Sample records for early endosomes reveals

  1. Signal dependent transport of a membrane cargo from early endosomes to recycling endosomes.

    PubMed

    Mahmoud, Ismail S; Louber, Jade; Dower, Steve K; Verhagen, Anne M; Gleeson, Paul A

    2017-08-01

    Many membrane cargoes undergo endocytosis and intracellular recycling to the plasma membrane via the early endosomes and the recycling endosomes. However whether specific sorting signals are required for transport from early endosomes to recycling endosomes is not known and the current view is that transport to the recycling endosomes is by a passive default process. Here we show that the cytoplasmic tail of the neonatal Fc receptor (FcRn) contains discrete signals for endocytosis and for sorting to the recycling endosomes. The FcRn cytoplasmic tail has previously been shown to contain the unusual WISL motif for AP2/clathrin-mediated endocytosis. By analysing FcRn mutants and CD8/FcRn chimeric molecules, we have identified an extended WISL sequence (GLPAPWISL) which promotes sorting from the early endosomes to the recycling endosomes. The insertion of GLPAPWISL into the cytoplasmic tail of CD8 resulted in efficient endocytosis and trafficking to the recycling endosomes, with only low levels detected in the late endosomes. Replacement of the highly conserved GLAPAP sequence within the GLPAPWISL motif with alanine residues resulted in endocytosis of the CD8/FcRn chimera to the early endosomes which was then trafficked predominantly to the late endosomes rather than the recycling endosomes. These studies demonstrate that signals within the cytoplasmic domains of membrane cargo can mediate active transport from early to recycling endosomes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Hrs regulates early endosome fusion by inhibiting formation of an endosomal SNARE complex

    PubMed Central

    Sun, Wei; Yan, Qing; Vida, Thomas A.; Bean, Andrew J.

    2003-01-01

    Movement through the endocytic pathway occurs principally via a series of membrane fusion and fission reactions that allow sorting of molecules to be recycled from those to be degraded. Endosome fusion is dependent on SNARE proteins, although the nature of the proteins involved and their regulation has not been fully elucidated. We found that the endosome-associated hepatocyte responsive serum phosphoprotein (Hrs) inhibited the homotypic fusion of early endosomes. A region of Hrs predicted to form a coiled coil required for binding the Q-SNARE, SNAP-25, mimicked the inhibition of endosome fusion produced by full-length Hrs, and was sufficient for endosome binding. SNAP-25, syntaxin 13, and VAMP2 were bound from rat brain membranes to the Hrs coiled-coil domain. Syntaxin 13 inhibited early endosomal fusion and botulinum toxin/E inhibition of early endosomal fusion was reversed by addition of SNAP-25(150–206), confirming a role for syntaxin 13, and establishing a role for SNAP-25 in endosomal fusion. Hrs inhibited formation of the syntaxin 13–SNAP-25–VAMP2 complex by displacing VAMP2 from the complex. These data suggest that SNAP-25 is a receptor for Hrs on early endosomal membranes and that the binding of Hrs to SNAP-25 on endosomal membranes inhibits formation of a SNARE complex required for homotypic endosome fusion. PMID:12847087

  3. Rab7 Associates with Early Endosomes to Mediate Sorting and Transport of Semliki Forest Virus to Late Endosomes

    PubMed Central

    Vonderheit, Andreas

    2005-01-01

    Semliki forest virus (SFV) is internalized by clathrin-mediated endocytosis, and transported via early endosomes to late endosomes and lysosomes. The intracellular pathway taken by individual fluorescently labeled SFV particles was followed using immunofluorescence in untransfected cells, and by video-enhanced, triple-color fluorescence microscopy in live cells transfected with GFP- and RFP-tagged Rab5, Rab7, Rab4, and Arf1. The viruses progressed from Rab5-positive early endosomes to a population of early endosomes (about 10% of total) that contained both Rab5 and Rab7. SFV were sequestered in the Rab7 domains, and they were sorted away from the early endosomes when these domains detached as separate transport carriers devoid of Rab5, Rab4, EEA1, Arf1, and transferrin. The process was independent of Arf1 and the acidic pH in early endosomes. Nocodazole treatment showed that the release of transport carriers was assisted by microtubules. Expression of constitutively inactive Rab7T22N resulted in accumulation of SFV in early endosomes. We concluded that Rab7 is recruited to early endosomes, where it forms distinct domains that mediate cargo sorting as well as the formation of late-endosome-targeted transport vesicles. PMID:15954801

  4. Discovery of a vezatin-like protein for dynein-mediated early endosome transport

    PubMed Central

    Yao, Xuanli; Arst, Herbert N.; Wang, Xiangfeng; Xiang, Xin

    2015-01-01

    Early endosomes are transported bidirectionally by cytoplasmic dynein and kinesin-3, but how the movements are regulated in vivo remains unclear. Here our forward genetic study led to the discovery of VezA, a vezatin-like protein in Aspergillus nidulans, as a factor critical for early endosome distribution. Loss of vezA causes an abnormal accumulation of early endosomes at the hyphal tip, where microtubule plus ends are located. This abnormal accumulation depends on kinesin-3 and is due to a decrease in the frequency but not the speed of dynein-mediated early endosome movement. VezA-GFP signals are enriched at the hypha tip in an actin-dependent manner but are not obviously associated with early endosomes, thus differing from the early endosome association of the cargo adapter HookA (Hook in A. nidulans). On loss of VezA, HookA associates normally with early endosomes, but the interaction between dynein-dynactin and the early-endosome-bound HookA is significantly decreased. However, VezA is not required for linking dynein-dynactin to the cytosolic ∆C-HookA, lacking the cargo-binding C-terminus. These results identify VezA as a novel regulator required for the interaction between dynein and the Hook-bound early endosomes in vivo. PMID:26378255

  5. Endosomal Interactions during Root Hair Growth.

    PubMed

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2015-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth.

  6. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  7. A Role for EHD4 in the Regulation of Early Endosomal Transport

    PubMed Central

    Sharma, Mahak; Naslavsky, Naava; Caplan, Steve

    2009-01-01

    All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway. PMID:18331452

  8. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi

    PubMed Central

    McKenzie, Jenna E.; Raisley, Brent; Zhou, Xin; Naslavsky, Naava; Taguchi, Tomohiko; Caplan, Steve; Sheff, David

    2012-01-01

    Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and ER. To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes, recycling endosomes, late endosomes and lysosomes. All cargos pass through early endosomes, but may take different routes to the Golgi. Retromer dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-Mannose-6-Phosphate Receptor, which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CD8-Mannose-6-Phosphate Receptor was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the early endosomes, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB. PMID:22540229

  9. MiniCORVET is a Vps8-containing early endosomal tether in Drosophila.

    PubMed

    Lőrincz, Péter; Lakatos, Zsolt; Varga, Ágnes; Maruzs, Tamás; Simon-Vecsei, Zsófia; Darula, Zsuzsanna; Benkő, Péter; Csordás, Gábor; Lippai, Mónika; Andó, István; Hegedűs, Krisztina; Medzihradszky, Katalin F; Takáts, Szabolcs; Juhász, Gábor

    2016-06-02

    Yeast studies identified two heterohexameric tethering complexes, which consist of 4 shared (Vps11, Vps16, Vps18 and Vps33) and 2 specific subunits: Vps3 and Vps8 (CORVET) versus Vps39 and Vps41 (HOPS). CORVET is an early and HOPS is a late endosomal tether. The function of HOPS is well known in animal cells, while CORVET is poorly characterized. Here we show that Drosophila Vps8 is highly expressed in hemocytes and nephrocytes, and localizes to early endosomes despite the lack of a clear Vps3 homolog. We find that Vps8 forms a complex and acts together with Vps16A, Dor/Vps18 and Car/Vps33A, and loss of any of these proteins leads to fragmentation of endosomes. Surprisingly, Vps11 deletion causes enlargement of endosomes, similar to loss of the HOPS-specific subunits Vps39 and Lt/Vps41. We thus identify a 4 subunit-containing miniCORVET complex as an unconventional early endosomal tether in Drosophila.

  10. MiniCORVET is a Vps8-containing early endosomal tether in Drosophila

    PubMed Central

    Lőrincz, Péter; Lakatos, Zsolt; Varga, Ágnes; Maruzs, Tamás; Simon-Vecsei, Zsófia; Darula, Zsuzsanna; Benkő, Péter; Csordás, Gábor; Lippai, Mónika; Andó, István; Hegedűs, Krisztina; Medzihradszky, Katalin F; Takáts, Szabolcs; Juhász, Gábor

    2016-01-01

    Yeast studies identified two heterohexameric tethering complexes, which consist of 4 shared (Vps11, Vps16, Vps18 and Vps33) and 2 specific subunits: Vps3 and Vps8 (CORVET) versus Vps39 and Vps41 (HOPS). CORVET is an early and HOPS is a late endosomal tether. The function of HOPS is well known in animal cells, while CORVET is poorly characterized. Here we show that Drosophila Vps8 is highly expressed in hemocytes and nephrocytes, and localizes to early endosomes despite the lack of a clear Vps3 homolog. We find that Vps8 forms a complex and acts together with Vps16A, Dor/Vps18 and Car/Vps33A, and loss of any of these proteins leads to fragmentation of endosomes. Surprisingly, Vps11 deletion causes enlargement of endosomes, similar to loss of the HOPS-specific subunits Vps39 and Lt/Vps41. We thus identify a 4 subunit-containing miniCORVET complex as an unconventional early endosomal tether in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.14226.001 PMID:27253064

  11. The early endosome: a busy sorting station for proteins at the crossroads

    PubMed Central

    Jovic, Marko; Sharma, Mahak; Rahajeng, Juliati; Caplan, Steve

    2010-01-01

    Summary Endocytosis marks the entry of internalized receptors into the complex network of endocytic trafficking pathways. Endocytic vesicles are rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early endosome. Despite the existence of numerous internalization routes, early endosomes (EE) serve as a focal point of the endocytic pathway. Sorting events initiated at this compartment determine the subsequent fate of internalized proteins and lipids, destining them either for recycling to the plasma membrane, degradation in lysosomes or delivery to the trans-Golgi network. Sorting of endocytic cargo to the latter compartments is accomplished through the formation of distinct microdomains within early endosomes, through the coordinate recruitment and assembly of the sorting machinery. An elaborate network of interactions between endocytic regulatory proteins ensures synchronized sorting of cargo to microdomains followed by morphological changes at the early endosomal membranes. Consequently, the cargo targeted either for recycling back to the plasma membrane, or for retrograde transport to the trans-Golgi network, localizes to newly-formed tubular membranes. With a high ratio of membrane surface to lumenal volume, these tubules effectively concentrate the recycling cargo, ensuring efficient transport out of the EE. Conversely, receptors sorted for degradation cluster at the flat clathrin lattices involved in invaginations of the limiting membrane, associating with newly formed intralumenal vesicles. In this review we will discuss the characteristics of early endosomes, their role in the regulation of endocytic transport, and their aberrant function in a variety of diseases. PMID:19924646

  12. Promyelocytic leukemia bodies tether to early endosomes during mitosis.

    PubMed

    Palibrk, Vuk; Lång, Emma; Lång, Anna; Schink, Kay Oliver; Rowe, Alexander D; Bøe, Stig Ove

    2014-01-01

    During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.

  13. Mouse Polyomavirus Enters Early Endosomes, Requires Their Acidic pH for Productive Infection, and Meets Transferrin Cargo in Rab11-Positive Endosomes

    PubMed Central

    Liebl, David; Difato, Francesco; Horníková, Lenka; Mannová, Petra; Štokrová, Jitka; Forstová, Jitka

    2006-01-01

    Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments. PMID:16611921

  14. Genetic dissection of early endosomal recycling highlights a TORC1-independent role for Rag GTPases

    PubMed Central

    2017-01-01

    Endocytosed cell surface membrane proteins rely on recycling pathways for their return to the plasma membrane. Although endosome-to-plasma membrane recycling is critical for many cellular processes, much of the required machinery is unknown. We discovered that yeast has a recycling route from endosomes to the cell surface that functions efficiently after inactivation of the sec7-1 allele of Sec7, which controls transit through the Golgi. A genetic screen based on an engineered synthetic reporter that exclusively follows this pathway revealed that recycling was subject to metabolic control through the Rag GTPases Gtr1 and Gtr2, which work downstream of the exchange factor Vam6. Gtr1 and Gtr2 control the recycling pathway independently of TORC1 regulation through the Gtr1 interactor Ltv1. We further show that the early-endosome recycling route and its control though the Vam6>Gtr1/Gtr2>Ltv1 pathway plays a physiological role in regulating the abundance of amino acid transporters at the cell surface. PMID:28768685

  15. The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes.

    PubMed

    Castonguay, Jan; Orth, Joachim H C; Müller, Thomas; Sleman, Faten; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Mallmann, Robert Theodor; Bildl, Wolfgang; Schulte, Uwe; Klugbauer, Norbert

    2017-08-30

    Two-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes. Toxin uptake and activation through early endosomes but not processing through other compartments were reduced in TPC1 knockout cells. Detailed co-localization studies with subcellular markers confirmed predominant localization of TPC1 to early and recycling endosomes. Proteomic analysis of native TPC1 channels finally identified direct interaction with a distinct set of syntaxins involved in fusion of intracellular vesicles. Together, our results demonstrate a general role of TPC1 for uptake and processing of proteins in early and recycling endosomes, likely by providing high local Ca 2+ concentrations required for SNARE-mediated vesicle fusion.

  16. Melanosomes – dark organelles enlighten endosomal membrane transport

    PubMed Central

    Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are tissue-specific “lysosome-related” organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light into the molecular machinery that controls specialized endosomal sorting events. PMID:17878918

  17. OCRL controls trafficking through early endosomes via PtdIns4,5P2-dependent regulation of endosomal actin

    PubMed Central

    Vicinanza, Mariella; Di Campli, Antonella; Polishchuk, Elena; Santoro, Michele; Di Tullio, Giuseppe; Godi, Anna; Levtchenko, Elena; De Leo, Maria Giovanna; Polishchuk, Roman; Sandoval, Lisette; Marzolo, Maria-Paz; De Matteis, Maria Antonietta

    2011-01-01

    Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P2 in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P2 and F-actin at the EEs is essential for exporting cargoes that transit this compartment. PMID:21971085

  18. Genome-Wide Screen Reveals Valosin-Containing Protein Requirement for Coronavirus Exit from Endosomes

    PubMed Central

    Wong, Hui Hui; Kumar, Pankaj; Tay, Felicia Pei Ling; Moreau, Dimitri

    2015-01-01

    ABSTRACT Coronaviruses are RNA viruses with a large zoonotic reservoir and propensity for host switching, representing a real threat for public health, as evidenced by severe acute respiratory syndrome (SARS) and the emerging Middle East respiratory syndrome (MERS). Cellular factors required for their replication are poorly understood. Using genome-wide small interfering RNA (siRNA) screening, we identified 83 novel genes supporting infectious bronchitis virus (IBV) replication in human cells. Thirty of these hits can be placed in a network of interactions with viral proteins and are involved in RNA splicing, membrane trafficking, and ubiquitin conjugation. In addition, our screen reveals an unexpected role for valosin-containing protein (VCP/p97) in early steps of infection. Loss of VCP inhibits a previously uncharacterized degradation of the nucleocapsid N protein. This inhibition derives from virus accumulation in early endosomes, suggesting a role for VCP in the maturation of virus-loaded endosomes. The several host factors identified in this study may provide avenues for targeted therapeutics. IMPORTANCE Coronaviruses are RNA viruses representing a real threat for public health, as evidenced by SARS and the emerging MERS. However, cellular factors required for their replication are poorly understood. Using genome-wide siRNA screening, we identified novel genes supporting infectious bronchitis virus (IBV) replication in human cells. The several host factors identified in this study may provide directions for future research on targeted therapeutics. PMID:26311884

  19. Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes.

    PubMed

    Dubé, Mathieu; Etienne, Loïc; Fels, Maximilian; Kielian, Margaret

    2016-07-15

    The E1 membrane protein of rubella virus (RuV) is a class II membrane fusion protein structurally related to the fusion proteins of the alphaviruses, flaviviruses, and phleboviruses. Virus entry is mediated by a low pH-dependent fusion reaction through E1's insertion into the cell membrane and refolding to a stable homotrimer. Unlike the other described class II proteins, RuV E1 contains 2 fusion loops, which complex a metal ion between them by interactions with residues N88 and D136. Insertion of the E1 protein into the target membrane, fusion, and infection require calcium and are blocked by alanine substitution of N88 or D136. Here we addressed the requirements of E1 for calcium binding and the intracellular location of the calcium requirement during virus entry. Our results demonstrated that N88 and D136 are optimally configured to support RuV fusion and are strongly selected for during the virus life cycle. While E1 has some similarities with cellular proteins that bind calcium and anionic lipids, RuV binding to the membrane was independent of anionic lipids. Virus fusion occurred within early endosomes, and chelation of intracellular calcium showed that calcium within the early endosome was required for virus fusion and infection. Calcium triggered the reversible insertion of E1 into the target membrane at neutral pH, but E1 homotrimer formation and fusion required a low pH. Thus, RuV E1, unlike other known class II fusion proteins, has distinct triggers for membrane insertion and fusion protein refolding mediated, respectively, by endosomal calcium and low pH. Rubella virus causes a mild disease of childhood, but infection of pregnant women frequently results in miscarriage or severe birth defects. In spite of an effective vaccine, RuV disease remains a serious problem in many developing countries. RuV infection of host cells involves endocytic uptake and low pH-triggered membrane fusion and is unusual in its requirement for calcium binding by the membrane

  20. Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes

    PubMed Central

    Dubé, Mathieu; Etienne, Loïc; Fels, Maximilian

    2016-01-01

    ABSTRACT The E1 membrane protein of rubella virus (RuV) is a class II membrane fusion protein structurally related to the fusion proteins of the alphaviruses, flaviviruses, and phleboviruses. Virus entry is mediated by a low pH-dependent fusion reaction through E1's insertion into the cell membrane and refolding to a stable homotrimer. Unlike the other described class II proteins, RuV E1 contains 2 fusion loops, which complex a metal ion between them by interactions with residues N88 and D136. Insertion of the E1 protein into the target membrane, fusion, and infection require calcium and are blocked by alanine substitution of N88 or D136. Here we addressed the requirements of E1 for calcium binding and the intracellular location of the calcium requirement during virus entry. Our results demonstrated that N88 and D136 are optimally configured to support RuV fusion and are strongly selected for during the virus life cycle. While E1 has some similarities with cellular proteins that bind calcium and anionic lipids, RuV binding to the membrane was independent of anionic lipids. Virus fusion occurred within early endosomes, and chelation of intracellular calcium showed that calcium within the early endosome was required for virus fusion and infection. Calcium triggered the reversible insertion of E1 into the target membrane at neutral pH, but E1 homotrimer formation and fusion required a low pH. Thus, RuV E1, unlike other known class II fusion proteins, has distinct triggers for membrane insertion and fusion protein refolding mediated, respectively, by endosomal calcium and low pH. IMPORTANCE Rubella virus causes a mild disease of childhood, but infection of pregnant women frequently results in miscarriage or severe birth defects. In spite of an effective vaccine, RuV disease remains a serious problem in many developing countries. RuV infection of host cells involves endocytic uptake and low pH-triggered membrane fusion and is unusual in its requirement for calcium

  1. Small Molecules for Early Endosome-Specific Patch Clamping.

    PubMed

    Chen, Cheng-Chang; Butz, Elisabeth S; Chao, Yu-Kai; Grishchuk, Yulia; Becker, Lars; Heller, Stefan; Slaugenhaupt, Susan A; Biel, Martin; Wahl-Schott, Christian; Grimm, Christian

    2017-07-20

    To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evidence for a role of SNX16 in regulating traffic between the early and later endosomal compartments.

    PubMed

    Hanson, Brendon J; Hong, Wanjin

    2003-09-05

    Sorting nexins (SNXs) are a growing family of proteins characterized by the presence of a PX domain. The PX domain mediates membrane association by interaction with phosphoinositides. The SNXs are generally believed to participate in membrane trafficking, but information regarding the function of individual proteins is limited. In this report, we describe the major characteristics of one member, SNX16. SNX16 is a novel 343-amino acid protein consisting of a central PX domain followed by a potential coiled-coil domain and a C-terminal region. Like other sorting nexins, SNX16 associates with the membrane via the PX domain which interacts with the phospholipid phosphatidylinositol 3-phosphate. We show via biochemical and cellular studies that SNX16 is distributed in both early and late endosome/lysosome structures. The coiled-coil domain is necessary for localization to the later endosomal structures, as mutant SNX16 lacking this domain was found only in early endosomes. Trafficking of internalized epidermal growth factor was also delayed by this SNX16 mutant, as these cells showed a delay in the segregation of epidermal growth factor in the early endosome for its delivery to later compartments. In addition, the coiled-coil domain is shown here to be important for homo-oligomerization of SNX16. Taken together, these results suggest that SNX16 is a sorting nexin that may function in the trafficking of proteins between the early and late endosomal compartments.

  3. The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics.

    PubMed

    O'Loughlin, Thomas; Masters, Thomas A; Buss, Folma

    2018-04-01

    The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  4. A novel assay reveals preferential binding between Rabs, kinesins, and specific endosomal subpopulations

    PubMed Central

    Bentley, Marvin; Decker, Helena; Luisi, Julie

    2015-01-01

    Identifying the proteins that regulate vesicle trafficking is a fundamental problem in cell biology. In this paper, we introduce a new assay that involves the expression of an FKBP12-rapamycin–binding domain–tagged candidate vesicle-binding protein, which can be inducibly linked to dynein or kinesin. Vesicles can be labeled by any convenient method. If the candidate protein binds the labeled vesicles, addition of the linker drug results in a predictable, highly distinctive change in vesicle localization. This assay generates robust and easily interpretable results that provide direct experimental evidence of binding between a candidate protein and the vesicle population of interest. We used this approach to compare the binding of Kinesin-3 family members with different endosomal populations. We found that KIF13A and KIF13B bind preferentially to early endosomes and that KIF1A and KIF1Bβ bind preferentially to late endosomes and lysosomes. This assay may have broad utility for identifying the trafficking proteins that bind to different vesicle populations. PMID:25624392

  5. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane

    PubMed Central

    Truschel, Steven T.; Simoes, Sabrina; Setty, Subba Rao Gangi; Harper, Dawn C.; Tenza, Danièle; Thomas, Penelope C.; Herman, Kathryn E.; Sackett, Sara D.; Cowan, David C.; Theos, Alexander C.; Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome (HPS) that lack BLOC-1, melanosomal proteins such as Tyrp1 accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverses early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle. PMID:19624486

  6. Rab4b controls an early endosome sorting event by interacting with the γ-subunit of the clathrin adaptor complex 1.

    PubMed

    Perrin, Laura; Laura, Perrin; Lacas-Gervais, Sandra; Sandra, Lacas-Gervais; Gilleron, Jérôme; Jérôme, Gilleron; Ceppo, Franck; Franck, Ceppo; Prodon, François; François, Prodon; Benmerah, Alexandre; Alexandre, Benmerah; Tanti, Jean-François; Jean-François, Tanti; Cormont, Mireille; Mireille, Cormont

    2013-11-01

    The endocytic pathway is essential for cell homeostasis and numerous small Rab GTPases are involved in its control. The endocytic trafficking step controlled by Rab4b has not been elucidated, although recent data suggested it could be important for glucose homeostasis, synaptic homeostasis or adaptive immunity. Here, we show that Rab4b is required for early endosome sorting of transferrin receptors (TfRs) to the recycling endosomes, and we identified the AP1γ subunit of the clathrin adaptor AP-1 as a Rab4b effector and key component of the machinery of early endosome sorting. We show that internalised transferrin (Tf) does not reach Vamp3/Rab11 recycling endosomes in the absence of Rab4b, whereas it is rapidly recycled back to the plasma membrane. By contrast, overexpression of Rab4b leads to the accumulation of internalised Tf within AP-1- and clathrin-coated vesicles. These vesicles are poor in early and recycling endocytic markers except for TfR and require AP1γ for their formation. Furthermore, the targeted overexpression of the Rab4b-binding domain of AP1γ to early endosome upon its fusion with FYVE domains inhibited the interaction between Rab4b and endogenous AP1γ, and perturbed Tf traffic. We thus proposed that the interaction between early endocytic Rab4b and AP1γ could allow the budding of clathrin-coated vesicles for subsequent traffic to recycling endosomes. The data also uncover a novel type of endosomes, characterised by low abundance of either early or recycling endocytic markers, which could potentially be generated in cell types that naturally express high level of Rab4b.

  7. A Novel Type III Endosome Transmembrane Protein, TEMP

    PubMed Central

    Aturaliya, Rajith N.; Kerr, Markus C.; Teasdale, Rohan D.

    2012-01-01

    As part of a high-throughput subcellular localisation project, the protein encoded by the RIKEN mouse cDNA 2610528J11 was expressed and identified to be associated with both endosomes and the plasma membrane. Based on this, we have assigned the name TEMP for Type III Endosome Membrane Protein. TEMP encodes a short protein of 111 amino acids with a single, alpha-helical transmembrane domain. Experimental analysis of its membrane topology demonstrated it is a Type III membrane protein with the amino-terminus in the lumenal, or extracellular region, and the carboxy-terminus in the cytoplasm. In addition to the plasma membrane TEMP was localized to Rab5 positive early endosomes, Rab5/Rab11 positive recycling endosomes but not Rab7 positive late endosomes. Video microscopy in living cells confirmed TEMP’s plasma membrane localization and identified the intracellular endosome compartments to be tubulovesicular. Overexpression of TEMP resulted in the early/recycling endosomes clustering at the cell periphery that was dependent on the presence of intact microtubules. The cellular function of TEMP cannot be inferred based on bioinformatics comparison, but its cellular distribution between early/recycling endosomes and the plasma membrane suggests a role in membrane transport. PMID:24710541

  8. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors.

    PubMed

    Mari, Muriel; Bujny, Miriam V; Zeuschner, Dagmar; Geerts, Willie J C; Griffith, Janice; Petersen, Claus M; Cullen, Pete J; Klumperman, Judith; Geuze, Hans J

    2008-03-01

    Mannose-6-phosphate receptors (MPRs) transport lysosomal hydrolases from the trans Golgi network (TGN) to endosomes. Recently, the multi-ligand receptor sortilin has also been implicated in this transport, but the transport carriers involved herein have not been identified. By quantitative immuno-electron microscopy, we localized endogenous sortilin of HepG2 cells predominantly to the TGN and endosomes. In the TGN, sortilin colocalized with MPRs in the same clathrin-coated vesicles. In endosomes, sortilin and MPRs concentrated in sorting nexin 1 (SNX1)-positive buds and vesicles. SNX1 depletion by small interfering RNA resulted in decreased pools of sortilin in the TGN and an increase in lysosomal degradation. These data indicate that sortilin and MPRs recycle to the TGN in SNX1-dependent carriers, which we named endosome-to-TGN transport carriers (ETCs). Notably, ETCs emerge from early endosomes (EE), lack recycling plasma membrane proteins and by three-dimensional electron tomography exhibit unique structural features. Hence, ETCs are distinct from hitherto described EE-derived membranes involved in recycling. Our data emphasize an important role of EEs in recycling to the TGN and indicate that different, specialized exit events occur on the same EE vacuole.

  9. Endocytosis and Endosomal Trafficking in Plants.

    PubMed

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

  10. Stochastic acidification, activation of hemagglutinin and escape of influenza viruses from an endosome

    NASA Astrophysics Data System (ADS)

    Lagache, Thibault; Sieben, Christian; Meyer, Tim; Herrmann, Andreas; Holcman, David

    2017-06-01

    Influenza viruses enter the cell inside an endosome. During the endosomal journey, acidification triggers a conformational change of the virus spike protein hemagglutinin (HA) that results in escape of the viral genome from the endosome into the cytoplasm. It is still unclear how the interplay between acidification and HA conformation changes affects the kinetics of the viral endosomal escape. We develop here a stochastic model to estimate the change of conformation of HAs inside the endosome nanodomain. Using a Markov process, we model the arrival of protons to HA binding sites and compute the kinetics of their accumulation. We compute the Mean First Passage Time (MFPT) of the number of HA bound sites to a threshold, which is used to estimate the HA activation rate for a given pH concentration. The present analysis reveals that HA proton binding sites possess a high chemical barrier, ensuring a stability of the spike protein at sub-acidic pH. We predict that activating more than 3 adjacent HAs is necessary to trigger endosomal fusion and this configuration prevents premature release of viruses from early endosomes

  11. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin

    PubMed Central

    Chia, Pei Zhi Cheryl; Gasnereau, Isabelle; Lieu, Zi Zhao; Gleeson, Paul A.

    2011-01-01

    The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin–TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail. PMID:21693586

  12. Association with AflR in Endosomes Reveals New Functions for AflJ in Aflatoxin Biosynthesis

    PubMed Central

    Ehrlich, Kenneth C.; Mack, Brian M.; Wei, Qijian; Li, Ping; Roze, Ludmila V.; Dazzo, Frank; Cary, Jeffrey W.; Bhatnagar, Deepak; Linz, John E.

    2012-01-01

    Aflatoxins are the most potent naturally occurring carcinogens of fungal origin. Biosynthesis of aflatoxin involves the coordinated expression of more than 25 genes. The function of one gene in the aflatoxin gene cluster, aflJ, is not entirely understood but, because previous studies demonstrated a physical interaction between the Zn2Cys6 transcription factor AflR and AflJ, AflJ was proposed to act as a transcriptional co-activator. Image analysis revealed that, in the absence of aflJ in A. parasiticus, endosomes cluster within cells and near septa. AflJ fused to yellow fluorescent protein complemented the mutation in A. parasiticus ΔaflJ and localized mainly in endosomes. We found that AflJ co-localizes with AflR both in endosomes and in nuclei. Chromatin immunoprecipitation did not detect AflJ binding at known AflR DNA recognition sites suggesting that AflJ either does not bind to these sites or binds to them transiently. Based on these data, we hypothesize that AflJ assists in AflR transport to or from the nucleus, thus controlling the availability of AflR for transcriptional activation of aflatoxin biosynthesis cluster genes. AflJ may also assist in directing endosomes to the cytoplasmic membrane for aflatoxin export. PMID:23342682

  13. Spatiotemporal Dynamics of Adenovirus Membrane Rupture and Endosomal Escape

    PubMed Central

    Maier, Oana; Marvin, Shauna A.; Wodrich, Harald; Campbell, Edward M.

    2012-01-01

    A key step in adenovirus cell entry is viral penetration of cellular membranes to gain access to the cytoplasm and deliver the genome to the nucleus. Yet little is known about this important event in the adenoviral life cycle. Using the cytosolic protein galectin-3 (gal3) as a marker of membrane rupture with both live- and fixed-cell imaging, we demonstrate that in the majority of instances, exposure of pVI and recruitment of gal3 to ruptured membranes occur early at or near the cell surface and occur minimally in EEA-1-positive (EEA-1+) early endosomes or LAMP-1+ late endosomes/lysosomes. Live-cell imaging of Ad5 egress from gal3+ endosomes occurs most frequently from perinuclear locations. While the Ad5 capsid is observed escaping from gal3+ endosomes, pVI appears to remain associated with the gal3+ ruptured endosomes. Thus, Ad5 membrane rupture and endosomal escape appear to be both spatially and temporally distinct events. PMID:22855481

  14. Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport

    PubMed Central

    Carlton, Jez G.; Bujny, Miriam V.; Peter, Brian J.; Oorschot, Viola M. J.; Rutherford, Anna; Arkell, Rebecca S.; Klumperman, Judith; McMahon, Harvey T.; Cullen, Peter J.

    2006-01-01

    Summary Sorting nexins are a large family of phox-homology-domain-containing proteins that have been implicated in the control of endosomal sorting. Sorting nexin-1 is a component of the mammalian retromer complex that regulates retrieval of the cation-independent mannose 6-phosphate receptor from endosomes to the trans-Golgi network. In yeast, retromer is composed of Vps5p (the orthologue of sorting nexin-1), Vps17p (a related sorting nexin) and a cargo selective subcomplex composed of Vps26p, Vps29p and Vps35p. With the exception of Vps17p, mammalian orthologues of all yeast retromer components have been identified. For Vps17p, one potential mammalian orthologue is sorting nexin-2. Here we show that, like sorting nexin-1, sorting nexin-2 binds phosphatidylinositol 3-monophosphate and phosphatidylinositol 3,5-bisphosphate, and possesses a Bin/Amphiphysin/Rvs domain that can sense membrane curvature. However, in contrast to sorting nexin-1, sorting nexin-2 could not induce membrane tubulation in vitro or in vivo. Functionally, we show that endogenous sorting nexin-1 and sorting nexin-2 co-localise on high curvature tubular elements of the 3-phosphoinositide-enriched early endosome, and that suppression of sorting nexin-2 does not perturb the degradative sorting of receptors for epidermal growth factor or transferrin, nor the steady-state distribution of the cation-independent mannose 6-phosphate receptor. However, suppression of sorting nexin-2 results in a subtle alteration in the kinetics of cation-independent mannose 6-phosphate receptor retrieval. These data suggest that although sorting nexin-2 may be a component of the retromer complex, its presence is not essential for the regulation of endosome-to-trans Golgi network retrieval of the cation-independent mannose 6-phosphate receptor. PMID:16179610

  15. Protein Kinase Cδ and Calmodulin Regulate Epidermal Growth Factor Receptor Recycling from Early Endosomes through Arp2/3 Complex and Cortactin

    PubMed Central

    Lladó, Anna; Timpson, Paul; Vilà de Muga, Sandra; Moretó, Jemina; Pol, Albert; Grewal, Thomas; Daly, Roger J.

    2008-01-01

    The intracellular trafficking of the epidermal growth factor receptor (EGFR) is regulated by a cross-talk between calmodulin (CaM) and protein kinase Cδ (PKCδ). On inhibition of CaM, PKCδ promotes the formation of enlarged early endosomes and blocks EGFR recycling and degradation. Here, we show that PKCδ impairs EGFR trafficking due to the formation of an F-actin coat surrounding early endosomes. The PKCδ-induced polymerization of actin is orchestrated by the Arp2/3 complex and requires the interaction of cortactin with PKCδ. Accordingly, inhibition of actin polymerization by using cytochalasin D or by overexpression of active cofilin, restored the normal morphology of the organelle and the recycling of EGFR. Similar results were obtained after down-regulation of cortactin and the sequestration of the Arp2/3 complex. Furthermore we demonstrate an interaction of cortactin with CaM and PKCδ, the latter being dependent on CaM inhibition. In summary, this study provides the first evidence that CaM and PKCδ organize actin dynamics in the early endosomal compartment, thereby regulating the intracellular trafficking of EGFR. PMID:17959830

  16. Rabies virus co-localizes with early (Rab5) and late (Rab7) endosomal proteins in neuronal and SH-SY5Y cells.

    PubMed

    Ahmad, Waqas; Li, Yingying; Guo, Yidi; Wang, Xinyu; Duan, Ming; Guan, Zhenhong; Liu, Zengshan; Zhang, Maolin

    2017-06-01

    Rabies virus (RABV) is a highly neurotropic virus that follows clathrin-mediated endocytosis and pH-dependent pathway for trafficking and invasion into endothelial cells. Early (Rab5, EEA1) and late (Rab7, LAMP1) endosomal proteins play critical roles in endosomal sorting, maturity and targeting various molecular cargoes, but their precise functions in the early stage of RABV neuronal infection remain elusive. In this study, the relationship between enigmatic entry of RABV with these endosomal proteins into neuronal and SH-SY5Y cells was investigated. Immunofluorescence, TCID 50 titers, electron microscopy and western blotting were carried out to determine the molecular interaction of the nucleoprotein (N) of RABV with early or late endosomal proteins in these cell lines. The expression of N was also determined by down-regulating Rab5 and Rab7 in both cell lines through RNA interference. The results were indicative that N proficiently colocalized with Rab5/EEA1 and Rab7/LAMP1 in both cell lines at 24 and 48 h post-infection, while N titers significantly decreased in early infection of RABV. Down-regulation of Rab5 and Rab7 did not inhibit N expression, but it prevented productive infection via blocking the normal trafficking of RABV in a low pH environment. Ultrathin sections of cells studied by electron microscope also verified the close association of RABV with Rab5 and Rab7 in neurons. From the data it was concluded that primary entry of RABV strongly correlates with the kinetics of Rab-proteins present on early and late vesicles, which provides helpful clues to explain the early events of RABV in nerve cells.

  17. APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments

    PubMed Central

    Kalaidzidis, Inna; Miaczynska, Marta; Brewińska-Olchowik, Marta; Hupalowska, Anna; Ferguson, Charles; Parton, Robert G.; Kalaidzidis, Yannis

    2015-01-01

    Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes. Here, we tested this model by analyzing the ultrastructural morphology, kinetics of cargo transport, and stability of the APPL1 compartment over time. We found that APPL1 resides on a tubulo-vesicular compartment that is capable of sorting cargo for recycling or degradation and that displays long lifetimes, all features typical of early endosomes. Fitting mathematical models to experimental data rules out maturation of APPL1 vesicles into EEA1 endosomes as a primary mechanism for cargo transport. Our data suggest instead that APPL1 endosomes represent a distinct population of Rab5-positive sorting endosomes, thus providing important insights into the compartmental organization of the early endocytic pathway. PMID:26459602

  18. The Recycling Endosome of Madin-Darby Canine Kidney Cells Is a Mildly Acidic Compartment Rich in Raft Components

    PubMed Central

    Gagescu, Raluca; Demaurex, Nicolas; Parton, Robert G.; Hunziker, Walter; Huber, Lukas A.; Gruenberg, Jean

    2000-01-01

    We present a biochemical and morphological characterization of recycling endosomes containing the transferrin receptor in the epithelial Madin-Darby canine kidney cell line. We find that recycling endosomes are enriched in molecules known to regulate transferrin recycling but lack proteins involved in early endosome membrane dynamics, indicating that recycling endosomes are distinct from conventional early endosomes. We also find that recycling endosomes are less acidic than early endosomes because they lack a functional vacuolar ATPase. Furthermore, we show that recycling endosomes can be reached by apically internalized tracers, confirming that the apical endocytic pathway intersects the transferrin pathway. Strikingly, recycling endosomes are enriched in the raft lipids sphingomyelin and cholesterol as well as in the raft-associated proteins caveolin-1 and flotillin-1. These observations may suggest that a lipid-based sorting mechanism operates along the Madin-Darby canine kidney recycling pathway, contributing to the maintenance of cell polarity. Altogether, our data indicate that recycling endosomes and early endosomes differ functionally and biochemically and thus that different molecular mechanisms regulate protein sorting and membrane traffic at each step of the receptor recycling pathway. PMID:10930469

  19. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    PubMed

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  20. Characterization of early and late endocytic compartments of the transferrin cycle. Transferrin receptor antibody blocks erythroid differentiation by trapping the receptor in the early endosome.

    PubMed

    Killisch, I; Steinlein, P; Römisch, K; Hollinshead, R; Beug, H; Griffiths, G

    1992-09-01

    We describe a detailed morphological characterization of the endocytic pathway in differentiating chicken erythroblasts transformed by a temperature-sensitive mutant of avian erythroblastosis virus (AEV). These cells express high levels of transferrin receptors (TfR) when induced to differentiate at 42 degrees C. Biochemical analysis showed that most (approximately 90%) of the internalized 125I-Tf recycled within approximately 30 min while a smaller fraction of 125I-Tf required up to 2 h for recycling. By immunocytochemistry, the bulk of Tf and TfR was localized at the plasma membrane and in tubuloreticular early endosomes. This structure contained coated buds that labelled with an antibody specific for the clathrin light chain. Decreasing amounts of both Tf and TfR were detected in two distal compartments, spherical endosome vesicles resembling multivesicular bodies and the prelysosomal compartment (PLC) enriched in cation-independent mannose 6-phosphate receptor. As shown by fluorescent (FITC-Tf) labelling of living cells, the movement of Tf/TfR complex into these late structures was accompanied by a significant drop in pH from about 6, the value displayed by early endosomes, to values below pH 5.0. Since no detectable 125I-Tf degradation was observed during a 4 h period we believe that the Tf/TfR detected in these late endocytic structures avoids degradation and recycles back to the cell surface. The addition of an anti-TfR monoclonal antibody to the culture medium of these cells blocks their differentiation. Under this condition the antibody-TfR complex was trapped in an early endosome compartment that enlarged to more than twice its normal size. However, this condition did not affect the transport kinetics of horseradish peroxidase from the medium to the PLC.

  1. Enhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities.

    PubMed

    Gauthier, Sébastien A; Pérez-González, Rocío; Sharma, Ajay; Huang, Fang-Ke; Alldred, Melissa J; Pawlik, Monika; Kaur, Gurjinder; Ginsberg, Stephen D; Neubert, Thomas A; Levy, Efrat

    2017-08-29

    A dysfunctional endosomal pathway and abnormally enlarged early endosomes in neurons are an early characteristic of Down syndrome (DS) and Alzheimer's disease (AD). We have hypothesized that endosomal material can be released by endosomal multivesicular bodies (MVBs) into the extracellular space via exosomes to relieve neurons of accumulated endosomal contents when endosomal pathway function is compromised. Supporting this, we found that exosome secretion is enhanced in the brains of DS patients and a mouse model of the disease, and by DS fibroblasts. Furthermore, increased levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Importantly, CD63 knockdown diminished exosome release and worsened endosomal pathology in DS fibroblasts. Taken together, these data suggest that increased CD63 expression enhances exosome release as an endogenous mechanism mitigating endosomal abnormalities in DS. Thus, the upregulation of exosome release represents a potential therapeutic goal for neurodegenerative disorders with endosomal pathology.

  2. The ESCRT regulator Did2 maintains the balance between long-distance endosomal transport and endocytic trafficking

    PubMed Central

    Haag, Carl

    2017-01-01

    In highly polarised cells, like fungal hyphae, early endosomes function in both endocytosis as well as long-distance transport of various cargo including mRNA and protein complexes. However, knowledge on the crosstalk between these seemingly different trafficking processes is scarce. Here, we demonstrate that the ESCRT regulator Did2 coordinates endosomal transport in fungal hyphae of Ustilago maydis. Loss of Did2 results in defective vacuolar targeting, less processive long-distance transport and abnormal shuttling of early endosomes. Importantly, the late endosomal protein Rab7 and vacuolar protease Prc1 exhibit increased shuttling on these aberrant endosomes suggesting defects in endosomal maturation and identity. Consistently, molecular motors fail to attach efficiently explaining the disturbed processive movement. Furthermore, the endosomal mRNP linker protein Upa1 is hardly present on endosomes resulting in defects in long-distance mRNA transport. In conclusion, the ESCRT regulator Did2 coordinates precise maturation of endosomes and thus provides the correct membrane identity for efficient endosomal long-distance transport. PMID:28422978

  3. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans

    PubMed Central

    Grussendorf, Kelly A.; Trezza, Christopher J.; Salem, Alexander T.; Al-Hashimi, Hikmat; Mattingly, Brendan C.; Kampmeyer, Drew E.; Khan, Liakot A.; Hall, David H.; Göbel, Verena; Ackley, Brian D.; Buechner, Matthew

    2016-01-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans. In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn’s disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  4. AP-1/σ1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory

    PubMed Central

    Glyvuk, Nataliya; Tsytsyura, Yaroslav; Geumann, Constanze; D'Hooge, Rudi; Hüve, Jana; Kratzke, Manuel; Baltes, Jennifer; Böning, Daniel; Klingauf, Jürgen; Schu, Peter

    2010-01-01

    Synaptic vesicle recycling involves AP-2/clathrin-mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue-specific AP-1–σ1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP-1–σ1A complex mediates protein sorting between the trans-Golgi network and early endosomes. Vertebrates express three σ1 subunit isoforms: A, B and C. The expressions of σ1A and σ1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from σ1B-deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The σ1B-deficient mice have reduced motor coordination and severely impaired long-term spatial memory. These data reveal a molecular mechanism for a severe human X-chromosome-linked mental retardation. PMID:20203623

  5. Neuron Specific Rab4 Effector GRASP-1 Coordinates Membrane Specialization and Maturation of Recycling Endosomes

    PubMed Central

    Hoogenraad, Casper C.; Popa, Ioana; Futai, Kensuke; Sanchez-Martinez, Emma; Wulf, Phebe S.; van Vlijmen, Thijs; Dortland, Bjorn R.; Oorschot, Viola; Govers, Roland; Monti, Maria; Heck, Albert J. R.; Sheng, Morgan; Klumperman, Judith; Rehmann, Holger; Jaarsma, Dick; Kapitein, Lukas C.; van der Sluijs, Peter

    2010-01-01

    The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking. PMID:20098723

  6. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the Caenorhabditis elegans intestine

    PubMed Central

    Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.

    2016-01-01

    Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264

  7. Activation of PI3K, Akt, and ERK during early rotavirus infection leads to V-ATPase-dependent endosomal acidification required for uncoating

    PubMed Central

    Kim, Deok-Song; Kim, Ji-Yun; Park, Jun-Gyu; Alfajaro, Mia Madel; Baek, Yeong-Bin; Cho, Eun-Hyo; Kwon, Joseph; Choi, Jong-Soon; Kang, Mun-Il; Park, Sang-Ik; Cho, Kyoung-Oh

    2018-01-01

    The cellular PI3K/Akt and/or MEK/ERK signaling pathways mediate the entry process or endosomal acidification during infection of many viruses. However, their roles in the early infection events of group A rotaviruses (RVAs) have remained elusive. Here, we show that late-penetration (L-P) human DS-1 and bovine NCDV RVA strains stimulate these signaling pathways very early in the infection. Inhibition of both signaling pathways significantly reduced production of viral progeny due to blockage of virus particles in the late endosome, indicating that neither of the two signaling pathways is involved in virus trafficking. However, immunoprecipitation assays using antibodies specific for pPI3K, pAkt, pERK and the subunit E of the V-ATPase co-immunoprecipitated the V-ATPase in complex with pPI3K, pAkt, and pERK. Moreover, Duolink proximity ligation assay revealed direct association of the subunit E of the V-ATPase with the molecules pPI3K, pAkt, and pERK, indicating that both signaling pathways are involved in V-ATPase-dependent endosomal acidification. Acidic replenishment of the medium restored uncoating of the RVA strains in cells pretreated with inhibitors specific for both signaling pathways, confirming the above results. Isolated components of the outer capsid proteins, expressed as VP4-VP8* and VP4-VP5* domains, and VP7, activated the PI3K/Akt and MEK/ERK pathways. Furthermore, psoralen-UV-inactivated RVA and CsCl-purified RVA triple-layered particles triggered activation of the PI3K/Akt and MEK/ERK pathways, confirming the above results. Our data demonstrate that multistep binding of outer capsid proteins of L-P RVA strains with cell surface receptors phosphorylates PI3K, Akt, and ERK, which in turn directly interact with the subunit E of the V-ATPase to acidify the late endosome for uncoating of RVAs. This study provides a better understanding of the RVA-host interaction during viral uncoating, which is of importance for the development of strategies aiming at

  8. P4-ATPase Requirement for AP-1/Clathrin Function in Protein Transport from the trans-Golgi Network and Early Endosomes

    PubMed Central

    Liu, Ke; Surendhran, Kavitha; Nothwehr, Steven F.

    2008-01-01

    Drs2p is a resident type 4 P-type ATPase (P4-ATPase) and potential phospholipid translocase of the trans-Golgi network (TGN) where it has been implicated in clathrin function. However, precise protein transport pathways requiring Drs2p and how it contributes to clathrin-coated vesicle budding remain unclear. Here we show a functional codependence between Drs2p and the AP-1 clathrin adaptor in protein sorting at the TGN and early endosomes of Saccharomyces cerevisiae. Genetic criteria indicate that Drs2p and AP-1 operate in the same pathway and that AP-1 requires Drs2p for function. In addition, we show that loss of AP-1 markedly increases Drs2p trafficking to the plasma membrane, but does not perturb retrieval of Drs2p from the early endosome back to the TGN. Thus AP-1 is required at the TGN to sort Drs2p out of the exocytic pathway, presumably for delivery to the early endosome. Moreover, a conditional allele that inactivates Drs2p phospholipid translocase (flippase) activity disrupts its own transport in this AP-1 pathway. Drs2p physically interacts with AP-1; however, AP-1 and clathrin are both recruited normally to the TGN in drs2Δ cells. These results imply that Drs2p acts independently of coat recruitment to facilitate AP-1/clathrin-coated vesicle budding from the TGN. PMID:18508916

  9. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis

    PubMed Central

    Delevoye, Cédric; Hurbain, Ilse; Tenza, Danièle; Sibarita, Jean-Baptiste; Uzan-Gafsou, Stéphanie; Ohno, Hiroshi; Geerts, Willie J.C.; Verkleij, Arie J.; Salamero, Jean; Marks, Michael S.

    2009-01-01

    Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type–specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1– and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type–specific positioning of endosomes that facilitate endosome–LRO contacts and are required for organelle maturation. PMID:19841138

  10. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes

    PubMed Central

    Liu, Ou; Grant, Barth D.

    2015-01-01

    The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions. PMID:26393361

  11. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    PubMed Central

    Arnold, Miranda; Cross, Rebecca; Singleton, Kaela S.; Zlatic, Stephanie; Chapleau, Christopher; Mullin, Ariana P.; Rolle, Isaiah; Moore, Carlene C.; Theibert, Anne; Pozzo-Miller, Lucas; Faundez, Victor; Larimore, Jennifer

    2016-01-01

    AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function. PMID:27713690

  12. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production

    PubMed Central

    Toh, Wei Hong; Chia, Pei Zhi Cheryl; Hossain, Mohammed Iqbal; Gleeson, Paul A.

    2018-01-01

    The diversion of the membrane-bound β-site amyloid precursor protein–(APP) cleaving enzyme (BACE1) from the endolysosomal pathway to recycling endosomes represents an important transport step in the regulation of amyloid beta (Aβ) production. However, the mechanisms that regulate endosome sorting of BACE1 are poorly understood. Here we assessed the transport of BACE1 from early to recycling endosomes and have identified essential roles for the sorting nexin 4 (SNX4)-mediated, signal-independent pathway and for a novel signal-mediated pathway. The signal-mediated pathway is regulated by the phosphorylation of the DXXLL-motif sequence DISLL in the cytoplasmic tail of BACE1. The phosphomimetic S498D BACE1 mutant was trafficked to recycling endosomes at a faster rate compared with wild-type BACE1 or the nonphosphorylatable S498A mutant. The rapid transit of BACE1 S498D from early endosomes was coupled with reduced levels of amyloid precursor protein processing and Aβ production, compared with the S498A mutant. We show that the adaptor, GGA1, and retromer are essential to mediate rapid trafficking of phosphorylated BACE1 to recycling endosomes. In addition, the BACE1 DISLL motif is phosphorylated and regulates endosomal trafficking, in primary neurons. Therefore, post-translational phosphorylation of DISLL enhances the exit of BACE1 from early endosomes, a pathway mediated by GGA1 and retromer, which is important in regulating Aβ production. PMID:29142073

  13. Determinants of [Cl−] in recycling and late endosomes and Golgi complex measured using fluorescent ligands

    PubMed Central

    Sonawane, N.D.; Verkman, A.S.

    2003-01-01

    Chloride concentration ([Cl−]) was measured in defined organellar compartments using fluorescently labeled transferrin, α2-macroglobulin, and cholera toxin B-subunit conjugated with Cl−-sensitive and -insensitive dyes. In pulse-chase experiments, [Cl−] in Tf-labeled early/recycling endosomes in J774 cells was 20 mM just after internalization, increasing to 41 mM over ∼10 min in parallel to a drop in pH from 6.91 to 6.05. The low [Cl−] just after internalization (compared with 137 mM solution [Cl−]) was prevented by reducing the interior-negative Donnan potential. [Cl−] in α2-macroglobulin–labeled endosomes, which enter a late compartment, increased from 28 to 58 mM at 1–45 min after internalization, whereas pH decreased from 6.85 to 5.20. Cl− accumulation was prevented by bafilomycin but restored by valinomycin. A Cl− channel inhibitor slowed endosomal acidification and Cl− accumulation by ∼2.5-fold. [Cl−] was 49 mM and pH was 6.42 in cholera toxin B subunit–labeled Golgi complex in Vero cells; Golgi compartment Cl− accumulation and acidification were reversed by bafilomycin. Our experiments provide evidence that Cl− is the principal counter ion accompanying endosomal and Golgi compartment acidification, and that an interior-negative Donnan potential is responsible for low endosomal [Cl−] early after internalization. We propose that reduced [Cl−] and volume in early endosomes permits endosomal acidification and [Cl−] accumulation without lysis. PMID:12668661

  14. Engagement of the small GTPase Rab31 protein and its effector, early endosome antigen 1, is important for trafficking of the ligand-bound epidermal growth factor receptor from the early to the late endosome.

    PubMed

    Chua, Christelle En Lin; Tang, Bor Luen

    2014-05-02

    Rab31 is a member of the Rab5 subfamily of Rab GTPases. Although localized largely to the trans-Golgi network, it shares common guanine nucleotide exchange factors and effectors with other Rab5 subfamily members that have been implicated in endocytic membrane traffic. We investigated whether Rab31 also has a role in the trafficking of the ligand-bound EGF receptor (EGFR) internalized through receptor-mediated endocytosis. We found that loss of Rab31 inhibits, but overexpression enhances, EGFR trafficking to the late endosomes and that the effect of Rab31 silencing could be specifically rescued by overexpression of a silencing-resistant form of Rab31. Rab31 was found to interact with the EGFR by coimmunoprecipitation and affinity pulldown analyses, and the primarily trans-Golgi network-localized Rab31 has increased colocalization with the EGFR in A431 cells 30 min after pulsing with EGF. A glycerol gradient sedimentation assay suggested that Rab31 is sequestered into a high molecular weight complex after stimulation with EGF, as was early endosome antigen 1 (EEA1), a factor responsible for endosomal tethering and fusion events. We found that loss of EEA1 reduced the interaction between Rab31 and the EGFR and abrogated the effect of Rab31 overexpression on the trafficking of the EGFR. Likewise, loss of GAPex5, a Rab31 guanine nucleotide exchange factor that has a role in ubiquitination and degradation of the EGFR, reduced the interaction of Rab31 with the EGFR and its effect on EGFR trafficking. Taken together, our results suggest that Rab31 is an important regulator of endocytic trafficking of the EGFR and functions in an EGFR trafficking complex that includes EEA1 and GAPex5.

  15. Engagement of the Small GTPase Rab31 Protein and Its Effector, Early Endosome Antigen 1, Is Important for Trafficking of the Ligand-bound Epidermal Growth Factor Receptor from the Early to the Late Endosome*

    PubMed Central

    Chua, Christelle En Lin; Tang, Bor Luen

    2014-01-01

    Rab31 is a member of the Rab5 subfamily of Rab GTPases. Although localized largely to the trans-Golgi network, it shares common guanine nucleotide exchange factors and effectors with other Rab5 subfamily members that have been implicated in endocytic membrane traffic. We investigated whether Rab31 also has a role in the trafficking of the ligand-bound EGF receptor (EGFR) internalized through receptor-mediated endocytosis. We found that loss of Rab31 inhibits, but overexpression enhances, EGFR trafficking to the late endosomes and that the effect of Rab31 silencing could be specifically rescued by overexpression of a silencing-resistant form of Rab31. Rab31 was found to interact with the EGFR by coimmunoprecipitation and affinity pulldown analyses, and the primarily trans-Golgi network-localized Rab31 has increased colocalization with the EGFR in A431 cells 30 min after pulsing with EGF. A glycerol gradient sedimentation assay suggested that Rab31 is sequestered into a high molecular weight complex after stimulation with EGF, as was early endosome antigen 1 (EEA1), a factor responsible for endosomal tethering and fusion events. We found that loss of EEA1 reduced the interaction between Rab31 and the EGFR and abrogated the effect of Rab31 overexpression on the trafficking of the EGFR. Likewise, loss of GAPex5, a Rab31 guanine nucleotide exchange factor that has a role in ubiquitination and degradation of the EGFR, reduced the interaction of Rab31 with the EGFR and its effect on EGFR trafficking. Taken together, our results suggest that Rab31 is an important regulator of endocytic trafficking of the EGFR and functions in an EGFR trafficking complex that includes EEA1 and GAPex5. PMID:24644286

  16. PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading.

    PubMed

    Roberts, M; Barry, S; Woods, A; van der Sluijs, P; Norman, J

    2001-09-18

    It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.

  17. Mechanisms of Entry and Endosomal Pathway of African Swine Fever Virus

    PubMed Central

    G. Sánchez, Elena; Pérez-Núñez, Daniel; Revilla, Yolanda

    2017-01-01

    African Swine Fever Virus (ASFV) causes a serious swine disease that is endemic in Africa and Sardinia and presently spreading in Russia and neighboring countries, including Poland and recently, the Czech Republic. This uncontrolled dissemination is a world-wide threat, as no specific protection or vaccine is available. ASFV is a very complex icosahedral, enveloped virus about 200 nm in diameter, which infects several members of pigs. The virus enters host cells by receptor-mediated endocytosis that depends on energy, vacuolar pH and temperature. The specific receptor(s) and attachment factor(s) involved in viral entry are still unknown, although macropinocytosis and clathrin-dependent mechanisms have been proposed. After internalization, ASFV traffics through the endolysosomal system. The capsid and inner envelope are found in early endosomes or macropinosomes early after infection, colocalizing with EEA1 and Rab5, while at later times they co-localize with markers of late endosomes and lysosomes, such as Rab7 or Lamp 1. A direct relationship has been established between the maturity of the endosomal pathway and the progression of infection in the cell. Finally, ASFV uncoating first involves the loss of the outer capsid layers, and later fusion of the inner membrane with endosomes, releasing the nude core into the cytosol. PMID:29117102

  18. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro.

    PubMed

    Canfrán-Duque, Alberto; Barrio, Luis C; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A; Busto, Rebeca

    2016-03-18

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.

  19. Generation of Rab-based transgenic lines for in vivo studies of endosome biology in zebrafish

    PubMed Central

    Clark, Brian S.; Winter, Mark; Cohen, Andrew R.; Link, Brian A.

    2011-01-01

    The Rab family of small GTPases function as molecular switches regulating membrane and protein trafficking. Individual Rab isoforms define and are required for specific endosomal compartments. To facilitate in vivo investigation of specific Rab proteins, and endosome biology in general, we have generated transgenic zebrafish lines to mark and manipulate Rab proteins. We also developed software to track and quantify endosome dynamics within time-lapse movies. The established transgenic lines ubiquitously express EGFP fusions of Rab5c (early endosomes), Rab11a (recycling endosomes), and Rab7 (late endosomes) to study localization and dynamics during development. Additionally, we generated UAS-based transgenic lines expressing constitutive active (CA) and dominant negative (DN) versions for each of these Rab proteins. Predicted localization and functional consequences for each line were verified through a variety of assays, including lipophilic dye uptake and Crumbs2a localization. In summary, we have established a toolset for in vivo analyses of endosome dynamics and functions. PMID:21976318

  20. Early Endosomal Escape of a Cyclic Cell-Penetrating Peptide Allows Effective Cytosolic Cargo Delivery

    PubMed Central

    2015-01-01

    Cyclic heptapeptide cyclo(FΦRRRRQ) (cFΦR4, where Φ is l-2-naphthylalanine) was recently found to be efficiently internalized by mammalian cells. In this study, its mechanism of internalization was investigated by perturbing various endocytic events through the introduction of pharmacologic agents and genetic mutations. The results show that cFΦR4 binds directly to membrane phospholipids, is internalized into human cancer cells through endocytosis, and escapes from early endosomes into the cytoplasm. Its cargo capacity was examined with a wide variety of molecules, including small-molecule dyes, linear and cyclic peptides of various charged states, and proteins. Depending on the nature of the cargos, they may be delivered by endocyclic (insertion of cargo into the cFΦR4 ring), exocyclic (attachment of cargo to the Gln side chain), or bicyclic approaches (fusion of cFΦR4 and cyclic cargo rings). The overall delivery efficiency (i.e., delivery of cargo into the cytoplasm and nucleus) of cFΦR4 was 4–12-fold higher than those of nonaarginine, HIV Tat-derived peptide, or penetratin. The higher delivery efficiency, coupled with superior serum stability, minimal toxicity, and synthetic accessibility, renders cFΦR4 a useful transporter for intracellular cargo delivery and a suitable system for investigating the mechanism of endosomal escape. PMID:24896852

  1. Caspase-Activated Cell-Penetrating Peptides Reveal Temporal Coupling Between Endosomal Release and Apoptosis in an RGC-5 Cell Model

    PubMed Central

    Johnson, James R.; Kocher, Brandon; Barnett, Edward M.; Marasa, Jayne; Piwnica-Worms, David

    2012-01-01

    Caspase-activatable cell-penetrating peptide (CPP) probes, designed for efficient cell uptake and specificity via cleavable intramolecular quenched-fluorophore strategies, show promise for identifying and imaging retinal ganglion cell apoptosis in vivo. However, initial cell uptake and trafficking events cannot be visualized because the probes are designed to be optically quenched in the intact state. To visualize subcellular activation events in real-time during apoptosis, a new series of matched quenched and non-quenched CPP probes were synthesized. In both native and staurosporine-differentiated RGC-5 cells, probe uptake was time- and concentration-dependent through clathrine-, caveolin- and pinocytosis-mediated endocytic mechanisms. During apoptosis, KcapTR488, a novel dual fluorophore CPP probe, revealed by multi-spectral imaging a temporal coupling of endosomal release and effector caspase activation in RGC-5 cells. The novel CPPs described herein provide new tools to study spatial and temporal regulation of endosomal permeability during apoptosis. PMID:22900707

  2. Endosomal-sorting complexes required for transport (ESCRT) pathway-dependent endosomal traffic regulates the localization of active Src at focal adhesions.

    PubMed

    Tu, Chun; Ortega-Cava, Cesar F; Winograd, Paul; Stanton, Marissa Jo; Reddi, Alagarsamy Lakku; Dodge, Ingrid; Arya, Ranjana; Dimri, Manjari; Clubb, Robert J; Naramura, Mayumi; Wagner, Kay-Uwe; Band, Vimla; Band, Hamid

    2010-09-14

    Active Src localization at focal adhesions (FAs) is essential for cell migration. How this pool is linked mechanistically to the large pool of Src at late endosomes (LEs)/lysosomes (LY) is not well understood. Here, we used inducible Tsg101 gene deletion, TSG101 knockdown, and dominant-negative VPS4 expression to demonstrate that the localization of activated cellular Src and viral Src at FAs requires the endosomal-sorting complexes required for transport (ESCRT) pathway. Tsg101 deletion also led to impaired Src-dependent activation of STAT3 and focal adhesion kinase and reduced cell migration. Impairment of the ESCRT pathway or Rab7 function led to the accumulation of active Src at aberrant LE/LY compartments followed by its loss. Analyses using fluorescence recovery after photo-bleaching show that dynamic mobility of Src in endosomes is ESCRT pathway-dependent. These results reveal a critical role for an ESCRT pathway-dependent LE/LY trafficking step in Src function by promoting localization of active Src to FAs.

  3. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    PubMed Central

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  4. Beclin 1 Is Required for Neuron Viability and Regulates Endosome Pathways via the UVRAG-VPS34 Complex

    PubMed Central

    Wold, Mitchell S.; Gong, Shiaoching; Phillips, Greg R.; Dou, Zhixun; Zhao, Yanxiang; Heintz, Nathaniel; Zong, Wei-Xing; Yue, Zhenyu

    2014-01-01

    Deficiency of autophagy protein beclin 1 is implicated in tumorigenesis and neurodegenerative diseases, but the molecular mechanism remains elusive. Previous studies showed that Beclin 1 coordinates the assembly of multiple VPS34 complexes whose distinct phosphatidylinositol 3-kinase III (PI3K-III) lipid kinase activities regulate autophagy at different steps. Recent evidence suggests a function of beclin 1 in regulating multiple VPS34-mediated trafficking pathways beyond autophagy; however, the precise role of beclin 1 in autophagy-independent cellular functions remains poorly understood. Herein we report that beclin 1 regulates endocytosis, in addition to autophagy, and is required for neuron viability in vivo. We find that neuronal beclin 1 associates with endosomes and regulates EEA1/early endosome localization and late endosome formation. Beclin 1 maintains proper cellular phosphatidylinositol 3-phosphate (PI(3)P) distribution and total levels, and loss of beclin 1 causes a disruption of active Rab5 GTPase-associated endosome formation and impairment of endosome maturation, likely due to a failure of Rab5 to recruit VPS34. Furthermore, we find that Beclin 1 deficiency causes complete loss of the UVRAG-VPS34 complex and associated lipid kinase activity. Interestingly, beclin 1 deficiency impairs p40phox-linked endosome formation, which is rescued by overexpressed UVRAG or beclin 1, but not by a coiled-coil domain-truncated beclin 1 (a UVRAG-binding mutant), Atg14L or RUBICON. Thus, our study reveals the essential role for beclin 1 in neuron survival involving multiple membrane trafficking pathways including endocytosis and autophagy, and suggests that the UVRAG-beclin 1 interaction underlies beclin 1's function in endocytosis. PMID:25275521

  5. Fusion of Enveloped Viruses in Endosomes

    PubMed Central

    White, Judith M.; Whittaker, Gary R.

