of active Src at aberrant LE/LY compartments followed by its loss. Analyses using fluorescence recovery after photo-bleaching show that dynamic mobility of Src in endosomes is ESCRT pathway-dependent. These results reveal a critical role for an ESCRT pathway-dependent LE/LY trafficking step in Src function by promoting localization of active Src to FAs.

  17. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism.

    PubMed

    Hamdi, Amel; Roshan, Tariq M; Kahawita, Tanya M; Mason, Anne B; Sheftel, Alex D; Ponka, Prem

    2016-12-01

    In erythroid cells, more than 90% of transferrin-derived iron enters mitochondria where ferrochelatase inserts Fe 2+ into protoporphyrin IX. However, the path of iron from endosomes to mitochondrial ferrochelatase remains elusive. The prevailing opinion is that, after its export from endosomes, the redox-active metal spreads into the cytosol and mysteriously finds its way into mitochondria through passive diffusion. In contrast, this study supports the hypothesis that the highly efficient transport of iron toward ferrochelatase in erythroid cells requires a direct interaction between transferrin-endosomes and mitochondria (the "kiss-and-run" hypothesis). Using a novel method (flow sub-cytometry), we analyze lysates of reticulocytes after labeling these organelles with different fluorophores. We have identified a double-labeled population definitively representing endosomes interacting with mitochondria, as demonstrated by confocal microscopy. Moreover, we conclude that this endosome-mitochondrion association is reversible, since a "chase" with unlabeled holotransferrin causes a time-dependent decrease in the size of the double-labeled population. Importantly, the dissociation of endosomes from mitochondria does not occur in the absence of holotransferrin. Additionally, mutated recombinant holotransferrin, that cannot release iron, significantly decreases the uptake of 59 Fe by reticulocytes and diminishes 59 Fe incorporation into heme. This suggests that endosomes, which are unable to provide iron to mitochondria, cause a "traffic jam" leading to decreased endocytosis of holotransferrin. Altogether, our results suggest that a molecular mechanism exists to coordinate the iron status of endosomal transferrin with its trafficking. Besides its contribution to the field of iron metabolism, this study provides evidence for a new intracellular trafficking pathway of organelles. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Rab11a differentially modulates epidermal growth factor-induced proliferation and motility in immortal breast cells.

    PubMed

    Palmieri, Diane; Bouadis, Amina; Ronchetti, Ruban; Merino, Maria J; Steeg, Patricia S

    2006-11-01

    The development of cancer prevention strategies depends on the elucidation of molecular pathways underlying oncogenesis. In a previous proteomic study of matched normal breast ducts and Ductal Carcinoma in Situ (DCIS), we identified overexpression of Rab11a in DCIS. Rab11a is not well studied in cancer, but is known to regulate the recycling of internalized cell surface proteins and receptors from the early endosome through the trans-Golgi network. Using immunohistochemistry, we confirmed our observation, noting increased Rab11a expression in 19 of 22 (86%) DCIS cases compared to matched normal breast epithelium. To study the function of Rab11a, immortal, nontumorigenic MCF10A breast cells were stimulated with ligands to the EGF receptor (EGFR) after transfection with empty vector (control), Rab11a, or a S25N dominant-negative (DN) Rab11a. Using an iodinated ligand:receptor recycling assay, transfection of Rab11a accelerated, while DN-Rab11a postponed EGFR recycling in vitro. The signaling and in vitro phenotypic consequences of Rab11a expression and function were studied. Transfection of DN-Rab11a increased Erk1/2 activation downstream of EGF, but exerted no effect on the Akt pathway. Expression of DN-Rab11a inhibited MCF10A proliferation by 50-60%, and also inhibited anchorage-dependent colonization. Notably, DN-Rab11a transfection increased motility toward EGFR ligands. The data provide a first demonstration that Rab11a modulates EGFR recycling, and promotes the proliferation but inhibits the motility of an immortal breast line, consistent with the DCIS phenotype.

  19. Selective endosomal microautophagy is starvation-inducible in Drosophila.

    PubMed

    Mukherjee, Anindita; Patel, Bindi; Koga, Hiroshi; Cuervo, Ana Maria; Jenny, Andreas

    2016-11-01

    Autophagy delivers cytosolic components to lysosomes for degradation and is thus essential for cellular homeostasis and to cope with different stressors. As such, autophagy counteracts various human diseases and its reduction leads to aging-like phenotypes. Macroautophagy (MA) can selectively degrade organelles or aggregated proteins, whereas selective degradation of single proteins has only been described for chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI). These 2 autophagic pathways are specific for proteins containing KFERQ-related targeting motifs. Using a KFERQ-tagged fluorescent biosensor, we have identified an eMI-like pathway in Drosophila melanogaster. We show that this biosensor localizes to late endosomes and lysosomes upon prolonged starvation in a KFERQ- and Hsc70-4- dependent manner. Furthermore, fly eMI requires endosomal multivesicular body formation mediated by ESCRT complex components. Importantly, induction of Drosophila eMI requires longer starvation than the induction of MA and is independent of the critical MA genes atg5, atg7, and atg12. Furthermore, inhibition of Tor signaling induces eMI in flies under nutrient rich conditions, and, as eMI in Drosophila also requires atg1 and atg13, our data suggest that these genes may have a novel, additional role in regulating eMI in flies. Overall, our data provide the first evidence for a novel, starvation-inducible, catabolic process resembling endosomal microautophagy in the Drosophila fat body.

  20. IL-1β impairs retrograde flow of BDNF signaling by attenuating endosome trafficking.

    PubMed

    Carlos, Anthony J; Tong, Liqi; Prieto, G Aleph; Cotman, Carl W

    2017-02-02

    Pro-inflammatory cytokines accumulate in the brain with age and Alzheimer's disease and can impair neuron health and cognitive function. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin that supports neuron health, function, and synaptic plasticity. The pro-inflammatory cytokine interleukin-1β (IL-1β) impairs BDNF signaling but whether it affects BDNF signaling endosome trafficking has not been studied. This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1β on BDNF signaling endosome trafficking. Neurons were cultured in microfluidic chambers that separate the environments of the cell body and its axon terminal, enabling us to specifically treat in axon compartments and trace vesicle trafficking in real-time. We found that IL-1β attenuates BDNF signaling endosomes throughout networks in cultures. In IL-1β-treated cells, overall BDNF endosomal density was decreased, and the colocalization of BDNF endosomes with presynaptic terminals was found to be more than two times higher than in control cultures. Selective IL-1β treatment to the presynaptic compartment in microfluidic chamber attenuated BDNF endosome flux, as measured by reduced BDNF-GFP endosome counts in the somal compartment. Further, IL-1β decreased the BDNF-induced phosphorylation of Erk5, a known BDNF retrograde trafficking target. Mechanistically, the deficiency in trafficking was not due to impaired endocytosis of the BDNF-TrkB complex, or impaired transport rate, since BDNF endosomes traveled at the same rate in both control and IL-1β treatment groups. Among the regulators of presynaptic endosome sorting is the post-translational modification, ubiquitination. In support of this possibility, the IL-1β-mediated suppression of BDNF-induced Erk5 phosphorylation can be rescued by exogenous ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that regulates ubiquitin and endosomal trafficking. We observed a state of

  1. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster.

    PubMed

    Sriram, V; Krishnan, K S; Mayor, Satyajit

    2003-05-12

    Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defective endosomal degradation in mutant alleles of dor results from a failure of Golgi-derived vesicles to fuse with morphologically arrested Rab7-positive large sized endosomes, which are, however, normally acidified and mature with wild-type kinetics. This locates the site of Dor function to fusion of Golgi-derived vesicles with the large Rab7-positive endocytic compartments. In contrast, endosomal degradation is not considerably affected in car1 mutant; fusion of Golgi-derived vesicles and maturation of large sized endosomes is normal. However, removal of Dor from small sized Car-positive endosomes is slowed, and subsequent fusion with tubular lysosomes is abolished. Overexpression of Dor in car1 mutant aggravates this defect, implicating Car in the removal of Dor from endosomes. This suggests that, in addition to an independent role in fusion with tubular lysosomes, the Sec1p homologue, Car, regulates Dor function.

  2. Ionic imbalance, in addition to molecular crowding, abates cytoskeletal dynamics and vesicle motility during hypertonic stress

    PubMed Central

    Nunes, Paula; Roth, Isabelle; Meda, Paolo; Féraille, Eric; Brown, Dennis; Hasler, Udo

    2015-01-01

    Cell volume homeostasis is vital for the maintenance of optimal protein density and cellular function. Numerous mammalian cell types are routinely exposed to acute hypertonic challenge and shrink. Molecular crowding modifies biochemical reaction rates and decreases macromolecule diffusion. Cell volume is restored rapidly by ion influx but at the expense of elevated intracellular sodium and chloride levels that persist long after challenge. Although recent studies have highlighted the role of molecular crowding on the effects of hypertonicity, the effects of ionic imbalance on cellular trafficking dynamics in living cells are largely unexplored. By tracking distinct fluorescently labeled endosome/vesicle populations by live-cell imaging, we show that vesicle motility is reduced dramatically in a variety of cell types at the onset of hypertonic challenge. Live-cell imaging of actin and tubulin revealed similar arrested microfilament motility upon challenge. Vesicle motility recovered long after cell volume, a process that required functional regulatory volume increase and was accelerated by a return of extracellular osmolality to isosmotic levels. This delay suggests that, although volume-induced molecular crowding contributes to trafficking defects, it alone cannot explain the observed effects. Using fluorescent indicators and FRET-based probes, we found that intracellular ATP abundance and mitochondrial potential were reduced by hypertonicity and recovered after longer periods of time. Similar to the effects of osmotic challenge, isovolumetric elevation of intracellular chloride concentration by ionophores transiently decreased ATP production by mitochondria and abated microfilament and vesicle motility. These data illustrate how perturbed ionic balance, in addition to molecular crowding, affects membrane trafficking. PMID:26045497

  3. Structural and Biological Interaction of hsc-70 Protein with Phosphatidylserine in Endosomal Microautophagy*

    PubMed Central

    Morozova, Kateryna; Clement, Cristina C.; Kaushik, Susmita; Stiller, Barbara; Arias, Esperanza; Ahmad, Atta; Rauch, Jennifer N.; Chatterjee, Victor; Melis, Chiara; Scharf, Brian; Gestwicki, Jason E.; Cuervo, Ana-Maria; Zuiderweg, Erik R. P.; Santambrogio, Laura

    2016-01-01

    hsc-70 (HSPA8) is a cytosolic molecular chaperone, which plays a central role in cellular proteostasis, including quality control during protein refolding and regulation of protein degradation. hsc-70 is pivotal to the process of macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy. The latter requires hsc-70 interaction with negatively charged phosphatidylserine (PS) at the endosomal limiting membrane. Herein, by combining plasmon resonance, NMR spectroscopy, and amino acid mutagenesis, we mapped the C terminus of the hsc-70 LID domain as the structural interface interacting with endosomal PS, and we estimated an hsc-70/PS equilibrium dissociation constant of 4.7 ± 0.1 μm. This interaction is specific and involves a total of 4–5 lysine residues. Plasmon resonance and NMR results were further experimentally validated by hsc-70 endosomal binding experiments and endosomal microautophagy assays. The discovery of this previously unknown contact surface for hsc-70 in this work elucidates the mechanism of hsc-70 PS/membrane interaction for cytosolic cargo internalization into endosomes. PMID:27405763

  4. Structural and Biological Interaction of hsc-70 Protein with Phosphatidylserine in Endosomal Microautophagy.

    PubMed

    Morozova, Kateryna; Clement, Cristina C; Kaushik, Susmita; Stiller, Barbara; Arias, Esperanza; Ahmad, Atta; Rauch, Jennifer N; Chatterjee, Victor; Melis, Chiara; Scharf, Brian; Gestwicki, Jason E; Cuervo, Ana-Maria; Zuiderweg, Erik R P; Santambrogio, Laura

    2016-08-26

    hsc-70 (HSPA8) is a cytosolic molecular chaperone, which plays a central role in cellular proteostasis, including quality control during protein refolding and regulation of protein degradation. hsc-70 is pivotal to the process of macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy. The latter requires hsc-70 interaction with negatively charged phosphatidylserine (PS) at the endosomal limiting membrane. Herein, by combining plasmon resonance, NMR spectroscopy, and amino acid mutagenesis, we mapped the C terminus of the hsc-70 LID domain as the structural interface interacting with endosomal PS, and we estimated an hsc-70/PS equilibrium dissociation constant of 4.7 ± 0.1 μm. This interaction is specific and involves a total of 4-5 lysine residues. Plasmon resonance and NMR results were further experimentally validated by hsc-70 endosomal binding experiments and endosomal microautophagy assays. The discovery of this previously unknown contact surface for hsc-70 in this work elucidates the mechanism of hsc-70 PS/membrane interaction for cytosolic cargo internalization into endosomes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A phorbol ester-binding protein is required downstream of Rab5 in endosome fusion.

    PubMed

    Aballay, A; Barbieri, M A; Colombo, M I; Arenas, G N; Stahl, P D; Mayorga, L S

    1998-12-28

    Previous observations indicate that a zinc and phorbol ester binding factor is necessary for endosome fusion. To further characterize the role of this factor in the process, we used an in vitro endosome fusion assay supplemented with recombinant Rab5 proteins. Both zinc depletion and addition of calphostin C, an inhibitor of protein kinase C, inhibited endosome fusion in the presence of active Rab5. Addition of the phorbol ester PMA (phorbol 12-myristate 13-acetate) reversed the inhibition of endosome fusion caused by a Rab5 negative mutant. Moreover, PMA stimulated fusion in the presence of Rab5 immunodepleted cytosol. These results suggest that the phorbol ester binding protein is acting downstream of Rab5 in endosome fusion.

  6. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatsumi, Akinori; Shoji, Jun-ya; Kikuma, Takashi

    2007-10-19

    Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in themore » wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function.« less

  7. Endosomal system genetics and autism spectrum disorders: A literature review.

    PubMed

    Patak, Jameson; Zhang-James, Yanli; Faraone, Stephen V

    2016-06-01

    Autism spectrum disorders (ASDs) are a group of debilitating neurodevelopmental disorders thought to have genetic etiology, due to their high heritability. The endosomal system has become increasingly implicated in ASD pathophysiology. In an attempt to summarize the association between endosomal system genes and ASDs we performed a systematic review of the literature. We searched PubMed for relevant articles. Simons Foundation Autism Research Initiative (SFARI) gene database was used to exclude articles regarding genes with less than minimal evidence for association with ASDs. Our search retained 55 articles reviewed in two categories: genes that regulate and genes that are regulated by the endosomal system. Our review shows that the endosomal system is a novel pathway implicated in ASDs as well as other neuropsychiatric disorders. It plays a central role in aspects of cellular physiology on which neurons and glial cells are particularly reliant, due to their unique metabolic and functional demands. The system shows potential for biomarkers and pharmacological intervention and thus more research into this pathway is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Structural Basis for Endosomal Targeting by the Bro1 Domain

    PubMed Central

    Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M.; Odorizzi, Greg; Hurley, James H.

    2010-01-01

    Summary Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs. PMID:15935782

  9. Exosome secretion affects social motility in Trypanosoma brucei

    PubMed Central

    Shaked, Hadassa; Arvatz, Gil; Tkacz, Itai Dov; Binder, Lior; Waldman Ben-Asher, Hiba; Okalang, Uthman; Chikne, Vaibhav; Cohen-Chalamish, Smadar; Michaeli, Shulamit

    2017-01-01

    Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites. PMID:28257521

  10. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    PubMed

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    PubMed Central

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  12. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.

    PubMed

    Nixon, Ralph A

    2017-07-01

    Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. © FASEB.

  13. BLOC-1 Interacts with BLOC-2 and the AP-3 Complex to Facilitate Protein Trafficking on Endosomes

    PubMed Central

    Di Pietro, Santiago M.; Falcón-Pérez, Juan M.; Tenza, Danièle; Setty, Subba R.G.; Marks, Michael S.; Raposo, Graça

    2006-01-01

    The adaptor protein (AP)-3 complex is a component of the cellular machinery that controls protein sorting from endosomes to lysosomes and specialized related organelles such as melanosomes. Mutations in an AP-3 subunit underlie a form of Hermansky-Pudlak syndrome (HPS), a disorder characterized by abnormalities in lysosome-related organelles. HPS in humans can also be caused by mutations in genes encoding subunits of three complexes of unclear function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2, and -3. Here, we report that BLOC-1 interacts physically and functionally with AP-3 to facilitate the trafficking of a known AP-3 cargo, CD63, and of tyrosinase-related protein 1 (Tyrp1), a melanosomal membrane protein previously thought to traffic only independently of AP-3. BLOC-1 also interacts with BLOC-2 to facilitate Tyrp1 trafficking by a mechanism apparently independent of AP-3 function. Both BLOC-1 and -2 localize mainly to early endosome-associated tubules as determined by immunoelectron microscopy. These findings support the idea that BLOC-1 and -2 represent hitherto unknown components of the endosomal protein trafficking machinery. PMID:16837549

  14. Spatial Relationships between Markers for Secretory and Endosomal Machinery in Human Cytomegalovirus-Infected Cells versus Those in Uninfected Cells▿†

    PubMed Central

    Das, Subhendu; Pellett, Philip E.

    2011-01-01

    Human cytomegalovirus (HCMV) induces extensive remodeling of the secretory apparatus to form the cytoplasmic virion assembly compartment (cVAC), where virion tegumentation and envelopment take place. We studied the structure of the cVAC by confocal microscopy to assess the three-dimensional distribution of proteins specifically associated with individual secretory organelles. In infected cells, early endosome antigen 1 (EEA1)-positive vesicles are concentrated at the center of the cVAC and, as previously seen, are distinct from structures visualized by markers for the endoplasmic reticulum, Golgi apparatus, and trans-Golgi network (TGN). EEA1-positive vesicles can be strongly associated with markers for recycling endosomes, to a lesser extent with markers associated with components of the endosomal sorting complex required for transport III (ESCRT III) machinery, and then with markers of late endosomes. In comparisons of uninfected and infected cells, we found significant changes in the structural associations and colocalization of organelle markers, as well as in net organelle volumes. These results provide new evidence that the HCMV-induced remodeling of the membrane transport apparatus involves much more than simple relocation and expansion of preexisting structures and are consistent with the hypothesis that the shift in identity of secretory organelles in HCMV-infected cells results in new functional profiles. PMID:21471245

  15. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda.

    PubMed

    Yoon, June-Sun; Gurusamy, Dhandapani; Palli, Subba Reddy

    2017-11-01

    RNA interference (RNAi) efficiency varies among insects studied. The barriers for successful RNAi include the presence of double-stranded ribonucleases (dsRNase) in the lumen and hemolymph that could potentially digest double-stranded RNA (dsRNA) and the variability in the transport of dsRNA into and within the cells. We recently showed that the dsRNAs are transported into lepidopteran cells, but they are not processed into small interference RNAs (siRNAs) because they are trapped in acidic bodies. In the current study, we focused on the identification of acidic bodies in which dsRNAs accumulate in Sf9 cells. Time-lapse imaging studies showed that dsRNAs enter Sf9 cells and accumulate in acidic bodies within 20 min after their addition to the medium. CypHer-5E-labeled dsRNA also accumulated in the midgut and fat body dissected from Spodoptera frugiperda larvae with similar patterns observed in Sf9 cells. Pharmacological inhibitor assays showed that the dsRNAs use clathrin mediated endocytosis pathway for transport into the cells. We investigated the potential dsRNA accumulation sites employing LysoTracker and double labeling experiments using the constructs to express a fusion of green fluorescence protein with early or late endosomal marker proteins and CypHer-5E-labeled dsRNA. Interestingly, CypHer-5E-labeled dsRNA accumulated predominantly in early and late endosomes. These data suggest that entrapment of internalized dsRNA in endosomes is one of the major factors contributing to inefficient RNAi response in lepidopteran insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Early postoperative enteral nutrition is useful for recovering gastrointestinal motility and maintaining the nutritional status.

    PubMed

    Kawasaki, Naruo; Suzuki, Yutaka; Nakayoshi, Tomoko; Hanyu, Nobuyoshi; Nakao, Masatoshi; Takeda, Akihiro; Furukawa, Yoshiyuki; Kashiwagi, Hideyuki

    2009-01-01

    The efficacy of enteral nutrition in postoperative nutritional management is known, but the effects on gastrointestinal motility and nutrition have not yet been elucidated. The purpose of this study was to compare the effects of enteral and parenteral nutrition soon after open abdominal surgery on gastrointestinal motility and nutritional status. A partial resection of rectum models was prepared to compare two types of nutrient administration: enteral nutrition and total parenteral nutrition. The differences between the effects of nutrition types in terms of gastrointestinal motility and nutritional status were investigated. Enteral nutrition contributed to recovery of gastrointestinal motility and maintenance of nutritional status. Enteral nutrition should therefore be initiated soon after surgery if the gastrointestinal tract is available.

  17. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin–actin interactions

    PubMed Central

    Hong, Nan Hyung; Qi, Aidong

    2015-01-01

    Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7+ endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor–induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover. PMID:26323691

  18. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons

    PubMed Central

    Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan

    2012-01-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X3 receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X3 receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X3 receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X3 receptors. The α, β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X3 receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X3 receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels. PMID:22157653

  19. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons.

    PubMed

    Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan

    2012-04-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.

  20. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery

    PubMed Central

    Dennis, Megan K.; Mantegazza, Adriana R.; Snir, Olivia L.; Tenza, Danièle; Acosta-Ruiz, Amanda; Delevoye, Cédric; Zorger, Richard; Sitaram, Anand; de Jesus-Rojas, Wilfredo; Ravichandran, Keerthana; Rux, John; Sviderskaya, Elena V.; Bennett, Dorothy C.; Raposo, Graça; Setty, Subba Rao Gangi

    2015-01-01

    Hermansky–Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2–deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2–deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation. PMID:26008744

  1. Genome-Wide Screen Reveals Valosin-Containing Protein Requirement for Coronavirus Exit from Endosomes

    PubMed Central

    Wong, Hui Hui; Kumar, Pankaj; Tay, Felicia Pei Ling; Moreau, Dimitri

    2015-01-01

    ABSTRACT Coronaviruses are RNA viruses with a large zoonotic reservoir and propensity for host switching, representing a real threat for public health, as evidenced by severe acute respiratory syndrome (SARS) and the emerging Middle East respiratory syndrome (MERS). Cellular factors required for their replication are poorly understood. Using genome-wide small interfering RNA (siRNA) screening, we identified 83 novel genes supporting infectious bronchitis virus (IBV) replication in human cells. Thirty of these hits can be placed in a network of interactions with viral proteins and are involved in RNA splicing, membrane trafficking, and ubiquitin conjugation. In addition, our screen reveals an unexpected role for valosin-containing protein (VCP/p97) in early steps of infection. Loss of VCP inhibits a previously uncharacterized degradation of the nucleocapsid N protein. This inhibition derives from virus accumulation in early endosomes, suggesting a role for VCP in the maturation of virus-loaded endosomes. The several host factors identified in this study may provide avenues for targeted therapeutics. IMPORTANCE Coronaviruses are RNA viruses representing a real threat for public health, as evidenced by SARS and the emerging MERS. However, cellular factors required for their replication are poorly understood. Using genome-wide siRNA screening, we identified novel genes supporting infectious bronchitis virus (IBV) replication in human cells. The several host factors identified in this study may provide directions for future research on targeted therapeutics. PMID:26311884

  2. About GI Motility

    MedlinePlus

    ... eNewsletter Sidebar × MOBILE MENU About Us Learn About GI Motility Digestive Tract Disorders of the Esophagus Disorders ... Floor Motility Testing Personal Stories Contact Search About GI Motility Twitter Facebook YouTube Search Search ... About Us ...

  3. A proteomic approach to identify endosomal cargoes controlling cancer invasiveness

    PubMed Central

    Diaz-Vera, Jesica; Palmer, Sarah; Hernandez-Fernaud, Juan Ramon; Dornier, Emmanuel; Mitchell, Louise E.; Macpherson, Iain; Edwards, Joanne; Zanivan, Sara

    2017-01-01

    ABSTRACT We have previously shown that Rab17, a small GTPase associated with epithelial polarity, is specifically suppressed by ERK2 (also known as MAPK1) signalling to promote an invasive phenotype. However, the mechanisms through which Rab17 loss permits invasiveness, and the endosomal cargoes that are responsible for mediating this, are unknown. Using quantitative mass spectrometry-based proteomics, we have found that knockdown of Rab17 leads to a highly selective reduction in the cellular levels of a v-SNARE (Vamp8). Moreover, proteomics and immunofluorescence indicate that Vamp8 is associated with Rab17 at late endosomes. Reduced levels of Vamp8 promote transition between ductal carcinoma in situ (DCIS) and a more invasive phenotype. We developed an unbiased proteomic approach to elucidate the complement of receptors that redistributes between endosomes and the plasma membrane, and have pin-pointed neuropilin-2 (NRP2) as a key pro-invasive cargo of Rab17- and Vamp8-regulated trafficking. Indeed, reduced Rab17 or Vamp8 levels lead to increased mobilisation of NRP2-containing late endosomes and upregulated cell surface expression of NRP2. Finally, we show that NRP2 is required for the basement membrane disruption that accompanies the transition between DCIS and a more invasive phenotype. PMID:28062852

  4. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction.

    PubMed

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M; Esguerra, Camila V; Blust, Ronny; Darras, Veerle M; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  5. Deiodinase Knockdown during Early Zebrafish Development Affects Growth, Development, Energy Metabolism, Motility and Phototransduction

    PubMed Central

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M.; Esguerra, Camila V.; Blust, Ronny; Darras, Veerle M.; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  6. Challenges in carrier-mediated intracellular delivery: moving beyond endosomal barriers.

    PubMed

    Stewart, Martin P; Lorenz, Anna; Dahlman, James; Sahay, Gaurav

    2016-05-01

    The deployment of molecular to microscale carriers for intracellular delivery has tremendous potential for biology and medicine, especially for in vivo therapies. The field remains limited, however, by a poor understanding of how carriers gain access to the cell interior. In this review, we provide an overview of the different types of carriers, their speculated modes of entry, putative pathways of vesicular transport, and sites of endosomal escape. We compare this alongside pertinent examples from the cell biology of how viruses, bacteria, and their effectors enter cells and escape endosomal confinement. We anticipate insights into the mechanisms of cellular entry and endosomal escape will benefit future research efforts on effective carrier-mediated intracellular delivery. WIREs Nanomed Nanobiotechnol 2016, 8:465-478. doi: 10.1002/wnan.1377 For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.

  7. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses.

    PubMed

    Lehigh, Kathryn M; West, Katherine M; Ginty, David D

    2017-04-04

    Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Myosin Ib modulates the morphology and the protein transport within multi-vesicular sorting endosomes.

    PubMed

    Salas-Cortes, Laura; Ye, Fei; Tenza, Danièle; Wilhelm, Claire; Theos, Alexander; Louvard, Daniel; Raposo, Graça; Coudrier, Evelyne

    2005-10-15

    Members of at least four classes of myosin (I, II, V and VI) have been implicated in the dynamics of a large variety of organelles. Despite their common motor domain structure, some of these myosins, however, are non processive and cannot move organelles along the actin tracks. Here, we demonstrate in the human pigmented MNT-1 cell line that, (1) the overexpression of one of these myosins, myosin 1b, or the addition of cytochalasin D affects the morphology of the sorting multivesicular endosomes; (2) the overexpression of myosin 1b delays the processing of Pmel17 (the product of murine silver locus also named GP100), which occurs in these multivesicular endosomes; (3) myosin 1b associated with endosomes coimmunoprecipitates with Pmel17. All together, these observations suggest that myosin 1b controls the traffic of protein cargo in multivesicular endosomes most probably through its ability to modulate with actin the morphology of these sorting endosomes.

  9. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    PubMed

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  10. Neurotrophin signaling endosomes; biogenesis, regulation, and functions

    PubMed Central

    Yamashita, Naoya; Kuruvilla, Rejji

    2016-01-01

    In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health. PMID:27327126

  11. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport.

    PubMed

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-09-01

    The importance of endosome-to-trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51-VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport. © 2015 Hirata, Fujita, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy.

    PubMed

    To, Eunice E; Vlahos, Ross; Luong, Raymond; Halls, Michelle L; Reading, Patrick C; King, Paul T; Chan, Christopher; Drummond, Grant R; Sobey, Christopher G; Broughton, Brad R S; Starkey, Malcolm R; van der Sluis, Renee; Lewin, Sharon R; Bozinovski, Steven; O'Neill, Luke A J; Quach, Tim; Porter, Christopher J H; Brooks, Doug A; O'Leary, John J; Selemidis, Stavros

    2017-07-12

    The imminent threat of viral epidemics and pandemics dictates a need for therapeutic approaches that target viral pathology irrespective of the infecting strain. Reactive oxygen species are ancient processes that protect plants, fungi and animals against invading pathogens including bacteria. However, in mammals reactive oxygen species production paradoxically promotes virus pathogenicity by mechanisms not yet defined. Here we identify that the primary enzymatic source of reactive oxygen species, NOX2 oxidase, is activated by single stranded RNA and DNA viruses in endocytic compartments resulting in endosomal hydrogen peroxide generation, which suppresses antiviral and humoral signaling networks via modification of a unique, highly conserved cysteine residue (Cys98) on Toll-like receptor-7. Accordingly, targeted inhibition of endosomal reactive oxygen species production abrogates influenza A virus pathogenicity. We conclude that endosomal reactive oxygen species promote fundamental molecular mechanisms of viral pathogenicity, and the specific targeting of this pathogenic process with endosomal-targeted reactive oxygen species inhibitors has implications for the treatment of viral disease.Production of reactive oxygen species is an ancient antimicrobial mechanism, but its role in antiviral defense in mammals is unclear. Here, To et al. show that virus infection activates endosomal NOX2 oxidase and restricts TLR7 signaling, and that an endosomal NOX2 inhibitor decreases viral pathogenicity.

  13. PIKfyve Regulation of Endosome-Linked Pathways

    PubMed Central

    de Lartigue, Jane; Polson, Hannah; Feldman, Morri; Shokat, Kevan; Tooze, Sharon A; Urbé, Sylvie; Clague, Michael J

    2009-01-01

    The phosphoinositide 5-kinase (PIKfyve) is a critical enzyme for the synthesis of PtdIns(3,5)P2, that has been implicated in various trafficking events associated with the endocytic pathway. We have now directly compared the effects of siRNA-mediated knockdown of PIKfyve in HeLa cells with a specific pharmacological inhibitor of enzyme activity. Both approaches induce changes in the distribution of CI-M6PR and trans-Golgi network (TGN)-46 proteins, which cycles between endosomes and TGN, leading to their accumulation in dispersed punctae, whilst the TGN marker golgin-245 retains a perinuclear disposition. Trafficking of CD8-CI-M6PR (retromer-dependent) and CD8-Furin (retromer-independent) chimeras from the cell surface to the TGN is delayed following drug administration, as is the transport of the Shiga toxin B-subunit. siRNA knockdown of PIKfyve produced no defect in epidermal growth factor receptor (EGFR) degradation, unless combined with knockdown of its activator molecule Vac14, suggesting that a low threshold of PtdIns(3,5)P2 is necessary and sufficient for this pathway. Accordingly pharmacological inhibition of PIKfyve results in a profound block to the lysosomal degradation of activated epidermal growth factor (EGF) and Met receptors. Immunofluorescence revealed EGF receptors to be trapped in the interior of a swollen endosomal compartment. In cells starved of amino acids, PIKfyve inhibition leads to the accumulation of the lipidated form of GFP-LC3, a marker of autophagosomal structures, which can be visualized as fluorescent punctae. We suggest that PIKfyve inhibition may render the late endosome/lysosome compartment refractory to fusion with both autophagosomes and with EGFR-containing multivesicular bodies. PMID:19582903

  14. The combined mode of action of fipronil and amitraz on the motility of Rhipicephalus sanguineus.

    PubMed

    Prullage, Joseph B; Tran, Hai V; Timmons, Phil; Harriman, Jay; Chester, S Theodore; Powell, Kerrie

    2011-07-15

    The motility of adult Rhipicephalus sanguineus was evaluated subsequent to treatments of amitraz, fipronil and the combination of fipronil plus amitraz against a vehicle control in a Petri dish assay using the LemnaTec Scanalyzer Imaging System. The assay was run using a fixed dilution of amitraz (0.32μg/cm(2)); serial dilutions of fipronil (1.3, 0.33, 0.08, 0.02, or 0.005μg/cm(2)); and the same serial dilutions of fipronil in combination with the fixed dilution of amitraz. Measurement of motility was made of unstimulated ticks and then after stimulation at 1, 4, 18-22, and 24h post exposure (hpe) of the Petri dishes. For the unstimulated ticks, there was no difference in motility between the amitraz treatment group and the fipronil plus amitraz treatment group at the early time points. However, these two treatment groups had significantly higher motility than the solvent control and fipronil treatment groups. The unstimulated ticks in the amitraz treatment group had significantly higher motility than the fipronil plus amitraz treatment group at the later time points. Measurements after stimulation demonstrated there was no difference in motility between the amitraz treatment group and the fipronil plus amitraz treatment group at the early time points. By 18 hpe, the fipronil plus amitraz treatment group had significantly lower motility than all other treatment groups and at 21-22 and 24 hpe the other treatment groups did not differ from the control group. The action could be divided in two phases in the combination experiment: phase 1: an early increase in motility due to amitraz is identified in both amitraz alone or fipronil plus amitraz groups; phase 2: the combination of fipronil plus amitraz caused a significantly greater reduction in motility, suggesting mortality of the ticks, compared to fipronil or amitraz alone. These results demonstrate a synergism resulting from the combination of fipronil plus amitraz. Copyright © 2011 Elsevier B.V. All rights

  15. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes

    PubMed Central

    Caviston, Juliane P.; Zajac, Allison L.; Tokito, Mariko; Holzbaur, Erika L.F.

    2011-01-01

    Huntingtin (Htt) is a membrane-associated scaffolding protein that interacts with microtubule motors as well as actin-associated adaptor molecules. We examined a role for Htt in the dynein-mediated intracellular trafficking of endosomes and lysosomes. In HeLa cells depleted of either Htt or dynein, early, recycling, and late endosomes (LE)/lysosomes all become dispersed. Despite altered organelle localization, kinetic assays indicate only minor defects in intracellular trafficking. Expression of full-length Htt is required to restore organelle localization in Htt-depleted cells, supporting a role for Htt as a scaffold that promotes functional interactions along its length. In dynein-depleted cells, LE/lysosomes accumulate in tight patches near the cortex, apparently enmeshed by cortactin-positive actin filaments; Latrunculin B-treatment disperses these patches. Peripheral LE/lysosomes in dynein-depleted cells no longer colocalize with microtubules. Htt may be required for this off-loading, as the loss of microtubule association is not seen in Htt-depleted cells or in cells depleted of both dynein and Htt. Inhibition of kinesin-1 relocalizes peripheral LE/lysosomes induced by Htt depletion but not by dynein depletion, consistent with their detachment from microtubules upon dynein knockdown. Together, these data support a model of Htt as a facilitator of dynein-mediated trafficking that may regulate the cytoskeletal association of dynamic organelles. PMID:21169558

  16. The role of adhesins in bacteria motility modification

    NASA Astrophysics Data System (ADS)

    Conrad, Jacinta; Gibiansky, Maxsim; Jin, Fan; Gordon, Vernita; Motto, Dominick; Shrout, Joshua; Parsek, Matthew; Wong, Gerard

    2010-03-01

    Bacterial biofilms are multicellular communities responsible for a broad range of infections. To investigate the early-stage formation of biofilms, we have developed high-throughput techniques to quantify the motility of surface-associated bacteria. We translate microscopy movies of bacteria into a searchable database of trajectories using tracking algorithms adapted from colloidal physics. By analyzing the motion of both wild-type (WT) and isogenic knockout mutants, we have previously characterized fundamental motility mechanisms in P. aeruginosa. Here, we develop biometric routines to recognize signatures of adhesion and trapping. We find that newly attached bacteria move faster than previously adherent bacteria, and are more likely to be oriented out-of-plane. Motility appendages influence the bacterium's ability to become trapped: WT bacteria exhibit two types of trapped trajectories, whereas flagella-deficient bacteria rarely become trapped. These results suggest that flagella play a key role in adhesion.

  17. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    PubMed

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  18. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking

    PubMed Central

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-01-01

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI: http://dx.doi.org/10.7554/eLife.06041.001 PMID:25985087

  19. A 115 kDa calmodulin-binding protein is located in rat liver endosome fractions.

    PubMed Central

    Enrich, C; Bachs, O; Evans, W H

    1988-01-01

    The distribution of calmodulin-binding polypeptides in various rat liver subcellular fractions was investigated. Plasma-membrane, endosome, Golgi and lysosome fractions were prepared by established procedures. The calmodulin-binding polypeptides present in the subcellular fractions were identified by using an overlay technique after transfer from gels to nitrocellulose sheets. Distinctive populations of calmodulin-binding polypeptides were present in all the fractions examined except lysosomes. A major 115 kDa calmodulin-binding polypeptide of pI 4.3 was located to the endosome subfractions, and it emerges as a candidate endosome-specific protein. Partitioning of endosome fractions between aqueous and Triton X-114 phases indicated that the calmodulin-binding polypeptide was hydrophobic. Major calmodulin-binding polypeptides of 140 and 240 kDa and minor polypeptides of 40-60 kDa were present in plasma membranes. The distribution of calmodulin in the various endosome and plasma-membrane fractions was also analysed, and the results indicated that the amounts were high compared with those in the cytosol. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3214436

  20. Modifications of the endosomal compartment in peripheral blood mononuclear cells and fibroblasts from Alzheimer's disease patients

    PubMed Central

    Corlier, F; Rivals, I; Lagarde, J; Hamelin, L; Corne, H; Dauphinot, L; Ando, K; Cossec, J-C; Fontaine, G; Dorothée, G; Malaplate-Armand, C; Olivier, J-L; Dubois, B; Bottlaender, M; Duyckaerts, C; Sarazin, M; Potier, M-C; Alnajjar-Carpentier, Dr Amer; Logak, Dr Michel; Leder, Dr Sara; Marchal, Dr Dominique; Pitti-Ferandi, Dr Hélène; Brugeilles, Dr Hélene; Roualdes, Dr Brigitte; Michon, Dr Agnes

    2015-01-01

    Identification of blood-based biomarkers of Alzheimer's disease (AD) remains a challenge. Neuropathological studies have identified enlarged endosomes in post-mortem brains as the earliest cellular change associated to AD. Here the presence of enlarged endosomes was investigated in peripheral blood mononuclear cells from 48 biologically defined AD patients (25 with mild cognitive impairment and 23 with dementia (AD-D)), and 23 age-matched healthy controls using immunocytochemistry and confocal microscopy. The volume and number of endosomes were not significantly different between AD and controls. However, the percentage of cells containing enlarged endosomes was significantly higher in the AD-D group as compared with controls. Furthermore, endosomal volumes significantly correlated to [C11]PiB cortical index measured by positron emission tomography in the AD group, independently of the APOE genotype, but not to the levels of amyloid-beta, tau and phosphorylated tau measured in the cerebrospinal fluid. Importantly, we confirmed the presence of enlarged endosomes in fibroblasts from six unrelated AD-D patients as compared with five cognitively normal controls. This study is the first, to our knowledge, to report morphological alterations of the endosomal compartment in peripheral cells from AD patients correlated to amyloid load that will now be evaluated as a possible biomarker. PMID:26151923

  1. Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes.

    PubMed

    Tornieri, Karine; Zlatic, Stephanie A; Mullin, Ariana P; Werner, Erica; Harrison, Robert; L'hernault, Steven W; Faundez, Victor

    2013-12-20

    Mutations in Vps33 isoforms cause pigment dilution in mice (Vps33a, buff) and Drosophila (car) and the neurogenic arthrogryposis, renal dysfunction and cholestasis syndrome in humans (ARC1, VPS33B). The later disease is also caused by mutations in VIPAS39, (Vps33b interacting protein, apical-basolateral polarity regulator, SPE-39 homolog; ARC2), a protein that interacts with the HOmotypic fusion and Protein Sorting (HOPS) complex, a tether necessary for endosome-lysosome traffic. These syndromes offer insight into fundamental endosome traffic processes unique to metazoans. However, the molecular and cellular mechanisms underlying these mutant phenotypes remain poorly understood. Here we investigate interactions of wild-type and disease-causing mutations in VIPAS39/SPE-39 and Vps33b by yeast two hybrid, immunoprecipitation and quantitative fluorescent microscopy. We find that although few mutations prevent interaction between VIPAS39/SPE-39 and Vps33b, some mutants fragment VIPAS39/SPE-39-positive endosomes, but all mutants alter the subcellular localization of Vps33b to VIPAS39/SPE-39-positive endosomes. Our data suggest that the ARC syndrome may result through impaired VIPAS39/SPE-39 and Vps33b-dependent endosomal maturation or fusion.

  2. Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation.

    PubMed

    Siddiqa, Abida; Massimi, Paola; Pim, David; Broniarczyk, Justyna; Banks, Lawrence

    2018-03-15

    Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans -Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans -Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex. IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans -Golgi network. Indeed, the loss of

  3. Studies on the ovarian motility of small laboratory rodents.

    PubMed

    Gimeno, M F; Gimeno, A L

    1975-01-01

    Guinea pig ovaries were isolated and immersed in Krebs-Ringer bicarbonate solution, gassed with carbogen and added with glucose as the substrate. The experiments were carried out at 37 degrees C and the preparations were subjected to a basal tension of 500 mg. The spontaneous motility (contractile tension and frequency) of guinea pig ovaries obtained in late proestrus was significantly greater than that of the estrus or early proestrus. The influence of oxytocin on ovarian motility was significantly more marked in late proestrus than in estrus or early proestrus. Both the spontaneous and induced mortility of guinea pig ovaries are augmented in the immediate prevoulatory moment. In isolated rat ovaries, the isometric contractile tension and the frequency of contractions increased as the estral cycle progressed. During late proestrus, left ovaries had a contractile activity of greater intensity and frequency than the right ones, whereas during early proestrus the magnitudes were comparable. Oxytocin elicited greater responses in left than right ovaries of the late proestrus, the effect becoming similar in estrus and early proestrus. Rat ovaries obtained immediately before ovulation are specifically sensitized to the influence of oxytocin and not to other smooth muscle stimulants.

  4. Infection of XC Cells by MLVs and Ebola Virus Is Endosome-Dependent but Acidification-Independent

    PubMed Central

    Kamiyama, Haruka; Kakoki, Katsura; Yoshii, Hiroaki; Iwao, Masatomo; Igawa, Tsukasa; Sakai, Hideki; Hayashi, Hideki; Matsuyama, Toshifumi; Yamamoto, Naoki; Kubo, Yoshinao

    2011-01-01

    Inhibitors of endosome acidification or cathepsin proteases attenuated infections mediated by envelope proteins of xenotropic murine leukemia virus-related virus (XMRV) and Ebola virus, as well as ecotropic, amphotropic, polytropic, and xenotropic murine leukemia viruses (MLVs), indicating that infections by these viruses occur through acidic endosomes and require cathepsin proteases in the susceptible cells such as TE671 cells. However, as previously shown, the endosome acidification inhibitors did not inhibit these viral infections in XC cells. It is generally accepted that the ecotropic MLV infection in XC cells occurs at the plasma membrane. Because cathepsin proteases are activated by low pH in acidic endosomes, the acidification inhibitors may inhibit the viral infections by suppressing cathepsin protease activation. The acidification inhibitors attenuated the activities of cathepsin proteases B and L in TE671 cells, but not in XC cells. Processing of cathepsin protease L was suppressed by the acidification inhibitor in NIH3T3 cells, but again not in XC cells. These results indicate that cathepsin proteases are activated without endosome acidification in XC cells. Treatment with an endocytosis inhibitor or knockdown of dynamin 2 expression by siRNAs suppressed MLV infections in all examined cells including XC cells. Furthermore, endosomal cathepsin proteases were required for these viral infections in XC cells as other susceptible cells. These results suggest that infections of XC cells by the MLVs and Ebola virus occur through endosomes and pH-independent cathepsin activation induces pH-independent infection in XC cells. PMID:22022555

  5. The endosomal recycling of FgSnc1 by FgSnx41-FgSnx4 heterodimer is essential for polarized growth and pathogenicity in Fusarium graminearum.

    PubMed

    Zheng, Wenhui; Lin, Yahong; Fang, Wenqin; Zhao, Xu; Lou, Yi; Wang, Guanghui; Zheng, Huawei; Liang, Qifu; Abubakar, Yakubu Saddeeq; Olsson, Stefan; Zhou, Jie; Wang, Zonghua

    2018-04-20

    Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  6. Learn About GI Motility

    MedlinePlus

    ... eNewsletter Sidebar × MOBILE MENU About Us Learn About GI Motility Digestive Tract Disorders of the Esophagus Disorders ... Floor Motility Testing Personal Stories Contact Search About GI Motility Twitter Facebook YouTube Search Search ... About Us ...

  7. Effects of Motility and Adsorption Rate Coefficient on Transport of Bacteria through Saturated Porous Media

    PubMed Central

    Camper, Anne K.; Hayes, Jason T.; Sturman, Paul J.; Jones, Warren L.; Cunningham, Alfred B.

    1993-01-01

    Three strains of Pseudomonas fluorescens with different motility rates and adsorption rate coefficients were injected into porous-medium reactors packed with l-mm-diameter glass spheres. Cell breakthrough, time to peak concentration, tailing, and cell recovery were measured at three interstitial pore velocities (higher than, lower than, and much lower than the maximal bacterial motility rate). All experiments were done with distilled water to reduce the effects of growth and chemotaxis. Contrary to expectations, motility did not result in either early breakthrough or early time to peak concentration at flow velocities below the motility rate. Bacterial size exclusion effects were shown to affect breakthrough curve shape at the very low flow velocity, but no such effect was seen at the higher flow velocity. The tendency of bacteria to adsorb to porous-medium surfaces, as measured by adsorption rate coefficients, profoundly influenced transport characteristics. Cell recoveries were shown to be correlated with the ratio of advective to adsorptive transport in the reactors. Adsorption rate coefficients were found to be better predictors of microbial transport phenomena than individual characteristics, such as size, motility, or porous-medium hydrodynamics. PMID:16349075

  8. Glycosylated Triterpenoids as Endosomal Escape Enhancers in Targeted Tumor Therapies

    PubMed Central

    Fuchs, Hendrik; Niesler, Nicole; Trautner, Alexandra; Sama, Simko; Jerz, Gerold; Panjideh, Hossein; Weng, Alexander

    2017-01-01

    Protein-based targeted toxins play an increasingly important role in targeted tumor therapies. In spite of their high intrinsic toxicity, their efficacy in animal models is low. A major reason for this is the limited entry of the toxin into the cytosol of the target cell, which is required to mediate the fatal effect. Target receptor bound and internalized toxins are mostly either recycled back to the cell surface or lysosomally degraded. This might explain why no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date although more than 500 targeted toxins have been developed within the last decades. To overcome the problem of insufficient endosomal escape, a number of strategies that make use of diverse chemicals, cell-penetrating or fusogenic peptides, and light-induced techniques were designed to weaken the membrane integrity of endosomes. This review focuses on glycosylated triterpenoids as endosomal escape enhancers and throws light on their structure, the mechanism of action, and on their efficacy in cell culture and animal models. Obstacles, challenges, opportunities, and future prospects are discussed. PMID:28536357

  9. dOCRL maintains immune cell quiescence by regulating endosomal traffic

    PubMed Central

    Del Signore, Steven J.; Biber, Sarah A.; Lehmann, Katherine S.; Heimler, Stephanie R.; Rosenfeld, Benjamin H.; Eskin, Tania L.

    2017-01-01

    Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome. PMID:29028801

  10. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome.

    PubMed

    Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz

    2013-07-01

    Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin-Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks

    PubMed Central

    Samson, Edward B.; Tsao, David S.; Zimak, Jan; McLaughlin, R. Tyler; Trenton, Nicholaus J.; Mace, Emily M.; Orange, Jordan S.; Schweikhard, Volker

    2017-01-01

    ABSTRACT IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A). We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks. PMID:28455356

  12. Bacterial uracil modulates Drosophila DUOX-dependent gut immunity via Hedgehog-induced signaling endosomes.

    PubMed

    Lee, Kyung-Ah; Kim, Boram; Bhin, Jinhyuk; Kim, Do Hun; You, Hyejin; Kim, Eun-Kyoung; Kim, Sung-Hee; Ryu, Ji-Hwan; Hwang, Daehee; Lee, Won-Jae

    2015-02-11

    Genetic studies in Drosophila have demonstrated that generation of microbicidal reactive oxygen species (ROS) through the NADPH dual oxidase (DUOX) is a first line of defense in the gut epithelia. Bacterial uracil acts as DUOX-activating ligand through poorly understood mechanisms. Here, we show that the Hedgehog (Hh) signaling pathway modulates uracil-induced DUOX activation. Uracil-induced Hh signaling is required for intestinal expression of the calcium-dependent cell adhesion molecule Cadherin 99C (Cad99C) and subsequent Cad99C-dependent formation of endosomes. These endosomes play essential roles in uracil-induced ROS production by acting as signaling platforms for PLCβ/PKC/Ca2+-dependent DUOX activation. Animals with impaired Hh signaling exhibit abolished Cad99C-dependent endosome formation and reduced DUOX activity, resulting in high mortality during enteric infection. Importantly, endosome formation, DUOX activation, and normal host survival are restored by genetic reintroduction of Cad99C into enterocytes, demonstrating the important role for Hh signaling in host resistance to enteric infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Motility Disorders in Children.

    PubMed

    Nurko, Samuel

    2017-06-01

    Gastrointestinal motility disorders in the pediatric population are common and can range from benign processes to more serious disorders. Performing and interpreting motility evaluations in children present unique challenges. There are primary motility disorders but abnormal motility may be secondary due to other disease processes. Diagnostic studies include radiographic scintigraphic and manometry studies. Although recent advances in the genetics, biology, and technical aspects are having an important impact and have allowed for a better understanding of the pathophysiology and therapy for gastrointestinal motility disorders in children, further research is needed to be done to have better understanding of the pathophysiology and for better therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    PubMed Central

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-01-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier. PMID:26123532

  15. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    NASA Astrophysics Data System (ADS)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  16. Enhancing Endosomal Escape of Transduced Proteins by Photochemical Internalisation

    PubMed Central

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro. PMID:23285056

  17. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    PubMed

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  18. Rotation of endosomes demonstrates coordination of molecular motors during axonal transport.

    PubMed

    Kaplan, Luke; Ierokomos, Athena; Chowdary, Praveen; Bryant, Zev; Cui, Bianxiao

    2018-03-01

    Long-distance axonal transport is critical to the maintenance and function of neurons. Robust transport is ensured by the coordinated activities of multiple molecular motors acting in a team. Conventional live-cell imaging techniques used in axonal transport studies detect this activity by visualizing the translational dynamics of a cargo. However, translational measurements are insensitive to torques induced by motor activities. By using gold nanorods and multichannel polarization microscopy, we simultaneously measure the rotational and translational dynamics for thousands of axonally transported endosomes. We find that the rotational dynamics of an endosome provide complementary information regarding molecular motor activities to the conventionally tracked translational dynamics. Rotational dynamics correlate with translational dynamics, particularly in cases of increased rotation after switches between kinesin- and dynein-mediated transport. Furthermore, unambiguous measurement of nanorod angle shows that endosome-contained nanorods align with the orientation of microtubules, suggesting a direct mechanical linkage between the ligand-receptor complex and the microtubule motors.