    2016-01-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH, and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion triggering mechanisms. A key take home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors, and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. PMID:26935856

  6. Endosomal Redox Signaling in the Antiphospholipid Syndrome.

    PubMed

    Lackner, Karl J; Manukyan, Davit; Müller-Calleja, Nadine

    2017-04-01

    It is well established that the antiphospholipid syndrome (APS) is caused by antiphospholipid antibodies (aPL). While several underlying mechanisms have been described in the past, many open questions remain. Here, we will review data on endosomal signaling and, in particular, redox signaling in APS. Endosomal redox signaling has been implicated in several cellular processes including signaling of proinflammatory cytokines. We have shown that certain aPL can activate endosomal NADPH-oxidase (NOX) in several cell types followed by induction of proinflammatory and procoagulant cellular responses in vitro. Involvement of endosomes in aPL signaling has also been reported by others. In wild-type mice but not in NOX-deficient mice, aPL accelerate venous thrombus formation underscoring the relevance of endosomal NOX. Furthermore, hydroxychloroquine (HCQ) inhibits activation of endosomal NOX and prevents thrombus formation in aPL-treated mice. Endosomal redox signaling is an important novel mechanism involved in APS pathogenesis. This makes endosomes a potential target for future treatment approaches of APS.

  7. Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity*

    PubMed Central

    van der Kant, Rik; Jonker, Caspar T. H.; Wijdeven, Ruud H.; Bakker, Jeroen; Janssen, Lennert; Klumperman, Judith; Neefjes, Jacques

    2015-01-01

    Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway. PMID:26463206

  8. A non-aggregating Surfactant Protein C mutant is misdirected to early endosomes and disrupts phospholipid recycling

    PubMed Central

    Beers, Michael F.; Hawkins, Arie; Maguire, Jean Ann; Kotorashvili, Adam; Zhao, Ming; Newitt, Jennifer L.; Ding, Wenge; Russo, Scott; Guttentag, Susan; Gonzales, Linda; Mulugeta, Surafel

    2011-01-01

    Interstitial lung disease in both children and adults has been linked to mutations in the lung-specific Surfactant protein C gene (SFTPC). Among these, the missense mutation (isoleucine to threonine at codon 73 = hSP-CI73T) accounts for ~30% of all described SFTPC mutations. We reported previously that unlike the BRICHOS misfolding SFTPC mutants, expression of hSP-CI73T induces lung remodeling and alveolar lipoproteinosis without a substantial ER stress response or ER-mediated intrinsic apoptosis. We show here that, in contrast to its wild type counterpart that is directly routed to lysosomal-like organelles for processing, SP-CI73T is misdirected to the plasma membrane and subsequently internalized to the endocytic pathway via early endosomes, leading to the accumulation of abnormally processed proSP-C isoforms. Functionally, cells expressing hSP-CI73T demonstrated both impaired uptake and degradation of surfactant phospholipid, thus providing a molecular mechanism for the observed lipid accumulation in patients expressing hSP-CI73T through the disruption of normal phospholipid recycling. Our data provide evidence for a novel cellular mechanism for conformational protein associated diseases, and suggest a paradigm for mistargeted proteins involved in the disruption of the endosomal/lysosomal sorting machinery. PMID:21707890

  9. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatsumi, Akinori; Shoji, Jun-ya; Kikuma, Takashi

    2007-10-19

    Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in themore » wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function.« less

  10. Endocytosis of wheat germ agglutinin binding sites from the cell surface into a tubular endosomal network.

    PubMed

    Raub, T J; Koroly, M J; Roberts, R M

    1990-04-01

    By using fluorescence and electron microscopy, the endocytic pathway encountered by cell surface components after they had bound wheat germ agglutinin (WGA) was visualized. The majority of these components are thought to consist of sialylated glycoproteins (HMWAG) that represent a subpopulation of the total cell surface proteins but most of the externally disposed plasma membrane proteins of the cell. Examination of semi-thin sections by medium- and high-voltage electron microscopy revealed the three-dimensional organization of vesicular and tubular endosomes. Binding of either fluorescein isothiocyanate-, horseradish peroxidase-, or ferritin-conjugated WGA to cells at 4 degrees C showed that the HMWAG were distributed uniformly over the cell surface. Warming of surface-labeled cells to 37 degrees C resulted in the endocytosis of WGA into peripheral endosomes via invagination of regions of both coated and uncoated membrane. The peripheral endosome appeared as isolated complexes comprising a vesicular element (300-400 nm diam.) surrounded by and continuous with tubular cisternae (45-60 nm diam.), which did not interconnect the endosomes. After 30 min or more label also became localized in a network of anastomosing tubules (45-60 nm diam.) that were located in the centrosomal region of the cell. Endocytosed WGA-HMWAG complexes did not become associated with cisternae of the Golgi apparatus, although tubular and vesicular endosomes were noted in the vicinity of the trans-Golgi region. The accumulation of WGA-HMWAG in the endosomes within the centrosomal region was inhibited when cells were incubated at 18 degrees C. None of these compartments contained acid phosphatase activity, a result that is consistent with other data that the HMWAG do not pass through lysosomes initially. The kinetics of labeling were consistent with the interpretation that recycling of most of the WGA binding surface glycoproteins occurred rapidly from early peripheral endosomes followed by the

  11. Structural Basis for Endosomal Targeting by the Bro1 Domain

    PubMed Central

    Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M.; Odorizzi, Greg; Hurley, James H.

    2010-01-01

    Summary Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs. PMID:15935782

  12. The structure and function of presynaptic endosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jähne, Sebastian, E-mail: sebastian.jaehne1@stud.uni-goettingen.de; International Max Planck Research School for Neurosciences, 37077 Göttingen; Rizzoli, Silvio O.

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in themore » sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.« less

  13. Receptor-mediated endocytosis of asialoglycoproteins by rat liver hepatocytes: biochemical characterization of the endosomal compartments

    PubMed Central

    1985-01-01

    The endocytic compartments of the asialoglycoprotein (ASGP) pathway in rat hepatocytes were studied using a combined morphological and biochemical approach in the isolated perfused liver. Use of electron microscopic tracers and a temperature-shift protocol to synchronize ligand entry confirmed the route of ASGP internalization observed in our previous in vivo studies (1) and established conditions under which we could label the contents of successive compartments in the pathway for subcellular fractionation studies. Three endosomal compartments were demonstrated in which ASGPs appear after they enter the cell via coated pits and vesicles but before they reach their site of degradation in lysosomes. These three compartments could be distinguished by their location within the hepatocyte, by their morphological appearance in situ, and by their density in sucrose gradients. The distributions of ASGP receptors, both accessible and latent (revealed by detergent permeabilization), were also examined and compared with that of ligand during subcellular fractionation. Most accessible ASGP receptors co-distributed with conventional plasma membrane markers. However, hepatocytes contain a substantial intracellular pool of latent ASGP binding sites that exceeds the number of cell surface receptors and whose presence is not dependent on ASGP exposure. The distribution of these latent ASGP receptors on sucrose gradients (detected either immunologically or by binding assays) was coincident with that of ligand sequestered within the early endosome compartments. In addition, both early endosomes and the membrane vesicles containing latent ASGP receptors had high cholesterol content, because both shifted markedly in density upon exposure to digitonin. PMID:2866191

  14. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, L.; Xu, F.; Reinhard, B. M.

    2016-07-01

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF

  15. Endothelin-converting enzyme 1 degrades neuropeptides in endosomes to control receptor recycling.

    PubMed

    Roosterman, Dirk; Cottrell, Graeme S; Padilla, Benjamin E; Muller, Laurent; Eckman, Christopher B; Bunnett, Nigel W; Steinhoff, Martin

    2007-07-10

    Neuropeptide signaling requires the presence of G protein-coupled receptors (GPCRs) at the cell surface. Activated GPCRs interact with beta-arrestins, which mediate receptor desensitization, endocytosis, and mitogenic signaling, and the peptide-receptor-arrestin complex is sequestered into endosomes. Although dissociation of beta-arrestins is required for receptor recycling and resensitization, the critical event that initiates this process is unknown. Here we report that the agonist availability in the endosomes, controlled by the membrane metalloendopeptidase endothelin-converting enzyme 1 (ECE-1), determines stability of the peptide-receptor-arrestin complex and regulates receptor recycling and resensitization. Substance P (SP) binding to the tachykinin neurokinin 1 receptor (NK1R) induced membrane translocation of beta-arrestins followed by trafficking of the SP-NK1R-beta-arrestin complex to early endosomes containing ECE-1a-d. ECE-1 degraded SP in acidified endosomes, disrupting the complex; beta-arrestins returned to the cytosol, and the NK1R, freed from beta-arrestins, recycled and resensitized. An ECE-1 inhibitor, by preventing NK1R recycling in endothelial cells, inhibited resensitization of SP-induced inflammation. This mechanism is a general one because ECE-1 similarly regulated NK3R resensitization. Thus, peptide availability in endosomes, here regulated by ECE-1, determines the stability of the peptide-receptor-arrestin complex. This mechanism regulates receptor recycling, which is necessary for sustained signaling, and it may also control beta-arrestin-dependent mitogenic signaling of endocytosed receptors. We propose that other endosomal enzymes and transporters may similarly control the availability of transmitters in endosomes to regulate trafficking and signaling of GPCRs. Antagonism of these endosomal processes represents a strategy for inhibiting sustained signaling of receptors, and defects may explain the tachyphylaxis of drugs that are

  16. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis.

    PubMed

    Marsh, M; Schmid, S; Kern, H; Harms, E; Male, P; Mellman, I; Helenius, A

    1987-04-01

    Endosomes are prelysosomal organelles that serve as an intracellular site for the sorting, distribution, and processing of receptors, ligands, fluid phase components, and membrane proteins internalized by endocytosis. Whereas the overall functions of endosomes are increasingly understood, little is known about endosome structure, composition, or biogenesis. In this paper, we describe a rapid procedure that permits analytical and preparative isolation of endosomes from a variety of tissue culture cells. The procedure relies on a combination of density gradient centrifugation and free flow electrophoresis. It yields a fraction of highly purified, functionally intact organelles. As markers for endosomes in Chinese hamster ovary cells, we used endocytosed horseradish peroxidase, FITC-conjugated dextran, and [35S]methionine-labeled Semliki Forest virus. Total postnuclear supernatants, crude microsomal pellets, or partially purified Golgi fractions were subjected to free flow electrophoresis. Endosomes and lysosomes migrated together as a single anodally deflected peak separated from most other organelles (plasma membrane, mitochondria, endoplasmic reticulum, and Golgi). The endosomes and lysosomes were then resolved by centrifugation in Percoll density gradients. Endosomes prepared in this way were enriched up to 70-fold relative to the initial homogenate and were still capable of ATP-dependent acidification. By electron microscopy, the isolated organelles were found to consist of electron lucent vacuoles and tubules, many of which could be shown to contain an endocytic tracer (e.g., horseradish peroxidase). SDS PAGE analysis of integral and peripheral membrane proteins (separated from each other by condensation in Triton X-114) revealed a unique and restricted subset of proteins when compared with lysosomes, the unshifted free flow electrophoresis peak, and total cell protein. Altogether, the purification procedure takes 5-6 h and yields amounts of endosomes (150

  17. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes.

    PubMed

    Wang, Chensu; Zhao, Tian; Li, Yang; Huang, Gang; White, Michael A; Gao, Jinming

    2017-04-01

    Endosomes and lysosomes play a critical role in various aspects of cell physiology such as nutrient sensing, receptor recycling, protein/lipid catabolism, and cell death. In drug delivery, endosomal release of therapeutic payloads from nanocarriers is also important in achieving efficient delivery of drugs to reach their intracellular targets. Recently, we invented a library of ultra pH-sensitive (UPS) nanoprobes with exquisite fluorescence response to subtle pH changes. The UPS nanoprobes also displayed strong pH-specific buffer effect over small molecular bases with broad pH responses (e.g., chloroquine and NH 4 Cl). Tunable pH transitions from 7.4 to 4.0 of UPS nanoprobes cover the entire physiological pH of endocytic organelles (e.g., early and late endosomes) and lysosomes. These unique physico-chemical properties of UPS nanoprobes allowed a 'detection and perturbation' strategy for the investigation of luminal pH in cell signaling and metabolism, which introduces a nanotechnology-enabled paradigm for the biological studies of endosomes and lysosomes. Published by Elsevier B.V.

  18. Functions of Adaptor Protein (AP)-3 and AP-1 in Tyrosinase Sorting from Endosomes to MelanosomesD⃞

    PubMed Central

    Theos, Alexander C.; Tenza, Danièle; Martina, José A.; Hurbain, Ilse; Peden, Andrew A.; Sviderskaya, Elena V.; Stewart, Abigail; Robinson, Margaret S.; Bennett, Dorothy C.; Cutler, Daniel F.; Bonifacino, Juan S.; Marks, Michael S.; Raposo, Graça

    2005-01-01

    Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies. PMID:16162817

  19. Solo/Trio8, a membrane-associated short isoform of Trio, modulates endosome dynamics and neurite elongation.

    PubMed

    Sun, Ying-Jie; Nishikawa, Kaori; Yuda, Hideki; Wang, Yu-Lai; Osaka, Hitoshi; Fukazawa, Nobuna; Naito, Akira; Kudo, Yoshihisa; Wada, Keiji; Aoki, Shunsuke

    2006-09-01

    With DNA microarrays, we identified a gene, termed Solo, that is downregulated in the cerebellum of Purkinje cell degeneration mutant mice. Solo is a mouse homologue of rat Trio8-one of multiple Trio isoforms recently identified in rat brain. Solo/Trio8 contains N-terminal sec14-like and spectrin-like repeat domains followed by a single guanine nucleotide exchange factor 1 (GEF1) domain, but it lacks the C-terminal GEF2, immunoglobulin-like, and kinase domains that are typical of Trio. Solo/Trio8 is predominantly expressed in Purkinje neurons of the mouse brain, and expression begins following birth and increases during Purkinje neuron maturation. We identified a novel C-terminal membrane-anchoring domain in Solo/Trio8 that is required for enhanced green fluorescent protein-Solo/Trio8 localization to early endosomes (positive for both early-endosome antigen 1 [EEA1] and Rab5) in COS-7 cells and primary cultured neurons. Solo/Trio8 overexpression in COS-7 cells augmented the EEA1-positive early-endosome pool, and this effect was abolished via mutation and inactivation of the GEF domain or deletion of the C-terminal membrane-anchoring domain. Moreover, primary cultured neurons transfected with Solo/Trio8 showed increased neurite elongation that was dependent on these domains. These results suggest that Solo/Trio8 acts as an early-endosome-specific upstream activator of Rho family GTPases for neurite elongation of developing Purkinje neurons.

  20. Peroxisomes, lipid droplets, and endoplasmic reticulum “hitchhike” on motile early endosomes

    PubMed Central

    Guimaraes, Sofia C.; Schuster, Martin; Bielska, Ewa; Dagdas, Gulay; Kilaru, Sreedhar; Meadows, Ben R.A.; Schrader, Michael

    2015-01-01

    Intracellular transport is mediated by molecular motors that bind cargo to be transported along the cytoskeleton. Here, we report, for the first time, that peroxisomes (POs), lipid droplets (LDs), and the endoplasmic reticulum (ER) rely on early endosomes (EEs) for intracellular movement in a fungal model system. We show that POs undergo kinesin-3– and dynein-dependent transport along microtubules. Surprisingly, kinesin-3 does not colocalize with POs. Instead, the motor moves EEs that drag the POs through the cell. PO motility is abolished when EE motility is blocked in various mutants. Most LD and ER motility also depends on EE motility, whereas mitochondria move independently of EEs. Covisualization studies show that EE-mediated ER motility is not required for PO or LD movement, suggesting that the organelles interact with EEs independently. In the absence of EE motility, POs and LDs cluster at the growing tip, whereas ER is partially retracted to subapical regions. Collectively, our results show that moving EEs interact transiently with other organelles, thereby mediating their directed transport and distribution in the cell. PMID:26620910

  1. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494

    PubMed Central

    Verma, Jitender Kumar; Rastogi, Ruchir

    2017-01-01

    Several intracellular pathogens arrest the phagosome maturation in the host cells to avoid transport to lysosomes. In contrast, the Leishmania containing parasitophorous vacuole (PV) is shown to recruit lysosomal markers and thus Leishmania is postulated to be residing in the phagolysosomes in macrophages. Here, we report that Leishmania donovani specifically upregulates the expression of Rab5a by degrading c-Jun via their metalloprotease gp63 to downregulate the expression of miR-494 in THP-1 differentiated human macrophages. Our results also show that miR-494 negatively regulates the expression of Rab5a in cells. Subsequently, L. donovani recruits and retains Rab5a and EEA1 on PV to reside in early endosomes and inhibits transport to lysosomes in human macrophages. Similarly, we have also observed that Leishmania PV also recruits Rab5a by upregulating its expression in human PBMC differentiated macrophages. However, the parasite modulates the endosome by recruiting Lamp1 and inactive pro-CathepsinD on PV via the overexpression of Rab5a in infected cells. Furthermore, siRNA knockdown of Rab5a or overexpression of miR-494 in human macrophages significantly inhibits the survival of the parasites. These results provide the first mechanistic insights of parasite-mediated remodeling of endo-lysosomal trafficking to reside in a specialized early endocytic compartment. PMID:28650977

  2. Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity.

    PubMed

    LaMontagne, Erica D; Heese, Antje

    2017-12-01

    In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses. Copyright © 2017. Published by Elsevier Ltd.

  3. Calnuc Function in Endosomal Sorting of Lysosomal Receptors.

    PubMed

    Larkin, Heidi; Costantino, Santiago; Seaman, Matthew N J; Lavoie, Christine

    2016-04-01

    Calnuc is a ubiquitous Ca(2+)-binding protein present on the trans-Golgi network (TGN) and endosomes. However, the precise role of Calnuc in these organelles is poorly characterized. We previously highlighted the role of Calnuc in the transport of LRP9, a new member of a low-density lipoprotein (LDL) receptor subfamily that cycles between the TGN and endosomes. The objective of this study was to explore the role of Calnuc in the endocytic sorting of mannose-6-phosphate receptor (MPR) and Sortilin, two well-characterized lysosomal receptors that transit between the TGN and endosomes. Using biochemical and microscopy assays, we showed that Calnuc depletion [by small interfering RNA (siRNA)] causes the misdelivery to and degradation in lysosomes of cationic-independent mannose-6-phosphate receptor (CI-MPR) and Sortilin due to a defect in the endosomal recruitment of retromers, which are key components of the endosome-to-Golgi retrieval machinery. Indeed, we demonstrated that Calnuc depletion impairs the activation and membrane association of Rab7, a small G protein required for the endosomal recruitment of retromers. Overall, our data indicate a novel role for Calnuc in the endosome-to-TGN retrograde transport of lysosomal receptors through the regulation of Rab7 activity and the recruitment of retromers to endosomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    PubMed Central

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  5. PIKfyve Regulation of Endosome-Linked Pathways

    PubMed Central

    de Lartigue, Jane; Polson, Hannah; Feldman, Morri; Shokat, Kevan; Tooze, Sharon A; Urbé, Sylvie; Clague, Michael J

    2009-01-01

    The phosphoinositide 5-kinase (PIKfyve) is a critical enzyme for the synthesis of PtdIns(3,5)P2, that has been implicated in various trafficking events associated with the endocytic pathway. We have now directly compared the effects of siRNA-mediated knockdown of PIKfyve in HeLa cells with a specific pharmacological inhibitor of enzyme activity. Both approaches induce changes in the distribution of CI-M6PR and trans-Golgi network (TGN)-46 proteins, which cycles between endosomes and TGN, leading to their accumulation in dispersed punctae, whilst the TGN marker golgin-245 retains a perinuclear disposition. Trafficking of CD8-CI-M6PR (retromer-dependent) and CD8-Furin (retromer-independent) chimeras from the cell surface to the TGN is delayed following drug administration, as is the transport of the Shiga toxin B-subunit. siRNA knockdown of PIKfyve produced no defect in epidermal growth factor receptor (EGFR) degradation, unless combined with knockdown of its activator molecule Vac14, suggesting that a low threshold of PtdIns(3,5)P2 is necessary and sufficient for this pathway. Accordingly pharmacological inhibition of PIKfyve results in a profound block to the lysosomal degradation of activated epidermal growth factor (EGF) and Met receptors. Immunofluorescence revealed EGF receptors to be trapped in the interior of a swollen endosomal compartment. In cells starved of amino acids, PIKfyve inhibition leads to the accumulation of the lipidated form of GFP-LC3, a marker of autophagosomal structures, which can be visualized as fluorescent punctae. We suggest that PIKfyve inhibition may render the late endosome/lysosome compartment refractory to fusion with both autophagosomes and with EGFR-containing multivesicular bodies. PMID:19582903

  6. Role for Dynamin in Late Endosome Dynamics and Trafficking of the Cation-independent Mannose 6-Phosphate Receptor

    PubMed Central

    Nicoziani, Paolo; Vilhardt, Frederik; Llorente, Alicia; Hilout, Leila; Courtoy, Pierre J.; Sandvig, Kirsten; van Deurs, Bo

    2000-01-01

    It is well established that dynamin is involved in clathrin-dependent endocytosis, but relatively little is known about possible intracellular functions of this GTPase. Using confocal imaging, we found that endogenous dynamin was associated with the plasma membrane, the trans-Golgi network, and a perinuclear cluster of cation-independent mannose 6-phosphate receptor (CI-MPR)–containing structures. By electron microscopy (EM), it was shown that these structures were late endosomes and that the endogenous dynamin was preferentially localized to tubulo-vesicular appendices on these late endosomes. Upon induction of the dominant-negative dynK44A mutant, confocal microscopy demonstrated a redistribution of the CI-MPR in mutant-expressing cells. Quantitative EM analysis of the ratio of CI-MPR to lysosome-associated membrane protein-1 in endosome profiles revealed a higher colocalization of the two markers in dynK44A-expressing cells than in control cells. Western blot analysis showed that dynK44A-expressing cells had an increased cellular procathepsin D content. Finally, EM revealed that in dynK44A-expressing cells, endosomal tubules containing CI-MPR were formed. These results are in contrast to recent reports that dynamin-2 is exclusively associated with endocytic structures at the plasma membrane. They suggest instead that endogenous dynamin also plays an important role in the molecular machinery behind the recycling of the CI-MPR from endosomes to the trans-Golgi network, and we propose that dynamin is required for the final scission of vesicles budding from endosome tubules. PMID:10679008

  7. Association of p60c-src with endosomal membranes in mammalian fibroblasts

    PubMed Central

    1992-01-01

    We have examined the subcellular localization of p60c-src in mammalian fibroblasts. Analysis of indirect immunofluorescence by three- dimensional optical sectioning microscopy revealed a granular cytoplasmic staining that co-localized with the microtubule organizing center. Immunofluorescence experiments with antibodies against a number of membrane markers demonstrated a striking co-localization between p60c-src and the cation-dependent mannose-6-phosphate receptor (CI- MPR), a marker that identifies endosomes. Both p60c-src and the CI-MPR were found to cluster at the spindle poles throughout mitosis. In addition, treatment of interphase and mitotic cells with brefeldin A resulted in a clustering of p60c-src and CI-MPR at a peri-centriolar position. Biochemical fractionation of cellular membranes showed that a major proportion of p60c-src co-enriched with endocytic membranes. Treatment of membranes containing HRP to alter their apparent density also altered the density of p60c-src-containing membranes. Similar density shift experiments with total cellular membranes revealed that the majority of membrane-associated p60c-src in the cell is associated with endosomes, while very little is associated with plasma membranes. These results support a role for p60c-src in the regulation of endosomal membranes and protein trafficking. PMID:1378446

  8. Enhancing Endosomal Escape of Transduced Proteins by Photochemical Internalisation

    PubMed Central

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro. PMID:23285056

  9. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    PubMed

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  10. The endosomal recycling of FgSnc1 by FgSnx41-FgSnx4 heterodimer is essential for polarized growth and pathogenicity in Fusarium graminearum.

    PubMed

    Zheng, Wenhui; Lin, Yahong; Fang, Wenqin; Zhao, Xu; Lou, Yi; Wang, Guanghui; Zheng, Huawei; Liang, Qifu; Abubakar, Yakubu Saddeeq; Olsson, Stefan; Zhou, Jie; Wang, Zonghua

    2018-04-20

    Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  11. MHC class II presentation of gp100 epitopes in melanoma cells requires the function of conventional endosomes, and is influenced by melanosomes1

    PubMed Central

    Robila, Valentina; Ostankovitch, Marina; Altrich-VanLith, Michelle L.; Theos, Alexander C.; Drover, Sheila; Marks, Michael S.; Restifo, Nicholas; Engelhard, Victor H.

    2009-01-01

    Many human solid tumors express MHC II molecules, and proteins normally localized to melanosomes give rise to MHC II restricted epitopes in melanoma. However, the pathways by which this occurs have not been defined. We analyzed the processing of one such epitope, gp10044-59, derived from gp100/Pmel17. In melanomas that have down-regulated components of the melanosomal pathway, but constitutively express HLA-DR*0401, the majority of gp100 is sorted to LAMP-1hi/MHC II+ late endosomes. Using mutant gp100 molecules with altered intracellular trafficking, we demonstrate that endosomal localization is necessary for gp10044-59 presentation. By depletion of the AP2 adaptor protein using siRNA, we demonstrate that gp100 protein internalized from the plasma membrane to such endosomes is a major source for gp10044-59 epitope production. Gp100 trapped in early endosomes gives rise to epitopes that are indistinguishable from those produced in late endosomes but their production is less sensitive to inhibition of lysosomal proteases. In melanomas containing melanosomes, gp100 is underrepresented in late endosomes, and accumulates in stage II melanosomes devoid of MHC II molecules. Gp10044-59 presentation is dramatically reduced, and processing occurs entirely in early endosomes / stage I melanosomes. This suggests that melanosomes are inefficient antigen processing compartments. Thus, melanoma de-differentiation may be accompanied by increased presentation of MHC II restricted epitopes from gp100 and other melanosome-localized proteins, leading to enhanced immune recognition. PMID:19017974

  12. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    PubMed

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-04-12

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

  13. The Na+/H+ Exchanger NHE6 Modulates Endosomal pH to Control Processing of Amyloid Precursor Protein in a Cell Culture Model of Alzheimer Disease*

    PubMed Central

    Prasad, Hari; Rao, Rajini

    2015-01-01

    Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na+/H+ exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na+/H+ ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na+/H+ exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology. PMID:25561733

  14. Endosome-Associated CRT1 Functions Early in Resistance Gene–Mediated Defense Signaling in Arabidopsis and Tobacco[W

    PubMed Central

    Kang, Hong-Gu; Oh, Chang-Sik; Sato, Masanao; Katagiri, Fumiaki; Glazebrook, Jane; Takahashi, Hideki; Kachroo, Pradeep; Martin, Gregory B.; Klessig, Daniel F.

    2010-01-01

    Resistance gene–mediated immunity confers protection against pathogen infection in a wide range of plants. A genetic screen for Arabidopsis thaliana mutants compromised for recognition of turnip crinkle virus previously identified CRT1, a member of the GHKL ATPase/kinase superfamily. Here, we demonstrate that CRT1 interacts with various resistance proteins from different structural classes, and this interaction is disrupted when these resistance proteins are activated. The Arabidopsis mutant crt1-2 crh1-1, which lacks CRT1 and its closest homolog, displayed compromised resistance to avirulent Pseudomonas syringae and Hyaloperonospora arabidopsidis. Additionally, resistance-associated hypersensitive cell death was suppressed in Nicotiana benthamiana silenced for expression of CRT1 homolog(s). Thus, CRT1 appears to be a general factor for resistance gene–mediated immunity. Since elevation of cytosolic calcium triggered by avirulent P. syringae was compromised in crt1-2 crh1-1 plants, but cell death triggered by Nt MEK2DD was unaffected in CRT1-silenced N. benthamiana, CRT1 likely functions at an early step in this pathway. Genome-wide transcriptome analysis led to identification of CRT1-Associated genes, many of which are associated with transport processes, responses to (a)biotic stress, and the endomembrane system. Confocal microscopy and subcellular fractionation revealed that CRT1 localizes to endosome-like vesicles, suggesting a key process in resistance protein activation/signaling occurs in this subcellular compartment. PMID:20332379

  15. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  16. Endothelin-converting enzyme-1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones

    PubMed Central

    Pelayo, Juan-Carlos; Poole, Daniel P; Steinhoff, Martin; Cottrell, Graeme S; Bunnett, Nigel W

    2011-01-01

    Abstract Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by β-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by β-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK1R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nm, 10 min) induced interaction of NK1R and β-arrestin at the plasma membrane, and the SP–NK1R–β-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK1R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H+ATPase inhibitor bafilomycin A1, which prevent endosomal SP degradation, suppressed NK1R recycling by >50%. Preincubation of neurones with SP (10 nm, 5 min) desensitized Ca2+ transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK1R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP–NK1R–β-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK1R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating β-arrestin-mediated endosomal signalling. PMID:21878523

  17. Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction.

    PubMed

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Vázquez-Chávez, Elena; Lasserre, Rémi; Agüera-González, Sonia; Cuche, Céline; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2017-04-01

    The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease.

    PubMed

    Prasad, Hari; Rao, Rajini

    2015-02-27

    Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na(+)/H(+) exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na(+)/H(+) ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na(+)/H(+) exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Crucial role of neuron-enriched endosomal protein of 21 kDa in sorting between degradation and recycling of internalized G-protein-coupled receptors.

    PubMed

    Debaigt, Colin; Hirling, Harald; Steiner, Pascal; Vincent, Jean-Pierre; Mazella, Jean

    2004-08-20

    Recycling of endocytosed G-protein-coupled receptors involves a series of molecular events through early and recycling endosomes. The purpose of this work was to study the role of neuron-enriched endosomal protein of 21 kDa (NEEP21) in the recycling process of neurotensin receptors-1 and -2. Here we showed that suppression of NEEP21 expression does not modify the internalization rate of both receptors but strongly inhibited the recycling of the neurotensin receptor-2. In contrast, overexpression of NEEP21 changes the behavior of the neurotensin receptor-1 from a non-recycling to a recycling state. Recycling of the neurotensin receptor-2 involves both the phosphatidylinositol 3-kinase and the recycling endosome pathways, whereas recycling of the neurotensin receptor-1 induced by overexpression of NEEP21 only occurs by the phosphatidylinositol 3-kinase-dependent pathway. Taken together, these results confirm the essential role of NEEP21 in the recycling mechanism and show that this protein acts at the level of early endosomes to promote sorting of receptors toward a recycling pathway.

  20. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  1. Cholesterol transfer at endosomal-organelle membrane contact sites.

    PubMed

    Ridgway, Neale D; Zhao, Kexin

    2018-06-01

    Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.

  2. Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes

    PubMed Central

    Bielska, Ewa; Schuster, Martin; Roger, Yvonne; Berepiki, Adokiye; Soanes, Darren M.; Talbot, Nicholas J.

    2014-01-01

    Bidirectional membrane trafficking along microtubules is mediated by kinesin-1, kinesin-3, and dynein. Several organelle-bound adapters for kinesin-1 and dynein have been reported that orchestrate their opposing activity. However, the coordination of kinesin-3/dynein-mediated transport is not understood. In this paper, we report that a Hook protein, Hok1, is essential for kinesin-3– and dynein-dependent early endosome (EE) motility in the fungus Ustilago maydis. Hok1 binds to EEs via its C-terminal region, where it forms a complex with homologues of human fused toes (FTS) and its interactor FTS- and Hook-interacting protein. A highly conserved N-terminal region is required to bind dynein and kinesin-3 to EEs. To change the direction of EE transport, kinesin-3 is released from organelles, and dynein binds subsequently. A chimaera of human Hook3 and Hok1 rescues the hok1 mutant phenotype, suggesting functional conservation between humans and fungi. We conclude that Hok1 is part of an evolutionarily conserved protein complex that regulates bidirectional EE trafficking by controlling attachment of both kinesin-3 and dynein. PMID:24637326

  3. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A

    PubMed Central

    Phillips-Krawczak, Christine A.; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G.; Li, Haiying; Dick, Christopher J.; Gomez, Timothy S.; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F.; Geng, Linda N.; Kaufmann, Scott H.; Hein, Marco Y.; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; van de Sluis, Bart; Billadeau, Daniel D.; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling. PMID:25355947

  4. Marburg virus inclusions: A virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment.

    PubMed

    Dolnik, Olga; Stevermann, Lea; Kolesnikova, Larissa; Becker, Stephan

    2015-01-01

    Filovirus infection of target cells leads to the formation of virally induced cytoplasmic inclusions that contain viral nucleocapsids at different stages of maturation. While the role of the inclusions has been unclear since the identification of Marburg and Ebola viruses, it recently became clear that the inclusions are the sites of viral replication, nucleocapsid formation and maturation. Live cell imaging analyses revealed that mature nucleocapsids are transported from inclusions to the filopodia, which represent the major budding sites. Moreover, inclusions recruit cellular proteins that have been shown to support the transport of nucleocapsids. For example, the tumor susceptibility gene 101 protein (Tsg101) interacts with a late domain motif in the nucleocapsid protein NP and recruits the actin-nucleation factor IQGAP1. Complexes of nucleocapsids together with Tsg101 and IQGAP1 are then co-transported along actin filaments. We detected additional proteins (Alix, Nedd4 and the AAA-type ATPase VPS4) of the endosomal sorting complex required for transport (ESCRT) that are recruited into inclusions. Together, the results suggest that nucleocapsids recruit the machinery that enhances viral budding at the plasma membrane. Furthermore, we identified Lamp1 as a marker of the late endosomal compartment in inclusions, while ER, Golgi, TGN and early endosomal markers were absent. In addition, we observed that LC3, a marker of autophagosomal membranes, was present in inclusions. The 3D structures of inclusions show an intricate structure that seems to accommodate an intimate cooperation between cellular and viral components with the intention to support viral transport and budding. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. The endocytic recycling compartment maintains cargo segregation acquired upon exit from the sorting endosome

    PubMed Central

    Xie, Shuwei; Bahl, Kriti; Reinecke, James B.; Hammond, Gerald R. V.; Naslavsky, Naava; Caplan, Steve

    2016-01-01

    The endocytic recycling compartment (ERC) is a series of perinuclear tubular and vesicular membranes that regulates recycling to the plasma membrane. Despite evidence that cargo is sorted at the early/sorting endosome (SE), whether cargo mixes downstream at the ERC or remains segregated is an unanswered question. Here we use three-dimensional (3D) structured illumination microscopy and dual-channel and 3D direct stochastic optical reconstruction microscopy (dSTORM) to obtain new information about ERC morphology and cargo segregation. We show that cargo internalized either via clathrin-mediated endocytosis (CME) or independently of clathrin (CIE) remains segregated in the ERC, likely on distinct carriers. This suggests that no further sorting occurs upon cargo exit from SE. Moreover, 3D dSTORM data support a model in which some but not all ERC vesicles are tethered by contiguous “membrane bridges.” Furthermore, tubular recycling endosomes preferentially traffic CIE cargo and may originate from SE membranes. These findings support a significantly altered model for endocytic recycling in mammalian cells in which sorting occurs in peripheral endosomes and segregation is maintained at the ERC. PMID:26510502

  6. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum.

    PubMed

    Cianciola, Nicholas L; Chung, Stacey; Manor, Danny; Carlin, Cathleen R

    2017-03-15

    -mediated pathology have been a particularly rich source of information regarding intracellular protein trafficking. Our studies with the early region 3-encoded RIDα protein also provided fundamental new information regarding mechanisms of nonvesicular lipid transport and the flow of molecular information at membrane contacts between different organelles. We describe a new pathway that delivers cholesterol from endosomes to the endoplasmic reticulum, where it is esterified and stored in lipid droplets. Although lipid droplets are attracting renewed interest from the standpoint of normal physiology and human diseases, including those resulting from viral infections, experimental model systems for evaluating how and why they accumulate are still limited. Our studies also revealed an intriguing relationship between lipid droplets and innate immunity that may represent a new paradigm for viruses utilizing these organelles. Copyright © 2017 American Society for Microbiology.

  7. Modulation of Endosomal Escape of IRQ-PEGylated Nano-carrier

    NASA Astrophysics Data System (ADS)

    Mudhakir, Diky; Akita, Hidetaka; Harashima, Hideyoshi

    2011-12-01

    The novel IRQ peptide is one of cell penetrating peptides (CPPs) that has ability to induce endosomal escape. It has been demonstrated that IRQ ligand had ability to facilitate an escape of liposomes encapsulating siRNA from the endosomes presumably by fusion-independent mechanism [1,2]. In the present study, we attempted to modulate the intracellular trafficking of IRQ-modified nano-carrier in term of escaping process by changing the lipid composition. The peptide was attached to the terminal end of maleimide group of polyethylene glycol-modified liposomes (IRQ-PEG-Lip). The liposomes were composed of DOTAP, DOPE and cholesterol and it was labeled by water soluble sulpho-rhodamine B (Sr-B). The escape of PEG-coated liposomes was then observed by confocal laser scanning microscope after the endosomes were stained with Lysosensor. The results exhibited that IRQ-PEG-Lip was escaped from endosomal compartment after 1 h transfection when 40% of DOPE was incorporated into the nanostructure comparing to that of PEG-Lip. These results are consistent with the previous results that the IRQ facilitates endosomal escape via independent-mechanism. However, IRQ-PEG-Lip were then completely co-localized in the acidic compartment when density of DOPE was reduced approximately 20%. These results indicated that the utilizing of DOPE is important for the escape process even in the presence of hydrophilic PEG polymer. In conclusion, the regulation of endosomal escape ability of the PEGylated-IRQ nano-carrier was induced by fusion-independent manner as well as fusogenic lipid.

  8. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes.

    PubMed

    Sonawane, N D; Szoka, Francis C; Verkman, A S

    2003-11-07

    The "proton sponge hypothesis" postulates enhanced transgene delivery by cationic polymer-DNA complexes (polyplexes) containing H+ buffering polyamines by enhanced endosomal Cl- accumulation and osmotic swelling/lysis. To test this hypothesis, we measured endosomal Cl- concentration, pH, and volume after internalization of polyplexes composed of plasmid DNA and polylysine (POL), a non-buffering polyamine, or the strongly buffering polyamines polyethylenimine (PEI) or polyamidoamine (PAM). [Cl-] and pH were measured by ratio imaging of fluorescently labeled polyplexes containing Cl- or pH indicators. [Cl-] increased from 41 to 80 mM over 60 min in endosomes-contained POL-polyplexes, whereas pH decreased from 6.8 to 5.3. Endosomal Cl- accumulation was enhanced (115 mM at 60 min) and acidification was slowed (pH 5.9 at 60 min) for PEI and PAM-polyplexes. Relative endosome volume increased 20% over 75 min for POL-polyplexes versus 140% for PEI-polyplexes. Endosome lysis was seen at >45 min for PEI but not POL-containing endosomes, and PEI-containing endosomes showed increased osmotic fragility in vitro. The slowed endosomal acidification and enhanced Cl- accumulation and swelling/lysis were accounted for by the greater H+ buffering capacity of endosomes containing PEI or PAM versus POL (>90 mM versus 46 H+/pH unit). Our results provide direct support for the proton sponge hypothesis and thus a rational basis for the design of improved non-viral vectors for gene delivery.

  9. Overcoming endosomal barrier by amphotericin B-loaded dual pH-responsive PDMA-b-PDPA micelleplexes for siRNA delivery.

    PubMed

    Yu, Haijun; Zou, Yonglong; Wang, Yiguang; Huang, Xiaonan; Huang, Gang; Sumer, Baran D; Boothman, David A; Gao, Jinming

    2011-11-22

    The endosomal barrier is a major bottleneck for the effective intracellular delivery of siRNA by nonviral nanocarriers. Here, we report a novel amphotericin B (AmB)-loaded, dual pH-responsive micelleplex platform for siRNA delivery. Micelles were self-assembled from poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diisopropylamino)ethyl methacrylate) (PDMA-b-PDPA) diblock copolymers. At pH 7.4, AmB was loaded into the hydrophobic PDPA core, and siRNA was complexed with a positively charged PDMA shell to form the micelleplexes. After cellular uptake, the PDMA-b-PDPA/siRNA micelleplexes dissociated in early endosomes to release AmB. Live cell imaging studies demonstrated that released AmB significantly increased the ability of siRNA to overcome the endosomal barrier. Transfection studies showed that AmB-loaded micelleplexes resulted in significant increase in luciferase (Luc) knockdown efficiency over the AmB-free control. The enhanced Luc knockdown efficiency was abolished by bafilomycin A1, a vacuolar ATPase inhibitor that inhibits the acidification of the endocytic organelles. These data support the central hypothesis that membrane poration by AmB and increased endosomal swelling and membrane tension by a "proton sponge" polymer provided a synergistic strategy to disrupt endosomes for improved intracellular delivery of siRNA. © 2011 American Chemical Society

  10. Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.

    2009-09-11

    G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesizemore » that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.« less

  11. Endosome-to-Plasma Membrane Recycling of VEGFR2 Receptor Tyrosine Kinase Regulates Endothelial Function and Blood Vessel Formation

    PubMed Central

    Jopling, Helen M.; Odell, Adam F.; Pellet-Many, Caroline; Latham, Antony M.; Frankel, Paul; Sivaprasadarao, Asipu; Walker, John H.; Zachary, Ian C.; Ponnambalam, Sreenivasan

    2014-01-01

    Rab GTPases are implicated in endosome-to-plasma membrane recycling, but how such membrane traffic regulators control vascular endothelial growth factor receptor 2 (VEGFR2/KDR) dynamics and function are not well understood. Here, we evaluated two different recycling Rab GTPases, Rab4a and Rab11a, in regulating endothelial VEGFR2 trafficking and signalling with implications for endothelial cell migration, proliferation and angiogenesis. In primary endothelial cells, VEGFR2 displays co-localisation with Rab4a, but not Rab11a GTPase, on early endosomes. Expression of a guanosine diphosphate (GDP)-bound Rab4a S22N mutant caused increased VEGFR2 accumulation in endosomes. TfR and VEGFR2 exhibited differences in endosome-to-plasma membrane recycling in the presence of chloroquine. Depletion of Rab4a, but not Rab11a, levels stimulated VEGF-A-dependent intracellular signalling. However, depletion of either Rab4a or Rab11a levels inhibited VEGF-A-stimulated endothelial cell migration. Interestingly, depletion of Rab4a levels stimulated VEGF-A-regulated endothelial cell proliferation. Rab4a and Rab11a were also both required for endothelial tubulogenesis. Evaluation of a transgenic zebrafish model showed that both Rab4 and Rab11a are functionally required for blood vessel formation and animal viability. Rab-dependent endosome-to-plasma membrane recycling of VEGFR2 is important for intracellular signalling, cell migration and proliferation during angiogenesis. PMID:24785348

  12. ICAM-1 Binding Rhinoviruses A89 and B14 Uncoat in Different Endosomal Compartments

    PubMed Central

    Conzemius, Rick; Ganjian, Haleh; Blaas, Dieter

    2016-01-01

    ABSTRACT Human rhinovirus A89 (HRV-A89) and HRV-B14 bind to and are internalized by intercellular adhesion molecule 1 (ICAM-1); as demonstrated earlier, the RNA genome of HRV-B14 penetrates into the cytoplasm from endosomal compartments of the lysosomal pathway. Here, we show by immunofluorescence microscopy that HRV-A89 but not HRV-B14 colocalizes with transferrin in the endocytic recycling compartment (ERC). Applying drugs differentially interfering with endosomal recycling and with the pathway to lysosomes, we demonstrate that these two major-group HRVs productively uncoat in distinct endosomal compartments. Overexpression of constitutively active (Rab11-GTP) and dominant negative (Rab11-GDP) mutants revealed that uncoating of HRV-A89 depends on functional Rab11. Thus, two ICAM-1 binding HRVs are routed into distinct endosomal compartments for productive uncoating. IMPORTANCE Based on similarity of their RNA genomic sequences, the more than 150 currently known common cold virus serotypes were classified as species A, B, and C. The majority of HRV-A viruses and all HRV-B viruses use ICAM-1 for cell attachment and entry. Our results highlight important differences of two ICAM-1 binding HRVs with respect to their intracellular trafficking and productive uncoating; they demonstrate that serotypes belonging to species A and B, but entering the cell via the same receptors, direct the endocytosis machinery to ferry them along distinct pathways toward different endocytic compartments for uncoating. PMID:27334586

  13. Nipah virus fusion protein: Importance of the cytoplasmic tail for endosomal trafficking and bioactivity.

    PubMed

    Weis, Michael; Maisner, Andrea

    2015-01-01

    Nipah virus (NiV) is a highly pathogenic paramyxovirus which encodes two surface glycoproteins: the receptor-binding protein G and the fusion protein F. As for all paramyxoviruses, proteolytic activation of the NiV-F protein is an indispensable prerequisite for viral infectivity. Interestingly, proteolytic activation of NiV-F differs principally from other paramyxoviruses with respect to protease usage (cathepsins instead of trypsin- or furin-like proteases), and the subcellular localization where cleavage takes place (endosomes instead of Golgi or plasma membrane). To allow efficient F protein activation needed for productive virus replication and cell-to-cell fusion, the NiV-F cytoplasmic tail contains a classical tyrosine-based endocytosis signal (Y525RSL) that we have shown earlier to be needed for F uptake and proteolytic activation. In this report, we furthermore revealed that an intact endocytosis signal alone is not sufficient for full bioactivity. The very C-terminus of the cytoplasmic tail is needed in addition. Deletions of more than four residues did not affect F uptake or endosomal cleavage but downregulated the surface expression, likely by delaying the intracellular trafficking through endosomal-recycling compartments. Given that the NiV-F cytoplasmic tail is needed for timely and correct intracellular trafficking, endosomal cleavage and fusion activity, the influence of tail truncations on NiV-mediated cell-to-cell fusion and on pseudotyping lentiviral vectors is discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Stargazin-related protein γ7 is associated with signalling endosomes in superior cervical ganglion neurons and modulates neurite outgrowth

    PubMed Central

    Waithe, Dominic; Ferron, Laurent; Dolphin, Annette C.

    2011-01-01

    The role(s) of the newly discovered stargazin-like γ-subunit proteins remains unclear; although they are now widely accepted to be transmembrane AMPA receptor regulatory proteins (TARPs), rather than Ca2+ channel subunits, it is possible that they have more general roles in trafficking within neurons. We previously found that γ7 subunit is associated with vesicles when it is expressed in neurons and other cells. Here, we show that γ7 is present mainly in retrogradely transported organelles in sympathetic neurons, where it colocalises with TrkA–YFP, and with the early endosome marker EEA1, suggesting that γ7 localises to signalling endosomes. It was not found to colocalise with markers of the endoplasmic reticulum, mitochondria, lysosomes or late endosomes. Furthermore, knockdown of endogenous γ7 by short hairpin RNA transfection into sympathetic neurons reduced neurite outgrowth. The same was true in the PC12 neuronal cell line, where neurite outgrowth was restored by overexpression of human γ7. These findings open the possibility that γ7 has an essential trafficking role in relation to neurite outgrowth as a component of endosomes involved in neurite extension and growth cone remodelling. PMID:21610096

  15. Trans-infection but not infection from within endosomal compartments after cell-to-cell HIV-1 transfer to CD4+ T cells.

    PubMed

    Permanyer, Marc; Ballana, Ester; Badia, Roger; Pauls, Eduardo; Clotet, Bonaventura; Esté, José A

    2012-09-14

    Cellular contacts between HIV-1-infected donor cells and uninfected primary CD4(+) T lymphocytes lead to virus transfer into endosomes. Recent evidence suggests that HIV particles may fuse with endosomal membranes to initiate a productive infection. To explore the role of endocytosis in the entry and replication of HIV, we evaluated the infectivity of transferred HIV particles in a cell-to-cell culture model of virus transmission. Endocytosed virus led to productive infection of cells, except when cells were cultured in the presence of the anti-gp120 mAb IgGb12, an agent that blocks virus attachment to CD4, suggesting that endocytosed virus was recycled to the outer cell surface. Confocal microscopy confirmed the colocalization of internalized virus antigen and the endosomal marker dynamin. Additionally, virus transfer, fusion, or productive infection was not blocked by dynasore, dynamin-dependent endosome-scission inhibitor, at subtoxic concentrations, suggesting that the early capture of virus into intracellular compartments did not depend on endosomal maturation. Our results suggest that endocytosis is not a mechanism of infection of primary CD4 T cells, but may serve as a reservoir capable of inducing trans-infection of cells after the release of HIV particles to the extracellular environment.

  16. PIKfyve mediates the motility of late endosomes and lysosomes in neuronal dendrites.

    PubMed

    Tsuruta, Fuminori; Dolmetsch, Ricardo E

    2015-09-25

    The endosome/lysosome system in the nervous system is critically important for a variety of neuronal functions such as neurite outgrowth, retrograde transport, and synaptic plasticity. In neurons, the endosome/lysosome system is crucial for the activity-dependent internalization of membrane proteins and contributes to the regulation of lipid level on the plasma membrane. Although homeostasis of membrane dynamics plays important roles in the properties of central nervous systems, it has not been elucidated how endosome/lysosome system is regulated. Here, we report that phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) mediates the motility of late endosomes and lysosomes in neuronal dendrites. Endosomes and lysosomes are highly motile in resting neurons, however knockdown of PIKfyve led to a significant reduction in late endosomes and lysosomes motility. We also found that vesicle acidification is crucial for their motility and PIKfyve is associated with this process indirectly. These data suggest that PIKfyve mediates vesicle motility through the regulation of vesicle integrity in neurons. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Regulation of EGFR signal transduction by analogue-to-digital conversion in endosomes

    PubMed Central

    Villaseñor, Roberto; Nonaka, Hidenori; Del Conte-Zerial, Perla; Kalaidzidis, Yannis; Zerial, Marino

    2015-01-01

    An outstanding question is how receptor tyrosine kinases (RTKs) determine different cell-fate decisions despite sharing the same signalling cascades. Here, we uncovered an unexpected mechanism of RTK trafficking in this process. By quantitative high-resolution FRET microscopy, we found that phosphorylated epidermal growth factor receptor (p-EGFR) is not randomly distributed but packaged at constant mean amounts in endosomes. Cells respond to higher EGF concentrations by increasing the number of endosomes but keeping the mean p-EGFR content per endosome almost constant. By mathematical modelling, we found that this mechanism confers both robustness and regulation to signalling output. Different growth factors caused specific changes in endosome number and size in various cell systems and changing the distribution of p-EGFR between endosomes was sufficient to reprogram cell-fate decision upon EGF stimulation. We propose that the packaging of p-RTKs in endosomes is a general mechanism to ensure the fidelity and specificity of the signalling response. DOI: http://dx.doi.org/10.7554/eLife.06156.001 PMID:25650738

  18. On the entry of an emerging arbovirus into host cells: Mayaro virus takes the highway to the cytoplasm through fusion with early endosomes and caveolae-derived vesicles

    PubMed Central

    Carvalho, Carlos A.M.; Silva, Jerson L.; Oliveira, Andréa C.

    2017-01-01

    Mayaro virus (MAYV) is an emergent sylvatic alphavirus in South America, related to sporadic outbreaks of a chikungunya-like human febrile illness accompanied by severe arthralgia. Despite its high potential for urban emergence, MAYV is still an obscure virus with scarce information about its infection cycle, including the corresponding early events. Even for prototypical alphaviruses, the cell entry mechanism still has some rough edges to trim: although clathrin-mediated endocytosis is quoted as the putative route, alternative paths as distinct as direct virus genome injection through the cell plasma membrane seems to be possible. Our aim was to clarify crucial details on the entry route exploited by MAYV to gain access into the host cell. Tracking the virus since its first contact with the surface of Vero cells by fluorescence microscopy, we show that its entry occurs by a fast endocytic process and relies on fusion with acidic endosomal compartments. Moreover, blocking clathrin-mediated endocytosis or depleting cholesterol from the cell membrane leads to a strong inhibition of viral infection, as assessed by plaque assays. Following this clue, we found that early endosomes and caveolae-derived vesicles are both implicated as target membranes for MAYV fusion. Our findings unravel the very first events that culminate in a productive infection by MAYV and shed light on potential targets for a rational antiviral therapy, besides providing a better comprehension of the entry routes exploited by alphaviruses to get into the cell. PMID:28462045

  19. Global Analysis of Yeast Endosomal Transport Identifies the Vps55/68 Sorting Complex

    PubMed Central

    Schluter, Cayetana; Lam, Karen K.Y.; Brumm, Jochen; Wu, Bella W.; Saunders, Matthew; Stevens, Tom H.

    2008-01-01

    Endosomal transport is critical for cellular processes ranging from receptor down-regulation and retroviral budding to the immune response. A full understanding of endosome sorting requires a comprehensive picture of the multiprotein complexes that orchestrate vesicle formation and fusion. Here, we use unsupervised, large-scale phenotypic analysis and a novel computational approach for the global identification of endosomal transport factors. This technique effectively identifies components of known and novel protein assemblies. We report the characterization of a previously undescribed endosome sorting complex that contains two well-conserved proteins with four predicted membrane-spanning domains. Vps55p and Vps68p form a complex that acts with or downstream of ESCRT function to regulate endosomal trafficking. Loss of Vps68p disrupts recycling to the TGN as well as onward trafficking to the vacuole without preventing the formation of lumenal vesicles within the MVB. Our results suggest the Vps55/68 complex mediates a novel, conserved step in the endosomal maturation process. PMID:18216282

  20. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    PubMed

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  1. Venezuelan equine encephalitis virus entry mechanism requires late endosome formation and resists cell membrane cholesterol depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolokoltsov, Andrey A.; Fleming, Elisa H.; Davey, Robert A.

    2006-04-10

    Virus envelope proteins determine receptor utilization and host range. The choice of receptor not only permits specific targeting of cells that express it, but also directs the virus into specific endosomal trafficking pathways. Disrupting trafficking can result in loss of virus infectivity due to redirection of virions to non-productive pathways. Identification of the pathway or pathways used by a virus is, thus, important in understanding virus pathogenesis mechanisms and for developing new treatment strategies. Most of our understanding of alphavirus entry has focused on the Old World alphaviruses, such as Sindbis and Semliki Forest virus. In comparison, very little ismore » known about the entry route taken by more pathogenic New World alphaviruses. Here, we use a novel contents mixing assay to identify the cellular requirements for entry of a New World alphavirus, Venezuelan equine encephalitis virus (VEEV). Expression of dominant negative forms of key endosomal trafficking genes shows that VEEV must access clathrin-dependent endocytic vesicles for membrane fusion to occur. Unexpectedly, the exit point is different from Old World alphaviruses that leave from early endosomes. Instead, VEEV also requires functional late endosomes. Furthermore, unlike the Old World viruses, VEEV entry is insensitive to cholesterol sequestration from cell membranes and may reflect a need to access an endocytic compartment that lacks cholesterol. This indicates fundamental differences in the entry route taken by VEEV compared to Old World alphaviruses.« less

  2. The Processed Amino-Terminal Fragment of Human TLR7 Acts as a Chaperone To Direct Human TLR7 into Endosomes

    PubMed Central

    Shepherd, Dawn; Booth, Sarah; Waithe, Dominic; Reis e Sousa, Caetano

    2015-01-01

    TLR7 mediates innate immune responses to viral RNA in endocytic compartments. Mouse and human (h)TLR7 undergo proteolytic cleavage, resulting in the generation of a C-terminal fragment that accumulates in endosomes and associates with the signaling adaptor MyD88 upon receptor triggering by TLR7 agonists. Although mouse TLR7 is cleaved in endosomes by acidic proteases, hTLR7 processing can occur at neutral pH throughout the secretory pathway through the activity of furin-like proprotein convertases. However, the mechanisms by which cleaved hTLR7 reaches the endosomal compartment remain unclear. In this study, we demonstrate that, after hTLR7 proteolytic processing, the liberated amino (N)-terminal fragment remains bound to the C terminus through disulfide bonds and provides key trafficking information that ensures correct delivery of the complex to endosomal compartments. In the absence of the N-terminal fragment, the C-terminal fragment is redirected to the cell surface, where it is functionally inactive. Our data reveal a novel role for the N terminus of hTLR7 as a molecular chaperone that provides processed hTLR7 with the correct targeting instructions to reach the endosomal compartment, hence ensuring its biological activity and preventing inadvertent cell surface responses to self-RNA. PMID:25917086

  3. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism.

    PubMed

    Hamdi, Amel; Roshan, Tariq M; Kahawita, Tanya M; Mason, Anne B; Sheftel, Alex D; Ponka, Prem

    2016-12-01

    In erythroid cells, more than 90% of transferrin-derived iron enters mitochondria where ferrochelatase inserts Fe 2+ into protoporphyrin IX. However, the path of iron from endosomes to mitochondrial ferrochelatase remains elusive. The prevailing opinion is that, after its export from endosomes, the redox-active metal spreads into the cytosol and mysteriously finds its way into mitochondria through passive diffusion. In contrast, this study supports the hypothesis that the highly efficient transport of iron toward ferrochelatase in erythroid cells requires a direct interaction between transferrin-endosomes and mitochondria (the "kiss-and-run" hypothesis). Using a novel method (flow sub-cytometry), we analyze lysates of reticulocytes after labeling these organelles with different fluorophores. We have identified a double-labeled population definitively representing endosomes interacting with mitochondria, as demonstrated by confocal microscopy. Moreover, we conclude that this endosome-mitochondrion association is reversible, since a "chase" with unlabeled holotransferrin causes a time-dependent decrease in the size of the double-labeled population. Importantly, the dissociation of endosomes from mitochondria does not occur in the absence of holotransferrin. Additionally, mutated recombinant holotransferrin, that cannot release iron, significantly decreases the uptake of 59 Fe by reticulocytes and diminishes 59 Fe incorporation into heme. This suggests that endosomes, which are unable to provide iron to mitochondria, cause a "traffic jam" leading to decreased endocytosis of holotransferrin. Altogether, our results suggest that a molecular mechanism exists to coordinate the iron status of endosomal transferrin with its trafficking. Besides its contribution to the field of iron metabolism, this study provides evidence for a new intracellular trafficking pathway of organelles. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Calcium-dependent antigen binding as a novel modality for antibody recycling by endosomal antigen dissociation

    PubMed Central

    Hironiwa, N; Ishii, S; Kadono, S; Iwayanagi, Y; Mimoto, F; Habu, K; Igawa, T; Hattori, K

    2016-01-01

    The pH-dependent antigen binding antibody, termed a recycling antibody, has recently been reported as an attractive type of second-generation engineered therapeutic antibody. A recycling antibody can dissociate antigen in the acidic endosome, and thus bind to its antigen multiple times. As a consequence, a recycling antibody can neutralize large amounts of antigen in plasma. Because this approach relies on histidine residues to achieve pH-dependent antigen binding, which could limit the epitopes that can be targeted and affect the rate of antigen dissociation in the endosome, we explored an alternative approach for generating recycling antibodies. Since calcium ion concentration is known to be lower in endosome than in plasma, we hypothesized that an antibody with antigen-binding properties that are calcium-dependent could be used as recycling antibody. Here, we report a novel anti-interleukin-6 receptor (IL-6R) antibody, identified from a phage library that binds to IL-6R only in the presence of a calcium ion. Thermal dynamics and a crystal structure study revealed that the calcium ion binds to the heavy chain CDR3 region (HCDR3), which changes and possibly stabilizes the structure of HCDR3 to make it bind to antigen calcium dependently (PDB 5AZE). In vitro and in vivo studies confirmed that this calcium-dependent antigen-binding antibody can dissociate its antigen in the endosome and accelerate antigen clearance from plasma, making it a novel approach for generating recycling antibody. PMID:26496237

  5. Selective endosomal microautophagy is starvation-inducible in Drosophila.

    PubMed

    Mukherjee, Anindita; Patel, Bindi; Koga, Hiroshi; Cuervo, Ana Maria; Jenny, Andreas

    2016-11-01

    Autophagy delivers cytosolic components to lysosomes for degradation and is thus essential for cellular homeostasis and to cope with different stressors. As such, autophagy counteracts various human diseases and its reduction leads to aging-like phenotypes. Macroautophagy (MA) can selectively degrade organelles or aggregated proteins, whereas selective degradation of single proteins has only been described for chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI). These 2 autophagic pathways are specific for proteins containing KFERQ-related targeting motifs. Using a KFERQ-tagged fluorescent biosensor, we have identified an eMI-like pathway in Drosophila melanogaster. We show that this biosensor localizes to late endosomes and lysosomes upon prolonged starvation in a KFERQ- and Hsc70-4- dependent manner. Furthermore, fly eMI requires endosomal multivesicular body formation mediated by ESCRT complex components. Importantly, induction of Drosophila eMI requires longer starvation than the induction of MA and is independent of the critical MA genes atg5, atg7, and atg12. Furthermore, inhibition of Tor signaling induces eMI in flies under nutrient rich conditions, and, as eMI in Drosophila also requires atg1 and atg13, our data suggest that these genes may have a novel, additional role in regulating eMI in flies. Overall, our data provide the first evidence for a novel, starvation-inducible, catabolic process resembling endosomal microautophagy in the Drosophila fat body.

  6. IL-1β impairs retrograde flow of BDNF signaling by attenuating endosome trafficking.

    PubMed

    Carlos, Anthony J; Tong, Liqi; Prieto, G Aleph; Cotman, Carl W

    2017-02-02

    Pro-inflammatory cytokines accumulate in the brain with age and Alzheimer's disease and can impair neuron health and cognitive function. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin that supports neuron health, function, and synaptic plasticity. The pro-inflammatory cytokine interleukin-1β (IL-1β) impairs BDNF signaling but whether it affects BDNF signaling endosome trafficking has not been studied. This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1β on BDNF signaling endosome trafficking. Neurons were cultured in microfluidic chambers that separate the environments of the cell body and its axon terminal, enabling us to specifically treat in axon compartments and trace vesicle trafficking in real-time. We found that IL-1β attenuates BDNF signaling endosomes throughout networks in cultures. In IL-1β-treated cells, overall BDNF endosomal density was decreased, and the colocalization of BDNF endosomes with presynaptic terminals was found to be more than two times higher than in control cultures. Selective IL-1β treatment to the presynaptic compartment in microfluidic chamber attenuated BDNF endosome flux, as measured by reduced BDNF-GFP endosome counts in the somal compartment. Further, IL-1β decreased the BDNF-induced phosphorylation of Erk5, a known BDNF retrograde trafficking target. Mechanistically, the deficiency in trafficking was not due to impaired endocytosis of the BDNF-TrkB complex, or impaired transport rate, since BDNF endosomes traveled at the same rate in both control and IL-1β treatment groups. Among the regulators of presynaptic endosome sorting is the post-translational modification, ubiquitination. In support of this possibility, the IL-1β-mediated suppression of BDNF-induced Erk5 phosphorylation can be rescued by exogenous ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that regulates ubiquitin and endosomal trafficking. We observed a state of

  7. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster.

    PubMed

    Sriram, V; Krishnan, K S; Mayor, Satyajit

    2003-05-12

    Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defective endosomal degradation in mutant alleles of dor results from a failure of Golgi-derived vesicles to fuse with morphologically arrested Rab7-positive large sized endosomes, which are, however, normally acidified and mature with wild-type kinetics. This locates the site of Dor function to fusion of Golgi-derived vesicles with the large Rab7-positive endocytic compartments. In contrast, endosomal degradation is not considerably affected in car1 mutant; fusion of Golgi-derived vesicles and maturation of large sized endosomes is normal. However, removal of Dor from small sized Car-positive endosomes is slowed, and subsequent fusion with tubular lysosomes is abolished. Overexpression of Dor in car1 mutant aggravates this defect, implicating Car in the removal of Dor from endosomes. This suggests that, in addition to an independent role in fusion with tubular lysosomes, the Sec1p homologue, Car, regulates Dor function.

  8. Structural and Biological Interaction of hsc-70 Protein with Phosphatidylserine in Endosomal Microautophagy*

    PubMed Central

    Morozova, Kateryna; Clement, Cristina C.; Kaushik, Susmita; Stiller, Barbara; Arias, Esperanza; Ahmad, Atta; Rauch, Jennifer N.; Chatterjee, Victor; Melis, Chiara; Scharf, Brian; Gestwicki, Jason E.; Cuervo, Ana-Maria; Zuiderweg, Erik R. P.; Santambrogio, Laura

    2016-01-01

    hsc-70 (HSPA8) is a cytosolic molecular chaperone, which plays a central role in cellular proteostasis, including quality control during protein refolding and regulation of protein degradation. hsc-70 is pivotal to the process of macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy. The latter requires hsc-70 interaction with negatively charged phosphatidylserine (PS) at the endosomal limiting membrane. Herein, by combining plasmon resonance, NMR spectroscopy, and amino acid mutagenesis, we mapped the C terminus of the hsc-70 LID domain as the structural interface interacting with endosomal PS, and we estimated an hsc-70/PS equilibrium dissociation constant of 4.7 ± 0.1 μm. This interaction is specific and involves a total of 4–5 lysine residues. Plasmon resonance and NMR results were further experimentally validated by hsc-70 endosomal binding experiments and endosomal microautophagy assays. The discovery of this previously unknown contact surface for hsc-70 in this work elucidates the mechanism of hsc-70 PS/membrane interaction for cytosolic cargo internalization into endosomes. PMID:27405763

  9. Structural and Biological Interaction of hsc-70 Protein with Phosphatidylserine in Endosomal Microautophagy.

    PubMed

    Morozova, Kateryna; Clement, Cristina C; Kaushik, Susmita; Stiller, Barbara; Arias, Esperanza; Ahmad, Atta; Rauch, Jennifer N; Chatterjee, Victor; Melis, Chiara; Scharf, Brian; Gestwicki, Jason E; Cuervo, Ana-Maria; Zuiderweg, Erik R P; Santambrogio, Laura

    2016-08-26

    hsc-70 (HSPA8) is a cytosolic molecular chaperone, which plays a central role in cellular proteostasis, including quality control during protein refolding and regulation of protein degradation. hsc-70 is pivotal to the process of macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy. The latter requires hsc-70 interaction with negatively charged phosphatidylserine (PS) at the endosomal limiting membrane. Herein, by combining plasmon resonance, NMR spectroscopy, and amino acid mutagenesis, we mapped the C terminus of the hsc-70 LID domain as the structural interface interacting with endosomal PS, and we estimated an hsc-70/PS equilibrium dissociation constant of 4.7 ± 0.1 μm. This interaction is specific and involves a total of 4-5 lysine residues. Plasmon resonance and NMR results were further experimentally validated by hsc-70 endosomal binding experiments and endosomal microautophagy assays. The discovery of this previously unknown contact surface for hsc-70 in this work elucidates the mechanism of hsc-70 PS/membrane interaction for cytosolic cargo internalization into endosomes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Pearling Transition Provides Evidence of Force-Driven Endosomal Tubulation during Salmonella Infection.

    PubMed

    Gao, Yunfeng; Spahn, Christoph; Heilemann, Mike; Kenney, Linda J

    2018-06-19

    Bacterial pathogens exploit eukaryotic pathways for their own end. Upon ingestion, Salmonella enterica serovar Typhimurium passes through the stomach and then catalyzes its uptake across the intestinal epithelium. It survives and replicates in an acidic vacuole through the action of virulence factors secreted by a type three secretion system located on Salmonella pathogenicity island 2 (SPI-2). Two secreted effectors, SifA and SseJ, are sufficient for endosomal tubule formation, which modifies the vacuole and enables Salmonella to replicate within it. Two-color, superresolution imaging of the secreted virulence factor SseJ and tubulin revealed that SseJ formed clusters of conserved size at regular, periodic intervals in the host cytoplasm. Analysis of SseJ clustering indicated the presence of a pearling effect, which is a force-driven, osmotically sensitive process. The pearling transition is an instability driven by membranes under tension; it is induced by hypotonic or hypertonic buffer exchange and leads to the formation of beadlike structures of similar size and regular spacing. Reducing the osmolality of the fixation conditions using glutaraldehyde enabled visualization of continuous and intact tubules. Correlation analysis revealed that SseJ was colocalized with the motor protein kinesin. Tubulation of the endoplasmic reticulum is driven by microtubule motors, and in the present work, we describe how Salmonella has coopted the microtubule motor kinesin to drive the force-dependent process of endosomal tubulation. Thus, endosomal tubule formation is a force-driven process catalyzed by Salmonella virulence factors secreted into the host cytoplasm during infection. IMPORTANCE This study represents the first example of using two-color, superresolution imaging to analyze the secretion of Salmonella virulence factors as they are secreted from the SPI-2 type three secretion system. Previous studies imaged effectors that were overexpressed in the host cytoplasm. The

  11. A phorbol ester-binding protein is required downstream of Rab5 in endosome fusion.

    PubMed

    Aballay, A; Barbieri, M A; Colombo, M I; Arenas, G N; Stahl, P D; Mayorga, L S

    1998-12-28

    Previous observations indicate that a zinc and phorbol ester binding factor is necessary for endosome fusion. To further characterize the role of this factor in the process, we used an in vitro endosome fusion assay supplemented with recombinant Rab5 proteins. Both zinc depletion and addition of calphostin C, an inhibitor of protein kinase C, inhibited endosome fusion in the presence of active Rab5. Addition of the phorbol ester PMA (phorbol 12-myristate 13-acetate) reversed the inhibition of endosome fusion caused by a Rab5 negative mutant. Moreover, PMA stimulated fusion in the presence of Rab5 immunodepleted cytosol. These results suggest that the phorbol ester binding protein is acting downstream of Rab5 in endosome fusion.

  12. The protein transportation pathway from Golgi to vacuoles via endosomes plays a role in enhancement of methylmercury toxicity

    NASA Astrophysics Data System (ADS)

    Hwang, Gi-Wook; Murai, Yasutaka; Takahashi, Tsutomu; Naganuma, Akira

    2014-07-01

    Methylmercury causes serious damage to the central nervous system, but the molecular mechanisms of methylmercury toxicity are only marginally understood. In this study, we used a gene-deletion mutant library of budding yeast to conduct genome-wide screening for gene knockouts affecting the sensitivity of methylmercury toxicity. We successfully identified 31 genes whose deletions confer resistance to methylmercury in yeast, and 18 genes whose deletions confer hypersensitivity to methylmercury. Yeast genes whose deletions conferred resistance to methylmercury included many gene encoding factors involved in protein transport to vacuoles. Detailed examination of the relationship between the factors involved in this transport system and methylmercury toxicity revealed that mutants with loss of the factors involved in the transportation pathway from the trans-Golgi network (TGN) to the endosome, protein uptake into the endosome, and endosome-vacuole fusion showed higher methylmercury resistance than did wild-type yeast. The results of our genetic engineering study suggest that this vesicle transport system (proteins moving from the TGN to vacuole via endosome) is responsible for enhancing methylmercury toxicity due to the interrelationship between the pathways. There is a possibility that there may be proteins in the cell that enhance methylmercury toxicity through the protein transport system.

  13. Endosomal system genetics and autism spectrum disorders: A literature review.

    PubMed

    Patak, Jameson; Zhang-James, Yanli; Faraone, Stephen V

    2016-06-01

    Autism spectrum disorders (ASDs) are a group of debilitating neurodevelopmental disorders thought to have genetic etiology, due to their high heritability. The endosomal system has become increasingly implicated in ASD pathophysiology. In an attempt to summarize the association between endosomal system genes and ASDs we performed a systematic review of the literature. We searched PubMed for relevant articles. Simons Foundation Autism Research Initiative (SFARI) gene database was used to exclude articles regarding genes with less than minimal evidence for association with ASDs. Our search retained 55 articles reviewed in two categories: genes that regulate and genes that are regulated by the endosomal system. Our review shows that the endosomal system is a novel pathway implicated in ASDs as well as other neuropsychiatric disorders. It plays a central role in aspects of cellular physiology on which neurons and glial cells are particularly reliant, due to their unique metabolic and functional demands. The system shows potential for biomarkers and pharmacological intervention and thus more research into this pathway is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    PubMed

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    PubMed Central

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  16. Ankyrin-B is a PI3P effector that promotes polarized α5β1-integrin recycling via recruiting RabGAP1L to early endosomes

    PubMed Central

    Qu, Fangfei; Lorenzo, Damaris N; King, Samantha J; Brooks, Rebecca; Bear, James E; Bennett, Vann

    2016-01-01

    Endosomal membrane trafficking requires coordination between phosphoinositide lipids, Rab GTPases, and microtubule-based motors to dynamically determine endosome identity and promote long-range organelle transport. Here we report that ankyrin-B (AnkB), through integrating all three systems, functions as a critical node in the protein circuitry underlying polarized recycling of α5β1-integrin in mouse embryonic fibroblasts, which enables persistent fibroblast migration along fibronectin gradients. AnkB associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles in fibroblasts and binds dynactin to promote their long-range motility. We demonstrate that AnkB binds to Rab GTPase Activating Protein 1-Like (RabGAP1L) and recruits it to PI3P-positive organelles, where RabGAP1L inactivates Rab22A, and promotes polarized trafficking to the leading edge of migrating fibroblasts. We further determine that α5β1-integrin depends on an AnkB/RabGAP1L complex for polarized recycling. Our results reveal AnkB as an unexpected key element in coordinating polarized transport of α5β1-integrin and likely of other specialized endocytic cargos. DOI: http://dx.doi.org/10.7554/eLife.20417.001 PMID:27718357

  17. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.

    PubMed

    Nixon, Ralph A

    2017-07-01

    Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. © FASEB.

  18. BLOC-1 Interacts with BLOC-2 and the AP-3 Complex to Facilitate Protein Trafficking on Endosomes

    PubMed Central

    Di Pietro, Santiago M.; Falcón-Pérez, Juan M.; Tenza, Danièle; Setty, Subba R.G.; Marks, Michael S.; Raposo, Graça

    2006-01-01

    The adaptor protein (AP)-3 complex is a component of the cellular machinery that controls protein sorting from endosomes to lysosomes and specialized related organelles such as melanosomes. Mutations in an AP-3 subunit underlie a form of Hermansky-Pudlak syndrome (HPS), a disorder characterized by abnormalities in lysosome-related organelles. HPS in humans can also be caused by mutations in genes encoding subunits of three complexes of unclear function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2, and -3. Here, we report that BLOC-1 interacts physically and functionally with AP-3 to facilitate the trafficking of a known AP-3 cargo, CD63, and of tyrosinase-related protein 1 (Tyrp1), a melanosomal membrane protein previously thought to traffic only independently of AP-3. BLOC-1 also interacts with BLOC-2 to facilitate Tyrp1 trafficking by a mechanism apparently independent of AP-3 function. Both BLOC-1 and -2 localize mainly to early endosome-associated tubules as determined by immunoelectron microscopy. These findings support the idea that BLOC-1 and -2 represent hitherto unknown components of the endosomal protein trafficking machinery. PMID:16837549

  19. Spatial Relationships between Markers for Secretory and Endosomal Machinery in Human Cytomegalovirus-Infected Cells versus Those in Uninfected Cells▿†

    PubMed Central

    Das, Subhendu; Pellett, Philip E.

    2011-01-01

    Human cytomegalovirus (HCMV) induces extensive remodeling of the secretory apparatus to form the cytoplasmic virion assembly compartment (cVAC), where virion tegumentation and envelopment take place. We studied the structure of the cVAC by confocal microscopy to assess the three-dimensional distribution of proteins specifically associated with individual secretory organelles. In infected cells, early endosome antigen 1 (EEA1)-positive vesicles are concentrated at the center of the cVAC and, as previously seen, are distinct from structures visualized by markers for the endoplasmic reticulum, Golgi apparatus, and trans-Golgi network (TGN). EEA1-positive vesicles can be strongly associated with markers for recycling endosomes, to a lesser extent with markers associated with components of the endosomal sorting complex required for transport III (ESCRT III) machinery, and then with markers of late endosomes. In comparisons of uninfected and infected cells, we found significant changes in the structural associations and colocalization of organelle markers, as well as in net organelle volumes. These results provide new evidence that the HCMV-induced remodeling of the membrane transport apparatus involves much more than simple relocation and expansion of preexisting structures and are consistent with the hypothesis that the shift in identity of secretory organelles in HCMV-infected cells results in new functional profiles. PMID:21471245

  20. Gαs regulates Glucagon-Like Peptide 1 Receptor-mediated cyclic AMP generation at Rab5 endosomal compartment.

    PubMed

    Girada, Shravan Babu; Kuna, Ramya S; Bele, Shilpak; Zhu, Zhimeng; Chakravarthi, N R; DiMarchi, Richard D; Mitra, Prasenjit

    2017-10-01

    Upon activation, G protein coupled receptors (GPCRs) associate with heterotrimeric G proteins at the plasma membrane to initiate second messenger signaling. Subsequently, the activated receptor experiences desensitization, internalization, and recycling back to the plasma membrane, or it undergoes lysosomal degradation. Recent reports highlight specific cases of persistent cyclic AMP generation by internalized GPCRs, although the functional significance and mechanistic details remain to be defined. Cyclic AMP generation from internalized Glucagon-Like Peptide-1 Receptor (GLP-1R) has previously been reported from our laboratory. This study aimed at deciphering the molecular mechanism by which internalized GLP-R supports sustained cyclic AMP generation upon receptor activation in pancreatic beta cells. We studied the time course of cyclic AMP generation following GLP-1R activation with particular emphasis on defining the location where cyclic AMP is generated. Detection involved a novel GLP-1 conjugate coupled with immunofluorescence using specific endosomal markers. Finally, we employed co-immunoprecipitation as well as immunofluorescence to assess the protein-protein interactions that regulate GLP-1R mediated cyclic AMP generation at endosomes. Our data reveal that prolonged association of G protein α subunit Gαs with activated GLP-1R contributed to sustained cyclic AMP generation at Rab 5 endosomal compartment. The findings provide the mechanism of endosomal cyclic AMP generation following GLP-1R activation. We identified the specific compartment that serves as an organizing center to generate endosomal cyclic AMP by internalized activated receptor complex. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda.

    PubMed

    Yoon, June-Sun; Gurusamy, Dhandapani; Palli, Subba Reddy

    2017-11-01

    RNA interference (RNAi) efficiency varies among insects studied. The barriers for successful RNAi include the presence of double-stranded ribonucleases (dsRNase) in the lumen and hemolymph that could potentially digest double-stranded RNA (dsRNA) and the variability in the transport of dsRNA into and within the cells. We recently showed that the dsRNAs are transported into lepidopteran cells, but they are not processed into small interference RNAs (siRNAs) because they are trapped in acidic bodies. In the current study, we focused on the identification of acidic bodies in which dsRNAs accumulate in Sf9 cells. Time-lapse imaging studies showed that dsRNAs enter Sf9 cells and accumulate in acidic bodies within 20 min after their addition to the medium. CypHer-5E-labeled dsRNA also accumulated in the midgut and fat body dissected from Spodoptera frugiperda larvae with similar patterns observed in Sf9 cells. Pharmacological inhibitor assays showed that the dsRNAs use clathrin mediated endocytosis pathway for transport into the cells. We investigated the potential dsRNA accumulation sites employing LysoTracker and double labeling experiments using the constructs to express a fusion of green fluorescence protein with early or late endosomal marker proteins and CypHer-5E-labeled dsRNA. Interestingly, CypHer-5E-labeled dsRNA accumulated predominantly in early and late endosomes. These data suggest that entrapment of internalized dsRNA in endosomes is one of the major factors contributing to inefficient RNAi response in lepidopteran insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Rab coupling protein mediated endosomal recycling of N-cadherin influences cell motility.

    PubMed

    Lindsay, Andrew J; McCaffrey, Mary W

    2017-12-01

    Rab coupling protein (RCP) is a Rab GTPase effector that functions in endosomal recycling. The RCP gene is frequently amplified in breast cancer, leading to increased cancer aggressiveness. Furthermore, RCP enhances the motility of ovarian cancer cells by coordinating the recycling of α5β1 integrin and EGF receptor to the leading edge of migrating cells. Here we report that RCP also influences the motility of lung adenocarcinoma cells. Knockdown of RCP inhibits the motility of A549 cells in 2D and 3D migration assays, while its overexpression enhances migration in these assays. Depletion of RCP leads to a reduction in N-cadherin protein levels, which could be restored with lysosomal inhibitors. Trafficking assays revealed that RCP knockdown inhibits the return of endocytosed N-cadherin to the cell surface. We propose that RCP regulates the endosomal recycling of N-cadherin, and in its absence N-cadherin is diverted to the degradative pathway. The increased aggressiveness of tumour cells that overexpress RCP may be due to biased recycling of N-cadherin in metastatic cancer cells.

  3. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin–actin interactions

    PubMed Central

    Hong, Nan Hyung; Qi, Aidong

    2015-01-01

    Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7+ endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor–induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover. PMID:26323691

  4. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons

    PubMed Central

    Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan

    2012-01-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X3 receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X3 receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X3 receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X3 receptors. The α, β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X3 receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X3 receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels. PMID:22157653

  5. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons.

    PubMed

    Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan

    2012-04-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.

  6. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery

    PubMed Central

    Dennis, Megan K.; Mantegazza, Adriana R.; Snir, Olivia L.; Tenza, Danièle; Acosta-Ruiz, Amanda; Delevoye, Cédric; Zorger, Richard; Sitaram, Anand; de Jesus-Rojas, Wilfredo; Ravichandran, Keerthana; Rux, John; Sviderskaya, Elena V.; Bennett, Dorothy C.; Raposo, Graça; Setty, Subba Rao Gangi

    2015-01-01

    Hermansky–Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2–deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2–deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation. PMID:26008744

  7. Cellular Auxin Homeostasis under High Temperature Is Regulated through a SORTING NEXIN1–Dependent Endosomal Trafficking Pathway[C][W

    PubMed Central

    Hanzawa, Taiki; Shibasaki, Kyohei; Numata, Takahiro; Kawamura, Yukio; Gaude, Thierry; Rahman, Abidur

    2013-01-01

    High-temperature-mediated adaptation in plant architecture is linked to the increased synthesis of the phytohormone auxin, which alters cellular auxin homeostasis. The auxin gradient, modulated by cellular auxin homeostasis, plays an important role in regulating the developmental fate of plant organs. Although the signaling mechanism that integrates auxin and high temperature is relatively well understood, the cellular auxin homeostasis mechanism under high temperature is largely unknown. Using the Arabidopsis thaliana root as a model, we demonstrate that under high temperature, roots counterbalance the elevated level of intracellular auxin by promoting shootward auxin efflux in a PIN-FORMED2 (PIN2)-dependent manner. Further analyses revealed that high temperature selectively promotes the retrieval of PIN2 from late endosomes and sorts them to the plasma membrane through an endosomal trafficking pathway dependent on SORTING NEXIN1. Our results demonstrate that recycling endosomal pathway plays an important role in facilitating plants adaptation to increased temperature. PMID:24003052

  8. A proteomic approach to identify endosomal cargoes controlling cancer invasiveness

    PubMed Central

    Diaz-Vera, Jesica; Palmer, Sarah; Hernandez-Fernaud, Juan Ramon; Dornier, Emmanuel; Mitchell, Louise E.; Macpherson, Iain; Edwards, Joanne; Zanivan, Sara

    2017-01-01

    ABSTRACT We have previously shown that Rab17, a small GTPase associated with epithelial polarity, is specifically suppressed by ERK2 (also known as MAPK1) signalling to promote an invasive phenotype. However, the mechanisms through which Rab17 loss permits invasiveness, and the endosomal cargoes that are responsible for mediating this, are unknown. Using quantitative mass spectrometry-based proteomics, we have found that knockdown of Rab17 leads to a highly selective reduction in the cellular levels of a v-SNARE (Vamp8). Moreover, proteomics and immunofluorescence indicate that Vamp8 is associated with Rab17 at late endosomes. Reduced levels of Vamp8 promote transition between ductal carcinoma in situ (DCIS) and a more invasive phenotype. We developed an unbiased proteomic approach to elucidate the complement of receptors that redistributes between endosomes and the plasma membrane, and have pin-pointed neuropilin-2 (NRP2) as a key pro-invasive cargo of Rab17- and Vamp8-regulated trafficking. Indeed, reduced Rab17 or Vamp8 levels lead to increased mobilisation of NRP2-containing late endosomes and upregulated cell surface expression of NRP2. Finally, we show that NRP2 is required for the basement membrane disruption that accompanies the transition between DCIS and a more invasive phenotype. PMID:28062852

  9. Challenges in carrier-mediated intracellular delivery: moving beyond endosomal barriers.

    PubMed

    Stewart, Martin P; Lorenz, Anna; Dahlman, James; Sahay, Gaurav

    2016-05-01

    The deployment of molecular to microscale carriers for intracellular delivery has tremendous potential for biology and medicine, especially for in vivo therapies. The field remains limited, however, by a poor understanding of how carriers gain access to the cell interior. In this review, we provide an overview of the different types of carriers, their speculated modes of entry, putative pathways of vesicular transport, and sites of endosomal escape. We compare this alongside pertinent examples from the cell biology of how viruses, bacteria, and their effectors enter cells and escape endosomal confinement. We anticipate insights into the mechanisms of cellular entry and endosomal escape will benefit future research efforts on effective carrier-mediated intracellular delivery. WIREs Nanomed Nanobiotechnol 2016, 8:465-478. doi: 10.1002/wnan.1377 For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.

  10. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses.

    PubMed

    Lehigh, Kathryn M; West, Katherine M; Ginty, David D

    2017-04-04

    Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Myosin Ib modulates the morphology and the protein transport within multi-vesicular sorting endosomes.

    PubMed

    Salas-Cortes, Laura; Ye, Fei; Tenza, Danièle; Wilhelm, Claire; Theos, Alexander; Louvard, Daniel; Raposo, Graça; Coudrier, Evelyne

    2005-10-15

    Members of at least four classes of myosin (I, II, V and VI) have been implicated in the dynamics of a large variety of organelles. Despite their common motor domain structure, some of these myosins, however, are non processive and cannot move organelles along the actin tracks. Here, we demonstrate in the human pigmented MNT-1 cell line that, (1) the overexpression of one of these myosins, myosin 1b, or the addition of cytochalasin D affects the morphology of the sorting multivesicular endosomes; (2) the overexpression of myosin 1b delays the processing of Pmel17 (the product of murine silver locus also named GP100), which occurs in these multivesicular endosomes; (3) myosin 1b associated with endosomes coimmunoprecipitates with Pmel17. All together, these observations suggest that myosin 1b controls the traffic of protein cargo in multivesicular endosomes most probably through its ability to modulate with actin the morphology of these sorting endosomes.

  12. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    PubMed

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  13. Neurotrophin signaling endosomes; biogenesis, regulation, and functions

    PubMed Central

    Yamashita, Naoya; Kuruvilla, Rejji

    2016-01-01

    In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health. PMID:27327126

  14. Munc13-4 functions as a Ca2+ sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles

    PubMed Central

    Woo, Sang Su; James, Declan J.; Martin, Thomas F. J.

    2017-01-01

    Munc13-4 is a Ca2+-dependent SNARE (soluble N-ethylmaleimide–sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca2+-evoked secretion in various secretory cells. Studies in mast cell–like RBL-2H3 cells provide direct evidence that Munc13–4 with its two Ca2+-binding C2 domains functions as a Ca2+ sensor for SG exocytosis. Unexpectedly, Ca2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4+/Rab7+/Rab11+ endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4+/Rab7+ SGs, followed by a merge with Rab11+ endosomes, and depended on Ca2+ binding to Munc13-4. Munc13-4 promoted the Ca2+-stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells. PMID:28100639

  15. The tetraspanin CD63 regulates ESCRT-independent and dependent endosomal sorting during melanogenesis

    PubMed Central

    van Niel, Guillaume; Charrin, Stéphanie; Simoes, Sabrina; Romao, Maryse; Rochin, Leila; Saftig, Paul; Marks, Michael S.; Rubinstein, Eric; Raposo, Graça

    2011-01-01

    Summary Cargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for numerous physiological processes including lysosome-related organelle (LRO) biogenesis. PMEL – a component of melanocyte LROs (melanosomes) – is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs. Inactivating CD63 in cell culture or in mice impairs amyloidogenesis and downstream melanosome morphogenesis. Whereas CD63 is required for normal PMEL luminal domain sorting, the disposal of the remaining PMEL transmembrane fragment requires functional ESCRTs but not CD63. In the absence of CD63, the PMEL luminal domain follows this fragment and is targeted for ESCRT-dependent degradation. Our data thus reveal a tight interplay regulated by CD63 between two distinct endosomal ILV sorting processes for a single cargo during LRO biogenesis. PMID:21962903

  16. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport.

    PubMed

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-09-01

    The importance of endosome-to-trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51-VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport. © 2015 Hirata, Fujita, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy.

    PubMed

    To, Eunice E; Vlahos, Ross; Luong, Raymond; Halls, Michelle L; Reading, Patrick C; King, Paul T; Chan, Christopher; Drummond, Grant R; Sobey, Christopher G; Broughton, Brad R S; Starkey, Malcolm R; van der Sluis, Renee; Lewin, Sharon R; Bozinovski, Steven; O'Neill, Luke A J; Quach, Tim; Porter, Christopher J H; Brooks, Doug A; O'Leary, John J; Selemidis, Stavros

    2017-07-12

    The imminent threat of viral epidemics and pandemics dictates a need for therapeutic approaches that target viral pathology irrespective of the infecting strain. Reactive oxygen species are ancient processes that protect plants, fungi and animals against invading pathogens including bacteria. However, in mammals reactive oxygen species production paradoxically promotes virus pathogenicity by mechanisms not yet defined. Here we identify that the primary enzymatic source of reactive oxygen species, NOX2 oxidase, is activated by single stranded RNA and DNA viruses in endocytic compartments resulting in endosomal hydrogen peroxide generation, which suppresses antiviral and humoral signaling networks via modification of a unique, highly conserved cysteine residue (Cys98) on Toll-like receptor-7. Accordingly, targeted inhibition of endosomal reactive oxygen species production abrogates influenza A virus pathogenicity. We conclude that endosomal reactive oxygen species promote fundamental molecular mechanisms of viral pathogenicity, and the specific targeting of this pathogenic process with endosomal-targeted reactive oxygen species inhibitors has implications for the treatment of viral disease.Production of reactive oxygen species is an ancient antimicrobial mechanism, but its role in antiviral defense in mammals is unclear. Here, To et al. show that virus infection activates endosomal NOX2 oxidase and restricts TLR7 signaling, and that an endosomal NOX2 inhibitor decreases viral pathogenicity.

  18. Development of a Kinetic Assay for Late Endosome Movement.

    PubMed

    Esner, Milan; Meyenhofer, Felix; Kuhn, Michael; Thomas, Melissa; Kalaidzidis, Yannis; Bickle, Marc

    2014-08-01

    Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering. © 2014 Society for Laboratory Automation and Screening.

  19. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes

    PubMed Central

    Caviston, Juliane P.; Zajac, Allison L.; Tokito, Mariko; Holzbaur, Erika L.F.

    2011-01-01

    Huntingtin (Htt) is a membrane-associated scaffolding protein that interacts with microtubule motors as well as actin-associated adaptor molecules. We examined a role for Htt in the dynein-mediated intracellular trafficking of endosomes and lysosomes. In HeLa cells depleted of either Htt or dynein, early, recycling, and late endosomes (LE)/lysosomes all become dispersed. Despite altered organelle localization, kinetic assays indicate only minor defects in intracellular trafficking. Expression of full-length Htt is required to restore organelle localization in Htt-depleted cells, supporting a role for Htt as a scaffold that promotes functional interactions along its length. In dynein-depleted cells, LE/lysosomes accumulate in tight patches near the cortex, apparently enmeshed by cortactin-positive actin filaments; Latrunculin B-treatment disperses these patches. Peripheral LE/lysosomes in dynein-depleted cells no longer colocalize with microtubules. Htt may be required for this off-loading, as the loss of microtubule association is not seen in Htt-depleted cells or in cells depleted of both dynein and Htt. Inhibition of kinesin-1 relocalizes peripheral LE/lysosomes induced by Htt depletion but not by dynein depletion, consistent with their detachment from microtubules upon dynein knockdown. Together, these data support a model of Htt as a facilitator of dynein-mediated trafficking that may regulate the cytoskeletal association of dynamic organelles. PMID:21169558

  20. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    PubMed

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  1. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking

    PubMed Central

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-01-01

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI: http://dx.doi.org/10.7554/eLife.06041.001 PMID:25985087

  2. A 115 kDa calmodulin-binding protein is located in rat liver endosome fractions.

    PubMed Central

    Enrich, C; Bachs, O; Evans, W H

    1988-01-01

    The distribution of calmodulin-binding polypeptides in various rat liver subcellular fractions was investigated. Plasma-membrane, endosome, Golgi and lysosome fractions were prepared by established procedures. The calmodulin-binding polypeptides present in the subcellular fractions were identified by using an overlay technique after transfer from gels to nitrocellulose sheets. Distinctive populations of calmodulin-binding polypeptides were present in all the fractions examined except lysosomes. A major 115 kDa calmodulin-binding polypeptide of pI 4.3 was located to the endosome subfractions, and it emerges as a candidate endosome-specific protein. Partitioning of endosome fractions between aqueous and Triton X-114 phases indicated that the calmodulin-binding polypeptide was hydrophobic. Major calmodulin-binding polypeptides of 140 and 240 kDa and minor polypeptides of 40-60 kDa were present in plasma membranes. The distribution of calmodulin in the various endosome and plasma-membrane fractions was also analysed, and the results indicated that the amounts were high compared with those in the cytosol. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3214436

  3. Modifications of the endosomal compartment in peripheral blood mononuclear cells and fibroblasts from Alzheimer's disease patients

    PubMed Central

    Corlier, F; Rivals, I; Lagarde, J; Hamelin, L; Corne, H; Dauphinot, L; Ando, K; Cossec, J-C; Fontaine, G; Dorothée, G; Malaplate-Armand, C; Olivier, J-L; Dubois, B; Bottlaender, M; Duyckaerts, C; Sarazin, M; Potier, M-C; Alnajjar-Carpentier, Dr Amer; Logak, Dr Michel; Leder, Dr Sara; Marchal, Dr Dominique; Pitti-Ferandi, Dr Hélène; Brugeilles, Dr Hélene; Roualdes, Dr Brigitte; Michon, Dr Agnes

    2015-01-01

    Identification of blood-based biomarkers of Alzheimer's disease (AD) remains a challenge. Neuropathological studies have identified enlarged endosomes in post-mortem brains as the earliest cellular change associated to AD. Here the presence of enlarged endosomes was investigated in peripheral blood mononuclear cells from 48 biologically defined AD patients (25 with mild cognitive impairment and 23 with dementia (AD-D)), and 23 age-matched healthy controls using immunocytochemistry and confocal microscopy. The volume and number of endosomes were not significantly different between AD and controls. However, the percentage of cells containing enlarged endosomes was significantly higher in the AD-D group as compared with controls. Furthermore, endosomal volumes significantly correlated to [C11]PiB cortical index measured by positron emission tomography in the AD group, independently of the APOE genotype, but not to the levels of amyloid-beta, tau and phosphorylated tau measured in the cerebrospinal fluid. Importantly, we confirmed the presence of enlarged endosomes in fibroblasts from six unrelated AD-D patients as compared with five cognitively normal controls. This study is the first, to our knowledge, to report morphological alterations of the endosomal compartment in peripheral cells from AD patients correlated to amyloid load that will now be evaluated as a possible biomarker. PMID:26151923

  4. Hygromycin B hypersensitive (hhy) mutants implicate an intact trans-Golgi and late endosome interface in efficient Tor1 vacuolar localization and TORC1 function.

    PubMed

    Ejzykowicz, Daniele E; Locken, Kristopher M; Ruiz, Fiona J; Manandhar, Surya P; Olson, Daniel K; Gharakhanian, Editte

    2017-06-01

    Saccharomyces cerevisiae vacuoles are functionally analogous to mammalian lysosomes. Both also serve as physical platforms for Tor Complex 1 (TORC1) signal transduction, the master regulator of cellular growth and proliferation. Hygromycin B is a eukaryotic translation inhibitor. We recently reported on hygromycin B hypersensitive (hhy) mutants that fail to grow at subtranslation inhibitory concentrations of the drug and exhibit vacuolar defects (Banuelos et al. in Curr Genet 56:121-137, 2010). Here, we show that hhy phenotype is not due to increased sensitivity to translation inhibition and establish a super HHY (s-HHY) subgroup of genes comprised of ARF1, CHC1, DRS2, SAC1, VPS1, VPS34, VPS45, VPS52, and VPS54 that function exclusively or inclusively at trans-Golgi and late endosome interface. Live cell imaging of s-hhy mutants revealed that hygromycin B treatment disrupts vacuolar morphology and the localization of late endosome marker Pep12, but not that of late endosome-independent vacuolar SNARE Vam3. This, along with normal post-late endosome trafficking of the vital dye FM4-64, establishes that severe hypersensitivity to hygromycin B correlates specifically with compromised trans-Golgi and late endosome interface. We also show that Tor1p vacuolar localization and TORC1 anabolic functions, including growth promotion and phosphorylation of its direct substrate Sch9, are compromised in s-hhy mutants. Thus, an intact trans-Golgi and late endosome interface is a requisite for efficient Tor1 vacuolar localization and TORC1 function.

  5. Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes.

    PubMed

    Tornieri, Karine; Zlatic, Stephanie A; Mullin, Ariana P; Werner, Erica; Harrison, Robert; L'hernault, Steven W; Faundez, Victor

    2013-12-20

    Mutations in Vps33 isoforms cause pigment dilution in mice (Vps33a, buff) and Drosophila (car) and the neurogenic arthrogryposis, renal dysfunction and cholestasis syndrome in humans (ARC1, VPS33B). The later disease is also caused by mutations in VIPAS39, (Vps33b interacting protein, apical-basolateral polarity regulator, SPE-39 homolog; ARC2), a protein that interacts with the HOmotypic fusion and Protein Sorting (HOPS) complex, a tether necessary for endosome-lysosome traffic. These syndromes offer insight into fundamental endosome traffic processes unique to metazoans. However, the molecular and cellular mechanisms underlying these mutant phenotypes remain poorly understood. Here we investigate interactions of wild-type and disease-causing mutations in VIPAS39/SPE-39 and Vps33b by yeast two hybrid, immunoprecipitation and quantitative fluorescent microscopy. We find that although few mutations prevent interaction between VIPAS39/SPE-39 and Vps33b, some mutants fragment VIPAS39/SPE-39-positive endosomes, but all mutants alter the subcellular localization of Vps33b to VIPAS39/SPE-39-positive endosomes. Our data suggest that the ARC syndrome may result through impaired VIPAS39/SPE-39 and Vps33b-dependent endosomal maturation or fusion.

  6. Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation.

    PubMed

    Siddiqa, Abida; Massimi, Paola; Pim, David; Broniarczyk, Justyna; Banks, Lawrence

    2018-03-15

    Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans -Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans -Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex. IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans -Golgi network. Indeed, the loss of

  7. Mobility of tethering factor EEA1 on endosomes is decreased upon stimulation of EGF receptor endocytosis in HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosheverova, Vera V., E-mail: kosheverova_vera@incras.ru; Kamentseva, Rimma S., E-mail: rkamentseva@yandex.ru; St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034

    Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis. The data obtained fitted two-states binding model, with the bulk of membrane-associated EEA1 protein represented by the mobile fraction both in serum-starved and EGF-stimulated cells. Fast recovery state had similar half-times in the two cases: about 1.6 s and 2.8 s, respectively. However, the recovery half-time ofmore » slowly cycled EEA1 fraction significantly increased in EGF-stimulated comparing to serum-starved cells (from 21 to 99 s). We suppose that the retardation of EEA1 fluorescence recovery upon EGF-stimulation may be due to the increase of activated Rab5 on endosomal membranes, the growth of the number of tethering events between EEA1-positive vesicles and their clustering. - Highlights: • EEA1 mobility was compared in serum-starved and EGF-stimulated interphase HeLa cells. • FRAP analysis revealed fast and slow components of EEA1 recovery in both cases. • Stimulation of EGFR endocytosis did not affect fast EEA1 turnover. • EGF stimulation significantly increased half-time of slowly exchanged EEA1 fraction.« less

  8. Infection of XC Cells by MLVs and Ebola Virus Is Endosome-Dependent but Acidification-Independent

    PubMed Central

    Kamiyama, Haruka; Kakoki, Katsura; Yoshii, Hiroaki; Iwao, Masatomo; Igawa, Tsukasa; Sakai, Hideki; Hayashi, Hideki; Matsuyama, Toshifumi; Yamamoto, Naoki; Kubo, Yoshinao

    2011-01-01

    Inhibitors of endosome acidification or cathepsin proteases attenuated infections mediated by envelope proteins of xenotropic murine leukemia virus-related virus (XMRV) and Ebola virus, as well as ecotropic, amphotropic, polytropic, and xenotropic murine leukemia viruses (MLVs), indicating that infections by these viruses occur through acidic endosomes and require cathepsin proteases in the susceptible cells such as TE671 cells. However, as previously shown, the endosome acidification inhibitors did not inhibit these viral infections in XC cells. It is generally accepted that the ecotropic MLV infection in XC cells occurs at the plasma membrane. Because cathepsin proteases are activated by low pH in acidic endosomes, the acidification inhibitors may inhibit the viral infections by suppressing cathepsin protease activation. The acidification inhibitors attenuated the activities of cathepsin proteases B and L in TE671 cells, but not in XC cells. Processing of cathepsin protease L was suppressed by the acidification inhibitor in NIH3T3 cells, but again not in XC cells. These results indicate that cathepsin proteases are activated without endosome acidification in XC cells. Treatment with an endocytosis inhibitor or knockdown of dynamin 2 expression by siRNAs suppressed MLV infections in all examined cells including XC cells. Furthermore, endosomal cathepsin proteases were required for these viral infections in XC cells as other susceptible cells. These results suggest that infections of XC cells by the MLVs and Ebola virus occur through endosomes and pH-independent cathepsin activation induces pH-independent infection in XC cells. PMID:22022555

  9. Glycosylated Triterpenoids as Endosomal Escape Enhancers in Targeted Tumor Therapies

    PubMed Central

    Fuchs, Hendrik; Niesler, Nicole; Trautner, Alexandra; Sama, Simko; Jerz, Gerold; Panjideh, Hossein; Weng, Alexander

    2017-01-01

    Protein-based targeted toxins play an increasingly important role in targeted tumor therapies. In spite of their high intrinsic toxicity, their efficacy in animal models is low. A major reason for this is the limited entry of the toxin into the cytosol of the target cell, which is required to mediate the fatal effect. Target receptor bound and internalized toxins are mostly either recycled back to the cell surface or lysosomally degraded. This might explain why no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date although more than 500 targeted toxins have been developed within the last decades. To overcome the problem of insufficient endosomal escape, a number of strategies that make use of diverse chemicals, cell-penetrating or fusogenic peptides, and light-induced techniques were designed to weaken the membrane integrity of endosomes. This review focuses on glycosylated triterpenoids as endosomal escape enhancers and throws light on their structure, the mechanism of action, and on their efficacy in cell culture and animal models. Obstacles, challenges, opportunities, and future prospects are discussed. PMID:28536357

  10. dOCRL maintains immune cell quiescence by regulating endosomal traffic

    PubMed Central

    Del Signore, Steven J.; Biber, Sarah A.; Lehmann, Katherine S.; Heimler, Stephanie R.; Rosenfeld, Benjamin H.; Eskin, Tania L.

    2017-01-01

    Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome. PMID:29028801

  11. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome.

    PubMed

    Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz

    2013-07-01

    Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin-Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. p62/SQSTM1 promotes rapid ubiquitin conjugation to target proteins after endosome rupture during xenophagy.

    PubMed

    Tsuchiya, Megumi; Ogawa, Hidesato; Koujin, Takako; Mori, Chie; Osakada, Hiroko; Kobayashi, Shouhei; Hiraoka, Yasushi; Haraguchi, Tokuko

    2018-03-01

    Autophagy is a bulk degradation pathway, and selective autophagy to remove foreign entities is called xenophagy. The conjugation of ubiquitin to target pathogens is an important process in xenophagy but when and where this ubiquitination occurs remains unclear. Here, we analyzed the temporal sequence and subcellular location of ubiquitination during xenophagy using time-lapse observations, with polystyrene beads mimicking invading pathogens. Results revealed accumulation of a ubiquitination marker around the beads within 3 min after endosome rupture. Recruitment of ubiquitin to the beads was significantly delayed in p62-knockout murine embryonic fibroblast cells, and this delay was rescued by ectopic p62 expression. Ectopic expression of a phosphorylation-mimicking p62 mutated at serine residue 405 (equivalent to human serine residue 403) rescued this delay, but its unphosphorylated form did not. These results indicate that ubiquitination mainly occurs after endosome rupture and suggest that p62, specifically the phosphorylated form, promotes ubiquitin conjugation to target proteins in xenophagy.

  13. Bacterial uracil modulates Drosophila DUOX-dependent gut immunity via Hedgehog-induced signaling endosomes.

    PubMed

    Lee, Kyung-Ah; Kim, Boram; Bhin, Jinhyuk; Kim, Do Hun; You, Hyejin; Kim, Eun-Kyoung; Kim, Sung-Hee; Ryu, Ji-Hwan; Hwang, Daehee; Lee, Won-Jae

    2015-02-11

    Genetic studies in Drosophila have demonstrated that generation of microbicidal reactive oxygen species (ROS) through the NADPH dual oxidase (DUOX) is a first line of defense in the gut epithelia. Bacterial uracil acts as DUOX-activating ligand through poorly understood mechanisms. Here, we show that the Hedgehog (Hh) signaling pathway modulates uracil-induced DUOX activation. Uracil-induced Hh signaling is required for intestinal expression of the calcium-dependent cell adhesion molecule Cadherin 99C (Cad99C) and subsequent Cad99C-dependent formation of endosomes. These endosomes play essential roles in uracil-induced ROS production by acting as signaling platforms for PLCβ/PKC/Ca2+-dependent DUOX activation. Animals with impaired Hh signaling exhibit abolished Cad99C-dependent endosome formation and reduced DUOX activity, resulting in high mortality during enteric infection. Importantly, endosome formation, DUOX activation, and normal host survival are restored by genetic reintroduction of Cad99C into enterocytes, demonstrating the important role for Hh signaling in host resistance to enteric infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    PubMed Central

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-01-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier. PMID:26123532

  15. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    NASA Astrophysics Data System (ADS)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  16. Rotation of endosomes demonstrates coordination of molecular motors during axonal transport.

    PubMed

    Kaplan, Luke; Ierokomos, Athena; Chowdary, Praveen; Bryant, Zev; Cui, Bianxiao

    2018-03-01

    Long-distance axonal transport is critical to the maintenance and function of neurons. Robust transport is ensured by the coordinated activities of multiple molecular motors acting in a team. Conventional live-cell imaging techniques used in axonal transport studies detect this activity by visualizing the translational dynamics of a cargo. However, translational measurements are insensitive to torques induced by motor activities. By using gold nanorods and multichannel polarization microscopy, we simultaneously measure the rotational and translational dynamics for thousands of axonally transported endosomes. We find that the rotational dynamics of an endosome provide complementary information regarding molecular motor activities to the conventionally tracked translational dynamics. Rotational dynamics correlate with translational dynamics, particularly in cases of increased rotation after switches between kinesin- and dynein-mediated transport. Furthermore, unambiguous measurement of nanorod angle shows that endosome-contained nanorods align with the orientation of microtubules, suggesting a direct mechanical linkage between the ligand-receptor complex and the microtubule motors.

  17. Integration of two RAB5 groups during endosomal transport in plants

    PubMed Central

    Ebine, Kazuo; Choi, Seung-won; Ichinose, Sakura; Uemura, Tomohiro; Nakano, Akihiko

    2018-01-01

    RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. PMID:29749929

  18. Rotation of endosomes demonstrates coordination of molecular motors during axonal transport

    PubMed Central

    Kaplan, Luke; Ierokomos, Athena; Chowdary, Praveen; Bryant, Zev; Cui, Bianxiao

    2018-01-01

    Long-distance axonal transport is critical to the maintenance and function of neurons. Robust transport is ensured by the coordinated activities of multiple molecular motors acting in a team. Conventional live-cell imaging techniques used in axonal transport studies detect this activity by visualizing the translational dynamics of a cargo. However, translational measurements are insensitive to torques induced by motor activities. By using gold nanorods and multichannel polarization microscopy, we simultaneously measure the rotational and translational dynamics for thousands of axonally transported endosomes. We find that the rotational dynamics of an endosome provide complementary information regarding molecular motor activities to the conventionally tracked translational dynamics. Rotational dynamics correlate with translational dynamics, particularly in cases of increased rotation after switches between kinesin- and dynein-mediated transport. Furthermore, unambiguous measurement of nanorod angle shows that endosome-contained nanorods align with the orientation of microtubules, suggesting a direct mechanical linkage between the ligand-receptor complex and the microtubule motors. PMID:29536037

  19. Extracellular anti-angiogenic proteins augment an endosomal protein trafficking pathway to reach mitochondria and execute apoptosis in HUVECs.

    PubMed

    Chen, Mo; Qiu, Tao; Wu, Jiajie; Yang, Yang; Wright, Graham D; Wu, Min; Ge, Ruowen

    2018-03-09

    Classic endocytosis destinations include the recycling endosome returning to the plasma membrane or the late endosome (LE) merging with lysosomes for cargo degradation. However, the anti-angiogenic proteins angiostatin and isthmin, are endocytosed and trafficked to mitochondria (Mito) to execute apoptosis of endothelial cells. How these extracellular proteins reach mitochondria remains a mystery. Through confocal and super-resolution fluorescent microscopy, we demonstrate that angiostatin and isthmin are trafficked to mitochondria through the interaction between LE and Mito. Using purified organelles, the LE-Mito interaction is confirmed through in vitro lipid-fusion assay, as well as single vesicle total internal reflection fluorescent microscopy. LE-Mito interaction enables the transfer of not only lipids but also proteins from LE to Mito. Angiostatin and isthmin augment this endosomal protein trafficking pathway and make use of it to reach mitochondria to execute apoptosis. Cell fractionation and biochemical analysis identified that the cytosolic scaffold protein Na+/H+ exchanger regulatory factor 1 (NHERF1) associated with LE and the t-SNARE protein synaptosome-associated protein 25 kDa (SNAP25) associated with Mito form an interaction complex to facilitate LE-Mito interaction. Proximity ligation assay coupled with fluorescent microscopy showed that both NHERF1 and SNAP25 are located at the contacting face between LE and Mito. RNAi knockdown of either NHERF1 or SNAP25 suppressed not only the mitochondrial trafficking of angiostatin and isthmin but also their anti-angiogenic and pro-apoptotic functions. Hence, this study reveals a previously unrealized endosomal protein trafficking pathway from LE to Mito that allows extracellular proteins to reach mitochondria and execute apoptosis.

  20. Differential Regulation of Endosomal GPCR/β-Arrestin Complexes and Trafficking by MAPK*

    PubMed Central

    Khoury, Etienne; Nikolajev, Ljiljana; Simaan, May; Namkung, Yoon; Laporte, Stéphane A.

    2014-01-01

    β-Arrestins are signaling adaptors that bind to agonist-occupied G protein-coupled receptors (GPCRs) and target them for endocytosis; however, the mechanisms regulating receptor/β-arrestin complexes and trafficking in endosomes, remain ill defined. Here we show, in live cells, differential dynamic regulation of endosomal bradykinin B2 receptor (B2R) complexes with either β-arrestin-1 or -2. We find a novel role for MAPK in the B2R/β-arrestin-2 complex formation, receptor trafficking and signaling mediated by an ERK1/2 regulatory motif in the hinge domain of the rat β-arrestin-2 (PET178P), but not rat β-arrestin-1 (PER177P). While the ERK1/2 regulatory motif is conserved between rat and mouse β-arrestin-2, it is surprisingly not conserved in human β-arrestin-2 (PEK178P). However, mutation of lysine 178 to threonine is sufficient to confer MAPK sensitivity to the human β-arrestin-2. Furthermore, substitution for a phosphomimetic residue in both the rat and the human β-arrestin-2 (T/K178D) significantly stabilizes B2R/β-arrestin complexes in endosomes, delays receptor recycling to the plasma membrane and maintains intracellular MAPK signaling. Similarly, the endosomal trafficking of β2-adrenergic, angiotensin II type 1 and vasopressin V2 receptors was altered by the β-arrestin-2 T178D mutant. Our findings unveil a novel subtype specific mode of MAPK-dependent regulation of β-arrestins in intracellular trafficking and signaling of GPCRs, and suggest differential endosomal receptor/β-arrestin-2 signaling roles among species. PMID:25016018

  1. Nuclear transport of cancer extracellular vesicle-derived biomaterials through nuclear envelope invagination-associated late endosomes.

    PubMed

    Rappa, Germana; Santos, Mark F; Green, Toni M; Karbanová, Jana; Hassler, Justin; Bai, Yongsheng; Barsky, Sanford H; Corbeil, Denis; Lorico, Aurelio

    2017-02-28

    Extracellular membrane vesicles (EVs) function as vehicles of intercellular communication, but how the biomaterials they carry reach the target site in recipient cells is an open question. We report that subdomains of Rab7+ late endosomes and nuclear envelope invaginations come together to create a sub-nuclear compartment, where biomaterials associated with CD9+ EVs are delivered. EV-derived biomaterials were also found in the nuclei of host cells. The inhibition of nuclear import and export pathways abrogated the nuclear localization of EV-derived biomaterials or led to their accumulation therein, respectively, suggesting that their translocation is dependent on nuclear pores. Nuclear envelope invagination-associated late endosomes were observed in ex vivo biopsies in both breast carcinoma and associated stromal cells. The transcriptome of stromal cells exposed to cancer cell-derived CD9+ EVs revealed that the regulation of eleven genes, notably those involved in inflammation, relies on the nuclear translocation of EV-derived biomaterials. Our findings uncover a new cellular pathway used by EVs to reach nuclear compartment.

  2. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pHmore » 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.« less

  3. Integrin-linked kinase and ELMO2 modulate recycling endosomes in keratinocytes.

    PubMed

    Ho, Ernest; Ivanova, Iordanka A; Dagnino, Lina

    2016-12-01

    The formation of tight cell-cell junctions is essential in the epidermis for its barrier properties. In this tissue, keratinocytes follow a differentiation program tightly associated with their movement from the innermost basal to the outer suprabasal layers, and with changes in their cell-cell adhesion profile. Intercellular adhesion in keratinocytes is mediated through cell-cell contacts, including E-cadherin-based adherens junctions. Although the mechanisms that mediate E-cadherin delivery to the plasma membrane have been widely studied in simple epithelia, this process is less well understood in the stratified epidermis. In this study, we have investigated the role of Engulfment and Cell Motility 2 (ELMO2) and integrin-linked kinase (ILK) in the positioning of E-cadherin-containing recycling endosomes during establishment of cell-cell contacts in differentiating keratinocytes. We now show that induction of keratinocyte differentiation by Ca 2+ is accompanied by localization of ELMO2 and ILK to Rab4- and Rab11a-containing recycling endosomes. The positioning of long-loop Rab11a-positive endosomes at areas adjacent to cell-cell contacts is disrupted in ELMO2- or ILK-deficient keratinocytes, and is associated with impaired localization of E-cadherin to cell borders. Our studies show a previously unrecognized role for ELMO2 and ILK in modulation of endosomal positioning, which may play key roles in epidermal sheet maintenance and permeability barrier function. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin.

    PubMed

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Boni, Geraldine; Harrington, Elizabeth O

    2016-06-01

    Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.

  5. Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons.

    PubMed

    Cai, Qian; Lu, Li; Tian, Jin-Hua; Zhu, Yi-Bing; Qiao, Haifa; Sheng, Zu-Hang

    2010-10-06

    Neuron maintenance and survival require late endocytic transport from distal processes to the soma where lysosomes are predominantly localized. Here, we report a role for Snapin in attaching dynein to late endosomes through its intermediate chain (DIC). snapin(-/-) neurons exhibit aberrant accumulation of immature lysosomes, clustering and impaired retrograde transport of late endosomes along processes, reduced lysosomal proteolysis due to impaired delivery of internalized proteins and hydrolase precursors from late endosomes to lysosomes, and impaired clearance of autolysosomes, combined with reduced neuron viability and neurodegeneration. The phenotypes are rescued by expressing the snapin transgene, but not the DIC-binding-defective Snapin-L99K mutant. Snapin overexpression in wild-type neurons enhances late endocytic transport and lysosomal function, whereas expressing the mutant defective in Snapin-DIC coupling shows a dominant-negative effect. Altogether, our study highlights new mechanistic insights into how Snapin-DIC coordinates retrograde transport and late endosomal-lysosomal trafficking critical for autophagy-lysosomal function, and thus neuronal homeostasis. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling

    PubMed Central

    Dirk, Brennan S.; Pawlak, Emily N.; Johnson, Aaron L.; Van Nynatten, Logan R.; Jacob, Rajesh A.; Heit, Bryan; Dikeakos, Jimmy D.

    2016-01-01

    A defining characteristic of HIV-1 infection is the ability of the virus to persist within the host. Specifically, MHC-I downregulation by the HIV-1 accessory protein Nef is of critical importance in preventing infected cells from cytotoxic T-cell mediated killing. Nef downregulates MHC-I by modulating the host membrane trafficking machinery, resulting in the endocytosis and eventual sequestration of MHC-I within the cell. In the current report, we utilized the intracellular protein-protein interaction reporter system, bimolecular fluorescence complementation (BiFC), in combination with super-resolution microscopy, to track the Nef/MHC-I interaction and determine its subcellular localization in cells. We demonstrate that this interaction occurs upon Nef binding the MHC-I cytoplasmic tail early during endocytosis in a Rab5-positive endosome. Disruption of early endosome regulation inhibited Nef-dependent MHC-I downregulation, demonstrating that Nef hijacks the early endosome to sequester MHC-I within the cell. Furthermore, super-resolution imaging identified that the Nef:MHC-I BiFC complex transits through both early and late endosomes before ultimately residing at the trans-Golgi network. Together we demonstrate the importance of the early stages of the endocytic network in the removal of MHC-I from the cell surface and its re-localization within the cell, which allows HIV-1 to optimally evade host immune responses. PMID:27841315

  7. Visualization of endosome dynamics in living nerve terminals with four-dimensional fluorescence imaging.

    PubMed

    Stewart, Richard S; Kiss, Ilona M; Wilkinson, Robert S

    2014-04-16

    Four-dimensional (4D) light imaging has been used to study behavior of small structures within motor nerve terminals of the thin transversus abdominis muscle of the garter snake. Raw data comprises time-lapse sequences of 3D z-stacks. Each stack contains 4-20 images acquired with epifluorescence optics at focal planes separated by 400-1,500 nm. Steps in the acquisition of image stacks, such as adjustment of focus, switching of excitation wavelengths, and operation of the digital camera, are automated as much as possible to maximize image rate and minimize tissue damage from light exposure. After acquisition, a set of image stacks is deconvolved to improve spatial resolution, converted to the desired 3D format, and used to create a 4D "movie" that is suitable for variety of computer-based analyses, depending upon the experimental data sought. One application is study of the dynamic behavior of two classes of endosomes found in nerve terminals-macroendosomes (MEs) and acidic endosomes (AEs)-whose sizes (200-800 nm for both types) are at or near the diffraction limit. Access to 3D information at each time point provides several advantages over conventional time-lapse imaging. In particular, size and velocity of movement of structures can be quantified over time without loss of sharp focus. Examples of data from 4D imaging reveal that MEs approach the plasma membrane and disappear, suggesting that they are exocytosed rather than simply moving vertically away from a single plane of focus. Also revealed is putative fusion of MEs and AEs, by visualization of overlap between the two dye-containing structures as viewed in each three orthogonal projections.

  8. The Vici Syndrome Protein EPG5 Is a Rab7 Effector that Determines the Fusion Specificity of Autophagosomes with Late Endosomes/Lysosomes.

    PubMed

    Wang, Zheng; Miao, Guangyan; Xue, Xue; Guo, Xiangyang; Yuan, Chongzhen; Wang, Zhaoyu; Zhang, Gangming; Chen, Yingyu; Feng, Du; Hu, Junjie; Zhang, Hong

    2016-09-01

    Mutations in the human autophagy gene EPG5 cause the multisystem disorder Vici syndrome. Here we demonstrated that EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. EPG5 is recruited to late endosomes/lysosomes by direct interaction with Rab7 and the late endosomal/lysosomal R-SNARE VAMP7/8. EPG5 also binds to LC3/LGG-1 (mammalian and C. elegans Atg8 homolog, respectively) and to assembled STX17-SNAP29 Qabc SNARE complexes on autophagosomes. EPG5 stabilizes and facilitates the assembly of STX17-SNAP29-VAMP7/8 trans-SNARE complexes, and promotes STX17-SNAP29-VAMP7-mediated fusion of reconstituted proteoliposomes. Loss of EPG5 activity causes abnormal fusion of autophagosomes with various endocytic vesicles, in part due to elevated assembly of STX17-SNAP25-VAMP8 complexes. SNAP25 knockdown partially suppresses the autophagy defect caused by EPG5 depletion. Our study reveals that EPG5 is a Rab7 effector involved in autophagosome maturation, providing insight into the molecular mechanism underlying Vici syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Munc13-4 functions as a Ca2+ sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles.

    PubMed

    Woo, Sang Su; James, Declan J; Martin, Thomas F J

    2017-03-15

    Munc13-4 is a Ca 2+ -dependent SNARE (soluble N -ethylmaleimide-sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca 2+ -evoked secretion in various secretory cells. Studies in mast cell-like RBL-2H3 cells provide direct evidence that Munc13-4 with its two Ca 2+ -binding C2 domains functions as a Ca 2+ sensor for SG exocytosis. Unexpectedly, Ca 2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4 + /Rab7 + /Rab11 + endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4 + /Rab7 + SGs, followed by a merge with Rab11 + endosomes, and depended on Ca 2+ binding to Munc13-4. Munc13-4 promoted the Ca 2+ -stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca 2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells. © 2017 Woo et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. The V-ATPase a2-subunit as a putative endosomal pH-sensor.

    PubMed

    Marshansky, V

    2007-11-01

    V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.

  11. Visualization of early influenza A virus trafficking in human dendritic cells using STED microscopy.

    PubMed

    Baharom, Faezzah; Thomas, Oliver S; Lepzien, Rico; Mellman, Ira; Chalouni, Cécile; Smed-Sörensen, Anna

    2017-01-01

    Influenza A viruses (IAV) primarily target respiratory epithelial cells, but can also replicate in immune cells, including human dendritic cells (DCs). Super-resolution microscopy provides a novel method of visualizing viral trafficking by overcoming the resolution limit imposed by conventional light microscopy, without the laborious sample preparation of electron microscopy. Using three-color Stimulated Emission Depletion (STED) microscopy, we visualized input IAV nucleoprotein (NP), early and late endosomal compartments (EEA1 and LAMP1 respectively), and HLA-DR (DC membrane/cytosol) by immunofluorescence in human DCs. Surface bound IAV were internalized within 5 min of infection. The association of virus particles with early endosomes peaked at 5 min when 50% of NP+ signals were also EEA1+. Peak association with late endosomes occurred at 15 min when 60% of NP+ signals were LAMP1+. At 30 min of infection, the majority of NP signals were in the nucleus. Our findings illustrate that early IAV trafficking in human DCs proceeds via the classical endocytic pathway.

  12. Rab17 Regulates Membrane Trafficking through Apical Recycling Endosomes in Polarized Epithelial Cells

    PubMed Central

    Zacchi, Paola; Stenmark, Harald; Parton, Robert G.; Orioli, Donata; Lim, Filip; Giner, Angelika; Mellman, Ira; Zerial, Marino; Murphy, Carol

    1998-01-01

    A key feature of polarized epithelial cells is the ability to maintain the specific biochemical composition of the apical and basolateral plasma membrane domains while selectively allowing transport of proteins and lipids from one pole to the opposite by transcytosis. The small GTPase, rab17, a member of the rab family of regulators of intracellular transport, is specifically induced during cell polarization in the developing kidney. We here examined its intracellular distribution and function in both nonpolarized and polarized cells. By confocal immunofluorescence microscopy, rab17 colocalized with internalized transferrin in the perinuclear recycling endosome of BHK-21 cells. In polarized Eph4 cells, rab17 associated with the apical recycling endosome that has been implicated in recycling and transcytosis. The localization of rab17, therefore, strengthens the proposed homology between this compartment and the recycling endosome of nonpolarized cells. Basolateral to apical transport of two membrane-bound markers, the transferrin receptor and the FcLR 5-27 chimeric receptor, was specifically increased in Eph4 cells expressing rab17 mutants defective in either GTP binding or hydrolysis. Furthermore, the mutant proteins stimulated apical recycling of FcLR 5-27. These results support a role for rab17 in regulating traffic through the apical recycling endosome, suggesting a function in polarized sorting in epithelial cells. PMID:9490718

  13. Toxoplasma gondii Syntaxin 6 Is Required for Vesicular Transport Between Endosomal-Like Compartments and the Golgi Complex

    PubMed Central

    Jackson, Allison J; Clucas, Caroline; Mamczur, Nicola J; Ferguson, David J; Meissner, Markus

    2013-01-01

    Apicomplexans are obligate intracellular parasites that invade the host cell in an active process that relies on unique secretory organelles (micronemes, rhoptries and dense granules) localized at the apical tip of these highly polarized eukaryotes. In order for the contents of these specialized organelles to reach their final destination, these proteins are sorted post-Golgi and it has been speculated that they pass through endosomal-like compartments (ELCs), where they undergo maturation. Here, we characterize a Toxoplasma gondii homologue of Syntaxin 6 (TgStx6), a well-established marker for the early endosomes and trans Golgi network (TGN) in diverse eukaryotes. Indeed, TgStx6 appears to have a role in the retrograde transport between ELCs, the TGN and the Golgi, because overexpression of TgStx6 results in the development of abnormally shaped parasites with expanded ELCs, a fragmented Golgi and a defect in inner membrane complex maturation. Interestingly, other organelles such as the micronemes, rhoptries and the apicoplast are not affected, establishing the TGN as a major sorting compartment where several transport pathways intersect. It therefore appears that Toxoplasma has retained a plant-like secretory pathway. PMID:23962112

  14. LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity.

    PubMed

    Gómez-Suaga, Patricia; Rivero-Ríos, Pilar; Fdez, Elena; Blanca Ramírez, Marian; Ferrer, Isidro; Aiastui, Ana; López De Munain, Adolfo; Hilfiker, Sabine

    2014-12-20

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset autosomal dominant Parkinson's disease (PD), and sequence variations at the LRRK2 locus are associated with increased risk for sporadic PD. LRRK2 contains both GTPase and kinase domains flanked by protein interaction motifs, and mutations associated with familial PD have been described for both catalytic domains. LRRK2 has been implicated in diverse cellular processes, and recent evidence pinpoints to an important role for LRRK2 in modulating a variety of intracellular membrane trafficking pathways. However, the underlying mechanisms are poorly understood. Here, by studying the classical, well-understood, degradative trafficking pathway of the epidermal growth factor receptor (EGFR), we show that LRRK2 regulates endocytic membrane trafficking in an Rab7-dependent manner. Mutant LRRK2 expression causes a slight delay in early-to-late endosomal trafficking, and a pronounced delay in trafficking out of late endosomes, which become aberrantly elongated into tubules. This is accompanied by a delay in EGFR degradation. The LRRK2-mediated deficits in EGFR trafficking and degradation can be reverted upon coexpression of active Rab7 and of a series of proteins involved in bridging the EGFR to Rab7 on late endosomes. Effector pulldown assays indicate that pathogenic LRRK2 decreases Rab7 activity both in cells overexpressing LRRK2, as well as in fibroblasts from pathogenic mutant LRRK2 PD patients when compared with healthy controls. Together, these findings provide novel insights into a previously unknown regulation of Rab7 activity by mutant LRRK2 which impairs membrane trafficking at very late stages of the endocytic pathway. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes.

    PubMed

    Takatori, Sho; Tatematsu, Tsuyako; Cheng, Jinglei; Matsumoto, Jun; Akano, Takuya; Fujimoto, Toyoshi

    2016-02-01

    Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes.

    PubMed

    Tsvetanova, Nikoleta G; Irannejad, Roshanak; von Zastrow, Mark

    2015-03-13

    Some G protein-coupled receptors (GPCRs), in addition to activating heterotrimeric G proteins in the plasma membrane, appear to elicit a "second wave" of G protein activation after ligand-induced internalization. We briefly summarize evidence supporting this view and then discuss what is presently known about the functional significance of GPCR-G protein activation in endosomes. Endosomal activation can shape the cellular response temporally by prolonging its overall duration, and may shape the response spatially by moving the location of intracellular second messenger production relative to effectors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Macrophage NADPH oxidase flavocytochrome B localizes to the plasma membrane and Rab11-positive recycling endosomes.

    PubMed

    Casbon, Amy-Jo; Allen, Lee-Ann H; Dunn, Kenneth W; Dinauer, Mary C

    2009-02-15

    Flavocytochrome b(558), the catalytic core of the phagocytic NADPH oxidase, mediates the transfer of electrons from NADPH to molecular oxygen to generate superoxide for host defense. Flavocytochrome b is a membrane heterodimer consisting of a large subunit gp91(phox) (NOX2) and a smaller subunit, p22(phox). Although in neutrophils flavocytochrome b has been shown to localize to the plasma membrane and specific granules, little is known about its distribution in macrophages. Using immunofluorescent staining and live cell imaging of fluorescently tagged gp91(phox) and p22(phox), we demonstrate in a Chinese hamster ovary cell model system and in RAW 264.7 and primary murine bone marrow-derived macrophages that flavocytochrome b is found in the Rab11-positive recycling endocytic compartment, as well as in Rab5-positive early endosomes and plasma membrane. Additionally, we show that unassembled p22(phox) and gp91(phox) subunits localize to the endoplasmic reticulum, which redistribute to the cell surface and endosomal compartments following heterodimer formation. These studies show for the first time that flavocytochrome b localizes to intracellular compartments in macrophages that recycle to the plasma membrane, which may act as a reservoir to deliver flavocytochrome b to the cell surface and phagosome membranes.

  18. Long-distance endosome trafficking drives fungal effector production during plant infection

    PubMed Central

    Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J.; Steinberg, Gero

    2014-01-01

    To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion. PMID:25283249

  19. Long-distance endosome trafficking drives fungal effector production during plant infection.

    PubMed

    Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J; Steinberg, Gero

    2014-10-06

    To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion.