  19. Integration of two RAB5 groups during endosomal transport in plants

    PubMed Central

    Ebine, Kazuo; Choi, Seung-won; Ichinose, Sakura; Uemura, Tomohiro; Nakano, Akihiko

    2018-01-01

    RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. PMID:29749929

  20. Rotation of endosomes demonstrates coordination of molecular motors during axonal transport

    PubMed Central

    Kaplan, Luke; Ierokomos, Athena; Chowdary, Praveen; Bryant, Zev; Cui, Bianxiao

    2018-01-01

    Long-distance axonal transport is critical to the maintenance and function of neurons. Robust transport is ensured by the coordinated activities of multiple molecular motors acting in a team. Conventional live-cell imaging techniques used in axonal transport studies detect this activity by visualizing the translational dynamics of a cargo. However, translational measurements are insensitive to torques induced by motor activities. By using gold nanorods and multichannel polarization microscopy, we simultaneously measure the rotational and translational dynamics for thousands of axonally transported endosomes. We find that the rotational dynamics of an endosome provide complementary information regarding molecular motor activities to the conventionally tracked translational dynamics. Rotational dynamics correlate with translational dynamics, particularly in cases of increased rotation after switches between kinesin- and dynein-mediated transport. Furthermore, unambiguous measurement of nanorod angle shows that endosome-contained nanorods align with the orientation of microtubules, suggesting a direct mechanical linkage between the ligand-receptor complex and the microtubule motors. PMID:29536037

  1. Endosome-Associated CRT1 Functions Early in Resistance Gene–Mediated Defense Signaling in Arabidopsis and Tobacco[W

    PubMed Central

    Kang, Hong-Gu; Oh, Chang-Sik; Sato, Masanao; Katagiri, Fumiaki; Glazebrook, Jane; Takahashi, Hideki; Kachroo, Pradeep; Martin, Gregory B.; Klessig, Daniel F.

    2010-01-01

    Resistance gene–mediated immunity confers protection against pathogen infection in a wide range of plants. A genetic screen for Arabidopsis thaliana mutants compromised for recognition of turnip crinkle virus previously identified CRT1, a member of the GHKL ATPase/kinase superfamily. Here, we demonstrate that CRT1 interacts with various resistance proteins from different structural classes, and this interaction is disrupted when these resistance proteins are activated. The Arabidopsis mutant crt1-2 crh1-1, which lacks CRT1 and its closest homolog, displayed compromised resistance to avirulent Pseudomonas syringae and Hyaloperonospora arabidopsidis. Additionally, resistance-associated hypersensitive cell death was suppressed in Nicotiana benthamiana silenced for expression of CRT1 homolog(s). Thus, CRT1 appears to be a general factor for resistance gene–mediated immunity. Since elevation of cytosolic calcium triggered by avirulent P. syringae was compromised in crt1-2 crh1-1 plants, but cell death triggered by Nt MEK2DD was unaffected in CRT1-silenced N. benthamiana, CRT1 likely functions at an early step in this pathway. Genome-wide transcriptome analysis led to identification of CRT1-Associated genes, many of which are associated with transport processes, responses to (a)biotic stress, and the endomembrane system. Confocal microscopy and subcellular fractionation revealed that CRT1 localizes to endosome-like vesicles, suggesting a key process in resistance protein activation/signaling occurs in this subcellular compartment. PMID:20332379

  2. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum.

    PubMed

    Cianciola, Nicholas L; Chung, Stacey; Manor, Danny; Carlin, Cathleen R

    2017-03-15

    Human adenoviruses (Ads) generally cause mild self-limiting infections but can lead to serious disease and even be fatal in high-risk individuals, underscoring the importance of understanding how the virus counteracts host defense mechanisms. This study had two goals. First, we wished to determine the molecular basis of cholesterol homeostatic responses induced by the early region 3 membrane protein RIDα via its direct interaction with the sterol-binding protein ORP1L, a member of the evolutionarily conserved family of oxysterol-binding protein (OSBP)-related proteins (ORPs). Second, we wished to determine how this interaction regulates innate immunity to adenovirus. ORP1L is known to form highly dynamic contacts with endoplasmic reticulum-resident VAP proteins that regulate late endosome function under regulation of Rab7-GTP. Our studies have demonstrated that ORP1L-VAP complexes also support transport of LDL-derived cholesterol from endosomes to the endoplasmic reticulum, where it was converted to cholesteryl esters stored in lipid droplets when ORP1L was bound to RIDα. The virally induced mechanism counteracted defects in the predominant cholesterol transport pathway regulated by the late endosomal membrane protein Niemann-Pick disease type C protein 1 (NPC1) arising during early stages of viral infection. However, unlike NPC1, RIDα did not reconstitute transport to endoplasmic reticulum pools that regulate SREBP transcription factors. RIDα-induced lipid trafficking also attenuated proinflammatory signaling by Toll-like receptor 4, which has a central role in Ad pathogenesis and is known to be tightly regulated by cholesterol-rich "lipid rafts." Collectively, these data show that RIDα utilizes ORP1L in a way that is distinct from its normal function in uninfected cells to fine-tune lipid raft cholesterol that regulates innate immunity to adenovirus in endosomes. IMPORTANCE Early region 3 proteins encoded by human adenoviruses that attenuate immune

  3. Differential Regulation of Endosomal GPCR/β-Arrestin Complexes and Trafficking by MAPK*

    PubMed Central

    Khoury, Etienne; Nikolajev, Ljiljana; Simaan, May; Namkung, Yoon; Laporte, Stéphane A.

    2014-01-01

    β-Arrestins are signaling adaptors that bind to agonist-occupied G protein-coupled receptors (GPCRs) and target them for endocytosis; however, the mechanisms regulating receptor/β-arrestin complexes and trafficking in endosomes, remain ill defined. Here we show, in live cells, differential dynamic regulation of endosomal bradykinin B2 receptor (B2R) complexes with either β-arrestin-1 or -2. We find a novel role for MAPK in the B2R/β-arrestin-2 complex formation, receptor trafficking and signaling mediated by an ERK1/2 regulatory motif in the hinge domain of the rat β-arrestin-2 (PET178P), but not rat β-arrestin-1 (PER177P). While the ERK1/2 regulatory motif is conserved between rat and mouse β-arrestin-2, it is surprisingly not conserved in human β-arrestin-2 (PEK178P). However, mutation of lysine 178 to threonine is sufficient to confer MAPK sensitivity to the human β-arrestin-2. Furthermore, substitution for a phosphomimetic residue in both the rat and the human β-arrestin-2 (T/K178D) significantly stabilizes B2R/β-arrestin complexes in endosomes, delays receptor recycling to the plasma membrane and maintains intracellular MAPK signaling. Similarly, the endosomal trafficking of β2-adrenergic, angiotensin II type 1 and vasopressin V2 receptors was altered by the β-arrestin-2 T178D mutant. Our findings unveil a novel subtype specific mode of MAPK-dependent regulation of β-arrestins in intracellular trafficking and signaling of GPCRs, and suggest differential endosomal receptor/β-arrestin-2 signaling roles among species. PMID:25016018

  4. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pHmore » 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.« less

  5. Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin.

    PubMed

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Boni, Geraldine; Harrington, Elizabeth O

    2016-06-01

    Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.

  6. Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons.

    PubMed

    Cai, Qian; Lu, Li; Tian, Jin-Hua; Zhu, Yi-Bing; Qiao, Haifa; Sheng, Zu-Hang

    2010-10-06

    Neuron maintenance and survival require late endocytic transport from distal processes to the soma where lysosomes are predominantly localized. Here, we report a role for Snapin in attaching dynein to late endosomes through its intermediate chain (DIC). snapin(-/-) neurons exhibit aberrant accumulation of immature lysosomes, clustering and impaired retrograde transport of late endosomes along processes, reduced lysosomal proteolysis due to impaired delivery of internalized proteins and hydrolase precursors from late endosomes to lysosomes, and impaired clearance of autolysosomes, combined with reduced neuron viability and neurodegeneration. The phenotypes are rescued by expressing the snapin transgene, but not the DIC-binding-defective Snapin-L99K mutant. Snapin overexpression in wild-type neurons enhances late endocytic transport and lysosomal function, whereas expressing the mutant defective in Snapin-DIC coupling shows a dominant-negative effect. Altogether, our study highlights new mechanistic insights into how Snapin-DIC coordinates retrograde transport and late endosomal-lysosomal trafficking critical for autophagy-lysosomal function, and thus neuronal homeostasis. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling

    PubMed Central

    Dirk, Brennan S.; Pawlak, Emily N.; Johnson, Aaron L.; Van Nynatten, Logan R.; Jacob, Rajesh A.; Heit, Bryan; Dikeakos, Jimmy D.

    2016-01-01

    A defining characteristic of HIV-1 infection is the ability of the virus to persist within the host. Specifically, MHC-I downregulation by the HIV-1 accessory protein Nef is of critical importance in preventing infected cells from cytotoxic T-cell mediated killing. Nef downregulates MHC-I by modulating the host membrane trafficking machinery, resulting in the endocytosis and eventual sequestration of MHC-I within the cell. In the current report, we utilized the intracellular protein-protein interaction reporter system, bimolecular fluorescence complementation (BiFC), in combination with super-resolution microscopy, to track the Nef/MHC-I interaction and determine its subcellular localization in cells. We demonstrate that this interaction occurs upon Nef binding the MHC-I cytoplasmic tail early during endocytosis in a Rab5-positive endosome. Disruption of early endosome regulation inhibited Nef-dependent MHC-I downregulation, demonstrating that Nef hijacks the early endosome to sequester MHC-I within the cell. Furthermore, super-resolution imaging identified that the Nef:MHC-I BiFC complex transits through both early and late endosomes before ultimately residing at the trans-Golgi network. Together we demonstrate the importance of the early stages of the endocytic network in the removal of MHC-I from the cell surface and its re-localization within the cell, which allows HIV-1 to optimally evade host immune responses. PMID:27841315

  8. Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation

    NASA Astrophysics Data System (ADS)

    Brill-Karniely, Yifat; Jin, Fan; Wong, Gerard C. L.; Frenkel, Daan; Dobnikar, Jure

    2017-04-01

    Pseudomonas aeruginosa move across surfaces by using multiple Type IV Pili (TFP), motorized appendages capable of force generation via linear extension/retraction cycles, to generate surface motions collectively known as twitching motility. Pseudomonas cells arrive at a surface with low levels of piliation and TFP activity, which both progressively increase as the cells sense the presence of a surface. At present, it is not clear how twitching motility emerges from these initial minimal conditions. Here, we build a simple model for TFP-driven surface motility without complications from viscous and solid friction on surfaces. We discover the unanticipated structural requirement that TFP motors need to have a minimal amount of effective angular rigidity in order for cells to perform the various classes of experimentally-observed motions. Moreover, a surprisingly small number of TFP are needed to recapitulate movement signatures associated with twitching: Two TFP can already produce movements reminiscent of recently observed slingshot type motion. Interestingly, jerky slingshot motions characteristic of twitching motility comprise the transition region between different types of observed crawling behavior in the dynamical phase diagram, such as self-trapped localized motion, 2-D diffusive exploration, and super-diffusive persistent motion.

  9. Effects of early enteral nutrition on the gastrointestinal motility and intestinal mucosal barrier of patients with burn-induced invasive fungal infection

    PubMed Central

    Zhang, Yu; Gu, Fang; Wang, Fengxian; Zhang, Yuanda

    2016-01-01

    Objective: To evaluate the effects of early enteral nutrition on the gastrointestinal motility and intestinal mucosal barrier of patients with burn-induced invasive fungal infection. Methods: A total of 120 patients with burn-induced invasive fungal infection were randomly divided into an early enteral nutrition (EN) group and a parenteral nutrition (PN) group (n=60). The patients were given nutritional support intervention for 14 days, and the expression levels of serum transferrin, albumin, total protein, endotoxin, D-lactic acid and inflammatory cytokines were detected on the 1st, 7th and 14th days respectively. Results: As the treatment progressed, the levels of serum transferrin, albumin and total protein of the EN group were significantly higher than those of the PN group (P<0.05), while the levels of serum endotoxin and D-lactic acid of the form group were significantly lower (P<0.05). After treatment, the expression levels of IL-6 and TNF-α were decreased in the EN group, which were significantly different from those of the PN group (P<0.05). During treatment, the incidence rates of complications such as abdominal distension, diarrhea, sepsis, nausea, vomiting and gastric retention were similar. The mean healing time of wound surface was 9.34±0.78 days in the EN group and 12.46±2.19 days in the PN group, i.e. such time of the former was significantly shorter than that of the latter (P<0.05). Conclusion: Treating patients having burn-induced invasive fungal infection by early enteral nutrition support with arginine can safely alleviate malnutrition and stress reaction, strengthen cellular immune function and promote wound healing, thereby facilitating the recovery of gastrointestinal motility and the function of intestinal mucosal barrier. PMID:27375697

  10. PAR-2-mediated control of barrier function and motility differs between early and late phases of postinfectious gut dysfunction in the rat.

    PubMed

    Fernández-Blanco, Joan Antoni; Fernández-Blanco, Juan A; Hollenberg, Morley D; Martínez, Vicente; Vergara, Patri

    2013-02-15

    Proteinase-activated receptor-2 (PAR-2) and mast cell (MC) mediators contribute to inflammatory and functional gastrointestinal disorders. We aimed to characterize jejunal PAR-2-mediated responses and the potential MC involvement in the early and late phases of a rat model of postinfectious gut dysfunction. Jejunal tissues of control and Trichinella spiralis-infected (14 and 30 days postinfection) rats, treated or not with the MC stabilizer, ketotifen, were used. Histopathology and immunostaining were used to characterize inflammation, PAR-2 expression, and mucosal and connective tissue MCs. Epithelial barrier function (hydroelectrolytic transport and permeability) and motility were assessed in vitro in basal conditions and after PAR-2 activation. Intestinal inflammation on day 14 postinfection (early phase) was significantly resolved by day 30 (late phase) although MC counts and epithelial permeability remained increased. PAR-2-mediated ion transport (Ussing chambers, in vitro) and epithelial surface PAR-2 expression were reduced in the early phase, with a trend toward normalization during the late phase. In control conditions, PAR-2 activation (organ bath) induced biphasic motor responses (relaxation followed by excitation). At 14 days postinfection, spontaneous contractility and PAR-2-mediated relaxations were enhanced; motor responses were normalized on day 30. Postinfectious changes in PAR-2 functions were not affected by ketotifen treatment. We concluded that, in the rat model of Trichinella spiralis infection, alterations of intestinal PAR-2 function and expression depend on the inflammatory phase considered. A lack of a ketotifen effect suggests no interplay between MCs and PAR-2-mediated motility and ion transport alterations. These observations question the role of MC mediators in PAR-2-modulating postinfectious gut dysfunction.

  11. The V-ATPase a2-subunit as a putative endosomal pH-sensor.

    PubMed

    Marshansky, V

    2007-11-01

    V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.

  12. Visualization of early influenza A virus trafficking in human dendritic cells using STED microscopy.

    PubMed

    Baharom, Faezzah; Thomas, Oliver S; Lepzien, Rico; Mellman, Ira; Chalouni, Cécile; Smed-Sörensen, Anna

    2017-01-01

    Influenza A viruses (IAV) primarily target respiratory epithelial cells, but can also replicate in immune cells, including human dendritic cells (DCs). Super-resolution microscopy provides a novel method of visualizing viral trafficking by overcoming the resolution limit imposed by conventional light microscopy, without the laborious sample preparation of electron microscopy. Using three-color Stimulated Emission Depletion (STED) microscopy, we visualized input IAV nucleoprotein (NP), early and late endosomal compartments (EEA1 and LAMP1 respectively), and HLA-DR (DC membrane/cytosol) by immunofluorescence in human DCs. Surface bound IAV were internalized within 5 min of infection. The association of virus particles with early endosomes peaked at 5 min when 50% of NP+ signals were also EEA1+. Peak association with late endosomes occurred at 15 min when 60% of NP+ signals were LAMP1+. At 30 min of infection, the majority of NP signals were in the nucleus. Our findings illustrate that early IAV trafficking in human DCs proceeds via the classical endocytic pathway.

  13. Measuring Borrelia burgdorferi Motility and Chemotaxis.

    PubMed

    Zhang, Kai; Li, Chunhao

    2018-01-01

    Swimming plate, cell motion tracking, and capillary tube assays are very useful tools to quantitatively measure bacterial motility and chemotaxis. These methods were modified and applied to study Borrelia burgdorferi motility and chemotaxis. By using these methods, numerous motility and chemotaxis mutants have been characterized and several chemoattractants were identified. With the assistance of these tools, the role of motility and chemotaxis in the pathogenicity of B. burgdorferi has been established. In addition, these tools also facilitate the study of motility and chemotaxis in other spirochetes.

  14. Rab17 Regulates Membrane Trafficking through Apical Recycling Endosomes in Polarized Epithelial Cells

    PubMed Central

    Zacchi, Paola; Stenmark, Harald; Parton, Robert G.; Orioli, Donata; Lim, Filip; Giner, Angelika; Mellman, Ira; Zerial, Marino; Murphy, Carol

    1998-01-01

    A key feature of polarized epithelial cells is the ability to maintain the specific biochemical composition of the apical and basolateral plasma membrane domains while selectively allowing transport of proteins and lipids from one pole to the opposite by transcytosis. The small GTPase, rab17, a member of the rab family of regulators of intracellular transport, is specifically induced during cell polarization in the developing kidney. We here examined its intracellular distribution and function in both nonpolarized and polarized cells. By confocal immunofluorescence microscopy, rab17 colocalized with internalized transferrin in the perinuclear recycling endosome of BHK-21 cells. In polarized Eph4 cells, rab17 associated with the apical recycling endosome that has been implicated in recycling and transcytosis. The localization of rab17, therefore, strengthens the proposed homology between this compartment and the recycling endosome of nonpolarized cells. Basolateral to apical transport of two membrane-bound markers, the transferrin receptor and the FcLR 5-27 chimeric receptor, was specifically increased in Eph4 cells expressing rab17 mutants defective in either GTP binding or hydrolysis. Furthermore, the mutant proteins stimulated apical recycling of FcLR 5-27. These results support a role for rab17 in regulating traffic through the apical recycling endosome, suggesting a function in polarized sorting in epithelial cells. PMID:9490718

  15. Toxoplasma gondii Syntaxin 6 Is Required for Vesicular Transport Between Endosomal-Like Compartments and the Golgi Complex

    PubMed Central

    Jackson, Allison J; Clucas, Caroline; Mamczur, Nicola J; Ferguson, David J; Meissner, Markus

    2013-01-01

    Apicomplexans are obligate intracellular parasites that invade the host cell in an active process that relies on unique secretory organelles (micronemes, rhoptries and dense granules) localized at the apical tip of these highly polarized eukaryotes. In order for the contents of these specialized organelles to reach their final destination, these proteins are sorted post-Golgi and it has been speculated that they pass through endosomal-like compartments (ELCs), where they undergo maturation. Here, we characterize a Toxoplasma gondii homologue of Syntaxin 6 (TgStx6), a well-established marker for the early endosomes and trans Golgi network (TGN) in diverse eukaryotes. Indeed, TgStx6 appears to have a role in the retrograde transport between ELCs, the TGN and the Golgi, because overexpression of TgStx6 results in the development of abnormally shaped parasites with expanded ELCs, a fragmented Golgi and a defect in inner membrane complex maturation. Interestingly, other organelles such as the micronemes, rhoptries and the apicoplast are not affected, establishing the TGN as a major sorting compartment where several transport pathways intersect. It therefore appears that Toxoplasma has retained a plant-like secretory pathway. PMID:23962112

  16. Marburg virus inclusions: A virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment.

    PubMed

    Dolnik, Olga; Stevermann, Lea; Kolesnikova, Larissa; Becker, Stephan

    2015-01-01

    Filovirus infection of target cells leads to the formation of virally induced cytoplasmic inclusions that contain viral nucleocapsids at different stages of maturation. While the role of the inclusions has been unclear since the identification of Marburg and Ebola viruses, it recently became clear that the inclusions are the sites of viral replication, nucleocapsid formation and maturation. Live cell imaging analyses revealed that mature nucleocapsids are transported from inclusions to the filopodia, which represent the major budding sites. Moreover, inclusions recruit cellular proteins that have been shown to support the transport of nucleocapsids. For example, the tumor susceptibility gene 101 protein (Tsg101) interacts with a late domain motif in the nucleocapsid protein NP and recruits the actin-nucleation factor IQGAP1. Complexes of nucleocapsids together with Tsg101 and IQGAP1 are then co-transported along actin filaments. We detected additional proteins (Alix, Nedd4 and the AAA-type ATPase VPS4) of the endosomal sorting complex required for transport (ESCRT) that are recruited into inclusions. Together, the results suggest that nucleocapsids recruit the machinery that enhances viral budding at the plasma membrane. Furthermore, we identified Lamp1 as a marker of the late endosomal compartment in inclusions, while ER, Golgi, TGN and early endosomal markers were absent. In addition, we observed that LC3, a marker of autophagosomal membranes, was present in inclusions. The 3D structures of inclusions show an intricate structure that seems to accommodate an intimate cooperation between cellular and viral components with the intention to support viral transport and budding. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Primary Esophageal Motility Disorders: Beyond Achalasia.

    PubMed

    Schlottmann, Francisco; Patti, Marco G

    2017-06-30

    The best-defined primary esophageal motor disorder is achalasia. However, symptoms such as dysphagia, regurgitation and chest pain can be caused by other esophageal motility disorders. The Chicago classification introduced new manometric parameters and better defined esophageal motility disorders. Motility disorders beyond achalasia with the current classification are: esophagogastric junction outflow obstruction, major disorders of peristalsis (distal esophageal spasm, hypercontractile esophagus, absent contractility) and minor disorders of peristalsis (ineffective esophageal motility, fragmented peristalsis). The aim of this study was to review the current diagnosis and management of esophageal motility disorders other than achalasia.

  18. Primary Esophageal Motility Disorders: Beyond Achalasia

    PubMed Central

    Schlottmann, Francisco; Patti, Marco G.

    2017-01-01

    The best-defined primary esophageal motor disorder is achalasia. However, symptoms such as dysphagia, regurgitation and chest pain can be caused by other esophageal motility disorders. The Chicago classification introduced new manometric parameters and better defined esophageal motility disorders. Motility disorders beyond achalasia with the current classification are: esophagogastric junction outflow obstruction, major disorders of peristalsis (distal esophageal spasm, hypercontractile esophagus, absent contractility) and minor disorders of peristalsis (ineffective esophageal motility, fragmented peristalsis). The aim of this study was to review the current diagnosis and management of esophageal motility disorders other than achalasia. PMID:28665309

  19. Mathematical models of cell motility.

    PubMed

    Flaherty, Brendan; McGarry, J P; McHugh, P E

    2007-01-01

    Cell motility is an essential biological action in the creation, operation and maintenance of our bodies. Developing mathematical models elucidating cell motility will greatly advance our understanding of this fundamental biological process. With accurate models it is possible to explore many permutations of the same event and concisely investigate their outcome. While great advancements have been made in experimental studies of cell motility, it now has somewhat fallen on mathematical models to taking a leading role in future developments. The obvious reason for this is the complexity of cell motility. Employing the processing power of today's computers will give researches the ability to run complex biophysical and biochemical scenarios, without the inherent difficulty and time associated with in vitro investigations. Before any great advancement can be made, the basics of cell motility will have to be well-defined. Without this, complicated mathematical models will be hindered by their inherent conjecture. This review will look at current mathematical investigations of cell motility, explore the reasoning behind such work and conclude with how best to advance this interesting and challenging research area.

  20. LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity.

    PubMed

    Gómez-Suaga, Patricia; Rivero-Ríos, Pilar; Fdez, Elena; Blanca Ramírez, Marian; Ferrer, Isidro; Aiastui, Ana; López De Munain, Adolfo; Hilfiker, Sabine

    2014-12-20

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset autosomal dominant Parkinson's disease (PD), and sequence variations at the LRRK2 locus are associated with increased risk for sporadic PD. LRRK2 contains both GTPase and kinase domains flanked by protein interaction motifs, and mutations associated with familial PD have been described for both catalytic domains. LRRK2 has been implicated in diverse cellular processes, and recent evidence pinpoints to an important role for LRRK2 in modulating a variety of intracellular membrane trafficking pathways. However, the underlying mechanisms are poorly understood. Here, by studying the classical, well-understood, degradative trafficking pathway of the epidermal growth factor receptor (EGFR), we show that LRRK2 regulates endocytic membrane trafficking in an Rab7-dependent manner. Mutant LRRK2 expression causes a slight delay in early-to-late endosomal trafficking, and a pronounced delay in trafficking out of late endosomes, which become aberrantly elongated into tubules. This is accompanied by a delay in EGFR degradation. The LRRK2-mediated deficits in EGFR trafficking and degradation can be reverted upon coexpression of active Rab7 and of a series of proteins involved in bridging the EGFR to Rab7 on late endosomes. Effector pulldown assays indicate that pathogenic LRRK2 decreases Rab7 activity both in cells overexpressing LRRK2, as well as in fibroblasts from pathogenic mutant LRRK2 PD patients when compared with healthy controls. Together, these findings provide novel insights into a previously unknown regulation of Rab7 activity by mutant LRRK2 which impairs membrane trafficking at very late stages of the endocytic pathway. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes.

    PubMed

    Takatori, Sho; Tatematsu, Tsuyako; Cheng, Jinglei; Matsumoto, Jun; Akano, Takuya; Fujimoto, Toyoshi

    2016-02-01

    Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  3. G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes.

    PubMed

    Tsvetanova, Nikoleta G; Irannejad, Roshanak; von Zastrow, Mark

    2015-03-13

    Some G protein-coupled receptors (GPCRs), in addition to activating heterotrimeric G proteins in the plasma membrane, appear to elicit a "second wave" of G protein activation after ligand-induced internalization. We briefly summarize evidence supporting this view and then discuss what is presently known about the functional significance of GPCR-G protein activation in endosomes. Endosomal activation can shape the cellular response temporally by prolonging its overall duration, and may shape the response spatially by moving the location of intracellular second messenger production relative to effectors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Macrophage NADPH oxidase flavocytochrome B localizes to the plasma membrane and Rab11-positive recycling endosomes.

    PubMed

    Casbon, Amy-Jo; Allen, Lee-Ann H; Dunn, Kenneth W; Dinauer, Mary C

    2009-02-15

    Flavocytochrome b(558), the catalytic core of the phagocytic NADPH oxidase, mediates the transfer of electrons from NADPH to molecular oxygen to generate superoxide for host defense. Flavocytochrome b is a membrane heterodimer consisting of a large subunit gp91(phox) (NOX2) and a smaller subunit, p22(phox). Although in neutrophils flavocytochrome b has been shown to localize to the plasma membrane and specific granules, little is known about its distribution in macrophages. Using immunofluorescent staining and live cell imaging of fluorescently tagged gp91(phox) and p22(phox), we demonstrate in a Chinese hamster ovary cell model system and in RAW 264.7 and primary murine bone marrow-derived macrophages that flavocytochrome b is found in the Rab11-positive recycling endocytic compartment, as well as in Rab5-positive early endosomes and plasma membrane. Additionally, we show that unassembled p22(phox) and gp91(phox) subunits localize to the endoplasmic reticulum, which redistribute to the cell surface and endosomal compartments following heterodimer formation. These studies show for the first time that flavocytochrome b localizes to intracellular compartments in macrophages that recycle to the plasma membrane, which may act as a reservoir to deliver flavocytochrome b to the cell surface and phagosome membranes.

  5. Motility versus fluctuations in mixtures of self-motile and passive agents.

    PubMed

    Hinz, Denis F; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2014-12-07

    Many biological systems consist of self-motile and passive agents both of which contribute to overall functionality. However, little is known about the properties of such mixtures. Here we formulate a model for mixtures of self-motile and passive agents and show that the model gives rise to three different dynamical phases: a disordered mesoturbulent phase, a polar flocking phase, and a vortical phase characterized by large-scale counter rotating vortices. We use numerical simulations to construct a phase diagram and compare the statistical properties of the different phases with observed features of self-motile bacterial suspensions. Our findings afford specific insights regarding the interaction of microorganisms and passive particles and provide novel strategic guidance for efficient technological realizations of artificial active matter.

  6. Role for Dynamin in Late Endosome Dynamics and Trafficking of the Cation-independent Mannose 6-Phosphate Receptor

    PubMed Central

    Nicoziani, Paolo; Vilhardt, Frederik; Llorente, Alicia; Hilout, Leila; Courtoy, Pierre J.; Sandvig, Kirsten; van Deurs, Bo

    2000-01-01

    It is well established that dynamin is involved in clathrin-dependent endocytosis, but relatively little is known about possible intracellular functions of this GTPase. Using confocal imaging, we found that endogenous dynamin was associated with the plasma membrane, the trans-Golgi network, and a perinuclear cluster of cation-independent mannose 6-phosphate receptor (CI-MPR)–containing structures. By electron microscopy (EM), it was shown that these structures were late endosomes and that the endogenous dynamin was preferentially localized to tubulo-vesicular appendices on these late endosomes. Upon induction of the dominant-negative dynK44A mutant, confocal microscopy demonstrated a redistribution of the CI-MPR in mutant-expressing cells. Quantitative EM analysis of the ratio of CI-MPR to lysosome-associated membrane protein-1 in endosome profiles revealed a higher colocalization of the two markers in dynK44A-expressing cells than in control cells. Western blot analysis showed that dynK44A-expressing cells had an increased cellular procathepsin D content. Finally, EM revealed that in dynK44A-expressing cells, endosomal tubules containing CI-MPR were formed. These results are in contrast to recent reports that dynamin-2 is exclusively associated with endocytic structures at the plasma membrane. They suggest instead that endogenous dynamin also plays an important role in the molecular machinery behind the recycling of the CI-MPR from endosomes to the trans-Golgi network, and we propose that dynamin is required for the final scission of vesicles budding from endosome tubules. PMID:10679008

  7. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae.

    PubMed

    Tani, Motohiro; Kuge, Osamu

    2012-12-01

    Sphingolipids play critical roles in many physiologically important events in the yeast Saccharomyces cerevisiae. In this study, we found that csg2Δ mutant cells defective in the synthesis of mannosylinositol phosphorylceramide exhibited abnormal intracellular accumulation of an exocytic v-SNARE, Snc1, under phosphatidylserine synthase gene (PSS1)-repressive conditions, although in wild-type cells, Snc1 was known to cycle between plasma membranes and the late Golgi via post-Golgi endosomes. The mislocalized Snc1 was co-localized with an endocytic marker dye, FM4-64, upon labelling for a short time. The abnormal distribution of Snc1 was suppressed by deletion of GYP2 encoding a GTPase-activating protein that negatively regulates endosomal vesicular trafficking, or expression of GTP-restricted form of Ypt32 GTPase. Furthermore, an endocytosis-deficient mutant of Snc1 was localized to plasma membranes in PSS1-repressed csg2Δ mutant cells as well as wild-type cells. Thus, the PSS1-repressed csg2Δ mutant cells were indicated to be defective in the trafficking of Snc1 from post-Golgi endosomes to the late Golgi. In contrast, the vesicular trafficking pathways via pre-vacuolar endosomes in the PSS1-repressed csg2Δ mutant cells seemed to be normal. These results suggested that specific complex sphingolipids and phosphatidylserine are co-ordinately involved in specific vesicular trafficking pathway. © 2012 Blackwell Publishing Ltd.

  8. Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers.

    PubMed

    Ohta, Aaron T; Garcia, Maurice; Valley, Justin K; Banie, Lia; Hsu, Hsan-Yin; Jamshidi, Arash; Neale, Steven L; Lue, Tom; Wu, Ming C

    2010-12-07

    Optoelectronic tweezers was used to manipulate human spermatozoa to determine whether their response to OET predicts sperm viability among non-motile sperm. We review the electro-physical basis for how live and dead human spermatozoa respond to OET. The maximal velocity that non-motile spermatozoa could be induced to move by attraction or repulsion to a moving OET field was measured. Viable sperm are attracted to OET fields and can be induced to move at an average maximal velocity of 8.8 ± 4.2 µm s(-1), while non-viable sperm are repelled to OET, and are induced to move at an average maximal velocity of -0.8 ± 1.0 µm s(-1). Manipulation of the sperm using OET does not appear to result in increased DNA fragmentation, making this a potential method by which to identify viable non-motile sperm for assisted reproductive technologies.

  9. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a... esophageal motility monitor and tube, the gastrointestinal motility (electrical) system, and certain...

  10. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a... esophageal motility monitor and tube, the gastrointestinal motility (electrical) system, and certain...

  11. Parkin Modulates Endosomal Organization and Function of the Endo-Lysosomal Pathway.

    PubMed

    Song, Pingping; Trajkovic, Katarina; Tsunemi, Taiji; Krainc, Dimitri

    2016-02-24

    Mutations in PARK2 (parkin), which encodes Parkin protein, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson's disease (PD). While several studies implicated Parkin in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration upon Parkin loss of function remains incompletely understood. In this study, we found that Parkin modulates the endocytic pathway through the regulation of endosomal structure and function. We showed that loss of Parkin function led to decreased endosomal tubulation and membrane association of vesicle protein sorting 35 (VPS35) and sorting nexin 1 (SNX1), as well as decreased mannose 6 phosphate receptor (M6PR), suggesting the impairment of retromer pathway in Parkin-deficient cells. We also found increased formation of intraluminal vesicles coupled with enhanced release of exosomes in the presence of mutant Parkin. To elucidate the molecular mechanism of these alterations in the endocytic pathway in Parkin-deficient cells, we found that Parkin regulates the levels and activity of Rab7 by promoting its ubiquitination on lysine 38 residue. Both endogenous Rab7 in Parkin-deficient cells and overexpressed K38 R-Rab7 mutant displayed decreased effector binding and membrane association. Furthermore, overexpression of K38R-Rab7 in HEK293 cells phenocopied the increased secretion of exosomes observed in Parkin-deficient cells, suggesting that Rab7 deregulation may be at least partially responsible for the endocytic phenotype observed in Parkin-deficient cells. These findings establish a role for Parkin in regulating the endo-lysosomal pathway and retromer function and raise the possibility that alterations in these pathways contribute to the development of pathology in Parkin-linked Parkinson's disease. Copyright © 2016 the authors 0270-6474/16/362425-13$15.00/0.

  12. IQGAP1 promotes CXCR4 chemokine receptor function and trafficking via EEA-1+ endosomes

    PubMed Central

    Bamidele, Adebowale O.; Kremer, Kimberly N.; Hirsova, Petra; Clift, Ian C.; Gores, Gregory J.; Billadeau, Daniel D.

    2015-01-01

    IQ motif–containing GTPase-activating protein 1 (IQGAP1) is a cytoskeleton-interacting scaffold protein. CXCR4 is a chemokine receptor that binds stromal cell–derived factor-1 (SDF-1; also known as CXCL12). Both IQGAP1 and CXCR4 are overexpressed in cancer cell types, yet it was unclear whether these molecules functionally interact. Here, we show that depleting IQGAP1 in Jurkat T leukemic cells reduced CXCR4 expression, disrupted trafficking of endocytosed CXCR4 via EEA-1+ endosomes, and decreased efficiency of CXCR4 recycling. SDF-1–induced cell migration and activation of extracellular signal-regulated kinases 1 and 2 (ERK) MAPK were strongly inhibited, even when forced overexpression restored CXCR4 levels. Similar results were seen in KMBC and HEK293 cells. Exploring the mechanism, we found that SDF-1 treatment induced IQGAP1 binding to α-tubulin and localization to CXCR4-containing endosomes and that CXCR4-containing EEA-1+ endosomes were abnormally located distal from the microtubule (MT)-organizing center (MTOC) in IQGAP1-deficient cells. Thus, IQGAP1 critically mediates CXCR4 cell surface expression and signaling, evidently by regulating EEA-1+ endosome interactions with MTs during CXCR4 trafficking and recycling. IQGAP1 may similarly promote CXCR4 functions in other cancer cell types. PMID:26195666

  13. Motility, morphology and phylogeny of the plasmodial worm, Ceratomyxa vermiformis n. sp. (Cnidaria: Myxozoa: Myxosporea).

    PubMed

    Adriano, E A; Okamura, B

    2017-02-01

    The Myxozoa demonstrate extensive morphological simplification and miniaturization relative to their free-living cnidarian ancestors. This is particularly pronounced in the highly derived myxosporeans, which develop as plasmodia and pseudoplasmodia. To date, motility in these stages has been linked with membrane deformation (e.g. as pseudopodia and mobile folds). Here we illustrate a motile, elongate plasmodium that undergoes coordinated undulatory locomotion, revealing remarkable convergence to a functional worm at the cellular level. Ultrastructural and confocal analyses of these plasmodia identify a highly differentiated external layer containing an actin-rich network, long tubular mitochondria, abundant microtubules, a secreted glycocalyx layer, and an internal region where sporogony occurs and which contains homogeneously distributed granular/fibrillar material. We consider how some of these features may support motility. We also describe the species based on spore morphology and SSU rDNA sequence data, undertake molecular phylogenetic analysis to place it within an early-diverging clade of the ceratomyxids, and evaluate the resultant implications for classification (validity of the genus Meglitschia) and for inferring early host environments (freshwater) of ceratomyxids.

  14. A Cyanobacterium Capable of Swimming Motility

    NASA Astrophysics Data System (ADS)

    Waterbury, John B.; Willey, Joanne M.; Franks, Diana G.; Valois, Frederica W.; Watson, Stanley W.

    1985-10-01

    A novel cyanobacterium capable of swimming motility wass isolated in pure culture from several locations in the Atlantic Ocean. It is a small unicellular form, assignable to the genus Synechococcus, that is capable of swimming through liquids at speeds of 25 micrometers per second. Light microscopy revealed that the motile cells display many features characteristic of bacterial flagellar motility. However, electron microscopy failed to reveal flagella and shearing did not arrest motility, indicating that the cyanobacterium may be propelled by a novel mechanism.

  15. BLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia

    PubMed Central

    2017-01-01

    Primary cilia perceive the extracellular environment through receptors localized in the ciliary membrane, but mechanisms directing specific proteins to this domain are poorly understood. To address this question, we knocked down proteins potentially important for ciliary membrane targeting and determined how this affects the ciliary trafficking of fibrocystin, polycystin-2, and smoothened. Our analysis showed that fibrocystin and polycystin-2 are dependent on IFT20, GMAP210, and the exocyst complex, while smoothened delivery is largely independent of these components. In addition, we found that polycystin-2, but not smoothened or fibrocystin, requires the biogenesis of lysosome-related organelles complex-1 (BLOC-1) for ciliary delivery. Consistent with the role of BLOC-1 in sorting from the endosome, we find that disrupting the recycling endosome reduces ciliary polycystin-2 and causes its accumulation in the recycling endosome. This is the first demonstration of a role for BLOC-1 in ciliary assembly and highlights the complexity of pathways taken to the cilium. PMID:28576874

  16. Association with AflR in Endosomes Reveals New Functions for AflJ in Aflatoxin Biosynthesis

    PubMed Central

    Ehrlich, Kenneth C.; Mack, Brian M.; Wei, Qijian; Li, Ping; Roze, Ludmila V.; Dazzo, Frank; Cary, Jeffrey W.; Bhatnagar, Deepak; Linz, John E.

    2012-01-01

    Aflatoxins are the most potent naturally occurring carcinogens of fungal origin. Biosynthesis of aflatoxin involves the coordinated expression of more than 25 genes. The function of one gene in the aflatoxin gene cluster, aflJ, is not entirely understood but, because previous studies demonstrated a physical interaction between the Zn2Cys6 transcription factor AflR and AflJ, AflJ was proposed to act as a transcriptional co-activator. Image analysis revealed that, in the absence of aflJ in A. parasiticus, endosomes cluster within cells and near septa. AflJ fused to yellow fluorescent protein complemented the mutation in A. parasiticus ΔaflJ and localized mainly in endosomes. We found that AflJ co-localizes with AflR both in endosomes and in nuclei. Chromatin immunoprecipitation did not detect AflJ binding at known AflR DNA recognition sites suggesting that AflJ either does not bind to these sites or binds to them transiently. Based on these data, we hypothesize that AflJ assists in AflR transport to or from the nucleus, thus controlling the availability of AflR for transcriptional activation of aflatoxin biosynthesis cluster genes. AflJ may also assist in directing endosomes to the cytoplasmic membrane for aflatoxin export. PMID:23342682

  17. IFITM3 Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores following Virus-Endosome Hemifusion

    PubMed Central

    Chin, Christopher R.; Savidis, George; Brass, Abraham L.; Melikyan, Gregory B.

    2014-01-01

    Interferon-induced transmembrane proteins (IFITMs) inhibit infection of diverse enveloped viruses, including the influenza A virus (IAV) which is thought to enter from late endosomes. Recent evidence suggests that IFITMs block virus hemifusion (lipid mixing in the absence of viral content release) by altering the properties of cell membranes. Consistent with this mechanism, excess cholesterol in late endosomes of IFITM-expressing cells has been reported to inhibit IAV entry. Here, we examined IAV restriction by IFITM3 protein using direct virus-cell fusion assay and single virus imaging in live cells. IFITM3 over-expression did not inhibit lipid mixing, but abrogated the release of viral content into the cytoplasm. Although late endosomes of IFITM3-expressing cells accumulated cholesterol, other interventions leading to aberrantly high levels of this lipid did not inhibit virus fusion. These results imply that excess cholesterol in late endosomes is not the mechanism by which IFITM3 inhibits the transition from hemifusion to full fusion. The IFITM3's ability to block fusion pore formation at a post-hemifusion stage shows that this protein stabilizes the cytoplasmic leaflet of endosomal membranes without adversely affecting the lumenal leaflet. We propose that IFITM3 interferes with pore formation either directly, through partitioning into the cytoplasmic leaflet of a hemifusion intermediate, or indirectly, by modulating the lipid/protein composition of this leaflet. Alternatively, IFITM3 may redirect IAV fusion to a non-productive pathway, perhaps by promoting fusion with intralumenal vesicles within multivesicular bodies/late endosomes. PMID:24699674

  18. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes

    PubMed Central

    Hernáez, Bruno; Guerra, Milagros; Salas, María L.

    2016-01-01

    African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs. PMID:27110717

  19. Intracellular mediators of transforming growth factor beta superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo.

    PubMed

    Rajagopal, Ramya; Ishii, Shunsuke; Beebe, David C

    2007-06-25

    Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Proteins that are downstream of the transforming growth factor-beta superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFbeta superfamily for their normal development. Phosphorylated Smad1 (pSmad1), pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA) and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-beta superfamily to endosomes is important for the regulation of growth factor signaling.

  20. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production

    PubMed Central

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B.; Igoshin, Oleg A.

    2016-01-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics. PMID:27362260

  1. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production.

    PubMed

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B; Igoshin, Oleg A

    2016-06-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher's equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase-a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.

  2. Novel mechanisms power bacterial gliding motility.

    PubMed

    Nan, Beiyan; Zusman, David R

    2016-07-01

    For many bacteria, motility is essential for survival, growth, virulence, biofilm formation and intra/interspecies interactions. Since natural environments differ, bacteria have evolved remarkable motility systems to adapt, including swimming in aqueous media, and swarming, twitching and gliding on solid and semi-solid surfaces. Although tremendous advances have been achieved in understanding swimming and swarming motilities powered by flagella, and twitching motility powered by Type IV pili, little is known about gliding motility. Bacterial gliders are a heterogeneous group containing diverse bacteria that utilize surface motilities that do not depend on traditional flagella or pili, but are powered by mechanisms that are less well understood. Recently, advances in our understanding of the molecular machineries for several gliding bacteria revealed the roles of modified ion channels, secretion systems and unique machinery for surface movements. These novel mechanisms provide rich source materials for studying the function and evolution of complex microbial nanomachines. In this review, we summarize recent findings made on the gliding mechanisms of the myxobacteria, flavobacteria and mycoplasmas. © 2016 John Wiley & Sons Ltd.

  3. ICAM-1 Binding Rhinoviruses A89 and B14 Uncoat in Different Endosomal Compartments

    PubMed Central

    Conzemius, Rick; Ganjian, Haleh; Blaas, Dieter

    2016-01-01

    ABSTRACT Human rhinovirus A89 (HRV-A89) and HRV-B14 bind to and are internalized by intercellular adhesion molecule 1 (ICAM-1); as demonstrated earlier, the RNA genome of HRV-B14 penetrates into the cytoplasm from endosomal compartments of the lysosomal pathway. Here, we show by immunofluorescence microscopy that HRV-A89 but not HRV-B14 colocalizes with transferrin in the endocytic recycling compartment (ERC). Applying drugs differentially interfering with endosomal recycling and with the pathway to lysosomes, we demonstrate that these two major-group HRVs productively uncoat in distinct endosomal compartments. Overexpression of constitutively active (Rab11-GTP) and dominant negative (Rab11-GDP) mutants revealed that uncoating of HRV-A89 depends on functional Rab11. Thus, two ICAM-1 binding HRVs are routed into distinct endosomal compartments for productive uncoating. IMPORTANCE Based on similarity of their RNA genomic sequences, the more than 150 currently known common cold virus serotypes were classified as species A, B, and C. The majority of HRV-A viruses and all HRV-B viruses use ICAM-1 for cell attachment and entry. Our results highlight important differences of two ICAM-1 binding HRVs with respect to their intracellular trafficking and productive uncoating; they demonstrate that serotypes belonging to species A and B, but entering the cell via the same receptors, direct the endocytosis machinery to ferry them along distinct pathways toward different endocytic compartments for uncoating. PMID:27334586

  4. Nipah virus fusion protein: Importance of the cytoplasmic tail for endosomal trafficking and bioactivity.

    PubMed

    Weis, Michael; Maisner, Andrea

    2015-01-01

    Nipah virus (NiV) is a highly pathogenic paramyxovirus which encodes two surface glycoproteins: the receptor-binding protein G and the fusion protein F. As for all paramyxoviruses, proteolytic activation of the NiV-F protein is an indispensable prerequisite for viral infectivity. Interestingly, proteolytic activation of NiV-F differs principally from other paramyxoviruses with respect to protease usage (cathepsins instead of trypsin- or furin-like proteases), and the subcellular localization where cleavage takes place (endosomes instead of Golgi or plasma membrane). To allow efficient F protein activation needed for productive virus replication and cell-to-cell fusion, the NiV-F cytoplasmic tail contains a classical tyrosine-based endocytosis signal (Y525RSL) that we have shown earlier to be needed for F uptake and proteolytic activation. In this report, we furthermore revealed that an intact endocytosis signal alone is not sufficient for full bioactivity. The very C-terminus of the cytoplasmic tail is needed in addition. Deletions of more than four residues did not affect F uptake or endosomal cleavage but downregulated the surface expression, likely by delaying the intracellular trafficking through endosomal-recycling compartments. Given that the NiV-F cytoplasmic tail is needed for timely and correct intracellular trafficking, endosomal cleavage and fusion activity, the influence of tail truncations on NiV-mediated cell-to-cell fusion and on pseudotyping lentiviral vectors is discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Association of p60c-src with endosomal membranes in mammalian fibroblasts

    PubMed Central

    1992-01-01

    We have examined the subcellular localization of p60c-src in mammalian fibroblasts. Analysis of indirect immunofluorescence by three- dimensional optical sectioning microscopy revealed a granular cytoplasmic staining that co-localized with the microtubule organizing center. Immunofluorescence experiments with antibodies against a number of membrane markers demonstrated a striking co-localization between p60c-src and the cation-dependent mannose-6-phosphate receptor (CI- MPR), a marker that identifies endosomes. Both p60c-src and the CI-MPR were found to cluster at the spindle poles throughout mitosis. In addition, treatment of interphase and mitotic cells with brefeldin A resulted in a clustering of p60c-src and CI-MPR at a peri-centriolar position. Biochemical fractionation of cellular membranes showed that a major proportion of p60c-src co-enriched with endocytic membranes. Treatment of membranes containing HRP to alter their apparent density also altered the density of p60c-src-containing membranes. Similar density shift experiments with total cellular membranes revealed that the majority of membrane-associated p60c-src in the cell is associated with endosomes, while very little is associated with plasma membranes. These results support a role for p60c-src in the regulation of endosomal membranes and protein trafficking. PMID:1378446

  6. Parkinson Disease-linked Vps35 R524W Mutation Impairs the Endosomal Association of Retromer and Induces α-Synuclein Aggregation.

    PubMed

    Follett, Jordan; Bugarcic, Andrea; Yang, Zhe; Ariotti, Nicholas; Norwood, Suzanne J; Collins, Brett M; Parton, Robert G; Teasdale, Rohan D

    2016-08-26

    Endosomal sorting is a highly orchestrated cellular process. Retromer is a heterotrimeric complex that associates with endosomal membranes and facilitates the retrograde sorting of multiple receptors, including the cation-independent mannose 6-phosphate receptor for lysosomal enzymes. The cycling of retromer on and off the endosomal membrane is regulated by a network of retromer-interacting proteins. Here, we find that Parkinson disease-associated Vps35 variant, R524W, but not P316S, is a loss-of-function mutation as marked by a reduced association with this regulatory network and dysregulation of endosomal receptor sorting. Expression of Vps35 R524W-containing retromer results in the accumulation of intracellular α-synuclein-positive aggregates, a hallmark of Parkinson disease. Overall, the Vps35 R524W-containing retromer has a decreased endosomal association, which can be partially rescued by R55, a small molecule previously shown to stabilize the retromer complex, supporting the potential for future targeting of the retromer complex in the treatment of Parkinson disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Retriever, a multiprotein complex for retromer-independent endosomal cargo recycling

    PubMed Central

    McNally, Kerrie E.; Faulkner, Rebecca; Steinberg, Florian; Gallon, Matthew; Ghai, Rajesh; Pim, David; Langton, Paul; Pearson, Neil; Danson, Chris M.; Nägele, Heike; Morris, Lindsey M; Singla, Arnika; Overlee, Brittany L; Heesom, Kate J.; Sessions, Richard; Banks, Lawrence; Collins, Brett M; Berger, Imre; Billadeau, Daniel D.; Burstein, Ezra; Cullen, Peter J.

    2018-01-01

    Following endocytosis and entry into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are alternatively retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multi-protein complex which orchestrates cargo retrieval and recycling and importantly, is biochemically and functionally distinct to the established retromer pathway. Composed of a heterotrimer of DSCR3, C16orf62 and VPS29, and bearing striking similarity with retromer, we have called this complex ‘retriever’. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to the CCC and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1-integrin. Through quantitative proteomic analysis we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, which require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major new endosomal retrieval and recycling pathway. PMID:28892079

  8. Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

    PubMed Central

    Cousin, Fabien J.; Lynch, Shónagh M.; Harris, Hugh M. B.; McCann, Angela; Lynch, Denise B.; Neville, B. Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito

    2014-01-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  9. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    PubMed

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.

  10. Endosomal acidification by Na+/H+ exchanger NHE5 regulates TrkA cell-surface targeting and NGF-induced PI3K signaling

    PubMed Central

    Diering, Graham H.; Numata, Yuka; Fan, Steven; Church, John; Numata, Masayuki

    2013-01-01

    To facilitate polarized vesicular trafficking and signal transduction, neuronal endosomes have evolved sophisticated mechanisms for pH homeostasis. NHE5 is a member of the Na+/H+ exchanger family and is abundantly expressed in neurons and associates with recycling endosomes. Here we show that NHE5 potently acidifies recycling endosomes in PC12 cells. NHE5 depletion by plasmid-based short hairpin RNA significantly reduces cell surface abundance of TrkA, an effect similar to that observed after treatment with the V-ATPase inhibitor bafilomycin. A series of cell-surface biotinylation experiments suggests that anterograde trafficking of TrkA from recycling endosomes to plasma membrane is the likeliest target affected by NHE5 depletion. NHE5 knockdown reduces phosphorylation of Akt and Erk1/2 and impairs neurite outgrowth in response to nerve growth factor (NGF) treatment. Of interest, although both phosphoinositide 3-kinase–Akt and Erk signaling are activated by NGF-TrkA, NGF-induced Akt-phosphorylation appears to be more sensitively affected by perturbed endosomal pH. Furthermore, NHE5 depletion in rat cortical neurons in primary culture also inhibits neurite formation. These results collectively suggest that endosomal pH modulates trafficking of Trk-family receptor tyrosine kinases, neurotrophin signaling, and possibly neuronal differentiation. PMID:24006492

  11. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles.