  20. Intracellular Trafficking of Clostridium perfringens Iota-Toxin b

    PubMed Central

    Umezaki, Mariko; Tashiro, Ryo; Oda, Masataka; Kobayashi, Keiko; Shibutani, Masahiro; Takagishi, Teruhisa; Ishidoh, Kazumi; Fukuda, Mitsunori; Sakurai, Jun

    2012-01-01

    Clostridium perfringens iota-toxin is composed of an enzymatic component (Ia) and a binding component (Ib). Ib binds to a cell surface receptor, undergoes oligomerization in lipid rafts, and binds Ia. The resulting complex is then endocytosed. Here, we show the intracellular trafficking of iota-toxin. After the binding of the Ib monomer with cells at 4°C, oligomers of Ib formed at 37°C and later disappeared. Immunofluorescence staining of Ib revealed that the internalized Ib was transported to early endosomes. Some Ib was returned to the plasma membrane through recycling endosomes, whereas the rest was transported to late endosomes and lysosomes for degradation. Degraded Ib was delivered to the plasma membrane by an increase in the intracellular Ca2+ concentration caused by Ib. Bafilomycin A1, an endosomal acidification inhibitor, caused the accumulation of Ib in endosomes, and both nocodazole and colchicine, microtubule-disrupting agents, restricted Ib's movement in the cytosol. These results indicated that an internalized Ia and Ib complex was delivered to early endosomes and that subsequent delivery of Ia to the cytoplasm occurs mainly in early endosomes. Ib was either sent back to the plasma membranes through recycling endosomes or transported to late endosomes and lysosomes for degradation. Degraded Ib was transported to plasma membranes. PMID:22825447

  1. Yersinia pestis Targets the Host Endosome Recycling Pathway during the Biogenesis of the Yersinia-Containing Vacuole To Avoid Killing by Macrophages

    PubMed Central

    Connor, Michael G.; Pulsifer, Amanda R.; Ceresa, Brian K.

    2018-01-01

    ABSTRACT Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. PMID:29463656

  2. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae.

    PubMed

    Tani, Motohiro; Kuge, Osamu

    2012-12-01

    Sphingolipids play critical roles in many physiologically important events in the yeast Saccharomyces cerevisiae. In this study, we found that csg2Δ mutant cells defective in the synthesis of mannosylinositol phosphorylceramide exhibited abnormal intracellular accumulation of an exocytic v-SNARE, Snc1, under phosphatidylserine synthase gene (PSS1)-repressive conditions, although in wild-type cells, Snc1 was known to cycle between plasma membranes and the late Golgi via post-Golgi endosomes. The mislocalized Snc1 was co-localized with an endocytic marker dye, FM4-64, upon labelling for a short time. The abnormal distribution of Snc1 was suppressed by deletion of GYP2 encoding a GTPase-activating protein that negatively regulates endosomal vesicular trafficking, or expression of GTP-restricted form of Ypt32 GTPase. Furthermore, an endocytosis-deficient mutant of Snc1 was localized to plasma membranes in PSS1-repressed csg2Δ mutant cells as well as wild-type cells. Thus, the PSS1-repressed csg2Δ mutant cells were indicated to be defective in the trafficking of Snc1 from post-Golgi endosomes to the late Golgi. In contrast, the vesicular trafficking pathways via pre-vacuolar endosomes in the PSS1-repressed csg2Δ mutant cells seemed to be normal. These results suggested that specific complex sphingolipids and phosphatidylserine are co-ordinately involved in specific vesicular trafficking pathway. © 2012 Blackwell Publishing Ltd.

  3. Parkin Modulates Endosomal Organization and Function of the Endo-Lysosomal Pathway.

    PubMed

    Song, Pingping; Trajkovic, Katarina; Tsunemi, Taiji; Krainc, Dimitri

    2016-02-24

    Mutations in PARK2 (parkin), which encodes Parkin protein, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson's disease (PD). While several studies implicated Parkin in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration upon Parkin loss of function remains incompletely understood. In this study, we found that Parkin modulates the endocytic pathway through the regulation of endosomal structure and function. We showed that loss of Parkin function led to decreased endosomal tubulation and membrane association of vesicle protein sorting 35 (VPS35) and sorting nexin 1 (SNX1), as well as decreased mannose 6 phosphate receptor (M6PR), suggesting the impairment of retromer pathway in Parkin-deficient cells. We also found increased formation of intraluminal vesicles coupled with enhanced release of exosomes in the presence of mutant Parkin. To elucidate the molecular mechanism of these alterations in the endocytic pathway in Parkin-deficient cells, we found that Parkin regulates the levels and activity of Rab7 by promoting its ubiquitination on lysine 38 residue. Both endogenous Rab7 in Parkin-deficient cells and overexpressed K38 R-Rab7 mutant displayed decreased effector binding and membrane association. Furthermore, overexpression of K38R-Rab7 in HEK293 cells phenocopied the increased secretion of exosomes observed in Parkin-deficient cells, suggesting that Rab7 deregulation may be at least partially responsible for the endocytic phenotype observed in Parkin-deficient cells. These findings establish a role for Parkin in regulating the endo-lysosomal pathway and retromer function and raise the possibility that alterations in these pathways contribute to the development of pathology in Parkin-linked Parkinson's disease. Copyright © 2016 the authors 0270-6474/16/362425-13$15.00/0.

  4. IQGAP1 promotes CXCR4 chemokine receptor function and trafficking via EEA-1+ endosomes

    PubMed Central

    Bamidele, Adebowale O.; Kremer, Kimberly N.; Hirsova, Petra; Clift, Ian C.; Gores, Gregory J.; Billadeau, Daniel D.

    2015-01-01

    IQ motif–containing GTPase-activating protein 1 (IQGAP1) is a cytoskeleton-interacting scaffold protein. CXCR4 is a chemokine receptor that binds stromal cell–derived factor-1 (SDF-1; also known as CXCL12). Both IQGAP1 and CXCR4 are overexpressed in cancer cell types, yet it was unclear whether these molecules functionally interact. Here, we show that depleting IQGAP1 in Jurkat T leukemic cells reduced CXCR4 expression, disrupted trafficking of endocytosed CXCR4 via EEA-1+ endosomes, and decreased efficiency of CXCR4 recycling. SDF-1–induced cell migration and activation of extracellular signal-regulated kinases 1 and 2 (ERK) MAPK were strongly inhibited, even when forced overexpression restored CXCR4 levels. Similar results were seen in KMBC and HEK293 cells. Exploring the mechanism, we found that SDF-1 treatment induced IQGAP1 binding to α-tubulin and localization to CXCR4-containing endosomes and that CXCR4-containing EEA-1+ endosomes were abnormally located distal from the microtubule (MT)-organizing center (MTOC) in IQGAP1-deficient cells. Thus, IQGAP1 critically mediates CXCR4 cell surface expression and signaling, evidently by regulating EEA-1+ endosome interactions with MTs during CXCR4 trafficking and recycling. IQGAP1 may similarly promote CXCR4 functions in other cancer cell types. PMID:26195666

  5. Phosphatidic acid induces EHD3-containing membrane tubulation and is required for receptor recycling.

    PubMed

    Henmi, Yuji; Oe, Natsuko; Kono, Nozomu; Taguchi, Tomohiko; Takei, Kohji; Tanabe, Kenji

    2016-03-01

    EHD3 is localized on the tubular structures of early endosomes, and it regulates their trafficking pathway. However, the regulatory mechanism of EHD3-containing tubular structures remains poorly understood. An in vitro liposome co-sedimentation assay revealed that EHD3 interacted with phosphatidic acid through its helical domain and this interaction induced liposomal tubulations. Additionally, inhibiting phosphatidic acid synthesis with diacylglycerol kinase inhibitor or lysophosphatidic acid acyltransferase inhibitor significantly reduced the number of EHD3-containing tubules and impaired their trafficking from early endosomes. These results suggest that EHD3 and phosphatidic acid cooperatively regulate membrane deformation and trafficking from early endosomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. BLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia

    PubMed Central

    2017-01-01

    Primary cilia perceive the extracellular environment through receptors localized in the ciliary membrane, but mechanisms directing specific proteins to this domain are poorly understood. To address this question, we knocked down proteins potentially important for ciliary membrane targeting and determined how this affects the ciliary trafficking of fibrocystin, polycystin-2, and smoothened. Our analysis showed that fibrocystin and polycystin-2 are dependent on IFT20, GMAP210, and the exocyst complex, while smoothened delivery is largely independent of these components. In addition, we found that polycystin-2, but not smoothened or fibrocystin, requires the biogenesis of lysosome-related organelles complex-1 (BLOC-1) for ciliary delivery. Consistent with the role of BLOC-1 in sorting from the endosome, we find that disrupting the recycling endosome reduces ciliary polycystin-2 and causes its accumulation in the recycling endosome. This is the first demonstration of a role for BLOC-1 in ciliary assembly and highlights the complexity of pathways taken to the cilium. PMID:28576874

  7. IFITM3 Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores following Virus-Endosome Hemifusion

    PubMed Central

    Chin, Christopher R.; Savidis, George; Brass, Abraham L.; Melikyan, Gregory B.

    2014-01-01

    Interferon-induced transmembrane proteins (IFITMs) inhibit infection of diverse enveloped viruses, including the influenza A virus (IAV) which is thought to enter from late endosomes. Recent evidence suggests that IFITMs block virus hemifusion (lipid mixing in the absence of viral content release) by altering the properties of cell membranes. Consistent with this mechanism, excess cholesterol in late endosomes of IFITM-expressing cells has been reported to inhibit IAV entry. Here, we examined IAV restriction by IFITM3 protein using direct virus-cell fusion assay and single virus imaging in live cells. IFITM3 over-expression did not inhibit lipid mixing, but abrogated the release of viral content into the cytoplasm. Although late endosomes of IFITM3-expressing cells accumulated cholesterol, other interventions leading to aberrantly high levels of this lipid did not inhibit virus fusion. These results imply that excess cholesterol in late endosomes is not the mechanism by which IFITM3 inhibits the transition from hemifusion to full fusion. The IFITM3's ability to block fusion pore formation at a post-hemifusion stage shows that this protein stabilizes the cytoplasmic leaflet of endosomal membranes without adversely affecting the lumenal leaflet. We propose that IFITM3 interferes with pore formation either directly, through partitioning into the cytoplasmic leaflet of a hemifusion intermediate, or indirectly, by modulating the lipid/protein composition of this leaflet. Alternatively, IFITM3 may redirect IAV fusion to a non-productive pathway, perhaps by promoting fusion with intralumenal vesicles within multivesicular bodies/late endosomes. PMID:24699674

  8. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes

    PubMed Central

    Hernáez, Bruno; Guerra, Milagros; Salas, María L.

    2016-01-01

    African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs. PMID:27110717

  9. Intracellular mediators of transforming growth factor beta superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo.

    PubMed

    Rajagopal, Ramya; Ishii, Shunsuke; Beebe, David C

    2007-06-25

    Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Proteins that are downstream of the transforming growth factor-beta superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFbeta superfamily for their normal development. Phosphorylated Smad1 (pSmad1), pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA) and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-beta superfamily to endosomes is important for the regulation of growth factor signaling.

  10. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    PubMed Central

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  11. Parkinson Disease-linked Vps35 R524W Mutation Impairs the Endosomal Association of Retromer and Induces α-Synuclein Aggregation.

    PubMed

    Follett, Jordan; Bugarcic, Andrea; Yang, Zhe; Ariotti, Nicholas; Norwood, Suzanne J; Collins, Brett M; Parton, Robert G; Teasdale, Rohan D

    2016-08-26

    Endosomal sorting is a highly orchestrated cellular process. Retromer is a heterotrimeric complex that associates with endosomal membranes and facilitates the retrograde sorting of multiple receptors, including the cation-independent mannose 6-phosphate receptor for lysosomal enzymes. The cycling of retromer on and off the endosomal membrane is regulated by a network of retromer-interacting proteins. Here, we find that Parkinson disease-associated Vps35 variant, R524W, but not P316S, is a loss-of-function mutation as marked by a reduced association with this regulatory network and dysregulation of endosomal receptor sorting. Expression of Vps35 R524W-containing retromer results in the accumulation of intracellular α-synuclein-positive aggregates, a hallmark of Parkinson disease. Overall, the Vps35 R524W-containing retromer has a decreased endosomal association, which can be partially rescued by R55, a small molecule previously shown to stabilize the retromer complex, supporting the potential for future targeting of the retromer complex in the treatment of Parkinson disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Retriever, a multiprotein complex for retromer-independent endosomal cargo recycling

    PubMed Central

    McNally, Kerrie E.; Faulkner, Rebecca; Steinberg, Florian; Gallon, Matthew; Ghai, Rajesh; Pim, David; Langton, Paul; Pearson, Neil; Danson, Chris M.; Nägele, Heike; Morris, Lindsey M; Singla, Arnika; Overlee, Brittany L; Heesom, Kate J.; Sessions, Richard; Banks, Lawrence; Collins, Brett M; Berger, Imre; Billadeau, Daniel D.; Burstein, Ezra; Cullen, Peter J.

    2018-01-01

    Following endocytosis and entry into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are alternatively retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multi-protein complex which orchestrates cargo retrieval and recycling and importantly, is biochemically and functionally distinct to the established retromer pathway. Composed of a heterotrimer of DSCR3, C16orf62 and VPS29, and bearing striking similarity with retromer, we have called this complex ‘retriever’. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to the CCC and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1-integrin. Through quantitative proteomic analysis we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, which require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major new endosomal retrieval and recycling pathway. PMID:28892079

  13. Endosomal acidification by Na+/H+ exchanger NHE5 regulates TrkA cell-surface targeting and NGF-induced PI3K signaling

    PubMed Central

    Diering, Graham H.; Numata, Yuka; Fan, Steven; Church, John; Numata, Masayuki

    2013-01-01

    To facilitate polarized vesicular trafficking and signal transduction, neuronal endosomes have evolved sophisticated mechanisms for pH homeostasis. NHE5 is a member of the Na+/H+ exchanger family and is abundantly expressed in neurons and associates with recycling endosomes. Here we show that NHE5 potently acidifies recycling endosomes in PC12 cells. NHE5 depletion by plasmid-based short hairpin RNA significantly reduces cell surface abundance of TrkA, an effect similar to that observed after treatment with the V-ATPase inhibitor bafilomycin. A series of cell-surface biotinylation experiments suggests that anterograde trafficking of TrkA from recycling endosomes to plasma membrane is the likeliest target affected by NHE5 depletion. NHE5 knockdown reduces phosphorylation of Akt and Erk1/2 and impairs neurite outgrowth in response to nerve growth factor (NGF) treatment. Of interest, although both phosphoinositide 3-kinase–Akt and Erk signaling are activated by NGF-TrkA, NGF-induced Akt-phosphorylation appears to be more sensitively affected by perturbed endosomal pH. Furthermore, NHE5 depletion in rat cortical neurons in primary culture also inhibits neurite formation. These results collectively suggest that endosomal pH modulates trafficking of Trk-family receptor tyrosine kinases, neurotrophin signaling, and possibly neuronal differentiation. PMID:24006492

  14. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles.

    PubMed

    Jones, Rachel A; Cheung, Charles Y; Black, Fiona E; Zia, Jasmine K; Stayton, Patrick S; Hoffman, Allan S; Wilson, Mark R

    2003-05-15

    The permeability barrier posed by cell membranes represents a challenge for the delivery of hydrophilic molecules into cells. We previously proposed that poly(2-alkylacrylic acid)s are endocytosed by cells into acidified vesicles and are there triggered by low pH to disrupt membranes and release the contents of endosomes/lysosomes to the cytosol. If this hypothesis is correct, these polymers could be valuable in drug-delivery applications. The present paper reports functional comparisons of a family of three poly(2-alkylacrylic acid)s. Poly(2-propylacrylic acid) (PPAA), poly(2-ethylacrylic acid) (PEAA) and poly(2-methylacrylic acid) (PMAA) were compared in red-blood-cell haemolysis assays and in a lipoplex (liposome-DNA complex) assay. We also directly examined the ability of these polymers to disrupt endosomes and lysosomes in cultured human cells. Our results show that: (i) unlike membrane-disruptive peptides, the endosomal-disruptive ability of poly(2-alkylacrylic acid)s cannot necessarily be predicted from their haemolytic activity at low pH, (ii) PPAA (but not PEAA or PMAA) potently facilitates gene transfection by cationic lipoplexes and (iii) endocytosed poly(2-alkylacrylic acid)s are triggered by luminal acidification to selectively disrupt endosomes (not lysosomes) and release their contents to the cytosol. These results will facilitate the rational design of future endosomal-disrupting polymers for drug delivery.

  15. A Role for Peptides in Overcoming Endosomal Entrapment in siRNA Delivery – A Focus on Melittin

    PubMed Central

    Hou, Kirk K.; Pan, Hua; Schlesinger, Paul H.; Wickline, Samuel A.

    2015-01-01

    siRNA has the possibility to revolutionize medicine by enabling highly specific and efficient silencing of proteins involved in disease pathogenesis. Despite nearly 20 years of research dedicated to translating siRNA from a research tool into a clinically relevant therapeutic, minimal success has been had to date. Access to RNA interference machinery located in the cytoplasm is often overlooked, but must be considered when designing the next generation of siRNA delivery strategies. Peptide transduction domains (PTD) have demonstrated moderate siRNA transfection, which is primarily limited by endosomal entrapment. Strategies aimed at overcoming endosomal entrapment associated with peptide vectors are reviewed here, including osmotic methods, lipid conjugation, and fusogenic peptides. As an alternative to traditional PTD, the hemolytic peptide melittin exhibits the native capacity for endosomal disruption but causes cytotoxicity. However, appropriate packaging and protection of melittin with activation and release in the endosomal compartment has allowed melittin-based strategies to demonstrate both in vitro and in vivo safety and efficacy. These data suggest that melittin's membrane disruptive properties can enable safe and effective endosomolysis, building a case for melittin as a key component in a new generation of siRNA therapeutics. PMID:26025036

  16. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8(+) T cells.

    PubMed

    Zehner, Matthias; Marschall, Andrea L; Bos, Erik; Schloetel, Jan-Gero; Kreer, Christoph; Fehrenschild, Dagmar; Limmer, Andreas; Ossendorp, Ferry; Lang, Thorsten; Koster, Abraham J; Dübel, Stefan; Burgdorf, Sven

    2015-05-19

    The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR

    PubMed Central

    Boncompain, Gaelle; Laketa, Vibor; Poser, Ina; Beck, Martin; Bork, Peer

    2016-01-01

    Stimulation of cells with epidermal growth factor (EGF) induces internalization and partial degradation of the EGF receptor (EGFR) by the endo-lysosomal pathway. For continuous cell functioning, EGFR plasma membrane levels are maintained by transporting newly synthesized EGFRs to the cell surface. The regulation of this process is largely unknown. In this study, we find that EGF stimulation specifically increases the transport efficiency of newly synthesized EGFRs from the endoplasmic reticulum to the plasma membrane. This coincides with an up-regulation of the inner coat protein complex II (COPII) components SEC23B, SEC24B, and SEC24D, which we show to be specifically required for EGFR transport. Up-regulation of these COPII components requires the transcriptional regulator RNF11, which localizes to early endosomes and appears additionally in the cell nucleus upon continuous EGF stimulation. Collectively, our work identifies a new regulatory mechanism that integrates the degradation and transport of EGFR in order to maintain its physiological levels at the plasma membrane. PMID:27872256

  18. Forced Complementation between Subgenomic RNAs: Does Human Immunodeficiency Type 1 Virus Reverse Transcription Occur in Viral Core, Cytoplasm, or Early Endosome?

    PubMed Central

    Han, Weining; Li, Yuejin; Bagaya, Bernard S.; Tian, Meijuan; Chamanian, Mastooreh; Zhu, Chuanwu; Shen, Jie; Gao, Yong

    2016-01-01

    Although the process of reverse transcription is well elucidated, it remains unclear if viral core disruption provides a more cellular or viral milieu for HIV-1 reverse transcription. We have devised a method to require mixing of viral cores or core constituents to produce infectious progeny virus by a bipartite subgenomic RNA (sgRNA) system, in which HIV-1 cplt_R/U5/gag/Δpol and nfl sgRNAs are complementary to each other and when together can complete viral reverse transcription. Only the heterodiploid virus containing both the nfl and cplt_R/U5/gag/Δpol sgRNAs can complete reverse transcription and propagate infectious virus upon de novo infection. Dual exposure of U87.CD4.CXCR4 cells with high titers of the homodimeric nfl and cplt_R/U5/gag/Δpol virus particles did not result in productive virus infection. On the other hand, in early endosomes, the HIV-1 sgRNAs released from viral cores can retain function and complete the reverse transcription and result in productive infection. These findings confirm the assumptions that, in natural infection, HIV-1 cores, and likely other retrovirus cores, remain largely intact and do not mix/fuse in the cytoplasm during the reverse transcription process, and circulating cytoplasmic HIV-1 sgRNA (produced through transfection) could not help the complementary sgRNA in the viral core to complement the reverse transcription process. PMID:27239643

  19. Interferon-induced Sus scrofa Mx1 blocks endocytic traffic of incoming influenza A virus particles.

    PubMed

    Palm, Mélanie; Garigliany, Mutien-Marie; Cornet, François; Desmecht, Daniel

    2010-01-01

    The interferon-induced Mx proteins of vertebrates are dynamin-like GTPases, some isoforms of which can additionally inhibit the life cycle of certain RNA viruses. Here we show that the porcine Mx1 protein (poMx1) inhibits replication of influenza A virus and we attempt to identify the step at which the viral life cycle is blocked. In infected cells expressing poMx1, the level of transcripts encoding the viral nucleoprotein is significantly lower than normal, even when secondary transcription is prevented by exposure to cycloheximide. This reveals that a pretranscriptional block participates to the anti-influenza activity. Binding and internalization of incoming virus particles are normal in the presence of poMx1 but centripetal traffic to the late endosomes is interrupted. Surprisingly but decisively, poMx1 significantly alters binding of early endosome autoantigen 1 to early endosomes and/or early endosome size and spatial distribution. This is compatible with impairment of traffic of the endocytic vesicles to the late endosomes. INRA, EDP Sciences, 2010.

  20. UNC93B1 mediates differential trafficking of endosomal TLRs

    PubMed Central

    Lee, Bettina L; Moon, Joanne E; Shu, Jeffrey H; Yuan, Lin; Newman, Zachary R; Schekman, Randy; Barton, Gregory M

    2013-01-01

    UNC93B1, a multipass transmembrane protein required for TLR3, TLR7, TLR9, TLR11, TLR12, and TLR13 function, controls trafficking of TLRs from the endoplasmic reticulum (ER) to endolysosomes. The mechanisms by which UNC93B1 mediates these regulatory effects remain unclear. Here, we demonstrate that UNC93B1 enters the secretory pathway and directly controls the packaging of TLRs into COPII vesicles that bud from the ER. Unlike other COPII loading factors, UNC93B1 remains associated with the TLRs through post-Golgi sorting steps. Unexpectedly, these steps are different among endosomal TLRs. TLR9 requires UNC93B1-mediated recruitment of adaptor protein complex 2 (AP-2) for delivery to endolysosomes while TLR7, TLR11, TLR12, and TLR13 utilize alternative trafficking pathways. Thus, our study describes a mechanism for differential sorting of endosomal TLRs by UNC93B1, which may explain the distinct roles played by these receptors in certain autoimmune diseases. DOI: http://dx.doi.org/10.7554/eLife.00291.001 PMID:23426999

  1. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers.

    PubMed

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-07-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.

  2. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    PubMed Central

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-01-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments. PMID:27376327

  3. Mechanisms of polarized membrane trafficking in neurons – focusing in on endosomes

    PubMed Central

    Lasiecka, Zofia M.; Winckler, Bettina

    2011-01-01

    Neurons are polarized cells that have a complex and unique morphology: long processes (axons and dendrites) extending far from the cell body. In addition, the somatodendritic and axonal domains are further divided into specific subdomains, such as synapses (pre- and postsynaptic specializations), proximal and distal dendrites, axon initial segments, nodes of Ranvier, and axon growth cones. The striking asymmetry and complexity of neuronal cells is necessary for their function in receiving, processing and transferring electrical signals, with each domain playing a precise function in these processes. In order to establish and maintain distinct neuronal domains, mechanisms must exist for protein delivery to specific neuronal compartments, such that each compartment has the correct functional molecular composition. How polarized membrane domains are established and maintained is a long-standing question. Transmembrane proteins, such as receptors and adhesion molecules, can be transported to their proper membrane domains by several pathways. The biosynthetic secretory system delivers newly synthesized transmembrane proteins from the ER-Golgi via the trans-Golgi network (TGN) to the plasma membrane. In addition, the endosomal system is critically involved in many instances in ensuring proper (re)targeting of membrane components because it can internalize and degrade mislocalized proteins, or recycle proteins from one domain to another. The endosomal system is thus crucial for establishing and maintaining neuronal polarity. In this review, we focus mainly on the intracellular compartments that serve as sorting stations for polarized transport, with particular emphasis on the emerging roles of endosomes. PMID:21762782

  4. Decoupling Internalization, Acidification and Phagosmal-Endosomal/Iysosomal Phagocytosis of Internalin A coated Beads in epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchette, C D; Woo, Y; Thomas, C

    2008-12-22

    Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established, and in several cases, it was treated as a one-step process. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells, such as epithelial cells. Therefore, in this study, we developed a simple and novel method to decouple and accurately measure particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) andmore » Caco-2 epithelial cells. Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated internalization. We achieved independent measurements of the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, pH sensitive dyes and endosomal/lysosomal dyes, as follows: the rate of InlA bead internalization was measured via antibody quenching of a pH independent dye (Alexa488) conjugated to InlA-beads, the rate at which phagosomes containing internalized InlA beads became acidified was measured using a pH dependent dye (FITC) conjugated to the beads and the rate of phagosomal-endosomal/lysosomal fusion was measured using a combination of unlabeled InlA-beads and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we also exploited the phagosomal acidification process to

  5. Cytomegalovirus immune evasion by perturbation of endosomal trafficking

    PubMed Central

    Lučin, Pero; Mahmutefendić, Hana; Blagojević Zagorac, Gordana; Ilić Tomaš, Maja

    2015-01-01

    Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms. PMID:25263490

  6. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA.

    PubMed

    Zhu, Jia; Qiao, Mingxi; Wang, Qi; Ye, Yuqing; Ba, Shuang; Ma, Jingjing; Hu, Haiyang; Zhao, Xiuli; Chen, Dawei

    2018-04-01

    Despite the extracellular barriers for siRNA delivery have been overcome by utilizing advanced nanoparticle delivery systems, the key intracellular barriers after internalization including efficient disassembly of siRNA and endosomal escape still remains challenging. To address the issues, we developed a unique pH- and redox potential-responsive polyplex delivery system based on the copolymer of mPEG-b-PLA-PHis-ssPEI1.8 k, which is composed of a pH-responsive copolymer of PEG-b-PLA-PHis (Mw 5 k) and a branched PEI (Mw1.8 k) linked with redox cleavable disulfide bond. The copolymer showed excellent siRNA complexation and protection abilities against endogenous substances at the relatively low N/P ratio of 6. The siRNA release from the polyplexes (N/P 6) was markedly increased from 13.62% to 58.67% under conditions simulating the endosomal microenvironment. Fluorescence resonance energy transfer (FRET) test also indicated a higher disassembly extent of siRNA from the copolymer. The accelerated siRNA release from the polyplexes was markedly restrained when the N/P ratio was raised above 10 due to the increasing of electrostatic interactions. The efficient endosomal escape of siRNA after internalization was confirmed by confocal microscopy, which was attributed to the cleavaged PEI chains inducing membrane destabilization, the "proton sponge effect" of PHis and PEI as well as the relative small size of after disassembly. The enhanced disassembly and endosomal escape were elucidated as the leading cause for polyplexes (N/P 6) showed more efficient Bcl-2 silencing (85.45%) than those polyplexes with higher N/P ratios (N/P 10 and 15). In vivo results further demonstrated that polyplexes (N/P 6) delivery of siBcl-2 significantly inhibited the MCF-7 breast tumor growth as compared to its counterparts. The incorporation of convertible non-electrical interactions at a balance with electrostatic interactions in complexation siRNA has been demonstrated as an effective

  7. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes

    PubMed Central

    Cheng, Xiu-Tang; Zhou, Bing; Lin, Mei-Yao; Cai, Qian

    2015-01-01

    Efficient degradation of autophagic vacuoles (AVs) via lysosomes is an important cellular homeostatic process. This is particularly challenging for neurons because mature acidic lysosomes are relatively enriched in the soma. Although dynein-driven retrograde transport of AVs was suggested, a fundamental question remains how autophagosomes generated at distal axons acquire dynein motors for retrograde transport toward the soma. In this paper, we demonstrate that late endosome (LE)–loaded dynein–snapin complexes drive AV retrograde transport in axons upon fusion of autophagosomes with LEs into amphisomes. Blocking the fusion with syntaxin17 knockdown reduced recruitment of dynein motors to AVs, thus immobilizing them in axons. Deficiency in dynein–snapin coupling impaired AV transport, resulting in AV accumulation in neurites and synaptic terminals. Altogether, our study provides the first evidence that autophagosomes recruit dynein through fusion with LEs and reveals a new motor–adaptor sharing mechanism by which neurons may remove distal AVs engulfing aggregated proteins and dysfunctional organelles for efficient degradation in the soma. PMID:25940348

  8. Cellular vacuolation induced by Clostridium perfringens epsilon-toxin.

    PubMed

    Nagahama, Masahiro; Itohayashi, Yukari; Hara, Hideki; Higashihara, Masahiro; Fukatani, Yusuke; Takagishi, Teruhisa; Oda, Masataka; Kobayashi, Keiko; Nakagawa, Ichiro; Sakurai, Jun

    2011-09-01

    The epsilon-toxin of Clostridium perfringens forms a heptamer in the membranes of Madin-Darby canine kidney cells, leading to cell death. Here, we report that it caused the vacuolation of Madin-Darby canine kidney cells. The toxin induced vacuolation in a dose-dependent and time-dependent manner. The monomer of the toxin formed oligomers on lipid rafts in membranes of the cells. Methyl-β-cyclodextrin and poly(ethylene glycol) 4000 inhibited the vacuolation. Epsilon-toxin was internalized into the cells. Confocal microscopy revealed that the internalized toxin was transported from early endosomes (early endosome antigen 1 staining) to late endosomes and lysosomes (lysosomal-associated membrane protein 2 staining) and then distributed to the membranes of vacuoles. Furthermore, the vacuolation was inhibited by bafilomycin A1, a V-type ATPase inhibitor, and colchicine and nocodazole, microtubule-depolymerizing agents. The early endosomal marker green fluorescent protein-Rab5 and early endosome antigen 1 did not localize to vacuolar membranes. In contrast, the vacuolar membranes were specifically stained by the late endosomal and lysosomal marker green fluorescent protein-Rab7 and lysosomal-associated membrane protein 2. The vacuoles in the toxin-treated cells were stained with LysoTracker Red DND-99, a marker for late endosomes and lysosomes. A dominant negative mutant of Rab7 prevented the vacuolization, whereas a mutant form of Rab5 was less effective. These results demonstrate, for the first time, that: (a) oligomers of epsilon-toxin formed in lipid rafts are endocytosed; and (b) the vacuoles originating from late endosomes and lysosomes are formed by an oligomer of epsilon-toxin. © 2011 The Authors Journal compilation © 2011 FEBS.

  9. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin.

    PubMed

    Lesteberg, Kelsey; Orange, Jordan; Makedonas, George

    2017-10-01

    Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein, we aimed to determine how new perforin transits to the synapse if not via lytic granules. We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response.

  10. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin

    PubMed Central

    Lesteberg, Kelsey E.; Orange, Jordan S.; Makedonas, George

    2018-01-01

    Background Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein we aimed to determine how new perforin transits to the synapse if not via lytic granules. Results We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. Conclusions The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response. PMID:28822075

  11. Endosomal/Lysosomal Processing of Gangliosides Affects Neuronal Cholesterol Sequestration in Niemann-Pick Disease Type C

    PubMed Central

    Zhou, Sharon; Davidson, Cristin; McGlynn, Robert; Stephney, Gloria; Dobrenis, Kostantin; Vanier, Marie T.; Walkley, Steven U.

    2011-01-01

    Niemann-Pick disease type C (NPC) is a severe neurovisceral lysosomal storage disorder caused by defects in NPC1 or NPC2 proteins. Although numerous studies support the primacy of cholesterol storage, neurons of double-mutant mice lacking both NPC1 and an enzyme required for synthesis of all complex gangliosides (β1,4GalNAc transferase) have been reported to exhibit dramatically reduced cholesterol sequestration. Here we show that NPC2-deficient mice lacking this enzyme also exhibit reduced cholesterol, but that genetically restricting synthesis to only a-series gangliosides fully restores neuronal cholesterol storage to typical disease levels. Examining the subcellular locations of sequestered compounds in neurons lacking NPC1 or NPC2 by confocal microscopy revealed that cholesterol and the two principal storage gangliosides (GM2 and GM3) were not consistently co-localized within the same intracellular vesicles. To determine whether the lack of GM2 and GM3 co-localization was due to differences in synthetic versus degradative pathway expression, we generated mice lacking both NPC1 and lysosomal β-galactosidase, and therefore unable to generate GM2 and GM3 in lysosomes. Double mutants lacked both gangliosides, indicating that each is the product of endosomal/lysosomal processing. Unexpectedly, GM1 accumulation in double mutants increased compared to single mutants consistent with a direct role for NPC1 in ganglioside salvage. These studies provide further evidence that NPC1 and NPC2 proteins participate in endosomal/lysosomal processing of both sphingolipids and cholesterol. PMID:21708114

  12. Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction

    PubMed Central

    Gray, Lindsay; Tsurudome, Kazuya; El-Mounzer, Wassim; Elazzouzi, Fatima; Baim, Christopher; Calderon, Mario R.; Kauwe, Grant

    2018-01-01

    Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons. PMID:29373576

  13. Insulin-regulated Aminopeptidase Is a Key Regulator of GLUT4 Trafficking by Controlling the Sorting of GLUT4 from Endosomes to Specialized Insulin-regulated Vesicles

    PubMed Central

    Jordens, Ingrid; Molle, Dorothee; Xiong, Wenyong; Keller, Susanna R.

    2010-01-01

    Insulin stimulates glucose uptake by regulating translocation of the GLUT4 glucose transporter from intracellular compartments to the plasma membrane. In the absence of insulin GLUT4 is actively sequestered away from the general endosomes into GLUT4-specialized compartments, thereby controlling the amount of GLUT4 at the plasma membrane. Here, we investigated the role of the aminopeptidase IRAP in GLUT4 trafficking. In unstimulated IRAP knockdown adipocytes, plasma membrane GLUT4 levels are elevated because of increased exocytosis, demonstrating an essential role of IRAP in GLUT4 retention. Current evidence supports the model that AS160 RabGAP, which is required for basal GLUT4 retention, is recruited to GLUT4 compartments via an interaction with IRAP. However, here we show that AS160 recruitment to GLUT4 compartments and AS160 regulation of GLUT4 trafficking were unaffected by IRAP knockdown. These results demonstrate that AS160 is recruited to membranes by an IRAP-independent mechanism. Consistent with a role independent of AS160, we showed that IRAP functions in GLUT4 sorting from endosomes to GLUT4-specialized compartments. This is revealed by the relocalization of GLUT4 to endosomes in IRAP knockdown cells. Although IRAP knockdown has profound effects on GLUT4 traffic, GLUT4 knockdown does not affect IRAP trafficking, demonstrating that IRAP traffics independent of GLUT4. In sum, we show that IRAP is both cargo and a key regulator of the insulin-regulated pathway. PMID:20410133

  14. Real-time analysis of endosomal lipid transport by live cell scintillation proximity assay

    PubMed Central

    Stockinger, Walter; Castoreno, Adam B.; Wang, Yan; Pagnon, Joanne C.; Nohturfft, Axel

    2007-01-01

    A scintillation proximity assay has been developed to study the endosomal trafficking of radiolabeled cholesterol in living cells. Mouse macrophages were cultured in the presence of tritiated cholesterol and scintillant microspheres. Microspheres were taken up by phagocytosis and stored in phagolysosomes. Absorption of tritium β particles by the scintillant produces light signals that can be measured in standard scintillation counters. Because of the short range of tritium β particles and for geometric reasons, scintillant microspheres detect only that fraction of tritiated cholesterol localized inside phagolysosomes or within a distance of ~600 nm. By incubating cultures in a temperature-controlled microplate reader, the kinetics of phagocytosis and cholesterol transport could be analyzed in near-real time. Scintillation signals were significantly increased in response to inhibitors of lysosomal cholesterol export. This method should prove a useful new tool for the study of endosomal trafficking of lipids and other molecules. PMID:15314094

  15. GRASP1 regulates synaptic plasticity and learning through endosomal recycling of AMPA receptors

    PubMed Central

    Chiu, Shu-Ling; Diering, Graham Hugh; Ye, Bing; Takamiya, Kogo; Chen, Chih-Ming; Jiang, Yuwu; Niranjan, Tejasvi; Schwartz, Charles E.; Wang, Tao; Huganir, Richard L.

    2017-01-01

    Summary Learning depends on experience-dependent modification of synaptic efficacy and neuronal connectivity in the brain. We provide direct evidence for physiological roles of the recycling endosome protein GRASP1 in glutamatergic synapse function and animal behavior. Mice lacking GRASP1 showed abnormal excitatory synapse number, synaptic plasticity and hippocampal-dependent learning and memory due to a failure in learning-induced synaptic AMPAR incorporation. We identified two GRASP1 point mutations from intellectual disability (ID) patients that showed convergent disruptive effects on AMPAR recycling and glutamate uncaging-induced structural and functional plasticity. Wild-type GRASP1, but not ID mutants, rescues spine loss in hippocampal CA1 neurons of Grasp1 knockout mice. Together, these results demonstrate a requirement for normal recycling endosome function in AMPAR-dependent synaptic function and neuronal connectivity in vivo, and suggest a potential role for GRASP1 in the pathophysiology of human cognitive disorders. PMID:28285821

  16. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex.

    PubMed

    Lackey, Chantal A; Press, Oliver W; Hoffman, Allan S; Stayton, Patrick S

    2002-01-01

    Poly(propylacrylic acid) (PPAAc) is a synthetic pH-responsive polymer that has been shown to disrupt cell membranes at low pH values typical of the endosome, but not at physiological pH, suggesting its use as an endosomal-releasing agent [Murthy et al. J. Controlled Release 61, 137-43]. We have constructed an antibody-targeted biotherapeutic model to investigate whether PPAAc can enhance intracellular trafficking of proteins to the cytoplasm. A ternary complex composed of a biotinylated anti-CD3 antibody, streptavidin, and biotinylated PPAAc was fluorescently labeled, and its intracellular fate was analyzed by confocal microscopy, flow cytometry, and quantitative western blotting of cell fractionates. The 64.1 anti-CD3 antibody was previously shown to direct receptor-mediated endocytosis in the Jurkat T-cell lymphoma cell line and was rapidly trafficked from the endosome to the lysosomal compartment. The antibody-streptavidin complex was also rapidly internalized to the endosomal/lysosomal compartment and retained there, as evidenced by punctate regions of fluorescence observed by confocal fluorescence microscopy. In samples containing the ternary complex of antibody, streptavidin, and PPAAc-biotin, diffuse fluorescence in the cytoplasm was observed, indicating that PPAAc enhanced translocation to the cytoplasm. This was confirmed by western blotting analysis of the isolated cytoplasm. Flow cytometry results demonstrated that neither streptavidin nor PPAAc caused nonspecific uptake of the complex, nor did they inhibit antibody-mediated endocytosis. The striking enhancement of protein delivery to the cytoplasm by complexed PPAAc suggests that this polymer could provide a new delivery agent for therapeutic, vaccine, and diagnostics development.

  17. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval

    PubMed Central

    Hirst, Jennifer; Itzhak, Daniel N.; Antrobus, Robin; Borner, Georg H. H.

    2018-01-01

    The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR), GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5–associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders. PMID:29381698

  18. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1.

    PubMed

    Wang, Han; Shi, Yi; Song, Jian; Qi, Jianxun; Lu, Guangwen; Yan, Jinghua; Gao, George F

    2016-01-14

    Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. bicoid RNA localization requires specific binding of an endosomal sorting complex

    PubMed Central

    Irion, Uwe; St Johnston, Daniel

    2007-01-01

    Summary paragraph: bicoid mRNA localises to the anterior of the Drosophila egg, where it is translated to form a morphogen gradient of Bicoid protein that patterns the head and thorax of the embryo. Although bicoid was the first identified localised cytoplasmic determinant1-4, little is known about how the mRNA is coupled to the microtubule-dependent transport pathway that targets it to the anterior, and it has been proposed that it is recognised by a complex of many redundant proteins, each of which binds to the localisation element in its 3'UTR with little or no specificity5. Indeed, the only known RNA-binding protein that co-localises with bicoid mRNA is Staufen, which binds non-specifically to dsRNA in vitro6, 7. Here we show that mutants in all subunits of the ESCRT-II complex (Vps22, Vps25 and Vps36) abolish the final Staufen-dependent step in bcd RNA localisation. ESCRT-II is a highly conserved component of the pathway that sorts ubiquitinated endosomal proteins into internal vesicles8, 9, and functions as a tumour-suppressor by removing activated receptors from the cytoplasm10, 11. However, the role of ESCRT-II in bicoid localisation appears to be independent of endosomal sorting, because mutations in ESCRT-I and III components have no effect of the targeting of bicoid mRNA. Instead, Vps36 functions by binding directly and specifically to stem-loop V of the bicoid 3'UTR through its N-terminal GLUE domain12, making it the first example of a sequence specific RNA-binding protein that recognises the bicoid localisation signal. Furthermore, Vps36 localises to the anterior of the oocyte in a bicoid mRNA-dependent manner, and is required for the subsequent recruitment of Staufen to the bicoid complex. This novel function of ESCRT-II as an RNA-binding complex is conserved in vertebrates, and may explain some of its roles that are independent of endosomal sorting. PMID:17268469

  20. Rab11 in Recycling Endosomes Regulates the Sorting and Basolateral Transport of E-CadherinV⃞

    PubMed Central

    Lock, John G.; Stow, Jennifer L.

    2005-01-01

    E-cadherin plays an essential role in cell polarity and cell-cell adhesion; however, the pathway for delivery of E-cadherin to the basolateral membrane of epithelial cells has not been fully characterized. We first traced the post-Golgi, exocytic transport of GFP-tagged E-cadherin (Ecad-GFP) in unpolarized cells. In live cells, Ecad-GFP was found to exit the Golgi complex in pleiomorphic tubulovesicular carriers, which, instead of moving directly to the cell surface, most frequently fused with an intermediate compartment, subsequently identified as a Rab11-positive recycling endosome. In MDCK cells, basolateral targeting of E-cadherin relies on a dileucine motif. Both E-cadherin and a targeting mutant, ΔS1-E-cadherin, colocalized with Rab11 and fused with the recycling endosome before diverging to basolateral or apical membranes, respectively. In polarized and unpolarized cells, coexpression of Rab11 mutants disrupted the cell surface delivery of E-cadherin and caused its mistargeting to the apical membrane, whereas apical ΔS1-E-cadherin was unaffected. We thus demonstrate a novel pathway for Rab11 dependent, dileucine-mediated, μ1B-independent sorting and basolateral trafficking, exemplified by E-cadherin. The recycling endosome is identified as an intermediate compartment for the post-Golgi trafficking and exocytosis of E-cadherin, with a potentially important role in establishing and maintaining cadherin-based adhesion. PMID:15689490

  1. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)☆

    PubMed Central

    Duke, Elizabeth M.H.; Razi, Minoo; Weston, Anne; Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Tooze, Sharon A.; Collinson, Lucy M.

    2014-01-01

    Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10 nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from ‘hotspots’ on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. PMID:24238600

  2. Par3 and aPKC regulate BACE1 endosome-to-TGN trafficking through PACS1.

    PubMed

    Sun, Miao; Zhang, Huaye

    2017-12-01

    The cleavage of amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) is the rate-limiting step in beta amyloid generation during Alzheimer's disease (AD) pathogenesis. In AD brains, BACE1 is abnormally accumulated in endocytic compartments, where the acidic pH is optimal for its activity. However, mechanisms regulating the endosome-to-trans-Golgi network (TGN) retrieval of BACE1 remain unclear. Here, we show that partitioning defective 3 (Par3) facilitates BACE1 retrograde trafficking from endosomes to the TGN. Par3 functions through aPKC-mediated phosphorylation of BACE1 on Ser498, which in turn promotes the interaction between BACE1 and phosphofurin acidic cluster sorting protein 1 and facilitates the retrograde trafficking of BACE1 to the TGN. In human AD brains, there is a significant decrease in Ser498 phosphorylation of BACE1 suggesting that defective phosphorylation-dependent retrograde transport of BACE1 is important in AD pathogenesis. Together, our studies provide mechanistic insight into a novel role for Par3 and aPKC in regulating the retrograde endosome-to-TGN trafficking of BACE1 and shed light on the mechanisms of AD pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Rab1a regulates sorting of early endocytic vesicles

    PubMed Central

    Mukhopadhyay, Aparna; Quiroz, Jose A.

    2014-01-01

    We previously reported that Rab1a is associated with asialoorosomucoid (ASOR)-containing early endocytic vesicles, where it is required for their microtubule-based motility. In Rab1a knockdown (KD) cell lines, ASOR failed to segregate from its receptor and, consequently, did not reach lysosomes for degradation, indicating a defect in early endosome sorting. Although Rab1 is required for Golgi/endoplasmic reticulum trafficking, this process was unaffected, likely due to retained expression of Rab1b in these cells. The present study shows that Rab1a has a more general role in endocytic vesicle processing that extends to EGF and transferrin (Tfn) trafficking. Compared with results in control Huh7 cells, EGF accumulated in aggregates within Rab1a KD cells, failing to reach lysosomal compartments. Tfn, a prototypical example of recycling cargo, accumulated in a Rab11-mediated slow-recycling compartment in Rab1a KD cells, in contrast to control cells, which sort Tfn into a fast-recycling Rab4 compartment. These data indicate that Rab1a is an important regulator of early endosome sorting for multiple cargo species. The effectors and accessory proteins recruited by Rab1a to early endocytic vesicles include the minus-end-directed kinesin motor KifC1, while others remain to be discovered. PMID:24407591

  4. Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways.

    PubMed

    Mallet, W G; Maxfield, F R

    1999-07-26

    Furin and TGN38 are menbrane proteins that cycle between the plasma membrane and the trans-Golgi network (TGN), each maintaining a predominant distribution in the TGN. We have used chimeric proteins with an extracellular Tac domain and the cytoplasmic domain of TGN38 or furin to study the trafficking of these proteins in endosomes. Previously, we demonstrated that the postendocytic trafficking of Tac-TGN38 to the TGN is via the endocytic recycling pathway (Ghosh, R.N.,W.G. Mallet,T.T. Soe,T.E.McGraw, and F.R. Maxfield.1998.J. Cell Biol.142:923-936). Here we show that internalized Tac-furin is delivered to the TGN through late endosomes, bypassing the endocytic recycling compartment. The transport of Tac-furin from late endosomes to the TGN appears to proceed via an efficient, single-pass mechanism. Delivery of Tac-furin but not Tac-TGN38 to the TGN is blocked by nocodazole, and the two pathways are also differentially affected by wortmannin. These studies demonstrate the existence of two independentpathways for endosomal transport of proteins to the TGN from the plasma membrane.

  5. Adeno-associated virus capsid antigen presentation is dependent on endosomal escape

    PubMed Central

    Li, Chengwen; He, Yi; Nicolson, Sarah; Hirsch, Matt; Weinberg, Marc S.; Zhang, Ping; Kafri, Tal; Samulski, R. Jude

    2013-01-01

    Adeno-associated virus (AAV) vectors are attractive for gene delivery-based therapeutics, but data from recent clinical trials have indicated that AAV capsids induce a cytotoxic T lymphocyte (CTL) response that eliminates transduced cells. In this study, we used traditional pharmacological agents and AAV mutants to elucidate the pathway of capsid cross-presentation in AAV-permissive cells. Endosomal acidification inhibitors blocked AAV2 antigen presentation by over 90%, while proteasome inhibitors completely abrogated antigen presentation. Using mutant viruses that are defective for nuclear entry, we observed a 90% decrease in capsid antigen presentation. Different antigen presentation efficiencies were achieved by selectively mutating virion nuclear localization signals. Low antigen presentation was demonstrated with basic region 1 (BR1) mutants, despite relatively high transduction efficiency, whereas there was no difference in antigen presentation between BR2 and BR3 mutants defective for transduction, as compared with wild-type AAV2. These results suggest that effective AAV2 capsid antigen presentation is dependent on AAV virion escape from the endosome/lysosome for antigen degradation by proteasomes, but is independent of nuclear uncoating. These results should facilitate the design of effective strategies to evade capsid-specific CTL-mediated elimination of AAV-transduced target cells in future clinical trials. PMID:23454772

  6. Two novel WD40 domain–containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway

    PubMed Central

    Shi, Yufeng; Stefan, Christopher J.; Rue, Sarah M.; Teis, David; Emr, Scott D.

    2011-01-01

    Regulated secretion, nutrient uptake, and responses to extracellular signals depend on cell-surface proteins that are internalized and recycled back to the plasma membrane. However, the underlying mechanisms that govern membrane protein recycling to the cell surface are not fully known. Using a chemical-genetic screen in yeast, we show that the arginine transporter Can1 is recycled back to the cell surface via two independent pathways mediated by the sorting nexins Snx4/41/42 and the retromer complex, respectively. In addition, we identify two novel WD40-domain endosomal recycling proteins, Ere1 and Ere2, that function in the retromer pathway. Ere1 is required for Can1 recycling via the retromer-mediated pathway, but it is not required for the transport of other retromer cargoes, such as Vps10 and Ftr1. Biochemical studies reveal that Ere1 physically interacts with internalized Can1. Ere2 is present in a complex containing Ere1 on endosomes and functions as a regulator of Ere1. Taken together, our results suggest that Snx4/41/42 and the retromer comprise two independent pathways for the recycling of internalized cell-surface proteins. Moreover, a complex containing the two novel proteins Ere1 and Ere2 mediates cargo-specific recognition by the retromer pathway. PMID:21880895

  7. Two Endosomal NHX-type Na+/ H+ Antiporters are Involved in Auxin Mediated Development in Arabidopsis thaliana.

    PubMed

    Dragwidge, Jonathan Michael; Ford, Brett Andrew; Ashnest, Joanne Rachel; Das, Partha; Gendall, Anthony Richard

    2018-05-16

    In Arabidopsis thaliana, the endosomal localised Na+/H+ antiporters NHX5 and NHX6 regulate ion and pH homeostasis and are important for plant growth and development. However, the mechanism of how these endosomal NHXs function in plant development is not well understood. Auxin modulates plant growth and development through the formation of concentration gradients in plant tissue to control cell division and expansion. Here, we identified a role for NHX5 and NHX6 in the establishment and maintenance of auxin gradients in embryo and root tissues. We observed developmental impairment and abnormal cell division in embryo and root tissues in the double knockout nhx5 nhx6, consistent with these tissues showing high expression of NHX5 and NHX6. Through confocal microscopy imaging with the DR5::GFP auxin reporter, we identify defects to the perception, accumulation, and redistribution of auxin in nhx5 nhx6 cells. Furthermore, we find that the steady state levels of the PIN-FORMED (PIN) auxin efflux carriers PIN1 and PIN2 are reduced in nhx5 nhx6 root cells. Our results demonstrate that NHX5 and NHX6 function in auxin mediated plant development by maintaining PIN abundance at the plasma membrane, and provides new insight into the regulation of plant development by endosomal NHX antiporters.

  8. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes*

    PubMed Central

    Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2016-01-01

    NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking. PMID:26987901

  9. Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport

    PubMed Central

    Arlt, Henning; Auffarth, Kathrin; Kurre, Rainer; Lisse, Dominik; Piehler, Jacob; Ungermann, Christian

    2015-01-01

    Organelles of the endolysosomal system undergo multiple fission and fusion events to combine sorting of selected proteins to the vacuole with endosomal recycling. This sorting requires a consecutive remodeling of the organelle surface in the course of endosomal maturation. Here we dissect the remodeling and fusion machinery on endosomes during the process of endocytosis. We traced selected GFP-tagged endosomal proteins relative to exogenously added fluorescently labeled α-factor on its way from the plasma membrane to the vacuole. Our data reveal that the machinery of endosomal fusion and ESCRT proteins has similar temporal localization on endosomes, whereas they precede the retromer cargo recognition complex. Neither deletion of retromer nor the fusion machinery with the vacuole affects this maturation process, although the kinetics seems to be delayed due to ESCRT deletion. Of importance, in strains lacking the active Rab7-like Ypt7 or the vacuolar SNARE fusion machinery, α-factor still proceeds to late endosomes with the same kinetics. This indicates that endosomal maturation is mainly controlled by the early endosomal fusion and remodeling machinery but not the downstream Rab Ypt7 or the SNARE machinery. Our data thus provide important further understanding of endosomal biogenesis in the context of cargo sorting. PMID:25657322

  10. Increased expression of endosomal members of toll-like receptor family abrogates wound healing in patients with type 2 diabetes mellitus.

    PubMed

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2016-10-01

    The inflammatory phase of wound healing cascade is an important determinant of the fate of the wound. Acute inflammation is necessary to initiate proper wound healing, while chronic inflammation abrogates wound healing. Different endosomal members of toll-like receptor (TLR) family initiate inflammatory signalling via a range of different inflammatory mediators such as interferons, internal tissue damaged-associated molecular patterns (DAMPs) and hyperactive effector T cells. Sustained signalling of TLR9 and TLR7 contributes to chronic inflammation by activating the plasmacytoid dendritic cells. Diabetic wounds are also characterised by sustained inflammatory phase. The objective of this study was to analyse the differential expression of endosomal TLRs in human diabetic wounds compared with control wounds. We analysed the differential expression of TLR7 and TLR9 both at transcriptional and translational levels in wounds of 84 patients with type 2 diabetes mellitus (T2DM) and 6 control subjects without diabetes using quantitative real-time polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. TLR7 and TLR9 were significantly up-regulated in wounds of the patients with T2DM compared with the controls and were dependent on the infection status of the diabetic wounds, and wounds with microbial infection exhibited lower expression levels of endosomal TLRs. Altered endosomal TLR expression in T2DM subjects might be associated with wound healing impairment. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  11. Urine Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction.

    PubMed

    Song, Lili; Zhuang, Pengwei; Lin, Mengya; Kang, Mingqin; Liu, Hongyue; Zhang, Yuping; Yang, Zhen; Chen, Yunlong; Zhang, Yanjun

    2017-09-01

    Recently, increasing attention has been paid to diabetic encephalopathy, which is a frequent diabetic complication and affects nearly 30% of diabetics. Because cognitive dysfunction from diabetic encephalopathy might develop into irreversible dementia, early diagnosis and detection of this disease is of great significance for its prevention and treatment. This study is to investigate the early specific metabolites biomarkers in urine prior to the onset of diabetic cognitive dysfunction (DCD) by using metabolomics technology. An ultra-high performance liquid-chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) platform was used to analyze the urine samples from diabetic mice that were associated with mild cognitive impairment (MCI) and nonassociated with MCI in the stage of diabetes (prior to the onset of DCD). We then screened and validated the early biomarkers using OPLS-DA model and support vector machine (SVM) method. Following multivariate statistical and integration analysis, we found that seven metabolites could be accepted as early biomarkers of DCD, and the SVM results showed that the prediction accuracy is as high as 91.66%. The identities of four biomarkers were determined by mass spectrometry. The identified biomarkers were largely involved in nicotinate and nicotinamide metabolism, glutathione metabolism, tryptophan metabolism, and sphingolipid metabolism. The present study first revealed reliable biomarkers for early diagnosis of DCD. It provides new insight and strategy for the early diagnosis and treatment of DCD.

  12. Endosome-mediated autophagy

    PubMed Central

    Kondylis, Vangelis; van Nispen tot Pannerden, Hezder E.; van Dijk, Suzanne; ten Broeke, Toine; Wubbolts, Richard; Geerts, Willie J.; Seinen, Cor; Mutis, Tuna; Heijnen, Harry F.G.

    2013-01-01

    Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIICs) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4BC74A mutant and atg4b−/− bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPS-induced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC-driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival. PMID:23481895

  13. Two barcodes encoded by the type-1 PDZ and by phospho-Ser312 regulate retromer/WASH-mediated sorting of the ß1-adrenergic receptor from endosomes to the plasma membrane.

    PubMed

    Nooh, Mohammed M; Bahouth, Suleiman W

    2017-01-01

    Recycling of the majority of agonist-internalized GPCR is dependent on a type I-PDZ "barcode" in their C-tail. The recycling of wild-type (WT) ß 1 -AR is also dependent on its default "type-1 PDZ barcode", but trafficking of the ß 1 -AR is inhibited when PKA or its substrate serine at position 312 (Ser 312 ) are inactivated. We tested the hypothesis that phospho-Ser 312 provided a second barcode for ß 1 -AR sorting from endosomes to the plasma membrane by determining the role of retromer/WASH complexes in ß 1 -AR trafficking. Recycling of WT ß 1 -AR or WT ß 2 -AR was dependent on targeting the retromer to endosomal membranes via SNX3 and rab7a, and on complexing the retromer to the WASH pentamer via the C-tail of FAM21 (FAM21 C ). These maneuvers however, did not inhibit the recycling of a phospho-Ser 312 ß 1 -AR mimic ((S312D) ß 1 -AR). Knockdown of the trans-acting PDZ protein sorting nexin27 (SNX27) inhibited the recycling of WT ß 1 -AR and WT ß 2 -AR, but had no effect on (S312D) ß 1 -AR∆PDZ or on phosphorylation of WT ß 1 -AR by PKA at Ser 312 . However, depletion of FKBP15, a FAM21 C -binding endosomal protein, selectively inhibited WT ß 1 -AR but not ß 2 -AR recycling, suggesting divergence might exist in GPCR trafficking roadmaps. These results indicate that two barcodes are involved in sorting WT ß 1 -AR out of early endosomes. The first and antecedent "barcode" was the "type-1 PDZ", followed by a second reversible "phospho-Ser 312 " verification "barcode". This organization allows tight regulation of ß 1 -AR density to signaling intensity in conditions associated with aberrant ß 1 -AR signaling such as in hypertension and heart failure. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses

    PubMed Central

    Gillespie, Eugene J.; Ho, Chi-Lee C.; Balaji, Kavitha; Clemens, Daniel L.; Deng, Gang; Wang, Yao E.; Elsaesser, Heidi J.; Tamilselvam, Batcha; Gargi, Amandeep; Dixon, Shandee D.; France, Bryan; Chamberlain, Brian T.; Blanke, Steven R.; Cheng, Genhong; de la Torre, Juan Carlos; Brooks, David G.; Jung, Michael E.; Colicelli, John; Damoiseaux, Robert; Bradley, Kenneth A.

    2013-01-01

    Pathogenic microorganisms and toxins have evolved a variety of mechanisms to gain access to the host-cell cytosol and thereby exert virulent effects upon the host. One common mechanism of cellular entry requires trafficking to an acidified endosome, which promotes translocation across the host membrane. To identify small-molecule inhibitors that block this process, a library of 30,000 small molecules was screened for inhibitors of anthrax lethal toxin. Here we report that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone, the most active compound identified in the screen, inhibits intoxication by lethal toxin and blocks the entry of multiple other acid-dependent bacterial toxins and viruses into mammalian cells. This compound, which we named EGA, also delays lysosomal targeting and degradation of the EGF receptor, indicating that it targets host-membrane trafficking. In contrast, EGA does not block endosomal recycling of transferrin, retrograde trafficking of ricin, phagolysosomal trafficking, or phagosome permeabilization by Franciscella tularensis. Furthermore, EGA does not neutralize acidic organelles, demonstrating that its mechanism of action is distinct from pH-raising agents such as ammonium chloride and bafilomycin A1. EGA is a powerful tool for the study of membrane trafficking and represents a class of host-targeted compounds for therapeutic development to treat infectious disease. PMID:24191014

  15. MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans.

    PubMed

    Larsen, Morten K; Tuck, Simon; Faergeman, Nils J; Knudsen, Jens

    2006-10-01

    The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted by the hydrolysis of acyl-CoA lipid esters. The mechanisms by which these lipid esters are directed to the appropriate membranes in vivo, and their precise roles in vesicle biogenesis, are not yet understood. Here, we present the first report on membrane associated ACBP domain-containing protein-1 (MAA-1), a novel membrane-associated member of the acyl-CoA-binding protein family. We show that in Caenorhabditis elegans, MAA-1 localizes to intracellular membrane organelles in the secretory and endocytic pathway and that mutations in maa-1 reduce the rate of endosomal recycling. A lack of maa-1 activity causes a change in endosomal morphology. Although in wild type, many endosomal organelles have long tubular protrusions, loss of MAA-1 activity results in loss of the tubular domains, suggesting the maa-1 is required for the generation or maintenance of these domains. Furthermore, we demonstrate that MAA-1 binds fatty acyl-CoA in vitro and that this ligand-binding ability is important for its function in vivo. Our results are consistent with a role for MAA-1 in an acyl-CoA-dependent process during vesicle formation.

  16. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content

    PubMed Central

    Mundy, Dorothy I.; Li, Wei Ping; Luby-Phelps, Katherine; Anderson, Richard G. W.

    2012-01-01

    Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking. PMID:22238363

  17. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory

    PubMed Central

    Puchner, Elias M.; Walter, Jessica M.; Kasper, Robert; Huang, Bo; Lim, Wendell A.

    2013-01-01

    Cells tightly regulate trafficking of intracellular organelles, but a deeper understanding of this process is technically limited by our inability to track the molecular composition of individual organelles below the diffraction limit in size. Here we develop a technique for intracellularly calibrated superresolution microscopy that can measure the size of individual organelles as well as accurately count absolute numbers of molecules, by correcting for undercounting owing to immature fluorescent proteins and overcounting owing to fluorophore blinking. Using this technique, we characterized the size of individual vesicles in the yeast endocytic pathway and the number of accessible phosphatidylinositol 3-phosphate binding sites they contain. This analysis reveals a characteristic vesicle maturation trajectory of composition and size with both stochastic and regulated components. The trajectory displays some cell-to-cell variability, with smaller variation between organelles within the same cell. This approach also reveals mechanistic information on the order of events in this trajectory: Colocalization analysis with known markers of different vesicle maturation stages shows that phosphatidylinositol 3-phosphate production precedes fusion into larger endosomes. This single-organelle analysis can potentially be applied to a range of small organelles to shed light on their precise composition/structure relationships, the dynamics of their regulation, and the noise in these processes. PMID:24043832

  18. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes.

    PubMed

    Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2016-05-13

    NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

    PubMed

    Hurwitz, Stephanie N; Cheerathodi, Mujeeb R; Nkosi, Dingani; York, Sara B; Meckes, David G

    2018-03-01

    The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells. IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major

  20. The ocular albinism type 1 (OA1) GPCR is ubiquitinated and its traffic requires endosomal sorting complex responsible for transport (ESCRT) function

    PubMed Central

    Giordano, Francesca; Simoes, Sabrina; Raposo, Graça

    2011-01-01

    The function of signaling receptors is tightly controlled by their intracellular trafficking. One major regulatory mechanism within the endo-lysosomal system required for receptor localization and down-regulation is protein modification by ubiquitination and downstream interactions with the endosomal sorting complex responsible for transport (ESCRT) machinery. Whether and how these mechanisms operate to regulate endosomal sorting of mammalian G protein-coupled receptors (GPCRs) remains unclear. Here, we explore the involvement of ubiquitin and ESCRTs in the trafficking of OA1, a pigment cell-specific GPCR, target of mutations in Ocular Albinism type 1, which localizes intracellularly to melanosomes to regulate their biogenesis. Using biochemical and morphological methods in combination with overexpression and inactivation approaches we show that OA1 is ubiquitinated and that its intracellular sorting and down-regulation requires functional ESCRT components. Depletion or overexpression of subunits of ESCRT-0, -I, and -III markedly inhibits OA1 degradation with concomitant retention within the modified endosomal system. Our data further show that OA1 ubiquitination is uniquely required for targeting to the intralumenal vesicles of multivesicular endosomes, thereby regulating the balance between down-regulation and delivery to melanosomes. This study highlights the role of ubiquitination and the ESCRT machinery in the intracellular trafficking of mammalian GPCRs and has implications for the physiopathology of ocular albinism type 1. PMID:21730137

  1. The functional interplay of Rab11, FIP3 and Rho proteins on the endosomal recycling pathway controls cell shape and symmetry.

    PubMed

    Bouchet, Jérôme; McCaffrey, Mary W; Graziani, Andrea; Alcover, Andrés

    2018-07-04

    Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.

  2. The JNK/AP-1 pathway upregulates expression of the recycling endosome rab11a gene in B cells transformed by Theileria.

    PubMed

    Lizundia, Regina; Chaussepied, Marie; Naissant, Bernina; Masse, Guillemette X; Quevillon, Emmanuel; Michel, Fréderique; Monier, Solange; Weitzman, Jonathan B; Langsley, Gordon

    2007-08-01

    Lymphocyte transformation induced by Theileria parasites involves constitutive activation of c-Jun N-terminal kinase (JNK) and the AP-1 transcription factor. We found that JNK/AP-1 activation is associated with elevated levels of Rab11 protein in Theileria-transformed B cells. We show that AP-1 regulates rab11a promoter activity in B cells and that the induction of c-Jun activity in mouse fibroblasts also leads to increased transcription of the endogenous rab11a gene, consistent with it being an AP-1 target. Pharmacological inhibition of the JNK pathway reduced Rab11 protein levels and endosome recycling of transferrin receptor (TfR) and siRNA knockdown of JNK1 and Rab11A levels also reduced TfR surface expression. We propose a model, where activation of the JNK/AP-1 pathway during cell transformation might assure that the regulation of recycling endosomes is co-ordinated with cell-cycle progression. This might be achieved via the simultaneous upregulation of the cell cycle machinery (e.g. cyclin D1) and the recycling endosome regulators (e.g. Rab11A).

  3. Regulation of cargo transfer between ESCRT-0 and ESCRT-I complexes by flotillin-1 during endosomal sorting of ubiquitinated cargo

    PubMed Central

    Meister, M; Bänfer, S; Gärtner, U; Koskimies, J; Amaddii, M; Jacob, R; Tikkanen, R

    2017-01-01

    Ubiquitin-dependent sorting of membrane proteins in endosomes directs them to lysosomal degradation. In the case of receptors such as the epidermal growth factor receptor (EGFR), lysosomal degradation is important for the regulation of downstream signalling. Ubiquitinated proteins are recognised in endosomes by the endosomal sorting complexes required for transport (ESCRT) complexes, which sequentially interact with the ubiquitinated cargo. Although the role of each ESCRT complex in sorting is well established, it is not clear how the cargo is passed on from one ESCRT to the next. We here show that flotillin-1 is required for EGFR degradation, and that it interacts with the subunits of ESCRT-0 and -I complexes (hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) and Tsg101). Flotillin-1 is required for cargo recognition and sorting by ESCRT-0/Hrs and for its interaction with Tsg101. In addition, flotillin-1 is also required for the sorting of human immunodeficiency virus 1 Gag polyprotein, which mimics ESCRT-0 complex during viral assembly. We propose that flotillin-1 functions in cargo transfer between ESCRT-0 and -I complexes. PMID:28581508

  4. Diffusional mechanisms augment the fluorine magnetic resonance relaxation in paramagnetic perfluorocarbon nanoparticles that provides a “relaxation switch” for detecting cellular endosomal activation

    PubMed Central

    Hu, Lingzhi; Zhang, Lei; Chen, Junjie; Lanza, Gregory M.; Wickline, Samuel A.

    2011-01-01

    Purpose To develop a physical model for the 19F relaxation enhancement in paramagnetic perfluorocarbon nanoparticles (PFC NP) and demonstrate its application in monitoring cellular endosomal functionality through a “19F relaxation switch” phenomenon. Materials and Methods An explicit expression for 19F longitudinal relaxation enhancement was derived analytically. Monte-Carlo simulation was performed to confirm the gadolinium induced magnetic field inhomogenity inside the PFC NP. Field dependent T1 measurements for three types of paramagnetic PFC NPs were carried out to validate the theoretical prediction. Based on the physical model, 19F and 1H relaxation properties of macrophage internalized paramagnetic PFC NPs were measured to evaluate the intracellular process of NPs by macrophages in vitro. Results The theoretical description was confirmed experimentally by field-dependent T1 measurements. The shortening of 19F T1 was found to be attributed to the Brownian motion of PFC molecules inside the NP in conjunction with their ability to permeate into the lipid surfactant coating. A dramatic change of 19F T1 was observed upon endocytosis, revealing the transition from intact bound PFC NP to processed constituents. Conclusion The proposed first-principle analysis of 19F spins in paramagnetic PFC NP relates their structural parameters to the special MR relaxation features. The demonstrated “19F relaxation switch” phenomenon is potentially useful for monitoring cellular endosomal functionality. PMID:21761488

  5. VPS35 in Dopamine Neurons Is Required for Endosome-to-Golgi Retrieval of Lamp2a, a Receptor of Chaperone-Mediated Autophagy That Is Critical for α-Synuclein Degradation and Prevention of Pathogenesis of Parkinson's Disease

    PubMed Central

    Tang, Fu-Lei; Erion, Joanna R.; Tian, Yun; Liu, Wei; Yin, Dong-Min; Ye, Jian; Tang, Baisha; Mei, Lin

    2015-01-01

    Vacuolar protein sorting-35 (VPS35) is essential for endosome-to-Golgi retrieval of membrane proteins. Mutations in the VPS35 gene have been identified in patients with autosomal dominant PD. However, it remains poorly understood if and how VPS35 deficiency or mutation contributes to PD pathogenesis. Here we provide evidence that links VPS35 deficiency to PD-like neuropathology. VPS35 was expressed in mouse dopamine (DA) neurons in substantia nigra pars compacta (SNpc) and STR (striatum)—regions that are PD vulnerable. VPS35-deficient mice exhibited PD-relevant deficits including accumulation of α-synuclein in SNpc-DA neurons, loss of DA transmitter and DA neurons in SNpc and STR, and impairment of locomotor behavior. Further mechanical studies showed that VPS35-deficient DA neurons or DA neurons expressing PD-linked VPS35 mutant (D620N) had impaired endosome-to-Golgi retrieval of lysosome-associated membrane glycoprotein 2a (Lamp2a) and accelerated Lamp2a degradation. Expression of Lamp2a in VPS35-deficient DA neurons reduced α-synuclein, supporting the view for Lamp2a as a receptor of chaperone-mediated autophagy to be critical for α-synuclein degradation. These results suggest that VPS35 deficiency or mutation promotes PD pathogenesis and reveals a crucial pathway, VPS35-Lamp2a-α-synuclein, to prevent PD pathogenesis. SIGNIFICANCE STATEMENT VPS35 is a key component of the retromer complex that is essential for endosome-to-Golgi retrieval of membrane proteins. Mutations in the VPS35 gene have been identified in patients with PD. However, if and how VPS35 deficiency or mutation contributes to PD pathogenesis remains unclear. We demonstrated that VPS35 deficiency or mutation (D620N) in mice leads to α-synuclein accumulation and aggregation in the substantia nigra, accompanied with DA neurodegeneration. VPS35-deficient DA neurons exhibit impaired endosome-to-Golgi retrieval of Lamp2a, which may contribute to the reduced α-synuclein degradation through

  6. RhoB-dependent modulation of postendocytic traffic in polarized Madin-Darby canine kidney cells.

    PubMed

    Rondanino, Christine; Rojas, Raul; Ruiz, Wily G; Wang, Exing; Hughey, Rebecca P; Dunn, Kenneth W; Apodaca, Gerard

    2007-07-01

    The Rho family of GTPases is implicated in the control of endocytic and biosynthetic traffic of many cell types; however, the cellular distribution of RhoB remains controversial and its function is not well understood. Using confocal microscopy, we found that endogenous RhoB and green fluorescent protein-tagged wild-type RhoB were localized to early endosomes, and to a much lesser extent to recycling endosomes, late endosomes or Golgi complex of fixed or live polarized Madin-Darby canine kidney cells. Consistent with RhoB localization to early endosomes, we observed that expression of dominant-negative RhoBN19 or dominant-active RhoBV14 altered postendocytic traffic of ligand-receptor complexes that undergo recycling, degradation or transcytosis. In vitro assays established that RhoB modulated the basolateral-to-apical transcytotic pathway by regulating cargo exit from basolateral early endosomes. Our results indicate that RhoB is localized, in part, to early endosomes where it regulates receptor egress through the early endocytic system.

  7. Dysregulated Arl1, a regulator of post-Golgi vesicle tethering, can inhibit endosomal transport and cell proliferation in yeast

    PubMed Central

    Benjamin, Jeremy J. R.; Poon, Pak P.; Drysdale, John D.; Wang, Xiangmin; Singer, Richard A.; Johnston, Gerald C.

    2011-01-01

    Small monomeric G proteins regulated in part by GTPase-activating proteins (GAPs) are molecular switches for several aspects of vesicular transport. The yeast Gcs1 protein is a dual-specificity GAP for ADP-ribosylation factor (Arf) and Arf-like (Arl)1 G proteins, and also has GAP-independent activities. The absence of Gcs1 imposes cold sensitivity for growth and endosomal transport; here we present evidence that dysregulated Arl1 may cause these impairments. We show that gene deletions affecting the Arl1 or Ypt6 vesicle-tethering pathways prevent Arl1 activation and membrane localization, and restore growth and trafficking in the absence of Gcs1. A mutant version of Gcs1 deficient for both ArfGAP and Arl1GAP activity in vitro still allows growth and endosomal transport, suggesting that the function of Gcs1 that is required for these processes is independent of GAP activity. We propose that, in the absence of this GAP-independent regulation by Gcs1, the resulting dysregulated Arl1 prevents growth and impairs endosomal transport at low temperatures. In cells with dysregulated Arl1, an increased abundance of the Arl1 effector Imh1 restores growth and trafficking, and does so through Arl1 binding. Protein sequestration at the trans-Golgi membrane by dysregulated, active Arl1 may therefore be the mechanism of inhibition. PMID:21562219

  8. The Last Enzyme of the De Novo Purine Synthesis Pathway 5-aminoimidazole-4-carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase (ATIC) Plays a Central Role in Insulin Signaling and the Golgi/Endosomes Protein Network*

    PubMed Central

    Boutchueng-Djidjou, Martial; Collard-Simard, Gabriel; Fortier, Suzanne; Hébert, Sébastien S.; Kelly, Isabelle; Landry, Christian R.; Faure, Robert L.

    2015-01-01

    Insulin is internalized with its cognate receptor into the endosomal apparatus rapidly after binding to hepatocytes. We performed a bioinformatic screen of Golgi/endosome hepatic protein fractions and found that ATIC, which is a rate-limiting enzyme in the de novo purine biosynthesis pathway, and PTPLAD1 are associated with insulin receptor (IR) internalization. The IR interactome (IRGEN) connects ATIC to AMPK within the Golgi/endosome protein network (GEN). Forty-five percent of the IR Golgi/endosome protein network have common heritable variants associated with type 2 diabetes, including ATIC and AMPK. We show that PTPLAD1 and AMPK are rapidly compartmentalized within the plasma membrane (PM) and Golgi/endosome fractions after insulin stimulation and that ATIC later accumulates in the Golgi/endosome fraction. Using an in vitro reconstitution system and siRNA-mediated partial knockdown of ATIC and PTPLAD1 in HEK293 cells, we show that both ATIC and PTPLAD1 affect IR tyrosine phosphorylation and endocytosis. We further show that insulin stimulation and ATIC knockdown readily increase the level of AMPK-Thr172 phosphorylation in IR complexes. We observed that IR internalization was markedly decreased after AMPKα2 knockdown, and treatment with the ATIC substrate AICAR, which is an allosteric activator of AMPK, increased IR endocytosis in cultured cells and in the liver. These results suggest the presence of a signaling mechanism that senses adenylate synthesis, ATP levels, and IR activation states and that acts in regulating IR autophosphorylation and endocytosis. PMID:25687571

  9. A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway

    PubMed Central

    Erdmann, Kai S.; Mao, Yuxin; McCrea, Heather J.; Zoncu, Roberto; Lee, Sangyoon; Paradise, Summer; Modregger, Jan; Biemesderfer, Daniel; Toomre, Derek; De Camilli, Pietro

    2007-01-01

    Mutations in the inositol 5-phosphatase OCRL are responsible for Lowe syndrome, whose manifestations include mental retardation and renal Fanconi syndrome. OCRL has been implicated in membrane traffic, but disease mechanisms remain unclear. We show that OCRL visits late stage endocytic clathrin coated pits and binds the Rab5 effector APPL1 on peripheral early endosomes. The interaction with APPL1, which is mediated by the ASH-RhoGAP-like domains of OCRL and is abolished by disease mutations, provides a link to protein networks implicated in the reabsorptive function of kidney and in traffic and signaling of growth factor receptors in brain. Crystallographic studies reveal a role of the ASH-RhoGAP-like domains in positioning the phosphatase domain at the membrane interface and a clathrin box protruding from the RhoGAP-like domain. Our results support a role of OCRL in the early endocytic pathway consistent with the predominant localization of its preferred substrates, PI(4,5)P2 and PI(3,4,5)P3, at the cell surface. PMID:17765681

  10. Sphingosine Kinase 1 Cooperates with Autophagy to Maintain Endocytic Membrane Trafficking.

    PubMed

    Young, Megan M; Takahashi, Yoshinori; Fox, Todd E; Yun, Jong K; Kester, Mark; Wang, Hong-Gang

    2016-11-01

    Sphingosine kinase 1 (Sphk1) associates with early endocytic membranes during endocytosis; however, the role of sphingosine or sphingosine-1-phosphate as the critical metabolite in endocytic trafficking has not been established. Here, we demonstrate that the recruitment of Sphk1 to sphingosine-enriched endocytic vesicles and the generation of sphingosine-1-phosphate facilitate membrane trafficking along the endosomal pathway. Exogenous sphingosine and sphingosine-based Sphk1 inhibitors induce the Sphk1-dependent fusion of endosomal membranes to accumulate enlarged late endosomes and amphisomes enriched in sphingolipids. Interestingly, Sphk1 also appears to facilitate endosomal fusion independent of its catalytic activity, given that catalytically inactive Sphk1 G82D is recruited to endocytic membranes by sphingosine or sphingosine-based Sphk1 inhibitor and promotes membrane fusion. Furthermore, we reveal that the clearance of enlarged endosomes is dependent on the activity of ceramide synthase, lysosomal biogenesis, and the restoration of autophagic flux. Collectively, these studies uncover intersecting roles for Sphk1, sphingosine, and autophagic machinery in endocytic membrane trafficking. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic.

    PubMed

    Craige, Branch; Salazar, Gloria; Faundez, Victor

    2008-04-01

    The adaptor complex 3 (AP-3) targets membrane proteins from endosomes to lysosomes, lysosome-related organelles and synaptic vesicles. Phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha) is one of several proteins possessing catalytic domains that regulate AP-3-dependent sorting. Here we present evidence that PI4KIIalpha uniquely behaves both as a membrane protein cargo as well as an enzymatic regulator of adaptor function. In fact, AP-3 and PI4KIIalpha form a complex that requires a dileucine-sorting motif present in PI4KIIalpha. Mutagenesis of either the PI4KIIalpha-sorting motif or its kinase-active site indicates that both are necessary to interact with AP-3 and properly localize PI4KIIalpha to LAMP-1-positive endosomes. Similarly, both the kinase activity and the sorting signal present in PI4KIIalpha are necessary to rescue endosomal PI4KIIalpha siRNA-induced mutant phenotypes. We propose a mechanism whereby adaptors use canonical sorting motifs to selectively recruit a regulatory enzymatic activity to restricted membrane domains.

  12. Endothelin-converting enzyme-1 degrades internalized somatostatin-14.

    PubMed

    Roosterman, Dirk; Kempkes, Cordula; Cottrell, Graeme S; Padilla, Benjamin E; Bunnett, Nigel W; Turck, Christoph W; Steinhoff, Martin

    2008-05-01

    Agonist-induced internalization of somatostatin receptors (ssts) determines subsequent cellular responsiveness to peptide agonists and influences sst receptor scintigraphy. To investigate sst2A trafficking, rat sst2A tagged with epitope was expressed in human embryonic kidney cells and tracked by antibody labeling. Confocal microscopical analysis revealed that stimulation with sst and octreotide induced internalization of sst2A. Internalized sst2A remained sequestrated within early endosomes, and 60 min after stimulation, internalized sst2A still colocalized with beta-arrestin1-enhanced green fluorescence protein (EGFP), endothelin-converting enzyme-1 (ECE-1), and rab5a. Internalized (125)I-Tyr(11)-SST-14 was rapidly hydrolyzed by endosomal endopeptidases, with radioactive metabolites being released from the cell. Internalized (125)I-Tyr(1)-octreotide accumulated as an intact peptide and was released from the cell as an intact peptide ligand. We have identified ECE-1 as one of the endopeptidases responsible for inactivation of internalized SST-14. ECE-1-mediated cleavage of SST-14 was inhibited by the specific ECE-1 inhibitor, SM-19712, and by preventing acidification of endosomes using bafilomycin A(1). ECE-1 cleaved SST-14 but not octreotide in an acidic environment. The metallopeptidases angiotensin-1 converting enzyme and ECE-2 did not hydrolyze SST-14 or octreotide. Our results show for the first time that stimulation with SST-14 and octreotide induced sequestration of sst2A into early endosomes and that endocytosed SST-14 is degraded by endopeptidases located in early endosomes. Furthermore, octreotide was not degraded by endosomal peptidases and was released as an intact peptide. This mechanism may explain functional differences between octreotide and SST-14 after sst2A stimulation. Moreover, further investigation of endopeptidase-regulated trafficking of neuropeptides may result in novel concepts of neuropeptide receptor inactivation in cancer diagnosis.

  13. Endothelin-Converting Enzyme-1 Degrades Internalized Somatostatin-14

    PubMed Central

    Roosterman, Dirk; Kempkes, Cordula; Cottrell, Graeme S.; Padilla, Benjamin E.; Bunnett, Nigel W.; Turck, Christoph W.; Steinhoff, Martin

    2008-01-01

    Agonist-induced internalization of somatostatin receptors (ssts) determines subsequent cellular responsiveness to peptide agonists and influences sst receptor scintigraphy. To investigate sst2A trafficking, rat sst2A tagged with epitope was expressed in human embryonic kidney cells and tracked by antibody labeling. Confocal microscopical analysis revealed that stimulation with sst and octreotide induced internalization of sst2A. Internalized sst2A remained sequestrated within early endosomes, and 60 min after stimulation, internalized sst2A still colocalized with β-arrestin1-enhanced green fluorescence protein (EGFP), endothelin-converting enzyme-1 (ECE-1), and rab5a. Internalized 125I-Tyr11-SST-14 was rapidly hydrolyzed by endosomal endopeptidases, with radioactive metabolites being released from the cell. Internalized 125I-Tyr1-octreotide accumulated as an intact peptide and was released from the cell as an intact peptide ligand. We have identified ECE-1 as one of the endopeptidases responsible for inactivation of internalized SST-14. ECE-1-mediated cleavage of SST-14 was inhibited by the specific ECE-1 inhibitor, SM-19712, and by preventing acidification of endosomes using bafilomycin A1. ECE-1 cleaved SST-14 but not octreotide in an acidic environment. The metallopeptidases angiotensin-1 converting enzyme and ECE-2 did not hydrolyze SST-14 or octreotide. Our results show for the first time that stimulation with SST-14 and octreotide induced sequestration of sst2A into early endosomes and that endocytosed SST-14 is degraded by endopeptidases located in early endosomes. Furthermore, octreotide was not degraded by endosomal peptidases and was released as an intact peptide. This mechanism may explain functional differences between octreotide and SST-14 after sst2A stimulation. Moreover, further investigation of endopeptidase-regulated trafficking of neuropeptides may result in novel concepts of neuropeptide receptor inactivation in cancer diagnosis. PMID:18276747

  14. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    PubMed Central

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  15. ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling.

    PubMed

    Handschuh, Karen; Feenstra, Jennifer; Koss, Matthew; Ferretti, Elisabetta; Risolino, Maurizio; Zewdu, Rediet; Sahai, Michelle A; Bénazet, Jean-Denis; Peng, Xiao P; Depew, Michael J; Quintana, Laura; Sharpe, James; Wang, Baolin; Alcorn, Heather; Rivi, Roberta; Butcher, Stephen; Manak, J Robert; Vaccari, Thomas; Weinstein, Harel; Anderson, Kathryn V; Lacy, Elizabeth; Selleri, Licia

    2014-10-23

    Sorting and degradation of receptors and associated signaling molecules maintain homeostasis of conserved signaling pathways during cell specification and tissue development. Yet, whether machineries that sort signaling proteins act preferentially on different receptors and ligands in different contexts remains mysterious. Here, we show that Vacuolar protein sorting 25, Vps25, a component of ESCRT-II (Endosomal Sorting Complex Required for Transport II), directs preferential endosome-mediated modulation of FGF signaling in limbs. By ENU-induced mutagenesis, we isolated a polydactylous mouse line carrying a hypomorphic mutation of Vps25 (Vps25(ENU)). Unlike Vps25-null embryos we generated, Vps25(ENU/ENU) mutants survive until late gestation. Their limbs display FGF signaling enhancement and consequent hyperactivation of the FGF-SHH feedback loop causing polydactyly, whereas WNT and BMP signaling remain unperturbed. Notably, Vps25(ENU/ENU) Mouse Embryonic Fibroblasts exhibit aberrant FGFR trafficking and degradation; however, SHH signaling is unperturbed. These studies establish that the ESCRT-II machinery selectively limits FGF signaling in vertebrate skeletal patterning.

  16. Lamp1 Increases the Efficiency of Lassa Virus Infection by Promoting Fusion in Less Acidic Endosomal Compartments.

    PubMed

    Hulseberg, Christine E; Fénéant, Lucie; Szymańska, Katarzyna M; White, Judith M

    2018-01-02

    Lassa virus (LASV) is an arenavirus whose entry into host cells is mediated by a glycoprotein complex (GPC) comprised of a receptor binding subunit, GP1, a fusogenic transmembrane subunit, GP2, and a stable signal peptide. After receptor-mediated internalization, arenaviruses converge in the endocytic pathway, where they are thought to undergo low-pH-triggered, GPC-mediated fusion with a late endosome membrane. A unique feature of LASV entry is a pH-dependent switch from a primary cell surface receptor (α-dystroglycan) to an endosomal receptor, lysosomal-associated membrane protein (Lamp1). Despite evidence that the interaction between LASV GP1 and Lamp1 is critical, the function of Lamp1 in promoting LASV infection remains poorly characterized. Here we used wild-type (WT) and Lamp1 knockout (KO) cells to show that Lamp1 increases the efficiency of, but is not absolutely required for, LASV entry and infection. We then used cell-cell and pseudovirus-cell surface fusion assays to demonstrate that LASV GPC-mediated fusion occurs at a significantly higher pH when Lamp1 is present compared to when Lamp1 is missing. Correspondingly, we found that LASV entry occurs through less acidic endosomes in WT (Lamp1-positive) versus Lamp1 KO cells. We propose that, by elevating the pH threshold for fusion, Lamp1 allows LASV particles to exit the endocytic pathway before they encounter an increasingly acidic and harsh proteolytic environment, which could inactivate a significant percentage of incoming viruses. In this manner Lamp1 increases the overall efficiency of LASV entry and infection. IMPORTANCE Lassa virus is the most clinically important member of the Arenaviridae , a family that includes six additional biosafety level 4 (BSL4) hemorrhagic fever viruses. The lack of specific antiviral therapies for Lassa fever drives an urgent need to identify druggable targets, and interventions that block infection at the entry stage are particularly attractive. Lassa virus is only the

  17. Light-activated endosomal escape using upconversion nanoparticles for enhanced delivery of drugs

    NASA Astrophysics Data System (ADS)

    Gnanasammandhan, Muthu Kumara; Bansal, Akshaya; Zhang, Yong

    2013-02-01

    Nanoparticle-based delivery of drugs has gained a lot of prominence recently but the main problem hampering efficient delivery of payload is the clearing or degradation of nanoparticles by endosomes. Various strategies have been used to overcome this issue and one such effective solution is Photochemical Internalization (PCI). This technique involves the activation of certain photosensitizing compounds by light, which accumulate specifically in the membranes of endocytic vesicles. The activated photosensitizers induce the formation of reactive oxygen species which in turn induces localized disruption of endosomal membranes. But the drawback of this technique is that it needs blue light for activation and hence confined to be used only in in-vitro systems due to the poor tissue penetration of blue light. Here, we report the use of Upconversion nanoparticles (UCNs) as a transducer for activation of the photosensitizer, TPPS 2a. NIR light has good tissue penetrating ability and thus enables PCI in greater depths. Highly monodisperse, uniformly-sized, sub-100 nm, biocompatible upconversion nanoparticles were synthesized with a mesoporous silica coating. These UCNs activated TPPS 2a efficiently in solution and in cells. Paclitaxel, an anti-cancer drug was used as a model drug and was loaded into the mesoporous silica coating. B16F0 cells transfected with drug-loaded UCNs and irradiated with NIR showed significantly higher nanoparticle uptake and in turn higher cell death caused by the delivered drug. This technique can be used to enhance the delivery of any therapeutic molecule and thus increase the therapeutic efficiency considerably.

  18. Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic.

    PubMed

    Yamane, Junko; Kubo, Akiharu; Nakayama, Kazuhisa; Yuba-Kubo, Akiko; Katsuno, Tatsuya; Tsukita, Shoichiro; Tsukita, Sachiko

    2007-10-01

    The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.

  19. The time-dependent distribution of 125I-asialo-orosomucoid-horseradish peroxidase and 131I-immunoglobulin A among three endosomal subfractions isolated from rat liver.

    PubMed Central

    Kennedy, G; Cooper, C

    1988-01-01

    Three discrete endosomal fractions showing a time-dependent uptake of radioactive ligand were partially purified from rat liver. The 3,3'-diaminobenzidine (DAB)-induced density-shift protocol of Courtoy, Quintart & Baudhuin [(1984) J. Cell Biol. 98, 870-876] was used to study the distribution among these three endosomal fractions of two ligands with different intracellular destinations. Rats received both 125I-asialo-orosomucoid-horseradish peroxidase (125I-ASOR-HRP) and 131I-dIgA simultaneously by intraportal injection. The liver was fractionated at various times after injection, the three ligand-containing endosomal fractions (A, B and C) were separated and each was subjected separately to the DAB-induced density-shift procedure in which only vesicles containing 125I-ASOR-HRP are increased in density. Information on whether 131I-dIgA was co-localized or segregated from 125I-ASOR-HRP was obtained. The two ligands in the A fraction were partly segregated and partly co-localized, and this distribution appeared to be relatively unchanged with time. The two ligands in the B fraction were co-localized at all times studied. We have tentatively identified the B fraction as a compartment in which vesicle fusion has occurred. The two ligands in the C fraction were also partly co-localized and partly segregated, but the 131I-dIgA became increasingly segregated with time. This represents the first report of the purification of an endosomal subfraction specifically involved in the accumulation of multiple ligands. Images Fig. 7. PMID:3421920

  20. Insulin Recruits GLUT4 from Specialized VAMP2-carrying Vesicles as well as from the Dynamic Endosomal/Trans-Golgi Network in Rat Adipocytes.

    PubMed Central

    Ramm, Georg; Slot, Jan Willem; James, David E.; Stoorvogel, Willem

    2000-01-01

    Insulin treatment of fat cells results in the translocation of the insulin-responsive glucose transporter type 4, GLUT4, from intracellular compartments to the plasma membrane. However, the precise nature of these intracellular GLUT4-carrying compartments is debated. To resolve the nature of these compartments, we have performed an extensive morphological analysis of GLUT4-containing compartments, using a novel immunocytochemical technique enabling high labeling efficiency and 3-d resolution of cytoplasmic rims isolated from rat epididymal adipocytes. In basal cells, GLUT4 was localized to three morphologically distinct intracellular structures: small vesicles, tubules, and vacuoles. In response to insulin the increase of GLUT4 at the cell surface was compensated by a decrease in small vesicles, whereas the amount in tubules and vacuoles was unchanged. Under basal conditions, many small GLUT4 positive vesicles also contained IRAP (88%) and the v-SNARE, VAMP2 (57%) but not markers of sorting endosomes (EEA1), late endosomes, or lysosomes (lgp120). A largely distinct population of GLUT4 vesicles (56%) contained the cation-dependent mannose 6-phosphate receptor (CD-MPR), a marker protein that shuttles between endosomes and the trans-Golgi network (TGN). In response to insulin, GLUT4 was recruited both from VAMP2 and CD-MPR positive vesicles. However, while the concentration of GLUT4 in the remaining VAMP2-positive vesicles was unchanged, the concentration of GLUT4 in CD-MPR-positive vesicles decreased. Taken together, we provide morphological evidence indicating that, in response to insulin, GLUT4 is recruited to the plasma membrane by fusion of preexisting VAMP2-carrying vesicles as well as by sorting from the dynamic endosomal-TGN system. PMID:11102509

  1. pH-Controlled Two-Step Uncoating of Influenza Virus

    PubMed Central

    Li, Sai; Sieben, Christian; Ludwig, Kai; Höfer, Chris T.; Chiantia, Salvatore; Herrmann, Andreas; Eghiaian, Frederic; Schaap, Iwan A.T.

    2014-01-01

    Upon endocytosis in its cellular host, influenza A virus transits via early to late endosomes. To efficiently release its genome, the composite viral shell must undergo significant structural rearrangement, but the exact sequence of events leading to viral uncoating remains largely speculative. In addition, no change in viral structure has ever been identified at the level of early endosomes, raising a question about their role. We performed AFM indentation on single viruses in conjunction with cellular assays under conditions that mimicked gradual acidification from early to late endosomes. We found that the release of the influenza genome requires sequential exposure to the pH of both early and late endosomes, with each step corresponding to changes in the virus mechanical response. Step 1 (pH 7.5–6) involves a modification of both hemagglutinin and the viral lumen and is reversible, whereas Step 2 (pH <6.0) involves M1 dissociation and major hemagglutinin conformational changes and is irreversible. Bypassing the early-endosomal pH step or blocking the envelope proton channel M2 precludes proper genome release and efficient infection, illustrating the importance of viral lumen acidification during the early endosomal residence for influenza virus infection. PMID:24703306

  2. pH-Controlled two-step uncoating of influenza virus.

    PubMed

    Li, Sai; Sieben, Christian; Ludwig, Kai; Höfer, Chris T; Chiantia, Salvatore; Herrmann, Andreas; Eghiaian, Frederic; Schaap, Iwan A T

    2014-04-01

    Upon endocytosis in its cellular host, influenza A virus transits via early to late endosomes. To efficiently release its genome, the composite viral shell must undergo significant structural rearrangement, but the exact sequence of events leading to viral uncoating remains largely speculative. In addition, no change in viral structure has ever been identified at the level of early endosomes, raising a question about their role. We performed AFM indentation on single viruses in conjunction with cellular assays under conditions that mimicked gradual acidification from early to late endosomes. We found that the release of the influenza genome requires sequential exposure to the pH of both early and late endosomes, with each step corresponding to changes in the virus mechanical response. Step 1 (pH 7.5-6) involves a modification of both hemagglutinin and the viral lumen and is reversible, whereas Step 2 (pH <6.0) involves M1 dissociation and major hemagglutinin conformational changes and is irreversible. Bypassing the early-endosomal pH step or blocking the envelope proton channel M2 precludes proper genome release and efficient infection, illustrating the importance of viral lumen acidification during the early endosomal residence for influenza virus infection. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. The ESCRT-III Subunit hVps24 Is Required for Degradation but Not Silencing of the Epidermal Growth Factor Receptor

    PubMed Central

    Bache, Kristi G.; Stuffers, Susanne; Malerød, Lene; Slagsvold, Thomas; Raiborg, Camilla; Lechardeur, Delphine; Wälchli, Sébastien; Lukacs, Gergely L.; Brech, Andreas; Stenmark, Harald

    2006-01-01

    The endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are thought to mediate the biogenesis of multivesicular endosomes (MVEs) and endosomal sorting of ubiquitinated membrane proteins. Here, we have compared the importance of the ESCRT-I subunit tumor susceptibility gene 101 (Tsg101) and the ESCRT-III subunit hVps24/CHMP3 for endosomal functions and receptor signaling. Like Tsg101, endogenous hVps24 localized mainly to late endosomes. Depletion of hVps24 by siRNA showed that this ESCRT subunit, like Tsg101, is important for degradation of the epidermal growth factor (EGF) receptor (EGFR) and for transport of the receptor from early endosomes to lysosomes. Surprisingly, however, whereas depletion of Tsg101 caused sustained EGF activation of the mitogen-activated protein kinase pathway, depletion of hVps24 had no such effect. Moreover, depletion of Tsg101 but not of hVps24 caused a major fraction of internalized EGF to accumulate in nonacidified endosomes. Electron microscopy of hVps24-depleted cells showed an accumulation of EGFRs in MVEs that were significantly smaller than those in control cells, probably because of an impaired fusion with lyso-bisphosphatidic acid-positive late endosomes/lysosomes. Together, our results reveal functional differences between ESCRT-I and ESCRT-III in degradative protein trafficking and indicate that degradation of the EGFR is not required for termination of its signaling. PMID:16554368

  4. The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor.

    PubMed

    Bache, Kristi G; Stuffers, Susanne; Malerød, Lene; Slagsvold, Thomas; Raiborg, Camilla; Lechardeur, Delphine; Wälchli, Sébastien; Lukacs, Gergely L; Brech, Andreas; Stenmark, Harald

    2006-06-01

    The endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are thought to mediate the biogenesis of multivesicular endosomes (MVEs) and endosomal sorting of ubiquitinated membrane proteins. Here, we have compared the importance of the ESCRT-I subunit tumor susceptibility gene 101 (Tsg101) and the ESCRT-III subunit hVps24/CHMP3 for endosomal functions and receptor signaling. Like Tsg101, endogenous hVps24 localized mainly to late endosomes. Depletion of hVps24 by siRNA showed that this ESCRT subunit, like Tsg101, is important for degradation of the epidermal growth factor (EGF) receptor (EGFR) and for transport of the receptor from early endosomes to lysosomes. Surprisingly, however, whereas depletion of Tsg101 caused sustained EGF activation of the mitogen-activated protein kinase pathway, depletion of hVps24 had no such effect. Moreover, depletion of Tsg101 but not of hVps24 caused a major fraction of internalized EGF to accumulate in nonacidified endosomes. Electron microscopy of hVps24-depleted cells showed an accumulation of EGFRs in MVEs that were significantly smaller than those in control cells, probably because of an impaired fusion with lyso-bisphosphatidic acid-positive late endosomes/lysosomes. Together, our results reveal functional differences between ESCRT-I and ESCRT-III in degradative protein trafficking and indicate that degradation of the EGFR is not required for termination of its signaling.

  5. Pinpointing retrovirus entry sites in cells expressing alternatively spliced receptor isoforms by single virus imaging.

    PubMed

    Padilla-Parra, Sergi; Marin, Mariana; Kondo, Naoyuki; Melikyan, Gregory B

    2014-06-16

    The majority of viruses enter host cells via endocytosis. Current knowledge of viral entry pathways is largely based upon infectivity measurements following genetic and/or pharmacological interventions that disrupt vesicular trafficking and maturation. Imaging of single virus entry in living cells provides a powerful means to delineate viral trafficking pathways and entry sites under physiological conditions. Here, we visualized single avian retrovirus co-trafficking with markers for early (Rab5) and late (Rab7) endosomes, acidification of endosomal lumen and the resulting viral fusion measured by the viral content release into the cytoplasm. Virus-carrying vesicles either merged with the existing Rab5-positive early endosomes or slowly accumulated Rab5. The Rab5 recruitment to virus-carrying endosomes correlated with acidification of their lumen. Viral fusion occurred either in early (Rab5-positive) or intermediate (Rab5- and Rab7-positive) compartments. Interestingly, different isoforms of the cognate receptor directed virus entry from distinct endosomes. In cells expressing the transmembrane receptor, viruses preferentially entered and fused with slowly maturing early endosomes prior to accumulation of Rab7. By comparison, in cells expressing the GPI-anchored receptor, viruses entered both slowly and quickly maturing endosomes and fused with early (Rab5-positive) and intermediate (Rab5- and Rab7-positive) compartments. Since the rate of low pH-triggered fusion was independent of the receptor isoform, we concluded that the sites of virus entry are determined by the kinetic competition between endosome maturation and viral fusion. Our findings demonstrate the ability of this retrovirus to enter cells via alternative endocytic pathways and establish infection by releasing its content from distinct endosomal compartments.

  6. Regulation of the vasopressin V2 receptor by vasopressin in polarized renal collecting duct cells.

    PubMed

    Robben, J H; Knoers, N V A M; Deen, P M T

    2004-12-01

    Binding of arginine-vasopressin (AVP) to its V2 receptor (V2R) in the basolateral membrane of principal cells induces Aquaporin-2-mediated water reabsorption in the kidney. To study the regulation of the V2R by dDAVP in a proper model, a polarized renal cell line stably-expressing V2R-GFP was generated. Labeled AVP-binding studies revealed an equal basolateral vs. apical membrane distribution for V2R-GFP and endogenous V2R. In these cells, GFP-V2R was expressed in its mature form and localized for 75% in the basolateral membrane and for 25% to late endosomes/lysosomes. dDAVP caused a dose- and time-dependent internalization of V2R-GFP, which was completed within 1 h with 100 nM dDAVP, was prevented by coincubation with a V2R antagonist, and which reduced its half-life from 11.5 to 2.8 h. Semiquantification of the V2R-GFP colocalization with E-cadherin (basolateral membrane), early endosomal antigen-1 (EEA-1) and lysosome-associated membrane protein-2 (LAMP-2) in time revealed that most dDAVP-bound V2R was internalized via early endosomes to late endosomes/lysosomes, where it was degraded. The dDAVP-internalized V2R did not recycle to the basolateral membrane. In conclusion, we established the itinerary of the V2R in a polarized cell model that likely resembles the in vivo V2R localization and regulation by AVP to a great extent.

  7. Plasma membrane Toll-like receptor activation increases bacterial uptake but abrogates endosomal Lactobacillus acidophilus induction of interferon-β.

    PubMed

    Boye, Louise; Welsby, Iain; Lund, Lisbeth Drozd; Goriely, Stanislas; Frøkiaer, Hanne

    2016-11-01

    Lactobacillus acidophilus induces a potent interferon-β (IFN-β) response in dendritic cells (DCs) by a Toll-like receptor 2 (TLR2) -dependent mechanism, in turn leading to strong interleukin-12 (IL-12) production. In the present study, we investigated the involvement of different types of endocytosis in the L. acidophilus-induced IFN-β and IL-12 responses and how TLR2 or TLR4 ligation by lipopolysaccharide and Pam3/4CSK4 influenced endocytosis of L. acidophilus and the induced IFN-β and IL-12 production. Lactobacillus acidophilus was endocytosed by constitutive macropinocytosis taking place in the immature cells as well as by spleen tyrosine kinase (Syk) -dependent phagocytosis but without involvement of plasma membrane TLR2. Stimulation with TLR2 or TLR4 ligands increased macropinocytosis in a Syk-independent manner. As a consequence, incubation of DCs with TLR ligands before incubation with L. acidophilus enhanced the uptake of the bacteria. However, in these experimental conditions, induction of IFN-β and IL-12 was strongly inhibited. As L. acidophilus-induced IFN-β depends on endocytosis and endosomal degradation before signalling and as TLR stimulation from the plasma membrane leading to increased macropinocytosis abrogates IFN-β induction we conclude that plasma membrane TLR stimulation leading to increased macropinocytosis decreases endosomal induction of IFN-β and speculate that this is due to competition between compartments for molecules involved in the signal pathways. In summary, endosomal signalling by L. acidophilus that leads to IFN-β and IL-12 production is inhibited by TLR stimulation from the plasma membrane. © 2016 John Wiley & Sons Ltd.

  8. Endosomal protein sorting and autophagy genes contribute to the regulation of yeast life span.

    PubMed

    Longo, Valter D; Nislow, Corey; Fabrizio, Paola

    2010-11-01

    Accumulating evidence from various organisms points to a role for autophagy in the regulation of life span. By performing a genome-wide screen to identify novel life span determinants in Saccharomyces cerevisiae, we have obtained further insights into the autophagy-related and -unrelated degradation processes that may be important for preventing cellular senescence. The generation of multivesicular bodies and their fusion with the vacuole in the endosomal pathway emerged as novel cell functions involved in yeast chronological survival and longevity extension.

  9. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome

    PubMed Central

    Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz

    2013-01-01

    Sorting nexin 17 (SNX17) is an adaptor protein present in EEA1-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized MDCK cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE. PMID:23593972

  10. Delivering anti-cancer drugs with endosomal pH-sensitive anti-cancer liposomes.

    PubMed

    Moku, Gopikrishna; Gulla, Suresh Kumar; Nimmu, Narendra Varma; Khalid, Sara; Chaudhuri, Arabinda

    2016-04-01

    Numerous prior studies have been reported on the use of pH-sensitive drug carriers such as micelles, liposomes, peptides, polymers, nanoparticles, etc. that are sensitive to the acidic (pH = ∼6.5) microenvironments of tumor tissues. Such systems have been primarily used in the past as effective drug/gene/microRNA carriers for releasing their anti-cancer payloads selectively to tumor cells/tissues. Herein, we report on the development of new liposomal drug carriers prepared from glutamic acid backbone-based cationic amphiphiles containing both endosomal pH-sensitive histidine as well as cellular uptake & solubility enhancing guanidine moieties in their polar head-group regions. The most efficient one among the four presently described endosomal pH-sensitive liposomal drug carriers not only effectively delivers potent anti-cancer drugs (curcumin & paclitaxel) to mouse tumor, but also significantly contributes to inhibiting mouse tumor growth. The findings in the in vitro mechanistic studies are consistent with apoptosis of tumor cells being mediated through increased cell cycle arrest in the G2/M phase. Findings in the FRET assay and in vitro drug release studies conducted with the liposomes of the most efficient pH-sensitive lipid demonstrated its pH dependent fusogenic and controlled curcumin release properties. Importantly, the presently described liposomal formulation of curcumin & paclitaxel enhanced overall survivability of tumor bearing mice. To the best of our knowledge, the presently described system (curcumin, paclitaxel and liposomal carrier itself) is the first of its kind pH-sensitive liposomal formulation of potent chemotherapeutics in which the liposomal drug itself exhibits significant mouse tumor growth inhibition properties.

  11. An albumin nanocomplex-based endosomal pH-activatable on/off probe system.

    PubMed

    Lee, Changkyu; Lee, Seunghyun; Thao, Le Quang; Hwang, Ha Shin; Kim, Jong Oh; Lee, Eun Seong; Oh, Kyung Taek; Shin, Beom Soo; Choi, Han-Gon; Youn, Yu Seok

    2016-08-01

    Albumin has gained considerable interest as a material for fabricating nanoparticulate systems due to its biomedical advantages, such as biocompatibility and chemical functionality. Here, we report a new pH-sensitive albumin nanocomplex prototype with a zinc-imidazole coordination bond. Albumin was conjugated with 1-(3-aminopropyl)imidazole and mPEG10kDa-NHS, and the resulting albumin conjugate (PBI) was then modified with either Cy5.5 or BHQ-3. The newly formed albumin nanocomplex (C/BQ-PBI Zn NCs: ∼116nm) system was facilely self-assembled around pH 7.4 in the presence of Zn(2+), but it quickly disassembled in an acidic environment (∼pH 5.0). Based on this pH-sensitivity, C/BQ-PBI Zn NCs emitted strong near-infrared fluorescence and released Zn(2+), turning "off" at pH ∼7.4 (e.g., plasma) and "on" at pH ∼5.0 (e.g., endo/lysosomes in tumor cells) on account of fluorescence resonance energy transfer. C/BQ-PBI Zn NCs displayed significant cytotoxicity due to an increase in cellular Zn(2+) in response to endosomal pH (∼5.0) in breast cancer MCF-7 cells and lung adenocarcinoma A549 cells. Particularly, confocal laser scanning microscopic images showed a strong fluorescence signal caused by the disassembly of C/BQ-PBI Zn NCs in the endosomal region of MCF-7 cells. Based on these results, we believe that this albumin nanocomplex is an attractive biocompatible tumor targeting probe carrier for the theranostic purpose. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Differential endosomal sorting of a novel P2Y12 purinoreceptor mutant.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Cooke, Alexandra E; Emery, Elizabeth D; Mundell, Stuart J

    2013-05-01

    P2Y12 receptor internalization and recycling play an essential role in ADP-induced platelet activation. Recently, we identified a patient with a mild bleeding disorder carrying a heterozygous mutation of P2Y12 (P341A) whose P2Y12 receptor recycling was significantly compromised. Using human cell line models, we identified key proteins regulating wild-type (WT) P2Y12 recycling and investigated P2Y12 -P341A receptor traffic. Treatment with ADP resulted in delayed Rab5-dependent internalization of P341A when compared with WT P2Y12 . While WT P2Y12 rapidly recycled back to the membrane via Rab4 and Rab11 recycling pathways, limited P341A recycling was observed, which relied upon Rab11 activity. Although minimal receptor degradation was evident, P341A was localized in Rab7-positive endosomes with considerable agonist-dependent accumulation in the trans-Golgi network (TGN). Rab7 activity is known to facilitate recruitment of retromer complex proteins to endosomes to transport cargo to the TGN. Here, we identified that P341A colocalized with Vps26; depletion of which blocked limited recycling and promoted receptor degradation. This study has identified key points of divergence in the endocytic traffic of P341A versus WT-P2Y12 . Given that these pathways are retained in human platelets, this research helps define the molecular mechanisms regulating P2Y12 receptor traffic and explain the compromised receptor function in the platelets of the P2Y12 -P341A-expressing patient. © 2013 John Wiley & Sons A/S.

  13. Two independent forms of endocytosis maintain embryonic cell surface homeostasis during early development

    PubMed Central

    Covian-Nares, J. Fernando; Smith, Robert M.; Vogel, Steven S.

    2008-01-01

    Eukaryotic cells have multiple forms of endocytosis which maintain cell surface homeostasis. One explanation for this apparent redundancy is to allow independent retrieval of surface membranes derived from different types of vesicles. Consistent with this hypothesis we find that sea urchin eggs have at least two types of compensatory endocytosis. One is associated with retrieving cortical vesicle membranes, and formed large endosomes by a mechanism that was inhibited by agatoxin, cadmium, staurosporine and FK506. The second type is thought to compensate for constitutive exocytosis, and formed small endosomes using a mechanism that was insensitive to the above mentioned reagents, but was inhibited by phenylarsine oxide (PAO), and by microinjection of mRNA encoding Src kinase. Both mechanisms could act concurrently, and account for all of the endocytosis occurring during early development. Inhibition of either form did not trigger compensation by the other form, and phorbol ester treatment rescued the endocytotic activity blocked by agatoxin, but not the retrieval blocked by PAO. PMID:18281031

  14. Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response

    PubMed Central

    Arnaud, Noëlla; Dabo, Stéphanie; Akazawa, Daisuke; Fukasawa, Masayoshi; Shinkai-Ouchi, Fumiko; Hugon, Jacques; Wakita, Takaji; Meurs, Eliane F.

    2011-01-01

    Recognition of viral RNA structures by the intracytosolic RNA helicase RIG-I triggers induction of innate immunity. Efficient induction requires RIG-I ubiquitination by the E3 ligase TRIM25, its interaction with the mitochondria-bound MAVS protein, recruitment of TRAF3, IRF3- and NF-κB-kinases and transcription of Interferon (IFN). In addition, IRF3 alone induces some of the Interferon-Stimulated Genes (ISGs), referred to as early ISGs. Infection of hepatocytes with Hepatitis C virus (HCV) results in poor production of IFN despite recognition of the viral RNA by RIG-I but can lead to induction of early ISGs. HCV was shown to inhibit IFN production by cleaving MAVS through its NS3/4A protease and by controlling cellular translation through activation of PKR, an eIF2α-kinase containing dsRNA-binding domains (DRBD). Here, we have identified a third mode of control of IFN induction by HCV. Using HCVcc and the Huh7.25.CD81 cells, we found that HCV controls RIG-I ubiquitination through the di-ubiquitine-like protein ISG15, one of the early ISGs. A transcriptome analysis performed on Huh7.25.CD81 cells silenced or not for PKR and infected with JFH1 revealed that HCV infection leads to induction of 49 PKR-dependent genes, including ISG15 and several early ISGs. Silencing experiments revealed that this novel PKR-dependent pathway involves MAVS, TRAF3 and IRF3 but not RIG-I, and that it does not induce IFN. Use of PKR inhibitors showed that this pathway requires the DRBD but not the kinase activity of PKR. We then demonstrated that PKR interacts with HCV RNA and MAVS prior to RIG-I. In conclusion, HCV recruits PKR early in infection as a sensor to trigger induction of several IRF3-dependent genes. Among those, ISG15 acts to negatively control the RIG-I/MAVS pathway, at the level of RIG-I ubiquitination.These data give novel insights in the machinery involved in the early events of innate immune response. PMID:22022264

  15. Pathobiology of Christianson Syndrome: Linking Disrupted Endosomal-Lysosomal Function with Intellectual Disability and Sensory Impairments.

    PubMed

    Kerner-Rossi, Mallory; Gulinello, Maria; Walkley, Steven; Dobrenis, Kostantin

    2018-05-14

    Christianson syndrome (CS) is a recently described rare neurogenetic disorder presenting early in life with a broad range of neurological symptoms, including severe intellectual disability with nonverbal status, hyperactivity, epilepsy, and progressive ataxia due to cerebellar atrophy. CS is due to loss-of-function mutations in SLC9A6, encoding NHE6, a sodium-hydrogen exchanger involved in the regulation of early endosomal pH. Here we review what is currently known about the neuropathogenesis of CS, based on insights from experimental models, which to date have focused on mechanisms that affect the CNS, specifically the brain. In addition, parental reports of sensory disturbances in their children with CS, including an apparent insensitivity to pain, led us to explore sensory function and related neuropathology in Slc9a6 KO mice. We present new data showing sensory deficits in Slc9a6 KO mice, which had reduced behavioral responses to noxious thermal and mechanical stimuli (Hargreaves and Von Frey assays, respectively) compared to wild type (WT) littermates. Immunohistochemical and ultrastructural analysis of the spinal cord and peripheral nervous system revealed intracellular accumulation of the glycosphingolipid GM2 ganglioside in KO but not WT mice. This cellular storage phenotype was most abundant in neurons of lamina I-II of the dorsal horn, a major relay site in the processing of painful stimuli. Spinal cords of KO mice also exhibited changes in astroglial and microglial populations throughout the gray matter suggestive of a neuroinflammatory process. Our findings establish the Slc9a6 KO mouse as a relevant tool for studying the sensory deficits in CS, and highlight selective vulnerabilities in relevant cell populations that may contribute to this phenotype. How NHE6 loss of function leads to such a multifaceted neurological syndrome is still undefined, and it is likely that NHE6 is involved with many cellular processes critical to normal nervous system

  16. The Arabidopsis USL1 controls multiple aspects of development by affecting late endosome morphology.

    PubMed

    Yuan, Rongrong; Lan, Jingqiu; Fang, Yuxing; Yu, Hao; Zhang, Jinzhe; Huang, Jiaying; Qin, Genji

    2018-06-13

    The polar transport of auxin controls many aspects of plant development. However, the molecular mechanisms underlying auxin tranport regulation remain to be further elucidated. We identified a mutant named as usl1 (unflattened and small leaves) in a genetic screen in Arabidopsis thaliana. The usl1 displayed multiple aspects of developmental defects in leaves, embryogenesis, cotyledons, silique phyllotaxy and lateral roots in addition to abnormal leaves. USL1 encodes a protein orthologous to the yeast vacuolar protein sorting (Vps) 38p and human UV RADIATION RESISTANCE-ASSOCIATED GENE (UVRAG). Cell biology, Co-IP/MS and yeast two-hybrid were used to identify the function of USL1. USL1 colocalizes at the subcellular level with VPS29, a key factor of the retromer complex that controls auxin transport. The morphology of the VPS29-associated late endosomes (LE) is altered from small dots in the wild-type to aberrant enlarged circles in the usl1 mutants. The usl1 mutant synergistically interacts with vps29. We also found that USL1 forms a complex with AtVPS30 and AtVPS34. We propose that USL1 controls multiple aspects of plant development by affecting late endosome morphology and by regulating the PIN1 polarity. Our findings provide a new layer of the understanding on the mechanisms of plant development regulation. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  17. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape.

    PubMed

    Salomone, Fabrizio; Cardarelli, Francesco; Di Luca, Mariagrazia; Boccardi, Claudia; Nifosì, Riccardo; Bardi, Giuseppe; Di Bari, Lorenzo; Serresi, Michela; Beltram, Fabio

    2012-11-10

    Efficient endocytosis into a wide range of target cells and low toxicity make the arginine-rich Tat peptide (Tat(11): YGRKKRRQRRR, residues 47-57 of HIV-1 Tat protein) an excellent transporter for delivery purposes. Unfortunately, molecules taken up by endocytosis undergo endosomal entrapment and possible metabolic degradation. Escape from the endosome is therefore actively researched. In this context, antimicrobial peptides (AMPs) provide viable templates for the design of new membrane-disruptive motifs. In particular the Cecropin-A and Melittin hybrids (CMs) are among the smallest and most effective peptides with membrane-perturbing abilities. Here we present a novel chimeric peptide in which the Tat(11) motif is fused to the CM(18) hybrid (KWKLFKKIGAVLKVLTTG, residues 1-7 of Cecropin-A and 2-12 of Melittin). When administered to cells, CM(18)-Tat(11) combines the two desired functionalities: efficient uptake and destabilization of endocytotic-vesicle membranes. We show that this chimeric peptide effectively increases cargo-molecule cytoplasm availability and allows the subsequent intracellular localization of diverse membrane-impermeable molecules (i.e. Tat(11)-EGFP fusion protein, calcein, dextrans, and plasmidic DNA) with no detectable cytotoxicity. The present results open the way to the rational engineering of "modular" cell-penetrating peptides (CPPs) that combine (i) efficient translocation from the extracellular milieu into vesicles and (ii) efficient release of molecules from vesicles into the cytoplasm. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis.

    PubMed

    Giridharan, Sai Srinivas Panapakkam; Cai, Bishuang; Vitale, Nicolas; Naslavsky, Naava; Caplan, Steve

    2013-06-01

    Endocytic transport necessitates the generation of membrane tubules and their subsequent fission to transport vesicles for sorting of cargo molecules. The endocytic recycling compartment, an array of tubular and vesicular membranes decorated by the Eps15 homology domain protein, EHD1, is responsible for receptor and lipid recycling to the plasma membrane. It has been proposed that EHD dimers bind and bend membranes, thus generating recycling endosome (RE) tubules. However, recent studies show that molecules interacting with CasL-Like1 (MICAL-L1), a second, recently identified RE tubule marker, recruits EHD1 to preexisting tubules. The mechanisms and events supporting the generation of tubular recycling endosomes were unclear. Here, we propose a mechanism for the biogenesis of RE tubules. We demonstrate that MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid, which we identify as a novel lipid component of RE. Our studies demonstrate that direct interactions between these two proteins stabilize their association with membranes, allowing for nucleation of tubules by syndapin2. Indeed, the presence of phosphatidic acid in liposomes enhances the ability of syndapin2 to tubulate membranes in vitro. Overall our results highlight a new role for phosphatidic acid in endocytic recycling and provide new insights into the mechanisms by which tubular REs are generated.

  19. Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis

    PubMed Central

    Giridharan, Sai Srinivas Panapakkam; Cai, Bishuang; Vitale, Nicolas; Naslavsky, Naava; Caplan, Steve

    2013-01-01

    Endocytic transport necessitates the generation of membrane tubules and their subsequent fission to transport vesicles for sorting of cargo molecules. The endocytic recycling compartment, an array of tubular and vesicular membranes decorated by the Eps15 homology domain protein, EHD1, is responsible for receptor and lipid recycling to the plasma membrane. It has been proposed that EHD dimers bind and bend membranes, thus generating recycling endosome (RE) tubules. However, recent studies show that molecules interacting with CasL-Like1 (MICAL-L1), a second, recently identified RE tubule marker, recruits EHD1 to preexisting tubules. The mechanisms and events supporting the generation of tubular recycling endosomes were unclear. Here, we propose a mechanism for the biogenesis of RE tubules. We demonstrate that MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid, which we identify as a novel lipid component of RE. Our studies demonstrate that direct interactions between these two proteins stabilize their association with membranes, allowing for nucleation of tubules by syndapin2. Indeed, the presence of phosphatidic acid in liposomes enhances the ability of syndapin2 to tubulate membranes in vitro. Overall our results highlight a new role for phosphatidic acid in endocytic recycling and provide new insights into the mechanisms by which tubular REs are generated. PMID:23596323

  20. The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis.

    PubMed

    Spitzer, Christoph; Li, Faqiang; Buono, Rafael; Roschzttardtz, Hannetz; Chung, Taijoon; Zhang, Min; Osteryoung, Katherine W; Vierstra, Richard D; Otegui, Marisa S

    2015-02-01

    Endosomal Sorting Complex Required for Transport (ESCRT)-III proteins mediate membrane remodeling and the release of endosomal intraluminal vesicles into multivesicular bodies. Here, we show that the ESCRT-III subunit paralogs CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A) and CHMP1B are required for autophagic degradation of plastid proteins in Arabidopsis thaliana. Similar to autophagy mutants, chmp1a chmp1b (chmp1) plants hyperaccumulated plastid components, including proteins involved in plastid division. The autophagy machinery directed the release of bodies containing plastid material into the cytoplasm, whereas CHMP1A and B were required for delivery of these bodies to the vacuole. Autophagy was upregulated in chmp1 as indicated by an increase in vacuolar green fluorescent protein (GFP) cleavage from the autophagic reporter GFP-ATG8. However, autophagic degradation of the stromal cargo RECA-GFP was drastically reduced in the chmp1 plants upon starvation, suggesting that CHMP1 mediates the efficient delivery of autophagic plastid cargo to the vacuole. Consistent with the compromised degradation of plastid proteins, chmp1 plastids show severe morphological defects and aberrant division. We propose that CHMP1 plays a direct role in the autophagic turnover of plastid constituents. © 2015 American Society of Plant Biologists. All rights reserved.

  1. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes.

    PubMed

    Vetrivel, Kulandaivelu S; Cheng, Haipeng; Lin, William; Sakurai, Takashi; Li, Tong; Nukina, Nobuyuki; Wong, Philip C; Xu, Huaxi; Thinakaran, Gopal

    2004-10-22

    Alzheimer's disease-associated beta-amyloid peptides (Abeta) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by beta- and gamma-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major beta-secretase in neurons is a palmitoylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the gamma-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1(-/-)/PS2(-/-) and NCT(-/-) fibroblasts, gamma-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires gamma-secretase complex assembly. Biochemical evidence shows that subunits of the gamma-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of gamma-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP.

  2. HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation.

    PubMed

    Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul

    2018-03-01

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes

  3. A Membrane-Destabilizing Peptide in Capsid Protein L2 Is Required for Egress of Papillomavirus Genomes from Endosomes

    PubMed Central

    Kämper, Nadine; Day, Patricia M.; Nowak, Thorsten; Selinka, Hans-Christoph; Florin, Luise; Bolscher, Jan; Hilbig, Lydia; Schiller, John T.; Sapp, Martin

    2006-01-01

    Papillomaviruses are internalized via clathrin-dependent endocytosis. However, the mechanism by which viral genomes pass endosomal membranes has not been elucidated. In this report we show that the minor capsid protein L2 is required for egress of viral genomes from endosomes but not for initial uptake and uncoating and that a 23-amino-acid peptide at the C terminus of L2 is necessary for this function. Pseudogenomes encapsidated by L1 and L2 lacking this peptide accumulated in vesicular compartments similar to that observed with L1-only viral particles, and these mutant pseudoviruses were noninfectious. This L2 peptide displayed strong membrane-disrupting activity, induced cytolysis of bacteria and eukaryotic cells in a pH-dependent manner, and permeabilized cells after exogenous addition. Fusions between green fluorescent protein and the L2 peptide integrated into cellular membranes like the wild type but not like C-terminal mutants of L2. Our data indicate that the L2 C terminus facilitates escape of viral genomes from the endocytic compartment and that this feature is conserved among papillomaviruses. Furthermore, the characteristic of this peptide differs from the classical virus-encoded membrane-penetrating peptides. PMID:16378978

  4. Recycling and resensitization of the neurokinin 1 receptor. Influence of agonist concentration and Rab GTPases.

    PubMed

    Roosterman, Dirk; Cottrell, Graeme S; Schmidlin, Fabien; Steinhoff, Martin; Bunnett, Nigel W

    2004-07-16

    Substance P (SP) induces endocytosis and recycling of the neurokinin 1 receptor (NK1R) in endothelial cells and spinal neurons at sites of inflammation and pain, and it is thus important to understand the mechanism and function of receptor trafficking. We investigated how the SP concentration affects NK1R trafficking and determined the role of Rab GTPases in trafficking. NK1R trafficking was markedly influenced by the SP concentration. High SP (10 nM) induced translocation of the NK1R and beta-arrestin 1 to perinuclear sorting endosomes containing Rab5a, where NK1R remained for >60 min. Low SP (1 nM) induced translocation of the NK1R to early endosomes located immediately beneath the plasma membrane that also contained Rab5a and beta-arrestin 1, followed by rapid recycling of the NK1R. Overexpression of Rab5a promoted NK1R translocation to perinuclear sorting endosomes, whereas the GTP binding-deficient mutant Rab5aS34N caused retention of the NK1R in superficial early endosomes. NK1R translocated from superficial early endosomes to recycling endosomes containing Rab4a and Rab11a, and Rab11aS25N inhibited NK1R recycling. Rapid NK1R recycling coincided with resensitization of SP-induced Ca2+ mobilization and with the return of surface SP binding sites. Resensitization was minimally affected by inhibition of vacuolar H(+)-ATPase and phosphatases but was markedly suppressed by disruption of Rab4a and Rab11a. Thus, whereas beta-arrestins mediate NK1R endocytosis, Rab5a regulates translocation between early and sorting endosomes, and Rab4a and Rab11a regulate trafficking through recycling endosomes. We have thus identified a new function of Rab5a as a control protein for directing concentration-dependent trafficking of the NK1R into different intracellular compartments and obtained evidence that Rab4a and Rab11a contribute to G-protein-coupled receptor recycling from early endosomes.

  5. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    PubMed

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  6. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases.

    PubMed

    Al-Bari, Md Abdul Alim

    2017-02-01

    Emerging viruses such as HIV, dengue, influenza A, SARS coronavirus, Ebola, and other viruses pose a significant threat to human health. Majority of these viruses are responsible for the outbreaks of pathogenic lethal infections. To date, there are no effective therapeutic strategies available for the prophylaxis and treatment of these infections. Chloroquine analogs have been used for decades as the primary and most successful drugs against malaria. Concomitant with the emergence of chloroquine-resistant Plasmodium strains and a subsequent decrease in the use as antimalarial drugs, other applications of the analogs have been investigated. Since the analogs have interesting biochemical properties, these drugs are found to be effective against a wide variety of viral infections. As antiviral action, the analogs have been shown to inhibit acidification of endosome during the events of replication and infection. Moreover, immunomodulatory effects of analogs have been beneficial to patients with severe inflammatory complications of several viral diseases. Interestingly, one of the successful targeting strategies is the inhibition of HIV replication by the analogs in vitro which are being tested in several clinical trials. This review focuses on the potentialities of chloroquine analogs for the treatment of endosomal low pH dependent emerging viral diseases.

  7. Unconventional secretion of FABP4 by endosomes and secretory lysosomes.

    PubMed

    Villeneuve, Julien; Bassaganyas, Laia; Lepreux, Sebastien; Chiritoiu, Marioara; Costet, Pierre; Ripoche, Jean; Malhotra, Vivek; Schekman, Randy

    2018-02-05

    An appreciation of the functional properties of the cytoplasmic fatty acid binding protein 4 (FABP4) has advanced with the recent demonstration that an extracellular form secreted by adipocytes regulates a wide range of physiological functions. Little, however, is known about the mechanisms that mediate the unconventional secretion of FABP4. Here, we demonstrate that FABP4 secretion is mediated by a membrane-bounded compartment, independent of the conventional endoplasmic reticulum-Golgi secretory pathway. We show that FABP4 secretion is also independent of GRASP proteins, autophagy, and multivesicular bodies but involves enclosure within endosomes and secretory lysosomes. We highlight the physiological significance of this pathway with the demonstration that an increase in plasma levels of FABP4 is inhibited by chloroquine treatment of mice. These findings chart the pathway of FABP4 secretion and provide a potential therapeutic means to control metabolic disorders associated with its dysregulated secretion. © 2018 Villeneuve et al.