    PubMed

    Jones, Rachel A; Cheung, Charles Y; Black, Fiona E; Zia, Jasmine K; Stayton, Patrick S; Hoffman, Allan S; Wilson, Mark R

    2003-05-15

    The permeability barrier posed by cell membranes represents a challenge for the delivery of hydrophilic molecules into cells. We previously proposed that poly(2-alkylacrylic acid)s are endocytosed by cells into acidified vesicles and are there triggered by low pH to disrupt membranes and release the contents of endosomes/lysosomes to the cytosol. If this hypothesis is correct, these polymers could be valuable in drug-delivery applications. The present paper reports functional comparisons of a family of three poly(2-alkylacrylic acid)s. Poly(2-propylacrylic acid) (PPAA), poly(2-ethylacrylic acid) (PEAA) and poly(2-methylacrylic acid) (PMAA) were compared in red-blood-cell haemolysis assays and in a lipoplex (liposome-DNA complex) assay. We also directly examined the ability of these polymers to disrupt endosomes and lysosomes in cultured human cells. Our results show that: (i) unlike membrane-disruptive peptides, the endosomal-disruptive ability of poly(2-alkylacrylic acid)s cannot necessarily be predicted from their haemolytic activity at low pH, (ii) PPAA (but not PEAA or PMAA) potently facilitates gene transfection by cationic lipoplexes and (iii) endocytosed poly(2-alkylacrylic acid)s are triggered by luminal acidification to selectively disrupt endosomes (not lysosomes) and release their contents to the cytosol. These results will facilitate the rational design of future endosomal-disrupting polymers for drug delivery.

  12. Sperm Motility in Flow

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Juarez, Gabriel; Stocker, Roman

    2012-11-01

    A wide variety of plants and animals reproduce sexually by releasing motile sperm that seek out a conspecific egg, for example in the reproductive tract for mammals or in the water column for externally fertilizing organisms. Sperm are aided in their quest by chemical cues, but must also contend with hydrodynamic forces, resulting from laminar flows in reproductive tracts or turbulence in aquatic habitats. To understand how velocity gradients affect motility, we subjected swimming sperm to a range of highly-controlled straining flows using a cross-flow microfluidic device. The motion of the cell body and flagellum were captured through high-speed video microscopy. The effects of flow on swimming are twofold. For moderate velocity gradients, flow simply advects and reorients cells, quenching their ability to cross streamlines. For high velocity gradients, fluid stresses hinder the internal bending of the flagellum, directly inhibiting motility. The transition between the two regimes is governed by the Sperm number, which compares the external viscous stresses with the internal elastic stresses. Ultimately, unraveling the role of flow in sperm motility will lead to a better understanding of population dynamics among aquatic organisms and infertility problems in humans.

  13. Asian motility studies in irritable bowel syndrome.

    PubMed

    Lee, Oh Young

    2010-04-01

    Altered motility remains one of the important pathophysiologic factors in patients with irritable bowel syndrome (IBS) who commonly complain of abdominal pain and stool changes such as diarrhea and constipation. The prevalence of IBS has increased among Asian populations these days. Gastrointestinal (GI) physiology may vary between Asian and Western populations because of differences in diets, socio-cultural backgrounds, and genetic factors. The characteristics and differences of GI dysmotility in Asian IBS patients were reviewed. MEDLINE search work was performed including following terms, 'IBS,' 'motility,' 'transit time,' 'esophageal motility,' 'gastric motility,' 'small intestinal motility,' 'colonic motility,' 'anorectal function,' and 'gallbladder motility' and over 100 articles were categorized under 'esophagus,' 'stomach,' 'small intestine,' 'colon,' 'anorectum,' 'gallbladder,' 'transit,' 'motor pattern,' and 'effect of stressors.' Delayed gastric emptying, slow tansit in constipation predominant IBS patients, rapid transit in diarrhea predominant IBS patients, accelerated motility responses to various stressors such as meals, mental stress, or corticotrophin releasing hormones, and altered rectal compliance and altered rectal accomodation were reported in many Asian studies regarding IBS. Many conflicting results were found among these studies and there are still controversies to conclude these as unique features of Asian IBS patients. Multinational and multicenter studies are needed to be performed vigorously in order to elaborate characteristics as well as differences of altered motililty in Asian patients with IBS.

  14. A Role for Peptides in Overcoming Endosomal Entrapment in siRNA Delivery – A Focus on Melittin

    PubMed Central

    Hou, Kirk K.; Pan, Hua; Schlesinger, Paul H.; Wickline, Samuel A.

    2015-01-01

    siRNA has the possibility to revolutionize medicine by enabling highly specific and efficient silencing of proteins involved in disease pathogenesis. Despite nearly 20 years of research dedicated to translating siRNA from a research tool into a clinically relevant therapeutic, minimal success has been had to date. Access to RNA interference machinery located in the cytoplasm is often overlooked, but must be considered when designing the next generation of siRNA delivery strategies. Peptide transduction domains (PTD) have demonstrated moderate siRNA transfection, which is primarily limited by endosomal entrapment. Strategies aimed at overcoming endosomal entrapment associated with peptide vectors are reviewed here, including osmotic methods, lipid conjugation, and fusogenic peptides. As an alternative to traditional PTD, the hemolytic peptide melittin exhibits the native capacity for endosomal disruption but causes cytotoxicity. However, appropriate packaging and protection of melittin with activation and release in the endosomal compartment has allowed melittin-based strategies to demonstrate both in vitro and in vivo safety and efficacy. These data suggest that melittin's membrane disruptive properties can enable safe and effective endosomolysis, building a case for melittin as a key component in a new generation of siRNA therapeutics. PMID:26025036

  15. Cellular Motility--Experiments on Contractile and Motile Mechanisms in the Slime Mould, Physarum Polycephalum

    ERIC Educational Resources Information Center

    Holmes, R. P.; Stewart, P. R.

    1977-01-01

    Actin and myosin have now been demonstrated to be important constituents of many eukaryotic cells. Their role is primarily that of a contractile system underlying all aspects of cellular motility. Described here is a simple experimental system to demonstrate quantitatively aspects of motility and its regulation in a slime mold. (Author/MA)

  16. EGF receptor lysosomal degradation is delayed in the cells stimulated with EGF-Quantum dot bioconjugate but earlier key events of endocytic degradative pathway are similar to that of native EGF

    PubMed Central

    Leontieva, Ekaterina A.; Kornilova, Elena S.

    2017-01-01

    Quantum dots (QDs) complexed to ligands recognizing surface receptors undergoing internalization are an attractive tool for live cell imaging of ligand-receptor complexes behavior and for specific tracking of the cells of interest. However, conjugation of quasi-multivalent large QD-particle to monovalent small growth factors like EGF that bound their tyrosine-kinase receptors may affect key endocytic events tightly bound to signaling. Here, by means of confocal microscopy we have addressed the key endocytic events of lysosomal degradative pathway stimulated by native EGF or EGF-QD bioconjugate. We have demonstrated that the decrease in endosome number, increase in mean endosome integrated density and the pattern of EEA1 co-localization with EGF-EGFR complexes at early stages of endocytosis were similar for the both native and QD-conjugated ligands. In both cases enlarged hollow endosomes appeared after wortmannin treatment. This indicates that early endosomal fusions and their maturation proceed similar for both ligands. EGF-QD and native EGF similarly accumulated in juxtanuclear region, and live cell imaging of endosome motion revealed the behavior described elsewhere for microtubule-facilitated motility. Finally, EGF-QD and the receptor were found in lysosomes. However, degradation of receptor part of QD-EGF-EGFR-complex was delayed compared to native EGF, but not inhibited, while QDs fluorescence was detected in lysosomes even after 24 hours. Importantly, in HeLa and A549 cells the both ligands behaved similarly. We conclude that during endocytosis EGF-QD behaves as a neutral marker for degradative pathway up to lysosomal stage and can also be used as a long-term cell marker. PMID:28574831

  17. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8(+) T cells.

    PubMed

    Zehner, Matthias; Marschall, Andrea L; Bos, Erik; Schloetel, Jan-Gero; Kreer, Christoph; Fehrenschild, Dagmar; Limmer, Andreas; Ossendorp, Ferry; Lang, Thorsten; Koster, Abraham J; Dübel, Stefan; Burgdorf, Sven

    2015-05-19

    The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR

    PubMed Central

    Boncompain, Gaelle; Laketa, Vibor; Poser, Ina; Beck, Martin; Bork, Peer

    2016-01-01

    Stimulation of cells with epidermal growth factor (EGF) induces internalization and partial degradation of the EGF receptor (EGFR) by the endo-lysosomal pathway. For continuous cell functioning, EGFR plasma membrane levels are maintained by transporting newly synthesized EGFRs to the cell surface. The regulation of this process is largely unknown. In this study, we find that EGF stimulation specifically increases the transport efficiency of newly synthesized EGFRs from the endoplasmic reticulum to the plasma membrane. This coincides with an up-regulation of the inner coat protein complex II (COPII) components SEC23B, SEC24B, and SEC24D, which we show to be specifically required for EGFR transport. Up-regulation of these COPII components requires the transcriptional regulator RNF11, which localizes to early endosomes and appears additionally in the cell nucleus upon continuous EGF stimulation. Collectively, our work identifies a new regulatory mechanism that integrates the degradation and transport of EGFR in order to maintain its physiological levels at the plasma membrane. PMID:27872256

  19. Social Motility in African Trypanosomes

    PubMed Central

    McLelland, Bryce T.; Hill, Kent L.

    2010-01-01

    African trypanosomes are devastating human and animal pathogens that cause significant human mortality and limit economic development in sub-Saharan Africa. Studies of trypanosome biology generally consider these protozoan parasites as individual cells in suspension cultures or in animal models of infection. Here we report that the procyclic form of the African trypanosome Trypanosoma brucei engages in social behavior when cultivated on semisolid agarose surfaces. This behavior is characterized by trypanosomes assembling into multicellular communities that engage in polarized migrations across the agarose surface and cooperate to divert their movements in response to external signals. These cooperative movements are flagellum-mediated, since they do not occur in trypanin knockdown parasites that lack normal flagellum motility. We term this behavior social motility based on features shared with social motility and other types of surface-induced social behavior in bacteria. Social motility represents a novel and unexpected aspect of trypanosome biology and offers new paradigms for considering host-parasite interactions. PMID:20126443

  20. Flagellar motility is critical for Listeria monocytogenes biofilm formation.

    PubMed

    Lemon, Katherine P; Higgins, Darren E; Kolter, Roberto

    2007-06-01

    The food-borne pathogen Listeria monocytogenes attaches to environmental surfaces and forms biofilms that can be a source of food contamination, yet little is known about the molecular mechanisms of its biofilm development. We observed that nonmotile mutants were defective in biofilm formation. To investigate how flagella might function during biofilm formation, we compared the wild type with flagellum-minus and paralyzed-flagellum mutants. Both nonmotile mutants were defective in biofilm development, presumably at an early stage, as they were also defective in attachment to glass during the first few hours of surface exposure. This attachment defect could be significantly overcome by providing exogenous movement toward the surface via centrifugation. However, this centrifugation did not restore mature biofilm formation. Our results indicate that it is flagellum-mediated motility that is critical for both initial surface attachment and subsequent biofilm formation. Also, any role for L. monocytogenes flagella as adhesins on abiotic surfaces appears to be either minimal or motility dependent under the conditions we examined.

  1. Calcium-dependent antigen binding as a novel modality for antibody recycling by endosomal antigen dissociation

    PubMed Central

    Hironiwa, N; Ishii, S; Kadono, S; Iwayanagi, Y; Mimoto, F; Habu, K; Igawa, T; Hattori, K

    2016-01-01

    The pH-dependent antigen binding antibody, termed a recycling antibody, has recently been reported as an attractive type of second-generation engineered therapeutic antibody. A recycling antibody can dissociate antigen in the acidic endosome, and thus bind to its antigen multiple times. As a consequence, a recycling antibody can neutralize large amounts of antigen in plasma. Because this approach relies on histidine residues to achieve pH-dependent antigen binding, which could limit the epitopes that can be targeted and affect the rate of antigen dissociation in the endosome, we explored an alternative approach for generating recycling antibodies. Since calcium ion concentration is known to be lower in endosome than in plasma, we hypothesized that an antibody with antigen-binding properties that are calcium-dependent could be used as recycling antibody. Here, we report a novel anti-interleukin-6 receptor (IL-6R) antibody, identified from a phage library that binds to IL-6R only in the presence of a calcium ion. Thermal dynamics and a crystal structure study revealed that the calcium ion binds to the heavy chain CDR3 region (HCDR3), which changes and possibly stabilizes the structure of HCDR3 to make it bind to antigen calcium dependently (PDB 5AZE). In vitro and in vivo studies confirmed that this calcium-dependent antigen-binding antibody can dissociate its antigen in the endosome and accelerate antigen clearance from plasma, making it a novel approach for generating recycling antibody. PMID:26496237

  2. Forced Complementation between Subgenomic RNAs: Does Human Immunodeficiency Type 1 Virus Reverse Transcription Occur in Viral Core, Cytoplasm, or Early Endosome?

    PubMed Central

    Han, Weining; Li, Yuejin; Bagaya, Bernard S.; Tian, Meijuan; Chamanian, Mastooreh; Zhu, Chuanwu; Shen, Jie; Gao, Yong

    2016-01-01

    Although the process of reverse transcription is well elucidated, it remains unclear if viral core disruption provides a more cellular or viral milieu for HIV-1 reverse transcription. We have devised a method to require mixing of viral cores or core constituents to produce infectious progeny virus by a bipartite subgenomic RNA (sgRNA) system, in which HIV-1 cplt_R/U5/gag/Δpol and nfl sgRNAs are complementary to each other and when together can complete viral reverse transcription. Only the heterodiploid virus containing both the nfl and cplt_R/U5/gag/Δpol sgRNAs can complete reverse transcription and propagate infectious virus upon de novo infection. Dual exposure of U87.CD4.CXCR4 cells with high titers of the homodimeric nfl and cplt_R/U5/gag/Δpol virus particles did not result in productive virus infection. On the other hand, in early endosomes, the HIV-1 sgRNAs released from viral cores can retain function and complete the reverse transcription and result in productive infection. These findings confirm the assumptions that, in natural infection, HIV-1 cores, and likely other retrovirus cores, remain largely intact and do not mix/fuse in the cytoplasm during the reverse transcription process, and circulating cytoplasmic HIV-1 sgRNA (produced through transfection) could not help the complementary sgRNA in the viral core to complement the reverse transcription process. PMID:27239643

  3. Effect of preoperative suggestion on postoperative gastrointestinal motility.

    PubMed Central

    Disbrow, E A; Bennett, H L; Owings, J T

    1993-01-01

    Autonomic behavior is subject to direct suggestion. We found that patients undergoing major operations benefit more from instruction than from information and reassurance. We compared the return of intestinal function after intra-abdominal operations in 2 groups of patients: the suggestion group received specific instructions for the early return of gastrointestinal motility, and the control group received an equal-length interview offering reassurance and nonspecific instructions. The suggestion group had a significantly shorter average time to the return of intestinal motility, 2.6 versus 4.1 days. Time to discharge was 6.5 versus 8.1 days. Covariates including duration of operation, amount of intraoperative bowel manipulation, and amount of postoperative narcotics were also examined using the statistical model analysis of covariance. An average savings of $1,200 per patient resulted from this simple 5-minute intervention. In summary, the use of specific physiologically active suggestions given preoperatively in a beleivable manner can reduce the morbidity associated with an intra-abdominal operation by reducing the duration of ileus. PMID:8342264

  4. UNC93B1 mediates differential trafficking of endosomal TLRs

    PubMed Central

    Lee, Bettina L; Moon, Joanne E; Shu, Jeffrey H; Yuan, Lin; Newman, Zachary R; Schekman, Randy; Barton, Gregory M

    2013-01-01

    UNC93B1, a multipass transmembrane protein required for TLR3, TLR7, TLR9, TLR11, TLR12, and TLR13 function, controls trafficking of TLRs from the endoplasmic reticulum (ER) to endolysosomes. The mechanisms by which UNC93B1 mediates these regulatory effects remain unclear. Here, we demonstrate that UNC93B1 enters the secretory pathway and directly controls the packaging of TLRs into COPII vesicles that bud from the ER. Unlike other COPII loading factors, UNC93B1 remains associated with the TLRs through post-Golgi sorting steps. Unexpectedly, these steps are different among endosomal TLRs. TLR9 requires UNC93B1-mediated recruitment of adaptor protein complex 2 (AP-2) for delivery to endolysosomes while TLR7, TLR11, TLR12, and TLR13 utilize alternative trafficking pathways. Thus, our study describes a mechanism for differential sorting of endosomal TLRs by UNC93B1, which may explain the distinct roles played by these receptors in certain autoimmune diseases. DOI: http://dx.doi.org/10.7554/eLife.00291.001 PMID:23426999

  5. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers.

    PubMed

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-07-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.

  6. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    PubMed Central

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-01-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments. PMID:27376327

  7. The Processed Amino-Terminal Fragment of Human TLR7 Acts as a Chaperone To Direct Human TLR7 into Endosomes

    PubMed Central

    Shepherd, Dawn; Booth, Sarah; Waithe, Dominic; Reis e Sousa, Caetano

    2015-01-01

    TLR7 mediates innate immune responses to viral RNA in endocytic compartments. Mouse and human (h)TLR7 undergo proteolytic cleavage, resulting in the generation of a C-terminal fragment that accumulates in endosomes and associates with the signaling adaptor MyD88 upon receptor triggering by TLR7 agonists. Although mouse TLR7 is cleaved in endosomes by acidic proteases, hTLR7 processing can occur at neutral pH throughout the secretory pathway through the activity of furin-like proprotein convertases. However, the mechanisms by which cleaved hTLR7 reaches the endosomal compartment remain unclear. In this study, we demonstrate that, after hTLR7 proteolytic processing, the liberated amino (N)-terminal fragment remains bound to the C terminus through disulfide bonds and provides key trafficking information that ensures correct delivery of the complex to endosomal compartments. In the absence of the N-terminal fragment, the C-terminal fragment is redirected to the cell surface, where it is functionally inactive. Our data reveal a novel role for the N terminus of hTLR7 as a molecular chaperone that provides processed hTLR7 with the correct targeting instructions to reach the endosomal compartment, hence ensuring its biological activity and preventing inadvertent cell surface responses to self-RNA. PMID:25917086

  8. Exopolysaccharide-Independent Social Motility of Myxococcus xanthus

    PubMed Central

    Hu, Wei; Hossain, Muhaiminu; Lux, Renate; Wang, Jing; Yang, Zhe; Li, Yuezhong; Shi, Wenyuan

    2011-01-01

    Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that “S motility” is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS- cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces. PMID:21245931

  9. Motility Determinants in WASP Family ProteinsD⃞

    PubMed Central

    Yarar, Defne; D'Alessio, Joseph A.; Jeng, Robert L.; Welch, Matthew D.

    2002-01-01

    In response to upstream signals, proteins in the Wiskott-Aldrich Syndrome protein (WASP) family regulate actin nucleation via the Arp2/3 complex. Despite intensive study of the function of WASP family proteins in nucleation, it is not yet understood how their distinct structural organization contributes to actin-based motility. Herein, we analyzed the activities of WASP and Scar1 truncation derivatives by using a bead-based motility assay. The minimal region of WASP sufficient to direct movement was the C-terminal WCA fragment, whereas the corresponding region of Scar1 was insufficient. In addition, the proline-rich regions of WASP and Scar1 and the Ena/VASP homology 1 (EVH1) domain of WASP independently enhanced motility rates. The contributions of these regions to motility could not be accounted for by their direct effects on actin nucleation with the Arp2/3 complex, suggesting that they stimulate motility by recruiting additional factors. We have identified profilin as one such factor. WASP- and Scar1-coated bead motility rates were significantly reduced by depletion of profilin and VASP and could be more efficiently rescued by a combination of VASP and wild-type profilin than by VASP and a mutant profilin that cannot bind proline-rich sequences. Moreover, motility of WASP WCA beads was not affected by the depletion or addback of VASP and profilin. Our results suggest that recruitment of factors, including profilin, by the proline-rich regions of WASP and Scar1 and the EVH1 domain of WASP stimulates cellular actin-based motility. PMID:12429845

  10. Comparison of orbital prosthesis motility following enucleation or evisceration with sclerotomy with or without a motility coupling post in dogs.

    PubMed

    Yi, Na Young; Park, Shin Ae; Jeong, Man Bok; Kim, Won Tae; Kim, Se Eun; Kim, Ji Youn; Chae, Je Min; Jang, Kyoung Jin; Seong, Je Kyung; Seo, Kang Moon

    2009-01-01

    To evaluate motility of silicone orbital implants and corneoscleral prostheses, with and without use of a motility coupling post (MCP) in dogs. Eighteen mixed-breed dogs. The motility of an orbital silicone implant and corneoscleral prosthesis after enucleation (n = 6), evisceration (n = 6), or use of a MCP with evisceration (n = 6) in dogs were compared. One eye from each dog had surgery whereas the opposite eye was used as a control. Clinical evaluations were performed three times a week. Histopathology of the orbital tissues was performed 8 and 12 weeks after surgery. Implant motility in dogs with evisceration (vertical movement [VM] 8.04 +/- 2.13; horizontal movement [HM] 11 +/- 3.05) and evisceration with MCP (VM 9.61 +/- 1.59); HM was significantly greater than the enucleation group (VM 0.51 +/- 0.5; HM 1.22 +/- 0.68) (P < 0.01). Prosthetic motility in dogs with evisceration with MCP was significantly greater than in dogs with evisceration; dogs with evisceration had significantly greater motility than dogs with enucleation (P < 0.01). No postoperative complications were observed in any of the groups. No significant abnormalities were noted on histopathology. MCP placement in silicone orbital implants significantly enhanced the prosthetic motility in dogs. This study supports the use of MCP in silicone orbital implants to enhance corneoscleral prosthesis motility and cosmetics in dogs.

  11. Mechanisms of polarized membrane trafficking in neurons – focusing in on endosomes

    PubMed Central

    Lasiecka, Zofia M.; Winckler, Bettina

    2011-01-01

    Neurons are polarized cells that have a complex and unique morphology: long processes (axons and dendrites) extending far from the cell body. In addition, the somatodendritic and axonal domains are further divided into specific subdomains, such as synapses (pre- and postsynaptic specializations), proximal and distal dendrites, axon initial segments, nodes of Ranvier, and axon growth cones. The striking asymmetry and complexity of neuronal cells is necessary for their function in receiving, processing and transferring electrical signals, with each domain playing a precise function in these processes. In order to establish and maintain distinct neuronal domains, mechanisms must exist for protein delivery to specific neuronal compartments, such that each compartment has the correct functional molecular composition. How polarized membrane domains are established and maintained is a long-standing question. Transmembrane proteins, such as receptors and adhesion molecules, can be transported to their proper membrane domains by several pathways. The biosynthetic secretory system delivers newly synthesized transmembrane proteins from the ER-Golgi via the trans-Golgi network (TGN) to the plasma membrane. In addition, the endosomal system is critically involved in many instances in ensuring proper (re)targeting of membrane components because it can internalize and degrade mislocalized proteins, or recycle proteins from one domain to another. The endosomal system is thus crucial for establishing and maintaining neuronal polarity. In this review, we focus mainly on the intracellular compartments that serve as sorting stations for polarized transport, with particular emphasis on the emerging roles of endosomes. PMID:21762782

  12. Gαs regulates Glucagon-Like Peptide 1 Receptor-mediated cyclic AMP generation at Rab5 endosomal compartment.

    PubMed

    Girada, Shravan Babu; Kuna, Ramya S; Bele, Shilpak; Zhu, Zhimeng; Chakravarthi, N R; DiMarchi, Richard D; Mitra, Prasenjit

    2017-10-01

    Upon activation, G protein coupled receptors (GPCRs) associate with heterotrimeric G proteins at the plasma membrane to initiate second messenger signaling. Subsequently, the activated receptor experiences desensitization, internalization, and recycling back to the plasma membrane, or it undergoes lysosomal degradation. Recent reports highlight specific cases of persistent cyclic AMP generation by internalized GPCRs, although the functional significance and mechanistic details remain to be defined. Cyclic AMP generation from internalized Glucagon-Like Peptide-1 Receptor (GLP-1R) has previously been reported from our laboratory. This study aimed at deciphering the molecular mechanism by which internalized GLP-R supports sustained cyclic AMP generation upon receptor activation in pancreatic beta cells. We studied the time course of cyclic AMP generation following GLP-1R activation with particular emphasis on defining the location where cyclic AMP is generated. Detection involved a novel GLP-1 conjugate coupled with immunofluorescence using specific endosomal markers. Finally, we employed co-immunoprecipitation as well as immunofluorescence to assess the protein-protein interactions that regulate GLP-1R mediated cyclic AMP generation at endosomes. Our data reveal that prolonged association of G protein α subunit Gαs with activated GLP-1R contributed to sustained cyclic AMP generation at Rab 5 endosomal compartment. The findings provide the mechanism of endosomal cyclic AMP generation following GLP-1R activation. We identified the specific compartment that serves as an organizing center to generate endosomal cyclic AMP by internalized activated receptor complex. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  13. Decoupling Internalization, Acidification and Phagosmal-Endosomal/Iysosomal Phagocytosis of Internalin A coated Beads in epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchette, C D; Woo, Y; Thomas, C

    2008-12-22

    Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established, and in several cases, it was treated as a one-step process. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells, such as epithelial cells. Therefore, in this study, we developed a simple and novel method to decouple and accurately measure particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) andmore » Caco-2 epithelial cells. Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated internalization. We achieved independent measurements of the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, pH sensitive dyes and endosomal/lysosomal dyes, as follows: the rate of InlA bead internalization was measured via antibody quenching of a pH independent dye (Alexa488) conjugated to InlA-beads, the rate at which phagosomes containing internalized InlA beads became acidified was measured using a pH dependent dye (FITC) conjugated to the beads and the rate of phagosomal-endosomal/lysosomal fusion was measured using a combination of unlabeled InlA-beads and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we also exploited the phagosomal acidification process to

  14. Computational approaches to substrate-based cell motility

    DOE PAGES

    Ziebert, Falko; Aranson, Igor S.

    2016-07-15

    Substrate-based crawling motility of eukaryotic cells is essential for many biological functions, both in developing and mature organisms. Motility dysfunctions are involved in several life-threatening pathologies such as cancer and metastasis. Motile cells are also a natural realization of active, self-propelled ‘particles’, a popular research topic in nonequilibrium physics. Finally, from the materials perspective, assemblies of motile cells and evolving tissues constitute a class of adaptive self-healing materials that respond to the topography, elasticity, and surface chemistry of the environment and react to external stimuli. Although a comprehensive understanding of substrate-based cell motility remains elusive, progress has been achieved recentlymore » in its modeling on the whole cell level. Furthermore we survey the most recent advances in computational approaches to cell movement and demonstrate how these models improve our understanding of complex self-organized systems such as living cells.« less

  15. Self-organized cell motility

    NASA Astrophysics Data System (ADS)

    Du, Xinxin; Doubrovinski, Konstantin

    2011-03-01

    Cell migration plays a key role in a wide range of biological phenomena, such as morphogenesis, chemotaxis, and wound healing. Cell locomotion relies on the cytoskeleton, a meshwork of filamentous proteins, intrinsically out of thermodynamic equilibrium and cross-linked by molecular motors, proteins that turn chemical energy into mechanical work. In the course of locomotion, cells remain polarized, i.e. they retain a single direction of motion in the absence of external cues. Traditionally, polarization has been attributed to intracellular signaling. However, recent experiments show that polarization may be a consequence of self-organized cytoskeletal dynamics. Our aim is to elucidate the mechanisms by which persistent unidirectional locomotion may arise through simple mechanical interactions of the cytoskeletal proteins. To this end, we develop a simple physical description of cytoskeletal dynamics. We find that the proposed description accounts for a range of phenomena associated with cell motility, including spontaneous polarization, persistent unidirectional motion, and the co-existence of motile and non-motile states.

  16. Motility modes of the parasite Trypanosoma brucei

    NASA Astrophysics Data System (ADS)

    Temel, Fatma Zeynep; Qu, Zijie; McAllaster, Michael; de Graffenried, Christopher; Breuer, Kenneth

    2015-11-01

    The parasitic single-celled protozoan Trypanosoma brucei causes African Sleeping Sickness, which is a fatal disease in humans and animals that threatens more than 60 million people in 36 African countries. Cell motility plays a critical role in the developmental phases and dissemination of the parasite. Unlike many other motile cells such as bacteria Escherichia coli or Caulobacter crescentus, the flagellum of T. brucei is attached along the length of its awl-like body, producing a unique mode of motility that is not fully understood or characterized. Here, we report on the motility of T. brucei, which swims using its single flagellum employing both rotating and undulating propulsion modes. We tracked cells in real-time in three dimensions using fluorescent microscopy. Data obtained from experiments using both short-term tracking within the field of view and long-term tracking using a tracking microscope were analyzed. Motility modes and swimming speed were analyzed as functions of cell size, rotation rate and undulation pattern. Research supported by NSF.

  17. Cytomegalovirus immune evasion by perturbation of endosomal trafficking

    PubMed Central

    Lučin, Pero; Mahmutefendić, Hana; Blagojević Zagorac, Gordana; Ilić Tomaš, Maja

    2015-01-01

    Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms. PMID:25263490

  18. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a device used to measure peristalic activity or pressure in the stomach or esophagus by means of a probe...

  19. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA.

    PubMed

    Zhu, Jia; Qiao, Mingxi; Wang, Qi; Ye, Yuqing; Ba, Shuang; Ma, Jingjing; Hu, Haiyang; Zhao, Xiuli; Chen, Dawei

    2018-04-01

    Despite the extracellular barriers for siRNA delivery have been overcome by utilizing advanced nanoparticle delivery systems, the key intracellular barriers after internalization including efficient disassembly of siRNA and endosomal escape still remains challenging. To address the issues, we developed a unique pH- and redox potential-responsive polyplex delivery system based on the copolymer of mPEG-b-PLA-PHis-ssPEI1.8 k, which is composed of a pH-responsive copolymer of PEG-b-PLA-PHis (Mw 5 k) and a branched PEI (Mw1.8 k) linked with redox cleavable disulfide bond. The copolymer showed excellent siRNA complexation and protection abilities against endogenous substances at the relatively low N/P ratio of 6. The siRNA release from the polyplexes (N/P 6) was markedly increased from 13.62% to 58.67% under conditions simulating the endosomal microenvironment. Fluorescence resonance energy transfer (FRET) test also indicated a higher disassembly extent of siRNA from the copolymer. The accelerated siRNA release from the polyplexes was markedly restrained when the N/P ratio was raised above 10 due to the increasing of electrostatic interactions. The efficient endosomal escape of siRNA after internalization was confirmed by confocal microscopy, which was attributed to the cleavaged PEI chains inducing membrane destabilization, the "proton sponge effect" of PHis and PEI as well as the relative small size of after disassembly. The enhanced disassembly and endosomal escape were elucidated as the leading cause for polyplexes (N/P 6) showed more efficient Bcl-2 silencing (85.45%) than those polyplexes with higher N/P ratios (N/P 10 and 15). In vivo results further demonstrated that polyplexes (N/P 6) delivery of siBcl-2 significantly inhibited the MCF-7 breast tumor growth as compared to its counterparts. The incorporation of convertible non-electrical interactions at a balance with electrostatic interactions in complexation siRNA has been demonstrated as an effective

  20. The protein transportation pathway from Golgi to vacuoles via endosomes plays a role in enhancement of methylmercury toxicity

    NASA Astrophysics Data System (ADS)

    Hwang, Gi-Wook; Murai, Yasutaka; Takahashi, Tsutomu; Naganuma, Akira

    2014-07-01

    Methylmercury causes serious damage to the central nervous system, but the molecular mechanisms of methylmercury toxicity are only marginally understood. In this study, we used a gene-deletion mutant library of budding yeast to conduct genome-wide screening for gene knockouts affecting the sensitivity of methylmercury toxicity. We successfully identified 31 genes whose deletions confer resistance to methylmercury in yeast, and 18 genes whose deletions confer hypersensitivity to methylmercury. Yeast genes whose deletions conferred resistance to methylmercury included many gene encoding factors involved in protein transport to vacuoles. Detailed examination of the relationship between the factors involved in this transport system and methylmercury toxicity revealed that mutants with loss of the factors involved in the transportation pathway from the trans-Golgi network (TGN) to the endosome, protein uptake into the endosome, and endosome-vacuole fusion showed higher methylmercury resistance than did wild-type yeast. The results of our genetic engineering study suggest that this vesicle transport system (proteins moving from the TGN to vacuole via endosome) is responsible for enhancing methylmercury toxicity due to the interrelationship between the pathways. There is a possibility that there may be proteins in the cell that enhance methylmercury toxicity through the protein transport system.

  1. Contribution of flagella and motility to gut colonisation and pathogenicity of Salmonella Enteritidis in the chicken.

    PubMed

    Barbosa, Fernanda de Oliveira; Freitas Neto, Oliveiro Caetano de; Batista, Diego Felipe Alves; Almeida, Adriana Maria de; Rubio, Marcela da Silva; Alves, Lucas Bocchini Rodrigues; Vasconcelos, Rosemeire de Oliveira; Barrow, Paul Andrew; Berchieri Junior, Angelo

    Salmonella Enteritidis causes fowl paratyphoid in poultry and is frequently associated to outbreaks of food-borne diseases in humans. The role of flagella and flagella-mediated motility into host-pathogen interplay is not fully understood and requires further investigation. In this study, one-day-old chickens were challenged orally with a wild-type strain Salmonella Enteritidis, a non-motile but fully flagellated (SE ΔmotB) or non-flagellated (SE ΔfliC) strain to evaluate their ability to colonise the intestine and spread systemically and also of eliciting gross and histopathological changes. SE ΔmotB and SE ΔfliC were recovered in significantly lower numbers from caecal contents in comparison with Salmonella Enteritidis at early stages of infection (3 and 5dpi). The SE ΔmotB strain, which synthesises paralysed flagella, showed poorer intestinal colonisation ability than the non-flagellated SE ΔfliC. Histopathological analyses demonstrated that the flagellated strains induced more intense lymphoid reactivity in liver, ileum and caeca. Thus, in the present study the flagellar structure and motility seemed to play a role in the early stages of the intestinal colonisation by Salmonella Enteritidis in the chicken. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. [Thyroid-intestinal motility interactions summary].

    PubMed

    Pustorino, S; Foti, M; Calipari, G; Pustorino, E; Ferraro, R; Guerrisi, O; Germanotta, G

    2004-12-01

    Thyroid diseases may be related to gastrointestinal motility symptoms. Such symptoms can vary in degree and, sometimes, are the only clue of a thyroid disease or, at least, the first. The mechanism by which the thyroid hormones can influence gastrointestinal motility, even if not still completely elucidated, can be found in a synergism between a direct effect of the thyronins and an indirect effect mediated by cathecolamines on the muscle cell receptors. Neck discomfort and dysphagia are common findings in patients with thyroid diseases. Hyper- and hypothyroidism can impair esophageal motility, modifying pharyngo-esophageal structure and/or muscular function and interacting with the neuro-humoral regulation of the esophageal peristalsis. Oesophageal motility alterations, observed in patients affected by small non-toxic goiter, are less understandable. At the gastro-duodenal level, basic and postprandial electric rhythm alterations have been observed in hyperthyroid patients, often associated with delayed gastric emptying, too. In such patients, the autonomous nervous system dysfunction may even modify the neuro-hormonal mutual regulation (vagal influence decrease) of the gastro-duodenal myoelectric activity. Hypothyroidism may cause a delay of the gastric emptying too, but such pattern may also be related to an associated autoimmune disease or to an independent chronic modification of the gastric mucosa. Diarrhoea and malabsorption are common findings together with hyperthyroidism, whereas constipation is frequently observed in hypothyroidism. The clinically most demanding situation is certainly the secondary chronic intestinal pseudo-obstruction syndrome, which involves the bowel in most cases, but may also show up by means of a mega-small bowel or a mega-duodenum, or even all of the above. In conclusion it may be stated that: 1) thyroid diseases may be related to symptoms due to digestive motility dysfunction. 2) Any segment of the gastrointestinal trait may be

  3. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin.

    PubMed

    Lesteberg, Kelsey; Orange, Jordan; Makedonas, George

    2017-10-01

    Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein, we aimed to determine how new perforin transits to the synapse if not via lytic granules. We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response.

  4. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin

    PubMed Central

    Lesteberg, Kelsey E.; Orange, Jordan S.; Makedonas, George

    2018-01-01

    Background Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein we aimed to determine how new perforin transits to the synapse if not via lytic granules. Results We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. Conclusions The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response. PMID:28822075

  5. Chemokinetic motility responses of the cyanobacterium oscillatoria terebriformis

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Castenholz, Richard W.

    1989-01-01

    Oscillatoria terebriformis, a gliding, filamentous, thermophilic cyanobacterium, exhibited an inhibition of gliding motility upon exposure to fructose. The observed response was transient, and the duration of nonmotility was directly proportional to the concentration of fructose. Upon resumption of motility, the rate of motility was also inversely proportional to the concentration of fructose. Sulfide caused a similar response. The effect of sulfide was specific and not due to either anoxia or negative redox potential. Exposure to glucose, acetate, lactate, or mat interstitial water did not elicit any motility response.

  6. Measurement of anal pressure and motility.

    PubMed Central

    Hancock, B D

    1976-01-01

    A fine open perfused system and a closed balloon system for the measurement of anal pressure and motility have been compared. Measurements were made in 40 normal subjects and 84 patients with haemorrhoids. The rate of perfusion had a marked effect on the recorded pressure and motility details. The motility pattern was seen most clearly with the balloon probe and the pressure recorded was reproducible and easy to measure, making this a convenient method for recording activity of the internal anal sphincter. Anal motility in normal subjects was characterised by slow pressure waves (10-20/min). The frequency was fastest in the distal anal canal and this frequency gradient may represent a normal mechanism to keep the anal canal empty. Ultra slow pressure waves (0-6-1-9/min) were seen in 42% of patients with haemorrhoids and 5% of normal subjects and arose from a synchronous contraction of the whole internal sphincter. Images Fig. 1 PMID:976803

  7. Notch/Her12 signalling modulates, motile/immotile cilia ratio downstream of Foxj1a in zebrafish left-right organizer

    PubMed Central

    Sampaio, Pedro; Pestana, Sara; Pinto, Andreia; Vaz, Andreia; Roxo-Rosa, Mónica; Gardner, Rui; Lopes, Telma; Schilling, Britta; Henry, Ian; Saúde, Leonor

    2017-01-01

    Foxj1a is necessary and sufficient to specify motile cilia. Using transcriptional studies and slow-scan two-photon live imaging capable of identifying the number of motile and immotile cilia, we now established that the final number of motile cilia depends on Notch signalling (NS). We found that despite all left-right organizer (LRO) cells express foxj1a and the ciliary axonemes of these cells have dynein arms, some cilia remain immotile. We identified that this decision is taken early in development in the Kupffer’s Vesicle (KV) precursors the readout being her12 transcription. We demonstrate that overexpression of either her12 or Notch intracellular domain (NICD) increases the number of immotile cilia at the expense of motile cilia, and leads to an accumulation of immotile cilia at the anterior half of the KV. This disrupts the normal fluid flow intensity and pattern, with consequent impact on dand5 expression pattern and left-right (L-R) axis establishment. PMID:28875937

  8. Uncovering the Mystery of Gliding Motility in the Myxobacteria

    PubMed Central

    Nan, Beiyan; Zusman, David R.

    2012-01-01

    Bacterial gliding motility is the smooth movement of cells on solid surfaces unaided by flagella or pili. Many diverse groups of bacteria exhibit gliding, but the mechanism of gliding motility has remained a mystery since it was first observed more than a century ago. Recent studies on the motility of Myxococcus xanthus, a soil myxobacterium, suggest a likely mechanism for gliding in this organism. About forty M. xanthus genes were shown to be involved in gliding motility, and some of their protein products were labeled and localized within cells. These studies suggest that gliding motility in M. xanthus involves large multiprotein structural complexes, regulatory proteins, and cytoskeletal filaments. In this review, we summarize recent experiments that provide the basis for this emerging view of M. xanthus motility. We also discuss alternative models for gliding. PMID:21910630

  9. Transverse loop colostomy and colonic motility.

    PubMed

    Pucciani, F; Ringressi, M N; Maltinti, G; Bechi, P

    2014-11-01

    The motility of the defunctionalized colon, distal to transverse loop colostomy, has never been studied "in vivo." The aim of our study was to evaluate the influence of transverse loop colostomy on colonic motility. Thirteen patients were examined before stoma closure by means of clinical evaluation and colonic manometry; we studied both the right and distal colon in both fasting and fed patients in order to detect motor activity. Quantitative and qualitative manometric analyses showed that the diverted colon had motor activity even if no regular colonic motor pattern was observed. The spreading of aboral propagated contractions (PCs) was sometimes recorded from the right colon to the distal colon. The response of the proximal and distal colon to a standard meal, when compared to fasting values, increased more than 40 and 35 %, respectively. Stool and gas ejections from the colostomy were never related to a particular type of colonic motility: Motor quiescence such as PCs was chaotically related to stool escape. In conclusion, motility of the defunctionalized colon is preserved in patients with transverse loop colostomy.

  10. Pattern-formation mechanisms in motility mutants of Myxococcus xanthus

    PubMed Central

    Starruß, Jörn; Peruani, Fernando; Jakovljevic, Vladimir; Søgaard-Andersen, Lotte; Deutsch, Andreas; Bär, Markus

    2012-01-01

    Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of the rod-shaped cells of the bacterium Myxococcus xanthus depends on two motility machineries, type IV pili (giving rise to S-motility) and the gliding motility apparatus (giving rise to A-motility). Cell motility is regulated by occasional reversals. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies, depending on their nutritional status. To ultimately understand these two pattern-formation processes and the contributions by the two motility machineries, as well as the cell reversal machinery, we analyse spatial self-organization in three M. xanthus strains: (i) a mutant that moves unidirectionally without reversing by the A-motility system only, (ii) a unidirectional mutant that is also equipped with the S-motility system, and (iii) the wild-type that, in addition to the two motility systems, occasionally reverses its direction of movement. The mutant moving by means of the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria owing to steric interactions of the rod-shaped cells, without the need of invoking any biochemical signal regulation. The two-engine strain mutant reveals that the same phenomenon emerges when both motility systems are present, and as long as cells exhibit unidirectional motion only. From the study of these two strains, we conclude that unidirectional cell motion induces the formation of large moving clusters at low and intermediate densities, while it results in vortex formation at very high densities. These findings are consistent with what is known from self-propelled rod models, which strongly suggests that the combined effect of self-propulsion and volume exclusion interactions is the pattern-formation mechanism leading to the observed phenomena. On the other hand, we learn that when cells occasionally reverse

  11. Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction

    PubMed Central

    Gray, Lindsay; Tsurudome, Kazuya; El-Mounzer, Wassim; Elazzouzi, Fatima; Baim, Christopher; Calderon, Mario R.; Kauwe, Grant

    2018-01-01

    Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons. PMID:29373576

  12. Toward the reconstitution of synthetic cell motility

    PubMed Central

    Siton-Mendelson, Orit; Bernheim-Groswasser, Anne

    2016-01-01

    ABSTRACT Cellular motility is a fundamental process essential for embryonic development, wound healing, immune responses, and tissues development. Cells are mostly moving by crawling on external, or inside, substrates which can differ in their surface composition, geometry, and dimensionality. Cells can adopt different migration phenotypes, e.g., bleb-based and protrusion-based, depending on myosin contractility, surface adhesion, and cell confinement. In the few past decades, research on cell motility has focused on uncovering the major molecular players and their order of events. Despite major progresses, our ability to infer on the collective behavior from the molecular properties remains a major challenge, especially because cell migration integrates numerous chemical and mechanical processes that are coupled via feedbacks that span over large range of time and length scales. For this reason, reconstituted model systems were developed. These systems allow for full control of the molecular constituents and various system parameters, thereby providing insight into their individual roles and functions. In this review we describe the various reconstituted model systems that were developed in the past decades. Because of the multiple steps involved in cell motility and the complexity of the overall process, most of the model systems focus on very specific aspects of the individual steps of cell motility. Here we describe the main advancement in cell motility reconstitution and discuss the main challenges toward the realization of a synthetic motile cell. PMID:27019160

  13. Esophageal motility in eosinophilic esophagitis.

    PubMed

    Weiss, A H; Iorio, N; Schey, R

    2015-01-01

    Eosinophilic esophagitis (EoE) is characterized by eosinophilic infiltration of the esophagus and is a potential cause of dysphagia and food impaction, most commonly affecting young men. Esophageal manometry findings vary from normal motility to aperistalsis, simultaneous contractions, diffuse esophageal spasm, nutcracker esophagus or hypotonic lower esophageal sphincter (LES). It remains unclear whether esophageal dysmotility plays a significant role in the clinical symptoms of EoE. Our aim is to review the pathogenesis, diagnosis, and effect of treatment on esophageal dysmotility in EoE. A literature search utilizing the PubMed database was performed using keywords: eosinophilic esophagitis, esophageal dysmotility, motility, manometry, impedance planimetry, barium esophagogram, endoscopic ultrasound, and dysphagia. Fifteen studies, totaling 387 patients with eosinophilic esophagitis were identified as keeping in accordance with the aim of this study and included in this review. The occurrence of abnormal esophageal manometry was reported to be between 4 and 87% among patients with EoE. Esophageal motility studies have shown reduced distensibility, abnormal peristalsis, and hypotonicity of the LES in patients with EoE, which may also mimic other esophageal motility disorders such as achalasia or nutcracker esophagus. Studies have shown conflicting results regarding the presence of esophageal dysmotility and symptoms with some reports suggesting a higher rate of food impaction, while others report no correlation between motor function and dysphagia. Motility dysfunction of the esophagus in EoE has not been well reported in the literature and studies have reported conflicting evidence regarding the clinical significance of dysmotility seen in EoE. The correlation between esophageal dysmotility and symptoms of EoE remains unclear. Larger studies are needed to investigate the incidence of esophageal dysmotility, clinical implications, and effect of treatment on

  14. Disruption of TgPHIL1 Alters Specific Parameters of Toxoplasma gondii Motility Measured in a Quantitative, Three-Dimensional Live Motility Assay

    PubMed Central

    Leung, Jacqueline M.; Rould, Mark A.; Konradt, Christoph; Hunter, Christopher A.; Ward, Gary E.

    2014-01-01

    T. gondii uses substrate-dependent gliding motility to invade cells of its hosts, egress from these cells at the end of its lytic cycle and disseminate through the host organism during infection. The ability of the parasite to move is therefore critical for its virulence. T. gondii engages in three distinct types of gliding motility on coated two-dimensional surfaces: twirling, circular gliding and helical gliding. We show here that motility in a three-dimensional Matrigel-based environment is strikingly different, in that all parasites move in irregular corkscrew-like trajectories. Methods developed for quantitative analysis of motility parameters along the smoothed trajectories demonstrate a complex but periodic pattern of motility with mean and maximum velocities of 0.58±0.07 µm/s and 2.01±0.17 µm/s, respectively. To test how a change in the parasite's crescent shape might affect trajectory parameters, we compared the motility of Δphil1 parasites, which are shorter and wider than wild type, to the corresponding parental and complemented lines. Although comparable percentages of parasites were moving for all three lines, the Δphil1 mutant exhibited significantly decreased trajectory lengths and mean and maximum velocities compared to the parental parasite line. These effects were either partially or fully restored upon complementation of the Δphil1 mutant. These results show that alterations in morphology may have a significant impact on T. gondii motility in an extracellular matrix-like environment, provide a possible explanation for the decreased fitness of Δphil1 parasites in vivo, and demonstrate the utility of the quantitative three-dimensional assay for studying parasite motility. PMID:24489670

  15. Real-time analysis of endosomal lipid transport by live cell scintillation proximity assay

    PubMed Central

    Stockinger, Walter; Castoreno, Adam B.; Wang, Yan; Pagnon, Joanne C.; Nohturfft, Axel

    2007-01-01

    A scintillation proximity assay has been developed to study the endosomal trafficking of radiolabeled cholesterol in living cells. Mouse macrophages were cultured in the presence of tritiated cholesterol and scintillant microspheres. Microspheres were taken up by phagocytosis and stored in phagolysosomes. Absorption of tritium β particles by the scintillant produces light signals that can be measured in standard scintillation counters. Because of the short range of tritium β particles and for geometric reasons, scintillant microspheres detect only that fraction of tritiated cholesterol localized inside phagolysosomes or within a distance of ~600 nm. By incubating cultures in a temperature-controlled microplate reader, the kinetics of phagocytosis and cholesterol transport could be analyzed in near-real time. Scintillation signals were significantly increased in response to inhibitors of lysosomal cholesterol export. This method should prove a useful new tool for the study of endosomal trafficking of lipids and other molecules. PMID:15314094

  16. GRASP1 regulates synaptic plasticity and learning through endosomal recycling of AMPA receptors

    PubMed Central

    Chiu, Shu-Ling; Diering, Graham Hugh; Ye, Bing; Takamiya, Kogo; Chen, Chih-Ming; Jiang, Yuwu; Niranjan, Tejasvi; Schwartz, Charles E.; Wang, Tao; Huganir, Richard L.

    2017-01-01

    Summary Learning depends on experience-dependent modification of synaptic efficacy and neuronal connectivity in the brain. We provide direct evidence for physiological roles of the recycling endosome protein GRASP1 in glutamatergic synapse function and animal behavior. Mice lacking GRASP1 showed abnormal excitatory synapse number, synaptic plasticity and hippocampal-dependent learning and memory due to a failure in learning-induced synaptic AMPAR incorporation. We identified two GRASP1 point mutations from intellectual disability (ID) patients that showed convergent disruptive effects on AMPAR recycling and glutamate uncaging-induced structural and functional plasticity. Wild-type GRASP1, but not ID mutants, rescues spine loss in hippocampal CA1 neurons of Grasp1 knockout mice. Together, these results demonstrate a requirement for normal recycling endosome function in AMPAR-dependent synaptic function and neuronal connectivity in vivo, and suggest a potential role for GRASP1 in the pathophysiology of human cognitive disorders. PMID:28285821

  17. The Wireless Motility Capsule: a One-Stop Shop for the Evaluation of GI Motility Disorders.

    PubMed

    Saad, Richard J

    2016-03-01

    The wireless motility and pH capsule (WMC) provides an office-based test to simultaneously assess both regional and whole gut transit. Ingestion of this non-digestible capsule capable of measuring temperature, pH, and the pressure of its immediate surroundings allows for the measurement of gastric, small bowel, and colonic transit times in an ambulatory setting. Approved by the US Food and Drug Administration for the evaluation of suspected conditions of delayed gastric emptying and the evaluation of colonic transit in chronic idiopathic constipation, WMC should be considered in suspected gastrointestinal motility disorders as it provides a single study capable of simultaneously assessing for regional, multiregional, or generalized motility disorders. Specific indications for testing with the WMC should include the evaluation of suspect cases of gastroparesis, small bowel dysmotility, and slow transit constipation, as well as symptom syndromes suggestive of a multiregional or generalized gastrointestinal transit delay.

  18. Effects of Surface Passivation on Gliding Motility Assays

    PubMed Central

    Maloney, Andy; Herskowitz, Lawrence J.; Koch, Steven J.

    2011-01-01

    In this study, we report differences in the observed gliding speed of microtubules dependent on the choice of bovine casein used as a surface passivator. We observed differences in both speed and support of microtubules in each of the assays. Whole casein, comprised of αs1, αs2, β, and κ casein, supported motility and averaged speeds of 966±7 nm/s. Alpha casein can be purchased as a combination of αs1 and αs2 and supported gliding motility and average speeds of 949±4 nm/s. Beta casein did not support motility very well and averaged speeds of 870±30 nm/s. Kappa casein supported motility very poorly and we were unable to obtain an average speed. Finally, we observed that mixing alpha, beta, and kappa casein with the proportions found in bovine whole casein supported motility and averaged speeds of 966±6 nm/s. PMID:21674032

  19. Effects of prophylactic incisional gastropexy on markers of gastric motility in dogs as determined by use of a novel wireless motility device.

    PubMed

    Gazzola, Krista M; Nelson, Laura L; Fritz, Michele C; Clancy, Michelle R; Hauptman, Joe G

    2017-01-01

    OBJECTIVE To evaluate effects of laparoscopic-assisted incisional gastropexy (LAIG) on gastric motility in dogs by use of a wireless motility device (WMD). ANIMALS 10 healthy client-owned large or giant-breed dogs. PROCEDURES 10 dogs owned by clients interested in prophylactic LAIG were enrolled. To determine effects of LAIG on gastrointestinal motility in dogs during the nonfed state, each dog was evaluated by use of a noninvasive WMD before and > 4 weeks after LAIG. All dogs underwent LAIG, with or without concurrent elective gonadectomy. Data obtained before and after LAIG were analyzed by use of proprietary software to determine the gastric emptying time, small bowel transit time, large bowel transit time, whole bowel transit time, and motility index. RESULTS No changes in variables were detected between measurements obtained before and after prophylactic LAIG. CONCLUSIONS AND CLINICAL RELEVANCE In this study, prophylactic LAIG did not have an effect on gastrointestinal motility. The WMD was tolerated well by all dogs and appeared to be a safe and effective method for evaluating gastrointestinal motility in this population of dogs.

  20. In Silico Reconstitution of Actin-Based Symmetry Breaking and Motility

    PubMed Central

    Dayel, Mark J.; Akin, Orkun; Landeryou, Mark; Risca, Viviana; Mogilner, Alex; Mullins, R. Dyche

    2009-01-01

    Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system. PMID:19771152

  1. Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.

    2009-09-11

    G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesizemore » that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.« less

  2. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex.

    PubMed

    Lackey, Chantal A; Press, Oliver W; Hoffman, Allan S; Stayton, Patrick S

    2002-01-01

    Poly(propylacrylic acid) (PPAAc) is a synthetic pH-responsive polymer that has been shown to disrupt cell membranes at low pH values typical of the endosome, but not at physiological pH, suggesting its use as an endosomal-releasing agent [Murthy et al. J. Controlled Release 61, 137-43]. We have constructed an antibody-targeted biotherapeutic model to investigate whether PPAAc can enhance intracellular trafficking of proteins to the cytoplasm. A ternary complex composed of a biotinylated anti-CD3 antibody, streptavidin, and biotinylated PPAAc was fluorescently labeled, and its intracellular fate was analyzed by confocal microscopy, flow cytometry, and quantitative western blotting of cell fractionates. The 64.1 anti-CD3 antibody was previously shown to direct receptor-mediated endocytosis in the Jurkat T-cell lymphoma cell line and was rapidly trafficked from the endosome to the lysosomal compartment. The antibody-streptavidin complex was also rapidly internalized to the endosomal/lysosomal compartment and retained there, as evidenced by punctate regions of fluorescence observed by confocal fluorescence microscopy. In samples containing the ternary complex of antibody, streptavidin, and PPAAc-biotin, diffuse fluorescence in the cytoplasm was observed, indicating that PPAAc enhanced translocation to the cytoplasm. This was confirmed by western blotting analysis of the isolated cytoplasm. Flow cytometry results demonstrated that neither streptavidin nor PPAAc caused nonspecific uptake of the complex, nor did they inhibit antibody-mediated endocytosis. The striking enhancement of protein delivery to the cytoplasm by complexed PPAAc suggests that this polymer could provide a new delivery agent for therapeutic, vaccine, and diagnostics development.

  3. Spirochete motility and morpholgy

    NASA Astrophysics Data System (ADS)

    Charon, Nyles

    2004-03-01

    Spirochetes have a unique structure, and as a result their motility is different from that of other bacteria. These organisms can swim in a highly viscous, gel-like medium, such as that found in connective tissue, that inhibits the motility of most other bacteria. In spirochetes, the organelles for motility, the periplasmic flagella, reside inside the cell within the periplasmic space. A given periplasmic flagellum is attached only at one end of the cell, and depending on the species, may or may not overlap in the center of the cell. The number of periplasmic flagella varies from species to species. These structures have been shown to be directly involved in motility and function by rotating within the periplasmic space (1). The present talk focuses on the spirochete that causes Lyme disease, Borrelia burgdorferi. In many bacterial species, cell shape is usually dictated by the peptidoyglycan layer of the cell wall. In the first part of the talk, results will be presented that the morphology of B. burgdorferi is the result of a complex interaction between the cell cylinder and the internal periplasmic flagella resulting in a cell with a flat-wave morphology. Backward moving, propagating waves enable these bacteria to swim and translate in a given direction. Using targeted mutagenesis, we inactivated the gene encoding the major periplasmic flagellar filament protein FlaB. The resulting flaB mutants not only were non-motile, but were rod-shaped (2). Western blot analysis indicated that flaB was no longer synthesized, and electron microscopy revealed that the mutants were completely deficient in periplasmic flagella. Our results indicate that the periplasmic flagella of B. burgdorferi have a skeletal function. These organelles dynamically interact with the rod-shaped cell cylinder to enable the cell to swim, and to confer in part its flat-wave morphology The latter part of the talk concerns the basis for asymmetrical rotation of the periplasmic flagella of B

  4. Exploratory Research on Latent Esophageal Motility Disorders in Dysphagia Patients.

    PubMed

    Kawaguchi, Shinpei; Takeuchi, Toshihisa; Inoue, Yousuke; Takahashi, Yoshiaki; Ozaki, Haruhiko; Ota, Kazuhiro; Harada, Satoshi; Edogawa, Shoko; Kojima, Yuichi; Yamashita, Hiroshi; Fukuchi, Takumi; Ashida, Kiyoshi; Higuchi, Kazuhide

    2017-01-01

    High-resolution manometry (HRM) has been applied to assess esophageal motility disorders. However, the frequency and types of motility disorders in patients with dysphagia, which are frequently seen in clinical practice, are not clear. We evaluated latent esophageal motility disorders associated with dysphagia. The study included patients without erosive esophageal mucosal damage and with dysphagia symptoms refractory to at least 8 weeks of standard-dose proton pump inhibitors. After enrolment, HRM was used to evaluate for esophageal motility disorder based on the Chicago classification. Esophageal motility disorder was found in 58 of 100 patients and was classified based on the causes: achalasia (13%), esophagogastric junction outflow obstruction (16%), distal esophageal spasms (3%), weak peristalsis (14%), frequently failed peristalsis (5%), and hypertensive peristalsis (7%). Primary esophageal motility disorder was found in approximately 50% of cases in dysphagia patients. Therefore, esophageal motility disorder is not an uncommon condition and should be sought for in order to elucidate precisely the cause of dysphagia. © 2017 S. Karger AG, Basel.

  5. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval

    PubMed Central

    Hirst, Jennifer; Itzhak, Daniel N.; Antrobus, Robin; Borner, Georg H. H.

    2018-01-01

    The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR), GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5–associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders. PMID:29381698

  6. Munc13-4 functions as a Ca2+ sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles

    PubMed Central

    Woo, Sang Su; James, Declan J.; Martin, Thomas F. J.

    2017-01-01

    Munc13-4 is a Ca2+-dependent SNARE (soluble N-ethylmaleimide–sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca2+-evoked secretion in various secretory cells. Studies in mast cell–like RBL-2H3 cells provide direct evidence that Munc13–4 with its two Ca2+-binding C2 domains functions as a Ca2+ sensor for SG exocytosis. Unexpectedly, Ca2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4+/Rab7+/Rab11+ endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4+/Rab7+ SGs, followed by a merge with Rab11+ endosomes, and depended on Ca2+ binding to Munc13-4. Munc13-4 promoted the Ca2+-stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells. PMID:28100639

  7. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1.

    PubMed

    Wang, Han; Shi, Yi; Song, Jian; Qi, Jianxun; Lu, Guangwen; Yan, Jinghua; Gao, George F

    2016-01-14

    Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. bicoid RNA localization requires specific binding of an endosomal sorting complex

    PubMed Central

    Irion, Uwe; St Johnston, Daniel

    2007-01-01

    Summary paragraph: bicoid mRNA localises to the anterior of the Drosophila egg, where it is translated to form a morphogen gradient of Bicoid protein that patterns the head and thorax of the embryo. Although bicoid was the first identified localised cytoplasmic determinant1-4, little is known about how the mRNA is coupled to the microtubule-dependent transport pathway that targets it to the anterior, and it has been proposed that it is recognised by a complex of many redundant proteins, each of which binds to the localisation element in its 3'UTR with little or no specificity5. Indeed, the only known RNA-binding protein that co-localises with bicoid mRNA is Staufen, which binds non-specifically to dsRNA in vitro6, 7. Here we show that mutants in all subunits of the ESCRT-II complex (Vps22, Vps25 and Vps36) abolish the final Staufen-dependent step in bcd RNA localisation. ESCRT-II is a highly conserved component of the pathway that sorts ubiquitinated endosomal proteins into internal vesicles8, 9, and functions as a tumour-suppressor by removing activated receptors from the cytoplasm10, 11. However, the role of ESCRT-II in bicoid localisation appears to be independent of endosomal sorting, because mutations in ESCRT-I and III components have no effect of the targeting of bicoid mRNA. Instead, Vps36 functions by binding directly and specifically to stem-loop V of the bicoid 3'UTR through its N-terminal GLUE domain12, making it the first example of a sequence specific RNA-binding protein that recognises the bicoid localisation signal. Furthermore, Vps36 localises to the anterior of the oocyte in a bicoid mRNA-dependent manner, and is required for the subsequent recruitment of Staufen to the bicoid complex. This novel function of ESCRT-II as an RNA-binding complex is conserved in vertebrates, and may explain some of its roles that are independent of endosomal sorting. PMID:17268469

  9. Rab11 in Recycling Endosomes Regulates the Sorting and Basolateral Transport of E-CadherinV⃞

    PubMed Central

    Lock, John G.; Stow, Jennifer L.

    2005-01-01

    E-cadherin plays an essential role in cell polarity and cell-cell adhesion; however, the pathway for delivery of E-cadherin to the basolateral membrane of epithelial cells has not been fully characterized. We first traced the post-Golgi, exocytic transport of GFP-tagged E-cadherin (Ecad-GFP) in unpolarized cells. In live cells, Ecad-GFP was found to exit the Golgi complex in pleiomorphic tubulovesicular carriers, which, instead of moving directly to the cell surface, most frequently fused with an intermediate compartment, subsequently identified as a Rab11-positive recycling endosome. In MDCK cells, basolateral targeting of E-cadherin relies on a dileucine motif. Both E-cadherin and a targeting mutant, ΔS1-E-cadherin, colocalized with Rab11 and fused with the recycling endosome before diverging to basolateral or apical membranes, respectively. In polarized and unpolarized cells, coexpression of Rab11 mutants disrupted the cell surface delivery of E-cadherin and caused its mistargeting to the apical membrane, whereas apical ΔS1-E-cadherin was unaffected. We thus demonstrate a novel pathway for Rab11 dependent, dileucine-mediated, μ1B-independent sorting and basolateral trafficking, exemplified by E-cadherin. The recycling endosome is identified as an intermediate compartment for the post-Golgi trafficking and exocytosis of E-cadherin, with a potentially important role in establishing and maintaining cadherin-based adhesion. PMID:15689490

  10. Hypoxia Regulates mTORC1-Mediated Keratinocyte Motility and Migration via the AMPK Pathway

    PubMed Central

    Yan, Tiantian; Zhang, Junhui; Tang, Di; Zhang, Xingyue; Jiang, Xupin; Zhao, Liping; Zhang, Qiong; Zhang, Dongxia; Huang, Yuesheng

    2017-01-01

    Keratinocyte migration, the initial event and rate-limiting step in wound healing, plays a vital role in restoration of the intact skin barrier, also known as re-epithelialization. After acute tissue injury, hypoxic microenvironment gradually develops and acts as an early stimulus to initiate the healing process. Although we have previously found that hypoxia induces keratinocyte migration, the underlying mechanism remains unknown. Here, we first observed that hypoxia increased mTORC1 activity. Recombinant lentivirus vector and Rapamycin were used for silencing mTORC1 in HaCaT cells and primary mouse keratinocytes (MKs). Using cell migration assay and a Zeiss chamber equipped with imaging system, we also demonstrated that mTORC1 downregulation reversed hypoxia-induced keratinocyte motility and lateral migration. Importantly, hypoxia-activated mTORC1 was accompanied by the AMPK downregulation, and we found that the AMPK pathway activators Metformin (Met) and 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) decreased the mTORC1 activity, cell motility and lateral migration. Thus, our results suggest that hypoxia regulates mTORC1-mediated keratinocyte motility and migration via the AMPK pathway. PMID:28068384

  11. Hygromycin B hypersensitive (hhy) mutants implicate an intact trans-Golgi and late endosome interface in efficient Tor1 vacuolar localization and TORC1 function.

    PubMed

    Ejzykowicz, Daniele E; Locken, Kristopher M; Ruiz, Fiona J; Manandhar, Surya P; Olson, Daniel K; Gharakhanian, Editte

    2017-06-01

    Saccharomyces cerevisiae vacuoles are functionally analogous to mammalian lysosomes. Both also serve as physical platforms for Tor Complex 1 (TORC1) signal transduction, the master regulator of cellular growth and proliferation. Hygromycin B is a eukaryotic translation inhibitor. We recently reported on hygromycin B hypersensitive (hhy) mutants that fail to grow at subtranslation inhibitory concentrations of the drug and exhibit vacuolar defects (Banuelos et al. in Curr Genet 56:121-137, 2010). Here, we show that hhy phenotype is not due to increased sensitivity to translation inhibition and establish a super HHY (s-HHY) subgroup of genes comprised of ARF1, CHC1, DRS2, SAC1, VPS1, VPS34, VPS45, VPS52, and VPS54 that function exclusively or inclusively at trans-Golgi and late endosome interface. Live cell imaging of s-hhy mutants revealed that hygromycin B treatment disrupts vacuolar morphology and the localization of late endosome marker Pep12, but not that of late endosome-independent vacuolar SNARE Vam3. This, along with normal post-late endosome trafficking of the vital dye FM4-64, establishes that severe hypersensitivity to hygromycin B correlates specifically with compromised trans-Golgi and late endosome interface. We also show that Tor1p vacuolar localization and TORC1 anabolic functions, including growth promotion and phosphorylation of its direct substrate Sch9, are compromised in s-hhy mutants. Thus, an intact trans-Golgi and late endosome interface is a requisite for efficient Tor1 vacuolar localization and TORC1 function.

  12. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)☆

    PubMed Central

    Duke, Elizabeth M.H.; Razi, Minoo; Weston, Anne; Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Tooze, Sharon A.; Collinson, Lucy M.

    2014-01-01

    Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10 nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from ‘hotspots’ on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. PMID:24238600

  13. Persistent enhancement of bacterial motility increases tumor penetration.

    PubMed

    Thornlow, Dana N; Brackett, Emily L; Gigas, Jonathan M; Van Dessel, Nele; Forbes, Neil S

    2015-11-01

    Motile bacteria can overcome the transport limitations that hinder many cancer therapies. Active bacteria can penetrate through tissue to deliver treatment to resistant tumor regions. Bacterial therapy has had limited success, however, because this motility is heterogeneous, and within a population many individuals are non-motile. In human trials, heterogeneity led to poor dispersion and incomplete tumor colonization. To address these problems, a swarm-plate selection method was developed to increase swimming velocity. Video microscopy was used to measure the velocity distribution of selected bacteria and a microfluidic tumor-on-a-chip device was used to measure penetration through tumor cell masses. Selection on swarm plates increased average velocity fourfold, from 4.9 to 18.7 μm/s (P < 0.05) and decreased the number of non-motile individuals from 51% to 3% (P < 0.05). The selected phenotype was both robust and stable. Repeating the selection process consistently increased velocity and eliminated non-motile individuals. When selected strains were cryopreserved and subcultured for 30.1 doublings, the high-motility phenotype was preserved. In the microfluidic device, selected Salmonella penetrated deeper into cell masses than unselected controls. By 10 h after inoculation, control bacteria accumulated in the front 30% of cell masses, closest to the flow channel. In contrast, selected Salmonella accumulated in the back 30% of cell masses, farthest from the channel. Selection increased the average penetration distance from 150 to 400 μm (P < 0.05). This technique provides a simple and rapid method to generate high-motility Salmonella that has increased penetration and potential for greater tumor dispersion and clinical efficacy. © 2015 Wiley Periodicals, Inc.

  14. Par3 and aPKC regulate BACE1 endosome-to-TGN trafficking through PACS1.

    PubMed

    Sun, Miao; Zhang, Huaye

    2017-12-01

    The cleavage of amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) is the rate-limiting step in beta amyloid generation during Alzheimer's disease (AD) pathogenesis. In AD brains, BACE1 is abnormally accumulated in endocytic compartments, where the acidic pH is optimal for its activity. However, mechanisms regulating the endosome-to-trans-Golgi network (TGN) retrieval of BACE1 remain unclear. Here, we show that partitioning defective 3 (Par3) facilitates BACE1 retrograde trafficking from endosomes to the TGN. Par3 functions through aPKC-mediated phosphorylation of BACE1 on Ser498, which in turn promotes the interaction between BACE1 and phosphofurin acidic cluster sorting protein 1 and facilitates the retrograde trafficking of BACE1 to the TGN. In human AD brains, there is a significant decrease in Ser498 phosphorylation of BACE1 suggesting that defective phosphorylation-dependent retrograde transport of BACE1 is important in AD pathogenesis. Together, our studies provide mechanistic insight into a novel role for Par3 and aPKC in regulating the retrograde endosome-to-TGN trafficking of BACE1 and shed light on the mechanisms of AD pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The effect of loss of O-antigen ligase on phagocytic susceptibility of motile and non-motile Pseudomonas aeruginosa.

    PubMed

    Demirdjian, Sally; Schutz, Kristin; Wargo, Matthew J; Lam, Joseph S; Berwin, Brent

    2017-12-01

    The bacterial pathogen Pseudomonas aeruginosa undergoes adaptation and selection over the course of chronic respiratory tract infections which results in repeatedly-observed phenotypic changes that are proposed to enable its persistence. Two of the clinically significant P. aeruginosa phenotypic changes are loss of flagellar motility and modifications to LPS structure, including loss of O-antigen expression. The effect of loss of O-antigen, frequently described as conversion from smooth to rough LPS, and the combined effect of loss of motility and O-antigen on phagocytic susceptibility by immune cells remain unknown. To address this, we generated genetic deletion mutants of waaL, which encodes the O-antigen ligase responsible for linking O-antigen to lipid A-core oligosaccharide, in both motile and non-motile P. aeruginosa strains. With the use of these bacterial strains we provide the first demonstration that, despite a progressive selection for P. aeruginosa with rough LPS during chronic pulmonary infections, loss of the LPS O-antigen does not confer phagocytic resistance in vitro. However, use of the waaLmotABmotCD mutant revealed that loss of motility confers resistance to phagocytosis regardless of the smooth or rough LPS phenotype. These findings reveal how the O-antigen of P. aeruginosa can influence bacterial clearance during infection and expand our current knowledge about the impact of bacterial phenotypic changes during chronic infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pharyngeal swallowing and oesophageal motility during a solid meal test: a prospective study in healthy volunteers and patients with major motility disorders.

    PubMed

    Hollenstein, Michael; Thwaites, Philip; Bütikofer, Simon; Heinrich, Henriette; Sauter, Matthias; Ulmer, Irina; Pohl, Daniel; Ang, Daphne; Eberli, Daniel; Schwizer, Werner; Fried, Michael; Distler, Oliver; Fox, Mark; Misselwitz, Benjamin

    2017-09-01

    The factors that determine how people eat when they are healthy or have disease have not been defined. We used high resolution manometry (HRM) to assess pharyngeal swallowing and oesophageal motility during ingestion of a solid test meal (STM) in healthy volunteers and patients with motility disorders. This study was based at University Hospital Zurich (Zürich, Switzerland). Healthy volunteers who responded to an advertisement completed HRM with ten single water swallows (SWS) in recumbent and upright positions followed by a 200 g rice STM in the upright position. Healthy volunteers were stratified for age and sex to ensure a representative population. For comparison, consecutive patients with major motility disorders on SWS and patients with dysphagia but no major motility disorders on SWS (disease controls) were selected from a database that was assembled prospectively; the rice meal data were analysed retrospectively. During STM, pharyngeal swallows were timed and oesophageal contractions were classified as representing normal motility or different types of abnormal motility in accordance with established metrics. Factors that could potentially be associated with eating speed were investigated, including age, sex, body-mass index, and presence of motility disorder. We compared diagnoses based on SWS findings, assessed with the Chicago Classification v3.0, with those based on STM findings, assessed with the Chicago Classification adapted for solids. These studies are registered with ClinicalTrials.gov, numbers NCT02407938 and NCT02397616. Between April 2, 2014, and May 13, 2015, 72 healthy volunteers were recruited and underwent HRM. Additionally, we analysed data from 54 consecutive patients with major motility disorders and 53 with dysphagia but no major motility disorders recruited between April 2, 2013, and Dec 18, 2014. We found important variations in oesophageal motility and eating speed during meal ingestion in healthy volunteers and patients. Increased

  17. Microgravity alters protein phosphorylation changes during initiation of sea urchin sperm motility

    NASA Technical Reports Server (NTRS)

    Tash, J. S.; Bracho, G. E.

    1999-01-01

    European Space Agency (ESA) studies demonstrated that bull sperm swim with higher velocity in microgravity (microG) than at 1 G. Coupling between protein phosphorylation and sperm motility during activation in microG and at 1 G was examined in the ESA Biorack on two space shuttle missions. Immotile sperm were activated to swim (86-90% motility) at launch +20 h by dilution into artificial seawater (ASW). Parallel ground controls were performed 2 h after the flight experiment. Activation after 0, 30, and 60 s was terminated with electrophoresis sample buffer and samples analyzed for phosphoamino acids by Western blotting. Phosphorylation of a 130-kDa phosphothreonine-containing protein (FP130) occurred three to four times faster in microG than at 1 G. A 32-kDa phosphoserine-containing protein was significantly stimulated at 30 s but returned to 1 G control levels at 60 s. The rate of FP130 phosphorylation in microG was attenuated by D2O, suggesting that changes in water properties participate in altering signal transduction. Changes in FP130 phosphorylation triggered by the egg peptide speract were delayed in microG. These results demonstrate that previously observed effects of microG on sperm motility are coupled to changes in phosphorylation of specific flagellar proteins and that early events of sperm activation and fertilization are altered in microG.

  18. A model of the effects of cancer cell motility and cellular adhesion properties on tumour-immune dynamics.

    PubMed

    Frascoli, Federico; Flood, Emelie; Kim, Peter S

    2017-06-01

    We present a three-dimensional model simulating the dynamics of an anti-cancer T-cell response against a small, avascular, early-stage tumour. Interactions at the tumour site are accounted for using an agent-based model (ABM), while immune cell dynamics in the lymph node are modelled as a system of delay differential equations (DDEs). We combine these separate approaches into a two-compartment hybrid ABM-DDE system to capture the T-cell response against the tumour. In the ABM at the tumour site, movement of tumour cells is modelled using effective physical forces with a specific focus on cell-to-cell adhesion properties and varying levels of tumour cell motility, thus taking into account the ability of cancer cells to spread and form clusters. We consider the effectiveness of the immune response over a range of parameters pertaining to tumour cell motility, cell-to-cell adhesion strength and growth rate. We also investigate the dependence of outcomes on the distribution of tumour cells. Low tumour cell motility is generally a good indicator for successful tumour eradication before relapse, while high motility leads, almost invariably, to relapse and tumour escape. In general, the effect of cell-to-cell adhesion on prognosis is dependent on the level of tumour cell motility, with an often unpredictable cross influence between adhesion and motility, which can lead to counterintuitive effects. In terms of overall tumour shape and structure, the spatial distribution of cancer cells in clusters of various sizes has shown to be strongly related to the likelihood of extinction. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  19. Flagellar motility of the pathogenic spirochetes

    PubMed Central

    Wolgemuth, Charles W.

    2016-01-01

    Bacterial pathogens are often classified by their toxicity and invasiveness. The invasiveness of a given bacterium is determined by how capable the bacterium is at invading a broad range of tissues in its host. Of mammalian pathogens, some of the most invasive come from a group of bacteria known as the spirochetes, which cause diseases such as syphilis, Lyme disease, relapsing fever and leptospirosis. Most of the spirochetes are characterized by their distinct shapes and unique motility. They are long, thin bacteria that can be shaped like flat-waves, helices, or have more irregular morphologies. Like many other bacteria, the spirochetes use long, helical appendages known as flagella to move; however, the spirochetes enclose their flagella in the periplasm, the narrow space between the inner and outer membranes. Rotation of the flagella in the periplasm causes the entire cell body to rotate and/or undulate. These deformations of the bacterium produce the force that drives the motility of these organisms, and it is this unique motility that likely allows these bacteria to be highly invasive in mammals. This review will describe the current state of knowledge on the motility and biophysics of these organisms and provide evidence on how this knowledge can inform our understanding of spirochetal diseases. PMID:26481969

  20. Leishmania hijacking of the macrophage intracellular compartments.

    PubMed

    Liévin-Le Moal, Vanessa; Loiseau, Philippe M

    2016-02-01

    Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses. © 2015 FEBS.

  1. Targeting tumor cell motility to prevent metastasis

    PubMed Central

    Palmer, Trenis D.; Ashby, William J.; Lewis, John D.; Zijlstra, Andries

    2011-01-01

    Mortality and morbidity in patients with solid tumors invariably results from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities. PMID:21664937

  2. Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways.

    PubMed

    Mallet, W G; Maxfield, F R

    1999-07-26

    Furin and TGN38 are menbrane proteins that cycle between the plasma membrane and the trans-Golgi network (TGN), each maintaining a predominant distribution in the TGN. We have used chimeric proteins with an extracellular Tac domain and the cytoplasmic domain of TGN38 or furin to study the trafficking of these proteins in endosomes. Previously, we demonstrated that the postendocytic trafficking of Tac-TGN38 to the TGN is via the endocytic recycling pathway (Ghosh, R.N.,W.G. Mallet,T.T. Soe,T.E.McGraw, and F.R. Maxfield.1998.J. Cell Biol.142:923-936). Here we show that internalized Tac-furin is delivered to the TGN through late endosomes, bypassing the endocytic recycling compartment. The transport of Tac-furin from late endosomes to the TGN appears to proceed via an efficient, single-pass mechanism. Delivery of Tac-furin but not Tac-TGN38 to the TGN is blocked by nocodazole, and the two pathways are also differentially affected by wortmannin. These studies demonstrate the existence of two independentpathways for endosomal transport of proteins to the TGN from the plasma membrane.

  3. Adeno-associated virus capsid antigen presentation is dependent on endosomal escape

    PubMed Central

    Li, Chengwen; He, Yi; Nicolson, Sarah; Hirsch, Matt; Weinberg, Marc S.; Zhang, Ping; Kafri, Tal; Samulski, R. Jude

    2013-01-01

    Adeno-associated virus (AAV) vectors are attractive for gene delivery-based therapeutics, but data from recent clinical trials have indicated that AAV capsids induce a cytotoxic T lymphocyte (CTL) response that eliminates transduced cells. In this study, we used traditional pharmacological agents and AAV mutants to elucidate the pathway of capsid cross-presentation in AAV-permissive cells. Endosomal acidification inhibitors blocked AAV2 antigen presentation by over 90%, while proteasome inhibitors completely abrogated antigen presentation. Using mutant viruses that are defective for nuclear entry, we observed a 90% decrease in capsid antigen presentation. Different antigen presentation efficiencies were achieved by selectively mutating virion nuclear localization signals. Low antigen presentation was demonstrated with basic region 1 (BR1) mutants, despite relatively high transduction efficiency, whereas there was no difference in antigen presentation between BR2 and BR3 mutants defective for transduction, as compared with wild-type AAV2. These results suggest that effective AAV2 capsid antigen presentation is dependent on AAV virion escape from the endosome/lysosome for antigen degradation by proteasomes, but is independent of nuclear uncoating. These results should facilitate the design of effective strategies to evade capsid-specific CTL-mediated elimination of AAV-transduced target cells in future clinical trials. PMID:23454772

  4. Mobility of tethering factor EEA1 on endosomes is decreased upon stimulation of EGF receptor endocytosis in HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosheverova, Vera V., E-mail: kosheverova_vera@incras.ru; Kamentseva, Rimma S., E-mail: rkamentseva@yandex.ru; St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034

    Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis. The data obtained fitted two-states binding model, with the bulk of membrane-associated EEA1 protein represented by the mobile fraction both in serum-starved and EGF-stimulated cells. Fast recovery state had similar half-times in the two cases: about 1.6 s and 2.8 s, respectively. However, the recovery half-time ofmore » slowly cycled EEA1 fraction significantly increased in EGF-stimulated comparing to serum-starved cells (from 21 to 99 s). We suppose that the retardation of EEA1 fluorescence recovery upon EGF-stimulation may be due to the increase of activated Rab5 on endosomal membranes, the growth of the number of tethering events between EEA1-positive vesicles and their clustering. - Highlights: • EEA1 mobility was compared in serum-starved and EGF-stimulated interphase HeLa cells. • FRAP analysis revealed fast and slow components of EEA1 recovery in both cases. • Stimulation of EGFR endocytosis did not affect fast EEA1 turnover. • EGF stimulation significantly increased half-time of slowly exchanged EEA1 fraction.« less

  5. Cell motility assays.

    PubMed

    Hague, Angela; Jones, Gareth E

    2008-10-01

    This report summarises practical aspects to measuring cell motility in culture. The methods described here were discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop organised by John Masters and Gareth E Jones that was held at University College London on 19th April 2007.

  6. Gliding Motility Revisited: How Do the Myxobacteria Move without Flagella?

    PubMed Central

    Mauriello, Emilia M. F.; Mignot, Tâm; Yang, Zhaomin; Zusman, David R.

    2010-01-01

    Summary: In bacteria, motility is important for a wide variety of biological functions such as virulence, fruiting body formation, and biofilm formation. While most bacteria move by using specialized appendages, usually external or periplasmic flagella, some bacteria use other mechanisms for their movements that are less well characterized. These mechanisms do not always exhibit obvious motility structures. Myxococcus xanthus is a motile bacterium that does not produce flagella but glides slowly over solid surfaces. How M. xanthus moves has remained a puzzle that has challenged microbiologists for over 50 years. Fortunately, recent advances in the analysis of motility mutants, bioinformatics, and protein localization have revealed likely mechanisms for the two M. xanthus motility systems. These results are summarized in this review. PMID:20508248

  7. Increased count, motility, and total motile sperm cells collected across three consecutive ejaculations within 24 h of oocyte retrieval: implications for management of men presenting with low numbers of motile sperm for assisted reproduction.

    PubMed

    Said, Al-Hasen; Reed, Michael L

    2015-07-01

    The purpose of this study was to quantitate changes in seminal volume, sperm count, motility, qualitative forward progression, and total motile sperm cells per ejaculate, across three consecutive ejaculates collected from individuals within 24 h preceding an IVF cycle. Men presenting with oligoasthenozoospermia or asthenozoospemia attempted three ejaculates within 24 h preceding IVF. Ejaculate 1 was produced the afternoon prior to oocyte retrieval, and ejaculates 2 and 3 were produced the morning of oocyte retrieval with 2-3 h between collections. Ejaculates 1 and 2 were extended 1:1 v/v with room temperature rTYBS. Test tubes were placed into a beaker of room temperature water, then placed at 4 °C for gradual cooling. Ejaculate 3 was not extended, but pooled with ejaculates 1 and 2 and processed for intracytoplasmic sperm injection (ICSI). Out of 109 oocyte retrievals, 28 men were asked to attempt multiple consecutive ejaculations. Among this population, 25/28 (89.3 %) were successful, and 3/28 men (10.7 %) could only produce two ejaculates. Mean volumes for ejaculates 1, 2, and 3 were significantly different from each other (p < 0.01); the volume decreased for each ejaculate. Mean sperm counts, motility, qualitative forward progression, and total motile cells per ejaculate for the ejaculates1, 2, and 3 demonstrated the following: ejaculates 2 and 3 were not significantly different, but counts, motility, and total motile sperm were improved over ejaculate 1 (p < 0.01). Pooling three consecutive ejaculates within 24 h increased the numbers of available motile sperm in this population by 8-fold compared to the first ejaculate alone, facilitating avoidance of sperm cryopreservation and additional centrifugation steps that could affect sperm viability and/or function.

  8. Engineering bacterial motility towards hydrogen-peroxide.

    PubMed

    Virgile, Chelsea; Hauk, Pricila; Wu, Hsuan-Chen; Shang, Wu; Tsao, Chen-Yu; Payne, Gregory F; Bentley, William E

    2018-01-01

    Synthetic biologists construct innovative genetic/biological systems to treat environmental, energy, and health problems. Many systems employ rewired cells for non-native product synthesis, while a few have employed the rewired cells as 'smart' devices with programmable function. Building on the latter, we developed a genetic construct to control and direct bacterial motility towards hydrogen peroxide, one of the body's immune response signaling molecules. A motivation for this work is the creation of cells that can target and autonomously treat disease, the latter signaled by hydrogen peroxide release. Bacteria naturally move towards a variety of molecular cues (e.g., nutrients) in the process of chemotaxis. In this work, we engineered bacteria to recognize and move towards hydrogen peroxide, a non-native chemoattractant and potential toxin. Our system exploits oxyRS, the native oxidative stress regulon of E. coli. We first demonstrated H2O2-mediated upregulation motility regulator, CheZ. Using transwell assays, we showed a two-fold increase in net motility towards H2O2. Then, using a 2D cell tracking system, we quantified bacterial motility descriptors including velocity, % running (of tumble/run motions), and a dynamic net directionality towards the molecular cue. In CheZ mutants, we found that increased H2O2 concentration (0-200 μM) and induction time resulted in increased running speeds, ultimately reaching the native E. coli wild-type speed of ~22 μm/s with a ~45-65% ratio of running to tumbling. Finally, using a microfluidic device with stable H2O2 gradients, we characterized responses and the potential for "programmed" directionality towards H2O2 in quiescent fluids. Overall, the synthetic biology framework and tracking analysis in this work will provide a framework for investigating controlled motility of E. coli and other 'smart' probiotics for signal-directed treatment.

  9. Cellular Auxin Homeostasis under High Temperature Is Regulated through a SORTING NEXIN1–Dependent Endosomal Trafficking Pathway[C][W

    PubMed Central

    Hanzawa, Taiki; Shibasaki, Kyohei; Numata, Takahiro; Kawamura, Yukio; Gaude, Thierry; Rahman, Abidur

    2013-01-01

    High-temperature-mediated adaptation in plant architecture is linked to the increased synthesis of the phytohormone auxin, which alters cellular auxin homeostasis. The auxin gradient, modulated by cellular auxin homeostasis, plays an important role in regulating the developmental fate of plant organs. Although the signaling mechanism that integrates auxin and high temperature is relatively well understood, the cellular auxin homeostasis mechanism under high temperature is largely unknown. Using the Arabidopsis thaliana root as a model, we demonstrate that under high temperature, roots counterbalance the elevated level of intracellular auxin by promoting shootward auxin efflux in a PIN-FORMED2 (PIN2)-dependent manner. Further analyses revealed that high temperature selectively promotes the retrieval of PIN2 from late endosomes and sorts them to the plasma membrane through an endosomal trafficking pathway dependent on SORTING NEXIN1. Our results demonstrate that recycling endosomal pathway plays an important role in facilitating plants adaptation to increased temperature. PMID:24003052

  10. Wall accumulation of bacteria with different motility patterns

    NASA Astrophysics Data System (ADS)

    Sartori, Paolo; Chiarello, Enrico; Jayaswal, Gaurav; Pierno, Matteo; Mistura, Giampaolo; Brun, Paola; Tiribocchi, Adriano; Orlandini, Enzo

    2018-02-01

    We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250 μ m , are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.

  11. Motility and peristaltic flow in maintaining microbiome populations

    NASA Astrophysics Data System (ADS)

    Mirbagheri, Seyed Amir; Fu, Henry C.

    2016-11-01

    Bacteria are an important component of the microbiome in the digestive tract, and must be able to maintain their population despite the fact that the contents of the intestines are constantly flowing towards evacuation. Many bacteria accomplish this by colonizing the surfaces of the intestines where flows diminish, but some species live in the lumen. We attempt to address whether swimming motility of these species plays an important role in maintaining bacterial population in the face of peristaltic pumping out of the intestine. Using a two-dimensional model of peristaltic flows induced by small-amplitude traveling waves we examine the Lagrangian trajectories of passive bacteria as well as motile bacteria, which are treated as Brownian particles undergoing enhanced diffusion due to the bacteria's run-and-tumble motility. We examine how the densities of growing populations of bacteria depend on the combination of motility and peristaltic flow.

  12. Wall accumulation of bacteria with different motility patterns.

    PubMed

    Sartori, Paolo; Chiarello, Enrico; Jayaswal, Gaurav; Pierno, Matteo; Mistura, Giampaolo; Brun, Paola; Tiribocchi, Adriano; Orlandini, Enzo

    2018-02-01

    We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250μm, are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.

  13. Two Endosomal NHX-type Na+/ H+ Antiporters are Involved in Auxin Mediated Development in Arabidopsis thaliana.

    PubMed

    Dragwidge, Jonathan Michael; Ford, Brett Andrew; Ashnest, Joanne Rachel; Das, Partha; Gendall, Anthony Richard

    2018-05-16

    In Arabidopsis thaliana, the endosomal localised Na+/H+ antiporters NHX5 and NHX6 regulate ion and pH homeostasis and are important for plant growth and development. However, the mechanism of how these endosomal NHXs function in plant development is not well understood. Auxin modulates plant growth and development through the formation of concentration gradients in plant tissue to control cell division and expansion. Here, we identified a role for NHX5 and NHX6 in the establishment and maintenance of auxin gradients in embryo and root tissues. We observed developmental impairment and abnormal cell division in embryo and root tissues in the double knockout nhx5 nhx6, consistent with these tissues showing high expression of NHX5 and NHX6. Through confocal microscopy imaging with the DR5::GFP auxin reporter, we identify defects to the perception, accumulation, and redistribution of auxin in nhx5 nhx6 cells. Furthermore, we find that the steady state levels of the PIN-FORMED (PIN) auxin efflux carriers PIN1 and PIN2 are reduced in nhx5 nhx6 root cells. Our results demonstrate that NHX5 and NHX6 function in auxin mediated plant development by maintaining PIN abundance at the plasma membrane, and provides new insight into the regulation of plant development by endosomal NHX antiporters.

  14. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes*

    PubMed Central

    Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2016-01-01

    NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking. PMID:26987901

  15. The tetraspanin CD63 regulates ESCRT-independent and dependent endosomal sorting during melanogenesis

    PubMed Central

    van Niel, Guillaume; Charrin, Stéphanie; Simoes, Sabrina; Romao, Maryse; Rochin, Leila; Saftig, Paul; Marks, Michael S.; Rubinstein, Eric; Raposo, Graça

    2011-01-01

    Summary Cargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for numerous physiological processes including lysosome-related organelle (LRO) biogenesis. PMEL – a component of melanocyte LROs (melanosomes) – is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs. Inactivating CD63 in cell culture or in mice impairs amyloidogenesis and downstream melanosome morphogenesis. Whereas CD63 is required for normal PMEL luminal domain sorting, the disposal of the remaining PMEL transmembrane fragment requires functional ESCRTs but not CD63. In the absence of CD63, the PMEL luminal domain follows this fragment and is targeted for ESCRT-dependent degradation. Our data thus reveal a tight interplay regulated by CD63 between two distinct endosomal ILV sorting processes for a single cargo during LRO biogenesis. PMID:21962903

  16. Extracellular anti-angiogenic proteins augment an endosomal protein trafficking pathway to reach mitochondria and execute apoptosis in HUVECs.

    PubMed

    Chen, Mo; Qiu, Tao; Wu, Jiajie; Yang, Yang; Wright, Graham D; Wu, Min; Ge, Ruowen

    2018-03-09

    Classic endocytosis destinations include the recycling endosome returning to the plasma membrane or the late endosome (LE) merging with lysosomes for cargo degradation. However, the anti-angiogenic proteins angiostatin and isthmin, are endocytosed and trafficked to mitochondria (Mito) to execute apoptosis of endothelial cells. How these extracellular proteins reach mitochondria remains a mystery. Through confocal and super-resolution fluorescent microscopy, we demonstrate that angiostatin and isthmin are trafficked to mitochondria through the interaction between LE and Mito. Using purified organelles, the LE-Mito interaction is confirmed through in vitro lipid-fusion assay, as well as single vesicle total internal reflection fluorescent microscopy. LE-Mito interaction enables the transfer of not only lipids but also proteins from LE to Mito. Angiostatin and isthmin augment this endosomal protein trafficking pathway and make use of it to reach mitochondria to execute apoptosis. Cell fractionation and biochemical analysis identified that the cytosolic scaffold protein Na+/H+ exchanger regulatory factor 1 (NHERF1) associated with LE and the t-SNARE protein synaptosome-associated protein 25 kDa (SNAP25) associated with Mito form an interaction complex to facilitate LE-Mito interaction. Proximity ligation assay coupled with fluorescent microscopy showed that both NHERF1 and SNAP25 are located at the contacting face between LE and Mito. RNAi knockdown of either NHERF1 or SNAP25 suppressed not only the mitochondrial trafficking of angiostatin and isthmin but also their anti-angiogenic and pro-apoptotic functions. Hence, this study reveals a previously unrealized endosomal protein trafficking pathway from LE to Mito that allows extracellular proteins to reach mitochondria and execute apoptosis.

  17. Bidirectional helical motility of cytoplasmic dynein around microtubules

    PubMed Central

    Can, Sinan; Dewitt, Mark A; Yildiz, Ahmet

    2014-01-01

    Cytoplasmic dynein is a molecular motor responsible for minus-end-directed cargo transport along microtubules (MTs). Dynein motility has previously been studied on surface-immobilized MTs in vitro, which constrains the motors to move in two dimensions. In this study, we explored dynein motility in three dimensions using an MT bridge assay. We found that dynein moves in a helical trajectory around the MT, demonstrating that it generates torque during cargo transport. Unlike other cytoskeletal motors that produce torque in a specific direction, dynein generates torque in either direction, resulting in bidirectional helical motility. Dynein has a net preference to move along a right-handed helical path, suggesting that the heads tend to bind to the closest tubulin binding site in the forward direction when taking sideways steps. This bidirectional helical motility may allow dynein to avoid roadblocks in dense cytoplasmic environments during cargo transport. DOI: http://dx.doi.org/10.7554/eLife.03205.001 PMID:25069614

  18. Guaifenesin and increased sperm motility: a preliminary case report.

    PubMed

    Means, Gary; Berry-Cabán, Cristóbal S; Hammermeuller, Kurt

    2010-12-20

    A review of the literature and an extensive Medline search revealed that this is the first case report of the use of guaifenesin to increase sperm motility. A 32-year-old male presented for an infertility evaluation. He reported an inability to conceive with his wife after 18 months of unprotected intercourse. A semen analysis was performed that included spermatozoa count, liquefaction, morphology, motility, viscosity and volume. Initial results of the semen analysis demonstrated low sperm count and motility. The provider offered treatment with guaifenesin 600 mg extended release tablets twice daily. Two months after guaifenesin therapy the semen analysis was repeated that demonstrated marked improvement in both total sperm count and motility. Evidence for the effectiveness of guaifenesin is almost entirely anecdotal. Given the mechanism of action of guaifenesin, it is not clear from this case why the patient demonstrated such a large improvement in both sperm count and motility. Additional studies of the effects of guaifenesin on male fertility could yield information of the medication's effect on men with normal or decreased total sperm counts.

  19. Guaifenesin and increased sperm motility: a preliminary case report

    PubMed Central

    Means, Gary; Berry-Cabán, Cristóbal S; Hammermeuller, Kurt

    2011-01-01

    Background A review of the literature and an extensive Medline search revealed that this is the first case report of the use of guaifenesin to increase sperm motility. Case A 32-year-old male presented for an infertility evaluation. He reported an inability to conceive with his wife after 18 months of unprotected intercourse. A semen analysis was performed that included spermatozoa count, liquefaction, morphology, motility, viscosity and volume. Initial results of the semen analysis demonstrated low sperm count and motility. The provider offered treatment with guaifenesin 600 mg extended release tablets twice daily. Two months after guaifenesin therapy the semen analysis was repeated that demonstrated marked improvement in both total sperm count and motility. Conclusion Evidence for the effectiveness of guaifenesin is almost entirely anecdotal. Given the mechanism of action of guaifenesin, it is not clear from this case why the patient demonstrated such a large improvement in both sperm count and motility. Additional studies of the effects of guaifenesin on male fertility could yield information of the medication’s effect on men with normal or decreased total sperm counts. PMID:21403786

  20. Mitochondrial respiratory efficiency is positively correlated with human sperm motility.

    PubMed

    Ferramosca, Alessandra; Provenzano, Sara Pinto; Coppola, Lamberto; Zara, Vincenzo

    2012-04-01

    To correlate sperm mitochondrial respiratory efficiency with variations in sperm motility and with sperm morphologic anomalies. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically-treated sperm cells. A possible relationship among sperm mitochondrial respiratory efficiency, sperm motility, and morphologic anomalies was investigated. Mitochondrial respiratory efficiency was positively correlated with sperm motility and negatively correlated with the percentage of immotile spermatozoa. Moreover, midpiece defects impaired mitochondrial functionality. Our data indicate that an increase in sperm motility requires a parallel increase in mitochondrial respiratory capacity, thereby supporting the fundamental role played by mitochondrial oxidative phosphorylation in sperm motility of normozoospermic subjects. These results are of physiopathological relevance because they suggest that disturbances of sperm mitochondrial function and of energy production could be responsible for asthenozoospermia. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Increased expression of endosomal members of toll-like receptor family abrogates wound healing in patients with type 2 diabetes mellitus.

    PubMed

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2016-10-01

    The inflammatory phase of wound healing cascade is an important determinant of the fate of the wound. Acute inflammation is necessary to initiate proper wound healing, while chronic inflammation abrogates wound healing. Different endosomal members of toll-like receptor (TLR) family initiate inflammatory signalling via a range of different inflammatory mediators such as interferons, internal tissue damaged-associated molecular patterns (DAMPs) and hyperactive effector T cells. Sustained signalling of TLR9 and TLR7 contributes to chronic inflammation by activating the plasmacytoid dendritic cells. Diabetic wounds are also characterised by sustained inflammatory phase. The objective of this study was to analyse the differential expression of endosomal TLRs in human diabetic wounds compared with control wounds. We analysed the differential expression of TLR7 and TLR9 both at transcriptional and translational levels in wounds of 84 patients with type 2 diabetes mellitus (T2DM) and 6 control subjects without diabetes using quantitative real-time polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. TLR7 and TLR9 were significantly up-regulated in wounds of the patients with T2DM compared with the controls and were dependent on the infection status of the diabetic wounds, and wounds with microbial infection exhibited lower expression levels of endosomal TLRs. Altered endosomal TLR expression in T2DM subjects might be associated with wound healing impairment. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  2. Automated measurement of cell motility and proliferation

    PubMed Central

    Bahnson, Alfred; Athanassiou, Charalambos; Koebler, Douglas; Qian, Lei; Shun, Tongying; Shields, Donna; Yu, Hui; Wang, Hong; Goff, Julie; Cheng, Tao; Houck, Raymond; Cowsert, Lex

    2005-01-01

    Background Time-lapse microscopic imaging provides a powerful approach for following changes in cell phenotype over time. Visible responses of whole cells can yield insight into functional changes that underlie physiological processes in health and disease. For example, features of cell motility accompany molecular changes that are central to the immune response, to carcinogenesis and metastasis, to wound healing and tissue regeneration, and to the myriad developmental processes that generate an organism. Previously reported image processing methods for motility analysis required custom viewing devices and manual interactions that may introduce bias, that slow throughput, and that constrain the scope of experiments in terms of the number of treatment variables, time period of observation, replication and statistical options. Here we describe a fully automated system in which images are acquired 24/7 from 384 well plates and are automatically processed to yield high-content motility and morphological data. Results We have applied this technology to study the effects of different extracellular matrix compounds on human osteoblast-like cell lines to explore functional changes that may underlie processes involved in bone formation and maintenance. We show dose-response and kinetic data for induction of increased motility by laminin and collagen type I without significant effects on growth rate. Differential motility response was evident within 4 hours of plating cells; long-term responses differed depending upon cell type and surface coating. Average velocities were increased approximately 0.1 um/min by ten-fold increases in laminin coating concentration in some cases. Comparison with manual tracking demonstrated the accuracy of the automated method and highlighted the comparative imprecision of human tracking for analysis of cell motility data. Quality statistics are reported that associate with stage noise, interference by non-cell objects, and uncertainty in the

  3. Endosome-mediated autophagy

    PubMed Central

    Kondylis, Vangelis; van Nispen tot Pannerden, Hezder E.; van Dijk, Suzanne; ten Broeke, Toine; Wubbolts, Richard; Geerts, Willie J.; Seinen, Cor; Mutis, Tuna; Heijnen, Harry F.G.

    2013-01-01

    Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIICs) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4BC74A mutant and atg4b−/− bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPS-induced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC-driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival. PMID:23481895

  4. The Chicago classification of motility disorders: an update.

    PubMed

    Roman, Sabine; Gyawali, C Prakash; Xiao, Yinglian; Pandolfino, John E; Kahrilas, Peter J

    2014-10-01

    The Chicago Classification defines esophageal motility disorders in high resolution manometry. This is based on individual scoring of 10 swallows performed in supine position. Disorders of esophago-gastric junction (EGJ) outflow obstruction are defined by a median integrated relaxation pressure above the limit of normal and divided into 3 achalasia subtypes and EGJ outflow obstruction. Major motility disorders (aperistalsis, distal esophageal spasm, and hypercontractile esophagus) are patterns not encountered in controls in the context of normal EGJ relaxation. Finally with the latest version of the Chicago Classification, only two minor motor disorders are considered: ineffective esophageal motility and fragmented peristalsis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Two barcodes encoded by the type-1 PDZ and by phospho-Ser312 regulate retromer/WASH-mediated sorting of the ß1-adrenergic receptor from endosomes to the plasma membrane.

    PubMed

    Nooh, Mohammed M; Bahouth, Suleiman W

    2017-01-01

    Recycling of the majority of agonist-internalized GPCR is dependent on a type I-PDZ "barcode" in their C-tail. The recycling of wild-type (WT) ß 1 -AR is also dependent on its default "type-1 PDZ barcode", but trafficking of the ß 1 -AR is inhibited when PKA or its substrate serine at position 312 (Ser 312 ) are inactivated. We tested the hypothesis that phospho-Ser 312 provided a second barcode for ß 1 -AR sorting from endosomes to the plasma membrane by determining the role of retromer/WASH complexes in ß 1 -AR trafficking. Recycling of WT ß 1 -AR or WT ß 2 -AR was dependent on targeting the retromer to endosomal membranes via SNX3 and rab7a, and on complexing the retromer to the WASH pentamer via the C-tail of FAM21 (FAM21 C ). These maneuvers however, did not inhibit the recycling of a phospho-Ser 312 ß 1 -AR mimic ((S312D) ß 1 -AR). Knockdown of the trans-acting PDZ protein sorting nexin27 (SNX27) inhibited the recycling of WT ß 1 -AR and WT ß 2 -AR, but had no effect on (S312D) ß 1 -AR∆PDZ or on phosphorylation of WT ß 1 -AR by PKA at Ser 312 . However, depletion of FKBP15, a FAM21 C -binding endosomal protein, selectively inhibited WT ß 1 -AR but not ß 2 -AR recycling, suggesting divergence might exist in GPCR trafficking roadmaps. These results indicate that two barcodes are involved in sorting WT ß 1 -AR out of early endosomes. The first and antecedent "barcode" was the "type-1 PDZ", followed by a second reversible "phospho-Ser 312 " verification "barcode". This organization allows tight regulation of ß 1 -AR density to signaling intensity in conditions associated with aberrant ß 1 -AR signaling such as in hypertension and heart failure. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Sperm motility in fishes. (II) Effects of ions and osmolality: a review.