  8. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly

    PubMed Central

    Shen, Qing-Tao; Schuh, Amber L.; Zheng, Yuqing; Quinney, Kyle; Wang, Lei; Hanna, Michael; Mitchell, Julie C.; Otegui, Marisa S.; Ahlquist, Paul; Cui, Qiang

    2014-01-01

    The scission of biological membranes is facilitated by a variety of protein complexes that bind and manipulate lipid bilayers. ESCRT-III (endosomal sorting complex required for transport III) filaments mediate membrane scission during the ostensibly disparate processes of multivesicular endosome biogenesis, cytokinesis, and retroviral budding. However, mechanisms by which ESCRT-III subunits assemble into a polymer remain unknown. Using cryogenic electron microscopy (cryo-EM), we found that the full-length ESCRT-III subunit Vps32/CHMP4B spontaneously forms single-stranded spiral filaments. The resolution afforded by two-dimensional cryo-EM combined with molecular dynamics simulations revealed that individual Vps32/CHMP4B monomers within a filament are flexible and able to accommodate a range of bending angles. In contrast, the interface between monomers is stable and refractory to changes in conformation. We additionally found that the carboxyl terminus of Vps32/CHMP4B plays a key role in restricting the lateral association of filaments. Our findings highlight new mechanisms by which ESCRT-III filaments assemble to generate a unique polymer capable of membrane remodeling in multiple cellular contexts. PMID:25202029

  9. Association of γ-Secretase with Lipid Rafts in Post-Golgi and Endosome Membranes*

    PubMed Central

    Vetrivel, Kulandaivelu S.; Cheng, Haipeng; Lin, William; Sakurai, Takashi; Li, Tong; Nukina, Nobuyuki; Wong, Philip C.; Xu, Huaxi; Thinakaran, Gopal

    2005-01-01

    Alzheimer’s disease-associated β-amyloid peptides (Aβ) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by β- and γ-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major γ-secretase in neurons is a palmi-toylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the γ-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1−/−/PS2−/− and NCT−/− fibroblasts, γ-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires γ-secretase complex assembly. Biochemical evidence shows that subunits of the γ-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of γ-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP. PMID:15322084

  10. Release of Infectious Hepatitis C Virus from Huh7 Cells Occurs via a trans-Golgi Network-to-Endosome Pathway Independent of Very-Low-Density Lipoprotein Secretion

    PubMed Central

    Mankouri, Jamel; Walter, Cheryl; Stewart, Hazel; Bentham, Matthew; Park, Wei Sun; Heo, Won Do; Fukuda, Mitsunori

    2016-01-01

    ABSTRACT The release of infectious hepatitis C virus (HCV) particles from infected cells remains poorly characterized. We previously demonstrated that virus release is dependent on the endosomal sorting complex required for transport (ESCRT). Here, we show a critical role of trans-Golgi network (TGN)-endosome trafficking during the assembly, but principally the secretion, of infectious virus. This was demonstrated by both small interfering RNA (siRNA)-mediated silencing of TGN-associated adaptor proteins and a panel of dominant negative (DN) Rab GTPases involved in TGN-endosome trafficking steps. Importantly, interfering with factors critical for HCV release did not have a concomitant effect on secretion of triglycerides, ApoB, or ApoE, indicating that particles are likely released from Huh7 cells via pathways distinct from that of very-low-density lipoprotein (VLDL). Finally, we show that HCV NS2 perturbs TGN architecture, redistributing TGN membranes to closely associate with HCV core protein residing on lipid droplets. These findings support the notion that HCV hijacks TGN-endosome trafficking to facilitate particle assembly and release. Moreover, although essential for assembly and infectivity, the trafficking of mature virions is seemingly independent of host lipoproteins. IMPORTANCE The mechanisms by which infectious hepatitis C virus particles are assembled and released from the cell are poorly understood. We show that the virus subverts host cell trafficking pathways to effect the release of virus particles and disrupts the structure of the Golgi apparatus, a key cellular organelle involved in secretion. In addition, we demonstrate that the mechanisms used by the virus to exit the cell are distinct from those used by the cell to release lipoproteins, suggesting that the virus effects a unique modification to cellular trafficking pathways. PMID:27226379

  11. Integrated experimental and model-based analysis reveals the spatial aspects of EGFR activation dynamics

    PubMed Central

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. Steven; Resat, Haluk

    2012-01-01

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models to determine the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor phosphorylation kinetics at the cell surface and early endosomes are comparable. We validated the last finding by measuring the EGFR dephosphorylation rates at various times following ligand addition both in whole cells and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. This study demonstrates that an iterative cycle of experiments and modeling can be used to gain mechanistic insight regarding complex cell signaling networks. PMID:22952062

  12. Integrated Experimental and Model-based Analysis Reveals the Spatial Aspects of EGFR Activation Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.

    2012-10-02

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerizationmore » and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative

  13. EGF receptor lysosomal degradation is delayed in the cells stimulated with EGF-Quantum dot bioconjugate but earlier key events of endocytic degradative pathway are similar to that of native EGF

    PubMed Central

    Leontieva, Ekaterina A.; Kornilova, Elena S.

    2017-01-01

    Quantum dots (QDs) complexed to ligands recognizing surface receptors undergoing internalization are an attractive tool for live cell imaging of ligand-receptor complexes behavior and for specific tracking of the cells of interest. However, conjugation of quasi-multivalent large QD-particle to monovalent small growth factors like EGF that bound their tyrosine-kinase receptors may affect key endocytic events tightly bound to signaling. Here, by means of confocal microscopy we have addressed the key endocytic events of lysosomal degradative pathway stimulated by native EGF or EGF-QD bioconjugate. We have demonstrated that the decrease in endosome number, increase in mean endosome integrated density and the pattern of EEA1 co-localization with EGF-EGFR complexes at early stages of endocytosis were similar for the both native and QD-conjugated ligands. In both cases enlarged hollow endosomes appeared after wortmannin treatment. This indicates that early endosomal fusions and their maturation proceed similar for both ligands. EGF-QD and native EGF similarly accumulated in juxtanuclear region, and live cell imaging of endosome motion revealed the behavior described elsewhere for microtubule-facilitated motility. Finally, EGF-QD and the receptor were found in lysosomes. However, degradation of receptor part of QD-EGF-EGFR-complex was delayed compared to native EGF, but not inhibited, while QDs fluorescence was detected in lysosomes even after 24 hours. Importantly, in HeLa and A549 cells the both ligands behaved similarly. We conclude that during endocytosis EGF-QD behaves as a neutral marker for degradative pathway up to lysosomal stage and can also be used as a long-term cell marker. PMID:28574831

  14. Interactions of the Human LIP5 Regulatory Protein with Endosomal Sorting Complexes Required for Transport*♦

    PubMed Central

    Skalicky, Jack J.; Arii, Jun; Wenzel, Dawn M.; Stubblefield, William-May B.; Katsuyama, Angela; Uter, Nathan T.; Bajorek, Monika; Myszka, David G.; Sundquist, Wesley I.

    2012-01-01

    The endosomal sorting complex required for transport (ESCRT) pathway remodels membranes during multivesicular body biogenesis, the abscission stage of cytokinesis, and enveloped virus budding. The ESCRT-III and VPS4 ATPase complexes catalyze the membrane fission events associated with these processes, and the LIP5 protein helps regulate their interactions by binding directly to a subset of ESCRT-III proteins and to VPS4. We have investigated the biochemical and structural basis for different LIP5-ligand interactions and show that the first microtubule-interacting and trafficking (MIT) module of the tandem LIP5 MIT domain binds CHMP1B (and other ESCRT-III proteins) through canonical type 1 MIT-interacting motif (MIM1) interactions. In contrast, the second LIP5 MIT module binds with unusually high affinity to a novel MIM element within the ESCRT-III protein CHMP5. A solution structure of the relevant LIP5-CHMP5 complex reveals that CHMP5 helices 5 and 6 and adjacent linkers form an amphipathic “leucine collar” that wraps almost completely around the second LIP5 MIT module but makes only limited contacts with the first MIT module. LIP5 binds MIM1-containing ESCRT-III proteins and CHMP5 and VPS4 ligands independently in vitro, but these interactions are coupled within cells because formation of stable VPS4 complexes with both LIP5 and CHMP5 requires LIP5 to bind both a MIM1-containing ESCRT-III protein and CHMP5. Our studies thus reveal how the tandem MIT domain of LIP5 binds different types of ESCRT-III proteins, promoting assembly of active VPS4 enzymes on the polymeric ESCRT-III substrate. PMID:23105106

  15. Rab11a and its binding partners regulate the recycling of the β1-adrenergic receptor

    PubMed Central

    Gardner, Lidia A.; Hajjhussein, Hassan; Frederick, Katherine C.; Bahouth, Suleiman W.

    2010-01-01

    β1-adrenergic receptors (β1-AR) are internalized in response to agonists and then recycle back for another round of signaling. The serine 312 to alanine mutant of the β1-AR (S312A) is internalized but does not recycle. We determined that WT β1-AR and S312A were internalized initially to an early sorting compartment because they colocalized by >70% with the early endosomal markers rab5a and early endosomal antigen-1 (EEA1). Subsequently, the WT β1-AR trafficked via rab4a-expressing sorting endosomes to recycling endosomes. In recycling endosomes WT β1-AR were colocalized by >70% with the rab11 GTPase. S312A did not colocalize with either rab4a or rab11, instead they exited from early endosomes to late endosomes/lysosomes in which they were degraded. Rab11a played a prominent role in recycling of the WT β1-AR because dominant negative rab11a inhibited, while constitutively active rab11a accelerated the recycling of the β1-AR. Next, we determined the effect of each of the rab11-intercating proteins on trafficking of the WT β1-AR. The recycling of the β1-AR was markedly inhibited when myosin Vb, FIP2, FIP3 and rabphillin were knocked down. These data indicate that rab11a and a select group of its binding partners play a prominent role recycling of the human β1-AR. PMID:20727405

  16. Polymer-attached zanamivir inhibits synergistically both early and late stages of influenza virus infection

    PubMed Central

    Lee, Chia Min; Weight, Alisha K.; Haldar, Jayanta; Wang, Ling; Klibanov, Alexander M.; Chen, Jianzhu

    2012-01-01

    Covalently conjugating multiple copies of the drug zanamivir (ZA; the active ingredient in Relenza) via a flexible linker to poly-l-glutamine (PGN) enhances the anti-influenza virus activity by orders of magnitude. In this study, we investigated the mechanisms of this phenomenon. Like ZA itself, the PGN-attached drug (PGN-ZA) binds specifically to viral neuraminidase and inhibits both its enzymatic activity and the release of newly synthesized virions from infected cells. Unlike monomeric ZA, however, PGN-ZA also synergistically inhibits early stages of influenza virus infection, thus contributing to the markedly increased antiviral potency. This inhibition is not caused by a direct virucidal effect, aggregation of viruses, or inhibition of viral attachment to target cells and the subsequent endocytosis; rather, it is a result of interference with intracellular trafficking of the endocytosed viruses and the subsequent virus-endosome fusion. These findings both rationalize the great anti-influenza potency of PGN-ZA and reveal that attaching ZA to a polymeric chain confers a unique mechanism of antiviral action potentially useful for minimizing drug resistance. PMID:23185023

  17. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling.

    PubMed

    Bai, Zhiyong; Grant, Barth D

    2015-03-24

    Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1-positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42-associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling.

  18. Regulation of synaptic activity by snapin-mediated endolysosomal transport and sorting

    PubMed Central

    Di Giovanni, Jerome; Sheng, Zu-Hang

    2015-01-01

    Recycling synaptic vesicles (SVs) transit through early endosomal sorting stations, which raises a fundamental question: are SVs sorted toward endolysosomal pathways? Here, we used snapin mutants as tools to assess how endolysosomal sorting and trafficking impact presynaptic activity in wild-type and snapin−/− neurons. Snapin acts as a dynein adaptor that mediates the retrograde transport of late endosomes (LEs) and interacts with dysbindin, a subunit of the endosomal sorting complex BLOC-1. Expressing dynein-binding defective snapin mutants induced SV accumulation at presynaptic terminals, mimicking the snapin−/− phenotype. Conversely, over-expressing snapin reduced SV pool size by enhancing SV trafficking to the endolysosomal pathway. Using a SV-targeted Ca2+ sensor, we demonstrate that snapin–dysbindin interaction regulates SV positional priming through BLOC-1/AP-3-dependent sorting. Our study reveals a bipartite regulation of presynaptic activity by endolysosomal trafficking and sorting: LE transport regulates SV pool size, and BLOC-1/AP-3-dependent sorting fine-tunes the Ca2+ sensitivity of SV release. Therefore, our study provides new mechanistic insights into the maintenance and regulation of SV pool size and synchronized SV fusion through snapin-mediated LE trafficking and endosomal sorting. PMID:26108535

  19. Early allelic selection in maize as revealed by ancient DNA.

    PubMed

    Jaenicke-Després, Viviane; Buckler, Ed S; Smith, Bruce D; Gilbert, M Thomas P; Cooper, Alan; Doebley, John; Pääbo, Svante

    2003-11-14

    Maize was domesticated from teosinte, a wild grass, by approximately 6300 years ago in Mexico. After initial domestication, early farmers continued to select for advantageous morphological and biochemical traits in this important crop. However, the timing and sequence of character selection are, thus far, known only for morphological features discernible in corn cobs. We have analyzed three genes involved in the control of plant architecture, storage protein synthesis, and starch production from archaeological maize samples from Mexico and the southwestern United States. The results reveal that the alleles typical of contemporary maize were present in Mexican maize by 4400 years ago. However, as recently as 2000 years ago, allelic selection at one of the genes may not yet have been complete.

  20. The Arf6 GTPase-activating proteins ARAP2 and ACAP1 define distinct endosomal compartments that regulate integrin α5β1 traffic.

    PubMed

    Chen, Pei-Wen; Luo, Ruibai; Jian, Xiaoying; Randazzo, Paul A

    2014-10-31

    Arf6 and the Arf6 GTPase-activating protein (GAP) ACAP1 are established regulators of integrin traffic important to cell adhesion and migration. However, the function of Arf6 with ACAP1 cannot explain the range of Arf6 effects on integrin-based structures. We propose that Arf6 has different functions determined, in part, by the associated Arf GAP. We tested this idea by comparing the Arf6 GAPs ARAP2 and ACAP1. We found that ARAP2 and ACAP1 had opposing effects on apparent integrin β1 internalization. ARAP2 knockdown slowed, whereas ACAP1 knockdown accelerated, integrin β1 internalization. Integrin β1 association with adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif (APPL)-positive endosomes and EEA1-positive endosomes was affected by ARAP2 knockdown and depended on ARAP2 GAP activity. ARAP2 formed a complex with APPL1 and colocalized with Arf6 and APPL in a compartment distinct from the Arf6/ACAP1 tubular recycling endosome. In addition, although ACAP1 and ARAP2 each colocalized with Arf6, they did not colocalize with each other and had opposing effects on focal adhesions (FAs). ARAP2 overexpression promoted large FAs, but ACAP1 overexpression reduced FAs. Taken together, the data support a model in which Arf6 has at least two sites of opposing action defined by distinct Arf6 GAPs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Early Neolithic water wells reveal the world's oldest wood architecture.

    PubMed

    Tegel, Willy; Elburg, Rengert; Hakelberg, Dietrich; Stäuble, Harald; Büntgen, Ulf

    2012-01-01

    The European Neolithization ~6000-4000 BC represents a pivotal change in human history when farming spread and the mobile style of life of the hunter-foragers was superseded by the agrarian culture. Permanent settlement structures and agricultural production systems required fundamental innovations in technology, subsistence, and resource utilization. Motivation, course, and timing of this transformation, however, remain debatable. Here we present annually resolved and absolutely dated dendroarchaeological information from four wooden water wells of the early Neolithic period that were excavated in Eastern Germany. A total of 151 oak timbers preserved in a waterlogged environment were dated between 5469 and 5098 BC and reveal unexpectedly refined carpentry skills. The recently discovered water wells enable for the first time a detailed insight into the earliest wood architecture and display the technological capabilities of humans ~7000 years ago. The timbered well constructions made of old oak trees feature an unopened tree-ring archive from which annually resolved and absolutely dated environmental data can be culled. Our results question the principle of continuous evolutionary development in prehistoric technology, and contradict the common belief that metal was necessary for complex timber constructions. Early Neolithic craftsmanship now suggests that the first farmers were also the first carpenters.

  2. Early Neolithic Water Wells Reveal the World's Oldest Wood Architecture

    PubMed Central

    Tegel, Willy; Elburg, Rengert; Hakelberg, Dietrich; Stäuble, Harald; Büntgen, Ulf

    2012-01-01

    The European Neolithization ∼6000−4000 BC represents a pivotal change in human history when farming spread and the mobile style of life of the hunter-foragers was superseded by the agrarian culture. Permanent settlement structures and agricultural production systems required fundamental innovations in technology, subsistence, and resource utilization. Motivation, course, and timing of this transformation, however, remain debatable. Here we present annually resolved and absolutely dated dendroarchaeological information from four wooden water wells of the early Neolithic period that were excavated in Eastern Germany. A total of 151 oak timbers preserved in a waterlogged environment were dated between 5469 and 5098 BC and reveal unexpectedly refined carpentry skills. The recently discovered water wells enable for the first time a detailed insight into the earliest wood architecture and display the technological capabilities of humans ∼7000 years ago. The timbered well constructions made of old oak trees feature an unopened tree-ring archive from which annually resolved and absolutely dated environmental data can be culled. Our results question the principle of continuous evolutionary development in prehistoric technology, and contradict the common belief that metal was necessary for complex timber constructions. Early Neolithic craftsmanship now suggests that the first farmers were also the first carpenters. PMID:23284685

  3. Recruitment of endosomal signaling mediates the forskolin modulation of guinea pig cardiac neuron excitability.

    PubMed

    Hardwick, Jean C; Clason, Todd A; Tompkins, John D; Girard, Beatrice M; Baran, Caitlin N; Merriam, Laura A; May, Victor; Parsons, Rodney L

    2017-08-01

    Forskolin, a selective activator of adenylyl cyclase (AC), commonly is used to establish actions of G protein-coupled receptors (GPCRs) that are initiated primarily through activation of AC/cAMP signaling pathways. In the present study, forskolin was used to evaluate the potential role of AC/cAMP, which is a major signaling mechanism for the pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor, in the regulation of guinea pig cardiac neuronal excitability. Forskolin (5-10 µM) increases excitability in ~60% of the cardiac neurons. The forskolin-mediated increase in excitability was considered related to cAMP regulation of a cyclic nucleotide gated channel or via protein kinase A (PKA)/ERK signaling, mechanisms that have been linked to PAC1 receptor activation. However, unlike PACAP mechanisms, forskolin enhancement of excitability was not significantly reduced by treatment with cesium to block currents through hyperpolarization-activated nonselective cation channels ( I h ) or by treatment with PD98059 to block MEK/ERK signaling. In contrast, treatment with the clathrin inhibitor Pitstop2 or the dynamin inhibitor dynasore eliminated the forskolin-induced increase in excitability; treatments with the inactive Pitstop analog or PP2 treatment to inhibit Src-mediated endocytosis mechanisms were ineffective. The PKA inhibitor KT5702 significantly suppressed the forskolin-induced change in excitability; further, KT5702 and Pitstop2 reduced the forskolin-stimulated MEK/ERK activation in cardiac neurons. Collectively, the present results suggest that forskolin activation of AC/cAMP/PKA signaling leads to the recruitment of clathrin/dynamin-dependent endosomal transduction cascades, including MEK/ERK signaling, and that endosomal signaling is the critical mechanism underlying the forskolin-induced increase in cardiac neuron excitability. Copyright © 2017 the American Physiological Society.

  4. Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH.

    PubMed

    Nicola, Anthony V

    2016-09-01

    Herpesviral pathogenesis stems from infection of multiple cell types including the site of latency and cells that support lytic replication. Herpesviruses utilize distinct cellular pathways, including low pH endocytic pathways, to enter different pathophysiologically relevant target cells. This review details the impact of the mildly acidic milieu of endosomes on the entry of herpesviruses, with particular emphasis on herpes simplex virus 1 (HSV-1). Epithelial cells, the portal of primary HSV-1 infection, support entry via low pH endocytosis mechanisms. Mildly acidic pH triggers reversible conformational changes in the HSV-1 class III fusion protein glycoprotein B (gB). In vitro treatment of herpes simplex virions with a similar pH range inactivates infectivity, likely by prematurely activating the viral entry machinery in the absence of a target membrane. How a given herpesvirus mediates both low pH and pH-independent entry events is a key unresolved question. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Parkin mediates the ubiquitination of VPS35 and modulates retromer-dependent endosomal sorting.

    PubMed

    Williams, Erin T; Glauser, Liliane; Tsika, Elpida; Jiang, Haisong; Islam, Shariful; Moore, Darren J

    2018-06-11

    Mutations in a number of genes cause familial forms of Parkinson's disease (PD), including mutations in the vacuolar protein sorting 35 ortholog (VPS35) and parkin genes. In this study, we identify a novel functional interaction between parkin and VPS35. We demonstrate that parkin interacts with and robustly ubiquitinates VPS35 in human neural cells. Familial parkin mutations are impaired in their ability to ubiquitinate VPS35. Parkin mediates the attachment of an atypical poly-ubiquitin chain to VPS35 with three lysine residues identified within the C-terminal region of VPS35 that are covalently modified by ubiquitin. Notably, parkin-mediated VPS35 ubiquitination does not promote the proteasomal degradation of VPS35. Furthermore, parkin does not influence the steady-state levels or turnover of VPS35 in neural cells and VPS35 levels are normal in the brains of parkin knockout mice. These data suggest that ubiquitination of VPS35 by parkin may instead serve a non-degradative cellular function potentially by regulating retromer-dependent sorting. Accordingly, we find that components of the retromer-associated WASH complex are markedly decreased in the brain of parkin knockout mice, suggesting that parkin may modulate WASH complex-dependent retromer sorting. Parkin gene silencing in primary cortical neurons selectively disrupts the vesicular sorting of the autophagy receptor ATG9A, a WASH-dependent retromer cargo. Parkin is not required for dopaminergic neurodegeneration induced by the expression of PD-linked D620N VPS35 in mice, consistent with VPS35 being located downstream of parkin function. Our data reveal a novel functional interaction of parkin with VPS35 that may be important for retromer-mediated endosomal sorting and PD.

  6. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling

    PubMed Central

    Bai, Zhiyong; Grant, Barth D.

    2015-01-01

    Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1–positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42–associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling. PMID:25775511

  7. Mosquito Cellular Factors and Functions in Mediating the Infectious entry of Chikungunya Virus

    PubMed Central

    Lee, Regina Ching Hua; Hapuarachchi, Hapuarachchige Chanditha; Chen, Karen Caiyun; Hussain, Khairunnisa' Mohamed; Chen, Huixin; Low, Swee Ling; Ng, Lee Ching; Lin, Raymond; Ng, Mary Mah-Lee; Chu, Justin Jang Hann

    2013-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne virus responsible for recent epidemics in the Asia Pacific regions. A customized gene expression microarray of 18,760 transcripts known to target Aedes mosquito genome was used to identify host genes that are differentially regulated during the infectious entry process of CHIKV infection on C6/36 mosquito cells. Several genes such as epsin I (EPN1), epidermal growth factor receptor pathway substrate 15 (EPS15) and Huntingtin interacting protein I (HIP1) were identified to be differentially expressed during CHIKV infection and known to be involved in clathrin-mediated endocytosis (CME). Transmission electron microscopy analyses further revealed the presence of CHIKV particles within invaginations of the plasma membrane, resembling clathrin-coated pits. Characterization of vesicles involved in the endocytic trafficking processes of CHIKV revealed the translocation of the virus particles to the early endosomes and subsequently to the late endosomes and lysosomes. Treatment with receptor-mediated endocytosis inhibitor, monodansylcadaverine and clathrin-associated drug inhibitors, chlorpromazine and dynasore inhibited CHIKV entry, whereas no inhibition was observed with caveolin-related drug inhibitors. Inhibition of CHIKV entry upon treatment with low-endosomal pH inhibitors indicated that low pH is essential for viral entry processes. CHIKV entry by clathrin-mediated endocytosis was validated via overexpression of a dominant-negative mutant of Eps15, in which infectious entry was reduced, while siRNA-based knockdown of genes associated with CME, low endosomal pH and RAB trafficking proteins exhibited significant levels of CHIKV inhibition. This study revealed, for the first time, that the infectious entry of CHIKV into mosquito cells is mediated by the clathrin-dependent endocytic pathway. PMID:23409203

  8. Intracellular Trafficking of AIP56, an NF-κB-Cleaving Toxin from Photobacterium damselae subsp. piscicida

    PubMed Central

    Pereira, Liliana M. G.; Pinto, Rute D.; Silva, Daniela S.; Moreira, Ana R.; Beitzinger, Christoph; Oliveira, Pedro; Sampaio, Paula; Benz, Roland; Azevedo, Jorge E.; dos Santos, Nuno M. S.

    2014-01-01

    AIP56 (apoptosis-inducing protein of 56 kDa) is a metalloprotease AB toxin secreted by Photobacterium damselae subsp. piscicida that acts by cleaving NF-κB. During infection, AIP56 spreads systemically and depletes phagocytes by postapoptotic secondary necrosis, impairing the host phagocytic defense and contributing to the genesis of infection-associated necrotic lesions. Here we show that mouse bone marrow-derived macrophages (mBMDM) intoxicated by AIP56 undergo NF-κB p65 depletion and apoptosis. Similarly to what was reported for sea bass phagocytes, intoxication of mBMDM involves interaction of AIP56 C-terminal region with cell surface components, suggesting the existence of a conserved receptor. Biochemical approaches and confocal microscopy revealed that AIP56 undergoes clathrin-dependent endocytosis, reaches early endosomes, and follows the recycling pathway. Translocation of AIP56 into the cytosol requires endosome acidification, and an acidic pulse triggers translocation of cell surface-bound AIP56 into the cytosol. Accordingly, at acidic pH, AIP56 becomes more hydrophobic, interacting with artificial lipid bilayer membranes. Altogether, these data indicate that AIP56 is a short-trip toxin that reaches the cytosol using an acidic-pH-dependent mechanism, probably from early endosomes. Usually, for short-trip AB toxins, a minor pool reaches the cytosol by translocating from endosomes, whereas the rest is routed to lysosomes for degradation. Here we demonstrate that part of endocytosed AIP56 is recycled back and released extracellularly through a mechanism requiring phosphoinositide 3-kinase (PI3K) activity but independent of endosome acidification. So far, we have been unable to detect biological activity of recycled AIP56, thereby bringing into question its biological relevance as well as the importance of the recycling pathway. PMID:25287919

  9. Intracellular trafficking pathways for nuclear delivery of plasmid DNA complexed with highly efficient endosome escape polymers.

    PubMed

    Gillard, Marianne; Jia, Zhongfan; Hou, Jeff Jia Cheng; Song, Michael; Gray, Peter P; Munro, Trent P; Monteiro, Michael J

    2014-10-13

    Understanding the pathways for nuclear entry could see vast improvements in polymer design for the delivery of genetic materials to cells. Here, we use a novel diblock copolymer complexed with plasmid DNA (pDNA) to determine both its cellular entry and nuclear pathways. The diblock copolymer (A-C3) is specifically designed to bind and protect pDNA, release it at a specific time, but more importantly, rapidly escape the endosome. The copolymer was taken up by HEK293 cells preferentially via the clathrin-mediated endocytosis (CME) pathway, and the pDNA entered the nucleus to produce high gene expression levels in all cells after 48 h, a similar observation to the commercially available polymer transfection agent, PEI Max. This demonstrates that the polymers must first escape the endosome and then mediate transport of pDNA to the nucleus for occurrence of gene expression. The amount of pDNA within the nucleus was found to be higher for our A-C3 polymer than PEI Max, with our polymer delivering 7 times more pDNA than PEI Max after 24 h. We further found that entry into the nucleus was primarily through the small nuclear pores and did not occur during mitosis when the nuclear envelope becomes compromised. The observation that the polymers are also found in the nucleus supports the hypothesis that the large pDNA/polymer complex (size ~200 nm) must dissociate prior to nucleus entry and that cationic and hydrophobic monomer units on the polymer may facilitate active transport of the pDNA through the nuclear pore.

  10. Endosomal recognition of Lactococcus lactis G121 and its RNA by dendritic cells is key to its allergy-protective effects.

    PubMed

    Stein, Karina; Brand, Stephanie; Jenckel, André; Sigmund, Anna; Chen, Zhijian James; Kirschning, Carsten J; Kauth, Marion; Heine, Holger

    2017-02-01

    Bacterial cowshed isolates are allergy protective in mice; however, the underlying mechanisms are largely unknown. We examined the ability of Lactococcus lactis G121 to prevent allergic inflammatory reactions. We sought to identify the ligands and pattern recognition receptors through which L lactis G121 confers allergy protection. L lactis G121-induced cytokine release and surface expression of costimulatory molecules by untreated or inhibitor-treated (bafilomycin and cytochalasin D) human monocyte-derived dendritic cells (moDCs), bone marrow-derived mouse dendritic cells (BMDCs), and moDC/naive CD4 + T-cell cocultures were analyzed by using ELISA and flow cytometry. The pathology of ovalbumin-induced acute allergic airway inflammation after adoptive transfer of BMDCs was examined by means of microscopy. L lactis G121-treated murine BMDCs and human moDCs released T H 1-polarizing cytokines and induced T H 1 T cells. Inhibiting phagocytosis and endosomal acidification in BMDCs or moDCs impaired the release of T H 1-polarizing cytokines, costimulatory molecule expression, and T-cell activation on L lactis G121 challenge. In vivo allergy protection mediated by L lactis G121 was dependent on endosomal acidification in dendritic cells (DCs). Toll-like receptor (Tlr) 13 -/- BMDCs showed a weak response to L lactis G121 and were unresponsive to its RNA. The T H 1-polarizing activity of L lactis G121-treated human DCs was blocked by TLR8-specific inhibitors, mediated by L lactis G121 RNA, and synergistically enhanced by activation of nucleotide-binding oligomerization domain-containing protein (NOD) 2. Bacterial RNA is the main driver of L lactis G121-mediated protection against experimentally induced allergy and requires both bacterial uptake by DCs and endosomal acidification. In mice L lactis G121 RNA signals through TLR13; however, the most likely intracellular receptor in human subjects is TLR8. Copyright © 2016 American Academy of Allergy, Asthma & Immunology

  11. TPC Proteins Are Phosphoinositide-activated Sodium-selective Ion Channels in Endosomes and Lysosomes

    PubMed Central

    Wang, Xiang; Zhang, Xiaoli; Dong, Xian-ping; Samie, Mohammad; Li, Xinran; Cheng, Xiping; Goschka, Andrew; Shen, Dongbiao; Zhou, Yandong; Harlow, Janice; Zhu, Michael X.; Clapham, David E.; Ren, Dejian; Xu, Haoxing

    2012-01-01

    Summary Mammalian Two-Pore Channels (TPC1, 2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P2, and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na+, not K+, as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes, and may explain the specificity of PI(3,5)P2 in regulating the fusogenic potential of intracellular organelles. PMID:23063126

  12. Endosomal escape and siRNA delivery with cationic shell crosslinked knedel-like nanoparticles with tunable buffering capacities

    PubMed Central

    Shrestha, Ritu; Elsabahy, Mahmoud; Florez-Malaver, Stephanie; Samarajeewa, Sandani; Wooley, Karen L.

    2012-01-01

    Cationic shell crosslinked knedel-like nanoparticles (cSCKs) have emerged as a highly efficient transfection agent for nucleic acids delivery. In this study, a new class of cSCKs with tunable buffering capacities has been developed by altering the amounts of histamines and primary amines incorporated into their crosslinked shell regions. The effect of histamine content of these nanoparticles with a hydrodynamic diameter of ca. 20 nm, on the siRNA-binding affinity, cytotoxicity, immunogenicity, and transfection efficiency was investigated. The modification of cSCKs with histamine was found to reduce the siRNA-binding affinity and cellular binding. On the other hand, it significantly reduced the toxicity and immunogenicity of the nanoparticles with subsequent increase in the transfection efficiency. In addition, escape from endosomes was facilitated by having two species of low and high pKas (i.e. histamine and primary amine groups, respectively), as demonstrated by the potentiometric titration experiments and the effect of bafilomycin A1, an inhibitor of the endosomal acidification, on the transfection efficiency of cSCKs. Histamine modification of 15 mol% was a threshold, above which cSCKs with higher histamine content completely lost the ability to bind siRNA and to transfect cells. This study highlights the potential of histamine incorporation to augment the gene silencing activity of cationic nanoparticles, reduce their toxicity, and increase their biocompatibility, which is of particular importance in the design of nucleic acids delivery vectors. PMID:22901966

  13. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    PubMed Central

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-01-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. PMID:27251117

  14. α1B-Adrenergic Receptors Differentially Associate with Rab Proteins during Homologous and Heterologous Desensitization

    PubMed Central

    Castillo-Badillo, Jean A.; Sánchez-Reyes, Omar B.; Alfonzo-Méndez, Marco A.; Romero-Ávila, M. Teresa; Reyes-Cruz, Guadalupe; García-Sáinz, J. Adolfo

    2015-01-01

    Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs

  15. Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma.

    PubMed

    Naboulsi, Wael; Megger, Dominik A; Bracht, Thilo; Kohl, Michael; Turewicz, Michael; Eisenacher, Martin; Voss, Don Marvin; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2016-01-04

    Hepatocellular carcinoma (HCC) is one of the most aggressive tumors, and the treatment outcome of this disease is improved when the cancer is diagnosed at an early stage. This requires biomarkers allowing an accurate and early tumor diagnosis. To identify potential markers for such applications, we analyzed a patient cohort consisting of 50 patients (50 HCC and 50 adjacent nontumorous tissue samples as controls) using two independent proteomics approaches. We performed label-free discovery analysis on 19 HCC and corresponding tissue samples. The data were analyzed considering events known to take place in early events of HCC development, such as abnormal regulation of Wnt/b-catenin and activation of receptor tyrosine kinases (RTKs). 31 proteins were selected for verification experiments. For this analysis, the second set of the patient cohort (31 HCC and corresponding tissue samples) was analyzed using selected (multiple) reaction monitoring (SRM/MRM). We present the overexpression of ATP-dependent RNA helicase (DDX39), Fibulin-5 (FBLN5), myristoylated alanine-rich C-kinase substrate (MARCKS), and Serpin H1 (SERPINH1) in HCC for the first time. We demonstrate Versican core protein (VCAN) to be significantly associated with well differentiated and low-stage HCC. We revealed for the first time the evidence of VCAN as a potential biomarker for early-HCC diagnosis.

  16. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    PubMed

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH*

    PubMed Central

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S.; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-01-01

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells. PMID:25673693

  18. Aggregation of nanoparticles in endosomes and lysosomes produces surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucas, Leanne J.; Chen, Xiaoke K.; Smith, Aaron J.; Korbelik, Mladen; Zeng, Haishan; Lee, Patrick W. K.; Hewitt, Kevin Cecil

    2015-01-01

    The purpose of this study was to explore the use of surface-enhanced Raman spectroscopy (SERS) to image the distribution of epidermal growth factor receptor (EGFR) in cells. To accomplish this task, 30-nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per mL) were incubated with cells (106 per mL) of the A431 human epidermoid carcinoma and normal human bronchial epithelial cell lines. Using the 632.8-nm excitation line of a He-Ne laser, Raman spectroscopy measurements were performed using a point mapping scheme. Normal cells show little to no enhancement. SERS signals were observed inside the cytoplasm of A431 cells with an overall enhancement of 4 to 7 orders of magnitude. Raman intensity maps of the 1450 and 1583 cm-1 peaks correlate well with the expected distribution of EGFR and AuNPs, aggregated following uptake by endosomes and lysosomes. Spectral features from tyrosine and tryptophan residues dominate the SERS signals.

  19. Golgi-independent secretory trafficking through recycling endosomes in neuronal dendrites and spines

    PubMed Central

    Bowen, Aaron B; Bourke, Ashley M; Hiester, Brian G; Hanus, Cyril

    2017-01-01

    Neurons face the challenge of regulating the abundance, distribution and repertoire of integral membrane proteins within their immense, architecturally complex dendritic arbors. While the endoplasmic reticulum (ER) supports dendritic translation, most dendrites lack the Golgi apparatus (GA), an essential organelle for conventional secretory trafficking. Thus, whether secretory cargo is locally trafficked in dendrites through a non-canonical pathway remains a fundamental question. Here we define the dendritic trafficking itinerary for key synaptic molecules in rat cortical neurons. Following ER exit, the AMPA-type glutamate receptor GluA1 and neuroligin 1 undergo spatially restricted entry into the dendritic secretory pathway and accumulate in recycling endosomes (REs) located in dendrites and spines before reaching the plasma membrane. Surprisingly, GluA1 surface delivery occurred even when GA function was disrupted. Thus, in addition to their canonical role in protein recycling, REs also mediate forward secretory trafficking in neuronal dendrites and spines through a specialized GA-independent trafficking network. PMID:28875935

  20. Electron tomography of early melanosomes: Implications for melanogenesis and the generation of fibrillar amyloid sheets

    PubMed Central

    Hurbain, Ilse; Geerts, Willie J. C.; Boudier, Thomas; Marco, Sergio; Verkleij, Arie J.; Marks, Michael S.; Raposo, Graç

    2008-01-01

    Melanosomes are lysosome-related organelles (LROs) in which melanins are synthesized and stored. Early stage melanosomes are characterized morphologically by intralumenal fibrils upon which melanins are deposited in later stages. The integral membrane protein Pmel17 is a component of the fibrils, can nucleate fibril formation in the absence of other pigment cell-specific proteins, and forms amyloid-like fibrils in vitro. Before fibril formation Pmel17 traffics through multivesicular endosomal compartments, but how these compartments participate in downstream events leading to fibril formation is not fully known. By using high-pressure freezing of MNT-1 melanoma cells and freeze substitution to optimize ultrastructural preservation followed by double tilt 3D electron tomography, we show that the amyloid-like fibrils begin to form in multivesicular compartments, where they radiate from the luminal side of intralumenal membrane vesicles. The fibrils in fully formed stage II premelanosomes organize into sheet-like arrays and exclude the remaining intralumenal vesicles, which are smaller and often in continuity with the limiting membrane. These observations indicate that premelanosome fibrils form in association with intralumenal endosomal membranes. We suggest that similar processes regulate amyloid formation in pathological models. PMID:19033461

  1. Electron tomography of early melanosomes: implications for melanogenesis and the generation of fibrillar amyloid sheets.

    PubMed

    Hurbain, Ilse; Geerts, Willie J C; Boudier, Thomas; Marco, Sergio; Verkleij, Arie J; Marks, Michael S; Raposo, Graç

    2008-12-16

    Melanosomes are lysosome-related organelles (LROs) in which melanins are synthesized and stored. Early stage melanosomes are characterized morphologically by intralumenal fibrils upon which melanins are deposited in later stages. The integral membrane protein Pmel17 is a component of the fibrils, can nucleate fibril formation in the absence of other pigment cell-specific proteins, and forms amyloid-like fibrils in vitro. Before fibril formation Pmel17 traffics through multivesicular endosomal compartments, but how these compartments participate in downstream events leading to fibril formation is not fully known. By using high-pressure freezing of MNT-1 melanoma cells and freeze substitution to optimize ultrastructural preservation followed by double tilt 3D electron tomography, we show that the amyloid-like fibrils begin to form in multivesicular compartments, where they radiate from the luminal side of intralumenal membrane vesicles. The fibrils in fully formed stage II premelanosomes organize into sheet-like arrays and exclude the remaining intralumenal vesicles, which are smaller and often in continuity with the limiting membrane. These observations indicate that premelanosome fibrils form in association with intralumenal endosomal membranes. We suggest that similar processes regulate amyloid formation in pathological models.

  2. Membrane raft association is a determinant of plasma membrane localization.

    PubMed

    Diaz-Rohrer, Blanca B; Levental, Kandice R; Simons, Kai; Levental, Ilya

    2014-06-10

    The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting.

  3. Ascorbic acid increases SVCT2 localization at the plasma membrane by accelerating its trafficking from early secretory compartments and through the endocytic-recycling pathway.

    PubMed

    Covarrubias-Pinto, A; Acuña, A I; Boncompain, G; Papic, E; Burgos, P V; Perez, F; Castro, M A

    2018-05-20

    Ascorbic acid (Asc) is an antioxidant molecule essential for physiological functions. The concentration of extracellular Asc increases during synaptic transmission and renal reabsorption. These phenomena induce an increase of the Sodium-dependent-Vitamin-C-transporter 2 (SVCT2) at plasma membrane (PM) localization, as we previously demonstrated in neuronal and non-neuronal cells. Hence, the aim of this study was to evaluate intracellular SVCT2 trafficking kinetics in response to Asc. We observed two peaks of SVCT2 localization and function at the PM (at 5-10 min, "acute response", and 30-60 min, "post-acute response") when cells were incubated with Asc. We defined that the post-acute response was dependent on SVCT2 located in early secretory compartments, and its trafficking was abolished with Tunicamycin and Brefeldin A treatment. Moreover, using the RUSH system to retain and synchronize cargo secretion through the secretory pathway we demonstrated that the post-acute response increases SVCT2 trafficking kinetics from the ER to the PM suggesting the retention of SVCT2 at the early secretory pathway when Asc is absent. However, these observations do not explain the increased SVCT2 levels at the PM during the "acute" response, suggesting the involvement of a faster mechanism in close proximity with the PM. To investigate the possible role of endosomal compartments, we tested the effect of endocytosis inhibition. Expression of dominant-negative (DN) versions of the GTPase-dynamin II and clathrin-accessory protein AP180 showed a significant increase in SVCT2 levels at the PM. Moreover, expression of Rab11-DN, a GTPase implicated in cargo protein recycling from endosomes to the PM showed a similar outcome, strongly indicating that Asc impacts SVCT2 trafficking during the acute response. Therefore, our results revealed two mechanisms by which Asc modulates SVCT2 levels at the PM, one at the early secretory pathway and another at the endocytic compartments. We

  4. Ca2+ homeostasis in microvascular endothelial cells from an insulin-dependent diabetic model: role of endosomes/lysosomes

    NASA Astrophysics Data System (ADS)

    Sanka, Shankar C.; Bennett, David C.; Rojas, Jose D.; Tasby, Geraldine B.; Meininger, Cynthia J.; Wu, Guoyao; Wesson, Donald E.; Pfarr, Curtis M.; Martinez-Zaguilan, Raul

    2000-04-01

    Cytosolic Ca2+ ([Ca2+]cyt) regulates several cellular functions, e.g. cell growth, contraction, secretion, etc. In many cell types, ion homeostasis appears to be coupled with glucose metabolism. In certain cell types, a strict coupling between glycolysis and the activity of Sarcoplasmic/Endoplasmic Reticulum Ca2+-ATPases (SERCA) has been suggested. Glucose metabolism is altered in diabetes. We hypothesize that: (1) Ca2+ homeostasis is altered in microvascular endothelial cells from diabetic animals due to the dysfunction of glycolysis coupling the activity of SERCA; (2) endosomal/lysosomal compartments expressing SERCA are involved in the dysfunction associated with diabetes.

  5. Cholesterol-dependent retention of GPI-anchored proteins in endosomes.

    PubMed Central

    Mayor, S; Sabharanjak, S; Maxfield, F R

    1998-01-01

    Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the Cterminal end that serves as their sole means of membrane anchoring. Using fluorescently labeled ligands and digital fluorescence microscopy, we show that contrary to the potocytosis model, GPI-anchored proteins are internalized into endosomes that contain markers for both receptor-mediated uptake (e.g. transferrin) and fluid phase endocytosis (e.g. dextrans). This was confirmed by immunogold electron microscopy and the observation that a fluorescent folate derivative bound to the GPI-anchored folate receptor is internalized into the same compartment as co-internalized horseradish peroxidase-transferrin; the folate fluorescence was quenched when cells subsequently were incubated with diaminobenzidine and H2O2. Most of the GPI-anchored proteins are recycled back to the plasma membrane but at a rate that is at least 3-fold slower than C6-NBD-sphingomyelin or recycling receptors. This endocytic retention is regulated by the level of cholesterol in cell membranes; GPI-anchored proteins are recycled back to the cell surface at the same rate as recycling transferrin receptors and C6-NBD-sphingomyelin in cholesterol-depleted cells. Cholesterol-dependent endocytic sorting of GPI-anchored proteins is consistent with the involvement of specialized lipid domains or 'rafts' in endocytic sorting. These results provide an alternative explanation for GPI-requiring functions of some GPI-anchored proteins. PMID:9707422

  6. Anterograde Trafficking of KCa3.1 in Polarized Epithelia Is Rab1- and Rab8-Dependent and Recycling Endosome-Independent

    PubMed Central

    Bertuccio, Claudia A.; Lee, Shih-Liang; Wu, Guangyu; Butterworth, Michael B.; Hamilton, Kirk L.; Devor, Daniel C.

    2014-01-01

    The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the μ1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized

  7. Dynamic landscape of pancreatic carcinogenesis reveals early molecular networks of malignancy.

    PubMed

    Kong, Bo; Bruns, Philipp; Behler, Nora A; Chang, Ligong; Schlitter, Anna Melissa; Cao, Jing; Gewies, Andreas; Ruland, Jürgen; Fritzsche, Sina; Valkovskaya, Nataliya; Jian, Ziying; Regel, Ivonne; Raulefs, Susanne; Irmler, Martin; Beckers, Johannes; Friess, Helmut; Erkan, Mert; Mueller, Nikola S; Roth, Susanne; Hackert, Thilo; Esposito, Irene; Theis, Fabian J; Kleeff, Jörg; Michalski, Christoph W

    2018-01-01

    The initial steps of pancreatic regeneration versus carcinogenesis are insufficiently understood. Although a combination of oncogenic Kras and inflammation has been shown to induce malignancy, molecular networks of early carcinogenesis remain poorly defined. We compared early events during inflammation, regeneration and carcinogenesis on histological and transcriptional levels with a high temporal resolution using a well-established mouse model of pancreatitis and of inflammation-accelerated Kras G12D -driven pancreatic ductal adenocarcinoma. Quantitative expression data were analysed and extensively modelled in silico. We defined three distinctive phases-termed inflammation, regeneration and refinement-following induction of moderate acute pancreatitis in wild-type mice. These corresponded to different waves of proliferation of mesenchymal, progenitor-like and acinar cells. Pancreas regeneration required a coordinated transition of proliferation between progenitor-like and acinar cells. In mice harbouring an oncogenic Kras mutation and challenged with pancreatitis, there was an extended inflammatory phase and a parallel, continuous proliferation of mesenchymal, progenitor-like and acinar cells. Analysis of high-resolution transcriptional data from wild-type animals revealed that organ regeneration relied on a complex interaction of a gene network that normally governs acinar cell homeostasis, exocrine specification and intercellular signalling. In mice with oncogenic Kras, a specific carcinogenic signature was found, which was preserved in full-blown mouse pancreas cancer. These data define a transcriptional signature of early pancreatic carcinogenesis and a molecular network driving formation of preneoplastic lesions, which allows for more targeted biomarker development in order to detect cancer earlier in patients with pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Changes in the spectral properties of a plasma membrane lipid analog during the first seconds of endocytosis in living cells.

    PubMed Central

    Chen, C S; Martin, O C; Pagano, R E

    1997-01-01

    N-[5-(5, 7-dimethyl Bodipy)-1-pentanoyl]-D-erythro-sphingosylphosphorylcholine (C5-DMB-SM), a fluorescent analog of sphingomyelin, has been used in a study of the formation of very early endosomes in human skin fibroblasts. This lipid exhibits a shift in its fluorescence emission maximum from green (approximately 515 nm) to red (approximately 620 nm) wavelengths with increasing concentrations in membranes. When cells were incubated with 5 microM C5-DMB-SM at 4 degrees C and washed, only plasma membrane fluorescence (yellow-green) was observed. When these cells were briefly (< or = 1 min) warmed to 37 degrees C to allow internalization to occur, and then incubated with defatted bovine serum albumin (back-exchanged) at 11 degrees C to remove fluorescent lipids from the plasma membrane, C5-DMB-SM was distributed in a punctate pattern throughout the cytoplasm. Interestingly, within the same cell some endosomes exhibited green fluorescence, whereas others emitted red-orange fluorescence. Furthermore, the red-orange endosomes were usually seen at the periphery of the cell, while the green endosomes were more uniformly distributed throughout the cytoplasm. This mixed population of endosomes was seen after internalization times as short as 7 s and was also seen over a wide range of C5-DMB-SM concentrations (1-25 microM). Control experiments established that the variously colored endosomes were not induced by changes in pH, membrane potential, vesicle size, or temperature. Quantitative fluorescence microscopy demonstrated that the apparent concentration of the lipid analog in the red-orange endosomes was severalfold higher than its initial concentration at the plasma membrane, suggesting selective internalization (sorting) of the lipid into a subset of early endosomes. Colocalization studies using C5-DMB-SM and either anti-transferrin receptor antibodies or fluorescently labeled low-density lipoprotein further demonstrated that this subpopulation of endosomes resulted from

  9. Genome-wide siRNA screen identifies UNC50 as a regulator of Shiga toxin 2 trafficking

    PubMed Central

    Iles, Lakesla R.; Bartholomeusz, Geoffrey

    2017-01-01

    Shiga toxins 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol. Early endosome-to-Golgi transport allows the toxins to evade degradation in lysosomes. Targeting this trafficking step has therapeutic promise, but the mechanism of trafficking for the more potent toxin STx2 is unclear. To identify host factors required for early endosome-to-Golgi trafficking of STx2, we performed a viability-based genome-wide siRNA screen in HeLa cells. 564, 535, and 196 genes were found to be required for toxicity induced by STx1 only, STx2 only, and both toxins, respectively. We focused on validating endosome/Golgi-localized hits specific for STx2 and found that depletion of UNC50 blocked early endosome-to-Golgi trafficking and induced lysosomal degradation of STx2. UNC50 acted by recruiting GBF1, an ADP ribosylation factor–guanine nucleotide exchange factor (ARF-GEF), to the Golgi. These results provide new information about STx2 trafficking mechanisms and may advance efforts to generate therapeutically viable toxin-trafficking inhibitors. PMID:28883040

  10. Uncommon endocytic and trafficking pathway of the natural killer cell CD94/NKG2A inhibitory receptor.

    PubMed

    Masilamani, Madhan; Narayanan, Sriram; Prieto, Martha; Borrego, Francisco; Coligan, John E

    2008-06-01

    The CD94/NKG2A inhibitory receptor, expressed by natural killer and T cells, is constantly exposed to its HLA-E ligand expressed by surrounding cells. Ligand exposure often induces receptor downregulation. For CD94/NKG2A, this could potentiate activation receptor(s) induced responses to normal bystander cells. We investigated CD94/NKG2A endocytosis and found that it occurs by an amiloride-sensitive, Rac1-dependent macropinocytic-like process; however, it does not require clathrin, dynamin, ADP ribosylation factor-6, phosphoinositide-3 kinase or the actin cytoskeleton. Once endocytosed, CD94/NKG2A traffics to early endosomal antigen 1(+), Rab5(+) early endosomes. It does appear in Rab4(+) early/sorting endosome, but, in the time period examined, fails to reach Rab11(+) recycling or Rab7(+) late endosomes or lysosome-associated membrane protein-1(+) lysosomes. These results indicate that CD94/NKG2A utilizes a previously undescribed endocytic mechanism coupled with an abbreviated trafficking pattern, perhaps to insure surface expression.

  11. Genome-wide siRNA screen identifies UNC50 as a regulator of Shiga toxin 2 trafficking.

    PubMed

    Selyunin, Andrey S; Iles, Lakesla R; Bartholomeusz, Geoffrey; Mukhopadhyay, Somshuvra

    2017-10-02

    Shiga toxins 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol. Early endosome-to-Golgi transport allows the toxins to evade degradation in lysosomes. Targeting this trafficking step has therapeutic promise, but the mechanism of trafficking for the more potent toxin STx2 is unclear. To identify host factors required for early endosome-to-Golgi trafficking of STx2, we performed a viability-based genome-wide siRNA screen in HeLa cells. 564, 535, and 196 genes were found to be required for toxicity induced by STx1 only, STx2 only, and both toxins, respectively. We focused on validating endosome/Golgi-localized hits specific for STx2 and found that depletion of UNC50 blocked early endosome-to-Golgi trafficking and induced lysosomal degradation of STx2. UNC50 acted by recruiting GBF1, an ADP ribosylation factor-guanine nucleotide exchange factor (ARF-GEF), to the Golgi. These results provide new information about STx2 trafficking mechanisms and may advance efforts to generate therapeutically viable toxin-trafficking inhibitors. © 2017 Selyunin et al.

  12. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.

    PubMed

    Guo, Emily Z; Xu, Zhaohui

    2015-03-27

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains

    DOE PAGES

    Guo, Emily Z.; Xu, Zhaohui

    2015-02-05

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). In this paper, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed thatmore » IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. Finally, these observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.« less

  14. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains*

    PubMed Central

    Guo, Emily Z.; Xu, Zhaohui

    2015-01-01

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. PMID:25657007

  15. Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming.

    PubMed

    Zhao, Ting; Fu, Yao; Zhu, Jialiang; Liu, Yifang; Zhang, Qian; Yi, Zexuan; Chen, Shi; Jiao, Zhonggang; Xu, Xiaochan; Xu, Junquan; Duo, Shuguang; Bai, Yun; Tang, Chao; Li, Cheng; Deng, Hongkui

    2018-06-12

    Chemical reprogramming provides a powerful platform for exploring the molecular dynamics that lead to pluripotency. Although previous studies have uncovered an intermediate extraembryonic endoderm (XEN)-like state during this process, the molecular underpinnings of pluripotency acquisition remain largely undefined. Here, we profile 36,199 single-cell transcriptomes at multiple time points throughout a highly efficient chemical reprogramming system using RNA-sequencing and reconstruct their progression trajectories. Through identifying sequential molecular events, we reveal that the dynamic early embryonic-like programs are key aspects of successful reprogramming from XEN-like state to pluripotency, including the concomitant transcriptomic signatures of two-cell (2C) embryonic-like and early pluripotency programs and the epigenetic signature of notable genome-wide DNA demethylation. Moreover, via enhancing the 2C-like program by fine-tuning chemical treatment, the reprogramming process is remarkably accelerated. Collectively, our findings offer a high-resolution dissection of cell fate dynamics during chemical reprogramming and shed light on mechanistic insights into the nature of induced pluripotency. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    PubMed

    Jurgeit, Andreas; McDowell, Robert; Moese, Stefan; Meldrum, Eric; Schwendener, Reto; Greber, Urs F

    2012-01-01

    Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV) and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+)-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  17. Early post-metamorphic, Carboniferous blastoid reveals the evolution and development of the digestive system in echinoderms.

    PubMed

    Rahman, Imran A; Waters, Johnny A; Sumrall, Colin D; Astolfo, Alberto

    2015-10-01

    Inferring the development of the earliest echinoderms is critical to uncovering the evolutionary assembly of the phylum-level body plan but has long proven problematic because early ontogenetic stages are rarely preserved as fossils. Here, we use synchrotron tomography to describe a new early post-metamorphic blastoid echinoderm from the Carboniferous (approx. 323 Ma) of China. The resulting three-dimensional reconstruction reveals a U-shaped tubular structure in the fossil interior, which is interpreted as the digestive tract. Comparisons with the developing gut of modern crinoids demonstrate that crinoids are an imperfect analogue for many extinct groups. Furthermore, consideration of our findings in a phylogenetic context allows us to reconstruct the evolution and development of the digestive system in echinoderms more broadly; there was a transition from a straight to a simple curved gut early in the phylum's evolution, but additional loops and coils of the digestive tract (as seen in crinoids) were not acquired until much later. © 2015 The Author(s).

  18. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages.

    PubMed

    Li, Qin; Li, Wei; Yin, Wen; Guo, Jia; Zhang, Zhi-Ping; Zeng, Dejun; Zhang, Xiaowei; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang

    2017-04-25

    Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.

  19. Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins

    PubMed Central

    Calosci, Nicoletta; Chi, Celestine N.; Richter, Barbara; Camilloni, Carlo; Engström, Åke; Eklund, Lars; Travaglini-Allocatelli, Carlo; Gianni, Stefano; Vendruscolo, Michele; Jemth, Per

    2008-01-01

    The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes are shaped up by the native topology at the early stages of the folding process has not been fully characterized experimentally. To this end, we have investigated the folding mechanisms of two homologous three-state proteins, PTP-BL PDZ2 and PSD-95 PDZ3, and compared the early and late transition states on their folding pathways. Through a combination of Φ value analysis and molecular dynamics simulations we obtained atomic-level structures of the transition states of these homologous three-state proteins and found that the late transition states are much more structurally similar than the early ones. Our findings thus reveal that, while the native state topology defines essentially in a unique way the late stages of folding, it leaves significant freedom to the early events, a result that reflects the funneling of the free energy landscape toward the native state. PMID:19033470

  20. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides

    PubMed Central

    Wang, Shiyu; Allen, Nickolas; Vickers, Timothy A; Revenko, Alexey S; Sun, Hong; Liang, Xue-hai; Crooke, Stanley T

    2018-01-01

    Abstract Chemically modified antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages have been extensively studied as research and therapeutic agents. PS-ASOs can enter the cell and trigger cleavage of complementary RNA by RNase H1 even in the absence of transfection reagent. A number of cell surface proteins have been identified that bind PS-ASOs and mediate their cellular uptake; however, the mechanisms that lead to productive internalization of PS-ASOs are not well understood. Here, we characterized the interaction between PS-ASOs and epidermal growth factor receptor (EGFR). We found that PS-ASOs trafficked together with EGF and EGFR into clathrin-coated pit structures. Their co-localization was also observed at early endosomes and inside enlarged late endosomes. Reduction of EGFR decreased PS-ASO activity without affecting EGF-mediated signaling pathways and overexpression of EGFR increased PS-ASO activity in cells. Furthermore, reduction of EGFR delays PS-ASO trafficking from early to late endosomes. Thus, EGFR binds to PS-ASOs at the cell surface and mediates essential steps for active (productive) cellular uptake of PS-ASOs through its cargo-dependent trafficking processes which migrate PS-ASOs from early to late endosomes. This EGFR-mediated process can also serve as an additional model to better understand the mechanism of intracellular uptake and endosomal release of PS-ASOs. PMID:29514240

  1. Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22

    PubMed Central

    Hsiao, Jye-Chian; Chu, Li-Wei; Lo, Yung-Tsun; Lee, Sue-Ping; Chen, Tzu-Jung; Huang, Cheng-Yen

    2015-01-01

    ABSTRACT Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex

  2. Euryhaline ecology of early tetrapods revealed by stable isotopes.

    PubMed

    Goedert, Jean; Lécuyer, Christophe; Amiot, Romain; Arnaud-Godet, Florent; Wang, Xu; Cui, Linlin; Cuny, Gilles; Douay, Guillaume; Fourel, François; Panczer, Gérard; Simon, Laurent; Steyer, J-Sébastien; Zhu, Min

    2018-06-01

    The fish-to-tetrapod transition-followed later by terrestrialization-represented a major step in vertebrate evolution that gave rise to a successful clade that today contains more than 30,000 tetrapod species. The early tetrapod Ichthyostega was discovered in 1929 in the Devonian Old Red Sandstone sediments of East Greenland (dated to approximately 365 million years ago). Since then, our understanding of the fish-to-tetrapod transition has increased considerably, owing to the discovery of additional Devonian taxa that represent early tetrapods or groups evolutionarily close to them. However, the aquatic environment of early tetrapods and the vertebrate fauna associated with them has remained elusive and highly debated. Here we use a multi-stable isotope approach (δ 13 C, δ 18 O and δ 34 S) to show that some Devonian vertebrates, including early tetrapods, were euryhaline and inhabited transitional aquatic environments subject to high-magnitude, rapid changes in salinity, such as estuaries or deltas. Euryhalinity may have predisposed the early tetrapod clade to be able to survive Late Devonian biotic crises and then successfully colonize terrestrial environments.

  3. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways–Novel Insight into the Origins of Enamel Pathologies

    PubMed Central

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L.; Hacia, Joseph G.; Paine, Michael L.

    2017-01-01

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3′-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI. PMID:28287144

  4. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies.

    PubMed

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L; Hacia, Joseph G; Paine, Michael L

    2017-03-13

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.

  5. Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long-term depression

    NASA Astrophysics Data System (ADS)

    Matsuda, Shinji; Kakegawa, Wataru; Budisantoso, Timotheus; Nomura, Toshihiro; Kohda, Kazuhisa; Yuzaki, Michisuke

    2013-11-01

    Long-term depression (LTD) underlies learning and memory in various brain regions. Although postsynaptic AMPA receptor trafficking mediates LTD, its underlying molecular mechanisms remain largely unclear. Here we show that stargazin, a transmembrane AMPA receptor regulatory protein, forms a ternary complex with adaptor proteins AP-2 and AP-3A in hippocampal neurons, depending on its phosphorylation state. Inhibiting the stargazin-AP-2 interaction disrupts NMDA-induced AMPA receptor endocytosis, and inhibiting that of stargazin-AP-3A abrogates the late endosomal/lysosomal trafficking of AMPA receptors, thereby upregulating receptor recycling to the cell surface. Similarly, stargazin’s interaction with AP-2 or AP-3A is necessary for low-frequency stimulus-evoked LTD in CA1 hippocampal neurons. Thus, stargazin has a crucial role in NMDA-dependent LTD by regulating two trafficking pathways of AMPA receptors—transport from the cell surface to early endosomes and from early endosomes to late endosomes/lysosomes—through its sequential binding to AP-2 and AP-3A.

  6. Newly synthesized and recycling pools of the apical protein gp135 do not occupy the same compartments.

    PubMed

    Stoops, Emily H; Hull, Michael; Caplan, Michael J

    2016-12-01

    Polarized epithelial cells sort newly synthesized and recycling plasma membrane proteins into distinct trafficking pathways directed to either the apical or basolateral membrane domains. While the trans-Golgi network is a well-established site of protein sorting, increasing evidence indicates a key role for endosomes in the initial trafficking of newly synthesized proteins. Both basolateral and apical proteins have been shown to traverse endosomes en route to the plasma membrane. In particular, apical proteins traffic through either subapical early or recycling endosomes. Here we use the SNAP tag system to analyze the trafficking of the apical protein gp135, also known as podocalyxin. We show that newly synthesized gp135 traverses the apical recycling endosome, but not the apical early endosomes (AEEs). In contrast, post-endocytic gp135 is delivered to the AEE before recycling back to the apical membrane. The pathways pursued by the newly synthesized and recycling gp135 populations do not detectably intersect, demonstrating that the biosynthetic and post-endocytic pools of this protein are subjected to distinct sorting processes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    PubMed

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2017-07-01

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University

  8. Membrane raft association is a determinant of plasma membrane localization

    PubMed Central

    Diaz-Rohrer, Blanca B.; Levental, Kandice R.; Simons, Kai; Levental, Ilya

    2014-01-01

    The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting. PMID:24912166

  9. Novel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo.

    PubMed

    Dodson, Mark W; Leung, Lok K; Lone, Mohiddin; Lizzio, Michael A; Guo, Ming

    2014-12-01

    Mutations in LRRK2 cause a dominantly inherited form of Parkinson's disease (PD) and are the most common known genetic determinant of PD. Inhibitor-based therapies targeting LRRK2 have emerged as a key therapeutic strategy in PD; thus, understanding the consequences of inhibiting the normal cellular functions of this protein is vital. Despite much interest, the physiological functions of LRRK2 remain unclear. Several recent studies have linked the toxicity caused by overexpression of pathogenic mutant forms of LRRK2 to defects in the endolysosomal and autophagy pathways, raising the question of whether endogenous LRRK2 might play a role in these processes. Here, we report the characterization of multiple novel ethyl methanesulfonate (EMS)-induced nonsense alleles in the Drosophila LRRK2 homolog, lrrk. Using these alleles, we show that lrrk loss-of-function causes striking defects in the endolysosomal and autophagy pathways, including the accumulation of markedly enlarged lysosomes that are laden with undigested contents, consistent with a defect in lysosomal degradation. lrrk loss-of-function also results in the accumulation of autophagosomes, as well as the presence of enlarged early endosomes laden with mono-ubiquitylated cargo proteins, suggesting an additional defect in lysosomal substrate delivery. Interestingly, the lysosomal abnormalities in these lrrk mutants can be suppressed by a constitutively active form of the small GTPase rab9, which promotes retromer-dependent recycling from late endosomes to the Golgi. Collectively, our data provides compelling evidence of a vital role for lrrk in lysosomal function and endolysosomal membrane transport in vivo, and suggests a link between lrrk and retromer-mediated endosomal recycling. © 2014. Published by The Company of Biologists Ltd.

  10. Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth.

    PubMed

    Berson, Tobias; von Wangenheim, Daniel; Takáč, Tomáš; Šamajová, Olga; Rosero, Amparo; Ovečka, Miroslav; Komis, George; Stelzer, Ernst H K; Šamaj, Jozef

    2014-09-27

    Small Rab GTPases are important regulators of vesicular trafficking in plants. AtRabA1d, a member of the RabA1 subfamily of small GTPases, was previously found in the vesicle-rich apical dome of growing root hairs suggesting a role during tip growth; however, its specific intracellular localization and role in plants has not been well described. The transient expression of 35S::GFP:RabA1d construct in Allium porrum and Nicotiana benthamiana revealed vesicular structures, which were further corroborated in stable transformed Arabidopsis thaliana plants. GFP-RabA1d colocalized with the trans-Golgi network marker mCherry-VTI12 and with early FM4-64-labeled endosomal compartments. Late endosomes and endoplasmic reticulum labeled with FYVE-DsRed and ER-DsRed, respectively, were devoid of GFP-RabA1d. The accumulation of GFP-RabA1d in the core of brefeldin A (BFA)-induced-compartments and the quantitative upregulation of RabA1d protein levels after BFA treatment confirmed the association of RabA1d with early endosomes/TGN and its role in vesicle trafficking. Light-sheet microscopy revealed involvement of RabA1d in root development. In root cells, GFP-RabA1d followed cell plate expansion consistently with cytokinesis-related vesicular trafficking and membrane recycling. GFP-RabA1d accumulated in disc-like structures of nascent cell plates, which progressively evolved to marginal ring-like structures of the growing cell plates. During root hair growth and development, GFP-RabA1d was enriched at root hair bulges and at the apical dome of vigorously elongating root hairs. Importantly, GFP-RabA1d signal intensity exhibited an oscillatory behavior in-phase with tip growth. Progressively, this tip localization dissapeared in mature root hairs suggesting a link between tip localization of RabA1d and root hair elongation. Our results support a RabA1d role in events that require vigorous membrane trafficking. RabA1d is located in early endosomes/TGN and is involved in vesicle

  11. Blood-Borne Macrophage-Neural Cell Interactions Hitchhike Endosome Networks for Cell-Based Nanozyme Brain Delivery

    PubMed Central

    Haney, Matthew J.; Suresh, Poornima; Zhao, Yuling; Kanmogne, Georgette D.; Kadiu, Irena; Sokolsky-Papkov, Marina; Klyachko, Natalia L.; Mosley, R. Lee; Kabanov, Alexander V.; Gendelman, Howard E.; Batrakova, Elena V.