    PubMed

    Alavi, Sayyed Mohammad Hadi; Cosson, Jacky

    2006-01-01

    The spermatozoa of most fish species are immotile in the testis and seminal plasma. Therefore, motility is induced after the spermatozoa are released into the aqueous environment during natural reproduction or into the diluent during artificial reproduction. There are clear relationships between seminal plasma composition and osmolality and the duration of fish sperm motility. Various parameters such as ion concentrations (K+, Na+, and Ca2+), osmotic pressure, pH, temperature and dilution rate affect motility. In the present paper, we review the roles of these ions on sperm motility in Salmonidae, Cyprinidae, Acipenseridae and marine fishes, and their relationship with seminal plasma composition. Results in the literature show that: 1. K+ is a key ion controlling sperm motility in Salmonidae and Acipenseridae in combination with osmotic pressure; this control is more simple in other fish species: sperm motility is prevented when the osmotic pressure is high (Cyprinidae) or low (marine fishes) compared to that of the seminal fluid. 2. Cations (mostly divalent, such as Ca2+) are antagonistic with the inhibitory effect of K+ on sperm motility. 3. In many species, Ca2+ influx and K+ or Na+ efflux through specific ionic channels change the membrane potential and eventually lead to an increase in cAMP concentration in the cell, which constitutes the initiation signal for sperm motility in Salmonidae. 4. Media that are hyper- and hypo-osmotic relative to seminal fluid trigger sperm motility in marine and freshwater fishes, respectively. 5. The motility of fish spermatozoa is controlled through their sensitivity to osmolality and ion concentrations. This phenomenon is related to ionic channel activities in the membrane and governs the motility mechanisms of axonemes.

  7. Microscopic Analysis of Bacterial Motility at High Pressure

    PubMed Central

    Nishiyama, Masayoshi; Sowa, Yoshiyuki

    2012-01-01

    The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment. PMID:22768943

  8. Motility of Colwellia psychrerythraea Strain 34H at Subzero Temperatures

    PubMed Central

    Junge, Karen; Eicken, Hajo; Deming, Jody W.

    2003-01-01

    We examined the Arctic bacterium Colwellia psychrerythraea strain 34H for motility at temperatures from −1 to −15°C by using transmitted-light microscopy in a temperature-controlled laboratory. The results, showing motility to −10°C, indicate much lower temperatures to be permissive of motility than previously reported (5°C), with implications for microbial activity in frozen environments. PMID:12839815

  9. Transmembrane adenylyl cyclase regulates amphibian sperm motility through Protein Kinase A activation

    PubMed Central

    O’Brien, Emma D.; Krapf, Darío; Cabada, Marcelo O.; Visconti, Pablo E.; Arranz, Silvia E.

    2014-01-01

    Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation. PMID:21126515

  10. Corticotropin-releasing factor stimulates colonic motility via muscarinic receptors in the rat

    PubMed Central

    Kim, Kyung-Jo; Kim, Ki Bae; Yoon, Soon Man; Han, Joung-Ho; Chae, Hee Bok; Park, Seon Mee; Youn, Sei Jin

    2017-01-01

    AIM To measure exogenous corticotropin-releasing factor (CRF)-induced motility of the isolated rat colon and to demonstrate the effect of pharmacologic inhibition on CRF-induced motility. METHODS The isolated vascularly-perfused rat colon was used. Luminal pressure was monitored via microtip catheter pressure transducers in the proximal and distal colon. At first, exogenous CRF was administered in a stepwise manner and the concentration of CRF yielding maximal colonic motility was selected. After recording basal colonic motility, hexamethonium, phentolamine, propranolol, atropine and tetrodotoxin were infused into the isolated colon. Initially, only the test drug was infused; then, CRF was added. The motility index was expressed as percentage change over basal level. RESULTS Administration of 1.4, 14.4, 144 and 288 pmol/L CRF progressively increased colonic motility in the proximal and distal colon. Infusion of atropine or tetrodotoxin reduced CRF-induced motility of both the proximal and distal colon, whereas hexamethonium, phentolamine and propranolol had no effect. CONCLUSION CRF-induced colonic motility appears to be mediated by local cholinergic signaling via muscarinic receptors. Muscarinic receptors are potential targets for counteracting CRF-induced colonic hypermotility. PMID:28638222

  11. Decreased Sperm Motility Retarded ICSI Fertilization Rate in Severe Oligozoospermia but Good-Quality Embryo Transfer Had Achieved the Prospective Clinical Outcomes.

    PubMed

    Zheng, Jufeng; Lu, Yongning; Qu, Xianqin; Wang, Peng; Zhao, Luiwen; Gao, Minzhi; Shi, Huijuan; Jin, Xingliang

    Spermatozoa motility is the critical parameter to affect the treatment outcomes during assisted reproductive technologies (ART), but its reproductive capability remains a little informed in condition of severe male factor infertility. This retrospective cohort study aimed to evaluate the effects of reduced sperm motility on the embryological and clinical outcomes in intra-cytoplasmic sperm injection (ICSI) treatment of severe oligozoospermia. 966 cycles (812 couples) of severe oligozoospermia diagnosed by spermatozoa count ≤ 5 × 106/mL and motile spermatozoa ≤ 2 × 106/mL were divided into four groups in according to the number of motile spermatozoa in one ejaculate on the day of oocyte retrieval (Group B-E). The control (Group A) was 188 cycles of moderate oligozoospermia with spermatozoa count > 5 × 106/mL and motile spermatozoa > 2 × 106/mL. All female partners were younger than 35 years of age. Logistic regression analyzed embryological outcomes (the rates of fertilization, cleavage and good-quality embryo) and clinical outcomes (the rates of pregnancy, implantation, early miscarriage and live birth). Quality of embryo transfer (ET) was divided into three classes as continuous factor to test the effects of embryo quality on clinical outcomes. The reduction in the number of motile sperm in four groups of severe oligozoospermia gave rise to comparable inability of the fertilization (p < 0.001) and a decreased rate of good-quality embryo at Day 3 (p < 0.001) by compared to the control. The cleavage rate of the derived zygotes was similar to the control. ET classes significantly affected the clinical outcomes (p < 0.001). Class I ET gave rise to similar rates of clinical outcomes between five groups, but Class II and Class III ET retarded the rates of pregnancy, implantation and live birth and this particularly occurred in Group C, D and E. The rate of early miscarriage was not comparably different between groups. Overall rates in all groups were 41

  12. Turbulent unmixing: how marine turbulence drives patchy distributions of motile phytoplankton

    NASA Astrophysics Data System (ADS)

    Durham, William; Climent, Eric; Barry, Michael; de Lillo, Filippo; Boffetta, Guido; Cencini, Massimo; Stocker, Roman

    2013-11-01

    Centimeter-scale patchiness in the distribution of phytoplankton increases the efficacy of many important ecological interactions in the marine food web. We show that turbulent fluid motion, usually synonymous with mixing, instead triggers intense small-scale patchiness in the distribution of motile phytoplankton. We use a suite of experiments, direct numerical simulations of turbulence, and analytical tools to show that turbulent shear and acceleration directs the motility of cells towards well-defined regions of flow, increasing local cell concentrations more than ten fold. This motility-driven `unmixing' offers an explanation for why motile cells are often more patchily distributed than non-motile cells and provides a mechanistic framework to understand how turbulence, whose strength varies profoundly in marine environments, impacts ocean productivity.

  13. Boar sperm storage capacity of BTS and Androhep Plus: viability, motility, capacitation, and tyrosine phosphorylation.

    PubMed

    Dubé, Charlotte; Beaulieu, Martin; Reyes-Moreno, Carlos; Guillemette, Christine; Bailey, Janice L

    2004-09-01

    Androhep Plus, a long-term extender (up to 7 days) and Beltsville Thawing Solution (BTS), a short-term extender (up to 3 days), are commonly used for liquid storage of porcine semen. To test the hypothesis that modifications in sperm viability, motility, chlortetracycline (CTC) fluorescence patterns, and protein tyrosine phosphorylation occur during semen storage in extenders, we compared these end points at different periods of storage in either Androhep Plus or BTS. Sperm from five boars were assessed daily over 12 days of storage (n = 5 ejaculates from different boars). Viability was not different (P < 0.05 between extenders, except on Day 2, when Androhep Plus maintained better viability. Differences in the percentage of motile (total) sperm due to extender were evident on Days 2, 4, 5, and 6, when Androhep Plus was superior to BTS (P < 0.05). The percentages of progressively motile sperm also differed, with Androhep Plus supporting higher rates on Days 2, 4, 5, 7, 8, 9, 10, and 11 (P < 0.05). The CTC fluorescence pattern distribution differed due to extender as early as Day 2; storage in Androhep Plus induced higher levels of pattern B sperm (P < 0.05) than storage in BTS. A tyrosine-phosphorylated protein of Mr 21,000 appeared after 10 days in sperm incubated in BTS, and was identified as a phospholipid hydroperoxide glutathione peroxidase. Therefore, modifications in viability, motility, CTC fluorescence patterns, and sperm protein tyrosine phosphorylation were apparent during sperm storage in extenders; these may affect the fertilizing capacity of the semen.

  14. Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses

    PubMed Central

    Gillespie, Eugene J.; Ho, Chi-Lee C.; Balaji, Kavitha; Clemens, Daniel L.; Deng, Gang; Wang, Yao E.; Elsaesser, Heidi J.; Tamilselvam, Batcha; Gargi, Amandeep; Dixon, Shandee D.; France, Bryan; Chamberlain, Brian T.; Blanke, Steven R.; Cheng, Genhong; de la Torre, Juan Carlos; Brooks, David G.; Jung, Michael E.; Colicelli, John; Damoiseaux, Robert; Bradley, Kenneth A.

    2013-01-01

    Pathogenic microorganisms and toxins have evolved a variety of mechanisms to gain access to the host-cell cytosol and thereby exert virulent effects upon the host. One common mechanism of cellular entry requires trafficking to an acidified endosome, which promotes translocation across the host membrane. To identify small-molecule inhibitors that block this process, a library of 30,000 small molecules was screened for inhibitors of anthrax lethal toxin. Here we report that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone, the most active compound identified in the screen, inhibits intoxication by lethal toxin and blocks the entry of multiple other acid-dependent bacterial toxins and viruses into mammalian cells. This compound, which we named EGA, also delays lysosomal targeting and degradation of the EGF receptor, indicating that it targets host-membrane trafficking. In contrast, EGA does not block endosomal recycling of transferrin, retrograde trafficking of ricin, phagolysosomal trafficking, or phagosome permeabilization by Franciscella tularensis. Furthermore, EGA does not neutralize acidic organelles, demonstrating that its mechanism of action is distinct from pH-raising agents such as ammonium chloride and bafilomycin A1. EGA is a powerful tool for the study of membrane trafficking and represents a class of host-targeted compounds for therapeutic development to treat infectious disease. PMID:24191014

  15. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters.

    PubMed

    Boryshpolets, S; Kowalski, R K; Dietrich, G J; Dzyuba, B; Ciereszko, A

    2013-10-15

    In this study, we examined different computer-assisted sperm analysis (CASA) systems (CRISMAS, Hobson Sperm Tracker, and Image J CASA) on the exact same video recordings to evaluate the differences in sperm motility parameters related to the specific CASA used. To cover a wide range of sperm motility parameters, we chose 12-second video recordings at 25 and 50 Hz frame rates after sperm motility activation using three taxonomically distinct fish species (sterlet: Acipenser ruthenus L.; common carp: Cyprinus carpio L.; and rainbow trout: Oncorhynchus mykiss Walbaum) that are characterized by essential differences in sperm behavior during motility. Systematically higher values of velocity and beat cross frequency (BCF) were observed in video recordings obtained at 50 Hz frame frequency compared with 25 Hz for all three systems. Motility parameters were affected by the CASA and species used for analyses. Image J and CRISMAS calculated higher curvilinear velocity (VCL) values for rainbow trout and common carp at 25 Hz frequency compared with the Hobson Sperm Tracker, whereas at 50 Hz, a significant difference was observed only for rainbow trout sperm recordings. No significant difference was observed between the CASA systems for sterlet sperm motility at 25 and 50 Hz. Additional analysis of 1-second segments taken at three time points (1, 6, and 12 seconds of the recording) revealed a dramatic decrease in common carp and rainbow trout sperm speed. The motility parameters of sterlet spermatozoa did not change significantly during the 12-second motility period and should be considered as a suitable model for longer motility analyses. Our results indicated that the CASA used can affect motility results even when the same motility recordings are used. These results could be critically altered by the recording quality, time of analysis, and frame rate of camera, and could result in erroneous conclusions. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Actin-based motility of Listeria: Right-handed helical trajectories

    NASA Astrophysics Data System (ADS)

    Rangarajan, Murali

    2012-06-01

    Bacteria such as Listeria monocytogenes recruit cellular machinery to move in and between cells. Understanding the mechanism of motility, including force and torque generation and the resultant displacements, holds keys to numerous applications in medicine and biosensing. In this work, a simple back-of-the-envelope calculation is presented to illustrate that a biomechanical model of actin-based motility of a rigid surface through persistently attached filaments propelled by affinity-modulated molecular motors can produce a right-handed helical trajectory consistent with experimental observations. The implications of the mechanism to bacterial motility are discussed.

  17. Mechanical stress as a regulator of cell motility

    NASA Astrophysics Data System (ADS)

    Putelat, T.; Recho, P.; Truskinovsky, L.

    2018-01-01

    The motility of a cell can be triggered or inhibited not only by an applied force but also by a mechanically neutral force couple. This type of loading, represented by an applied stress and commonly interpreted as either squeezing or stretching, can originate from extrinsic interaction of a cell with its neighbors. To quantify the effect of applied stresses on cell motility we use an analytically transparent one-dimensional model accounting for active myosin contraction and induced actin turnover. We show that stretching can polarize static cells and initiate cell motility while squeezing can symmetrize and arrest moving cells. We show further that sufficiently strong squeezing can lead to the loss of cell integrity. The overall behavior of the system depends on the two dimensionless parameters characterizing internal driving (chemical activity) and external loading (applied stress). We construct a phase diagram in this parameter space distinguishing between static, motile, and collapsed states. The obtained results are relevant for the mechanical understanding of contact inhibition and the epithelial-to-mesenchymal transition.

  18. MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans.

    PubMed

    Larsen, Morten K; Tuck, Simon; Faergeman, Nils J; Knudsen, Jens

    2006-10-01

    The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted by the hydrolysis of acyl-CoA lipid esters. The mechanisms by which these lipid esters are directed to the appropriate membranes in vivo, and their precise roles in vesicle biogenesis, are not yet understood. Here, we present the first report on membrane associated ACBP domain-containing protein-1 (MAA-1), a novel membrane-associated member of the acyl-CoA-binding protein family. We show that in Caenorhabditis elegans, MAA-1 localizes to intracellular membrane organelles in the secretory and endocytic pathway and that mutations in maa-1 reduce the rate of endosomal recycling. A lack of maa-1 activity causes a change in endosomal morphology. Although in wild type, many endosomal organelles have long tubular protrusions, loss of MAA-1 activity results in loss of the tubular domains, suggesting the maa-1 is required for the generation or maintenance of these domains. Furthermore, we demonstrate that MAA-1 binds fatty acyl-CoA in vitro and that this ligand-binding ability is important for its function in vivo. Our results are consistent with a role for MAA-1 in an acyl-CoA-dependent process during vesicle formation.

  19. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content

    PubMed Central

    Mundy, Dorothy I.; Li, Wei Ping; Luby-Phelps, Katherine; Anderson, Richard G. W.

    2012-01-01

    Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking. PMID:22238363

  20. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes.

    PubMed

    Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2016-05-13

    NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

    PubMed

    Hurwitz, Stephanie N; Cheerathodi, Mujeeb R; Nkosi, Dingani; York, Sara B; Meckes, David G

    2018-03-01

    The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells. IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major

  2. Novel genes associated with enhanced motility of Escherichia coli ST131

    PubMed Central

    Kakkanat, Asha; Phan, Minh-Duy; Lo, Alvin W.; Beatson, Scott A.

    2017-01-01

    Uropathogenic Escherichia coli (UPEC) is the cause of ~75% of all urinary tract infections (UTIs) and is increasingly associated with multidrug resistance. This includes UPEC strains from the recently emerged and globally disseminated sequence type 131 (ST131), which is now the dominant fluoroquinolone-resistant UPEC clone worldwide. Most ST131 strains are motile and produce H4-type flagella. Here, we applied a combination of saturated Tn5 mutagenesis and transposon directed insertion site sequencing (TraDIS) as a high throughput genetic screen and identified 30 genes associated with enhanced motility of the reference ST131 strain EC958. This included 12 genes that repress motility of E. coli K-12, four of which (lrhA, ihfA, ydiV, lrp) were confirmed in EC958. Other genes represented novel factors that impact motility, and we focused our investigation on characterisation of the mprA, hemK and yjeA genes. Mutation of each of these genes in EC958 led to increased transcription of flagellar genes (flhD and fliC), increased expression of the FliC flagellin, enhanced flagella synthesis and a hyper-motile phenotype. Complementation restored all of these properties to wild-type level. We also identified Tn5 insertions in several intergenic regions (IGRs) on the EC958 chromosome that were associated with enhanced motility; this included flhDC and EC958_1546. In both of these cases, the Tn5 insertions were associated with increased transcription of the downstream gene(s), which resulted in enhanced motility. The EC958_1546 gene encodes a phage protein with similarity to esterase/deacetylase enzymes involved in the hydrolysis of sialic acid derivatives found in human mucus. We showed that over-expression of EC958_1546 led to enhanced motility of EC958 as well as the UPEC strains CFT073 and UTI89, demonstrating its activity affects the motility of different UPEC strains. Overall, this study has identified and characterised a number of novel factors associated with enhanced

  3. The ocular albinism type 1 (OA1) GPCR is ubiquitinated and its traffic requires endosomal sorting complex responsible for transport (ESCRT) function

    PubMed Central

    Giordano, Francesca; Simoes, Sabrina; Raposo, Graça

    2011-01-01

    The function of signaling receptors is tightly controlled by their intracellular trafficking. One major regulatory mechanism within the endo-lysosomal system required for receptor localization and down-regulation is protein modification by ubiquitination and downstream interactions with the endosomal sorting complex responsible for transport (ESCRT) machinery. Whether and how these mechanisms operate to regulate endosomal sorting of mammalian G protein-coupled receptors (GPCRs) remains unclear. Here, we explore the involvement of ubiquitin and ESCRTs in the trafficking of OA1, a pigment cell-specific GPCR, target of mutations in Ocular Albinism type 1, which localizes intracellularly to melanosomes to regulate their biogenesis. Using biochemical and morphological methods in combination with overexpression and inactivation approaches we show that OA1 is ubiquitinated and that its intracellular sorting and down-regulation requires functional ESCRT components. Depletion or overexpression of subunits of ESCRT-0, -I, and -III markedly inhibits OA1 degradation with concomitant retention within the modified endosomal system. Our data further show that OA1 ubiquitination is uniquely required for targeting to the intralumenal vesicles of multivesicular endosomes, thereby regulating the balance between down-regulation and delivery to melanosomes. This study highlights the role of ubiquitination and the ESCRT machinery in the intracellular trafficking of mammalian GPCRs and has implications for the physiopathology of ocular albinism type 1. PMID:21730137

  4. Mechanical Strain Determines Cilia Length, Motility, and Planar Position in the Left-Right Organizer.

    PubMed

    Chien, Yuan-Hung; Srinivasan, Shyam; Keller, Ray; Kintner, Chris

    2018-05-07

    The Xenopus left-right organizer (LRO) breaks symmetry along the left-right axis of the early embryo by producing and sensing directed ciliary flow as a patterning cue. To carry out this process, the LRO contains different ciliated cell types that vary in cilia length, whether they are motile or sensory, and how they position their cilia along the anterior-posterior (A-P) planar axis. Here, we show that these different cilia features are specified in the prospective LRO during gastrulation, based on anisotropic mechanical strain that is oriented along the A-P axis, and graded in levels along the medial-lateral axis. Strain instructs ciliated cell differentiation by acting on a mesodermal prepattern present at blastula stages, involving foxj1. We propose that differential strain is a graded, developmental cue, linking the establishment of an A-P planar axis to cilia length, motility, and planar location during formation of the Xenopus LRO. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    PubMed Central

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  6. Electroacupuncture at LI11 promotes jejunal motility via the parasympathetic pathway.

    PubMed

    Hu, Xuanming; Yuan, Mengqian; Yin, Yin; Wang, Yidan; Li, Yuqin; Zhang, Na; Sun, Xueyi; Yu, Zhi; Xu, Bin

    2017-06-21

    Gastrointestinal motility disorder has been demonstrated to be regulated by acupuncture treatment. The mechanisms underlying the effects of acupuncture stimulation of abdominal and lower limb acupoints on gastrointestinal motility have been thoroughly studied; however, the physiology underlying the effects of acupuncture on the forelimbs to mediate gastrointestinal motility requires further exploration. The aim of this study was to determine whether electroacupuncture (EA) at LI11 promotes jejunal motility, whether the parasympathetic pathway participates in this effect, and if so, which somatic afferent nerve fibres are involved. A manometric balloon was used to observe jejunal motility. The effects and mechanisms of EA at LI11 were explored in male Sprague-Dawley rats with or without drug administration (propranolol, clenbuterol, acetylcholine, and atropine) and with or without vagotomy. Three types of male mice (β 1 β 2 receptor-knockout [β 1 β 2 -/- ] mice, M 2 M 3 receptor-knockout [M 2 M 3 -/- ] mice and wild-type [WT] mice) were also studied by using different EA intensities (1, 2, 4, 6, and 8 mA). A total of 72 rats and 56 mice were included in the study. EA at LI11 increased the contractile amplitude of jejunal motility in the majority of both rats and mice. However, EA at LI11 did not enhance jejunal motility in rats administered atropine, rats that underwent vagotomy, and M 2 M 3 -‍‍/- mice (at all intensities). In WT mice, EA at LI11 significantly increased jejunal motility at all intensities except 1 mA, and a plateau was reached at intensities greater than 4 mA. Our results suggest that EA at LI11 promotes jejunal motility primarily by exciting the parasympathetic pathway, and that Aδ-fibres and C-fibres may play important roles in the process.

  7. Thiols of flagellar proteins are essential for progressive motility in human spermatozoa.

    PubMed

    Cabrillana, María Eugenia; Monclus, María de Los Ángeles; Lancellotti, Tania Estefania Sáez; Boarelli, Paola Vanina; Vincenti, Amanda Edith; Fornés, Miguel Matias; Sanabria, Eduardo Alfredo; Fornés, Miguel Walter

    2017-07-01

    Male infertility is a disorder of the reproductive system defined by the failure to achieve a clinical pregnancy after 12 months or more of regular unprotected sexual intercourse. The presence of low-motile or immotile spermatozoa is one of many causes of infertility; however, this observation provides little or no information regarding the pathogenesis of the malfunction. Good sperm motility depends on correct assembly of the sperm tail in the testis and efficient maturation during epididymal transit. Thiols of flagellar proteins, such as outer dense fibre protein 1 (ODF1), are oxidised to form disulfides during epididymal transit and the spermatozoa become motile. This study was designed to determine how oxidative changes in protein thiol status affect progressive motility in human spermatozoa. Monobromobimane (mBBr) was used as a specific thiol marker and disruptor of sperm progressive motility. When mBBr was blocked by dithiothreitol it did not promote motility changes. The analysis of mBBr-treated spermatozoa revealed a reduction of progressive motility and an increased number of spermatozoa with non-progressive motility without affecting ATP production. Laser confocal microscopy and western blot analysis showed that one of the mBBr-positive proteins reacted with an antibody to ODF1. Monobromobimane fluorescence intensity of the sperm tail was lower in normozoospermic than asthenozoospermic men, suggesting that thiol oxidation in spermatozoa of asthenozoospermic men is incomplete. Our findings indicate that mBBr affects the thiol status of ODF1 in human spermatozoa and interferes with progressive motility.

  8. hemingway is required for sperm flagella assembly and ciliary motility in Drosophila.

    PubMed

    Soulavie, Fabien; Piepenbrock, David; Thomas, Joëlle; Vieillard, Jennifer; Duteyrat, Jean-Luc; Cortier, Elisabeth; Laurençon, Anne; Göpfert, Martin C; Durand, Bénédicte

    2014-04-01

    Cilia play major functions in physiology and development, and ciliary dysfunctions are responsible for several diseases in humans called ciliopathies. Cilia motility is required for cell and fluid propulsion in organisms. In humans, cilia motility deficiencies lead to primary ciliary dyskinesia, with upper-airways recurrent infections, left-right asymmetry perturbations, and fertility defects. In Drosophila, we identified hemingway (hmw) as a novel component required for motile cilia function. hmw encodes a 604-amino acid protein characterized by a highly conserved coiled-coil domain also found in the human orthologue, KIAA1430. We show that HMW is conserved in species with motile cilia and that, in Drosophila, hmw is expressed in ciliated sensory neurons and spermatozoa. We created hmw-knockout flies and found that they are hearing impaired and male sterile. hmw is implicated in the motility of ciliated auditory sensory neurons and, in the testis, is required for elongation and maintenance of sperm flagella. Because HMW is absent from mature flagella, we propose that HMW is not a structural component of the motile axoneme but is required for proper acquisition of motile properties. This identifies HMW as a novel, evolutionarily conserved component necessary for motile cilium function and flagella assembly.

  9. A Glycosylation Mutant of Trypanosoma brucei Links Social Motility Defects In Vitro to Impaired Colonization of Tsetse Flies In Vivo.

    PubMed

    Imhof, Simon; Vu, Xuan Lan; Bütikofer, Peter; Roditi, Isabel

    2015-06-01

    Transmission of African trypanosomes by tsetse flies requires that the parasites migrate out of the midgut lumen and colonize the ectoperitrophic space. Early procyclic culture forms correspond to trypanosomes in the lumen; on agarose plates they exhibit social motility, migrating en masse as radial projections from an inoculation site. We show that an Rft1(-/-) mutant needs to reach a greater threshold number before migration begins, and that it forms fewer projections than its wild-type parent. The mutant is also up to 4 times less efficient at establishing midgut infections. Ectopic expression of Rft1 rescues social motility defects and restores the ability to colonize the fly. These results are consistent with social motility reflecting movement to the ectoperitrophic space, implicate N-glycans in the signaling cascades for migration in vivo and in vitro, and provide the first evidence that parasite-parasite interactions determine the success of transmission by the insect host. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. The relationship between gastrointestinal motility and gastric dilatation-volvulus in dogs.

    PubMed

    Gazzola, Krista M; Nelson, Laura L

    2014-09-01

    Gastric dilatation-volvulus (GDV) is a devastating disease that most commonly affects large and giant-breed dogs. Though a number of risk factors have been associated with the development of GDV, the etiology of GDV remains unclear. Abnormal gastric motility patterns and delayed gastric emptying have been previously described in dogs following GDV. Work evaluating the effects of gastropexy procedures and changes to gastric motility after experimental GDV has not found the same changes as those found in dogs with naturally occurring GDV. Although the role of abnormal gastric motility in dogs with GDV will need to be clarified with additional research, such study is likely to be facilitated by improved access to and development of noninvasive measurement techniques for the evaluation of gastric emptying and other motility parameters. In particular, the availability of Food and Drug Administration-approved wireless motility devices for the evaluation of gastrointestinal motility is particularly promising in the study of GDV and other functional gastrointestinal diseases of large and giant-breed dogs. Published by Elsevier Inc.

  11. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy

    PubMed Central

    Davis, Michael L.; Mounteer, Leslie C.; Stevens, Lindsey K.; Miller, Charles D.; Zhou, Anhong

    2011-01-01

    Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout exponential growth phase (~20.9 µm/sec), while maximum velocities peak early in exponential growth phase at a velocity of 51.2 µm/sec. Pseudomonas putida KT2440 also favor smaller turn angles indicating they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. PMID:21334971

  12. The Pearling Transition Provides Evidence of Force-Driven Endosomal Tubulation during Salmonella Infection.

    PubMed

    Gao, Yunfeng; Spahn, Christoph; Heilemann, Mike; Kenney, Linda J

    2018-06-19

    Bacterial pathogens exploit eukaryotic pathways for their own end. Upon ingestion, Salmonella enterica serovar Typhimurium passes through the stomach and then catalyzes its uptake across the intestinal epithelium. It survives and replicates in an acidic vacuole through the action of virulence factors secreted by a type three secretion system located on Salmonella pathogenicity island 2 (SPI-2). Two secreted effectors, SifA and SseJ, are sufficient for endosomal tubule formation, which modifies the vacuole and enables Salmonella to replicate within it. Two-color, superresolution imaging of the secreted virulence factor SseJ and tubulin revealed that SseJ formed clusters of conserved size at regular, periodic intervals in the host cytoplasm. Analysis of SseJ clustering indicated the presence of a pearling effect, which is a force-driven, osmotically sensitive process. The pearling transition is an instability driven by membranes under tension; it is induced by hypotonic or hypertonic buffer exchange and leads to the formation of beadlike structures of similar size and regular spacing. Reducing the osmolality of the fixation conditions using glutaraldehyde enabled visualization of continuous and intact tubules. Correlation analysis revealed that SseJ was colocalized with the motor protein kinesin. Tubulation of the endoplasmic reticulum is driven by microtubule motors, and in the present work, we describe how Salmonella has coopted the microtubule motor kinesin to drive the force-dependent process of endosomal tubulation. Thus, endosomal tubule formation is a force-driven process catalyzed by Salmonella virulence factors secreted into the host cytoplasm during infection. IMPORTANCE This study represents the first example of using two-color, superresolution imaging to analyze the secretion of Salmonella virulence factors as they are secreted from the SPI-2 type three secretion system. Previous studies imaged effectors that were overexpressed in the host cytoplasm. The

  13. Control of actin-based motility through localized actin binding

    PubMed Central

    Banigan, Edward J.; Lee, Kun-Chun; Liu, Andrea J.

    2014-01-01

    A wide variety of cell biological and biomimetic systems use actin polymerization to drive motility. It has been suggested that an object such as a bacterium can propel itself by self-assembling a high concentration of actin behind it if it is repelled by actin. However, it is also known that it is essential for the moving object to bind actin. Therefore, a key question is how the actin tail can propel an object when it both binds and repels the object. We present a physically consistent Brownian dynamics model for actin-based motility that includes the minimal components of the dendritic nucleation model and allows for both attractive and repulsive interactions between actin and a moveable disk. We find that the concentration gradient of filamentous actin generated by polymerization is sufficient to propel the object, even with moderately strong binding interactions. Additionally, actin binding can act as a biophysical cap, and may directly control motility through modulation of network growth. Overall, this mechanism is robust in that it can drive motility against a load up to a stall pressure that depends on the Young’s modulus of the actin network and can explain several aspects of actin-based motility. PMID:24225232

  14. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  15. Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices

    NASA Astrophysics Data System (ADS)

    Matsuura, Koji; Huang, Han-Wei; Chen, Ming-Cheng; Chen, Yu; Cheng, Chao-Min

    2017-04-01

    Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P < 0.05), suggesting that a sperm-related enzymatic reaction is involved in sperm motility. Under this protocol, MTT reduction was coupled with catalysis of GAPDH and was promoted by electron transfer from NADH. Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay.

  16. Morphological characteristics of motile plants for dynamic motion

    NASA Astrophysics Data System (ADS)

    Song, Kahye; Yeom, Eunseop; Kim, Kiwoong; Lee, Sang Joon

    2014-11-01

    Most plants have been considered as non-motile organisms. However, plants move in response to environmental changes for survival. In addition, some species drive dynamic motions in a short period of time. Mimosa pudica is a plant that rapidly shrinks its body in response to external stimuli. It has specialized organs that are omnidirectionally activated due to morphological features. In addition, scales of pinecone open or close up depending on humidity for efficient seed release. A number of previous studies on the dynamic motion of plants have been investigated in a biochemical point of view. In this study, the morphological characteristics of those motile organs were investigated by using X-ray CT and micro-imaging techniques. The results show that the dynamic motions of motile plants are supported by structural features related with water transport. These studies would provide new insight for better understanding the moving mechanism of motile plant in morphological point of view. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Grant Number: 2008-0061991).

  17. Munc13-4 functions as a Ca2+ sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles.

    PubMed

    Woo, Sang Su; James, Declan J; Martin, Thomas F J

    2017-03-15

    Munc13-4 is a Ca 2+ -dependent SNARE (soluble N -ethylmaleimide-sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca 2+ -evoked secretion in various secretory cells. Studies in mast cell-like RBL-2H3 cells provide direct evidence that Munc13-4 with its two Ca 2+ -binding C2 domains functions as a Ca 2+ sensor for SG exocytosis. Unexpectedly, Ca 2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4 + /Rab7 + /Rab11 + endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4 + /Rab7 + SGs, followed by a merge with Rab11 + endosomes, and depended on Ca 2+ binding to Munc13-4. Munc13-4 promoted the Ca 2+ -stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca 2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells. © 2017 Woo et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. The functional interplay of Rab11, FIP3 and Rho proteins on the endosomal recycling pathway controls cell shape and symmetry.

    PubMed

    Bouchet, Jérôme; McCaffrey, Mary W; Graziani, Andrea; Alcover, Andrés

    2018-07-04

    Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.

  19. The JNK/AP-1 pathway upregulates expression of the recycling endosome rab11a gene in B cells transformed by Theileria.

    PubMed

    Lizundia, Regina; Chaussepied, Marie; Naissant, Bernina; Masse, Guillemette X; Quevillon, Emmanuel; Michel, Fréderique; Monier, Solange; Weitzman, Jonathan B; Langsley, Gordon

    2007-08-01

    Lymphocyte transformation induced by Theileria parasites involves constitutive activation of c-Jun N-terminal kinase (JNK) and the AP-1 transcription factor. We found that JNK/AP-1 activation is associated with elevated levels of Rab11 protein in Theileria-transformed B cells. We show that AP-1 regulates rab11a promoter activity in B cells and that the induction of c-Jun activity in mouse fibroblasts also leads to increased transcription of the endogenous rab11a gene, consistent with it being an AP-1 target. Pharmacological inhibition of the JNK pathway reduced Rab11 protein levels and endosome recycling of transferrin receptor (TfR) and siRNA knockdown of JNK1 and Rab11A levels also reduced TfR surface expression. We propose a model, where activation of the JNK/AP-1 pathway during cell transformation might assure that the regulation of recycling endosomes is co-ordinated with cell-cycle progression. This might be achieved via the simultaneous upregulation of the cell cycle machinery (e.g. cyclin D1) and the recycling endosome regulators (e.g. Rab11A).

  20. [Motility disorders of the esophagus].

    PubMed

    Bruder, E; Rougemont, A-L; Furlano, R I; Schneider, J F; Mayr, J; Haecker, F-M; Beier, K; Schneider, J; Weber, P; Berberich, T; Cathomas, G; Meier-Ruge, W A

    2013-03-01

    Motility disorders of the esophagus comprise a heterogeneous spectrum of diseases. Primary malformations of the esophagus are now amenable to improved surgical and gastroenterological therapies; however, they often lead to persistent long-term esophageal dysmotility. Achalasia originates from impaired relaxation of the gastroesophageal sphincter apparatus. Systemic diseases may give rise to secondary disorders of esophageal motility. A number of visceral neuromuscular disorders show an esophageal manifestation but aganglionosis rarely extends into the esophagus. The growing group of myopathies includes metabolic and mitochondrial disorders with increasing levels of genetic characterization and incipient emergence of therapeutic strategies. Esophagitis with an infectious etiology causes severe dysmotility particularly in immunocompromised patients. Immunologically mediated inflammatory processes involving the esophagus are increasingly better understood. Finally, rare tumors and tumor-like lesions may impair esophageal motor function.

  1. The validation of an invitro colonic motility assay as a biomarker for gastrointestinal adverse drug reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Christopher, E-mail: C.Keating@sheffield.ac.u; Martinez, Vicente; Ewart, Lorna

    Motility-related gastrointestinal adverse drug reactions (GADRs), such as constipation and diarrhea, are some of the most frequently reported adverse events associated with the clinical development of new chemical entities, and for marketed drugs. However, biomarkers capable of detecting such GADRs are lacking. Here, we describe an in vitro assay developed to detect and quantify changes in intestinal motility as a surrogate biomarker for constipation/diarrhea-type GADRs. In vitro recordings of intraluminal pressure were used to monitor the presence of colonic peristaltic motor complexes (CPMCs) in mouse colonic segments. CPMC frequency, contractile and total mechanical activity were assessed. To validate the assay,more » two experimental protocols were conducted. Initially, five drugs with known gastrointestinal effects were tested to determine optimal parameters describing excitation and inhibition as markers for disturbances in colonic motility. This was followed by a 'blinded' evaluation of nine drugs associated with or without clinically identified constipation/diarrhea-type GADRs. Concentration-response relationships were determined for these drugs and the effects were compared with their maximal free therapeutic plasma concentration in humans. The assay detected stimulatory and inhibitory responses, likely correlating to the occurrence of diarrhea or constipation. Concentration-related effects were identified and potential mechanisms of action were inferred for several drugs. Based on the results from the fourteen drugs assessed, the sensitivity of the assay was calculated at 90%, with a specificity of 75% and predictive capacity of 86%. These results support the potential use of this assay in screening for motility-related GADRs during early discovery phase, safety pharmacology assessment.« less

  2. High-Throughput, Motility-Based Sorter for Microswimmers such as C. elegans

    PubMed Central

    Yuan, Jinzhou; Zhou, Jessie; Raizen, David M.; Bau, Haim H.

    2015-01-01

    Animal motility varies with genotype, disease, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method is implemented in a simple microfluidic device capable of sorting thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriches for known C. elegans motility mutants. Furthermore, using this device, we isolate low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates C. elegans sleep. By performing genetic complementation tests, we demonstrate that our motility-based sorting device efficiently isolates mutants for the same gene identified by tedious visual inspection of behavior on an agar surface. Therefore, our motility-based sorter is capable of performing high throughput gene discovery approaches to investigate fundamental biological processes. PMID:26008643

  3. Cellular mechanics and motility

    NASA Astrophysics Data System (ADS)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  4. Sperm motility in fishes. I. Effects of temperature and pH: a review.

    PubMed

    Alavi, Sayyed Mohammad Hadi; Cosson, Jacky

    2005-02-01

    Sperm motility is a key factor in allowing us to determine semen quality and fertilizing capacity. Motility in semen is mainly controlled by K+ in salmonids, and probably also in sturgeons, and by osmotic pressure in other freshwater and seawater fish species, but other factors, such as concentration of surrounding metabolites and ions (Ca2+, Mg2+, etc.), pH and temperature also influence motility characteristics. In the present study, we have mainly reviewed and summarized the effects of temperature and pH on the motility of spermatozoa in three fish species: salmonids, cyprinids and sturgeons. Data in the literature show that motility, fertilizing ability and velocity of spermatozoa, as well as the duration of the motility period, depend on the temperature of the assay medium and also of that of the brood fish holding tank. In contrast, the pH of the swimming medium, and thus the intracellular pH of spermatozoa, has less influence on sperm motility parameters in cyprinids, salmonids and sturgeons.

  5. Regulation of cargo transfer between ESCRT-0 and ESCRT-I complexes by flotillin-1 during endosomal sorting of ubiquitinated cargo

    PubMed Central

    Meister, M; Bänfer, S; Gärtner, U; Koskimies, J; Amaddii, M; Jacob, R; Tikkanen, R

    2017-01-01

    Ubiquitin-dependent sorting of membrane proteins in endosomes directs them to lysosomal degradation. In the case of receptors such as the epidermal growth factor receptor (EGFR), lysosomal degradation is important for the regulation of downstream signalling. Ubiquitinated proteins are recognised in endosomes by the endosomal sorting complexes required for transport (ESCRT) complexes, which sequentially interact with the ubiquitinated cargo. Although the role of each ESCRT complex in sorting is well established, it is not clear how the cargo is passed on from one ESCRT to the next. We here show that flotillin-1 is required for EGFR degradation, and that it interacts with the subunits of ESCRT-0 and -I complexes (hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) and Tsg101). Flotillin-1 is required for cargo recognition and sorting by ESCRT-0/Hrs and for its interaction with Tsg101. In addition, flotillin-1 is also required for the sorting of human immunodeficiency virus 1 Gag polyprotein, which mimics ESCRT-0 complex during viral assembly. We propose that flotillin-1 functions in cargo transfer between ESCRT-0 and -I complexes. PMID:28581508

  6. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy.

    PubMed

    Davis, Michael L; Mounteer, Leslie C; Stevens, Lindsey K; Miller, Charles D; Zhou, Anhong

    2011-05-01

    Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout the exponential growth phase (~20.9 μm/s), while maximum velocities peak early in the exponential growth phase at a velocity of 51.2 μm/s. P. putida KT2440 also favors smaller turn angles indicating that they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Evaporation-induced patterns from droplets containing motile and nonmotile bacteria.

    PubMed

    Nellimoottil, Tittu Thomas; Rao, Pinjala Nagaraju; Ghosh, Siddhartha Sankar; Chattopadhyay, Arun

    2007-08-14

    In this letter, we report the observations of specific pattern formation from the evaporation of aqueous droplets containing motile and nonmotile bacteria. We found that when motile bacteria were present the droplet evaporated into disclike patterned deposits of bacteria. However, when the bacteria were made nonmotile by treatment with liquid nitrogen, the droplet evaporated into ringlike deposits. We also observed that bacteria with higher motility produced more uniformly deposited disclike patterns. Furthermore, we propose a model with numerical simulations to explain the mechanism of formation of these patterns. The model is based on the advective fluid flow from the center of the droplet toward the edge due to enhanced evaporation from the edge of the pinned droplet in comparison to that from the free surface. For the case of motile bacteria, we have added another velocity parameter toward the axis of the droplet and directed against the fluid flow in order to account for the disclike pattern formation. The numerical simulations match the experimental observations well. The present work, by qualitative and quantitative understanding of the evaporation of bacteria droplets, demonstrates that the inherent bacterial motility is primarily responsible for the formation of these differential patterns.

  8. Bidirectional motility of the fission yeast kinesin-5, Cut7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edamatsu, Masaki, E-mail: cedam@mail.ecc.u-tokyo.ac.jp

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules,more » but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.« less

  9. p62/SQSTM1 promotes rapid ubiquitin conjugation to target proteins after endosome rupture during xenophagy.

    PubMed

    Tsuchiya, Megumi; Ogawa, Hidesato; Koujin, Takako; Mori, Chie; Osakada, Hiroko; Kobayashi, Shouhei; Hiraoka, Yasushi; Haraguchi, Tokuko

    2018-03-01

    Autophagy is a bulk degradation pathway, and selective autophagy to remove foreign entities is called xenophagy. The conjugation of ubiquitin to target pathogens is an important process in xenophagy but when and where this ubiquitination occurs remains unclear. Here, we analyzed the temporal sequence and subcellular location of ubiquitination during xenophagy using time-lapse observations, with polystyrene beads mimicking invading pathogens. Results revealed accumulation of a ubiquitination marker around the beads within 3 min after endosome rupture. Recruitment of ubiquitin to the beads was significantly delayed in p62-knockout murine embryonic fibroblast cells, and this delay was rescued by ectopic p62 expression. Ectopic expression of a phosphorylation-mimicking p62 mutated at serine residue 405 (equivalent to human serine residue 403) rescued this delay, but its unphosphorylated form did not. These results indicate that ubiquitination mainly occurs after endosome rupture and suggest that p62, specifically the phosphorylated form, promotes ubiquitin conjugation to target proteins in xenophagy.

  10. RhoB-dependent modulation of postendocytic traffic in polarized Madin-Darby canine kidney cells.

    PubMed

    Rondanino, Christine; Rojas, Raul; Ruiz, Wily G; Wang, Exing; Hughey, Rebecca P; Dunn, Kenneth W; Apodaca, Gerard

    2007-07-01

    The Rho family of GTPases is implicated in the control of endocytic and biosynthetic traffic of many cell types; however, the cellular distribution of RhoB remains controversial and its function is not well understood. Using confocal microscopy, we found that endogenous RhoB and green fluorescent protein-tagged wild-type RhoB were localized to early endosomes, and to a much lesser extent to recycling endosomes, late endosomes or Golgi complex of fixed or live polarized Madin-Darby canine kidney cells. Consistent with RhoB localization to early endosomes, we observed that expression of dominant-negative RhoBN19 or dominant-active RhoBV14 altered postendocytic traffic of ligand-receptor complexes that undergo recycling, degradation or transcytosis. In vitro assays established that RhoB modulated the basolateral-to-apical transcytotic pathway by regulating cargo exit from basolateral early endosomes. Our results indicate that RhoB is localized, in part, to early endosomes where it regulates receptor egress through the early endocytic system.

  11. Nuclear transport of cancer extracellular vesicle-derived biomaterials through nuclear envelope invagination-associated late endosomes.

    PubMed

    Rappa, Germana; Santos, Mark F; Green, Toni M; Karbanová, Jana; Hassler, Justin; Bai, Yongsheng; Barsky, Sanford H; Corbeil, Denis; Lorico, Aurelio

    2017-02-28

    Extracellular membrane vesicles (EVs) function as vehicles of intercellular communication, but how the biomaterials they carry reach the target site in recipient cells is an open question. We report that subdomains of Rab7+ late endosomes and nuclear envelope invaginations come together to create a sub-nuclear compartment, where biomaterials associated with CD9+ EVs are delivered. EV-derived biomaterials were also found in the nuclei of host cells. The inhibition of nuclear import and export pathways abrogated the nuclear localization of EV-derived biomaterials or led to their accumulation therein, respectively, suggesting that their translocation is dependent on nuclear pores. Nuclear envelope invagination-associated late endosomes were observed in ex vivo biopsies in both breast carcinoma and associated stromal cells. The transcriptome of stromal cells exposed to cancer cell-derived CD9+ EVs revealed that the regulation of eleven genes, notably those involved in inflammation, relies on the nuclear translocation of EV-derived biomaterials. Our findings uncover a new cellular pathway used by EVs to reach nuclear compartment.

  12. Divalent Cation Control of Flagellar Motility in African Trypanosomes

    NASA Astrophysics Data System (ADS)

    Westergard, Anna M.; Hutchings, Nathan R.

    2005-03-01

    Changes in calcium concentration have been shown to dynamically affect flagellar motility in several eukaryotic systems. The African trypanosome is a monoflagellated protozoan parasite and the etiological agent of sleeping sickness. Although cell motility has been implicated in disease progression, very little is currently known about biochemical control of the trypanosome flagellum. In this study, we assess the effects of extracellular changes in calcium and nickel concentration on trypanosome flagellar movement. Using a flow through chamber, we determine the relative changes in motility in individual trypanosomes in response to various concentrations of calcium and nickel, respectively. Extracellular concentrations of calcium and nickel (as low as 100 micromolar) significantly inhibit trypanosome cell motility. The effects are reversible, as indicated by the recovery of motion after removal of the calcium or nickel from the chamber. We are currently investigating the specific changes in flagellar oscillation and coordination that result from calcium and nickel, respectively. These results verify the presence of a calcium-responsive signaling mechanism(s) that regulates flagellar beat in trypanosomes.

  13. Motility, Force Generation, and Energy Consumption of Unicellular Parasites.

    PubMed

    Hochstetter, Axel; Pfohl, Thomas

    2016-07-01

    Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts

    PubMed Central

    Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R.; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I.; Opal, Puneet; Goldman, Robert D.

    2016-01-01

    Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility. PMID:26700320

  15. Surface Topography Hinders Bacterial Surface Motility.

    PubMed

    Chang, Yow-Ren; Weeks, Eric R; Ducker, William A

    2018-03-21

    We demonstrate that the surface motility of the bacterium, Pseudomonas aeruginosa, is hindered by a crystalline hemispherical topography with wavelength in the range of 2-8 μm. The motility was determined by the analysis of time-lapse microscopy images of cells in a flowing growth medium maintained at 37 °C. The net displacement of bacteria over 5 min is much lower on surfaces containing 2-8 μm hemispheres than on flat topography, but displacement on the 1 μm hemispheres is not lower. That is, there is a threshold between 1 and 2 μm for response to the topography. Cells on the 4 μm hemispheres were more likely to travel parallel to the local crystal axis than in other directions. Cells on the 8 μm topography were less likely to travel across the crowns of the hemispheres and were also more likely to make 30°-50° turns than on flat surfaces. These results show that surface topography can act as a significant barrier to surface motility and may therefore hinder surface exploration by bacteria. Because surface exploration can be a part of the process whereby bacteria form colonies and seek nutrients, these results help to elucidate the mechanism by which surface topography hinders biofilm formation.

  16. Azospirillum brasilense Chemotaxis Depends on Two Signaling Pathways Regulating Distinct Motility Parameters

    PubMed Central

    Mukherjee, Tanmoy; Kumar, Dhivya; Burriss, Nathan; Xie, Zhihong

    2016-01-01

    ABSTRACT The genomes of most motile bacteria encode two or more chemotaxis (Che) systems, but their functions have been characterized in only a few model systems. Azospirillum brasilense is a motile soil alphaproteobacterium able to colonize the rhizosphere of cereals. In response to an attractant, motile A. brasilense cells transiently increase swimming speed and suppress reversals. The Che1 chemotaxis pathway was previously shown to regulate changes in the swimming speed, but it has a minor role in chemotaxis and root surface colonization. Here, we show that a second chemotaxis system, named Che4, regulates the probability of swimming reversals and is the major signaling pathway for chemotaxis and wheat root surface colonization. Experimental evidence indicates that Che1 and Che4 are functionally linked to coordinate changes in the swimming motility pattern in response to attractants. The effect of Che1 on swimming speed is shown to enhance the aerotactic response of A. brasilense in gradients, likely providing the cells with a competitive advantage in the rhizosphere. Together, the results illustrate a novel mechanism by which motile bacteria utilize two chemotaxis pathways regulating distinct motility parameters to alter movement in gradients and enhance the chemotactic advantage. IMPORTANCE Chemotaxis provides motile bacteria with a competitive advantage in the colonization of diverse niches and is a function enriched in rhizosphere bacterial communities, with most species possessing at least two chemotaxis systems. Here, we identify the mechanism by which cells may derive a significant chemotactic advantage using two chemotaxis pathways that ultimately regulate distinct motility parameters. PMID:27068592

  17. Azospirillum brasilense Chemotaxis Depends on Two Signaling Pathways Regulating Distinct Motility Parameters.

    PubMed

    Mukherjee, Tanmoy; Kumar, Dhivya; Burriss, Nathan; Xie, Zhihong; Alexandre, Gladys

    2016-06-15

    The genomes of most motile bacteria encode two or more chemotaxis (Che) systems, but their functions have been characterized in only a few model systems. Azospirillum brasilense is a motile soil alphaproteobacterium able to colonize the rhizosphere of cereals. In response to an attractant, motile A. brasilense cells transiently increase swimming speed and suppress reversals. The Che1 chemotaxis pathway was previously shown to regulate changes in the swimming speed, but it has a minor role in chemotaxis and root surface colonization. Here, we show that a second chemotaxis system, named Che4, regulates the probability of swimming reversals and is the major signaling pathway for chemotaxis and wheat root surface colonization. Experimental evidence indicates that Che1 and Che4 are functionally linked to coordinate changes in the swimming motility pattern in response to attractants. The effect of Che1 on swimming speed is shown to enhance the aerotactic response of A. brasilense in gradients, likely providing the cells with a competitive advantage in the rhizosphere. Together, the results illustrate a novel mechanism by which motile bacteria utilize two chemotaxis pathways regulating distinct motility parameters to alter movement in gradients and enhance the chemotactic advantage. Chemotaxis provides motile bacteria with a competitive advantage in the colonization of diverse niches and is a function enriched in rhizosphere bacterial communities, with most species possessing at least two chemotaxis systems. Here, we identify the mechanism by which cells may derive a significant chemotactic advantage using two chemotaxis pathways that ultimately regulate distinct motility parameters. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Gliding Motility of Babesia bovis Merozoites Visualized by Time-Lapse Video Microscopy

    PubMed Central

    Asada, Masahito; Goto, Yasuyuki; Yahata, Kazuhide; Yokoyama, Naoaki; Kawai, Satoru; Inoue, Noboru; Kaneko, Osamu; Kawazu, Shin-ichiro

    2012-01-01

    Background Babesia bovis is an apicomplexan intraerythrocytic protozoan parasite that induces babesiosis in cattle after transmission by ticks. During specific stages of the apicomplexan parasite lifecycle, such as the sporozoites of Plasmodium falciparum and tachyzoites of Toxoplasma gondii, host cells are targeted for invasion using a unique, active process termed “gliding motility”. However, it is not thoroughly understood how the merozoites of B. bovis target and invade host red blood cells (RBCs), and gliding motility has so far not been observed in the parasite. Methodology/Principal Findings Gliding motility of B. bovis merozoites was revealed by time-lapse video microscopy. The recorded images revealed that the process included egress of the merozoites from the infected RBC, gliding motility, and subsequent invasion into new RBCs. The gliding motility of B. bovis merozoites was similar to the helical gliding of Toxoplasma tachyzoites. The trails left by the merozoites were detected by indirect immunofluorescence assay using antiserum against B. bovis merozoite surface antigen 1. Inhibition of gliding motility by actin filament polymerization or depolymerization indicated that the gliding motility was driven by actomyosin dependent process. In addition, we revealed the timing of breakdown of the parasitophorous vacuole. Time-lapse image analysis of membrane-stained bovine RBCs showed formation and breakdown of the parasitophorous vacuole within ten minutes of invasion. Conclusions/Significance This is the first report of the gliding motility of B. bovis. Since merozoites of Plasmodium parasites do not glide on a substrate, the gliding motility of B. bovis merozoites is a notable finding. PMID:22506073

  19. Evaluation of Esophageal Motility Utilizing the Functional Lumen Imaging Probe.

    PubMed

    Carlson, Dustin A; Kahrilas, Peter J; Lin, Zhiyue; Hirano, Ikuo; Gonsalves, Nirmala; Listernick, Zoe; Ritter, Katherine; Tye, Michael; Ponds, Fraukje A; Wong, Ian; Pandolfino, John E

    2016-12-01

    Esophagogastric junction (EGJ) distensibility and distension-mediated peristalsis can be assessed with the functional lumen imaging probe (FLIP) during a sedated upper endoscopy. We aimed to describe esophageal motility assessment using FLIP topography in patients presenting with dysphagia. In all, 145 patients (aged 18-85 years, 54% female) with dysphagia that completed upper endoscopy with a 16-cm FLIP assembly and high-resolution manometry (HRM) were included. HRM was analyzed according to the Chicago Classification of esophageal motility disorders; major esophageal motility disorders were considered "abnormal". FLIP studies were analyzed using a customized program to calculate the EGJ-distensibility index (DI) and generate FLIP topography plots to identify esophageal contractility patterns. FLIP topography was considered "abnormal" if EGJ-DI was <2.8 mm 2 /mm Hg or contractility pattern demonstrated absent contractility or repetitive, retrograde contractions. HRM was abnormal in 111 (77%) patients: 70 achalasia (19 type I, 39 type II, and 12 type III), 38 EGJ outflow obstruction, and three jackhammer esophagus. FLIP topography was abnormal in 106 (95%) of these patients, including all 70 achalasia patients. HRM was "normal" in 34 (23%) patients: five ineffective esophageal motility and 29 normal motility. In all, 17 (50%) had abnormal FLIP topography including 13 (37%) with abnormal EGJ-DI. FLIP topography provides a well-tolerated method for esophageal motility assessment (especially to identify achalasia) at the time of upper endoscopy. FLIP topography findings that are discordant with HRM may indicate otherwise undetected abnormalities of esophageal function, thus FLIP provides an alternative and complementary method to HRM for evaluation of non-obstructive dysphagia.

  20. Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates.

    PubMed

    Morita, Masaya; Suwa, Ryota; Iguchi, Akira; Nakamura, Masako; Shimada, Kazuaki; Sakai, Kazuhiko; Suzuki, Atsushi

    2010-05-01

    Ocean acidification is now recognized as a threat to marine ecosystems; however, the effect of ocean acidification on fertilization in marine organisms is still largely unknown. In this study, we focused on sperm flagellar motility in broadcast spawning reef invertebrates (a coral and a sea cucumber). Below pH 7.7, the pH predicted to occur within the next 100 years, sperm flagellar motility was seriously impaired in these organisms. Considering that sperm flagellar motility is indispensable for transporting the paternal haploid genome for fertilization, fertilization taking place in seawater may decline in the not too distant future. Urgent surveys are necessary for a better understanding of the physiological consequences of ocean acidification on sperm flagellar motility in a wide range of marine invertebrates.

  1. Effect of Cobalt on Sperm Motility in an Endangered Trout Species, Salmo coruhensis.

    PubMed

    Kocabaş, Mehmet; Kutluyer, Filiz

    2017-12-01

    Experiments were designed to examine the in vitro effect of cobalt on sperm motility of the endangered trout species (Salmo coruhensis). Sperm samples were diluted in an immobilizing solution, and activated in a motility-activation solution that was supplemented with cobalt at concentrations of 1, 10, 100 and 1000 mg/L. The percentage of motile sperm and duration of motility were determined. Cobalt concentrations of 1-100 mg/L had a positive effect on the percentage of motile sperm and duration of motility compared to the control group, while a concentration of 1000 mg/L resulted in decreases in these parameters (p < 0.05). The percentages of motile sperm at cobalt concentrations of 0, 1, 10, 100 and 1000 mg/L were 83.33% ± 0.25%, 88.33% ± 0.34%, 89.00% ± 0.57%, 90.00% ± 0.87% and 42.50% ± 0.45%, respectively; and the time durations over which the sperm remained motile were 72.00 ± 0.63, 74.83 ± 0.28, 77.40 ± 0.47, 81.14 ± 0.78, and 50.25 ± 0.67 s, respectively. This study has shown that sperm motility and duration were significantly enhanced (p < 0.05) at cobalt concentrations of 1, 10 and 100 mg/L, relative to controls, and significantly decreased at 1000 mg/L.

  2. Esophageal motility abnormalities in gastroesophageal reflux disease

    PubMed Central

    Martinucci, Irene; de Bortoli, Nicola; Giacchino, Maria; Bodini, Giorgia; Marabotto, Elisa; Marchi, Santino; Savarino, Vincenzo; Savarino, Edoardo

    2014-01-01

    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophageal motility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from non-erosive reflux disease to erosive reflux disease and Barrett’s esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted. PMID:24868489

  3. Esophageal motility abnormalities in gastroesophageal reflux disease.

    PubMed

    Martinucci, Irene; de Bortoli, Nicola; Giacchino, Maria; Bodini, Giorgia; Marabotto, Elisa; Marchi, Santino; Savarino, Vincenzo; Savarino, Edoardo

    2014-05-06

    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophageal motility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from non-erosive reflux disease to erosive reflux disease and Barrett's esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted.

  4. Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion.

    PubMed

    Whitelaw, Jamie A; Latorre-Barragan, Fernanda; Gras, Simon; Pall, Gurman S; Leung, Jacqueline M; Heaslip, Aoife; Egarter, Saskia; Andenmatten, Nicole; Nelson, Shane R; Warshaw, David M; Ward, Gary E; Meissner, Markus

    2017-01-18

    Apicomplexan parasites employ a unique form of movement, termed gliding motility, in order to invade the host cell. This movement depends on the parasite's actomyosin system, which is thought to generate the force during gliding. However, recent evidence questions the exact molecular role of this system, since mutants for core components of the gliding machinery, such as parasite actin or subunits of the MyoA-motor complex (the glideosome), remain motile and invasive, albeit at significantly reduced efficiencies. While compensatory mechanisms and unusual polymerisation kinetics of parasite actin have been evoked to explain these findings, the actomyosin system could also play a role distinct from force production during parasite movement. In this study, we compared the phenotypes of different mutants for core components of the actomyosin system in Toxoplasma gondii to decipher their exact role during gliding motility and invasion. We found that, while some phenotypes (apicoplast segregation, host cell egress, dense granule motility) appeared early after induction of the act1 knockout and went to completion, a small percentage of the parasites remained capable of motility and invasion well past the point at which actin levels were undetectable. Those act1 conditional knockout (cKO) and mlc1 cKO that continue to move in 3D do so at speeds similar to wildtype parasites. However, these mutants are virtually unable to attach to a collagen-coated substrate under flow conditions, indicating an important role for the actomyosin system of T. gondii in the formation of attachment sites. We demonstrate that parasite actin is essential during the lytic cycle and cannot be compensated by other molecules. Our data suggest a conventional polymerisation mechanism in vivo that depends on a critical concentration of G-actin. Importantly, we demonstrate that the actomyosin system of the parasite functions in attachment to the surface substrate, and not necessarily as force generator.

  5. Gastrointestinal motility in relation to spontaneous meal occurrence in domestic fowls.

    PubMed

    Savory, C J

    1987-10-01

    The relationship between gastrointestinal (GI) motility and spontaneous feeding activity was investigated in five immature domestic hens, by recording simultaneously their feeding and contraction of the gizzard and duodenum. Different parameters of GI motility were interrelated, and gizzard contraction frequency (GCF) was used as an overall index of motility. Significant (P less than 0.05) changes in GCF relative to mealtimes varied between individual birds and between different meal length classes. The most consistent change was a rapid increase in GCF at the start of meals, followed by a decline which usually commenced before the end of long meals, but after the end of shorter ones. The increase in GCF commenced before the start of meals in one bird which had longer inter-meal intervals than the rest. There were no consistent changes in GCF at the ends of intervals or meals that might suggest a causal association between motility and hunger and satiety. It is suggested that the observed variation in GI motility may be accounted for mainly by variation in extrinsic stimulation from the vagus nerve.

  6. Multiscale Characterization of Bacterial Swarming Illuminates Principles Governing Directed Surface Motility

    NASA Astrophysics Data System (ADS)

    Strickland, Ben; Hoeger, Kentaro; Ursell, Tristan

    In many systems, individual characteristics interact, leading to the spontaneous emergence of order and complexity. In biological settings like microbes, such collective behaviors can imbue a variety of benefits to constituent individuals, including increased spatial range, improved access to nutrients, and enhanced resistance to antibiotic threats. To untangle the biophysical underpinnings of collective motility, we use passive tracers and a curated genetic library of Bacillus subtilis, including motile, non-motile, biofilm-deficient, and non-chemotactic mutants. We characterize and connect individual behavior on the microscopic scale to macroscopic colony morphology and motility of dendritic swarming. We analyze the persistence and dynamics of coordinated movement on length scales up to 4 orders of magnitude larger than that of individual cells, revealing rapid and directed responses of microbial groups to external stimuli, such as avoidance dynamics across chemical gradients. Our observations uncover the biophysical interplay between individual motility, surface wetness, phenotypic diversity, and external physical forces that robustly precipitate coordinated group behavior in microbes, and suggest general principles that govern the transition from individual to group behavior.

  7. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA.

    PubMed

    Mauriello, Emilia M F; Mouhamar, Fabrice; Nan, Beiyan; Ducret, Adrien; Dai, David; Zusman, David R; Mignot, Tâm

    2010-01-20

    Gliding motility in the bacterium Myxococcus xanthus uses two motility engines: S-motility powered by type-IV pili and A-motility powered by uncharacterized motor proteins and focal adhesion complexes. In this paper, we identified MreB, an actin-like protein, and MglA, a small GTPase of the Ras superfamily, as essential for both motility systems. A22, an inhibitor of MreB cytoskeleton assembly, reversibly inhibited S- and A-motility, causing rapid dispersal of S- and A-motility protein clusters, FrzS and AglZ. This suggests that the MreB cytoskeleton is involved in directing the positioning of these proteins. We also found that a DeltamglA motility mutant showed defective localization of AglZ and FrzS clusters. Interestingly, MglA-YFP localization mimicked both FrzS and AglZ patterns and was perturbed by A22 treatment, consistent with results indicating that both MglA and MreB bind to motility complexes. We propose that MglA and the MreB cytoskeleton act together in a pathway to localize motility proteins such as AglZ and FrzS to assemble the A-motility machineries. Interestingly, M. xanthus motility systems, like eukaryotic systems, use an actin-like protein and a small GTPase spatial regulator.

  8. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA

    PubMed Central

    Mauriello, Emilia M F; Mouhamar, Fabrice; Nan, Beiyan; Ducret, Adrien; Dai, David; Zusman, David R; Mignot, Tâm

    2010-01-01

    Gliding motility in the bacterium Myxococcus xanthus uses two motility engines: S-motility powered by type-IV pili and A-motility powered by uncharacterized motor proteins and focal adhesion complexes. In this paper, we identified MreB, an actin-like protein, and MglA, a small GTPase of the Ras superfamily, as essential for both motility systems. A22, an inhibitor of MreB cytoskeleton assembly, reversibly inhibited S- and A-motility, causing rapid dispersal of S- and A-motility protein clusters, FrzS and AglZ. This suggests that the MreB cytoskeleton is involved in directing the positioning of these proteins. We also found that a ΔmglA motility mutant showed defective localization of AglZ and FrzS clusters. Interestingly, MglA–YFP localization mimicked both FrzS and AglZ patterns and was perturbed by A22 treatment, consistent with results indicating that both MglA and MreB bind to motility complexes. We propose that MglA and the MreB cytoskeleton act together in a pathway to localize motility proteins such as AglZ and FrzS to assemble the A-motility machineries. Interestingly, M. xanthus motility systems, like eukaryotic systems, use an actin-like protein and a small GTPase spatial regulator. PMID:19959988

  9. Dysregulated Arl1, a regulator of post-Golgi vesicle tethering, can inhibit endosomal transport and cell proliferation in yeast

    PubMed Central

    Benjamin, Jeremy J. R.; Poon, Pak P.; Drysdale, John D.; Wang, Xiangmin; Singer, Richard A.; Johnston, Gerald C.

    2011-01-01

    Small monomeric G proteins regulated in part by GTPase-activating proteins (GAPs) are molecular switches for several aspects of vesicular transport. The yeast Gcs1 protein is a dual-specificity GAP for ADP-ribosylation factor (Arf) and Arf-like (Arl)1 G proteins, and also has GAP-independent activities. The absence of Gcs1 imposes cold sensitivity for growth and endosomal transport; here we present evidence that dysregulated Arl1 may cause these impairments. We show that gene deletions affecting the Arl1 or Ypt6 vesicle-tethering pathways prevent Arl1 activation and membrane localization, and restore growth and trafficking in the absence of Gcs1. A mutant version of Gcs1 deficient for both ArfGAP and Arl1GAP activity in vitro still allows growth and endosomal transport, suggesting that the function of Gcs1 that is required for these processes is independent of GAP activity. We propose that, in the absence of this GAP-independent regulation by Gcs1, the resulting dysregulated Arl1 prevents growth and impairs endosomal transport at low temperatures. In cells with dysregulated Arl1, an increased abundance of the Arl1 effector Imh1 restores growth and trafficking, and does so through Arl1 binding. Protein sequestration at the trans-Golgi membrane by dysregulated, active Arl1 may therefore be the mechanism of inhibition. PMID:21562219

  10. Vagal activation by sham feeding improves gastric motility in functional dyspepsia.

    PubMed

    Lunding, J A; Nordström, L M; Haukelid, A-O; Gilja, O H; Berstad, A; Hausken, T

    2008-06-01

    Antral hypomotility and impaired gastric accommodation in patients with functional dyspepsia have been ascribed to vagal dysfunction. We investigated whether vagal stimulation by sham feeding would improve meal-induced gastric motor function in these patients. Fourteen healthy volunteers and 14 functional dyspepsia patients underwent a drink test twice, once with and once without simultaneous sham feeding. After ingesting 500 mL clear meat soup (20 kcal, 37 degrees C) in 4 min, sham feeding was performed for 10 min by chewing a sugar-containing chewing gum while spitting out saliva. Using two- and three-dimensional ultrasound, antral motility index (contraction amplitude x frequency) and intragastric volumes were estimated. Without sham feeding, functional dyspepsia patients had lower motility index than healthy volunteers (area under curve 8.0 +/- 1.2 vs 4.4 +/- 1.0 min(-1), P = 0.04). In functional dyspepsia patients, but not in healthy volunteers, motility index increased and intragastric volume tended to increase by sham feeding (P = 0.04 and P = 0.06 respectively). The change in motility index was negatively correlated to the change in pain score (r = -0.59, P = 0.007). In functional dyspepsia patients, vagal stimulation by sham feeding improves antral motility in response to a soup meal. The result supports the view that impaired vagal stimulation is implicated in the pathogenesis of gastric motility disturbances in functional dyspepsia.

  11. Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber.

    PubMed

    Park, Daechul; Park, Sung Jun; Cho, Sunghoon; Lee, Yeonkyung; Lee, Yu Kyung; Min, Jung-Joon; Park, Bang Ju; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2014-01-01

    A bacteria-based microrobot (bacteriobot) was proposed and investigated as a new type of active drug delivery system because of its useful advantages, such as active tumor targeting, bacteria-mediated tumor diagnosis, and therapy. In this study, we fabricated a bacteriobot with enhanced motility by selective attachment of flagellar bacteria (Salmonella typhimurium). Through selective bovine serum albumin (BSA) pattering on hydrophobic polystyrene (PS) microbeads, many S. typhimurium could be selectively attached only on the unpatterned surface of PS microbead. For the evaluation of the chemotactic motility of the bacteriobot, we developed a microfluidic chamber which can generate a stable concentration gradient of bacterial chemotactic chemicals. Prior to the evaluation of the bacteriobot, we first evaluated the directional chemotactic motility of S. typhimurium using the proposed microfluidic chamber, which contained a bacterial chemo-attractant (L-aspartic acid) and a chemo-repellent (NiSO4 ), respectively. Compared to density of the control group in the microfluidic chamber without any chemical gradient, S. typhimurium increased by about 16% in the L-aspartic acid gradient region and decreased by about 22% in the NiSO4 gradient region. Second, we evaluated the bacteriobot's directional motility by using this microfluidic chamber. The chemotactic directional motility of the bacteriobot increased by 14% and decreased by 13% in the concentration gradients of L-aspartic acid and NiSO4 , respectively. These results confirm that the bacteriobot with selectively patterned S. typhimurium shows chemotaxis motility very similar to that of S. typhimurium. Moreover, the directional motilities of the bacteria and bacteriobot could be demonstrated quantitatively through the proposed microfluidic chamber. © 2013 Wiley Periodicals, Inc.

  12. Yersinia pestis Targets the Host Endosome Recycling Pathway during the Biogenesis of the Yersinia-Containing Vacuole To Avoid Killing by Macrophages

    PubMed Central

    Connor, Michael G.; Pulsifer, Amanda R.; Ceresa, Brian K.

    2018-01-01

    ABSTRACT Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. PMID:29463656

  13. Ostrich specific semen diluent and sperm motility characteristics during in vitro storage.

    PubMed

    Smith, A M J; Bonato, M; Dzama, K; Malecki, I A; Cloete, S W P

    2018-06-01

    The dilution of semen is a very important initial process for semen processing and evaluation, storage and preservation in vitro and efficient artificial insemination. The aim of the study was to evaluate the effect of two synthetic diluents (OS1 and OS2) on ostrich sperm motility parameters during in vitro storage. Formulation of OS1 was based on macro minerals (Na, K, P, Ca, Mg) and OS2 on the further addition of micro minerals (Se and Zn), based on mineral concentration determined in the ostrich seminal plasma (SP). Sperm motility was evaluated at different processing stages (neat, after dilution, during storage and after storage) by measuring several sperm motility variables using the Sperm Class Analyzer® (SCA). Processing (dilution, cooling and storage) of semen for in vitro storage purposes decreased the values for all sperm motility variables measured. The percentage motile (MOT) and progressive motile (PMOT) sperm decreased 20% to 30% during 24 h of storage, independent of diluent type. Quality of sperm swim (LIN, STR and WOB), however, was sustained during the longer storage periods (48 h) with the OS2 diluent modified with Se and Zn additions. Quality of sperm swim with use of OS1 was 6% to 8% less for the LIN, STR, and WOB variables. Male fitted as a fixed effect accounted for >60% of the variation for certain sperm motility variables (PMOT, MOT, VCL, VSL, VAP and ALH) evaluated at different processing stages. Semen from specific males had sustained sperm motility characteristics to a greater extent than that of other males during the 24-h storage period. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Disruption of Axonal Transport Perturbs Bone Morphogenetic Protein (BMP) - Signaling and Contributes to Synaptic Abnormalities in Two Neurodegenerative Diseases

    PubMed Central

    Kang, Min Jung; Hansen, Timothy J.; Mickiewicz, Monique; Kaczynski, Tadeusz J.; Fye, Samantha; Gunawardena, Shermali

    2014-01-01

    Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases. PMID:25127478

  15. Hydrodynamic Contributions to Amoeboid Cell Motility

    NASA Astrophysics Data System (ADS)

    Lewis, Owen; Guy, Robert

    2011-11-01

    Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use both analytic and computational models to investigate intracellular fluid flow in a simple model of Physarum. In both models, of we are specifically interested in stresses generated by cytoplasmic flow which act in the direction of cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, low waves and locomotive forces, and attempt characterize conditions necessary to generate directed motion.

  16. Autocrine regulation of human sperm motility by tachykinins.

    PubMed

    Pinto, Francisco M; Ravina, Cristina G; Subiran, Nerea; Cejudo-Román, Antonio; Fernández-Sánchez, Manuel; Irazusta, Jon; Garrido, Nicolas; Candenas, Luz

    2010-08-26

    We examined the presence and function of tachykinins and the tachykinin-degrading enzymes neprilysin (NEP) and neprilysin-2 (NEP2) in human spermatozoa. Freshly ejaculated semen was collected from forty-eight normozoospermic human donors. We analyzed the expression of substance P, neurokinin A, neurokinin B, hemokinin-1, NEP and NEP2 in sperm cells by reverse-transcriptase polymerase chain reaction (RT-PCR), western blot and immunocytochemistry assays and evaluated the effects of the neprilysin and neprilysin-2 inhibitor phosphoramidon on sperm motility in the absence and presence of tachykinin receptor-selective antagonists. Sperm motility was measured using WHO procedures or computer-assisted sperm analysis (CASA). The mRNAs of the genes that encode substance P/neurokinin A (TAC1), neurokinin B (TAC3), hemokinin-1 (TAC4), neprilysin (MME) and neprilysin-2 (MMEL1) were expressed in human sperm. Immunocytochemistry studies revealed that tachykinin and neprilysin proteins were present in spermatozoa and show specific and differential distributions. Phosphoramidon increased sperm progressive motility and its effects were reduced in the presence of the tachykinin receptor antagonists SR140333 (NK1 receptor-selective) and SR48968 (NK2 receptor-selective) but unmodified in the presence of SR142801 (NK3 receptor-selective). These data show that tachykinins are present in human spermatozoa and participate in the regulation of sperm motility. Tachykinin activity is regulated, at least in part, by neprilysins.

  17. Seeking sunlight: rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron's submerged sinkholes.

    PubMed

    Biddanda, Bopaiah A; McMillan, Adam C; Long, Stephen A; Snider, Michael J; Weinke, Anthony D

    2015-01-01

    We studied the motility of filamentous mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen, and high-sulfur conditions in Lake Huron's submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100-10,000 μm long filaments, composed of cells ∼10 μm wide and ∼3 μm tall) revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ∼50 μm min(-1) or ∼15 body lengths min(-1) at 10°C to ∼215 μm min(-1) or ∼70 body lengths min(-1) at 35°C - rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis toward pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield - suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3-4 diurnal cycles - likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth's early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing photosynthesis while favoring

  18. An evolutionary link between capsular biogenesis and surface motility in bacteria.

    PubMed

    Agrebi, Rym; Wartel, Morgane; Brochier-Armanet, Céline; Mignot, Tâm

    2015-05-01

    Studying the evolution of macromolecular assemblies is important to improve our understanding of how complex cellular structures evolved, and to identify the functional building blocks that are involved. Recent studies suggest that the macromolecular complexes that are involved in two distinct processes in Myxococcus xanthus - surface motility and sporulation - are derived from an ancestral polysaccharide capsule assembly system. In this Opinion article, we argue that the available data suggest that the motility machinery evolved from this capsule assembly system following a gene duplication event, a change in carbohydrate polymer specificity and the acquisition of additional proteins by the motility complex, all of which are key features that distinguish the motility and sporulation systems. Furthermore, the presence of intermediates of these systems in bacterial genomes suggests a testable evolutionary model for their emergence and spread.

  19. The Last Enzyme of the De Novo Purine Synthesis Pathway 5-aminoimidazole-4-carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase (ATIC) Plays a Central Role in Insulin Signaling and the Golgi/Endosomes Protein Network*

    PubMed Central

    Boutchueng-Djidjou, Martial; Collard-Simard, Gabriel; Fortier, Suzanne; Hébert, Sébastien S.; Kelly, Isabelle; Landry, Christian R.; Faure, Robert L.

    2015-01-01

    Insulin is internalized with its cognate receptor into the endosomal apparatus rapidly after binding to hepatocytes. We performed a bioinformatic screen of Golgi/endosome hepatic protein fractions and found that ATIC, which is a rate-limiting enzyme in the de novo purine biosynthesis pathway, and PTPLAD1 are associated with insulin receptor (IR) internalization. The IR interactome (IRGEN) connects ATIC to AMPK within the Golgi/endosome protein network (GEN). Forty-five percent of the IR Golgi/endosome protein network have common heritable variants associated with type 2 diabetes, including ATIC and AMPK. We show that PTPLAD1 and AMPK are rapidly compartmentalized within the plasma membrane (PM) and Golgi/endosome fractions after insulin stimulation and that ATIC later accumulates in the Golgi/endosome fraction. Using an in vitro reconstitution system and siRNA-mediated partial knockdown of ATIC and PTPLAD1 in HEK293 cells, we show that both ATIC and PTPLAD1 affect IR tyrosine phosphorylation and endocytosis. We further show that insulin stimulation and ATIC knockdown readily increase the level of AMPK-Thr172 phosphorylation in IR complexes. We observed that IR internalization was markedly decreased after AMPKα2 knockdown, and treatment with the ATIC substrate AICAR, which is an allosteric activator of AMPK, increased IR endocytosis in cultured cells and in the liver. These results suggest the presence of a signaling mechanism that senses adenylate synthesis, ATP levels, and IR activation states and that acts in regulating IR autophosphorylation and endocytosis. PMID:25687571

  20. Rosiglitazone Improves Stallion Sperm Motility, ATP Content, and Mitochondrial Function.

    PubMed

    Swegen, Aleona; Lambourne, Sarah Renay; Aitken, R John; Gibb, Zamira

    2016-11-01

    Media used for equine sperm storage often contain relatively high concentrations of glucose, even though stallion spermatozoa preferentially utilize oxidative phosphorylation (OXPHOS) over glycolysis to generate ATP and support motility. Rosiglitazone is an antidiabetic compound that enhances metabolic flexibility and glucose utilization in various cell types, but its effects on sperm metabolism are unknown. This study investigated the effects of rosiglitazone on stallion sperm function in vitro, along with the possible role of AMP-activated protein kinase (AMPK) in mediating these effects. Spermatozoa were incubated with or without rosiglitazone, GW9662 (an antagonist of peroxisome proliferator-activating receptor-gamma), and compound C (CC; an AMPK inhibitor). Sperm motility, viability, reactive oxygen species production, mitochondrial membrane potential (mMP), ATP content, and glucose uptake capacity were measured. Samples incubated with rosiglitazone displayed significantly higher motility, percentage of cells with normal mMP, ATP content, and glucose uptake capacity, while sperm viability was unaffected. The percentage of spermatozoa positive for mitochondrial ROS was also significantly lower in rosiglitazone-treated samples. AMPK localized to the sperm midpiece, and its phosphorylation, was increased in rosiglitazone-treated spermatozoa. CC decreased sperm AMPK phosphorylation and reduced sperm motility, and successfully inhibited the effects of rosiglitazone. Inclusion of rosiglitazone in a room temperature sperm storage medium maintained sperm motility above 60% for 6 days, attaining significantly higher motility than sperm stored in control media. The ability of rosiglitazone to substantially alleviate the time-dependent deterioration of stallion spermatozoa by diverting metabolism away from OXPHOS and toward glycolysis has novel implications for the long-term, functional preservation of these cells. © 2016 by the Society for the Study of Reproduction

  1. Calcium/calmodulin and cAMP/protein kinase-A pathways regulate sperm motility in the stallion.

    PubMed

    Lasko, Jodi; Schlingmann, Karen; Klocke, Ann; Mengel, Grace Ann; Turner, Regina

    2012-06-01

    In spite of the importance of sperm motility to fertility in the stallion, little is known about the signaling pathways that regulate motility in this species. In other mammals, calcium/calmodulin signaling and the cyclic AMP/protein kinase-A pathway are involved in sperm motility regulation. We hypothesized that these pathways also were involved in the regulation of sperm motility in the stallion. Using immunoblotting, calmodulin and the calmodulin-dependent protein kinase II β were shown to be present in stallion sperm and with indirect immunofluorescence calmodulin was localized to the acrosome and flagellar principal piece. Additionally, inhibition of either calmodulin or protein kinase-A significantly reduced sperm motility without affecting viability. Following inhibition of calmodulin, motility was not restored with agonists of the cyclic AMP/protein kinase-A pathway. These data suggest that calcium/calmodulin and cyclic AMP/protein kinase-A pathways are involved in the regulation of stallion sperm motility. The failure of cyclic AMP/protein kinase-A agonists to restore motility of calmodulin inhibited sperm suggests that both pathways may be required to support normal motility. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Roles of ion transport in control of cell motility.

    PubMed

    Stock, Christian; Ludwig, Florian T; Hanley, Peter J; Schwab, Albrecht

    2013-01-01

    Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.

  3. Esophageal motility in children with suspected gastroesophageal reflux disease.

    PubMed

    Hoffman, Ilse; De Greef, Toon; Haesendonck, Nancy; Tack, Jan

    2010-06-01

    Motility abnormalities in adults with gastroesophageal reflux disease (GERD) include nontransmitted contractions, reduced distal esophageal contraction amplitude, and simultaneous contractions. Information on esophageal body motility in children with GERD is scarce. Our aim was to study esophageal motility patterns in children with GERD, taking into account the presence of anatomical abnormalities and neurological impairment, the effect of age on esophageal motility in GERD, and the relation between esophageal manometry and GERD severity parameters (acid exposure and presence of esophagitis). Consecutive children referred for severe GER(D) symptoms underwent a barium swallow, upper endoscopy, pH monitoring, and stationary water-perfused esophageal manometry. Mean lower esophageal sphincter (LES) pressure and velocity of propagation in the proximal and distal esophagus decreased with age in this group of children with GERD (all P < 0.01). Severely disturbed esophageal motility was found in children with previous esophageal atresia. Patients with psychomotor retardation had significantly lower occurrence of peristaltic waves (94% +/- 21% vs 79% +/- 38%; P = 0.001), distal propagation velocity (0.8 +/- 0.4 vs 0.6 +/- 0.5 cm/s; P = 0.05), and distal contraction duration (3.1 +/- 0.8 vs 3.4 +/- 1 seconds; P = 0.05). None of the manometric characteristics differed between patients with normal or abnormal esophageal pH monitoring or with or without erosive esophagitis. LES pressure and esophageal velocity decreased with increasing age. Esophageal manometry is severely impaired in children with esophageal atresia and psychomotor retardation. No specific esophageal motor abnormalities related to the presence of endoscopic esophagitis or abnormal pH monitoring were found.

  4. Effect of 655 nm laser different powers on dog sperm motility parameters

    NASA Astrophysics Data System (ADS)

    Corral-Baqués, M. I.; Rigau, T.; Rivera, M. M.; Rodríguez-Gil, J. E.; Rigau, J.

    2006-04-01

    Introduction: One of the most appreciated features of the sperm is its motility, which depends on a big energy consumption despite differences among species. Laser acts direct or indirectly on mitochondria increasing ATP production. Material and method: By means of a Computer Aided Sperm Analysis (CASA) we have studied the effects of a 655 nm continuous wave diode laser irradiation at different power outputs with a dose of 3.3418 J on sperm motility. After an eosine-nigrosine stain to establish its quality, the second fraction of fresh beagle dog sperm was divided into 5 groups, 1 control and four to be irradiated respectively with an average output power of 6.84 mW, 15.43 mW, 33.05 mW and 49.66 mW. At times 0 and 45 minutes from irradiation pictures were taken and analysed with the Sperm class Analyzer SCA2002 programme. The motility parameters of 4987 spermatozoa studied were: curvilinear velocity (VCL), progressive velocity (VSL), straightness (STR), wobble (WOB), average path velocity (VAP), linearity (LIN), mean amplitude of lateral head displacement (ALHmed), beat cross frequency (BCF) and the total motility (MT). At time 15 minutes after irradiation a hypoosmotic swelling test (HOST) was done. Results: Several motility parameters that affect the overall motile sperm subpopulation structure have been changed by different output powers of a 655 nm diode laser irradiation, and prevents the decrease of the sperm motility properties along time.

  5. High-resolution impedance manometry parameters enhance the esophageal motility evaluation in non-obstructive dysphagia patients without a major Chicago Classification motility disorder.

    PubMed

    Carlson, D A; Omari, T; Lin, Z; Rommel, N; Starkey, K; Kahrilas, P J; Tack, J; Pandolfino, J E

    2017-03-01

    High-resolution impedance manometry (HRIM) allows evaluation of esophageal bolus retention, flow, and pressurization. We aimed to perform a collaborative analysis of HRIM metrics to evaluate patients with non-obstructive dysphagia. Fourteen asymptomatic controls (58% female; ages 20-50) and 41 patients (63% female; ages 24-82), 18 evaluated for dysphagia and 23 for reflux (non-dysphagia patients), with esophageal motility diagnoses of normal motility or ineffective esophageal motility, were evaluated with HRIM and a global dysphagia symptom score (Brief Esophageal Dysphagia Questionnaire). HRIM was analyzed to assess Chicago Classification metrics, automated pressure-flow metrics, the esophageal impedance integral (EII) ratio, and the bolus flow time (BFT). Significant symptom-metric correlations were detected only with basal EGJ pressure, EII ratio, and BFT. The EII ratio, BFT, and impedance ratio differed between controls and dysphagia patients, while the EII ratio in the upright position was the only measure that differentiated dysphagia from non-dysphagia patients. The EII ratio and BFT appear to offer an improved diagnostic evaluation in patients with non-obstructive dysphagia without a major esophageal motility disorder. Bolus retention as measured with the EII ratio appears to carry the strongest association with dysphagia, and thus may aid in the characterization of symptomatic patients with otherwise normal manometry. © 2016 John Wiley & Sons Ltd.

  6. Motor-driven intracellular transport powers bacterial gliding motility.

    PubMed

    Sun, Mingzhai; Wartel, Morgane; Cascales, Eric; Shaevitz, Joshua W; Mignot, Tâm

    2011-05-03

    Protein-directed intracellular transport has not been observed in bacteria despite the existence of dynamic protein localization and a complex cytoskeleton. However, protein trafficking has clear potential uses for important cellular processes such as growth, development, chromosome segregation, and motility. Conflicting models have been proposed to explain Myxococcus xanthus motility on solid surfaces, some favoring secretion engines at the rear of cells and others evoking an unknown class of molecular motors distributed along the cell body. Through a combination of fluorescence imaging, force microscopy, and genetic manipulation, we show that membrane-bound cytoplasmic complexes consisting of motor and regulatory proteins are directionally transported down the axis of a cell at constant velocity. This intracellular motion is transmitted to the exterior of the cell and converted to traction forces on the substrate. Thus, this study demonstrates the existence of a conserved class of processive intracellular motors in bacteria and shows how these motors have been adapted to produce cell motility.

  7. Motor-driven intracellular transport powers bacterial gliding motility

    PubMed Central

    Sun, Mingzhai; Wartel, Morgane; Cascales, Eric; Shaevitz, Joshua W.; Mignot, Tâm

    2011-01-01

    Protein-directed intracellular transport has not been observed in bacteria despite the existence of dynamic protein localization and a complex cytoskeleton. However, protein trafficking has clear potential uses for important cellular processes such as growth, development, chromosome segregation, and motility. Conflicting models have been proposed to explain Myxococcus xanthus motility on solid surfaces, some favoring secretion engines at the rear of cells and others evoking an unknown class of molecular motors distributed along the cell body. Through a combination of fluorescence imaging, force microscopy, and genetic manipulation, we show that membrane-bound cytoplasmic complexes consisting of motor and regulatory proteins are directionally transported down the axis of a cell at constant velocity. This intracellular motion is transmitted to the exterior of the cell and converted to traction forces on the substrate. Thus, this study demonstrates the existence of a conserved class of processive intracellular motors in bacteria and shows how these motors have been adapted to produce cell motility. PMID:21482768

  8. Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic.

    PubMed

    Craige, Branch; Salazar, Gloria; Faundez, Victor

    2008-04-01

    The adaptor complex 3 (AP-3) targets membrane proteins from endosomes to lysosomes, lysosome-related organelles and synaptic vesicles. Phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha) is one of several proteins possessing catalytic domains that regulate AP-3-dependent sorting. Here we present evidence that PI4KIIalpha uniquely behaves both as a membrane protein cargo as well as an enzymatic regulator of adaptor function. In fact, AP-3 and PI4KIIalpha form a complex that requires a dileucine-sorting motif present in PI4KIIalpha. Mutagenesis of either the PI4KIIalpha-sorting motif or its kinase-active site indicates that both are necessary to interact with AP-3 and properly localize PI4KIIalpha to LAMP-1-positive endosomes. Similarly, both the kinase activity and the sorting signal present in PI4KIIalpha are necessary to rescue endosomal PI4KIIalpha siRNA-induced mutant phenotypes. We propose a mechanism whereby adaptors use canonical sorting motifs to selectively recruit a regulatory enzymatic activity to restricted membrane domains.

  9. The toxic effect of opioid analgesics on human sperm motility in vitro.

    PubMed

    Xu, Bo; Wang, Zhi-Ping; Wang, Yan-Juan; Lu, Pei-Hua; Wang, Li-Jun; Wang, Xiao-Hai

    2013-04-01

    Opioid analgesics are the most common therapeutic analgesic for acute pain. In this study, the toxicological and pharmacological features of a group of opioid analgesics were characterized by the motility of human sperm. Aliquots of sperm were incubated with various concentrations of opioid analgesics in vitro. Computer-assisted sperm analysis was used to assess sperm motility at 15 minutes, 2 hours, and 4 hours after drug addition to the medium. Butorphanol and dezocine showed marked reduction of motility after incubation with sperm for 15 minutes. Butorphanol was more effective than dezocine in immobilizing sperm. Other opioids studied, such as fentanyl, alfentanil, and sufentanil, showed only partial inhibitory activity. Based on the data reported herein, we have found that butorphanol and dezocine exert a sperm-immobilizing effect. However, fentanyl, alfentanil, and sufentanil exhibit only partial inhibition of sperm motility. Given the increasing use of opioids and their potential effect on sperm motility, these findings are greatly relevant to male reproductive health.

  10. Transposon Insertions of magellan-4 That Impair Social Gliding Motility in Myxococcus xanthus

    PubMed Central

    Youderian, Philip; Hartzell, Patricia L.

    2006-01-01

    Myxococcus xanthus has two different mechanisms of motility, adventurous (A) motility, which permits individual cells to glide over solid surfaces, and social (S) motility, which permits groups of cells to glide. To identify the genes involved in S-gliding motility, we mutagenized a ΔaglU (A−) strain with the defective transposon, magellan-4, and screened for S− mutants that form nonmotile colonies. Sequence analysis of the sites of the magellan-4 insertions in these mutants and the alignment of these sites with the M. xanthus genome sequence show that two-thirds of these insertions lie within 27 of the 37 nonessential genes known to be required for social motility, including those necessary for the biogenesis of type IV pili, exopolysaccharide, and lipopolysaccharide. The remaining insertions also identify 31 new, nonessential genes predicted to encode both structural and regulatory determinants of S motility. These include three tetratricopeptide repeat proteins, several regulators of transcription that may control the expression of genes involved in pilus extension and retraction, and additional enzymes involved in polysaccharide metabolism. Three insertions that abolish S motility lie within genes predicted to encode glycolytic enzymes, suggesting that the signal for pilus retraction may be a simple product of exopolysaccharide catabolism. PMID:16299386

  11. Genetic Analysis of Collective Motility of Paenibacillus sp. NAIST15-1

    PubMed Central

    Kobayashi, Kazuo; Kanesaki, Yu

    2016-01-01

    Bacteria have developed various motility mechanisms to adapt to a variety of solid surfaces. A rhizosphere isolate, Paenibacillus sp. NAIST15-1, exhibited unusual motility behavior. When spotted onto 1.5% agar media, Paenibacillus sp. formed many colonies, each of which moved around actively at a speed of 3.6 μm/sec. As their density increased, each moving colony began to spiral, finally forming a static round colony. Despite its unusual motility behavior, draft genome sequencing revealed that both the composition and organization of flagellar genes in Paenibacillus sp. were very similar to those in Bacillus subtilis. Disruption of flagellar genes and flagellar stator operons resulted in loss of motility. Paenibacillus sp. showed increased transcription of flagellar genes and hyperflagellation on hard agar media. Thus, increased flagella and their rotation drive Paenibacillus sp. motility. We also identified a large extracellular protein, CmoA, which is conserved only in several Paenibacillus and related species. A cmoA mutant could neither form moving colonies nor move on hard agar media; however, motility was restored by exogenous CmoA. CmoA was located around cells and enveloped cell clusters. Comparison of cellular behavior between the wild type and cmoA mutant indicated that extracellular CmoA is involved in drawing water out of agar media and/or smoothing the cell surface interface. This function of CmoA probably enables Paenibacillus sp. to move on hard agar media. PMID:27764113

  12. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    PubMed Central

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  13. ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling.

    PubMed

    Handschuh, Karen; Feenstra, Jennifer; Koss, Matthew; Ferretti, Elisabetta; Risolino, Maurizio; Zewdu, Rediet; Sahai, Michelle A; Bénazet, Jean-Denis; Peng, Xiao P; Depew, Michael J; Quintana, Laura; Sharpe, James; Wang, Baolin; Alcorn, Heather; Rivi, Roberta; Butcher, Stephen; Manak, J Robert; Vaccari, Thomas; Weinstein, Harel; Anderson, Kathryn V; Lacy, Elizabeth; Selleri, Licia

    2014-10-23

    Sorting and degradation of receptors and associated signaling molecules maintain homeostasis of conserved signaling pathways during cell specification and tissue development. Yet, whether machineries that sort signaling proteins act preferentially on different receptors and ligands in different contexts remains mysterious. Here, we show that Vacuolar protein sorting 25, Vps25, a component of ESCRT-II (Endosomal Sorting Complex Required for Transport II), directs preferential endosome-mediated modulation of FGF signaling in limbs. By ENU-induced mutagenesis, we isolated a polydactylous mouse line carrying a hypomorphic mutation of Vps25 (Vps25(ENU)). Unlike Vps25-null embryos we generated, Vps25(ENU/ENU) mutants survive until late gestation. Their limbs display FGF signaling enhancement and consequent hyperactivation of the FGF-SHH feedback loop causing polydactyly, whereas WNT and BMP signaling remain unperturbed. Notably, Vps25(ENU/ENU) Mouse Embryonic Fibroblasts exhibit aberrant FGFR trafficking and degradation; however, SHH signaling is unperturbed. These studies establish that the ESCRT-II machinery selectively limits FGF signaling in vertebrate skeletal patterning.

  14. The Vici Syndrome Protein EPG5 Is a Rab7 Effector that Determines the Fusion Specificity of Autophagosomes with Late Endosomes/Lysosomes.

    PubMed

    Wang, Zheng; Miao, Guangyan; Xue, Xue; Guo, Xiangyang; Yuan, Chongzhen; Wang, Zhaoyu; Zhang, Gangming; Chen, Yingyu; Feng, Du; Hu, Junjie; Zhang, Hong

    2016-09-01

    Mutations in the human autophagy gene EPG5 cause the multisystem disorder Vici syndrome. Here we demonstrated that EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. EPG5 is recruited to late endosomes/lysosomes by direct interaction with Rab7 and the late endosomal/lysosomal R-SNARE VAMP7/8. EPG5 also binds to LC3/LGG-1 (mammalian and C. elegans Atg8 homolog, respectively) and to assembled STX17-SNAP29 Qabc SNARE complexes on autophagosomes. EPG5 stabilizes and facilitates the assembly of STX17-SNAP29-VAMP7/8 trans-SNARE complexes, and promotes STX17-SNAP29-VAMP7-mediated fusion of reconstituted proteoliposomes. Loss of EPG5 activity causes abnormal fusion of autophagosomes with various endocytic vesicles, in part due to elevated assembly of STX17-SNAP25-VAMP8 complexes. SNAP25 knockdown partially suppresses the autophagy defect caused by EPG5 depletion. Our study reveals that EPG5 is a Rab7 effector involved in autophagosome maturation, providing insight into the molecular mechanism underlying Vici syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Identification of phosphoproteins coupled to initiation of motility in live epididymal mouse sperm

    NASA Technical Reports Server (NTRS)

    Tash, J. S.; Bracho, G. E.

    1998-01-01

    A method for collecting live immotile cauda epididymal mouse sperm that initiate motility by dilution into an activation buffer is described. Sperm in collection buffer showed low percent motility (MOT) and population progression (PRG) that increased 10-fold and 9-fold, respectively, during the first 2 min after dilution into activation buffer. Western phosphoserine (pS), phosphothreonine (pT), and phosphotyrosine (pY) analysis revealed a 120 kDa protein that markedly increased in pT content during initiation of motility and may be related to FP130, the motility-coupled axonemal protein of sea urchin sperm. A prominent 82 kDa protein that was pS and pT-phosphorylated in immotile and motile sperm is likely the fibrous sheath component AKAP82 that is phosphorylated during spermatogenesis. Analysis of live human sperm also identified a prominent 120 kDa pT protein. Thus it appears that phosphorylation of FP130 and related 120 kDa proteins in mouse, and perhaps human sperm, represent common targets during motility initiation in sperm. Copyright 1998 Academic Press.

  16. EFFECT OF CRYOPRESERVATION AND THEOPHYLLINE ON MOTILITY CHARACTERISTICS OF LAKE STURGEON (ACIPENSER FULVESCENS) SPERMATOZOA

    EPA Science Inventory

    Computer-assisted motility analysis (CASA) was used to evaluate the effect of cryopreservation and theophylline treatment on sperm motility of lake sturgeon (Acipenser fulvescens).Motility was recorded at 0 and 5 min postactivation.The effect of cryopreservation on sperm acrosin-...

  17. Hydrodynamic Contributions to Amoeboid Cell Motility

    NASA Astrophysics Data System (ADS)

    Lewis, Owen; Guy, Robert

    2012-11-01

    Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use a simply analytic model in conjuction with computational experiments to investigate intracellular fluid flow in a simple model of Physarum. Of particlar interest are stresses generated by cytoplasmic flow which may be used to aid in cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, flow waves, adhesion, and locomotive forces in an attempt to characterize conditions necessary to generate directed motion.

  18. Effects of environment factors on initiation of sperm motility in sea cucumber Apostichopus japonicus (Selenka)

    NASA Astrophysics Data System (ADS)

    Yu, Li; Shao, Mingyu; Bao, Zhenmin; Hu, Jingjie; Zhang, Zhifeng

    2011-06-01

    Sperm of sea cucumber Apostichopus japonicus (Selenka) were quiescent in electrolyte NaCl solution and artificial seawater (ASW) and nonelectrolyte glucose and mannitol solutions when the osmolality was less than 200 mOsm kg-1. The sperm started to be motile as a result of increased osmolality, indicating an osmolality-dependent initiation of sperm motility in sea cucumber. After a brief incubation in hypotonic NaCl and glucose solutions with osmolalities of 200 and 400 mOsm kg-1, sperm lost partial motile ability. Sperm became immobilized when pH was 6.0 in NaCl, glucose and mannitol solutions, suggesting that an H+ release is involved in sperm activation. The decreased pH had no effect on the percentage of motile sperm in ASW, whereas it delayed the time period to reach the maximum motility (motilitymax). Extracellular Ca2+ in electrolyte solutions was not essential for motility stimulation but shortened the time of reaching motilitymax. When Ca2+ was mixed in nonelectrolyte solutions the sperm motility was completely suppressed. The K+ channel blocker, quinine, suppressed the sperm motility in electrolyte solution, showing a possible involvement of K+ transport in the process. High K+ concentration did not affect the sperm motility in NaCl solution, but decreased it in ASW and almost entirely suppressed it in nonelectrolyte solutions. The different effects of pH and K+ in ASW and NaCl solution indicate that external ions may also regulate sperm motility.

  19. Earthquake-like dynamics in Myxococcus xanthus social motility

    PubMed Central

    Gibiansky, Maxsim L.; Hu, Wei; Dahmen, Karin A.; Shi, Wenyuan; Wong, Gerard C. L.

    2013-01-01

    Myxococcus xanthus is a bacterium capable of complex social organization. Its characteristic social (“S”)-motility mechanism is mediated by type IV pili (TFP), linear actuator appendages that propel the bacterium along a surface. TFP are known to bind to secreted exopolysaccharides (EPS), but it is unclear how M. xanthus manages to use the TFP-EPS technology common to many bacteria to achieve its unique coordinated multicellular movements. We examine M. xanthus S-motility, using high-resolution particle-tracking algorithms, and observe aperiodic stick–slip movements. We show that they are not due to chemotaxis, but are instead consistent with a constant TFP-generated force interacting with EPS, which functions both as a glue and as a lubricant. These movements are quantitatively homologous to the dynamics of earthquakes and other crackling noise systems. These systems exhibit critical behavior, which is characterized by a statistical hierarchy of discrete “avalanche” motions described by a power law distribution. The measured critical exponents from M. xanthus are consistent with mean field theoretical models and with other crackling noise systems, and the measured Lyapunov exponent suggests the existence of highly branched EPS. Such molecular architectures, which are common for efficient lubricants but rare in bacterial EPS, may be necessary for S-motility: We show that the TFP of leading “locomotive” cells initiate the collective motion of follower cells, indicating that lubricating EPS may alleviate the force generation requirements on the lead cell and thus make S-motility possible. PMID:23341622

  20. Autocrine regulation of human sperm motility by tachykinins

    PubMed Central

    2010-01-01

    Background We examined the presence and function of tachykinins and the tachykinin-degrading enzymes neprilysin (NEP) and neprilysin-2 (NEP2) in human spermatozoa. Methods Freshly ejaculated semen was collected from forty-eight normozoospermic human donors. We analyzed the expression of substance P, neurokinin A, neurokinin B, hemokinin-1, NEP and NEP2 in sperm cells by reverse-transcriptase polymerase chain reaction (RT-PCR), western blot and immunocytochemistry assays and evaluated the effects of the neprilysin and neprilysin-2 inhibitor phosphoramidon on sperm motility in the absence and presence of tachykinin receptor-selective antagonists. Sperm motility was measured using WHO procedures or computer-assisted sperm analysis (CASA). Results The mRNAs of the genes that encode substance P/neurokinin A (TAC1), neurokinin B (TAC3), hemokinin-1 (TAC4), neprilysin (MME) and neprilysin-2 (MMEL1) were expressed in human sperm. Immunocytochemistry studies revealed that tachykinin and neprilysin proteins were present in spermatozoa and show specific and differential distributions. Phosphoramidon increased sperm progressive motility and its effects were reduced in the presence of the tachykinin receptor antagonists SR140333 (NK1 receptor-selective) and SR48968 (NK2 receptor-selective) but unmodified in the presence of SR142801 (NK3 receptor-selective). Conclusion These data show that tachykinins are present in human spermatozoa and participate in the regulation of sperm motility. Tachykinin activity is regulated, at least in part, by neprilysins. PMID:20796280

  1. Correlation between extraocular muscle size and motility restriction in thyroid eye disease.

    PubMed

    Dagi, Lora R; Zoumalan, Christopher I; Konrad, Hindola; Trokel, Stephen L; Kazim, Michael

    2011-01-01

    Evaluate the relationship between extraocular muscle (EOM) size, measured by computed tomography, and ocular motility in thyroid eye disease (TED). This case series is based on a retrospective review of the records of 54 patients (108 orbits) with TED. Main outcome measures included EOM size and degree of motility restriction. The average diameter of each rectus muscle was compared with published norms. Four subpopulations based on Age (< 40 or ≥ 40 years) and State of thyroid eye disease (active or stable) were studied. Versions were measured by the corneal light reflex method. The trend of muscle diameter versus motility restriction was evaluated. The average EOM diameter was greater than the norm in the study cohort and 4 subpopulations. The average diameter was largest in the Older and Active TED subpopulations. The inferior rectus and medial rectus were most frequently restricted in the study cohort and 4 subpopulations. The medial rectus had the strongest trend between increasing diameter and motility restriction, followed by the inferior rectus and the superior muscle group (comprised of the superior rectus and levator palpebrae superioris). However, there was a general lack of strong correlation between the diameter of the rectus muscles and their respective motility, especially in the Younger subpopulation. EOM diameters are larger and have more restricted motility in the Older and Active TED subpopulations. Contrary to prior publications, the correlation between EOM diameters and motility was weak, especially in the Younger subpopulation. These findings suggest that the pathophysiology of EOM enlargement is different based upon the age of the patient and the activity of the orbitopathy.