    2012-01-01

    Background Macrophage carried nanoformulated catalase (“nanozyme”) attenuates neuroinflammation and protects nigrostriatal neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. This is facilitated by effective enzyme transfer from blood borne macrophages to adjacent endothelial cells and neurons leading to the decomposition of reactive oxygen species. Methods We now examine the intra- and intercellular trafficking mechanisms of nanozymes. Results In macrophages, nanozymes are internalized mainly by clathrin mediated endocytosis then traffic to recycling endosomes. The enzyme is subsequently released in exosomes facilitated by bridging conduits. Nanozyme transfer from macrophages to adjacent cells by endocytosis-independent mechanisms diffusing broadly throughout the recipient cells. In contrast, macrophage-free nanozymes are localized in lysosomes following endocytic entry. Conclusion Facilitated transfer of nanozyme from cell to cell can improve neuroprotection against oxidative stress commonly seen during neurodegenerative disease processes. PMID:22236307

  12. Early etiology of Alzheimer's disease: tipping the balance toward autophagy or endosomal dysfunction?

    PubMed

    Peric, Aleksandar; Annaert, Wim

    2015-03-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. This brain neuropathology is characterized by a progressive synaptic dysfunction and neuronal loss, which lead to decline in memory and other cognitive functions. Histopathologically, AD manifests via synaptic abnormalities, neuronal degeneration as well as the deposition of extracellular amyloid plaques and intraneuronal neurofibrillary tangles. While the exact pathogenic contribution of these two AD hallmarks and their abundant constituents [aggregation-prone amyloid β (Aβ) peptide species and hyperphosphorylated tau protein, respectively] remain debated, a growing body of evidence suggests that their development may be paralleled or even preceded by the alterations/dysfunctions in the endolysosomal and the autophagic system. In AD-affected neurons, abnormalities in these cellular pathways are readily observed already at early stages of disease development, and even though many studies agree that defective lysosomal degradation may relate to or even underlie some of these deficits, specific upstream molecular defects are still deliberated. In this review we summarize various pathogenic events that may lead to these cellular abnormalities, in light of our current understanding of molecular mechanisms that govern AD progression. In addition, we also highlight the increasing evidence supporting mutual functional dependence of the endolysosomal trafficking and autophagy, in particular focusing on those molecules and processes which may be of significance to AD.

  13. Structure of glycosylated NPC1 luminal domain C reveals insights into NPC2 and Ebola virus interactions.

    PubMed

    Zhao, Yuguang; Ren, Jingshan; Harlos, Karl; Stuart, David I

    2016-03-01

    Niemann-pick type C1 (NPC1) is an endo/lysosomal membrane protein involved in intracellular cholesterol trafficking, and its luminal domain C is an essential endosomal receptor for Ebola and Marburg viruses. We have determined the crystal structure of glycosylated NPC1 luminal domain C and find all seven possible sites are glycosylated. Mapping the disease mutations onto the glycosylated structure reveals a potential binding face for NPC2. Knowledge-based docking of NPC1 onto Ebola viral glycoprotein and sequence analysis of filovirus susceptible and refractory species reveals four critical residues, H418, Q421, F502 and F504, some or all of which are likely responsible for the species-specific susceptibility to the virus infection. © 2016 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  14. mTORC1 activity repression by late endosomal phosphatidylinositol 3,4-bisphosphate.

    PubMed

    Marat, Andrea L; Wallroth, Alexander; Lo, Wen-Ting; Müller, Rainer; Norata, Giuseppe Danilo; Falasca, Marco; Schultz, Carsten; Haucke, Volker

    2017-06-02

    Nutrient sensing by mechanistic target of rapamycin complex 1 (mTORC1) on lysosomes and late endosomes (LyLEs) regulates cell growth. Many factors stimulate mTORC1 activity, including the production of phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P 3 ] by class I phosphatidylinositol 3-kinases (PI3Ks) at the plasma membrane. We investigated mechanisms that repress mTORC1 under conditions of growth factor deprivation. We identified phosphatidylinositol 3,4-bisphosphate [PI(3,4)P 2 ], synthesized by class II PI3K β (PI3KC2β) at LyLEs, as a negative regulator of mTORC1, whereas loss of PI3KC2β hyperactivated mTORC1. Growth factor deprivation induced the association of PI3KC2β with the Raptor subunit of mTORC1. Local PI(3,4)P 2 synthesis triggered repression of mTORC1 activity through association of Raptor with inhibitory 14-3-3 proteins. These results unravel an unexpected function for local PI(3,4)P 2 production in shutting off mTORC1. Copyright © 2017, American Association for the Advancement of Science.

  15. Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells

    PubMed Central

    Zhou, Lu; Evangelinos, Minoas; Wernet, Valentin; Eckert, Antonia F.; Ishitsuka, Yuji; Fischer, Reinhard; Nienhaus, G. Ulrich; Takeshita, Norio

    2018-01-01

    Polarized growth of filamentous fungi requires continuous transport of biomolecules to the hyphal tip. To this end, construction materials are packaged in vesicles and transported by motor proteins along microtubules and actin filaments. We have studied these processes with quantitative superresolution localization microscopy of live Aspergillus nidulans cells expressing the photoconvertible protein mEosFPthermo fused to the chitin synthase ChsB. ChsB is mainly located at the Spitzenkörper near the hyphal tip and produces chitin, a key component of the cell wall. We have visualized the pulsatory dynamics of the Spitzenkörper, reflecting vesicle accumulation before exocytosis and their subsequent fusion with the apical plasma membrane. Furthermore, high-speed pulse-chase imaging after photoconversion of mEosFPthermo in a tightly focused spot revealed that ChsB is transported with two different speeds from the cell body to the hyphal tip and vice versa. Comparative analysis using motor protein deletion mutants allowed us to assign the fast movements (7 to 10 μm s−1) to transport of secretory vesicles by kinesin-1, and the slower ones (2 to 7 μm s−1) to transport by kinesin-3 on early endosomes. Our results show how motor proteins ensure the supply of vesicles to the hyphal tip, where temporally regulated exocytosis results in stepwise tip extension. PMID:29387789

  16. Functional Synergy between Rab5 Effector Rabaptin-5 and Exchange Factor Rabex-5 When Physically Associated in a Complex

    PubMed Central

    Lippé, Roger; Miaczynska, Marta; Rybin, Vladimir; Runge, Anja; Zerial, Marino

    2001-01-01

    Rab GTPases are central elements of the vesicular transport machinery. An emerging view is that downstream effectors of these GTPases are multiprotein complexes that include nucleotide exchange factors to ensure coupling between GTPase activation and effector function. We have previously shown that Rab5, which regulates various steps of transport along the early endocytic pathway, is activated by a complex consisting of Rabex-5, a Rab5 nucleotide exchange factor, and the effector Rabaptin-5. We postulated that the physical association of these two proteins is necessary for their activity in Rab5-dependent endocytic membrane transport. To evaluate the functional implications of such complex formation, we have reconstituted it with the use of recombinant proteins and characterized its properties. First, we show that Rabaptin-5 increases the exchange activity of Rabex-5 on Rab5. Second, Rab5-dependent recruitment of Rabaptin-5 to early endosomes is completely dependent on its physical association with Rabex-5. Third, complex formation between Rabaptin-5 and Rabex-5 is essential for early endosome homotypic fusion. These results reveal a functional synergy between Rabaptin-5 and Rabex-5 in the complex and have implications for the function of analogous complexes for Rab and Rho GTPases. PMID:11452015

  17. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy.

    PubMed

    Bostad, Monica; Olsen, Cathrine Elisabeth; Peng, Qian; Berg, Kristian; Høgset, Anders; Selbo, Pål Kristian

    2015-05-28

    The cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs. Here we show that AC133-saporin co-localizes with the PCI-photosensitizer TPCS2a, which upon light exposure induces cytosolic release of AC133-saporin. PCI of picomolar levels of AC133-saporin in colorectal adenocarcinoma WiDr cells blocked cell proliferation and induced 100% inhibition of cell viability and colony forming ability at the highest light doses, whereas no cytotoxicity was obtained in the absence of light. Efficient PCI-based CD133-targeting was in addition demonstrated in the stem-cell-like, triple negative breast cancer cell line MDA-MB-231 and in the aggressive malignant melanoma cell line FEMX-1, whereas no enhanced targeting was obtained in the CD133-negative breast cancer cell line MCF-7. PCIAC133-saporin induced mainly necrosis and a minimal apoptotic response based on assessing cleavage of caspase-3 and PARP, and the TUNEL assay. PCIAC133-saporin resulted in S phase arrest and reduced LC3-II conversion compared to control treatments. Notably, co-treatment with Bafilomycin A1 and PCIAC133-saporin blocked LC3-II conversion, indicating a termination of the autophagic flux in WiDr cells. For the first time, we demonstrate laser-controlled targeting of CD133 in vivo. After only one systemic injection of AC133-saporin and TPCS2a, a strong anti-tumor response was observed after PCIAC133-saporin. The present PCI-based endosomal escape technology represents a minimally invasive strategy for spatio-temporal, light-controlled targeting of CD133+ cells in localized primary tumors or metastasis. Copyright © 2015

  18. Recycling Endosomes of Polarized Epithelial Cells Actively Sort Apical and Basolateral Cargos into Separate Subdomains

    PubMed Central

    Thompson, Anthony; Nessler, Randy; Wisco, Dolora; Anderson, Eric; Winckler, Bettina

    2007-01-01

    The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B–dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity. PMID:17494872

  19. Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5

    PubMed Central

    Lucas, María; Gaspar, Andrew H.; Pallara, Chiara; Rojas, Adriana Lucely; Fernández-Recio, Juan; Machner, Matthias P.; Hierro, Aitor

    2014-01-01

    A challenge for microbial pathogens is to assure that their translocated effector proteins target only the correct host cell compartment during infection. The Legionella pneumophila effector vacuolar protein sorting inhibitor protein D (VipD) localizes to early endosomal membranes and alters their lipid and protein composition, thereby protecting the pathogen from endosomal fusion. This process requires the phospholipase A1 (PLA1) activity of VipD that is triggered specifically on VipD binding to the host cell GTPase Rab5, a key regulator of endosomes. Here, we present the crystal structure of VipD in complex with constitutively active Rab5 and reveal the molecular mechanism underlying PLA1 activation. An active site-obstructing loop that originates from the C-terminal domain of VipD is repositioned on Rab5 binding, thereby exposing the catalytic pocket within the N-terminal PLA1 domain. Substitution of amino acid residues located within the VipD–Rab5 interface prevented Rab5 binding and PLA1 activation and caused a failure of VipD mutant proteins to target to Rab5-enriched endosomal structures within cells. Experimental and computational analyses confirmed an extended VipD-binding interface on Rab5, explaining why this L. pneumophila effector can compete with cellular ligands for Rab5 binding. Together, our data explain how the catalytic activity of a microbial effector can be precisely linked to its subcellular localization. PMID:25114243

  20. Phosphatidylinositol 3-kinase function at very early symbiont perception: a local nodulation control under stress conditions?

    PubMed

    Robert, Germán; Muñoz, Nacira; Alvarado-Affantranger, Xochitl; Saavedra, Laura; Davidenco, Vanina; Rodríguez-Kessler, Margarita; Estrada-Navarrete, Georgina; Sánchez, Federico; Lascano, Ramiro

    2018-04-09

    Root hair curling is an early and essential morphological change required for the success of the symbiotic interaction between legumes and rhizobia. At this stage rhizobia grow as an infection thread within root hairs and are internalized into the plant cells by endocytosis, where the PI3K enzyme plays important roles. Previous observations show that stress conditions affect early stages of the symbiotic interaction, from 2 to 30 min post-inoculation, which we term as very early host responses, and affect symbiosis establishment. Herein, we demonstrated the relevance of the very early host responses for the symbiotic interaction. PI3K and the NADPH oxidase complex are found to have key roles in the microsymbiont recognition response, modulating the apoplastic and intracellular/endosomal ROS induction in root hairs. Interestingly, compared with soybean mutant plants that do not perceive the symbiont, we demonstrated that the very early symbiont perception under sublethal saline stress conditions induced root hair death. Together, these results highlight not only the importance of the very early host-responses on later stages of the symbiont interaction, but also suggest that they act as a mechanism for local control of nodulation capacity, prior to the abortion of the infection thread, preventing the allocation of resources/energy for nodule formation under unfavorable environmental conditions.

  1. Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution

    PubMed Central

    Merkulova, Maria; Hurtado-Lorenzo, Andrés; Hosokawa, Hiroyuki; Zhuang, Zhenjie; Brown, Dennis; Ausiello, Dennis A.

    2011-01-01

    Previously, we demonstrated that the vacuolar-type H+-ATPase (V-ATPase) a2-subunit functions as an endosomal pH sensor that interacts with the ADP-ribosylation factor (Arf) guanine nucleotide exchange factor, ARNO. In the present study, we showed that ARNO directly interacts not only with the a2-subunit but with all a-isoforms (a1–a4) of the V-ATPase, indicating a widespread regulatory interaction between V-ATPase and Arf GTPases. We then extended our search for other ARNO effectors that may modulate V-ATPase-dependent vesicular trafficking events and actin cytoskeleton remodeling. Pull-down experiments using cytosol of mouse proximal tubule cells (MTCs) showed that ARNO interacts with aldolase, but not with other enzymes of the glycolytic pathway. Direct interaction of aldolase with the pleckstrin homology domain of ARNO was revealed by pull-down assays using recombinant proteins, and surface plasmon resonance revealed their high avidity interaction with a dissociation constant: KD = 2.84 × 10−10 M. MTC cell fractionation revealed that aldolase is also associated with membranes of early endosomes. Functionally, aldolase knockdown in HeLa cells produced striking morphological changes accompanied by long filamentous cell protrusions and acidic vesicle redistribution. However, the 50% knockdown we achieved did not modulate the acidification capacity of endosomal/lysosomal compartments. Finally, a combination of small interfering RNA knockdown and overexpression revealed that the expression of aldolase is inversely correlated with gelsolin levels in HeLa cells. In summary, we have shown that aldolase forms a complex with ARNO/Arf6 and the V-ATPase and that it may contribute to remodeling of the actin cytoskeleton and/or the trafficking and redistribution of V-ATPase-dependent acidic compartments via a combination of protein-protein interaction and gene expression mechanisms. PMID:21307348

  2. Geologically Controlled Isotope-Time Patterns Reveal Early Differentiation and Crust Formation Processes

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Nutman, A. P.

    2014-12-01

    The mechanisms of continental crust production and evolution in the early Earth remain controversial, as are questions of the relative roles of early differentiation versus subsequent tectonic procssing in creating Earth's chemical signatures. Here we present geologic observations integrated with whole rock major, trace element and Sm-Nd isotopic signatures and combined with U-Pb and Lu-Hf isotopic compositions of zircon populations from the same rocks, from the most extensive early rock record comprising the 3.9 Ga to 3.6 Ga terranes of southwest Greenland. These data reveal repeated patterns of formation of juvenile TTG crust and associated mafic and ultramafic rocks in convergent margin settings followed by formation of more evolved granites [1]. Our new zircon Lu-Hf data from rare 3.6-3.7 Ga tonalites within the Itsaq Gneiss Complex, obtained from single component, non-migmatitic gneisses with simple zircon populations, limited within sample Hf isotopic variability and accurate U-Pb ages, now document extraction of juvenile tonalites from a near chondritic mantle source between 3.9 Ga and 3.6 Ga. The more evolved, granitic rocks in each area show slightly negative initial ɛHf in accord with crustal reworking of the older (3.8-3.9 Ga) gniesses. There is no evidence for Hadean material in the sources of the granitoids. The Hf isotope-time patterns are consistent with juvenile crust production from a mantle source that experienced only modest amounts of prior crustal extraction. They are distinct from those predicted by reprocessing of an enriched Hadean mafic crust, as has been proposed for this region [2] and for the source of the Hadean Jack Hills zircons [3]. The well-documented, time decreasing, positive 142Nd anomalies [e.g., 4] from these rocks are further evidence of crustal derivation from a convecting mantle source, rather than reworking of an enriched mafic lithosphere. The 143Nd isotopic -time patterns are more complex, reflecting the interplay

  3. Globotriaosylceramide induces lysosomal degradation of endothelial KCa3.1 in fabry disease.

    PubMed

    Choi, Shinkyu; Kim, Ji Aee; Na, Hye-Young; Cho, Sung-Eun; Park, Seonghee; Jung, Sung-Chul; Suh, Suk Hyo

    2014-01-01

    Globotriaosylceramide (Gb3) induces KCa3.1 downregulation in Fabry disease (FD). We investigated whether Gb3 induces KCa3.1 endocytosis and degradation. KCa3.1, especially plasma membrane-localized KCa3.1, was downregulated in both Gb3-treated mouse aortic endothelial cells (MAECs) and human umbilical vein endothelial cells. Gb3-induced KCa3.1 downregulation was prevented by lysosomal inhibitors but not by a proteosomal inhibitor. Endoplasmic reticulum stress-inducing agents did not induce KCa3.1 downregulation. Gb3 upregulated the protein levels of early endosome antigen 1 and lysosomal-associated membrane protein 2 in MAECs. Compared with MAECs from age-matched wild-type mice, those from aged α-galactosidase A (Gla)-knockout mice, an animal model of FD, showed downregulated KCa3.1 expression and upregulated early endosome antigen 1 and lysosomal-associated membrane protein 2 expression. In contrast, no significant difference was found in early endosome antigen 1 and lysosomal-associated membrane protein 2 expression between young Gla-knockout and wild-type MAECs. In aged Gla-knockout MAECs, clathrin was translocated close to the cell border and clathrin knockdown recovered KCa3.1 expression. Rab5, an effector of early endosome antigen 1, was upregulated, and Rab5 knockdown restored KCa3.1 expression, the current, and endothelium-dependent relaxation. -Gb3 accelerates the endocytosis and lysosomal degradation of endothelial KCa3.1 via a clathrin-dependent process, leading to endothelial dysfunction in FD.

  4. In vitro formation of recycling vesicles from endosomes requires adaptor protein-1/clathrin and is regulated by rab4 and the connector rabaptin-5.

    PubMed

    Pagano, Adriana; Crottet, Pascal; Prescianotto-Baschong, Cristina; Spiess, Martin

    2004-11-01

    The involvement of clathrin and associated adaptor proteins in receptor recycling from endosomes back to the plasma membrane is controversial. We have used an in vitro assay to identify the molecular requirements for the formation of recycling vesicles. Cells expressing the asialoglycoprotein receptor H1, a typical recycling receptor, were surface biotinylated and then allowed to endocytose for 10 min. After stripping away surface-biotin, the cells were permeabilized and the cytosol washed away. In a temperature-, cytosol-, and nucleotide-dependent manner, the formation of sealed vesicles containing biotinylated H1 could be reconstituted. Vesicle formation was strongly inhibited upon immunodepletion of adaptor protein (AP)-1, but not of AP-2 or AP-3, from the cytosol, and was restored by readdition of purified AP-1. Vesicle formation was stimulated by supplemented clathrin, but inhibited by brefeldin A, consistent with the involvement of ARF1 and a brefeldin-sensitive guanine nucleotide exchange factor. The GTPase rab4, but not rab5, was required to generate endosome-derived vesicles. Depletion of rabaptin-5/rabex-5, a known interactor of both rab4 and gamma-adaptin, stimulated and addition of the purified protein strongly inhibited vesicle production. The results indicate that recycling is mediated by AP-1/clathrin-coated vesicles and regulated by rab4 and rabaptin-5/rabex-5.

  5. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE PAGES

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz; ...

    2017-03-22

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  6. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  7. Determination of Rab5 activity in the cell by effector pull-down assay.

    PubMed

    Qi, Yaoyao; Liang, Zhimin; Wang, Zonghua; Lu, Guodong; Li, Guangpu

    2015-01-01

    Rab5 targets to early endosomes and is a master regulator of early endosome fusion and endocytosis in all eukaryotic cells. Like other GTPases, Rab5 functions as a molecular switch by alternating between GTP-bound and GDP-bound forms, with the former being biologically active via interactions with multiple effector proteins. Thus the Rab5-GTP level in the cell reflects Rab5 activity in promoting endosome fusion and endocytosis and is indicative of cellular endocytic activity. In this chapter, we describe a Rab5 activity assay by using GST fusion proteins with the Rab5 effectors such as Rabaptin-5, Rabenosyn-5, and EEA1 that specifically bind to GTP-bound Rab5. We compare the efficiencies of the three GST fusion proteins in the pull-down of mammalian and fungal Rab5 proteins.

  8. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis

    PubMed Central

    Sun, Dawei; Nakao, Shintaro; Xie, Fang; Zandi, Souska; Bagheri, Abouzar; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Soheili, Zahra-Soheila; Frimmel, Sonja; Zhang, Zhongyu; Ablonczy, Zsolt; Ahmadieh, Hamid; Hafezi-Moghadam, Ali

    2014-01-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of vision loss. Biomarkers and methods for early diagnosis of DR are urgently needed. Using a new molecular imaging approach, we show up to 94% higher accumulation of custom designed imaging probes against vascular endothelial growth factor receptor 2 (VEGFR-2) in retinal and choroidal vessels of diabetic animals (P<0.01), compared to normal controls. More than 80% of the VEGFR-2 in the diabetic retina was in the capillaries, compared to 47% in normal controls (P<0.01). Angiography in rabbit retinas revealed microvascular capillaries to be the location for VEGF-A-induced leakage, as expressed by significantly higher rate of fluorophore spreading with VEGF-A injection when compared to vehicle control (26±2 vs. 3±1 μm/s, P<0.05). Immunohistochemistry showed VEGFR-2 expression in capillaries of diabetic animals but not in normal controls. Macular vessels from diabetic patients (n=7) showed significantly more VEGFR-2 compared to nondiabetic controls (n=5) or peripheral retinal regions of the same retinas (P<0.01 in both cases). Here we introduce a new approach for early diagnosis of DR and VEGFR-2 as a molecular marker. VEGFR-2 could become a key diagnostic target, one that might help to prevent retinal vascular leakage and proliferation in diabetic patients.—Sun, D., Nakao, S., Xie, F., Zandi, S., Bagheri, A., Kanavi, M. R., Samiei, S., Soheili, Z.-S., Frimmel, S., Zhang, Z., Ablonczy, Z., Ahmadieh, H., Hafezi-Moghadam, A. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis. PMID:24903276

  9. EEG reveals an early influence of social conformity on visual processing in group pressure situations.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2013-01-01

    Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony.

  10. Molecular basis of endosomal-membrane association for the dengue virus envelope protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, David M.; Kent, Michael S.; Rempe, Susan B.

    Dengue virus is coated by an icosahedral shell of 90 envelope protein dimers that convert to trimers at low pH and promote fusion of its membrane with the membrane of the host endosome. We provide the first estimates for the free energy barrier and minimum for two key steps in this process: host membrane bending and protein–membrane binding. Both are studied using complementary membrane elastic, continuum electrostatics and all-atom molecular dynamics simulations. The predicted host membrane bending required to form an initial fusion stalk presents a 22–30 kcal/mol free energy barrier according to a constrained membrane elastic model. Combined continuummore » and molecular dynamics results predict a 15 kcal/mol free energy decrease on binding of each trimer of dengue envelope protein to a membrane with 30% anionic phosphatidylglycerol lipid. The bending cost depends on the preferred curvature of the lipids composing the host membrane leaflets, while the free energy gained for protein binding depends on the surface charge density of the host membrane. The fusion loop of the envelope protein inserts exactly at the level of the interface between the membrane's hydrophobic and head-group regions. As a result, the methods used in this work provide a means for further characterization of the structures and free energies of protein-assisted membrane fusion.« less

  11. Molecular basis of endosomal-membrane association for the dengue virus envelope protein

    DOE PAGES

    Rogers, David M.; Kent, Michael S.; Rempe, Susan B.

    2015-01-02

    Dengue virus is coated by an icosahedral shell of 90 envelope protein dimers that convert to trimers at low pH and promote fusion of its membrane with the membrane of the host endosome. We provide the first estimates for the free energy barrier and minimum for two key steps in this process: host membrane bending and protein–membrane binding. Both are studied using complementary membrane elastic, continuum electrostatics and all-atom molecular dynamics simulations. The predicted host membrane bending required to form an initial fusion stalk presents a 22–30 kcal/mol free energy barrier according to a constrained membrane elastic model. Combined continuummore » and molecular dynamics results predict a 15 kcal/mol free energy decrease on binding of each trimer of dengue envelope protein to a membrane with 30% anionic phosphatidylglycerol lipid. The bending cost depends on the preferred curvature of the lipids composing the host membrane leaflets, while the free energy gained for protein binding depends on the surface charge density of the host membrane. The fusion loop of the envelope protein inserts exactly at the level of the interface between the membrane's hydrophobic and head-group regions. As a result, the methods used in this work provide a means for further characterization of the structures and free energies of protein-assisted membrane fusion.« less

  12. A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells.

    PubMed

    Hertzano, Ronna; Shalit, Ella; Rzadzinska, Agnieszka K; Dror, Amiel A; Song, Lin; Ron, Uri; Tan, Joshua T; Shitrit, Alina Starovolsky; Fuchs, Helmut; Hasson, Tama; Ben-Tal, Nir; Sweeney, H Lee; de Angelis, Martin Hrabe; Steel, Karen P; Avraham, Karen B

    2008-10-03

    Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or 'gating' in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI-impaired hair cells, and ultimately leading to deafness.

  13. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL.

    PubMed

    Bartuzi, Paulina; Billadeau, Daniel D; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K; Elliott, Alison M; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D; Burstein, Ezra; Hofker, Marten H; van de Sluis, Bart

    2016-03-11

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking.

  14. An Azole-Tolerant Endosomal Trafficking Mutant of Candida albicans Is Susceptible to Azole Treatment in a Mouse Model of Vaginal Candidiasis

    PubMed Central

    Peters, Brian M.; Luna-Tapia, Arturo; Tournu, Hélène; Rybak, Jeffrey M.; Rogers, P. David

    2017-01-01

    ABSTRACT We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro, it does not seem to affect azole susceptibility in vivo. PMID:28348159

  15. Inhibition of Na+−H+ exchange impairs receptor-mediated albumin endocytosis in renal proximal tubule-derived epithelial cells from opossum

    PubMed Central

    Gekle, Michael; Drumm, Karina; Mildenberger, Sigrid; Freudinger, Ruth; Gaßner, Birgit; Silbernagl, Stefan

    1999-01-01

    Receptor-mediated endocytosis is an important mechanism for transport of macromolecules and regulation of cell-surface receptor expression. In renal proximal tubules, receptor-mediated endocytosis mediates the reabsorption of filtered albumin. Acidification of the endocytic compartments is essential because it interferes with ligand-receptor dissociation, vesicle trafficking, fusion events and coat formation. Here we show that the activity of Na+−H+ exchanger isoform 3 (NHE3) is important for proper receptor-mediated endocytosis of albumin and endosomal pH homeostasis in a renal proximal tubular cell line (opossum kidney cells) which expresses NHE3 only. Depending on their inhibitory potency with respect to NHE3 and their lipophilicity, the NHE inhibitors EIPA, amiloride and HOE694 differentially reduced albumin endocytosis. The hydrophilic inhibitor HOE642 had no effect. Inhibition of NHE3 led to an alkalinization of early endosomes and to an acidification of the cytoplasm, indicating that Na+−H+ exchange contributes to the acidification of the early endosomal compartment due to the existence of a sufficient Na+ gradient across the endosomal membrane. Exclusive acidification of the cytoplasm with propionic acid or by removal of Na+ induced a significantly smaller reduction in endocytosis than that induced by inhibition of Na+−H+ exchange. Analysis of the inhibitory profiles indicates that in early endosomes and endocytic vesicles NHE3 is of major importance, whereas plasma membrane NHE3 plays a minor role. Thus, NHE3-mediated acidification along the first part of the endocytic pathway plays an important role in receptor-mediated endocytosis. Furthermore, the involvement of NHE3 offers new ways to explain the regulation of receptor-mediated endocytosis. PMID:10545138

  16. Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness

    PubMed Central

    Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier

    2017-01-01

    In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed

  17. Novel microscopy-based screening method reveals regulators of contact-dependent intercellular transfer

    PubMed Central

    Michael Frei, Dominik; Hodneland, Erlend; Rios-Mondragon, Ivan; Burtey, Anne; Neumann, Beate; Bulkescher, Jutta; Schölermann, Julia; Pepperkok, Rainer; Gerdes, Hans-Hermann; Kögel, Tanja

    2015-01-01

    Contact-dependent intercellular transfer (codeIT) of cellular constituents can have functional consequences for recipient cells, such as enhanced survival and drug resistance. Pathogenic viruses, prions and bacteria can also utilize this mechanism to spread to adjacent cells and potentially evade immune detection. However, little is known about the molecular mechanism underlying this intercellular transfer process. Here, we present a novel microscopy-based screening method to identify regulators and cargo of codeIT. Single donor cells, carrying fluorescently labelled endocytic organelles or proteins, are co-cultured with excess acceptor cells. CodeIT is quantified by confocal microscopy and image analysis in 3D, preserving spatial information. An siRNA-based screening using this method revealed the involvement of several myosins and small GTPases as codeIT regulators. Our data indicates that cellular protrusions and tubular recycling endosomes are important for codeIT. We automated image acquisition and analysis to facilitate large-scale chemical and genetic screening efforts to identify key regulators of codeIT. PMID:26271723

  18. Mitochondria-acting hexokinase II peptides carried by short-length carbon nanotubes with increased cellular uptake, endosomal evasion, and enhanced bioactivity against cancer cells

    NASA Astrophysics Data System (ADS)

    Yoong, Sia Lee; Lau, Wei Liang; Liu, Ang Yu; Prendergast, D'arcy; Ho, Han Kiat; Yu, Victor Chun Kong; Lee, Chengkuo; Ang, Wee Han; Pastorin, Giorgia

    2015-08-01

    Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study, multi-walled carbon nanotubes (MWCNTs) were used to effectively deliver HKII(pep) across cellular barriers without compromising their bioactivity. The peptide was conjugated on either oxidized MWCNTs or 2,2'-(ethylenedioxy)bis(ethylamine)-functionalized MWCNTs, yielding MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep), respectively. Both conjugates were shown to be internalized by breast cancer MCF-7 cells using confocal microscopy. Moreover, these nanoconjugates seemed to have escaped from endosomes and be in the vicinity of mitochondria. The WST-1 cytotoxicity assay conducted on MCF-7 and colon carcinoma HCT116 cells revealed that MWCNT-peptide conjugates were significantly more effective in curbing cancer cell growth compared to a commercially available cell permeable HKII fusion peptide. In addition, both nanoconjugates displayed an enhanced ability in eliciting apoptosis and depleting the ATP level in HCT116 cells compared to the mere HKII peptide. Importantly, hexokinase II release from mitochondria was demonstrated in MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep) treated cells, highlighting that the structure and bioactivity of HKII(pep) were not compromised after covalent conjugation to MWCNTs.Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study

  19. Ancient DNA reveals a migration of the ancient Di-qiang populations into Xinjiang as early as the early Bronze Age.

    PubMed

    Gao, Shi-Zhu; Zhang, Ye; Wei, Dong; Li, Hong-Jie; Zhao, Yong-Bin; Cui, Yin-Qiu; Zhou, Hui

    2015-05-01

    Xinjiang is at the crossroads between East and West Eurasia, and it harbors a relatively complex genetic history. In order to better understand the population movements and interactions in this region, mitochondrial and Y chromosome analyses on 40 ancient human remains from the Tianshanbeilu site in eastern Xinjiang were performed. Twenty-nine samples were successfully assigned to specific mtDNA haplogroups, including the west Eurasian maternal lineages of U and W and the east Eurasian maternal lineages of A, C, D, F, G, Z, M7, and M10. In the male samples, two Y chromosome haplogroups, C* and N1 (xN1a, N1c), were successfully assigned. Our mitochondrial and Y-chromosomal DNA analyses combined with the archaeological studies revealed that the Di-qiang populations from the Hexi Corridor had migrated to eastern Xinjiang and admixed with the Eurasian steppe populations in the early Bronze Age. © 2014 Wiley Periodicals, Inc.

  20. Genome-wide allelotyping of a new in vitro model system reveals early events in breast cancer progression.

    PubMed

    Li, Zheng; Meng, Zhen Hang; Sayeed, Aejaz; Shalaby, Refaat; Ljung, Britt-Marie; Dairkee, Shanaz H

    2002-10-15

    Toward the goal of identifying early genetic losses, which mediate the release of human breast epithelium from replicative suppression leading to cellular immortalization, we have used a newly developed in vitro model system. This system consists of epithelial cultures derived from noncancerous breast tissue, treated with the chemical carcinogen N-ethyl-N-nitrosourea, and continuously passaged to yield cell populations culminating in the immortal phenotype. Genome-wide allelotyping of early passage N-ethyl-N-nitrosourea-exposed cell populations revealed aberrations at >10% (18 of 169) loci examined. Allelic losses encompassing chromosomes 6q24-6q27, implicating immortalization-associated candidate genes, hZAC and SEN6, occurred in two independently derived cell lines before the Hayflick limit. Additional LOH sites were present in one cell line at 3p11-3p26, 11p15, and 20p12-13. Allelic losses reported in this cell line preceded detectable levels of telomerase activity and the occurrence of p53-related aberrations. Information gained from the search for early immortalization-associated genetic deletions in cultured cells was applied in a novel approach toward the analysis of morphologically normal terminal ductal lobular units microdissected from 20 cases of ductal carcinoma in situ. Notably, clonal allelic losses at chromosome 3p24 and 6q24 were an early occurrence in adjoining terminal ductal lobular units of a proportion of primary tumors, which displayed loss of heterozygosity (3 of 11 and 3 of 6, respectively). The biological insights provided by the new model system reported here strongly suggest that early allelic losses delineated in immortalized cultures and validated in vivo could serve as surrogate endpoints to assist in the identification and intervention of high-risk benign breast tissue, which sustains the potential for continuous proliferation.

  1. Mechanisms of Toll-like receptor 4 endocytosis reveal a common immune-evasion strategy used by pathogenic and commensal bacteria

    PubMed Central

    Tan, Yunhao; Zanoni, Ivan; Cullen, Thomas W.; Goodman, Andrew L.; Kagan, Jonathan C.

    2015-01-01

    Microbe-induced receptor trafficking has emerged as an essential means to promote innate immune signal transduction. Upon detection of bacterial lipopolysaccharides (LPS), CD14 induces an inflammatory endocytosis pathway that delivers Toll-like Receptor 4 (TLR4) to endosomes. Although several regulators of CD14-dependent TLR4 endocytosis have been identified, the cargo selection mechanism during this process remains unknown. We reveal that, in contrast to classic cytosolic interactions that promoted the endocytosis of transmembrane receptors, TLR4 was selected as cargo for inflammatory endocytosis entirely through extracellular interactions. Mechanistically, the extracellular protein MD-2 bound to and dimerized TLR4 in order to promote this endocytic event. Our analysis of LPS variants from human pathogens and gut commensals revealed a common mechanism by which bacteria prevent inflammatory endocytosis. We suggest that evasion of CD14-dependent endocytosis is an attribute that transcends the concept of pathogenesis, and may be a fundamental feature of bacteria that inhabit eukaryotic hosts. PMID:26546281

  2. High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine

    PubMed Central

    Fairn, Gregory D.; Schieber, Nicole L.; Ariotti, Nicholas; Murphy, Samantha; Kuerschner, Lars; Webb, Richard I.; Grinstein, Sergio

    2011-01-01

    Phosphatidylserine (PS) plays a central role in cell signaling and in the biosynthesis of other lipids. To date, however, the subcellular distribution and transmembrane topology of this crucial phospholipid remain ill-defined. We transfected cells with a GFP-tagged C2 domain of lactadherin to detect by light and electron microscopy PS exposed on the cytosolic leaflet of the plasmalemma and organellar membranes. Cytoplasmically exposed PS was found to be clustered on the plasma membrane, and to be associated with caveolae, the trans-Golgi network, and endocytic organelles including intraluminal vesicles of multivesicular endosomes. This labeling pattern was compared with the total cellular distribution of PS as visualized using a novel on-section technique. These complementary methods revealed PS in the interior of the ER, Golgi complex, and mitochondria. These results indicate that PS in the lumenal monolayer of the ER and Golgi complex becomes exposed cytosolically at the trans-Golgi network. Transmembrane flipping of PS may contribute to the exit of cargo from the Golgi complex. PMID:21788369

  3. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo.

    PubMed

    Nelson, Christopher E; Kintzing, James R; Hanna, Ann; Shannon, Joshua M; Gupta, Mukesh K; Duvall, Craig L

    2013-10-22

    A family of pH-responsive diblock polymers composed of poly[(ethylene glycol)-b-[(2-(dimethylamino)ethyl methacrylate)-co-(butyl methacrylate)], PEG-(DMAEMA-co-BMA), was reversible addition-fragmentation chain transfer (RAFT) synthesized with 0-75 mol % BMA in the second polymer block. The relative mole % of DMAEMA and BMA was varied in order to identify a polymer that can be used to formulate PEGylated, siRNA-loaded polyplex nanoparticles (NPs) with an optimized balance of cationic and hydrophobic content in the NP core based on siRNA packaging, cytocompatibility, blood circulation half-life, endosomal escape, and in vivo bioactivity. The polymer with 50:50 mol % of DMAEMA:BMA (polymer "50 B") in the RAFT-polymerized block efficiently condensed siRNA into 100 nm NPs that displayed pH-dependent membrane disruptive behavior finely tuned for endosomal escape. In vitro delivery of siRNA with polymer 50 B produced up to 94% protein-level knockdown of the model gene luciferase. The PEG corona of the NPs blocked nonspecific interactions with constituents of human whole blood, and the relative hydrophobicity of polymer 50 B increased NP stability in the presence of human serum or the polyanion heparin. When injected intravenously, 50 B NPs enhanced blood circulation half-life 3-fold relative to more standard PEG-DMAEMA (0 B) NPs (p < 0.05), due to improved stability and a reduced rate of renal clearance. The 50 B NPs enhanced siRNA biodistribution to the liver and other organs and significantly increased gene silencing in the liver, kidneys, and spleen relative to the benchmark polymer 0 B (p < 0.05). These collective findings validate the functional significance of tuning the balance of cationic and hydrophobic content of polyplex NPs utilized for systemic siRNA delivery in vivo.

  4. An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila

    PubMed Central

    Kaur, Harsimran; Sparvoli, Daniela; Osakada, Hiroko; Iwamoto, Masaaki; Haraguchi, Tokuko; Turkewitz, Aaron P.

    2017-01-01

    The ciliate Tetrahymena thermophila synthesizes large secretory vesicles called mucocysts. Mucocyst biosynthesis shares features with dense core granules (DCGs) in animal cells, including proteolytic processing of cargo proteins during maturation. However, other molecular features have suggested relatedness to lysosome-related organelles (LROs). LROs, which include diverse organelles in animals, are formed via convergence of secretory and endocytic trafficking. Here we analyzed Tetrahymena syntaxin 7-like 1 (Stx7l1p), a Qa-SNARE whose homologues in other lineages are linked with vacuoles/LROs. Stx7l1p is targeted to both immature and mature mucocysts and is essential in mucocyst formation. In STX7L1-knockout cells, the two major classes of mucocyst cargo proteins localize independently, accumulating in largely nonoverlapping vesicles. Thus initial formation of immature mucocysts involves heterotypic fusion, in which a subset of mucocyst proteins is delivered via an endolysosomal compartment. Further, we show that subsequent maturation requires AP-3, a complex widely implicated in LRO formation. Knockout of the µ-subunit gene does not impede delivery of any known mucocyst cargo but nonetheless arrests mucocyst maturation. Our data argue that secretory organelles in ciliates may represent a new class of LROs and reveal key roles of an endosomal syntaxin and AP-3 in the assembly of this complex compartment. PMID:28381425

  5. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Belyanin, Andrey; Kashinath, Shruti; Wu, Xiangwei; Lapotko, Dmitri O.

    2012-01-01

    Cancer chemotherapies suffer from multi drug resistance, high non-specific toxicity and heterogeneity of tumors. We report a method of plasmonic nanobubble-enhanced endosomal escape (PNBEE) for the selective, fast and guided intracellular delivery of drugs through a self-assembly by cancer cells of separately targeted gold nanoparticles and encapsulated drug (Doxil). The co-localized with Doxil plasmonic nanobubbles optically generated in cancer cells released the drug into the cytoplasm thus increasing the therapeutic efficacy against these drug-resistant cells by 31-fold, reducing drug dose by 20-fold, the treatment time by 3-fold and the non-specific toxicity by 10-fold compared to standard treatment. Thus the PNBEE mechanism provided selective, safe and efficient intracellular drug delivery in heterogeneous environment opening new opportunities for drug therapies. PMID:22137124

  6. An Azole-Tolerant Endosomal Trafficking Mutant of Candida albicans Is Susceptible to Azole Treatment in a Mouse Model of Vaginal Candidiasis.

    PubMed

    Peters, Brian M; Luna-Tapia, Arturo; Tournu, Hélène; Rybak, Jeffrey M; Rogers, P David; Palmer, Glen E

    2017-06-01

    We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21 Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro , it does not seem to affect azole susceptibility in vivo . Copyright © 2017 American Society for Microbiology.

  7. Endosomal accumulation of Toll-like receptor 4 causes constitutive secretion of cytokines and activation of signal transducers and activators of transcription in Niemann-Pick disease type C (NPC) fibroblasts: a potential basis for glial cell activation in the NPC brain.

    PubMed

    Suzuki, Michitaka; Sugimoto, Yuko; Ohsaki, Yuki; Ueno, Makoto; Kato, Shinsuke; Kitamura, Yukisato; Hosokawa, Hiroshi; Davies, Joanna P; Ioannou, Yiannis A; Vanier, Marie T; Ohno, Kousaku; Ninomiya, Haruaki

    2007-02-21

    Niemann-Pick disease type C (NPC) is an inherited lipid storage disorder caused by mutations in NPC1 or NPC2 genes. Loss of function of either protein results in the endosomal accumulation of cholesterol and other lipids, progressive neurodegeneration, and robust glial cell activation. Here, we report that cultured human NPC fibroblasts secrete interferon-beta, interleukin-6 (IL-6), and IL-8, and contain increased levels of signal transducers and activators of transcription (STATs). These cells also contained increased levels of Toll-like receptor 4 (TLR4) that accumulated in cholesterol-enriched endosomes/lysosomes, and small interfering RNA knockdown of this receptor reduced cytokine secretion. In the NPC1-/- mouse brain, glial cells expressed TLR4 and IL-6, whereas both glial and neuronal cells expressed STATs. Genetic deletion of TLR4 in NPC1-/- mice reduced IL-6 secretion by cultured fibroblasts but failed to alter STAT levels or glial cell activation in the brain. In contrast, genetic deletion of IL-6 normalized STAT levels and suppressed glial cell activation. These findings indicate that constitutive cytokine secretion leads to activation of STATs in NPC fibroblasts and that this secretion is partly caused by an endosomal accumulation of TLR4. These results also suggest that similar signaling events may underlie glial cell activation in the NPC1-/- mouse brain.

  8. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery via Ubiquitination To Facilitate Viral Envelopment

    PubMed Central

    Barouch-Bentov, Rina; Neveu, Gregory; Xiao, Fei; Beer, Melanie; Bekerman, Elena; Schor, Stanford; Campbell, Joseph; Boonyaratanakornkit, Jim; Lindenbach, Brett; Lu, Albert; Jacob, Yves

    2016-01-01

    ABSTRACT Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. PMID:27803188

  9. Cell entry by a novel European filovirus requires host endosomal cysteine proteases and Niemann-Pick C1

    PubMed Central

    Ng, Melinda; Ndungo, Esther; Jangra, Rohit K.; Cai, Yingyun; Postnikova, Elena; Radoshitzky, Sheli R.; Dye, John M.; de Arellano, Eva Ramírez; Negredo, Ana; Palacios, Gustavo; Kuhn, Jens H.; Chandran, Kartik

    2014-01-01

    Lloviu virus (LLOV), a phylogenetically divergent filovirus, is the proposed etiologic agent of die-offs of Schreiber’s long-fingered bats (Miniopterus schreibersii) in western Europe. Studies of LLOV remain limited because the infectious agent has not yet been isolated. Here, we generated a recombinant vesicular stomatitis virus expressing the LLOV spike glycoprotein (GP) and used it to show that LLOV GP resembles other filovirus GP proteins in structure and function. LLOV GP must be cleaved by endosomal cysteine proteases during entry, but is much more protease-sensitive than EBOV GP. The EBOV/MARV receptor, Niemann Pick C1 (NPC1), is also required for LLOV entry, and its second luminal domain is recognized with high affinity by a cleaved form of LLOV GP, suggesting that receptor binding would not impose a barrier to LLOV infection of humans and non-human primates. The use of NPC1 as an intracellular entry receptor may be a universal property of filoviruses. PMID:25310500

  10. An Integrated Phosphoproteomics Work Flow Reveals Extensive Network Regulation in Early Lysophosphatidic Acid Signaling*

    PubMed Central

    Schreiber, Thiemo B.; Mäusbacher, Nina; Kéri, György; Cox, Jürgen; Daub, Henrik

    2010-01-01

    Lysophosphatidic acid (LPA) induces a variety of cellular signaling pathways through the activation of its cognate G protein-coupled receptors. To investigate early LPA responses and assess the contribution of epidermal growth factor (EGF) receptor transactivation in LPA signaling, we performed phosphoproteomics analyses of both total cell lysate and protein kinase-enriched fractions as complementary strategies to monitor phosphorylation changes in A498 kidney carcinoma cells. Our integrated work flow enabled the identification and quantification of more than 5,300 phosphorylation sites of which 224 were consistently regulated by LPA. In addition to induced phosphorylation events, we also obtained evidence for early dephosphorylation reactions due to rapid phosphatase regulation upon LPA treatment. Phosphorylation changes induced by direct heparin-binding EGF-like growth factor-mediated EGF receptor activation were typically weaker and only detected on a subset of LPA-regulated sites, indicating signal integration among EGF receptor transactivation and other LPA-triggered pathways. Our results reveal rapid phosphoregulation of many proteins not yet implicated in G protein-coupled receptor signaling and point to various additional mechanisms by which LPA might regulate cell survival and migration as well as gene transcription on the molecular level. Moreover, our phosphoproteomics analysis of both total lysate and kinase-enriched fractions provided highly complementary parts of the LPA-regulated signaling network and thus represents a useful and generic strategy toward comprehensive signaling studies on a system-wide level. PMID:20071362

  11. The intermediate filament network protein, vimentin, is required for parvoviral infection.

    PubMed

    Fay, Nikta; Panté, Nelly

    2013-09-01

    Intermediate filaments (IFs) have recently been shown to serve novel roles during infection by many viruses. Here we have begun to study the role of IFs during the early steps of infection by the parvovirus minute virus of mice (MVM). We found that during early infection with MVM, after endosomal escape, the vimentin IF network was considerably altered, yielding collapsed immunofluorescence staining near the nuclear periphery. Furthermore, we found that vimentin plays an important role in the life cycle of MVM. The number of cells, which successfully replicated MVM, was reduced in infected cells in which the vimentin network was genetically or pharmacologically modified; viral endocytosis, however, remained unaltered. Perinuclear accumulation of MVM-containing vesicles was reduced in cells lacking vimentin. Our data suggests that vimentin is required for the MVM life cycle, presenting possibly a dual role: (1) following MVM escape from endosomes and (2) during endosomal trafficking of MVM. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The U24 Protein from Human Herpesvirus 6 and 7 Affects Endocytic Recycling▿

    PubMed Central

    Sullivan, Brian M.; Coscoy, Laurent

    2010-01-01

    Modulation of T-cell receptor expression and signaling is essential to the survival of many viruses. The U24 protein expressed by human herpesvirus 6A, a ubiquitous human pathogen, has been previously shown to downregulate the T-cell receptor. Here, we show that U24 also mediates cell surface downregulation of a canonical early endosomal recycling receptor, the transferrin receptor, indicating that this viral protein acts by blocking early endosomal recycling. We present evidence that U24 is a C-tail-anchored protein that is dependent for its function on TRC40/Asna-1, a component of a posttranslational membrane insertion pathway. Finally, we find that U24 proteins from other roseoloviruses have a similar genetic organization and a conserved function that is dependent on a proline-rich motif. Inhibition of a basic cellular process by U24 has interesting implications not only for the pathogenicity of roseoloviruses but also for our understanding of the biology of endosomal transport. PMID:19923186

  13. Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis.

    PubMed

    Yang, Hongli; Liu, Jing; Lin, Jiulu; Deng, Linbin; Fan, Shihang; Guo, Yan; Sun, Fengming; Hua, Wei

    2016-10-01

    Endosomal sorting complexes required for transport (ESCRT) are well known in mammalians and yeast and plays an essential role in the formation of multi-vesicular bodies. Accumulating evidence has shown that ESCRT proteins contribute to proper plant development. CHMP7 (charged multi-vesicular body protein 7) is an ESCRT-III-related protein and functions in the endosomal sorting pathway in humans. However, its function in plants has not been explored in detail. In this study, we isolate the putative homolog of CHMP7 from rapeseed, BnCHMP7, which contains eight exons and encodes a protein consisting of 423 amino acid residues. Compared with the wild-type, overexpression of BnCHMP7 in Arabidopsis disturbs plant growth and decreases seed yield. Moreover, the transgenic plants also display early leaf senescence and hypersensitivity to dark treatment due to defects in autophagic degradation. Further study showed that BnCHMP7 is highly expressed in leaves and that YFP-BnCHMP7 is predominantly localized in endosome. Compared with human CHMP7, we found that BnCHMP7 not only interacts with ESCRT-III subunits SNF7.2 (CHMP4B), but also with VPS2.2 and CHMP1B. As expected, microarray analysis revealed that the expression of ESCRT transport genes is significantly affected. Additionally, the expression of some genes that are involved in senescence, protein synthesis and protein degradation is also altered in BnCHMP7-overexpressing plants. Taken together, BnCHMP7 encodes an endosome-localized protein, which causes dwarfism and leaf senescence as an ESCRT-III-related component. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Solid lipid nanoparticles release DNA upon endosomal acidification in human embryonic kidney cells.

    PubMed

    Radaic, A; de Jesus, M B

    2018-08-03

    Nanotechnology can produce materials with unique features compared to their bulk counterparts, which can be useful for medical applications (i.e. nanomedicine). Among the therapeutic agents used in nanomedicine, small molecules or biomacromolecules, such as proteins or genetic materials, can be designed for disease diagnostics and treatment. To transport these biomacromolecules to the target cells, nanomedicine requires nanocarriers. Solid lipid nanoparticles (SLNs) are among the promising nanocarriers available, because they can be made from biocompatible materials and present high stability (over one year). In addition, upon the binding genetic material, SLNs form SLNplexes. However, little is yet known about how cells process these SLNplexes-in particular, how internalization and endosome acidification affects the transfection mediated by SLNplexes. Therefore, we aim to investigate how these processes affect SLNplex transfection in HEK293T cells. We find that the SLNplex is mainly internalized by clathrin-mediated endocytosis, which is a fast and reliable pathway to transfection, leading to approximately 60% transfection efficiency. Interestingly, upon acidification (below pH 5.0), the SLN seems to release its DNA content, which can be an essential step for SLNplex transfection. The underlying mechanisms described in this work may help improve SLNplex formulations and transfection efficiency. Moreover, these advances can improve the field of nanomedical research and bring new ways to cure diseases.

  15. Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding

    PubMed Central

    Bykov, Yury S; Sprenger, Simon; Pakdel, Mehrshad; Vogel, Georg F; Jih, Gloria; Skillern, Wesley; Behrouzi, Reza; Babst, Markus; Schmidt, Oliver; Hess, Michael W; Briggs, John AG

    2017-01-01

    The ESCRT machinery mediates reverse membrane scission. By quantitative fluorescence lattice light-sheet microscopy, we have shown that ESCRT-III subunits polymerize rapidly on yeast endosomes, together with the recruitment of at least two Vps4 hexamers. During their 3–45 s lifetimes, the ESCRT-III assemblies accumulated 75–200 Snf7 and 15–50 Vps24 molecules. Productive budding events required at least two additional Vps4 hexamers. Membrane budding was associated with continuous, stochastic exchange of Vps4 and ESCRT-III components, rather than steady growth of fixed assemblies, and depended on Vps4 ATPase activity. An all-or-none step led to final release of ESCRT-III and Vps4. Tomographic electron microscopy demonstrated that acute disruption of Vps4 recruitment stalled membrane budding. We propose a model in which multiple Vps4 hexamers (four or more) draw together several ESCRT-III filaments. This process induces cargo crowding and inward membrane buckling, followed by constriction of the nascent bud neck and ultimately ILV generation by vesicle fission. PMID:29019322

  16. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL

    PubMed Central

    Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart

    2016-01-01

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking. PMID:26965651

  17. Targeted Sos1 deletion reveals its critical role in early T-cell development

    PubMed Central

    Kortum, Robert L.; Sommers, Connie L.; Alexander, Clayton P.; Pinski, John M.; Li, Wenmei; Grinberg, Alex; Lee, Jan; Love, Paul E.; Samelson, Lawrence E.

    2011-01-01

    Activation of the small G protein Ras is required for thymocyte differentiation. In thymocytes, Ras is activated by the Ras guanine exchange factors (RasGEFs) Sos1, Sos2, and RasGRP1. We report the development of a floxed allele of sos1 to assess the role of Sos1 during thymocyte development. Sos1 was required for pre–T-cell receptor (pre-TCR)– but not TCR-stimulated developmental signals. Sos1 deletion led to a partial block at the DN-to-DP transition. Sos1-deficient thymocytes showed reduced pre-TCR–stimulated proliferation, differentiation, and ERK phosphorylation. In contrast, TCR-stimulated positive selection, and negative selection under strong stimulatory conditions, remained intact in Sos1-deficient mice. Comparison of RasGEF expression at different developmental stages showed that relative to Sos2 and RasGRP1, Sos1 is most abundant in DN thymocytes, but least abundant in DP thymocytes. These data reveal that Sos1 is uniquely positioned to affect signal transduction early in thymocyte development. PMID:21746917

  18. Endosomal sorting complexes required for ESCRTing cells toward death during neurogenesis, neurodevelopment and neurodegeneration.

    PubMed

    Kaul, Zenia; Chakrabarti, Oishee

    2018-03-25

    The endosomal sorting complexes required for transport (ESCRT) proteins help in the recognition, sorting and degradation of ubiquitinated cargoes from the cell surface, long-lived proteins or aggregates, and aged organelles present in the cytosol. These proteins take part in the endo-lysosomal system of degradation. The ESCRT proteins also play an integral role in cytokinesis, viral budding and mRNA transport. Many neurodegenerative diseases are caused by toxic accumulation of cargo in the cell, which causes stress and ultimately leads to neuronal death. This accumulation of cargo occurs because of defects in the endo-lysosomal degradative pathway-loss of function of ESCRTs has been implicated in this mechanism. ESCRTs also take part in many survival processes, lack of which can culminate in neuronal cell death. While the role played by the ESCRT proteins in maintaining healthy neurons is known, their role in neurodegenerative diseases is still poorly understood. In this review, we highlight the importance of ESCRTs in maintaining healthy neurons and then suggest how perturbations in many of the survival mechanisms governed by these proteins could eventually lead to cell death; quite often these correlations are not so obviously laid out. Extensive neuronal death eventually culminates in neurodegeneration. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks

    PubMed Central

    Samson, Edward B.; Tsao, David S.; Zimak, Jan; McLaughlin, R. Tyler; Trenton, Nicholaus J.; Mace, Emily M.; Orange, Jordan S.; Schweikhard, Volker

    2017-01-01

    ABSTRACT IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A). We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks. PMID:28455356

  20. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Belyanin, Andrey; Kashinath, Shruti; Wu, Xiangwei; Lapotko, Dmitri O

    2012-02-01

    Cancer chemotherapies suffer from multi drug resistance, high non-specific toxicity and heterogeneity of tumors. We report a method of plasmonic nanobubble-enhanced endosomal escape (PNBEE) for the selective, fast and guided intracellular delivery of drugs through a self-assembly by cancer cells of separately targeted gold nanoparticles and encapsulated drug (Doxil). The co-localized with Doxil plasmonic nanobubbles optically generated in cancer cells released the drug into the cytoplasm thus increasing the therapeutic efficacy against these drug-resistant cells by 31-fold, reducing drug dose by 20-fold, the treatment time by 3-fold and the non-specific toxicity by 10-fold compared to standard treatment. Thus the PNBEE mechanism provided selective, safe and efficient intracellular drug delivery in heterogeneous environment opening new opportunities for drug therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis.

    PubMed

    Gao, Xueqin; Ke, Chaofu; Liu, Haixia; Liu, Wei; Li, Kang; Yu, Bo; Sun, Meng

    2017-09-18

    Coronary atherosclerosis (CAS) is the pathogenesis of coronary heart disease, which is a prevalent and chronic life-threatening disease. Initially, this disease is not always detected until a patient presents with seriously vascular occlusion. Therefore, new biomarkers for appropriate and timely diagnosis of early CAS is needed for screening to initiate therapy on time. In this study, we used an untargeted metabolomics approach to identify potential biomarkers that could enable highly sensitive and specific CAS detection. Score plots from partial least-squares discriminant analysis clearly separated early-stage CAS patients from controls. Meanwhile, the levels of 24 metabolites increased greatly and those of 18 metabolites decreased markedly in early CAS patients compared with the controls, which suggested significant metabolic dysfunction in phospholipid, sphingolipid, and fatty acid metabolism in the patients. Furthermore, binary logistic regression showed that nine metabolites could be used as a combinatorial biomarker to distinguish early-stage CAS patients from controls. The panel of nine metabolites was then tested with an independent cohort of samples, which also yielded satisfactory diagnostic accuracy (AUC = 0.890). In conclusion, our findings provide insight into the pathological mechanism of early-stage CAS and also supply a combinatorial biomarker to aid clinical diagnosis of early-stage CAS.

  2. Traffic jam hypothesis: Relationship between endocytic dysfunction and Alzheimer's disease.

    PubMed

    Kimura, Nobuyuki; Yanagisawa, Katsuhiko

    2017-07-08

    Membrane trafficking pathways, like the endocytic pathway, carry out fundamental cellular processes that are essential for normal functioning. One such process is regulation of cell surface receptor signaling. A growing body of evidence suggests that β-amyloid protein (Aβ) plays a key role in Alzheimer's disease (AD) pathogenesis. Cleavage of Aβ from its precursor, β-amyloid precursor protein (APP), occurs through the endocytic pathway in neuronal cells. In early-stage AD, intraneuronal accumulation of abnormally enlarged endosomes is common, indicating that endosome trafficking is disrupted. Strikingly, genome-wide association studies reveal that several endocytosis-related genes are associated with AD onset. Also, recent studies demonstrate that alteration in endocytosis induces not only Aβ pathology but also the propagation of tau protein pathology, another key pathological feature of AD. Endocytic dysfunction can disrupt neuronal physiological functions, such as synaptic vesicle transport and neurotransmitter release. Thus, "traffic jams" in the endocytic pathway may be involved in AD pathogenesis and may serve as a novel target for the development of new therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Internalization and localization of basal insulin peglispro in cells.

    PubMed

    Moyers, Julie S; Volk, Catherine B; Cao, Julia X C; Zhang, Chen; Ding, Liyun; Kiselyov, Vladislav V; Michael, M Dodson

    2017-10-15

    Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than

  4. The basic route of the nuclear translocation porcine growth hormone (GH)-growth hormone receptor (GHR) complex (pGH/GHR) in porcine hepatocytes.

    PubMed

    Hainan, Lan; Huilin, Liu; Khan, Mahamad; Xin, Zheng; YuJiang, Yang; Hui, Zhang; Naiquan, Yao

    2018-06-08

    Traditional views suggest that growth hormone and the growth hormone receptor (GH/GHR complex) exert their functions only on the plasma membrane. This paradigm, however, has been challenged by recent new findings that the GH/GHR complex could translocate into cell nuclei where they could still exhibit important physiological functions. We also reported the nuclear localization of porcine GH/GHR and their potential functions in porcine hepatocytes. However, the basic path of pGH/GHR's nuclear translocation remains unclear. Combining previous research results and our current findings, we proposed two basic routes of pGH/GHR's nuclear transportation as follows: 1) after pGH binding to GHR, pGH/GHR enters into the cytoplasm though clathrin- or caveolin-mediated endocytosis, then the pGH/GHR complex enters into early endosomes (Rab5-positive), and the endosome carries the GH/GHR complex to the endoplasmic reticulum (ER). After endosome docking on the ER, the endosome starts fission, and the pGH/GHR complex enters into the ER lumen. Then the pGH/GHR complex transports into the cytoplasm, possibly by the ERAD pathway. Subsequently, the pGH/GHR complex interacts with IMPα/β, which, in turn, mediates GH/GHR nuclear localization; 2) pGH binds with the GHR on the cell membrane and, subsequently, pGH/GHR internalizes into the cell and enters into the endosome (this endosome may belong to a class of endosomes called envelope-associated endosomes (NAE)). Then, the endosome carries the pGH/GHR to the nuclear membrane. After docking on the nuclear membrane, the pGH/GHR complex fuses with the nuclear membrane and then enters into the cell nucleus. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The COMMD Family Regulates Plasma LDL Levels and Attenuates Atherosclerosis Through Stabilizing the CCC Complex in Endosomal LDLR Trafficking.

    PubMed

    Fedoseienko, Alina; Wijers, Melinde; Wolters, Justina C; Dekker, Daphne; Smit, Marieke; Huijkman, Nicolette; Kloosterhuis, Niels; Klug, Helene; Schepers, Aloys; Willems van Dijk, Ko; Levels, Johannes H M; Billadeau, Daniel D; Hofker, Marten H; van Deursen, Jan; Westerterp, Marit; Burstein, Ezra; Kuivenhoven, Jan Albert; van de Sluis, Bart

    2018-06-08

    COMMD (copper metabolism MURR1 domain)-containing proteins are a part of the CCC (COMMD-CCDC22 [coiled-coil domain containing 22]-CCDC93 [coiled-coil domain containing 93]) complex facilitating endosomal trafficking of cell surface receptors. Hepatic COMMD1 inactivation decreases CCDC22 and CCDC93 protein levels, impairs the recycling of the LDLR (low-density lipoprotein receptor), and increases plasma low-density lipoprotein cholesterol levels in mice. However, whether any of the other COMMD members function similarly as COMMD1 and whether perturbation in the CCC complex promotes atherogenesis remain unclear. The main aim of this study is to unravel the contribution of evolutionarily conserved COMMD proteins to plasma lipoprotein levels and atherogenesis. Using liver-specific Commd1 , Commd6 , or Commd9 knockout mice, we investigated the relation between the COMMD proteins in the regulation of plasma cholesterol levels. Combining biochemical and quantitative targeted proteomic approaches, we found that hepatic COMMD1, COMMD6, or COMMD9 deficiency resulted in massive reduction in the protein levels of all 10 COMMDs. This decrease in COMMD protein levels coincided with destabilizing of the core (CCDC22, CCDC93, and chromosome 16 open reading frame 62 [C16orf62]) of the CCC complex, reduced cell surface levels of LDLR and LRP1 (LDLR-related protein 1), followed by increased plasma low-density lipoprotein cholesterol levels. To assess the direct contribution of the CCC core in the regulation of plasma cholesterol levels, Ccdc22 was deleted in mouse livers via CRISPR/Cas9-mediated somatic gene editing. CCDC22 deficiency also destabilized the complete CCC complex and resulted in elevated plasma low-density lipoprotein cholesterol levels. Finally, we found that hepatic disruption of the CCC complex exacerbates dyslipidemia and atherosclerosis in ApoE3*Leiden mice. Collectively, these findings demonstrate a strong interrelationship between COMMD proteins and the core of

  6. Barium distributions in teeth reveal early life dietary transitions in primates

    PubMed Central

    Austin, Christine; Smith, Tanya M.; Bradman, Asa; Hinde, Katie; Joannes-Boyau, Renaud; Bishop, David; Hare, Dominic J.; Doble, Philip; Eskenazi, Brenda; Arora, Manish

    2013-01-01

    Early life dietary transitions reflect fundamental aspects of primate evolution and are important determinants of health in contemporary human populations1,2. Weaning is critical to developmental and reproductive rates; early weaning can have detrimental health effects but enables shorter inter-birth intervals, which influences population growth3. Uncovering early life dietary history in fossils is hampered by the absence of prospectively-validated biomarkers that are not modified during fossilisation4. Here we show that major dietary shifts in early life manifest as compositional variations in dental tissues. Teeth from human children and captive macaques, with prospectively-recorded diet histories, demonstrate that barium (Ba) distributions accurately reflect dietary transitions from the introduction of mother’s milk and through the weaning process. We also document transitions in a Middle Palaeolithic juvenile Neanderthal, which shows a pattern of exclusive breastfeeding for seven months, followed by seven months of supplementation. After this point, Ba levels in enamel returned to baseline prenatal levels, suggesting an abrupt cessation of breastfeeding at 1.2 years of age. Integration of Ba spatial distributions and histological mapping of tooth formation enables novel studies of the evolution of human life history, dietary ontogeny in wild primates, and human health investigations through accurate reconstructions of breastfeeding history. PMID:23698370

  7. Barium distributions in teeth reveal early-life dietary transitions in primates.

    PubMed

    Austin, Christine; Smith, Tanya M; Bradman, Asa; Hinde, Katie; Joannes-Boyau, Renaud; Bishop, David; Hare, Dominic J; Doble, Philip; Eskenazi, Brenda; Arora, Manish

    2013-06-13

    Early-life dietary transitions reflect fundamental aspects of primate evolution and are important determinants of health in contemporary human populations. Weaning is critical to developmental and reproductive rates; early weaning can have detrimental health effects but enables shorter inter-birth intervals, which influences population growth. Uncovering early-life dietary history in fossils is hampered by the absence of prospectively validated biomarkers that are not modified during fossilization. Here we show that large dietary shifts in early life manifest as compositional variations in dental tissues. Teeth from human children and captive macaques, with prospectively recorded diet histories, demonstrate that barium (Ba) distributions accurately reflect dietary transitions from the introduction of mother's milk through the weaning process. We also document dietary transitions in a Middle Palaeolithic juvenile Neanderthal, which shows a pattern of exclusive breastfeeding for seven months, followed by seven months of supplementation. After this point, Ba levels in enamel returned to baseline prenatal levels, indicating an abrupt cessation of breastfeeding at 1.2 years of age. Integration of Ba spatial distributions and histological mapping of tooth formation enables novel studies of the evolution of human life history, dietary ontogeny in wild primates, and human health investigations through accurate reconstructions of breastfeeding history.