  2. Lamp1 Increases the Efficiency of Lassa Virus Infection by Promoting Fusion in Less Acidic Endosomal Compartments.

    PubMed

    Hulseberg, Christine E; Fénéant, Lucie; Szymańska, Katarzyna M; White, Judith M

    2018-01-02

    Lassa virus (LASV) is an arenavirus whose entry into host cells is mediated by a glycoprotein complex (GPC) comprised of a receptor binding subunit, GP1, a fusogenic transmembrane subunit, GP2, and a stable signal peptide. After receptor-mediated internalization, arenaviruses converge in the endocytic pathway, where they are thought to undergo low-pH-triggered, GPC-mediated fusion with a late endosome membrane. A unique feature of LASV entry is a pH-dependent switch from a primary cell surface receptor (α-dystroglycan) to an endosomal receptor, lysosomal-associated membrane protein (Lamp1). Despite evidence that the interaction between LASV GP1 and Lamp1 is critical, the function of Lamp1 in promoting LASV infection remains poorly characterized. Here we used wild-type (WT) and Lamp1 knockout (KO) cells to show that Lamp1 increases the efficiency of, but is not absolutely required for, LASV entry and infection. We then used cell-cell and pseudovirus-cell surface fusion assays to demonstrate that LASV GPC-mediated fusion occurs at a significantly higher pH when Lamp1 is present compared to when Lamp1 is missing. Correspondingly, we found that LASV entry occurs through less acidic endosomes in WT (Lamp1-positive) versus Lamp1 KO cells. We propose that, by elevating the pH threshold for fusion, Lamp1 allows LASV particles to exit the endocytic pathway before they encounter an increasingly acidic and harsh proteolytic environment, which could inactivate a significant percentage of incoming viruses. In this manner Lamp1 increases the overall efficiency of LASV entry and infection. IMPORTANCE Lassa virus is the most clinically important member of the Arenaviridae , a family that includes six additional biosafety level 4 (BSL4) hemorrhagic fever viruses. The lack of specific antiviral therapies for Lassa fever drives an urgent need to identify druggable targets, and interventions that block infection at the entry stage are particularly attractive. Lassa virus is only the

  3. HES6 enhances the motility of alveolar rhabdomyosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wickramasinghe, Caroline M; MRC Laboratory of Molecular Biology, Addenbrooke's Hospital Cambridge, CB2 0QH; Domaschenz, Renae

    Absract: HES6, a member of the hairy-enhancer-of-split family of transcription factors, plays multiple roles in myogenesis. It is a direct target of the myogenic transcription factor MyoD and has been shown to regulate the formation of the myotome in development, myoblast cell cycle exit and the organization of the actin cytoskeleton during terminal differentiation. Here we investigate the expression and function of HES6 in rhabdomyosarcoma, a soft tissue tumor which expresses myogenic genes but fails to differentiate into muscle. We show that HES6 is expressed at high levels in the subset of alveolar rhabdomyosarcomas expressing PAX/FOXO1 fusion genes (ARMSp). Knockdownmore » of HES6 mRNA in the ARMSp cell line RH30 reduces proliferation and cell motility. This phenotype is rescued by expression of mouse Hes6 which is insensitive to HES6 siRNA. Furthermore, expression microarray analysis indicates that the HES6 knockdown is associated with a decrease in the levels of Transgelin, (TAGLN), a regulator of the actin cytoskeleton. Knockdown of TAGLN decreases cell motility, whilst TAGLN overexpression rescues the motility defect resulting from HES6 knockdown. These findings indicate HES6 contributes to the pathogenesis of ARMSp by enhancing both proliferation and cell motility.« less

  4. Beneficial effects of relaxin on motility characteristics of stored boar spermatozoa

    USDA-ARS?s Scientific Manuscript database

    Background: Relaxin is detected in seminal plasma of many species and its association with sperm motility may be beneficial in some aspects of assisted reproduction. Here, we immunolocalized relaxin receptors and investigated the effects of exogenous relaxin on motility characteristics, viability, a...

  5. Bacteria rolling: motilities of rosette colonies in Caulobacter crescentus

    NASA Astrophysics Data System (ADS)

    Zeng, Yu; Liu, Bin

    2016-11-01

    The aquatic bacterium Caulobacter crescentus has two life cycle stages with distinct motilities: freely swimming swarmer cells and immotile stalked cells. Here, we show a new type of movement performed by freely suspended rosettes, spontaneous aggregates of stalked cells aligned radially relative to each other. Reproductive rosette members generate predivisional daughter cells with flagella, inducing rotations of the rosette as a whole. Such rotations exhibit dynamic angular velocities and lead to intermittent linear movements along liquid-solid interfaces, resembling rolling movements. We reconstructed the translational and rotational dynamics of the rosette movements from high-speed filming and long-term tracking. A mechanical model was developed to explain the hydrodynamic mechanism underlying such motilities. Our study illustrated a nontrivial mechanism for clustered bacteria to achieve motilities and sheds light on the adaptive significance of the collective behaviors of microorganisms in complex fluid environments.

  6. Activation of Drosophila hemocyte motility by the ecdysone hormone

    PubMed Central

    Sampson, Christopher J.; Amin, Unum; Couso, Juan-Pablo

    2013-01-01

    Summary Drosophila hemocytes compose the cellular arm of the fly's innate immune system. Plasmatocytes, putative homologues to mammalian macrophages, represent ∼95% of the migratory hemocyte population in circulation and are responsible for the phagocytosis of bacteria and apoptotic tissues that arise during metamorphosis. It is not known as to how hemocytes become activated from a sessile state in response to such infectious and developmental cues, although the hormone ecdysone has been suggested as the signal that shifts hemocyte behaviour from quiescent to migratory at metamorphosis. Here, we corroborate this hypothesis by showing the activation of hemocyte motility by ecdysone. We induce motile behaviour in larval hemocytes by culturing them with 20-hydroxyecdysone ex vivo. Moreover, we also determine that motile cell behaviour requires the ecdysone receptor complex and leads to asymmetrical redistribution of both actin and tubulin cytoskeleton. PMID:24285708

  7. Emergence of HGF/SF-Induced Coordinated Cellular Motility

    PubMed Central

    Zaritsky, Assaf; Natan, Sari; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2012-01-01

    Collective cell migration plays a major role in embryonic morphogenesis, tissue remodeling, wound repair and cancer invasion. Despite many decades of extensive investigations, only few analytical tools have been developed to enhance the biological understanding of this important phenomenon. Here we present a novel quantitative approach to analyze long term kinetics of bright field time-lapse wound healing. Fully-automated spatiotemporal measures and visualization of cells' motility and implicit morphology were proven to be sound, repetitive and highly informative compared to single-cell tracking analysis. We study cellular collective migration induced by tyrosine kinase-growth factor signaling (Met-Hepatocyte Growth Factor/Scatter Factor (HGF/SF)). Our quantitative approach is applied to demonstrate that collective migration of the adenocarcinoma cell lines is characterized by simple morpho-kinetics. HGF/SF induces complex morpho-kinetic coordinated collective migration: cells at the front move faster and are more spread than those further away from the wound edge. As the wound heals, distant cells gradually accelerate and enhance spread and elongation –resembling the epithelial to mesenchymal transition (EMT), and then the cells become more spread and maintain higher velocity than cells located closer to the wound. Finally, upon wound closure, front cells halt, shrink and round up (resembling mesenchymal to epithelial transition (MET) phenotype) while distant cells undergo the same process gradually. Met inhibition experiments further validate that Met signaling dramatically alters the morpho-kinetic dynamics of the healing wound. Machine-learning classification was applied to demonstrate the generalization of our findings, revealing even subtle changes in motility patterns induced by Met-inhibition. It is concluded that activation of Met-signaling induces an elaborated model in which cells lead a coordinated increased motility along with gradual differentiation

  8. Light-activated endosomal escape using upconversion nanoparticles for enhanced delivery of drugs

    NASA Astrophysics Data System (ADS)

    Gnanasammandhan, Muthu Kumara; Bansal, Akshaya; Zhang, Yong

    2013-02-01

    Nanoparticle-based delivery of drugs has gained a lot of prominence recently but the main problem hampering efficient delivery of payload is the clearing or degradation of nanoparticles by endosomes. Various strategies have been used to overcome this issue and one such effective solution is Photochemical Internalization (PCI). This technique involves the activation of certain photosensitizing compounds by light, which accumulate specifically in the membranes of endocytic vesicles. The activated photosensitizers induce the formation of reactive oxygen species which in turn induces localized disruption of endosomal membranes. But the drawback of this technique is that it needs blue light for activation and hence confined to be used only in in-vitro systems due to the poor tissue penetration of blue light. Here, we report the use of Upconversion nanoparticles (UCNs) as a transducer for activation of the photosensitizer, TPPS 2a. NIR light has good tissue penetrating ability and thus enables PCI in greater depths. Highly monodisperse, uniformly-sized, sub-100 nm, biocompatible upconversion nanoparticles were synthesized with a mesoporous silica coating. These UCNs activated TPPS 2a efficiently in solution and in cells. Paclitaxel, an anti-cancer drug was used as a model drug and was loaded into the mesoporous silica coating. B16F0 cells transfected with drug-loaded UCNs and irradiated with NIR showed significantly higher nanoparticle uptake and in turn higher cell death caused by the delivered drug. This technique can be used to enhance the delivery of any therapeutic molecule and thus increase the therapeutic efficiency considerably.

  9. High-resolution impedance manometry parameters enhance the esophageal motility evaluation in non-obstructive dysphagia patients without a major Chicago Classification motility disorder

    PubMed Central

    Carlson, DA; Omari, T; Lin, Z; Rommel, N; Starkey, K; Kahrilas, PJ; Tack, J; Pandolfino, JE

    2016-01-01

    Background High-resolution impedance manometry (HRIM) allows evaluation of esophageal bolus retention, flow, and pressurization. We aimed to perform a collaborative analysis of HRIM metrics to evaluate patients with non-obstructive dysphagia. Methods 14 asymptomatic controls (58% female; ages 20 – 50) and 41 patients (63% female; ages 24 – 82), 18 evaluated for dysphagia, 23 for reflux (‘non-dysphagia patients’), with esophageal motility diagnoses of normal motility or ineffective esophageal motility were evaluated with HRIM and a global dysphagia symptom score (Brief Esophageal Dysphagia Questionnaire). HRIM were analyzed to assess Chicago Classification metrics, automated pressure-flow metrics, the esophageal impedance integral (EII) ratio, and the bolus flow time (BFT). Key Results Significant symptom-metric correlations were detected only with basal EGJ pressure, EII ratio, and BFT. The EII ratio, BFT, and impedance ratio differed between controls and dysphagia patients, while the EII ratio in the upright position was the only measure that differentiated dysphagia from non-dysphagia patients. Conclusions & Inferences The EII ratio and BFT appear to offer an improved diagnostic evaluation in patients with non-obstructive dysphagia without a major esophageal motility disorder. Bolus retention as measured with the EII ratio appears to carry the strongest association with dysphagia, and thus may aid in the characterization of symptomatic patients with otherwise normal manometry. PMID:27647522

  10. Multiple exposure photographic (MEP) technique: an objective assessment of sperm motility in infertility management.

    PubMed

    Adetoro, O O

    1988-06-01

    Multiple exposure photography (MEP), an objective technique, was used in determining the percentage of motile sperms in the semen samples from 41 males being investigated for infertility. This technique was compared with the conventional subjective ordinary microscopy method of spermatozoal motility assessment. A satisfactory correlation was observed in percentage sperm motility assessment using the two methods but the MEP estimation was more consistent and reliable. The value of this technique of sperm motility study in the developing world is discussed.

  11. RON kinase isoforms demonstrate variable cell motility in normal cells.

    PubMed

    Greenbaum, Alissa; Rajput, Ashwani; Wan, Guanghua

    2016-09-01

    Aberrant RON (Recepteur d'Origine Nantais) tyrosine kinase activation causes the epithelial cell to evade normal growth pathways, resulting in unregulated cell proliferation, increased cell motility and decreased apoptosis. Wildtype (wt) RON has been shown to play a role in metastasis of epithelial malignancies. It presents an important potential therapeutic target for colorectal, breast, gastric and pancreatic cancer. Little is known about functional differences amongst RON isoforms RON155, RON160 and RON165. The purpose of this study was to determine the effect of various RON kinase isoforms on cell motility. Cell lines with stable expression of wtRON were generated by inserting the coding region of RON in pTagRFP (tagged red fluorescence protein plasmid). The expression constructs of RON variants (RON155, RON160 and RON165) were generated by creating a mutagenesis-based wtRON-pTag RFP plasmid and stably transfected into HEK 293 cells. The wound closure scratch assay was used to investigate the effect on cell migratory capacity of wild type RON and its variants. RON transfected cells demonstrated increased cell motility compared to HEK293 control cells. RON165 cell motility was significantly increased compared to RON160 (mean percentage of wound covered 37.37% vs. 32.40%; p = 0.03). RON tyrosine kinase isoforms have variable cell motility. This may reflect a difference in the behavior of malignant epithelial cells and their capacity for metastasis.

  12. Isolation, characterization, and complementation of a motility mutant of Spiroplasma citri.

    PubMed Central

    Jacob, C; Nouzières, F; Duret, S; Bové, J M; Renaudin, J

    1997-01-01

    The helical mollicute Spiroplasma citri, when growing on low-agar medium, forms fuzzy colonies with occasional surrounding satellite colonies due to the ability of the spiroplasmal cells to move through the agar matrix. In liquid medium, these helical organisms flex, twist, and rotate rapidly. By using Tn4001 insertion mutagenesis, a motility mutant was isolated on the basis of its nondiffuse, sharp-edged colonies. Dark-field microscopy observations revealed that the organism flexed at a low frequency and had lost the ability to rotate about the helix axis. In this mutant, the transposon was shown to be inserted into an open reading frame encoding a putative polypeptide of 409 amino acids for which no significant homology with known proteins was found. The corresponding gene, named scm1, was recovered from the wild-type strain and introduced into the motility mutant by using the S. citri oriC plasmid pBOT1 as the vector. The appearance of fuzzy colonies and the observation that spiroplasma cells displayed rotatory and flexional movements showed the motile phenotype to be restored in the spiroplasmal transformants. The functional complementation of the motility mutant proves the scm1 gene product to be involved in the motility mechanism of S. citri. PMID:9244268

  13. Cell motility in cancer invasion and metastasis: insights from simple model organisms.

    PubMed

    Stuelten, Christina H; Parent, Carole A; Montell, Denise J

    2018-05-01

    Metastasis remains the greatest challenge in the clinical management of cancer. Cell motility is a fundamental and ancient cellular behaviour that contributes to metastasis and is conserved in simple organisms. In this Review, we evaluate insights relevant to human cancer that are derived from the study of cell motility in non-mammalian model organisms. Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster and Danio rerio permit direct observation of cells moving in complex native environments and lend themselves to large-scale genetic and pharmacological screening. We highlight insights derived from each of these organisms, including the detailed signalling network that governs chemotaxis towards chemokines; a novel mechanism of basement membrane invasion; the positive role of E-cadherin in collective direction-sensing; the identification and optimization of kinase inhibitors for metastatic thyroid cancer on the basis of work in flies; and the value of zebrafish for live imaging, especially of vascular remodelling and interactions between tumour cells and host tissues. While the motility of tumour cells and certain host cells promotes metastatic spread, the motility of tumour-reactive T cells likely increases their antitumour effects. Therefore, it is important to elucidate the mechanisms underlying all types of cell motility, with the ultimate goal of identifying combination therapies that will increase the motility of beneficial cells and block the spread of harmful cells.

  14. A Nutrient-Tunable Bistable Switch Controls Motility in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Koirala, Santosh; Mears, Patrick; Sim, Martin; Golding, Ido; Chemla, Yann R.; Aldridge, Phillip D.

    2014-01-01

    ABSTRACT Many bacteria are motile only when nutrients are scarce. In contrast, Salmonella enterica serovar Typhimurium is motile only when nutrients are plentiful, suggesting that this bacterium uses motility for purposes other than foraging, most likely for host colonization. In this study, we investigated how nutrients affect motility in S. enterica and found that they tune the fraction of motile cells. In particular, we observed coexisting populations of motile and nonmotile cells, with the distribution being determined by the concentration of nutrients in the growth medium. Interestingly, S. enterica responds not to a single nutrient but apparently to a complex mixture of them. Using a combination of experimentation and mathematical modeling, we investigated the mechanism governing this behavior and found that it results from two antagonizing regulatory proteins, FliZ and YdiV. We also found that a positive feedback loop involving the alternate sigma factor FliA is required, although its role appears solely to amplify FliZ expression. We further demonstrate that the response is bistable: that is, genetically identical cells can exhibit different phenotypes under identical growth conditions. Together, these results uncover a new facet of the regulation of the flagellar genes in S. enterica and further demonstrate how bacteria employ phenotypic diversity as a general mechanism for adapting to change in their environment. PMID:25161191

  15. Association of seminal plasma motility inhibitors/semenogelins with sperm in asthenozoospermia-infertile men.

    PubMed

    Terai, K; Yoshida, K; Yoshiike, M; Fujime, M; Iwamoto, T

    2010-01-01

    Seminal plasma motility inhibitors (SPMIs) are proteinase-resistant fragments of semenogelin I and II (Sgs), which are the major proteins of semen coagulum. SPMIs inhibit the motility of spermatozoa, and Sgs are thought to be natural regulators of human sperm function. The mechanism underlying sperm motility regulation and its association with defective motility in infertile men remain unclear. The purpose of this study was to investigate the association between SPMIs and spermatozoa in infertile men with asthenozoospermia. Fifty-four semen samples from 37 asthenozoospermic patients and 17 samples from 9 normal healthy subjects were analyzed. Spermatozoa, washed by Percoll density gradients, were immunostained with anti-SPMI antibody and subjected to flow cytometric analysis. The proportion of spermatozoa labeled with the antibody and the average intensity of fluorescence labeling per spermatozoa were analyzed in relation to the parameters used for semen analysis. A significant negative correlation was found between sperm motility and the proportion (R = -0.68) and intensity (R = -0.38) of labeling. These results suggest that SPMIs remain on the sperm surface after liquefaction. This might account for some disorders of sperm motility observed in infertile men with asthenozoospermia. Copyright © 2010 S. Karger AG, Basel.

  16. Modification of Salmonella Typhimurium Motility by the Probiotic Yeast Strain Saccharomyces boulardii

    PubMed Central

    Pontier-Bres, Rodolphe; Prodon, François; Munro, Patrick; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean François; Czerucka, Dorota

    2012-01-01

    Background Motility is an important component of Salmonella enterica serovar Typhimurium (ST) pathogenesis allowing the bacteria to move into appropriate niches, across the mucus layer and invade the intestinal epithelium. In vitro, flagellum-associated motility is closely related to the invasive properties of ST. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is widely prescribed for the prophylaxis and treatment of diarrheal diseases caused by bacteria or antibiotics. In case of Salmonella infection, S.b-B has been shown to decrease ST invasion of T84 colon cell line. The present study was designed to investigate the impact of S.b-B on ST motility. Methodology/Principal Findings Experiments were performed on human colonic T84 cells infected by the Salmonella strain 1344 alone or in the presence of S.b-B. The motility of Salmonella was recorded by time-lapse video microscopy. Next, a manual tracking was performed to analyze bacteria dynamics (MTrackJ plugin, NIH image J software). This revealed that the speed of bacterial movement was modified in the presence of S.b-B. The median curvilinear velocity (CLV) of Salmonella incubated alone with T84 decreased from 43.3 µm/sec to 31.2 µm/sec in the presence of S.b-B. Measurement of track linearity (TL) showed similar trends: S.b-B decreased by 15% the number of bacteria with linear tract (LT) and increased by 22% the number of bacteria with rotator tract (RT). Correlation between ST motility and invasion was further established by studying a non-motile flagella-deficient ST strain. Indeed this strain that moved with a CLV of 0.5 µm/sec, presented a majority of RT and a significant decrease in invasion properties. Importantly, we show that S.b-B modified the motility of the pathogenic strain SL1344 and significantly decreased invasion of T84 cells by this strain. Conclusions This study reveals that S.b-B modifies Salmonella's motility and trajectory which may account for the modification of Salmonella

  17. Spontaneous mutations in the flhD operon generate motility heterogeneity in Escherichia coli biofilm.

    PubMed

    Horne, Shelley M; Sayler, Joseph; Scarberry, Nicholas; Schroeder, Meredith; Lynnes, Ty; Prüß, Birgit M

    2016-11-08

    Heterogeneity and niche adaptation in bacterial biofilm involve changes to the genetic makeup of the bacteria and gene expression control. We hypothesized that i) spontaneous mutations in the flhD operon can either increase or decrease motility and that ii) the resulting motility heterogeneity in the biofilm might lead to a long-term increase in biofilm biomass. We allowed the highly motile E. coli K-12 strain MC1000 to form seven- and fourteen-day old biofilm, from which we recovered reduced motility isolates at a substantially greater frequency (5.4 %) than from a similar experiment with planktonic bacteria (0.1 %). Biofilms formed exclusively by MC1000 degraded after 2 weeks. In contrast, biofilms initiated with a 1:1 ratio of MC1000 and its isogenic flhD::kn mutant remained intact at 4 weeks and the two strains remained in equilibrium for at least two weeks. These data imply that an 'optimal' biofilm may contain a mixture of motile and non-motile bacteria. Twenty-eight of the non-motile MC1000 isolates contained an IS1 element in proximity to the translational start of FlhD or within the open reading frames for FlhD or FlhC. Two isolates had an IS2 and one isolate had an IS5 in the open reading frame for FlhD. An additional three isolates contained deletions that included the RNA polymerase binding site, five isolates contained point mutations and small deletions in the open reading frame for FlhC. The locations of all these mutations are consistent with the lack of motility and further downstream within the flhD operon than previously published IS elements that increased motility. We believe that the location of the mutation within the flhD operon determines whether the effect on motility is positive or negative. To test the second part of our hypothesis where motility heterogeneity in a biofilm may lead to a long-term increase in biofilm biomass, we quantified biofilm biomass by MC1000, MC1000 flhD::kn, and mixtures of the two strains at ratios of 1:1, 10

  18. High-Throughput, Motility-Based Sorter for Microswimmers and Gene Discovery Platform

    NASA Astrophysics Data System (ADS)

    Yuan, Jinzhou; Raizen, David; Bau, Haim

    2015-11-01

    Animal motility varies with genotype, disease progression, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method was implemented in a simple microfluidic device capable of sorting many thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriched for known C. elegans motility mutants. Furthermore, using this device, we isolated low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates sleep-like quiescence in C. elegans. Subsequent genomic sequencing led to the identification of a flp-13-suppressor gene. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.

  19. Effect of Dai-kenchu-to on gastrointestinal motility and gastric emptying.

    PubMed

    Kawasaki, Naruo; Nakada, Koji; Suzuki, Yutaka; Furukawa, Yoshiyuki; Hanyu, Nobuyoshi; Kashiwagi, Hideyuki

    2009-06-01

    The gastrointestinal symptoms accompanying dysfunction of the remnant stomach were seen after pylorus-preserving operation. Against such complications, Dai-kenchu-to (DKT) is used, but scientific evidences for efficacy are poor. The effect of DKT on gastrointestinal motility and gastric emptying after pylorus-preserving operation was investigated. Using beagle dogs, the experimental models mimicking the state after pylorus-preserving pancreaticoduodenectomy were prepared. We sutured strain gauge transducers to the stomach, duodenum and jejunum and inserted indwelling tubes into the stomach. About 4 weeks after operation, DKT 0.1g/kg was administered during the fasting or fed state. At the same time, the gastric emptying was evaluated by the acetoaminophene method. In the fasting state, administration of DKT enhanced the gastrointestinal motility and accelerated gastric emptying. In the postprandial state, no apparent effect on motility was seen. DKT enhances the gastrointestinal motility after pylorus-preserving pancreaticoduodenectomy in the fasting state. The effect of DKT may not be related to the continuity of the intramural nerve.

  20. Bacterial spread from cell to cell: beyond actin-based motility.

    PubMed

    Kuehl, Carole J; Dragoi, Ana-Maria; Talman, Arthur; Agaisse, Hervé

    2015-09-01

    Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The time-dependent distribution of 125I-asialo-orosomucoid-horseradish peroxidase and 131I-immunoglobulin A among three endosomal subfractions isolated from rat liver.

    PubMed Central

    Kennedy, G; Cooper, C

    1988-01-01

    Three discrete endosomal fractions showing a time-dependent uptake of radioactive ligand were partially purified from rat liver. The 3,3'-diaminobenzidine (DAB)-induced density-shift protocol of Courtoy, Quintart & Baudhuin [(1984) J. Cell Biol. 98, 870-876] was used to study the distribution among these three endosomal fractions of two ligands with different intracellular destinations. Rats received both 125I-asialo-orosomucoid-horseradish peroxidase (125I-ASOR-HRP) and 131I-dIgA simultaneously by intraportal injection. The liver was fractionated at various times after injection, the three ligand-containing endosomal fractions (A, B and C) were separated and each was subjected separately to the DAB-induced density-shift procedure in which only vesicles containing 125I-ASOR-HRP are increased in density. Information on whether 131I-dIgA was co-localized or segregated from 125I-ASOR-HRP was obtained. The two ligands in the A fraction were partly segregated and partly co-localized, and this distribution appeared to be relatively unchanged with time. The two ligands in the B fraction were co-localized at all times studied. We have tentatively identified the B fraction as a compartment in which vesicle fusion has occurred. The two ligands in the C fraction were also partly co-localized and partly segregated, but the 131I-dIgA became increasingly segregated with time. This represents the first report of the purification of an endosomal subfraction specifically involved in the accumulation of multiple ligands. Images Fig. 7. PMID:3421920

  2. Gastrointestinal Motility Variation and Implications for Plasma Level Variation: Oral Drug Products.

    PubMed

    Talattof, Arjang; Price, Judy C; Amidon, Gordon L

    2016-02-01

    The oral route of administration is still by far the most ubiquitous method of drug delivery. Development in this area still faces many challenges due to the complexity and inhomogeneity of the gastrointestinal environment. In particular, dosing unpredictably relative to motility phase means the gastrointestinal environment is a random variable within a defined range. Here, we present a mass balance analysis that captures this variation and highlights the effects of gastrointestinal motility, exploring what impacts it ultimately has on plasma levels and the relationship to bioequivalence for high solubility products with both high and low permeability (BCS I and III). Motility-dependent compartmental absorption and transit (MDCAT) mechanistic analysis is developed to describe the underlying fasted state cyclical motility and how the contents of the gastrointestinal tract are propelled.

  3. Insulin Recruits GLUT4 from Specialized VAMP2-carrying Vesicles as well as from the Dynamic Endosomal/Trans-Golgi Network in Rat Adipocytes.

    PubMed Central

    Ramm, Georg; Slot, Jan Willem; James, David E.; Stoorvogel, Willem

    2000-01-01

    Insulin treatment of fat cells results in the translocation of the insulin-responsive glucose transporter type 4, GLUT4, from intracellular compartments to the plasma membrane. However, the precise nature of these intracellular GLUT4-carrying compartments is debated. To resolve the nature of these compartments, we have performed an extensive morphological analysis of GLUT4-containing compartments, using a novel immunocytochemical technique enabling high labeling efficiency and 3-d resolution of cytoplasmic rims isolated from rat epididymal adipocytes. In basal cells, GLUT4 was localized to three morphologically distinct intracellular structures: small vesicles, tubules, and vacuoles. In response to insulin the increase of GLUT4 at the cell surface was compensated by a decrease in small vesicles, whereas the amount in tubules and vacuoles was unchanged. Under basal conditions, many small GLUT4 positive vesicles also contained IRAP (88%) and the v-SNARE, VAMP2 (57%) but not markers of sorting endosomes (EEA1), late endosomes, or lysosomes (lgp120). A largely distinct population of GLUT4 vesicles (56%) contained the cation-dependent mannose 6-phosphate receptor (CD-MPR), a marker protein that shuttles between endosomes and the trans-Golgi network (TGN). In response to insulin, GLUT4 was recruited both from VAMP2 and CD-MPR positive vesicles. However, while the concentration of GLUT4 in the remaining VAMP2-positive vesicles was unchanged, the concentration of GLUT4 in CD-MPR-positive vesicles decreased. Taken together, we provide morphological evidence indicating that, in response to insulin, GLUT4 is recruited to the plasma membrane by fusion of preexisting VAMP2-carrying vesicles as well as by sorting from the dynamic endosomal-TGN system. PMID:11102509

  4. Esophageal motility after peroral endoscopic myotomy for achalasia.

    PubMed

    Hu, Yue; Li, Meng; Lu, Bin; Meng, Lina; Fan, Yihong; Bao, Haibiao

    2016-05-01

    Peroral endoscopic myotomy (POEM) has been introduced as a novel endoscopic treatment for achalasia. The aim of this work is to assess the changes in esophageal motility caused by POEM in patients with achalasia. Forty-one patients with achalasia underwent POEM from September 2012 to November 2014. Esophageal motility of all patients was evaluated preoperatively and 1 month after POEM utilizing high-resolution manometry, which was performed with ten water swallows, ten steamed bread swallows, and multiple rapid swallows (MRS). In single swallows, including liquid swallows and bread swallows, all the parameters of lower esophagus sphincter resting pressure (LESP), 4-s integrated relaxation pressure (4sIRP), and intra-bolus pressure (IBP) were decreased between pre- and post-POEM patients (all p < 0.05). Postoperatively, the trend of distal contractile integral (DCI) and distal esophageal peristaltic amplitude declined in subtype II and subtype III (subtype II: p < 0.05; subtype III: p > 0.05), but increased in subtype I (subtype I: p > 0.05). In liquid swallows, the Eckardt score of subtype II patients decreased with DCI, and distal esophageal peristaltic amplitude after POEM was significantly lower compared with those showing increased values of those two parameters (p < 0.05). In MRS, the rate of LES relaxation increased from 66.67 to 95.24%, but without normal response in all achalasia patients. POEM reduces LES pressure in achalasia, and partly restores esophageal motility. POEM displayed varying effect on esophageal motility in patients with different patterns of swallowing. In addition, the changes in parameters associated with esophageal peristalsis correlated with decreases in Eckardt score.

  5. Intracellular Trafficking of Clostridium perfringens Iota-Toxin b

    PubMed Central

    Umezaki, Mariko; Tashiro, Ryo; Oda, Masataka; Kobayashi, Keiko; Shibutani, Masahiro; Takagishi, Teruhisa; Ishidoh, Kazumi; Fukuda, Mitsunori; Sakurai, Jun

    2012-01-01

    Clostridium perfringens iota-toxin is composed of an enzymatic component (Ia) and a binding component (Ib). Ib binds to a cell surface receptor, undergoes oligomerization in lipid rafts, and binds Ia. The resulting complex is then endocytosed. Here, we show the intracellular trafficking of iota-toxin. After the binding of the Ib monomer with cells at 4°C, oligomers of Ib formed at 37°C and later disappeared. Immunofluorescence staining of Ib revealed that the internalized Ib was transported to early endosomes. Some Ib was returned to the plasma membrane through recycling endosomes, whereas the rest was transported to late endosomes and lysosomes for degradation. Degraded Ib was delivered to the plasma membrane by an increase in the intracellular Ca2+ concentration caused by Ib. Bafilomycin A1, an endosomal acidification inhibitor, caused the accumulation of Ib in endosomes, and both nocodazole and colchicine, microtubule-disrupting agents, restricted Ib's movement in the cytosol. These results indicated that an internalized Ia and Ib complex was delivered to early endosomes and that subsequent delivery of Ia to the cytoplasm occurs mainly in early endosomes. Ib was either sent back to the plasma membranes through recycling endosomes or transported to late endosomes and lysosomes for degradation. Degraded Ib was transported to plasma membranes. PMID:22825447

  6. Estimate of oxygen consumption and intracellular zinc concentration of human spermatozoa in relation to motility.

    PubMed

    Henkel, Ralf R; Defosse, Kerstin; Koyro, Hans-Wilhelm; Weissmann, Norbert; Schill, Wolf-Bernhard

    2003-03-01

    To investigate the human sperm oxygen/energy consumption and zinc content in relation to motility. In washed spermatozoa from 67 ejaculates, the oxygen consumption was determined. Following calculation of the total oxygen consumed by the Ideal Gas Law, the energy consumption of spermatozoa was calculated. In addition, the zinc content of the sperm was determined using an atomic absorption spectrometer. The resulting data were correlated to the vitality and motility. The oxygen consumption averaged 0.24 micromol/10(6) sperm x 24h, 0.28 micromol/10(6) live sperm x 24h and 0.85 micromol/10(6) live motile sperm x 24h. Further calculations revealed that sperm motility was the most energy consuming process (164.31 mJ/10(6) motile spermatozoa x 24h), while the oxygen consumption of the total spermatozoa was 46.06 mJ/10(6) spermatozoa x 24h. The correlation of the oxygen/energy consumption and zinc content with motility showed significant negative correlations (r= -0.759; P<0.0001 and r=-0.441; P<0.0001, respectively). However, when correlating sperm energy consumption with the zinc content, a significant positive relation (r=0.323; P=0.01) was observed. Poorly motile sperm are actually wasting the available energy. Moreover, our data clearly support the "Geometric Clutch Model" of the axoneme function and demonstrate the importance of the outer dense fibers for the generation of sperm motility, especially progressive motility.

  7. Effects of viscosity on sperm motility studied with optical tweezers

    NASA Astrophysics Data System (ADS)

    Hyun, Nicholas; Chandsawangbhuwana, Charlie; Zhu, Qingyuan; Shi, Linda Z.; Yang-Wong, Collin; Berns, Michael W.

    2012-02-01

    The purpose of this study is to analyze human sperm motility and energetics in media with different viscosities. Multiple experiments were performed to collect motility parameters using customized computer tracking software that measures the curvilinear velocity (VCL) and the minimum laser power (Pesc) necessary to hold an individual sperm in an optical trap. The Pesc was measured by using a 1064 nm Nd:YVO4 continuous wave laser that optically traps motile sperm at a power of 450 mW in the focused trap spot. The VCL was measured frame by frame before trapping. In order to study sperm energetics under different viscous conditions sperm were labeled with the fluorescent dye DiOC6(3) to measure membrane potentials of mitochondria in the sperm midpiece. Fluorescence intensity was measured before and during trapping. The results demonstrate a decrease in VCL but an increase in Pesc with increasing viscosity. Fluorescent intensity is the same regardless of the viscosity level indicating no change in sperm energetics. The results suggest that, under the conditions tested, viscosity physically affects the mechanical properties of sperm motility rather than the chemical pathways associated with energetics.

  8. Microfluidic separation of motile sperm with millilitre-scale sample capacity

    NASA Astrophysics Data System (ADS)

    Nosrati, Reza; Vollmer, Marion; Eamer, Lise; Zeidan, Krista; San Gabriel, Maria C.; Zini, Armand; Sinton, David

    2012-11-01

    Isolating motile from non-motile spermatozoa has been a challenge since the establishment of in vitro fertilization. Microfluidic approaches have been employed for this purpose, but current devices are limited by low sample volume. Here, we present a high-throughput microfluidic device that separates spermatozoa from one millilitre of raw semen sample based on the hydrodynamic characteristics of swimming sperm in a confined geometry. The device consists of two layers: an outer injection ring on top aligned with a network of radial microchannels at the bottom guiding motile sperm into an inner collection chamber. This approach (1) maximizes exposure of the sperm to the fluid channels, (2) maximizes surface area density (3) prevents fluid flow bias, and (4) employs a non-Newtonian viscoelastic medium consistent with the in vivo environment. Tests with human and bull spermatozoa indicate an increase in motile sperm concentration from 62.2% in raw semen to 99.2% in separated sample combined with a higher incidence of normal morphology. DNA integrity testing is currently underway. In conclusion, we present an effective one-step procedure to perform semen purification and separation on a millilitre-scale with clinically relevant numbers.

  9. pH-Controlled Two-Step Uncoating of Influenza Virus

    PubMed Central

    Li, Sai; Sieben, Christian; Ludwig, Kai; Höfer, Chris T.; Chiantia, Salvatore; Herrmann, Andreas; Eghiaian, Frederic; Schaap, Iwan A.T.

    2014-01-01

    Upon endocytosis in its cellular host, influenza A virus transits via early to late endosomes. To efficiently release its genome, the composite viral shell must undergo significant structural rearrangement, but the exact sequence of events leading to viral uncoating remains largely speculative. In addition, no change in viral structure has ever been identified at the level of early endosomes, raising a question about their role. We performed AFM indentation on single viruses in conjunction with cellular assays under conditions that mimicked gradual acidification from early to late endosomes. We found that the release of the influenza genome requires sequential exposure to the pH of both early and late endosomes, with each step corresponding to changes in the virus mechanical response. Step 1 (pH 7.5–6) involves a modification of both hemagglutinin and the viral lumen and is reversible, whereas Step 2 (pH <6.0) involves M1 dissociation and major hemagglutinin conformational changes and is irreversible. Bypassing the early-endosomal pH step or blocking the envelope proton channel M2 precludes proper genome release and efficient infection, illustrating the importance of viral lumen acidification during the early endosomal residence for influenza virus infection. PMID:24703306

  10. pH-Controlled two-step uncoating of influenza virus.

    PubMed

    Li, Sai; Sieben, Christian; Ludwig, Kai; Höfer, Chris T; Chiantia, Salvatore; Herrmann, Andreas; Eghiaian, Frederic; Schaap, Iwan A T

    2014-04-01

    Upon endocytosis in its cellular host, influenza A virus transits via early to late endosomes. To efficiently release its genome, the composite viral shell must undergo significant structural rearrangement, but the exact sequence of events leading to viral uncoating remains largely speculative. In addition, no change in viral structure has ever been identified at the level of early endosomes, raising a question about their role. We performed AFM indentation on single viruses in conjunction with cellular assays under conditions that mimicked gradual acidification from early to late endosomes. We found that the release of the influenza genome requires sequential exposure to the pH of both early and late endosomes, with each step corresponding to changes in the virus mechanical response. Step 1 (pH 7.5-6) involves a modification of both hemagglutinin and the viral lumen and is reversible, whereas Step 2 (pH <6.0) involves M1 dissociation and major hemagglutinin conformational changes and is irreversible. Bypassing the early-endosomal pH step or blocking the envelope proton channel M2 precludes proper genome release and efficient infection, illustrating the importance of viral lumen acidification during the early endosomal residence for influenza virus infection. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Group X secreted phospholipase A₂ specifically decreases sperm motility in mice.

    PubMed

    Escoffier, Jessica; Pierre, Virginie J; Jemel, Ikram; Munch, Léa; Boudhraa, Zied; Ray, Pierre F; De Waard, Michel; Lambeau, Gérard; Arnoult, Christophe

    2011-10-01

    Different mammalian secreted phospholipases A(2) (sPLA(2) s) are expressed in male reproductive organs and/or in sperm cells but their cellular functions are still not fully characterized. Because several reports indicate a link between cellular lipids and sperm motility, we have investigated the effect of mouse group IIA, IID, IIE, V, and X sPLA(2) s on sperm motility. Among these enzymes, only mouse group X sPLA(2) (mGX sPLA(2) ) acts as a potent inhibitor of sperm motility that decreases track speed (VCL) and lateral displacement of the head (ALH) of both noncapacitated and capacitated sperm. The inhibitory effect of mGX sPLA(2) is dependent on its enzymatic activity because (i) both the proenzyme form of mGX sPLA(2) (pro-mGX) and the H48Q mutant of mGX sPLA(2) have very weak enzymatic activity and are unable to modulate sperm motility and (ii) LY329722, a specific inhibitor of sPLA(2) s, blocks the inhibitory effect of mGX sPLA(2) . Moreover, mGX sPLA(2) exerts a gradual potency on sperm subpopulations with different velocities, an effect which may be linked to the heterogeneity of lipid composition in these sperm subpopulations. Finally, we found that endogenous mGX sPLA(2) released during spontaneous acrosome reaction modulates sperm motility of capacitated sperm. Together, our results suggest a new role of sPLA(2) in sperm physiology where the sPLA2 selects a sperm subpopulation for fertilization based on its effect on sperm motility. Copyright © 2010 Wiley-Liss, Inc.

  12. Effects of hydrogen sulphide on motility patterns in the rat colon

    PubMed Central

    Gil, V; Parsons, SP; Gallego, D; Huizinga, JD; Jimenez, M

    2013-01-01

    Background and Purpose Hydrogen sulphide (H2S) is an endogenous gaseous signalling molecule with putative functions in gastrointestinal motility regulation. Characterization of H2S effects on colonic motility is crucial to establish its potential use as therapeutic agent in the treatment of colonic disorders. Experimental Approach H2S effects on colonic motility were characterized using video recordings and construction of spatio-temporal maps. Microelectrode and muscle bath studies were performed to investigate the mechanisms underlying H2S effects. NaHS was used as the source of H2S. Key Results Rhythmic propulsive motor complexes (RPMCs) and ripples were observed in colonic spatio-temporal maps. Serosal addition of NaHS concentration-dependently inhibited RPMCs. In contrast, NaHS increased amplitude of the ripples without changing their frequency. Therefore, ripples became the predominant motor pattern. Neuronal blockade with lidocaine inhibited RPMCs, which were restored after administration of carbachol. Subsequent addition of NaHS inhibited RPMCs. Luminal addition of NaHS did not modify motility patterns. NaHS inhibited cholinergic excitatory junction potentials, carbachol-induced contractions and hyperpolarized smooth muscle cells, but did not modify slow wave activity. Conclusions and Implications H2S modulated colonic motility inhibiting propulsive contractile activity and enhancing the amplitude of ripples, promoting mixing. Muscle hyperpolarization and inhibition of neurally mediated cholinergic responses contributed to the inhibitory effect on propulsive activity. H2S effects were not related to changes in the frequency of slow wave activity originating in the network of interstitial cells of Cajal located near the submuscular plexus. Luminal H2S did not modify colonic motility probably because of epithelial detoxification. PMID:23297830

  13. Evaluation of esophageal motility utilizing the functional lumen imaging probe (FLIP)

    PubMed Central

    Carlson, Dustin A.; Kahrilas, Peter J.; Lin, Zhiyue; Hirano, Ikuo; Gonsalves, Nirmala; Listernick, Zoe; Ritter, Katherine; Tye, Michael; Ponds, Fraukje A.; Wong, Ian; Pandolfino, John E.

    2016-01-01

    Background Esophagogastric junction (EGJ) distensibility and distension-mediated peristalsis can be assessed with the functional lumen imaging probe (FLIP) during a sedated upper endoscopy. We aimed to describe esophageal motility assessment using FLIP topography in patients presenting with dysphagia. Methods 145 patients (ages 18 – 85, 54% female) with dysphagia that completed upper endoscopy with a 16-cm FLIP assembly and high-resolution manometry (HRM) were included. HRM was analyzed according to the Chicago Classification of esophageal motility disorders; major esophageal motility disorders were considered ‘abnormal’. FLIP studies were analyzed using a customized program to calculate the EGJ-distensibility index (DI) and generate FLIP topography plots to identify esophageal contractility patterns. FLIP topography was considered ‘abnormal’ if EGJ-DI was < 2.8 mm2/mmHg or contractility pattern demonstrated absent contractility or repetitive, retrograde contractions. Results HRM was abnormal in 111 (77%) patients: 70 achalasia (19 type I, 39 type II, 12 type III), 38 EGJ outflow obstruction, and three jackhammer esophagus. FLIP topography was abnormal in 106 (95%) of these patients, including all 70 achalasia patients. HRM was ‘normal’ in 34 (23%) patients: five ineffective esophageal motility and 29 normal motility. 17 (50%) had abnormal FLIP topography including 13 (37%) with abnormal EGJ-DI. Conclusions FLIP topography provides a well-tolerated method for esophageal motility assessment (especially to identify achalasia) at the time of upper endoscopy. FLIP topography findings that are discordant with HRM may indicate otherwise undetected abnormalities of esophageal function, thus FLIP provides an alternative and complementary method to HRM for evaluation of non-obstructive dysphagia. PMID:27725650

  14. Pac-man motility of kinetochores unleashed by laser microsurgery

    PubMed Central

    LaFountain, James R.; Cohan, Christopher S.; Oldenbourg, Rudolf

    2012-01-01

    We report on experiments directly in living cells that reveal the regulation of kinetochore function by tension. X and Y sex chromosomes in crane fly (Nephrotoma suturalis) spermatocytes exhibit an atypical segregation mechanism in which each univalent maintains K-fibers to both poles. During anaphase, each maintains a leading fiber (which shortens) to one pole and a trailing fiber (which elongates) to the other. We used this intriguing behavior to study the motile states that X-Y kinetochores are able to support during anaphase. We used a laser microbeam to either sever a univalent along the plane of sister chromatid cohesion or knock out one of a univalent's two kinetochores to release one or both from the resistive influence of its sister's K-fiber. Released kinetochores with attached chromosome arms moved poleward at rates at least two times faster than normal. Furthermore, fluorescent speckle microscopy revealed that detached kinetochores converted their functional state from reverse pac-man to pac-man motility as a consequence of their release from mechanical tension. We conclude that kinetochores can exhibit pac-man motility, even though their normal behavior is dominated by traction fiber mechanics. Unleashing of kinetochore motility through loss of resistive force is further evidence for the emerging model that kinetochores are subject to tension-sensitive regulation. PMID:22740625

  15. Aldehyde Dehydrogenase Plays a Pivotal Role in the Maintenance of Stallion Sperm Motility.

    PubMed

    Gibb, Zamira; Lambourne, Sarah R; Curry, Benjamin J; Hall, Sally E; Aitken, Robert J

    2016-06-01

    Although stallion spermatozoa produce significant quantities of reactive oxygen species, a lag between 4-hydroxynonenal (4HNE) adduction and the loss of motility in stallion spermatozoa suggests the presence of a robust aldehyde detoxification mechanism. Because there is a paucity of studies characterizing the role of aldehyde dehydrogenase (ALDH) in sperm functionality, the aim of this study was to ascertain the relationship between 4HNE production and motility and ALDH expression by stallion spermatozoa. PCR analysis revealed the presence of the ALDH1A3, ALDH1B1, and ALDH2 isoforms in these cells. Strong correlations (P < 0.001) were found between ALDH expression and various motility parameters of stallion spermatozoa including the percentage of progressive (r = 0.79) and rapidly motile (r = 0.79) spermatozoa, whereas repeated measurements over 24 h revealed highly significant correlations among progressive motility loss, 4HNE accumulation, and ALDH expression (P ≤ 0.001). ALDH inhibition resulted in a spontaneous increase in 4HNE levels in viable cells (21.1 ± 5.8% vs. 42.6 ± 5.2%; P ≤ 0.05) and a corresponding decrease in total motility (41.7 ± 6.2% vs. 6.4 ± 2.6%; P ≤ 0.001) and progressive motility (17.0 ± 4.1% vs. 0.7 ± 0.4%; P ≤ 0.001) of stallion spermatozoa over 24 h. Similarly, inhibition of ALDH in 4HNE-challenged spermatozoa significantly reduced total motility over 4 h (35.4 ± 9.7% vs. 15.3 ± 5.1%, respectively; P ≤ 0.05). This study contributes valuable information about the role of the ALDH enzymes in the maintenance of stallion sperm functionality, with potential diagnostic and in vitro applications for assisted reproductive technologies. © 2016 by the Society for the Study of Reproduction, Inc.

  16. Ptosis, extraocular motility disorder, and myopia as features of pompe disease.

    PubMed

    Slingerland, Niki W R; Polling, Jan Roelof; van Gelder, Catharina M; van der Ploeg, Ans T; Bleyen, Isabel

    2011-03-01

    The assets of this report are a thorough description of new clinical findings, namely the combination of ptosis, extraocular motility disorder and myopia, in consequence of prolonged survival in classic infantile-onset Pompe disease through enzyme therapy. Single case description. This manuscript describes a combination of ptosis, extraocular motility disorder and myopia in a 4.5-year-old patient with classic infantile-onset Pompe disease, who survived through enzyme therapy. This patient was treated with a bilateral frontalis suspension (modified Crawford technique) using prolene 3-0 sutures. The combination of ptosis, extraocular motility disorder and myopia, is a new clinical finding in children with classic infantile-onset Pompe disease.

  17. A quantitative evaluation of cell migration by the phagokinetic track motility assay.

    PubMed

    Nogalski, Maciej T; Chan, Gary C T; Stevenson, Emily V; Collins-McMillen, Donna K; Yurochko, Andrew D

    2012-12-04

    Cellular motility is an important biological process for both unicellular and multicellular organisms. It is essential for movement of unicellular organisms towards a source of nutrients or away from unsuitable conditions, as well as in multicellular organisms for tissue development, immune surveillance and wound healing, just to mention a few roles(1,2,3). Deregulation of this process can lead to serious neurological, cardiovascular and immunological diseases, as well as exacerbated tumor formation and spread(4,5). Molecularly, actin polymerization and receptor recycling have been shown to play important roles in creating cellular extensions (lamellipodia), that drive the forward movement of the cell(6,7,8). However, many biological questions about cell migration remain unanswered. The central role for cellular motility in human health and disease underlines the importance of understanding the specific mechanisms involved in this process and makes accurate methods for evaluating cell motility particularly important. Microscopes are usually used to visualize the movement of cells. However, cells move rather slowly, making the quantitative measurement of cell migration a resource-consuming process requiring expensive cameras and software to create quantitative time-lapsed movies of motile cells. Therefore, the ability to perform a quantitative measurement of cell migration that is cost-effective, non-laborious, and that utilizes common laboratory equipment is a great need for many researchers. The phagokinetic track motility assay utilizes the ability of a moving cell to clear gold particles from its path to create a measurable track on a colloidal gold-coated glass coverslip(9,10). With the use of freely available software, multiple tracks can be evaluated for each treatment to accomplish statistical requirements. The assay can be utilized to assess motility of many cell types, such as cancer cells(11,12), fibroblasts(9), neutrophils(13), skeletal muscle cells(14

  18. Competitive Advantage Provided by Bacterial Motility in the Formation of Nodules by Rhizobium meliloti

    PubMed Central

    Ames, Peter; Bergman, Kostia

    1981-01-01

    The effect of motility on the competitive success of Rhizobium meliloti in nodule production was investigated. A motile strain formed more nodules than expected when mixed at various unfavorable ratios with either flagellated or nonflagellated nonmotile derivatives. We conclude that motility confers a selective advantage on rhizobia when competing with nonmotile strains. PMID:7298580

  19. Pinpointing retrovirus entry sites in cells expressing alternatively spliced receptor isoforms by single virus imaging.

    PubMed

    Padilla-Parra, Sergi; Marin, Mariana; Kondo, Naoyuki; Melikyan, Gregory B

    2014-06-16

    The majority of viruses enter host cells via endocytosis. Current knowledge of viral entry pathways is largely based upon infectivity measurements following genetic and/or pharmacological interventions that disrupt vesicular trafficking and maturation. Imaging of single virus entry in living cells provides a powerful means to delineate viral trafficking pathways and entry sites under physiological conditions. Here, we visualized single avian retrovirus co-trafficking with markers for early (Rab5) and late (Rab7) endosomes, acidification of endosomal lumen and the resulting viral fusion measured by the viral content release into the cytoplasm. Virus-carrying vesicles either merged with the existing Rab5-positive early endosomes or slowly accumulated Rab5. The Rab5 recruitment to virus-carrying endosomes correlated with acidification of their lumen. Viral fusion occurred either in early (Rab5-positive) or intermediate (Rab5- and Rab7-positive) compartments. Interestingly, different isoforms of the cognate receptor directed virus entry from distinct endosomes. In cells expressing the transmembrane receptor, viruses preferentially entered and fused with slowly maturing early endosomes prior to accumulation of Rab7. By comparison, in cells expressing the GPI-anchored receptor, viruses entered both slowly and quickly maturing endosomes and fused with early (Rab5-positive) and intermediate (Rab5- and Rab7-positive) compartments. Since the rate of low pH-triggered fusion was independent of the receptor isoform, we concluded that the sites of virus entry are determined by the kinetic competition between endosome maturation and viral fusion. Our findings demonstrate the ability of this retrovirus to enter cells via alternative endocytic pathways and establish infection by releasing its content from distinct endosomal compartments.

  20. Plasma membrane Toll-like receptor activation increases bacterial uptake but abrogates endosomal Lactobacillus acidophilus induction of interferon-β.

    PubMed

    Boye, Louise; Welsby, Iain; Lund, Lisbeth Drozd; Goriely, Stanislas; Frøkiaer, Hanne

    2016-11-01

    Lactobacillus acidophilus induces a potent interferon-β (IFN-β) response in dendritic cells (DCs) by a Toll-like receptor 2 (TLR2) -dependent mechanism, in turn leading to strong interleukin-12 (IL-12) production. In the present study, we investigated the involvement of different types of endocytosis in the L. acidophilus-induced IFN-β and IL-12 responses and how TLR2 or TLR4 ligation by lipopolysaccharide and Pam3/4CSK4 influenced endocytosis of L. acidophilus and the induced IFN-β and IL-12 production. Lactobacillus acidophilus was endocytosed by constitutive macropinocytosis taking place in the immature cells as well as by spleen tyrosine kinase (Syk) -dependent phagocytosis but without involvement of plasma membrane TLR2. Stimulation with TLR2 or TLR4 ligands increased macropinocytosis in a Syk-independent manner. As a consequence, incubation of DCs with TLR ligands before incubation with L. acidophilus enhanced the uptake of the bacteria. However, in these experimental conditions, induction of IFN-β and IL-12 was strongly inhibited. As L. acidophilus-induced IFN-β depends on endocytosis and endosomal degradation before signalling and as TLR stimulation from the plasma membrane leading to increased macropinocytosis abrogates IFN-β induction we conclude that plasma membrane TLR stimulation leading to increased macropinocytosis decreases endosomal induction of IFN-β and speculate that this is due to competition between compartments for molecules involved in the signal pathways. In summary, endosomal signalling by L. acidophilus that leads to IFN-β and IL-12 production is inhibited by TLR stimulation from the plasma membrane. © 2016 John Wiley & Sons Ltd.

  1. pH controls spermatozoa motility in the Pacific oyster (Crassostrea gigas)

    PubMed Central

    Suquet, Marc; Malo, Florent; Queau, Isabelle; Pignet, Patricia; Ratiskol, Dominique; Le Grand, Jacqueline; Huber, Matthias; Cosson, Jacky

    2018-01-01

    ABSTRACT Investigating the roles of chemical factors stimulating and inhibiting sperm motility is required to understand the mechanisms of spermatozoa movement. In this study, we described the composition of the seminal fluid (osmotic pressure, pH, and ions) and investigated the roles of these factors and salinity in initiating spermatozoa movement in the Pacific oyster, Crassostrea gigas. The acidic pH of the gonad (5.82±0.22) maintained sperm in the quiescent stage and initiation of flagellar movement was triggered by a sudden increase of spermatozoa external pH (pHe) when released in seawater (SW). At pH 6.4, percentage of motile spermatozoa was three times higher when they were activated in SW containing 30 mM NH4Cl, which alkalinizes internal pH (pHi) of spermatozoa, compared to NH4Cl-free SW, revealing the role of pHi in triggering sperm movement. Percentage of motile spermatozoa activated in Na+-free artificial seawater (ASW) was highly reduced compared to ASW, suggesting that change of pHi triggering sperm motility was mediated by a Na+/H+ exchanger. Motility and swimming speed were highest in salinities between 33.8 and 42.7‰ (within a range of 0 to 50 ‰), and pH values above 7.5 (within a range of 4.5 to 9.5). PMID:29483075

  2. Endosomal protein sorting and autophagy genes contribute to the regulation of yeast life span.

    PubMed

    Longo, Valter D; Nislow, Corey; Fabrizio, Paola

    2010-11-01

    Accumulating evidence from various organisms points to a role for autophagy in the regulation of life span. By performing a genome-wide screen to identify novel life span determinants in Saccharomyces cerevisiae, we have obtained further insights into the autophagy-related and -unrelated degradation processes that may be important for preventing cellular senescence. The generation of multivesicular bodies and their fusion with the vacuole in the endosomal pathway emerged as novel cell functions involved in yeast chronological survival and longevity extension.

  3. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome

    PubMed Central

    Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz

    2013-01-01

    Sorting nexin 17 (SNX17) is an adaptor protein present in EEA1-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized MDCK cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE. PMID:23593972

  4. Symbolic dynamics of jejunal motility in the irritable bowel

    NASA Astrophysics Data System (ADS)

    Wackerbauer, Renate; Schmidt, Thomas

    1999-09-01

    Different studies of the irritable bowel syndrome (IBS) by conventional analysis of jejunal motility report conflicting results. Therefore, our aim is to quantify the jejunal contraction activity by symbolic dynamics in order to discriminate between IBS and control subjects. Contraction amplitudes during fasting motility (phase II) are analyzed for 30 IBS and 30 healthy subjects. On the basis of a particular scale-independent discretization of the contraction amplitudes with respect to the median, IBS patients are characterized by increased block entropy as well as increased mean contraction amplitude. In a further more elementary level of analysis these differences can be reduced to specific contraction patterns within the time series, namely the fact that successive large contraction amplitudes are less ordered in IBS than in controls. These significant differences in jejunal motility may point to an altered control of the gut in IBS, although further studies on a representative number of patients have to be done for a validation of these findings.

  5. CASAnova: a multiclass support vector machine model for the classification of human sperm motility patterns.

    PubMed

    Goodson, Summer G; White, Sarah; Stevans, Alicia M; Bhat, Sanjana; Kao, Chia-Yu; Jaworski, Scott; Marlowe, Tamara R; Kohlmeier, Martin; McMillan, Leonard; Zeisel, Steven H; O'Brien, Deborah A

    2017-11-01

    The ability to accurately monitor alterations in sperm motility is paramount to understanding multiple genetic and biochemical perturbations impacting normal fertilization. Computer-aided sperm analysis (CASA) of human sperm typically reports motile percentage and kinematic parameters at the population level, and uses kinematic gating methods to identify subpopulations such as progressive or hyperactivated sperm. The goal of this study was to develop an automated method that classifies all patterns of human sperm motility during in vitro capacitation following the removal of seminal plasma. We visually classified CASA tracks of 2817 sperm from 18 individuals and used a support vector machine-based decision tree to compute four hyperplanes that separate five classes based on their kinematic parameters. We then developed a web-based program, CASAnova, which applies these equations sequentially to assign a single classification to each motile sperm. Vigorous sperm are classified as progressive, intermediate, or hyperactivated, and nonvigorous sperm as slow or weakly motile. This program correctly classifies sperm motility into one of five classes with an overall accuracy of 89.9%. Application of CASAnova to capacitating sperm populations showed a shift from predominantly linear patterns of motility at initial time points to more vigorous patterns, including hyperactivated motility, as capacitation proceeds. Both intermediate and hyperactivated motility patterns were largely eliminated when sperm were incubated in noncapacitating medium, demonstrating the sensitivity of this method. The five CASAnova classifications are distinctive and reflect kinetic parameters of washed human sperm, providing an accurate, quantitative, and high-throughput method for monitoring alterations in motility. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Delivering anti-cancer drugs with endosomal pH-sensitive anti-cancer liposomes.

    PubMed

    Moku, Gopikrishna; Gulla, Suresh Kumar; Nimmu, Narendra Varma; Khalid, Sara; Chaudhuri, Arabinda

    2016-04-01

    Numerous prior studies have been reported on the use of pH-sensitive drug carriers such as micelles, liposomes, peptides, polymers, nanoparticles, etc. that are sensitive to the acidic (pH = ∼6.5) microenvironments of tumor tissues. Such systems have been primarily used in the past as effective drug/gene/microRNA carriers for releasing their anti-cancer payloads selectively to tumor cells/tissues. Herein, we report on the development of new liposomal drug carriers prepared from glutamic acid backbone-based cationic amphiphiles containing both endosomal pH-sensitive histidine as well as cellular uptake & solubility enhancing guanidine moieties in their polar head-group regions. The most efficient one among the four presently described endosomal pH-sensitive liposomal drug carriers not only effectively delivers potent anti-cancer drugs (curcumin & paclitaxel) to mouse tumor, but also significantly contributes to inhibiting mouse tumor growth. The findings in the in vitro mechanistic studies are consistent with apoptosis of tumor cells being mediated through increased cell cycle arrest in the G2/M phase. Findings in the FRET assay and in vitro drug release studies conducted with the liposomes of the most efficient pH-sensitive lipid demonstrated its pH dependent fusogenic and controlled curcumin release properties. Importantly, the presently described liposomal formulation of curcumin & paclitaxel enhanced overall survivability of tumor bearing mice. To the best of our knowledge, the presently described system (curcumin, paclitaxel and liposomal carrier itself) is the first of its kind pH-sensitive liposomal formulation of potent chemotherapeutics in which the liposomal drug itself exhibits significant mouse tumor growth inhibition properties.

  7. An albumin nanocomplex-based endosomal pH-activatable on/off probe system.

    PubMed

    Lee, Changkyu; Lee, Seunghyun; Thao, Le Quang; Hwang, Ha Shin; Kim, Jong Oh; Lee, Eun Seong; Oh, Kyung Taek; Shin, Beom Soo; Choi, Han-Gon; Youn, Yu Seok

    2016-08-01

    Albumin has gained considerable interest as a material for fabricating nanoparticulate systems due to its biomedical advantages, such as biocompatibility and chemical functionality. Here, we report a new pH-sensitive albumin nanocomplex prototype with a zinc-imidazole coordination bond. Albumin was conjugated with 1-(3-aminopropyl)imidazole and mPEG10kDa-NHS, and the resulting albumin conjugate (PBI) was then modified with either Cy5.5 or BHQ-3. The newly formed albumin nanocomplex (C/BQ-PBI Zn NCs: ∼116nm) system was facilely self-assembled around pH 7.4 in the presence of Zn(2+), but it quickly disassembled in an acidic environment (∼pH 5.0). Based on this pH-sensitivity, C/BQ-PBI Zn NCs emitted strong near-infrared fluorescence and released Zn(2+), turning "off" at pH ∼7.4 (e.g., plasma) and "on" at pH ∼5.0 (e.g., endo/lysosomes in tumor cells) on account of fluorescence resonance energy transfer. C/BQ-PBI Zn NCs displayed significant cytotoxicity due to an increase in cellular Zn(2+) in response to endosomal pH (∼5.0) in breast cancer MCF-7 cells and lung adenocarcinoma A549 cells. Particularly, confocal laser scanning microscopic images showed a strong fluorescence signal caused by the disassembly of C/BQ-PBI Zn NCs in the endosomal region of MCF-7 cells. Based on these results, we believe that this albumin nanocomplex is an attractive biocompatible tumor targeting probe carrier for the theranostic purpose. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Differential endosomal sorting of a novel P2Y12 purinoreceptor mutant.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Cooke, Alexandra E; Emery, Elizabeth D; Mundell, Stuart J

    2013-05-01

    P2Y12 receptor internalization and recycling play an essential role in ADP-induced platelet activation. Recently, we identified a patient with a mild bleeding disorder carrying a heterozygous mutation of P2Y12 (P341A) whose P2Y12 receptor recycling was significantly compromised. Using human cell line models, we identified key proteins regulating wild-type (WT) P2Y12 recycling and investigated P2Y12 -P341A receptor traffic. Treatment with ADP resulted in delayed Rab5-dependent internalization of P341A when compared with WT P2Y12 . While WT P2Y12 rapidly recycled back to the membrane via Rab4 and Rab11 recycling pathways, limited P341A recycling was observed, which relied upon Rab11 activity. Although minimal receptor degradation was evident, P341A was localized in Rab7-positive endosomes with considerable agonist-dependent accumulation in the trans-Golgi network (TGN). Rab7 activity is known to facilitate recruitment of retromer complex proteins to endosomes to transport cargo to the TGN. Here, we identified that P341A colocalized with Vps26; depletion of which blocked limited recycling and promoted receptor degradation. This study has identified key points of divergence in the endocytic traffic of P341A versus WT-P2Y12 . Given that these pathways are retained in human platelets, this research helps define the molecular mechanisms regulating P2Y12 receptor traffic and explain the compromised receptor function in the platelets of the P2Y12 -P341A-expressing patient. © 2013 John Wiley & Sons A/S.

  9. The effects of daikenchuto (DKT) on propulsive motility in the colon.

    PubMed

    Wood, Michael J; Hyman, Neil H; Mawe, Gary M

    2010-11-01

    The purpose of this study is to examine the use of daikenchuto (DKT), a traditional Japanese medicine, as a potential treatment for opiate-induced slowing of intestinal transit in an isolated guinea pig colon model of motility. Isolated segments of distal guinea pig colon were mounted in a perfusion chamber and imaged with a digital video camera interfaced with a computer. Fecal pellets were inserted into the oral end of the colonic segment and the rates of propulsive motility over a 3 to 4 cm segment of colon were determined in the presence and absence of test compounds. In addition, intracellular recordings were obtained from intact circular muscle, and the responsiveness of inhibitory and excitatory junction potentials to DKT was evaluated. The addition of D-Ala2, N-Me-Phe4, Gly-ol5 (DAMGO), a selective μ-receptor agonist, caused a concentration dependent decrease in colon motility. Naloxone did not affect basal activity, but partially restored motility in the DAMGO treated preparations. DKT (1 × 10(-4)-3 × 10(-4)g/mL) also reversed the inhibitory effect of DAMGO treated colon in a concentration dependent manner. At higher concentrations (1 × 10(-3)-3 × 10(-3)g/mL), however, this effect was lost. Motility slowed even further when naloxone and DKT were combined with noticeable disruptions in spatiotemporal patterns. Interestingly, when added alone, DKT resulted in reverse peristalsis of the pellet. In electrophysiologic studies DKT inhibited both excitatory and inhibitory junction potentials. DKT appears to be as effective as naloxone in restoring motility in DAMGO treated colon. These two agents, however, do not appear to have an additive effect. When used on untreated colon segments, DKT appears to cause disruptions in the intrinsic reflex circuit of the gut resulting in a disruption of neuromuscular communication. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. The Effects of Daikenchuto (DKT) on Propulsive Motility in the Colon

    PubMed Central

    Wood, MJ; Hyman, N; Mawe, GM

    2010-01-01

    Purpose The purpose of this study is to examine the use of daikenchuto (DKT), a traditional Japanese medicine, as a potential treatment for opiate-induced slowing of intestinal transit in an isolated guinea-pig colon model of motility. Methods Isolated segments of distal guinea-pig colon were mounted in a perfusion chamber and imaged with a digital video camera interfaced with a computer. Fecal pellets were inserted into the oral end of the colonic segment and the rates of propulsive motility over a 3-4 cm segment of colon were determined in the presence and absence of test compounds. In addition, intracellular recordings were obtained from intact circular muscle, and the responsiveness of inhibitory and excitatory junction potentials to DKT was evaluated. Results The addition of DAMGO (D-Ala2, N-Me-Phe4, Gly-ol5), a selective mu-receptor agonist, caused a concentration dependent decrease in colon motility. Naloxone did not affect basal activity, but partially restored motility in the DAMGO treated preparations. DKT (1×10-4 – 3×10-4 g/ml) also reversed the inhibitory effect of DAMGO treated colon in a concentration dependent manner. At higher concentrations (1×10-3 – 3×10-3 g/ml), however, this effect was lost. Motility slowed even further when naloxone and DKT were combined with noticeable disruptions in spatiotemporal patterns. Interestingly, when added alone, DKT resulted in reverse peristalsis of the pellet. In electrophysiological studies DKT inhibited both excitatory and inhibitory junction potentials. Conclusions DKT appears to be as effective as naloxone in restoring motility in DAMGO treated colon. These two agents, however, do not appear to have an additive effect. When used on untreated colon segments, DKT appears to cause disruptions in the intrinsic reflex circuit of the gut resulting in a disruption of neuromuscular communication. PMID:19631346

  11. Apprenticeship-based training in neurogastroenterology and motility.

    PubMed

    Vasant, Dipesh H; Sharma, Amol; Bhagatwala, Jigar; Viswanathan, Lavanya; Rao, Satish S C

    2018-03-01

    Although neurogastroenterology and motility (NGM) disorders affect 50% of patients seen in clinics, many gastroenterologists receive limited NGM training. One-month apprenticeship-based NGM training has been provided at ten centers in the USA for a decade, however, outcomes of this training are unclear. Our goal was to describe the effectiveness of this program from a trainees perspective. Areas covered: We describe the training model, learning experiences, and outcomes of one-month apprenticeship-based training in NGM at a center of excellence, using a detailed individual observer account and data from 12 consecutive trainees that completed the program. During a one-month training period, 302 procedures including; breath tests (BT) n = 132, anorectal manometry (ARM) n = 29 and esophageal manometry (EM) n = 28, were performed. Post-training, all trainees (n = 12) knew indications for motility tests, and the majority achieved independence in basic interpretation of BT, EM and ARM. Additionally, in a multiple-choice NGM written-test paper, trainees achieved significant improvements in test scores post-training (P = 0.003). Expert commentary: One-month training at a high-volume center can facilitate rapid learning of NGM and the indications, basic interpretation and utility of motility tests. Trainees demonstrate significant independence, and this training model provides an ideal platform for those interested in sub-specialty NGM.

  12. Swimming Motility Reduces Deposition to Silica Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Nanxi; Massoudieh, Arash; Liang, Xiaomeng

    The role of swimming motility on bacterial transport and fate in porous media was evaluated. We present microscopic evidence showing that strong swimming motility reduces attachment of Azotobacter vinelandii cells to silica surfaces. Applying global and cluster statistical analyses to microscopic videos taken under non-flow conditions, wild type, flagellated A. vinelandii strain DJ showed strong swimming ability with an average speed of 13.1 μm/s, DJ77 showed impaired swimming averaged at 8.7 μm/s, and both the non-flagellated JZ52 and chemically treated DJ cells were non-motile. Quantitative analyses of trajectories observed at different distances above the collector of a radial stagnation pointmore » flow cell (RSPF) revealed that both swimming and non-swimming cells moved with the flow when at a distance of at least 20 μm from the collector surface. Near the surface, DJ cells showed both horizontal and vertical movement diverging them from reaching surfaces, while chemically treated DJ cells moved with the flow to reach surfaces, suggesting that strong swimming reduced attachment. In agreement with the RSPF results, the deposition rates obtained for two-dimensional multiple-collector micromodels were also lowest for DJ, while DJ77 and JZ52 showed similar values. Strong swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors.« less

  13. A protein secretion system linked to bacteroidete gliding motility and pathogenesis

    PubMed Central

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J.; Rhodes, Ryan G.; Nakayama, Koji

    2009-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289

  14. Eukaryotic Chemotaxis: A Network of Signaling Pathways Controls Motility, Directional Sensing, and Polarity

    PubMed Central

    Swaney, Kristen F.; Huang, Chuan-Hsiang; Devreotes, Peter N.

    2015-01-01

    Chemotaxis, the directed migration of cells in chemical gradients, is a vital process in normal physiology and in the pathogenesis of many diseases. Chemotactic cells display motility, directional sensing, and polarity. Motility refers to the random extension of pseudopodia, which may be driven by spontaneous actin waves that propagate through the cytoskeleton. Directional sensing is mediated by a system that detects temporal and spatial stimuli and biases motility toward the gradient. Polarity gives cells morphologically and functionally distinct leading and lagging edges by relocating proteins or their activities selectively to the poles. By exploiting the genetic advantages of Dictyostelium, investigators are working out the complex network of interactions between the proteins that have been implicated in the chemotactic processes of motility, directional sensing, and polarity. PMID:20192768

  15. [Application of a trans-membrane migration method in the study of human sperm motility: a review].

    PubMed

    Hong, C Y

    1991-09-01

    Transmembrane migration method is a bioassay specifically designed to study drug effect on human sperm motility. It was first used in the study of sperm immobilizing agents which have a membrane stabilizing effect. Then it was used to investigate the relationship between calcium ion and sperm motility. Recently, this method has been used to screen drugs that stimulate sperm motility. It has also been modified for the study of porcine sperm motility. Computer assisted semen analysis showed that the transmembrane migration method is most suitable for studying drug effect on rapid and straight-forward motility of sperm.

  16. A Microbial Drugstore for Motility.

    PubMed

    Cryan, John F; Clarke, Gerard; Dinan, Timothy G; Schellekens, Harriet

    2018-06-13

    While there is growing appreciation that the microbiome regulates gut-brain signaling, the underlying mechanisms remain elusive. In this issue of Cell Host & Microbe, Bhattarai et al. (2018) identify bacteria-derived tryptamine as a ligand for the gut-epithelium-expressed GPCR 5-HT4 receptor, thereby functioning as a regulator of gastrointestinal motility. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Plasmodium sporozoite motility is modulated by the turnover of discrete adhesion sites.

    PubMed

    Münter, Sylvia; Sabass, Benedikt; Selhuber-Unkel, Christine; Kudryashev, Mikhail; Hegge, Stephan; Engel, Ulrike; Spatz, Joachim P; Matuschewski, Kai; Schwarz, Ulrich S; Frischknecht, Friedrich

    2009-12-17

    Sporozoites are the highly motile stages of the malaria parasite injected into the host's skin during a mosquito bite. In order to navigate inside of the host, sporozoites rely on actin-dependent gliding motility. Although the major components of the gliding machinery are known, the spatiotemporal dynamics of the proteins and the underlying mechanism powering forward locomotion remain unclear. Here, we show that sporozoite motility is characterized by a continuous sequence of stick-and-slip phases. Reflection interference contrast and traction force microscopy identified the repeated turnover of discrete adhesion sites as the underlying mechanism of this substrate-dependent type of motility. Transient forces correlated with the formation and rupture of distinct substrate contact sites and were dependent on actin dynamics. Further, we show that the essential sporozoite surface protein TRAP is critical for the regulated formation and rupture of adhesion sites but is dispensable for retrograde capping.

  18. Preparation, Imaging, and Quantification of Bacterial Surface Motility Assays

    PubMed Central

    Morales-Soto, Nydia; Anyan, Morgen E.; Mattingly, Anne E.; Madukoma, Chinedu S.; Harvey, Cameron W.; Alber, Mark; Déziel, Eric; Kearns, Daniel B.; Shrout, Joshua D.

    2015-01-01

    Bacterial surface motility, such as swarming, is commonly examined in the laboratory using plate assays that necessitate specific concentrations of agar and sometimes inclusion of specific nutrients in the growth medium. The preparation of such explicit media and surface growth conditions serves to provide the favorable conditions that allow not just bacterial growth but coordinated motility of bacteria over these surfaces within thin liquid films. Reproducibility of swarm plate and other surface motility plate assays can be a major challenge. Especially for more “temperate swarmers” that exhibit motility only within agar ranges of 0.4%-0.8% (wt/vol), minor changes in protocol or laboratory environment can greatly influence swarm assay results. “Wettability”, or water content at the liquid-solid-air interface of these plate assays, is often a key variable to be controlled. An additional challenge in assessing swarming is how to quantify observed differences between any two (or more) experiments. Here we detail a versatile two-phase protocol to prepare and image swarm assays. We include guidelines to circumvent the challenges commonly associated with swarm assay media preparation and quantification of data from these assays. We specifically demonstrate our method using bacteria that express fluorescent or bioluminescent genetic reporters like green fluorescent protein (GFP), luciferase (lux operon), or cellular stains to enable time-lapse optical imaging. We further demonstrate the ability of our method to track competing swarming species in the same experiment. PMID:25938934

  19. Actin Filament Polymerization Regulates Gliding Motility by Apicomplexan ParasitesV⃞

    PubMed Central

    Wetzel, D.M.; Håkansson, S.; Hu, K.; Roos, D.; Sibley, L.D.

    2003-01-01

    Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa. PMID:12589042

  20. Intracolonic capsaicin stimulates colonic motility and defecation in conscious dogs.

    PubMed

    Hayashi, Keiichi; Shibata, Chikashi; Nagao, Munenori; Sato, Manabu; Kakyo, Masayuki; Kinouchi, Makoto; Saijo, Fumito; Miura, Koh; Ogawa, Hitoshi; Sasaki, Iwao

    2010-06-01

    The aim of this study was to investigate the effects of intracolonic capsaicin on colonic motility and defecation. The effects of capsaicin (1, 2, 5, and 10 mg) administrated into the proximal colon on ileocolonic motility and defecation were studied in neurally intact dogs with or without various antagonists (atropine, hexamethonium, ondansetron, propranolol, and FK224), dogs with extrinsic denervation of an ileocolonic segment, and dogs with enterically isolated ileocolonic loops equipped with strain gauge force transducers. Capsaicin at 5 and 10 mg evoked giant migrating contractions in a dose-independent manner, and it induced defecations with more than 90% probability in neurally intact dogs. These effects of capsaicin were abolished by atropine and hexamethonium. Ondansetron inhibited the capsaicin-induced increase in colonic motility but did not affect the induction of defecation. The other antagonists had no effect. In dogs with extrinsic denervation, capsaicin did not evoke giant migrating contractions in the colon but still induced defecation in 30-40% of experiments. In dogs with ileocolonic loops, capsaicin did not stimulate colonic motility nor induce defecation. These results indicate that intracolonic capsaicin causes giant migrating contractions and defecation. Intact extrinsic innervation, continuity of the colon, and intraluminal contents were considered necessary for this effect. Copyright 2010 Mosby, Inc. All rights reserved.

  1. Caspase-Activated Cell-Penetrating Peptides Reveal Temporal Coupling Between Endosomal Release and Apoptosis in an RGC-5 Cell Model

    PubMed Central

    Johnson, James R.; Kocher, Brandon; Barnett, Edward M.; Marasa, Jayne; Piwnica-Worms, David

    2012-01-01

    Caspase-activatable cell-penetrating peptide (CPP) probes, designed for efficient cell uptake and specificity via cleavable intramolecular quenched-fluorophore strategies, show promise for identifying and imaging retinal ganglion cell apoptosis in vivo. However, initial cell uptake and trafficking events cannot be visualized because the probes are designed to be optically quenched in the intact state. To visualize subcellular activation events in real-time during apoptosis, a new series of matched quenched and non-quenched CPP probes were synthesized. In both native and staurosporine-differentiated RGC-5 cells, probe uptake was time- and concentration-dependent through clathrine-, caveolin- and pinocytosis-mediated endocytic mechanisms. During apoptosis, KcapTR488, a novel dual fluorophore CPP probe, revealed by multi-spectral imaging a temporal coupling of endosomal release and effector caspase activation in RGC-5 cells. The novel CPPs described herein provide new tools to study spatial and temporal regulation of endosomal permeability during apoptosis. PMID:22900707

  2. Two independent forms of endocytosis maintain embryonic cell surface homeostasis during early development

    PubMed Central

    Covian-Nares, J. Fernando; Smith, Robert M.; Vogel, Steven S.

    2008-01-01

    Eukaryotic cells have multiple forms of endocytosis which maintain cell surface homeostasis. One explanation for this apparent redundancy is to allow independent retrieval of surface membranes derived from different types of vesicles. Consistent with this hypothesis we find that sea urchin eggs have at least two types of compensatory endocytosis. One is associated with retrieving cortical vesicle membranes, and formed large endosomes by a mechanism that was inhibited by agatoxin, cadmium, staurosporine and FK506. The second type is thought to compensate for constitutive exocytosis, and formed small endosomes using a mechanism that was insensitive to the above mentioned reagents, but was inhibited by phenylarsine oxide (PAO), and by microinjection of mRNA encoding Src kinase. Both mechanisms could act concurrently, and account for all of the endocytosis occurring during early development. Inhibition of either form did not trigger compensation by the other form, and phorbol ester treatment rescued the endocytotic activity blocked by agatoxin, but not the retrieval blocked by PAO. PMID:18281031

  3. Symbiosis and the origin of eukaryotic motility

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  4. Spontaneous symmetry breaking in active droplets provides a generic route to motility

    PubMed Central

    Tjhung, Elsen; Marenduzzo, Davide; Cates, Michael E.

    2012-01-01

    We explore a generic mechanism whereby a droplet of active matter acquires motility by the spontaneous breakdown of a discrete symmetry. The model we study offers a simple representation of a “cell extract” comprising, e.g., a droplet of actomyosin solution. (Such extracts are used experimentally to model the cytoskeleton). Actomyosin is an active gel whose polarity describes the mean sense of alignment of actin fibres. In the absence of polymerization and depolymerization processes (‘treadmilling’), the gel’s dynamics arises solely from the contractile motion of myosin motors; this should be unchanged when polarity is inverted. Our results suggest that motility can arise in the absence of treadmilling, by spontaneous symmetry breaking (SSB) of polarity inversion symmetry. Adapting our model to wall-bound cells in two dimensions, we find that as wall friction is reduced, treadmilling-induced motility falls but SSB-mediated motility rises. The latter might therefore be crucial in three dimensions where frictional forces are likely to be modest. At a supracellular level, the same generic mechanism can impart motility to aggregates of nonmotile but active bacteria; we show that SSB in this (extensile) case leads generically to rotational as well as translational motion. PMID:22797894

  5. Supraspinal inhibitory effects of chimeric peptide MCRT on gastrointestinal motility in mice.

    PubMed

    He, Chunbo; Li, Hailan; Zhang, Jing; Kang, Yanping; Jia, Fang; Dong, Shouliang; Zhou, Lanxia

    2017-09-01

    Chimeric peptide MCRT, based on morphiceptin and PFRTic-NH 2 , was a bifunctional ligand of μ- and δ-opioid receptors (MOR-DOR) and produced potent analgesia in tail-withdrawal test. The study focused on the supraspinal effects of morphiceptin, PFRTic-NH 2 and MCRT on gastrointestinal motility. Moreover, opioid receptor antagonists, naloxone (non-selective), cyprodime (MOR selective) and naltrindole (DOR selective) were utilized to explore the mechanisms. Intracerebroventricular administration was achieved via the implanted cannula. Gastric emptying and intestinal transit were measured to evaluate gastrointestinal motility. (1) At supraspinal level, morphiceptin, PFRTic-NH 2 and MCRT significantly decreased gastric emptying and intestinal transit; (2) MCRT at 1 nmol/mouse, far higher than its analgesic dose (ED 50  = 29.8 pmol/mouse), failed to regulate the gastrointestinal motility; (3) MCRT-induced gastrointestinal dysfunction could be completely blocked by naloxone and naltrindole, but not affected by cyprodime. (1) Morphiceptin and PFRTic-NH 2 played important roles in the regulation of gastrointestinal motility; (2) MCRT possessed higher bioactivity of pain relief than gastrointestinal regulation, suggesting its promising analgesic property; (3) MCRT-induced motility disorders were sensitive to DOR but not to MOR blockade, indicating the pain-relieving specificity of speculated MOR subtype or splice variant or MOR-DOR heterodimer. © 2017 Royal Pharmaceutical Society.

  6. Gliding Motility and Por Secretion System Genes Are Widespread among Members of the Phylum Bacteroidetes

    PubMed Central

    Zhu, Yongtao

    2013-01-01

    The phylum Bacteroidetes is large and diverse, with rapid gliding motility and the ability to digest macromolecules associated with many genera and species. Recently, a novel protein secretion system, the Por secretion system (PorSS), was identified in two members of the phylum, the gliding bacterium Flavobacterium johnsoniae and the nonmotile oral pathogen Porphyromonas gingivalis. The components of the PorSS are not similar in sequence to those of other well-studied bacterial secretion systems. The F. johnsoniae PorSS genes are a subset of the gliding motility genes, suggesting a role for the secretion system in motility. The F. johnsoniae PorSS is needed for assembly of the gliding motility apparatus and for secretion of a chitinase, and the P. gingivalis PorSS is involved in secretion of gingipain protease virulence factors. Comparative analysis of 37 genomes of members of the phylum Bacteroidetes revealed the widespread occurrence of gliding motility genes and PorSS genes. Genes associated with other bacterial protein secretion systems were less common. The results suggest that gliding motility is more common than previously reported. Microscopic observations confirmed that organisms previously described as nonmotile, including Croceibacter atlanticus, “Gramella forsetii,” Paludibacter propionicigenes, Riemerella anatipestifer, and Robiginitalea biformata, exhibit gliding motility. Three genes (gldA, gldF, and gldG) that encode an apparent ATP-binding cassette transporter required for F. johnsoniae gliding were absent from two related gliding bacteria, suggesting that the transporter may not be central to gliding motility. PMID:23123910

  7. The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials.

    PubMed

    O'May, Che; Tufenkji, Nathalie

    2011-05-01

    Bacterial motility plays a key role in the colonization of surfaces by bacteria and the subsequent formation of resistant communities of bacteria called biofilms. Derivatives of cranberry fruit, predominantly condensed tannins called proanthocyanidins (PACs) have been reported to interfere with bacterial adhesion, but the effects of PACs and other tannins on bacterial motilities remain largely unknown. In this study, we investigated whether cranberry PAC (CPAC) and the hydrolyzable tannin in pomegranate (PG; punicalagin) affected the levels of motilities exhibited by the bacterium Pseudomonas aeruginosa. This bacterium utilizes flagellum-mediated swimming motility to approach a surface, attaches, and then further spreads via the surface-associated motilities designated swarming and twitching, mediated by multiple flagella and type IV pili, respectively. Under the conditions tested, both CPAC and PG completely blocked swarming motility but did not block swimming or twitching motilities. Other cranberry-containing materials and extracts of green tea (also rich in tannins) were also able to block or impair swarming motility. Moreover, swarming bacteria were repelled by filter paper discs impregnated with many tannin-containing materials. Growth experiments demonstrated that the majority of these compounds did not impair bacterial growth. When CPAC- or PG-containing medium was supplemented with surfactant (rhamnolipid), swarming motility was partially restored, suggesting that the effective tannins are in part acting by a rhamnolipid-related mechanism. Further support for this theory was provided by demonstrating that the agar surrounding tannin-induced nonswarming bacteria was considerably less hydrophilic than the agar area surrounding swarming bacteria. This is the first study to show that natural compounds containing tannins are able to block P. aeruginosa swarming motility and that swarming bacteria are repelled by such compounds.

  8. The Swarming Motility of Pseudomonas aeruginosa Is Blocked by Cranberry Proanthocyanidins and Other Tannin-Containing Materials▿

    PubMed Central

    O'May, Che; Tufenkji, Nathalie

    2011-01-01

    Bacterial motility plays a key role in the colonization of surfaces by bacteria and the subsequent formation of resistant communities of bacteria called biofilms. Derivatives of cranberry fruit, predominantly condensed tannins called proanthocyanidins (PACs) have been reported to interfere with bacterial adhesion, but the effects of PACs and other tannins on bacterial motilities remain largely unknown. In this study, we investigated whether cranberry PAC (CPAC) and the hydrolyzable tannin in pomegranate (PG; punicalagin) affected the levels of motilities exhibited by the bacterium Pseudomonas aeruginosa. This bacterium utilizes flagellum-mediated swimming motility to approach a surface, attaches, and then further spreads via the surface-associated motilities designated swarming and twitching, mediated by multiple flagella and type IV pili, respectively. Under the conditions tested, both CPAC and PG completely blocked swarming motility but did not block swimming or twitching motilities. Other cranberry-containing materials and extracts of green tea (also rich in tannins) were also able to block or impair swarming motility. Moreover, swarming bacteria were repelled by filter paper discs impregnated with many tannin-containing materials. Growth experiments demonstrated that the majority of these compounds did not impair bacterial growth. When CPAC- or PG-containing medium was supplemented with surfactant (rhamnolipid), swarming motility was partially restored, suggesting that the effective tannins are in part acting by a rhamnolipid-related mechanism. Further support for this theory was provided by demonstrating that the agar surrounding tannin-induced nonswarming bacteria was considerably less hydrophilic than the agar area surrounding swarming bacteria. This is the first study to show that natural compounds containing tannins are able to block P. aeruginosa swarming motility and that swarming bacteria are repelled by such compounds. PMID:21378043

  9. Seeking sunlight: rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron’s submerged sinkholes

    PubMed Central

    Biddanda, Bopaiah A.; McMillan, Adam C.; Long, Stephen A.; Snider, Michael J.; Weinke, Anthony D.

    2015-01-01

    We studied the motility of filamentous mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen, and high-sulfur conditions in Lake Huron’s submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100–10,000 μm long filaments, composed of cells ∼10 μm wide and ∼3 μm tall) revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ∼50 μm min-1 or ∼15 body lengths min-1 at 10°C to ∼215 μm min-1 or ∼70 body lengths min-1 at 35°C – rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis toward pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield – suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3–4 diurnal cycles – likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth’s early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing photosynthesis while

  10. Actin motility: formin a SCAry tail.

    PubMed

    Alberts, Art; Way, Michael

    2011-01-11

    A new biochemical analysis has revealed that the Rickettsia bacterial protein Sca2--recently shown to be essential for virulence and actin-dependent motility--assembles actin filaments using a mechanism that functionally resembles the processive elongation tactics used by formins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. HIV-1 Nef interferes with host cell motility by deregulation of Cofilin.

    PubMed

    Stolp, Bettina; Reichman-Fried, Michal; Abraham, Libin; Pan, Xiaoyu; Giese, Simone I; Hannemann, Sebastian; Goulimari, Polyxeni; Raz, Erez; Grosse, Robert; Fackler, Oliver T

    2009-08-20

    HIV-1 Nef is a key factor in AIDS pathogenesis. Here, we report that Nef potently inhibits motility of fibroblasts and chemotaxis of HIV-1-infected primary human T lymphocytes toward the chemokines SDF-1alpha, CCL-19, and CCL-21 ex vivo. Furthermore, Nef inhibits guided motility of zebrafish primordial germ cells toward endogenous SDF-1a in vivo. These migration defects result from Nef-mediated inhibition of the actin remodeling normally triggered by migratory stimuli. Nef strongly induces phosphorylation of cofilin, inactivating this evolutionarily conserved actin-depolymerizing factor that promotes cell motility when unphosphorylated. Nef-dependent cofilin deregulation requires association of Nef with the cellular kinase Pak2. Disruption of Nef-Pak2 association restores the cofilin phosphorylation levels and actin remodeling that facilitate cell motility. We conclude that HIV-1 Nef alters Pak2 function, which directly or indirectly inactivates cofilin, thereby restricting migration of infected T lymphocytes as part of a strategy to optimize immune evasion and HIV-1 replication.

  12. A pictorial presentation of 3.0 Chicago Classification for esophageal motility disorders.

    PubMed

    Herbella, Fernando Augusto; Armijo, Priscila Rodrigues; Patti, Marco Giuseppe

    2016-01-01

    High resolution manometry changed several esophageal motility paradigms. The 3.0 Chicago Classification defined manometric criteria for named esophageal motility disorders. We present a pictorial atlas of motility disorders. Achalasia types, esophagogastric junction obstruction, absent contractility, distal esophageal spasm, hypercontractile esophagus (jackhammer), ineffective esophageal motility, and fragmented peristalsis are depicted with high-resolution manometry plots. RESUMO A manometria de alta resolução mudou vários paradigmas da motilidade digestiva. A Classificação de Chicago, na versão 3.0, definiu critérios manométricos para as doenças da motilidade esofagiana. O presente artigo é um atlas das dismotilidades descritas. Tipos de acalásia, obstrução ao nível da junção esofagogástrica, contrações ausentes, espasmo esofagiano distal, esôfago hipercontrátil, motilidade esofagiana ineficaz e peristalse fragmentada são mostradas em traçados de manometria de alta resolução.

  13. Predictive factors of Gastrointestinal motility Dysfunction after gastrojejunostomy for peptic ulcer stenosis.

    PubMed

    Ayadi, Sofiene; Daghfous, Amine; Saidani, Ahmed; Haddad, Anis; Magherbi, Houcine; Jouini, Mohamed; Kacem, Montassar; Ben Safta, Zoubeir

    2014-10-01

    Despite the establishment of effective medical therapies in peptic ulcer disease, gastric outlet obstruction remains one of the most common health problem in Tunisia. Various operations have been attempted, which may lead to postoperative morbidity. Gastrointestinal (GI) motility dysfunction is the most common complications. to determine the predictive factor of gastrointestinal motility dysfunction after gastrojejunostomy for peptic ulcer stenosis. We carried out a retrospective study to evaluate the postoperative recovery of the motility of the upper gastrointestinal tract after gastrojejunostomy for peptic ulcer stenosis. During the 9- year study, 138 patients underwent operations for ulcer peptic stenosis. Among the patients, 116 (84,1%) were treated with gastrojejunostomy. Descriptive statistics, univariate and multivariate analyses were performed. The mean age of patients was 47.85 years (range: 19- 92years) and most. Were male (84, 5 %). Ninety two (79.3%) patients had a documented history of peptic ulcer disease. The duration of symptoms ranged from 10 to 372 days (mean: 135.86 days). Eighty two (71%) patients were operated on through laparotomy. Laparoscopic procedure was performed in 29% of the patients. There was no operative mortality. Perioperative morbidity occurred in 12.4% (14 patients). Gastrointestinal motility dysfunction occurred in 12 patients (10.3%). It was treated by nasogastric aspiration and prokinetics. By univariate analysis; diabetes (0,010), cachexia (0,049), ASA class (0.05) were all statistically associated with gastrointestinal motility dysfunction in this series. Multivariate logistic regression analysis (table 2) showed that the cachexia (0,009), ASA class (0.02) were the main predictors of gastrointestinal motility dysfunction after gastrojejunostomy for peptic ulcer stenosis in the followed patients. Gastrointestinal motility dysfunction is the most common complications after gastrojejunostomy for pyloric adult stenosis. Surgery

  14. The Arabidopsis USL1 controls multiple aspects of development by affecting late endosome morphology.

    PubMed

    Yuan, Rongrong; Lan, Jingqiu; Fang, Yuxing; Yu, Hao; Zhang, Jinzhe; Huang, Jiaying; Qin, Genji

    2018-06-13

    The polar transport of auxin controls many aspects of plant development. However, the molecular mechanisms underlying auxin tranport regulation remain to be further elucidated. We identified a mutant named as usl1 (unflattened and small leaves) in a genetic screen in Arabidopsis thaliana. The usl1 displayed multiple aspects of developmental defects in leaves, embryogenesis, cotyledons, silique phyllotaxy and lateral roots in addition to abnormal leaves. USL1 encodes a protein orthologous to the yeast vacuolar protein sorting (Vps) 38p and human UV RADIATION RESISTANCE-ASSOCIATED GENE (UVRAG). Cell biology, Co-IP/MS and yeast two-hybrid were used to identify the function of USL1. USL1 colocalizes at the subcellular level with VPS29, a key factor of the retromer complex that controls auxin transport. The morphology of the VPS29-associated late endosomes (LE) is altered from small dots in the wild-type to aberrant enlarged circles in the usl1 mutants. The usl1 mutant synergistically interacts with vps29. We also found that USL1 forms a complex with AtVPS30 and AtVPS34. We propose that USL1 controls multiple aspects of plant development by affecting late endosome morphology and by regulating the PIN1 polarity. Our findings provide a new layer of the understanding on the mechanisms of plant development regulation. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  15. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape.

    PubMed

    Salomone, Fabrizio; Cardarelli, Francesco; Di Luca, Mariagrazia; Boccardi, Claudia; Nifosì, Riccardo; Bardi, Giuseppe; Di Bari, Lorenzo; Serresi, Michela; Beltram, Fabio

    2012-11-10

    Efficient endocytosis into a wide range of target cells and low toxicity make the arginine-rich Tat peptide (Tat(11): YGRKKRRQRRR, residues 47-57 of HIV-1 Tat protein) an excellent transporter for delivery purposes. Unfortunately, molecules taken up by endocytosis undergo endosomal entrapment and possible metabolic degradation. Escape from the endosome is therefore actively researched. In this context, antimicrobial peptides (AMPs) provide viable templates for the design of new membrane-disruptive motifs. In particular the Cecropin-A and Melittin hybrids (CMs) are among the smallest and most effective peptides with membrane-perturbing abilities. Here we present a novel chimeric peptide in which the Tat(11) motif is fused to the CM(18) hybrid (KWKLFKKIGAVLKVLTTG, residues 1-7 of Cecropin-A and 2-12 of Melittin). When administered to cells, CM(18)-Tat(11) combines the two desired functionalities: efficient uptake and destabilization of endocytotic-vesicle membranes. We show that this chimeric peptide effectively increases cargo-molecule cytoplasm availability and allows the subsequent intracellular localization of diverse membrane-impermeable molecules (i.e. Tat(11)-EGFP fusion protein, calcein, dextrans, and plasmidic DNA) with no detectable cytotoxicity. The present results open the way to the rational engineering of "modular" cell-penetrating peptides (CPPs) that combine (i) efficient translocation from the extracellular milieu into vesicles and (ii) efficient release of molecules from vesicles into the cytoplasm. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Bacterial Chemotaxis: The Early Years of Molecular Studies

    PubMed Central

    Hazelbauer, Gerald L.

    2014-01-01

    This review focuses on the early years of molecular studies of bacterial chemotaxis and motility, beginning in the 1960s with Julius Adler's pioneering work. It describes key observations that established the field and made bacterial chemotaxis a paradigm for the molecular understanding of biological signaling. Consideration of those early years includes aspects of science seldom described in journals: the accidental findings, personal interactions, and scientific culture that often drive scientific progress. PMID:22994495

  17. Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process.

    PubMed

    Forestier, Claire-Lise; Machu, Christophe; Loussert, Celine; Pescher, Pascale; Späth, Gerald F

    2011-04-21

    Leishmania donovani causes human visceral leishmaniasis. The parasite infectious cycle comprises extracellular flagellated promastigotes that proliferate inside the insect vector, and intracellular nonmotile amastigotes that multiply within infected host cells. Using primary macrophages infected with virulent metacyclic promastigotes and high spatiotemporal resolution microscopy, we dissect the dynamics of the early infection process. We find that motile promastigotes enter macrophages in a polarized manner through their flagellar tip and are engulfed into host lysosomal compartments. Persistent intracellular flagellar activity leads to reorientation of the parasite flagellum toward the host cell periphery and results in oscillatory parasite movement. The latter is associated with local lysosomal exocytosis and host cell plasma membrane wounding. These findings implicate lysosome recruitment followed by lysosome exocytosis, consistent with parasite-driven host cell injury, as key cellular events in Leishmania host cell infection. This work highlights the role of promastigote polarity and motility during parasite entry. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Curvature-Guided Motility of Microalgae in Geometric Confinement

    NASA Astrophysics Data System (ADS)

    Ostapenko, Tanya; Schwarzendahl, Fabian Jan; Böddeker, Thomas J.; Kreis, Christian Titus; Cammann, Jan; Mazza, Marco G.; Bäumchen, Oliver

    2018-02-01

    Microorganisms, such as bacteria and microalgae, often live in habitats consisting of a liquid phase and a plethora of interfaces. The precise ways in which these motile microbes behave in their confined environment remain unclear. Using experiments and Brownian dynamics simulations, we study the motility of a single Chlamydomonas microalga in an isolated microhabitat with controlled geometric properties. We demonstrate how the geometry of the habitat controls the cell's navigation in confinement. The probability of finding the cell swimming near the boundary increases with the wall curvature, as seen for both circular and elliptical chambers. The theory, utilizing an asymmetric dumbbell model of the cell and steric wall interactions, captures this curvature-guided navigation quantitatively with no free parameters.

  19. Nucleotide variability of protamine genes influencing bull sperm motility variables.

    PubMed

    H M, Yathish; Kumar, Subodh; Chaudhary, Rajni; Mishra, Chinmoy; A, Sivakumar; Kumar, Amit; Chauhan, Anuj; Ghosh, S K; Mitra, Abhijit

    2018-06-01

    Protamines (PRMs), important proteins of chromatin condensation in spermiogenesis, are promising candidate genes to explore markers of sperm motility. The coding and in-silico predicted promoter regions of these genes were investigated in 102 crossbred and 32 purebred cattle. Also, mRNA quantification was done to explore its possibility as diagnostic tool of infertility. The PCR-SSCP analysis indicated there were two band patterns only in fragment I of the PRM1 and fragment II of the PRM2 gene. The sequence analysis revealed A152G and G179A transitions in the PRM1 gene. Similarly, G35A, A49G and A64G transitions were identified in the PRM2 gene which resulted in altered amino acid sequences from arginine (R) to glutamine (Q), from arginine (R) to glycine (G) and from arginine (R) to glycine (G), respectively. This caused the reduction in molecular weight of PRM2 from 2157.66 to 1931.33 Da due to reduction in the number of basic amino acids. These altered properties of the PRM2 protein led to the reduction in Mass Motility (MM: P < 0.01), Initial Progressive Motility (IPM; P < 0.05) and Post Thaw Motility (PTM; P < 0.05) in crossbred bulls. The least squares analysis of variance indicated there was an effect of PRM2 haplotypes on MM (P = 0.0069), IPM (P = 0.0306) and PTM (P = 0.0500) in crossbred cattle and on PTM (P = 0.0408) in the overall cattle population. Based on the RT-qPCR analysis, however, there was not any significant variation of PRM1 and PRM2 gene expression among sperm of Vrindavani bulls with relatively lesser and greater sperm motility. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Environmental osmolality influences sperm motility activation in an anuran amphibian.

    PubMed

    Byrne, P G; Dunne, C; Munn, A J; Silla, A J

    2015-03-01

    Evolutionary theory predicts that selection will favour sperm traits that maximize fertilization success in local fertilization environments. In externally fertilizing species, osmolality of the fertilization medium is known to play a critical role in activating sperm motility, but there remains limited evidence for adaptive responses to local osmotic environments. In this study, we used a split-sample experimental design and computer-assisted sperm analysis to (i) determine the optimal medium osmolality for sperm activation (% sperm motility and sperm velocity) in male common eastern froglets (Crinia signifera), (ii) test for among-population variation in percentage sperm motility and sperm velocity at various activation-medium osmolalities and (iii) test for among-population covariation between sperm performance and environmental osmolality. Frogs were obtained from nine populations that differed in environmental osmolality, and sperm samples of males from different populations were subjected to a range of activation-medium osmolalities. Percentage sperm motility was optimal between 10 and 50 mOsm kg(-1) , and sperm velocity was optimal between 10 and 100 mOsm kg(-1) , indicating that C. signifera has evolved sperm that can function across a broad range of osmolalities. As predicted, there was significant among-population variation in sperm performance. Furthermore, there was a significant interaction between activation-medium osmolality and environmental osmolality, indicating that frogs from populations with higher environmental osmolality produced sperm that performed better at higher osmolalities in vitro. This finding may reflect phenotypic plasticity in sperm functioning, or genetic divergence resulting from spatial variation in the strength of directional selection. Both of these explanations are consistent with evolutionary theory, providing some of the first empirical evidence that local osmotic environments can favour adaptive sperm motility responses