  8. UNC-16 (JIP3) Acts Through Synapse-Assembly Proteins to Inhibit the Active Transport of Cell Soma Organelles to Caenorhabditis elegans Motor Neuron Axons

    PubMed Central

    Edwards, Stacey L.; Morrison, Logan M.; Yorks, Rosalina M.; Hoover, Christopher M.; Boominathan, Soorajnath; Miller, Kenneth G.

    2015-01-01

    The conserved protein UNC-16 (JIP3) inhibits the active transport of some cell soma organelles, such as lysosomes, early endosomes, and Golgi, to the synaptic region of axons. However, little is known about UNC-16’s organelle transport regulatory function, which is distinct from its Kinesin-1 adaptor function. We used an unc-16 suppressor screen in Caenorhabditis elegans to discover that UNC-16 acts through CDK-5 (Cdk5) and two conserved synapse assembly proteins: SAD-1 (SAD-A Kinase), and SYD-2 (Liprin-α). Genetic analysis of all combinations of double and triple mutants in unc-16(+) and unc-16(−) backgrounds showed that the three proteins (CDK-5, SAD-1, and SYD-2) are all part of the same organelle transport regulatory system, which we named the CSS system based on its founder proteins. Further genetic analysis revealed roles for SYD-1 (another synapse assembly protein) and STRADα (a SAD-1-interacting protein) in the CSS system. In an unc-16(−) background, loss of the CSS system improved the sluggish locomotion of unc-16 mutants, inhibited axonal lysosome accumulation, and led to the dynein-dependent accumulation of lysosomes in dendrites. Time-lapse imaging of lysosomes in CSS system mutants in unc-16(+) and unc-16(−) backgrounds revealed active transport defects consistent with the steady-state distributions of lysosomes. UNC-16 also uses the CSS system to regulate the distribution of early endosomes in neurons and, to a lesser extent, Golgi. The data reveal a new and unprecedented role for synapse assembly proteins, acting as part of the newly defined CSS system, in mediating UNC-16’s organelle transport regulatory function. PMID:26354976

  9. Rab5 and Alsin regulate stress-activated cytoprotective signaling on mitochondria

    PubMed Central

    Hsu, FoSheng; Spannl, Stephanie; Ferguson, Charles; Hyman, Anthony A; Parton, Robert G

    2018-01-01

    Mitochondrial stress response is essential for cell survival, and damaged mitochondria are a hallmark of neurodegenerative diseases. Thus, it is fundamental to understand how mitochondria relay information within the cell. Here, by investigating mitochondrial-endosomal contact sites we made the surprising observation that the small GTPase Rab5 translocates from early endosomes to mitochondria upon oxidative stress. This process is reversible and accompanied by an increase in Rab5-positive endosomes in contact with mitochondria. Interestingly, activation of Rab5 on mitochondria depends on the Rab5-GEF ALS2/Alsin, encoded by a gene mutated in amyotrophic lateral sclerosis (ALS). Alsin-deficient human-induced pluripotent stem cell-derived spinal motor neurons are defective in relocating Rab5 to mitochondria and display increased susceptibility to oxidative stress. These findings define a novel pathway whereby Alsin catalyzes the assembly of the Rab5 endocytic machinery on mitochondria. Defects in stress-sensing by endosomes could be crucial for mitochondrial quality control during the onset of ALS. PMID:29469808

  10. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates.

    PubMed

    Nakatani, Yoichiro; Takeda, Hiroyuki; Kohara, Yuji; Morishita, Shinichi

    2007-09-01

    Although several vertebrate genomes have been sequenced, little is known about the genome evolution of early vertebrates and how large-scale genomic changes such as the two rounds of whole-genome duplications (2R WGD) affected evolutionary complexity and novelty in vertebrates. Reconstructing the ancestral vertebrate genome is highly nontrivial because of the difficulty in identifying traces originating from the 2R WGD. To resolve this problem, we developed a novel method capable of pinning down remains of the 2R WGD in the human and medaka fish genomes using invertebrate tunicate and sea urchin genes to define ohnologs, i.e., paralogs produced by the 2R WGD. We validated the reconstruction using the chicken genome, which was not considered in the reconstruction step, and observed that many ancestral proto-chromosomes were retained in the chicken genome and had one-to-one correspondence to chicken microchromosomes, thereby confirming the reconstructed ancestral genomes. Our reconstruction revealed a contrast between the slow karyotype evolution after the second WGD and the rapid, lineage-specific genome reorganizations that occurred in the ancestral lineages of major taxonomic groups such as teleost fishes, amphibians, reptiles, and marsupials.

  11. The TESIS Project: Revealing Massive Early-Type Galaxies at z > 1

    NASA Astrophysics Data System (ADS)

    Saracco, P.; Longhetti, M.; Severgnini, P.; Della Ceca, R.; Braito, V.; Bender, R.; Drory, N.; Feulner, G.; Hopp, U.; Mannucci, F.; Maraston, C.

    How and when present-day massive early-type galaxies built up and what type of evolution has characterized their growth (star formation and/or merging) still remain open issues. The different competing scenarios of galaxy formation predict much different properties of early-type galaxies at z > 1. The "monolithic" collapse predicts that massive spheroids formed at high redshift (z > 2.5-3) and that their comoving density is constant at z < 2.5-3 since they evolve only in luminosity. On the contrary, in the hierarchical scenario massive spheroids are built up through subsequent mergers reaching their final masses at z < 1.5 [3,5]. As a consequence, massive systems are very rare at z > 1, their comoving density decreases from z = 0 to z ~ 1.5 and they should experience their last burst of star formation at z < 1.5, concurrent with the merging event(s) of their formation. These opposed predicted properties of early-types at z > 1 can be probed observationally once a well defined sample of massive early-types at z > 1 is available. We are constructing such a sample through a dedicated near-IR very low resolution (λ/Δλ≃50) spectroscopic survey (TNG EROs Spectroscopic Identification Survey, TESIS, [6]) of a complete sample of 30 bright (K < 18.5) Extremely Red Objects (EROs).

  12. GLUT2 Accumulation in Enterocyte Apical and Intracellular Membranes

    PubMed Central

    Ait-Omar, Amal; Monteiro-Sepulveda, Milena; Poitou, Christine; Le Gall, Maude; Cotillard, Aurélie; Gilet, Jules; Garbin, Kevin; Houllier, Anne; Château, Danièle; Lacombe, Amélie; Veyrie, Nicolas; Hugol, Danielle; Tordjman, Joan; Magnan, Christophe; Serradas, Patricia; Clément, Karine; Leturque, Armelle; Brot-Laroche, Edith

    2011-01-01

    OBJECTIVE In healthy rodents, intestinal sugar absorption in response to sugar-rich meals and insulin is regulated by GLUT2 in enterocyte plasma membranes. Loss of insulin action maintains apical GLUT2 location. In human enterocytes, apical GLUT2 location has not been reported but may be revealed under conditions of insulin resistance. RESEARCH DESIGN AND METHODS Subcellular location of GLUT2 in jejunal enterocytes was analyzed by confocal and electron microscopy imaging and Western blot in 62 well-phenotyped morbidly obese subjects and 7 lean human subjects. GLUT2 locations were assayed in ob/ob and ob/+ mice receiving oral metformin or in high-fat low-carbohydrate diet–fed C57Bl/6 mice. Glucose absorption and secretion were respectively estimated by oral glucose tolerance test and secretion of [U-14C]-3-O-methyl glucose into lumen. RESULTS In human enterocytes, GLUT2 was consistently located in basolateral membranes. Apical GLUT2 location was absent in lean subjects but was observed in 76% of obese subjects and correlated with insulin resistance and glycemia. In addition, intracellular accumulation of GLUT2 with early endosome antigen 1 (EEA1) was associated with reduced MGAT4a activity (glycosylation) in 39% of obese subjects on a low-carbohydrate/high-fat diet. Mice on a low-carbohydrate/high-fat diet for 12 months also exhibited endosomal GLUT2 accumulation and reduced glucose absorption. In ob/ob mice, metformin promoted apical GLUT2 and improved glucose homeostasis. Apical GLUT2 in fasting hyperglycemic ob/ob mice tripled glucose release into intestinal lumen. CONCLUSIONS In morbidly obese insulin-resistant subjects, GLUT2 was accumulated in apical and/or endosomal membranes of enterocytes. Functionally, apical GLUT2 favored and endosomal GLUT2 reduced glucose transepithelial exchanges. Thus, altered GLUT2 locations in enterocytes are a sign of intestinal adaptations to human metabolic pathology. PMID:21852673

  13. The Parkinson’s Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway

    PubMed Central

    Imai, Yuzuru; Kobayashi, Yoshito; Inoshita, Tsuyoshi; Meng, Hongrui; Arano, Taku; Uemura, Kengo; Asano, Takeshi; Yoshimi, Kenji; Zhang, Chang-Liang; Matsumoto, Gen; Ohtsuka, Toshiyuki; Kageyama, Ryoichiro; Kiyonari, Hiroshi; Shioi, Go; Nukina, Nobuyuki; Hattori, Nobutaka; Takahashi, Ryosuke

    2015-01-01

    Leucine-rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of familial and idiopathic Parkinson’s disease (PD). We have identified two novel LRRK2-associated proteins, a HECT-type ubiquitin ligase, HERC2, and an adaptor-like protein with six repeated Neuralized domains, NEURL4. LRRK2 binds to NEURL4 and HERC2 via the LRRK2 Ras of complex proteins (ROC) domain and NEURL4, respectively. HERC2 and NEURL4 link LRRK2 to the cellular vesicle transport pathway and Notch signaling, through which the LRRK2 complex promotes the recycling of the Notch ligand Delta-like 1 (Dll1)/Delta (Dl) through the modulation of endosomal trafficking. This process negatively regulates Notch signaling through cis-inhibition by stabilizing Dll1/Dl, which accelerates neural stem cell differentiation and modulates the function and survival of differentiated dopaminergic neurons. These effects are strengthened by the R1441G ROC domain-mutant of LRRK2. These findings suggest that the alteration of Notch signaling in mature neurons is a component of PD etiology linked to LRRK2. PMID:26355680

  14. Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments.

    PubMed

    Jean-Alphonse, Frederic; Bowersox, Shanna; Chen, Stanford; Beard, Gemma; Puthenveedu, Manojkumar A; Hanyaloglu, Aylin C

    2014-02-14

    Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity.

  15. MMP-13 In-Vivo Molecular Imaging Reveals Early Expression in Lung Adenocarcinoma

    PubMed Central

    Salaün, Mathieu; Peng, Jing; Hensley, Harvey H.; Roder, Navid; Flieder, Douglas B.; Houlle-Crépin, Solène; Abramovici-Roels, Olivia; Sabourin, Jean-Christophe; Thiberville, Luc; Clapper, Margie L.

    2015-01-01

    Introduction Several matrix metalloproteinases (MMPs) are overexpressed in lung cancer and may serve as potential targets for the development of bioactivable probes for molecular imaging. Objective To characterize and monitor the activity of MMPs during the progression of lung adenocarcinoma. Methods K-rasLSL-G12D mice were imaged serially during the development of adenocarcinomas using fluorescence molecular tomography (FMT) and a probe specific for MMP-2, -3, -9 and -13. Lung tumors were identified using FMT and MRI co-registration, and the probe concentration in each tumor was assessed at each time-point. The expression of Mmp2, -3, -9, -13 was quantified by qRT-PCR using RNA isolated from microdissected tumor cells. Immunohistochemical staining of overexpressed MMPs in animals was assessed on human lung tumors. Results In mice, 7 adenomas and 5 adenocarcinomas showed an increase in fluorescent signal on successive FMT scans, starting between weeks 4 and 8. qRT-PCR assays revealed significant overexpression of only Mmp-13 in mice lung tumors. In human tumors, a high MMP-13 immunostaining index was found in tumor cells from invasive lesions (24/27), but in none of the non-invasive (0/4) (p=0.001). Conclusion MMP-13 is detected in early pulmonary invasive adenocarcinomas and may be a potential target for molecular imaging of lung cancer. PMID:26193700

  16. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies.

    PubMed

    Bornholdt, Zachary A; Ndungo, Esther; Fusco, Marnie L; Bale, Shridhar; Flyak, Andrew I; Crowe, James E; Chandran, Kartik; Saphire, Erica Ollmann

    2016-02-23

    The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs. Copyright © 2016 Bornholdt et al.

  17. Visualisation of macropinosome maturation by the recruitment of sorting nexins.

    PubMed

    Kerr, Markus C; Lindsay, Margaret R; Luetterforst, Robert; Hamilton, Nicholas; Simpson, Fiona; Parton, Robert G; Gleeson, Paul A; Teasdale, Rohan D

    2006-10-01

    We report that phosphoinositol-binding sorting nexin 5 (SNX5) associates with newly formed macropinosomes induced by EGF stimulation. We used the recruitment of GFP-SNX5 to macropinosomes to track their maturation. Initially, GFP-SNX5 is sequestered to discrete subdomains of the macropinosome; these subdomains are subsequently incorporated into highly dynamic, often branched, tubular structures. Time-lapse videomicroscopy revealed the highly dynamic extension of SNX5-labelled tubules and their departure from the macropinosome body to follow predefined paths towards the perinuclear region of the cell, before fusing with early endosomal acceptor membranes. The extension and departure of these tubular structures occurs rapidly over 5-10 minutes and is dependent upon intact microtubules. As the tubular structures depart from the macropinosome there is a reduction in the surface area and an increase in tension of the limiting membrane of the macropinosome. In addition to the recruitment of SNX5 to the macropinosome, Rab5, SNX1 and EEA1 are also recruited by newly formed macropinosomes, followed by the accumulation of Rab7. SNX5 forms heterodimers with SNX1 and this interaction is required for endosome association of SNX5. We propose that the departure of SNX5-positive tubules represents a rapid mechanism of recycling components from macropinosomes thereby promoting their maturation into Rab7-positive structures. Collectively these findings provide a detailed real-time characterisation of the maturation process of the macropinocytic endosome.

  18. Rab15 Effector Protein: A Novel Protein for Receptor Recycling from the Endocytic Recycling CompartmentD⃞

    PubMed Central

    Strick, David J.; Elferink, Lisa A.

    2005-01-01

    Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways. PMID:16195351

  19. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry.

    PubMed

    Yang, Jing; McCormick, Mark A; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K; Li, Hao

    2015-09-22

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.

  20. Dynamic Locomotor Capabilities Revealed by Early Dinosaur Trackmakers from Southern Africa

    PubMed Central

    Wilson, Jeffrey A.; Marsicano, Claudia A.; Smith, Roger M. H.

    2009-01-01

    Background A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. Methodology/Principal Findings The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31°), and plantigrade and digitigrade foot posture. Conclusions/Significance The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect ‘real time’ responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors. PMID:19806213

  1. Dynamic locomotor capabilities revealed by early dinosaur trackmakers from southern Africa.

    PubMed

    Wilson, Jeffrey A; Marsicano, Claudia A; Smith, Roger M H

    2009-10-06

    A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31 degrees ), and plantigrade and digitigrade foot posture. The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect 'real time' responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors.

  2. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds.

    PubMed

    Knoll, Fabien; Chiappe, Luis M; Sanchez, Sophie; Garwood, Russell J; Edwards, Nicholas P; Wogelius, Roy A; Sellers, William I; Manning, Phillip L; Ortega, Francisco; Serrano, Francisco J; Marugán-Lobón, Jesús; Cuesta, Elena; Escaso, Fernando; Sanz, Jose Luis

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages of development. Comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.

  3. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane.

    PubMed

    Boassa, Daniela; Nguyen, Phuong; Hu, Junru; Ellisman, Mark H; Sosinsky, Gina E

    2014-01-01

    Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.

  4. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling*

    PubMed Central

    McGarvey, Jennifer C.; Xiao, Kunhong; Bowman, Shanna L.; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W. Bruce; Ardura, Juan A.; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A.; Friedman, Peter A.

    2016-01-01

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor. PMID:27008860

  5. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds

    DOE PAGES

    Knoll, Fabien; Chiappe, Luis M.; Sanchez, Sophie; ...

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages ofmore » development. Finally, comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.« less

  6. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoll, Fabien; Chiappe, Luis M.; Sanchez, Sophie

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages ofmore » development. Finally, comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.« less

  7. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA-seq

    PubMed Central

    Kakaradov, Boyko; Arsenio, Janilyn; Widjaja, Christella E.; He, Zhaoren; Aigner, Stefan; Metz, Patrick J.; Yu, Bingfei; Wehrens, Ellen J.; Lopez, Justine; Kim, Stephanie H.; Zuniga, Elina I.; Goldrath, Ananda W.; Chang, John T.; Yeo, Gene W.

    2017-01-01

    SUMMARY During microbial infection, responding CD8+ T lymphocytes differentiate into heterogeneous subsets that together provide immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a single-cell RNA sequencing approach and analyzed individual CD8+ T lymphocytes sequentially throughout the course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division and identified previously unknown molecular determinants controlling CD8+ T lymphocyte fate specification. These findings suggest a model of terminal effector cell differentiation initiated by an early burst of transcriptional activity and subsequently refined by epigenetic silencing of transcripts associated with memory lymphocytes, highlighting the power and necessity of single-cell approaches. PMID:28218746

  8. Protease-activated receptor-4 and purinergic receptor P2Y12 dimerize, co-internalize, and activate Akt signaling via endosomal recruitment of β-arrestin.

    PubMed

    Smith, Thomas H; Li, Julia G; Dores, Michael R; Trejo, JoAnn

    2017-08-18

    Vascular inflammation and thrombosis require the concerted actions of several different agonists, many of which act on G protein-coupled receptors (GPCRs). GPCR dimerization is a well-established phenomenon that can alter protomer function. In platelets and other cell types, protease-activated receptor-4 (PAR4) has been shown to dimerize with the purinergic receptor P2Y12 to coordinate β-arrestin-mediated Akt signaling, an important mediator of integrin activation. However, the mechanism by which the PAR4-P2Y12 dimer controls β-arrestin-dependent Akt signaling is not known. We now report that PAR4 and P2Y12 heterodimer internalization is required for β-arrestin recruitment to endosomes and Akt signaling. Using bioluminescence resonance energy transfer, immunofluorescence microscopy, and co-immunoprecipitation in cells expressing receptors exogenously and endogenously, we demonstrate that PAR4 and P2Y12 specifically interact and form dimers expressed at the cell surface. We also found that activation of PAR4 but not of P2Y12 drives internalization of the PAR4-P2Y12 heterodimer. Remarkably, activated PAR4 internalization was required for recruitment of β-arrestin to endocytic vesicles, which was dependent on co-expression of P2Y12. Interestingly, stimulation of the PAR4-P2Y12 heterodimer promotes β-arrestin and Akt co-localization to intracellular vesicles. Moreover, activated PAR4-P2Y12 internalization is required for sustained Akt activation. Thus, internalization of the PAR4-P2Y12 heterodimer is necessary for β-arrestin recruitment to endosomes and Akt signaling and lays the foundation for examining whether blockade of PAR4 internalization reduces integrin and platelet activation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Population genomic analysis of elongated skulls reveals extensive female-biased immigration in Early Medieval Bavaria

    PubMed Central

    Veeramah, Krishna R.; Rott, Andreas; Groß, Melanie; López, Saioa; Kirsanow, Karola; Sell, Christian; Blöcher, Jens; Link, Vivian; Hofmanová, Zuzana; Peters, Joris; Trautmann, Bernd; Gairhos, Anja; Haberstroh, Jochen; Päffgen, Bernd; Hellenthal, Garrett; Haas-Gebhard, Brigitte; Harbeck, Michaela; Burger, Joachim

    2018-01-01

    Modern European genetic structure demonstrates strong correlations with geography, while genetic analysis of prehistoric humans has indicated at least two major waves of immigration from outside the continent during periods of cultural change. However, population-level genome data that could shed light on the demographic processes occurring during the intervening periods have been absent. Therefore, we generated genomic data from 41 individuals dating mostly to the late 5th/early 6th century AD from present-day Bavaria in southern Germany, including 11 whole genomes (mean depth 5.56×). In addition we developed a capture array to sequence neutral regions spanning a total of 5 Mb and 486 functional polymorphic sites to high depth (mean 72×) in all individuals. Our data indicate that while men generally had ancestry that closely resembles modern northern and central Europeans, women exhibit a very high genetic heterogeneity; this includes signals of genetic ancestry ranging from western Europe to East Asia. Particularly striking are women with artificial skull deformations; the analysis of their collective genetic ancestry suggests an origin in southeastern Europe. In addition, functional variants indicate that they also differed in visible characteristics. This example of female-biased migration indicates that complex demographic processes during the Early Medieval period may have contributed in an unexpected way to shape the modern European genetic landscape. Examination of the panel of functional loci also revealed that many alleles associated with recent positive selection were already at modern-like frequencies in European populations ∼1,500 years ago. PMID:29531040

  10. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry

    PubMed Central

    Yang, Jing; McCormick, Mark A.; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K.; Li, Hao

    2015-01-01

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials (“aging factors”) through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms. PMID:26351681

  11. Differential screening of mutated SOD1 transgenic mice reveals early up-regulation of a fast axonal transport component in spinal cord motor neurons.

    PubMed

    Dupuis, L; de Tapia, M; René, F; Lutz-Bucher, B; Gordon, J W; Mercken, L; Pradier, L; Loeffler, J P

    2000-08-01

    In the present study we analyze the molecular mechanisms underlying motor neuron degeneration in familial amyotrophic lateral sclerosis (FALS). For this, we used a transgenic mouse model expressing the Cu/Zn superoxide dismutase (SOD1) gene with a Gly(86) to Arg (G86R) mutation equivalent to that found in a subset of human FALS. Using an optimized suppression subtractive hybridization method, a cDNA specifically up-regulated during the asymptomatic phase in the lumbar spinal cord of G86R mice was identified by sequence analysis as the KIF3-associated protein (KAP3), a regulator of fast axonal transport. RT-PCR analysis revealed that KAP3 induction was an early event arising long before axonal degeneration. Immunohistochemical studies further revealed that KAP3 protein predominantly accumulates in large motor neurons of the ventral spinal cord. We further demonstrated that KAP3 up-regulation occurs independent of any change in the other components of the kinesin II complex. However, since the ubiquitous KIF1A motor is up-regulated, our results show an early and complex rearrangement of the fast axonal transport machinery in the course of FALS pathology. Copyright 2000 Academic Press.

  12. Data mining reveals a network of early-response genes as a consensus signature of drug-induced in vitro and in vivo toxicity.

    PubMed

    Zhang, J D; Berntenis, N; Roth, A; Ebeling, M

    2014-06-01

    Gene signatures of drug-induced toxicity are of broad interest, but they are often identified from small-scale, single-time point experiments, and are therefore of limited applicability. To address this issue, we performed multivariate analysis of gene expression, cell-based assays, and histopathological data in the TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system) database. Data mining highlights four genes-EGR1, ATF3, GDF15 and FGF21-that are induced 2 h after drug administration in human and rat primary hepatocytes poised to eventually undergo cytotoxicity-induced cell death. Modelling and simulation reveals that these early stress-response genes form a functional network with evolutionarily conserved structure and intrinsic dynamics. This is underlined by the fact that early induction of this network in vivo predicts drug-induced liver and kidney pathology with high accuracy. Our findings demonstrate the value of early gene-expression signatures in predicting and understanding compound-induced toxicity. The identified network can empower first-line tests that reduce animal use and costs of safety evaluation.

  13. Ancient European dog genomes reveal continuity since the Early Neolithic

    PubMed Central

    Botigué, Laura R.; Song, Shiya; Scheu, Amelie; Gopalan, Shyamalika; Pendleton, Amanda L.; Oetjens, Matthew; Taravella, Angela M.; Seregély, Timo; Zeeb-Lanz, Andrea; Arbogast, Rose-Marie; Bobo, Dean; Daly, Kevin; Unterländer, Martina; Burger, Joachim; Kidd, Jeffrey M.; Veeramah, Krishna R.

    2017-01-01

    Europe has played a major role in dog evolution, harbouring the oldest uncontested Palaeolithic remains and having been the centre of modern dog breed creation. Here we sequence the genomes of an Early and End Neolithic dog from Germany, including a sample associated with an early European farming community. Both dogs demonstrate continuity with each other and predominantly share ancestry with modern European dogs, contradicting a previously suggested Late Neolithic population replacement. We find no genetic evidence to support the recent hypothesis proposing dual origins of dog domestication. By calibrating the mutation rate using our oldest dog, we narrow the timing of dog domestication to 20,000–40,000 years ago. Interestingly, we do not observe the extreme copy number expansion of the AMY2B gene characteristic of modern dogs that has previously been proposed as an adaptation to a starch-rich diet driven by the widespread adoption of agriculture in the Neolithic. PMID:28719574

  14. Hydrogen–Deuterium Exchange and Mass Spectrometry Reveal the pH-Dependent Conformational Changes of Diphtheria Toxin T Domain

    PubMed Central

    2015-01-01

    The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen–deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our “standard condition” (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W+-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8–9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8–9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain. PMID:25290210

  15. Hydrogen-deuterium exchange and mass spectrometry reveal the pH-dependent conformational changes of diphtheria toxin T domain.

    PubMed

    Li, Jing; Rodnin, Mykola V; Ladokhin, Alexey S; Gross, Michael L

    2014-11-04

    The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our "standard condition" (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W(+)-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8-9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8-9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain.

  16. Absolute pitch: evidence for early cognitive facilitation during passive listening as revealed by reduced P3a amplitudes.

    PubMed

    Rogenmoser, Lars; Elmer, Stefan; Jäncke, Lutz

    2015-03-01

    Absolute pitch (AP) is the rare ability to identify or produce different pitches without using reference tones. At least two sequential processing stages are assumed to contribute to this phenomenon. The first recruits a pitch memory mechanism at an early stage of auditory processing, whereas the second is driven by a later cognitive mechanism (pitch labeling). Several investigations have used active tasks, but it is unclear how these two mechanisms contribute to AP during passive listening. The present work investigated the temporal dynamics of tone processing in AP and non-AP (NAP) participants by using EEG. We applied a passive oddball paradigm with between- and within-tone category manipulations and analyzed the MMN reflecting the early stage of auditory processing and the P3a response reflecting the later cognitive mechanism during the second processing stage. Results did not reveal between-group differences in MMN waveforms. By contrast, the P3a response was specifically associated with AP and sensitive to the processing of different pitch types. Specifically, AP participants exhibited smaller P3a amplitudes, especially in between-tone category conditions, and P3a responses correlated significantly with the age of commencement of musical training, suggesting an influence of early musical exposure on AP. Our results reinforce the current opinion that the representation of pitches at the processing level of the auditory-related cortex is comparable among AP and NAP participants, whereas the later processing stage is critical for AP. Results are interpreted as reflecting cognitive facilitation in AP participants, possibly driven by the availability of multiple codes for tones.

  17. Heterotypic endosomal fusion as an initial trigger for insulin-induced glucose transporter 4 (GLUT4) translocation in skeletal muscle.

    PubMed

    Hatakeyama, Hiroyasu; Kanzaki, Makoto

    2017-08-15

    Comprehensive imaging analyses of glucose transporter 4 (GLUT4) behaviour in mouse skeletal muscle was conducted. Quantum dot-based single molecule nanometry revealed that GLUT4 molecules in skeletal myofibres are governed by regulatory systems involving 'static retention' and 'stimulus-dependent liberation'. Vital imaging analyses and super-resolution microscopy-based morphometry demonstrated that insulin liberates the GLUT4 molecule from its static state by triggering acute heterotypic endomembrane fusion arising from the very small GLUT4-containing vesicles in skeletal myofibres. Prior exposure to exercise-mimetic stimuli potentiated this insulin-responsive endomembrane fusion event involving GLUT4-containing vesicles, suggesting that this endomembranous regulation process is a potential site related to the effects of exercise. Skeletal muscle is the major systemic glucose disposal site. Both insulin and exercise facilitate translocation of the glucose transporter glucose transporter 4 (GLUT4) via distinct signalling pathways and exercise also enhances insulin sensitivity. However, the trafficking mechanisms controlling GLUT4 mobilization in skeletal muscle remain poorly understood as a resuly of technical limitations. In the present study, which employs various imaging techniques on isolated skeletal myofibres, we show that one of the initial triggers of insulin-induced GLUT4 translocation is heterotypic endomembrane fusion arising from very small static GLUT4-containing vesicles with a subset of transferrin receptor-containing endosomes. Importantly, pretreatment with exercise-mimetic stimuli potentiated the susceptibility to insulin responsiveness, as indicated by these acute endomembranous activities. We also found that AS160 exhibited stripe-like localization close to sarcomeric α-actinin and that insulin induced a reduction of the stripe-like localization accompanying changes in its detergent solubility. The results of the present study thus provide a

  18. Cellular trafficking of low molecular weight heparin incorporated in layered double hydroxide nanoparticles in rat vascular smooth muscle cells.

    PubMed

    Gu, Zi; Rolfe, Barbara E; Thomas, Anita C; Campbell, Julie H; Lu, G Q Max; Xu, Zhi P

    2011-10-01

    This paper reports a clear elucidation of the pathway for the cellular delivery of layered double hydroxide (LDH) nanoparticles intercalated with anti-restenotic low molecular weight heparin (LMWH). Cellular uptake of LMWH-LDH conjugates into cultured rat vascular smooth muscle cells (SMCs) measured via flow cytometry was more than ten times greater than that of LMWH alone. Confocal and transmission electron microscopy showed LMWH-LDH conjugates taken up by endosomes, then released into the cytoplasm. We propose that LMWH-LDH is taken up via a unique 'modified endocytic' pathway, whereby the conjugate is internalized by SMCs in early endosomes, sorted in late endosomes, and quickly released from late endosomes/lysosomes, avoiding degradation. Treatment of cells with LMWH-LDH conjugates suppressed the activation of ERK1/2 in response to foetal calf serum (FCS) for up to 24h, unlike unconjugated LMWH which had no significant effect at 24h. Improved understanding of the intracellular pathway of LMWH-LDH nanohybrids in SMC will allow for refinement of design for LDH nanomedicine applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. CD22 is a recycling receptor that can shuttle cargo between the cell surface and endosomal compartments of B cells.

    PubMed

    O'Reilly, Mary K; Tian, Hua; Paulson, James C

    2011-02-01

    CD22 is a member of the sialic acid-binding Ig-like lectin (Siglec) family that is known to be a regulator of B cell signaling. Its B cell-specific expression makes it an attractive target for immunotoxin-mediated B cell depletion therapy for the treatment of B cell lymphomas and autoimmune diseases. Although CD22 is well documented to be an endocytic receptor, it is believed that after internalization, it is targeted for degradation. We show in this study that CD22 is instead constitutively recycled to the cell surface. We also find that glycan ligand-based cargo is released from CD22 and accumulates intracellularly as CD22 recycles between the cell surface and endosomal compartments. In contrast, Abs to CD22 do not accumulate but remain bound to CD22 and recycle to the cell surface. The results have implications for development of agents that target CD22 as an endocytic receptor for delivery of cytotoxic cargo to B cells.

  20. Blocks Are Educational: Revealing Discourses through Early Childhood Policy Illustrations

    ERIC Educational Resources Information Center

    Manning, Suzanne

    2018-01-01

    In the course of a study on the impacts of changing early childhood policy in Aotearoa New Zealand since 1989, the illustrations accompanying three major government reports and policies stood out as encapsulating the changes in underlying discourses. This enabled the illustrations from these three policy reports to be used for a historical…

  1. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation

    PubMed Central

    Hirai, Maretoshi; Arita, Yoh; McGlade, C. Jane; Lee, Kuo-Fen; Chen, Ju; Evans, Sylvia M.

    2017-01-01

    Failure of trabecular myocytes to undergo appropriate cell cycle withdrawal leads to ventricular noncompaction and heart failure. Signaling of growth factor receptor ERBB2 is critical for myocyte proliferation and trabeculation. However, the mechanisms underlying appropriate downregulation of trabecular ERBB2 signaling are little understood. Here, we have found that the endocytic adaptor proteins NUMB and NUMBL were required for downregulation of ERBB2 signaling in maturing trabeculae. Loss of NUMB and NUMBL resulted in a partial block of late endosome formation, resulting in sustained ERBB2 signaling and STAT5 activation. Unexpectedly, activated STAT5 overrode Hippo-mediated inhibition and drove YAP1 to the nucleus. Consequent aberrant cardiomyocyte proliferation resulted in ventricular noncompaction that was markedly rescued by heterozygous loss of function of either ERBB2 or YAP1. Further investigations revealed that NUMB and NUMBL interacted with small GTPase Rab7 to transition ERBB2 from early to late endosome for degradation. Our studies provide insight into mechanisms by which NUMB and NUMBL promote cardiomyocyte cell cycle withdrawal and highlight previously unsuspected connections between pathways that are important for cardiomyocyte cell cycle reentry, with relevance to ventricular noncompaction cardiomyopathy and regenerative medicine. PMID:28067668

  2. Ebola virus requires phosphatidylinositol (3,5) bisphosphate production for efficient viral entry.

    PubMed

    Qiu, Shirley; Leung, Anders; Bo, Yuxia; Kozak, Robert A; Anand, Sai Priya; Warkentin, Corina; Salambanga, Fabiola D R; Cui, Jennifer; Kobinger, Gary; Kobasa, Darwyn; Côté, Marceline

    2018-01-01

    For entry, Ebola virus (EBOV) requires the interaction of its viral glycoprotein with the cellular protein Niemann-Pick C1 (NPC1) which resides in late endosomes and lysosomes. How EBOV is trafficked and delivered to NPC1 and whether this is positively regulated during entry remain unclear. Here, we show that the PIKfyve-ArPIKfyve-Sac3 cellular complex, which is involved in the metabolism of phosphatidylinositol (3,5) bisphosphate (PtdIns(3,5)P 2 ), is critical for EBOV infection. Although the expression of all subunits of the complex was required for efficient entry, PIKfyve kinase activity was specifically critical for entry by all pathogenic filoviruses. Inhibition of PIKfyve prevented colocalization of EBOV with NPC1 and led to virus accumulation in intracellular vesicles with characteristics of early endosomes. Importantly, genetically-encoded phosphoinositide probes revealed an increase in PtdIns(3,5)P 2 -positive vesicles in cells during EBOV entry. Taken together, our studies suggest that EBOV requires PtdIns(3,5)P 2 production in cells to promote efficient delivery to NPC1. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A Presynaptic Regulatory System Acts Transsynaptically via Mon1 to Regulate Glutamate Receptor Levels in Drosophila.

    PubMed

    Deivasigamani, Senthilkumar; Basargekar, Anagha; Shweta, Kumari; Sonavane, Pooja; Ratnaparkhi, Girish S; Ratnaparkhi, Anuradha

    2015-10-01

    Mon1 is an evolutionarily conserved protein involved in the conversion of Rab5 positive early endosomes to late endosomes through the recruitment of Rab7. We have identified a role for Drosophila Mon1 in regulating glutamate receptor levels at the larval neuromuscular junction. We generated mutants in Dmon1 through P-element excision. These mutants are short-lived with strong motor defects. At the synapse, the mutants show altered bouton morphology with several small supernumerary or satellite boutons surrounding a mature bouton; a significant increase in expression of GluRIIA and reduced expression of Bruchpilot. Neuronal knockdown of Dmon1 is sufficient to increase GluRIIA levels, suggesting its involvement in a presynaptic mechanism that regulates postsynaptic receptor levels. Ultrastructural analysis of mutant synapses reveals significantly smaller synaptic vesicles. Overexpression of vglut suppresses the defects in synaptic morphology and also downregulates GluRIIA levels in Dmon1 mutants, suggesting that homeostatic mechanisms are not affected in these mutants. We propose that DMon1 is part of a presynaptically regulated transsynaptic mechanism that regulates GluRIIA levels at the larval neuromuscular junction. Copyright © 2015 by the Genetics Society of America.

  4. Organization of organelles within hyphae of Ashbya gossypii revealed by electron tomography.

    PubMed

    Gibeaux, Romain; Hoepfner, Dominic; Schlatter, Ivan; Antony, Claude; Philippsen, Peter

    2013-11-01

    Ashbya gossypii grows as multinucleated and constantly elongating hyphae. Nuclei are in continuous forward and backward motion, also move during mitosis, and frequently bypass each other. Whereas these nuclear movements are well documented, comparatively little is known about the density and morphology of organelles which very likely influence these movements. To understand the three-dimensional subcellular organization of hyphae at high resolution, we performed large-scale electron tomography of the tip regions in A. gossypii. Here, we present a comprehensive space-filling model in which most membrane-limited organelles including nuclei, mitochondria, endosomes, multivesicular bodies, vacuoles, autophagosomes, peroxisomes, and vesicles are modeled. Nuclei revealed different morphologies and protrusions filled by the nucleolus. Mitochondria are very abundant and form a tubular network with a polarized spherical fraction. The organelles of the degradative pathways show a clustered organization. By analyzing vesicle-like bodies, we identified three size classes of electron-dense vesicles (∼200, ∼150, and ∼100 nm) homogeneously distributed in the cytoplasm which most likely represent peroxisomes. Finally, coated and uncoated vesicles with approximately 40-nm diameters show a polarized distribution toward the hyphal tip with the coated vesicles preferentially localizing at the hyphal periphery.

  5. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer.

    PubMed

    Gallon, Matthew; Clairfeuille, Thomas; Steinberg, Florian; Mas, Caroline; Ghai, Rajesh; Sessions, Richard B; Teasdale, Rohan D; Collins, Brett M; Cullen, Peter J

    2014-09-02

    The sorting nexin 27 (SNX27)-retromer complex is a major regulator of endosome-to-plasma membrane recycling of transmembrane cargos that contain a PSD95, Dlg1, zo-1 (PDZ)-binding motif. Here we describe the core interaction in SNX27-retromer assembly and its functional relevance for cargo sorting. Crystal structures and NMR experiments reveal that an exposed β-hairpin in the SNX27 PDZ domain engages a groove in the arrestin-like structure of the vacuolar protein sorting 26A (VPS26A) retromer subunit. The structure establishes how the SNX27 PDZ domain simultaneously binds PDZ-binding motifs and retromer-associated VPS26. Importantly, VPS26A binding increases the affinity of the SNX27 PDZ domain for PDZ- binding motifs by an order of magnitude, revealing cooperativity in cargo selection. With disruption of SNX27 and retromer function linked to synaptic dysfunction and neurodegenerative disease, our work provides the first step, to our knowledge, in the molecular description of this important sorting complex, and more broadly describes a unique interaction between a PDZ domain and an arrestin-like fold.

  6. Quantum dot bioconjugates: uptake into cells and induction of changes in normal cellular transport

    NASA Astrophysics Data System (ADS)

    Iversen, Tore-Geir; Frerker, Nadine; Sandvig, Kirsten

    2009-02-01

    Can quantum dots (QDs) act as relevant intracellular probes to investigate routing of ligands in live cells? To answer this question we studied intracellular trafficking of QDs that were coupled to the plant toxin ricin, Shiga toxin or the ligand transferrin (Tf) by confocal fluorescence microscopy in three different cell lines. The Tf:QDs were internalized but instead of being recycled they accumulated within endosomes in all cell lines. However, for the HEp-2 and SW480 cells a higher fraction colocalized with a lysosomal marker as compared with HeLa cells. The Shiga:QD bioconjugate was internalized slowly and with poor efficiency in the HEp-2 and SW480 cells as compared with HeLa cells, and was not routed to the Golgi apparatus in any of the cell lines. The internalized ricin:QD bioconjugates localized to the same endosomes as ricin itself, but could in contrast to ricin not be visualized in the Golgi apparatus. Importantly, we find that the endosomal accumulation of either ricin:QDs or transferrin:QDs affects endosome-to-Golgi transport of both ricin and Shiga toxin: Transport of ricin was reduced whereas transport of Shiga toxin was increased. In conclusion, the data from different cells reveal that in general these ligand-coupled QD nanoparticles are arrested within endosomes, and somehow perturb the normal endosomal sorting in cells.

  7. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    ERIC Educational Resources Information Center

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  8. A Novel Mechanism of Regulating the ATPase VPS4 by Its Cofactor LIP5 and the Endosomal Sorting Complex Required for Transport (ESCRT)-III Protein CHMP5

    DOE PAGES

    Vild, Cody J.; Li, Yan; Guo, Emily Z.; ...

    2015-01-30

    Disassembly of the endosomal sorting complex required for transport (ESCRT) machinery from biological membranes is a critical final step in cellular processes that require the ESCRT function. This reaction is catalyzed by VPS4, an AAA-ATPase whose activity is tightly regulated by a host of proteins, including LIP5 and the ESCRT-III proteins. In this paper, we present structural and functional analyses of molecular interactions between human VPS4, LIP5, and the ESCRT-III proteins. The N-terminal domain of LIP5 (LIP5NTD) is required for LIP5-mediated stimulation of VPS4, and the ESCRT-III protein CHMP5 strongly inhibits the stimulation. Both of these observations are distinct frommore » what was previously described for homologous yeast proteins. The crystal structure of LIP5NTD in complex with the MIT (microtubule-interacting and transport)-interacting motifs of CHMP5 and a second ESCRT-III protein, CHMP1B, was determined at 1 Å resolution. It reveals an ESCRT-III binding induced moderate conformational change in LIP5NTD, which results from insertion of a conserved CHMP5 tyrosine residue (Tyr 182) at the core of LIP5NTD structure. Finally, mutation of Tyr 182 partially relieves the inhibition displayed by CHMP5. Together, these results suggest a novel mechanism of VPS4 regulation in metazoans, where CHMP5 functions as a negative allosteric switch to control LIP5-mediated stimulation of VPS4.« less

  9. CD4 Receptor is a Key Determinant of Divergent HIV-1 Sensing by Plasmacytoid Dendritic Cells

    PubMed Central

    Wilen, Craig; Gopal, Ramya; Huq, Rumana; Wu, Vernon; Sunseri, Nicole; Bhardwaj, Nina

    2016-01-01

    Plasmacytoid dendritic cells (pDC) are innate immune cells that sense viral nucleic acids through endosomal Toll-like receptor (TLR) 7/9 to produce type I interferon (IFN) and to differentiate into potent antigen presenting cells (APC). Engagement of TLR7/9 in early endosomes appears to trigger the IRF7 pathway for IFN production whereas engagement in lysosomes seems to trigger the NF-κB pathway for maturation into APC. We showed previously that HIV-1 (HIV) localizes predominantly to early endosomes, not lysosomes, and mainly stimulate IRF7 rather than NF-κB signaling pathways in pDC. This divergent signaling may contribute to disease progression through production of pro-apoptotic and pro-inflammatory IFN and inadequate maturation of pDCs. We now demonstrate that HIV virions may be re-directed to lysosomes for NF-κB signaling by either pseudotyping HIV with influenza hemagglutinin envelope or modification of CD4 mediated-intracellular trafficking. These data suggest that HIV envelope-CD4 receptor interactions drive pDC activation toward an immature IFN producing phenotype rather than differentiation into a mature dendritic cell phenotype. PMID:27082754

  10. RNA-Seq reveals the dynamic and diverse features of digestive enzymes during early development of Pacific white shrimp Litopenaeus vannamei.

    PubMed

    Wei, Jiankai; Zhang, Xiaojun; Yu, Yang; Li, Fuhua; Xiang, Jianhai

    2014-09-01

    The Pacific white shrimp (Litopenaeus vannamei), with high commercial value, has a typical metamorphosis pattern by going through embryo, nauplius, zoea, mysis and postlarvae during early development. Its diets change continually in this period, and a high mortality of larvae also occurs in this period. Since there is a close relationship between diets and digestive enzymes, a comprehensive investigation about the types and expression patterns of all digestive enzyme genes during early development of L. vannamei is of considerable significance for shrimp diets and larvae culture. Using RNA-Seq data, the types and expression characteristics of the digestive enzyme genes were analyzed during five different development stages (embryo, nauplius, zoea, mysis and postlarvae) in L. vannamei. Among the obtained 66,815 unigenes, 296 were annotated as 16 different digestive enzymes including five types of carbohydrase, seven types of peptidase and four types of lipase. Such a diverse suite of enzymes illustrated the capacity of L. vannamei to exploit varied diets to fit their nutritional requirements. The analysis of their dynamic expression patterns during development also indicated the importance of transcriptional regulation to adapt to the diet transition. Our study revealed the diverse and dynamic features of digestive enzymes during early development of L. vannamei. These results would provide support to better understand the physiological changes during diet transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. GRAF1 forms a complex with MICAL-L1 and EHD1 to cooperate in tubular recycling endosome vesiculation

    PubMed Central

    Cai, Bishuang; Xie, Shuwei; Caplan, Steve; Naslavsky, Naava

    2014-01-01

    The biogenesis of tubular recycling endosomes (TREs) and their subsequent vesiculation after cargo-sorting has occurred, is essential for receptor and lipid recycling to the plasma membrane. Although recent studies have implicated the C-terminal Eps15 Homology Domain (EHD) protein, EHD1, as a key regulator of TRE vesiculation, additional proteins involved in this process have been largely uncharacterized. In the present study, we identify the GTPase Regulator Associated with Focal adhesion kinase-1 (GRAF1) protein in a complex with EHD1 and the TRE hub protein, Molecules Interacting with CasL-Like1 (MICAL-L1). Over-expression of GRAF1 caused vesiculation of MICAL-L1-containing TRE, whereas GRAF1-depletion led to impaired TRE vesiculation and delayed receptor recycling. Moreover, co-addition of purified EHD1 and GRAF1 in a semi-permeabilized cell vesiculation assay produced synergistic TRE vesiculation. Overall, based on our data, we suggest that in addition to its roles in clathrin-independent endocytosis, GRAF1 synergizes with EHD1 to support TRE vesiculation. PMID:25364729

  12. In vivo whole animal body imaging reveals colonization of Chlamydia muridarum to the lower genital tract at early stages of infection.

    PubMed

    Gupta, Rishein; Wali, Shradha; Yu, Jieh-Juen; Chambers, James P; Zhong, Guangming; Murthy, Ashlesh K; Bakar, Sazaly Abu; Guentzel, M N; Arulanandam, Bernard P

    2014-10-01

    The leading cause of sexually transmitted bacterial infection is Chlamydia trachomatis. The aim of this study is to investigate the early events in colonization of this bacterium within the murine genital tract. An in vivo animal body imaging technology was used to track fluorophore labeled C. muridarum elementary bodies (EBs) inoculated intravaginally in C57BL/6 mice during the first 24 h of infection. Ascension of viable EBs was observed (1) to be localized to the lower regions of the murine genital tract within the first 24 h post challenge and (2) was dose independent during this early exposure period. Molecular detection revealed enhanced bacterial load in lower regions of the genital tract with increasing bacterial load in the upper region beginning 12 h post inoculation. This study provides additional insight into chlamydial colonization in the murine genital tract during the first 12-24 h following inoculation.

  13. An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila.

    PubMed

    Kaur, Harsimran; Sparvoli, Daniela; Osakada, Hiroko; Iwamoto, Masaaki; Haraguchi, Tokuko; Turkewitz, Aaron P

    2017-06-01

    The ciliate Tetrahymena thermophila synthesizes large secretory vesicles called mucocysts. Mucocyst biosynthesis shares features with dense core granules (DCGs) in animal cells, including proteolytic processing of cargo proteins during maturation. However, other molecular features have suggested relatedness to lysosome-related organelles (LROs). LROs, which include diverse organelles in animals, are formed via convergence of secretory and endocytic trafficking. Here we analyzed Tetrahymena syntaxin 7-like 1 (Stx7l1p), a Qa-SNARE whose homologues in other lineages are linked with vacuoles/LROs. Stx7l1p is targeted to both immature and mature mucocysts and is essential in mucocyst formation. In STX7L1 -knockout cells, the two major classes of mucocyst cargo proteins localize independently, accumulating in largely nonoverlapping vesicles. Thus initial formation of immature mucocysts involves heterotypic fusion, in which a subset of mucocyst proteins is delivered via an endolysosomal compartment. Further, we show that subsequent maturation requires AP-3, a complex widely implicated in LRO formation. Knockout of the µ-subunit gene does not impede delivery of any known mucocyst cargo but nonetheless arrests mucocyst maturation. Our data argue that secretory organelles in ciliates may represent a new class of LROs and reveal key roles of an endosomal syntaxin and AP-3 in the assembly of this complex compartment. © 2017 Kaur et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts.

    PubMed

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-06-27

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    PubMed Central

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  16. Current Progress of Virus-mimicking Nanocarriers for Drug Delivery

    PubMed Central

    Somiya, Masaharu; Liu, Qiushi; Kuroda, Shun'ichi

    2017-01-01

    Nanomedicines often involve the use of nanocarriers as a delivery system for drugs or genes for maximizing the therapeutic effect and/or minimizing the adverse effect. From drug administration to therapeutic activity, nanocarriers must evade the host's immune system, specifically and efficiently target and enter the cell, and release their payload into the cell cytoplasm by endosomal escape. These processes constitute the early infection stage of viruses. Viruses are a powerful natural nanomaterial for the efficient delivery of genetic information by sophisticated mechanisms. Over the past two decades, many virus-inspired nanocarriers have been generated to permit successful drug and gene delivery. In this review, we summarize the early infection machineries of viruses, of which the part has so far been utilized for delivery systems. Furthermore, we describe basics and applications of the bio-nanocapsule, which is a hepatitis B virus-mimicking nanoparticle harboring nearly all activities involved in the early infection machineries (i.e., stealth activity, targeting activity, cell entry activity, endosomal escaping activity). PMID:29188175

  17. Synchrotron radiation reveals the identity of the large felid from Monte Argentario (Early Pleistocene, Italy).

    PubMed

    Cherin, Marco; Iurino, Dawid A; Zanatta, Marco; Fernandez, Vincent; Paciaroni, Alessandro; Petrillo, Caterina; Rettori, Roberto; Sardella, Raffaele

    2018-05-29

    We describe here a partial skull with associated mandible of a large felid from Monte Argentario, Italy (Early Pleistocene; ~1.5 million years). Propagation x-ray phase-contrast synchrotron microtomography of the specimen, still partially embedded in the rock matrix, allows ascribing it reliably to Acinonyx pardinensis, one of the most intriguing extinct carnivorans of the Old World Plio-Pleistocene. The analysis of images and 3D models obtained through synchrotron microtomography - here applied for the first time on a Plio-Pleistocene carnivoran - reveals a mosaic of cheetah-like and Panthera-like features, with the latter justifying previous attributions of the fossil to the extinct Eurasian jaguar Panthera gombaszoegensis. Similarly, we reassign to A. pardinensis some other Italian materials previously referred to P. gombaszoegensis (sites of Pietrafitta and Ellera di Corciano). The recognition of Panthera-like characters in A. pardinensis leads to reconsidering the ecological role of this species, whose hunting strategy was likely to be different from those of the living cheetah. Furthermore, we hypothesise that the high intraspecific variation in body size in A. pardinensis can be the result of sexual dimorphism, as observed today in all large-sized felids.

  18. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis.

    PubMed

    Sun, Dawei; Nakao, Shintaro; Xie, Fang; Zandi, Souska; Bagheri, Abouzar; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Soheili, Zahra-Soheila; Frimmel, Sonja; Zhang, Zhongyu; Ablonczy, Zsolt; Ahmadieh, Hamid; Hafezi-Moghadam, Ali

    2014-09-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of vision loss. Biomarkers and methods for early diagnosis of DR are urgently needed. Using a new molecular imaging approach, we show up to 94% higher accumulation of custom designed imaging probes against vascular endothelial growth factor receptor 2 (VEGFR-2) in retinal and choroidal vessels of diabetic animals (P<0.01), compared to normal controls. More than 80% of the VEGFR-2 in the diabetic retina was in the capillaries, compared to 47% in normal controls (P<0.01). Angiography in rabbit retinas revealed microvascular capillaries to be the location for VEGF-A-induced leakage, as expressed by significantly higher rate of fluorophore spreading with VEGF-A injection when compared to vehicle control (26±2 vs. 3±1 μm/s, P<0.05). Immunohistochemistry showed VEGFR-2 expression in capillaries of diabetic animals but not in normal controls. Macular vessels from diabetic patients (n=7) showed significantly more VEGFR-2 compared to nondiabetic controls (n=5) or peripheral retinal regions of the same retinas (P<0.01 in both cases). Here we introduce a new approach for early diagnosis of DR and VEGFR-2 as a molecular marker. VEGFR-2 could become a key diagnostic target, one that might help to prevent retinal vascular leakage and proliferation in diabetic patients. © FASEB.

  19. Changes in membrane lipids drive increased endocytosis following Fas ligation.

    PubMed

    Degli Esposti, Mauro; Matarrese, Paola; Tinari, Antonella; Longo, Agostina; Recalchi, Serena; Khosravi-Far, Roya; Malorni, Walter; Misasi, Roberta; Garofalo, Tina; Sorice, Maurizio

    2017-05-01

    Once activated, some surface receptors promote membrane movements that open new portals of endocytosis, in part to facilitate the internalization of their activated complexes. The prototypic death receptor Fas (CD95/Apo1) promotes a wave of enhanced endocytosis that induces a transient intermixing of endosomes with mitochondria in cells that require mitochondria to amplify death signaling. This initiates a global alteration in membrane traffic that originates from changes in key membrane lipids occurring in the endoplasmic reticulum (ER). We have focused the current study on specific lipid changes occurring early after Fas ligation. We analyzed the interaction between endosomes and mitochondria in Jurkat T cells by nanospray-Time-of-flight (ToF) Mass Spectrometry. Immediately after Fas ligation, we found a transient wave of lipid changes that drives a subpopulation of early endosomes to merge with mitochondria. The earliest event appears to be a decrease of phosphatidylcholine (PC), linked to a metabolic switch enhancing phosphatidylinositol (PI) and phosphoinositides, which are crucial for the formation of vacuolar membranes and endocytosis. Lipid changes occur independently of caspase activation and appear to be exacerbated by caspase inhibition. Conversely, inhibition or compensation of PC deficiency attenuates endocytosis, endosome-mitochondria mixing and the induction of cell death. Deficiency of receptor interacting protein, RIP, also limits the specific changes in membrane lipids that are induced by Fas activation, with parallel reduction of endocytosis. Thus, Fas activation rapidly changes the interconversion of PC and PI, which then drives enhanced endocytosis, thus likely propagating death signaling from the cell surface to mitochondria and other organelles.

  20. Explaining Why Early-Maturing Girls Are More Exposed to Sexual Harassment in Early Adolescence

    ERIC Educational Resources Information Center

    Skoog, Therése; Bayram Özdemir, Sevgi

    2016-01-01

    In this study, we tested two competing explanations of the previously established link between early female puberty and sexual harassment in early adolescence. The sample included 680 seventh-grade Swedish girls (M[subscript age] = 13.40, SD = 0.53). Findings revealed that looking more sexually mature and being sexually active mediated the link…

  1. CED-10/Rac1 Regulates Endocytic Recycling through the RAB-5 GAP TBC-2

    PubMed Central

    Sun, Lin; Liu, Ou; Desai, Jigar; Karbassi, Farhad; Sylvain, Marc-André; Shi, Anbing; Zhou, Zheng; Rocheleau, Christian E.; Grant, Barth D.

    2012-01-01

    Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L) also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane. PMID:22807685

  2. Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth.

    PubMed

    Su, Tao; Wolf, Sebastian; Han, Mei; Zhao, Hongbo; Wei, Hongbin; Greiner, Steffen; Rausch, Thomas

    2016-01-01

    In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) are recognized as essential players in sugar metabolism and sugar signaling, thereby affecting source-sink interactions, plant development and responses to environmental cues. CWI and VI expression levels are transcriptionally controlled; however, both enzymes are also subject to posttranslational control by invertase inhibitor proteins. The physiological significances of inhibitor proteins during seed germination and early seedling development are not yet fully understood. Here, we demonstrate that the inhibitor isoform AtCIF1 impacted on seed germination and early seedling growth in Arabidopsis. The primary target of AtCIF1 was shown to be localized to the apoplast after expressing an AtCIF1 YFP-fusion construct in tobacco epidermis and transgenic Arabidopsis root. The analysis of expression patterns showed that AtCWI1 was co-expressed spatiotemporally with AtCIF1 within the early germinating seeds. Seed germination was observed to be accelerated independently of exogenous abscisic acid (ABA) in the AtCIF1 loss-of-function mutant cif1-1. This effect coincided with a drastic increase of CWI activity in cif1-1 mutant seeds by 24 h after the onset of germination, both in vitro and in planta. Accordingly, quantification of sugar content showed that hexose levels were significantly boosted in germinating seeds of the cif1-1 mutant. Further investigation of AtCIF1 overexpressors in Arabidopsis revealed a markedly suppressed CWI activity as well as delayed seed germination. Thus, we conclude that the posttranslational modulation of CWI activity by AtCIF1 helps to orchestrate seed germination and early seedling growth via fine-tuning sucrose hydrolysis and, possibly, sugar signaling.

  3. Pro-metastatic NEDD9 regulates individual cell migration via caveolin-1-dependent trafficking of integrins

    PubMed Central

    Kozyulina, Polina Y.; Loskutov, Yuriy V.; Kozyreva, Varvara K.; Rajulapati, Anuradha; Ice, Ryan J.; Jones, Brandon. C.; Pugacheva, Elena N.

    2014-01-01

    The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of pro-metastatic protein, NEDD9, in breast cancer (BC) cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and co-localizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand/integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Re-expression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9 depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. PMID:25319010

  4. Interactions between Melanin Enzymes and Their Atypical Recruitment to the Secretory Pathway by Palmitoylation

    PubMed Central

    Upadhyay, Srijana; Xu, Xinping

    2016-01-01

    ABSTRACT Melanins are biopolymers that confer coloration and protection to the host organism against biotic or abiotic insults. The level of protection offered by melanin depends on its biosynthesis and its subcellular localization. Previously, we discovered that Aspergillus fumigatus compartmentalizes melanization in endosomes by recruiting all melanin enzymes to the secretory pathway. Surprisingly, although two laccases involved in the late steps of melanization are conventional secretory proteins, the four enzymes involved in the early steps of melanization lack a signal peptide or a transmembrane domain and are thus considered “atypical” secretory proteins. In this work, we found interactions among melanin enzymes and all melanin enzymes formed protein complexes. Surprisingly, the formation of protein complexes by melanin enzymes was not critical for their trafficking to the endosomal system. By palmitoylation profiling and biochemical analyses, we discovered that all four early melanin enzymes were strongly palmitoylated during conidiation. However, only the polyketide synthase (PKS) Alb1 was strongly palmitoylated during both vegetative hyphal growth and conidiation when constitutively expressed alone. This posttranslational lipid modification correlates the endosomal localization of all early melanin enzymes. Intriguingly, bioinformatic analyses predict that palmitoylation is a common mechanism for potential membrane association of polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in A. fumigatus. Our findings indicate that protein-protein interactions facilitate melanization by metabolic channeling, while posttranslational lipid modifications help recruit the atypical enzymes to the secretory pathway, which is critical for compartmentalization of secondary metabolism. PMID:27879337

  5. Revealing the origin of the cold ISM in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Davis, T. A.; Alatalo, K.; Bureau, M.; Young, L.; Blitz, L.; Crocker, A.; Bayet, E.; Bois, M.; Bournaud, F.; Cappellari, M.; Davies, R. L.; Duc, P.-A.; de Zeeuw, P. T.; Emsellem, E.; Falcon-Barroso, J.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Morganti, R.; Naab, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.

    2013-07-01

    Recently, massive early-type galaxies have shed their red-and-dead moniker, thanks to the discovery that many host residual star formation. As part of the ATLAS-3D project, we have conducted a complete, volume-limited survey of the molecular gas in 260 local early-type galaxies with the IRAM-30m telescope and the CARMA interferometer, in an attempt to understand the fuel powering this star formation. We find that around 22% of early-type galaxies in the local volume host molecular gas reservoirs. This detection rate is independent of galaxy luminosity and environment. Here we focus on how kinematic misalignment measurements and gas-to-dust ratios can be used to put constraints on the origin of the cold ISM in these systems. The origin of the cold ISM seems to depend strongly on environment, with misaligned, dust poor gas (indicative of externally acquired material) being common in the field but completely absent in rich groups and in the Virgo cluster. Very massive galaxies also appear to be devoid of accreted gas. This suggests that in the field mergers and/or cold gas accretion dominate the gas supply, while in clusters internal secular processes become more important. This implies that environment has a strong impact on the cold gas properties of ETGs.

  6. Exome Sequencing Frequently Reveals the Cause of Early-Onset Chronic Kidney Disease

    PubMed Central

    Vivante, Asaf; Hildebrandt, Friedhelm

    2016-01-01

    The primary causes of chronic kidney disease (CKD) in children differ from those of adult onset CKD. In the United States the most common diagnostic groups of CKD that manifests before 25 years of age are: i) congenital anomalies of the kidneys and urinary tract (CAKUT) (49.1%), ii) steroid-resistant nephrotic syndrome (SRNS) (10.4%), iii) chronic glomerulonephritis (8.1%), and iv) renal cystic ciliopathies (5.3 %), encompassing >70% of CKD together. Recent findings suggest that early-onset CKD is caused by mutations in any one of over 200 different monogenic genes. High-throughput sequencing has very recently rendered identification of causative mutations in this high number of genes feasible. Molecular genetic diagnostics in early onset-CKD (before the age of 25 years) will, i) provide patients and families with a molecular genetic diagnosis, ii) generate new insights into diseases mechanisms, iii) allow etiology-based classification of patient cohorts for clinical studies and, iv) may have consequences for personalized treatment and prevention of CKD. In this review, we will discuss the implications of next-generation sequencing for clinical genetic diagnostics and discovery of novel genes in early-onset CKD. We also delineate the resulting opportunities for deciphering disease mechanisms and therapeutic implications. PMID:26750453

  7. Starch grains on human teeth reveal early broad crop diet in northern Peru

    PubMed Central

    Piperno, Dolores R.; Dillehay, Tom D.

    2008-01-01

    Previous research indicates that the Ñanchoc Valley in northern Peru was an important locus of early and middle Holocene human settlement, and that between 9200 and 5500 14C yr B.P. the valley inhabitants adopted major crop plants such as squash (Cucurbita moschata), peanuts (Arachis sp.), and cotton (Gossypium barbadense). We report here an examination of starch grains preserved in the calculus of human teeth from these sites that provides direct evidence for the early consumption of cultivated squash and peanuts along with two other major food plants not previously detected. Starch from the seeds of Phaseolus and Inga feuillei, the flesh of Cucurbita moschata fruits, and the nuts of Arachis was routinely present on numerous teeth that date to between 8210 and 6970 14C yr B.P. Early plant diets appear to have been diverse and stable through time and were rich in cultivated foods typical of later Andean agriculture. Our data provide early archaeological evidence for Phaseolus beans and I. feuillei, an important tree crop, and indicate that effective food production systems that contributed significant dietary inputs were present in the Ñanchoc region by 8000 14C yr B.P. Starch grain studies of dental remains document plants and edible parts of them not normally preserved in archaeological records and can assume primary roles as direct indicators of ancient human diets and agriculture. PMID:19066222

  8. PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Lee, Yeon Kyung; Lee, Jong Yeon; Hong, Jeong Hee; Khang, Dongwoo

    2017-11-01

    Although activating apoptosis in cancer cells by targeting the mitochondria is an effective strategy for cancer therapy, insufficient targeting of the mitochondria in cancer cells restricts the availability in clinical treatment. Here, we report on a polyethylene glycol-coated carbon nanotube (CNT)-ABT737 nanodrug that improves the mitochondrial targeting of lung cancer cells. The polyethylene glycol-coated CNT-ABT737 nanodrug internalized into the early endosomes via macropinocytosis and clathrin-mediated endocytosis in advance of early endosomal escape and delivered into the mitochondria. Cytosol release of the nanodrug led to apoptosis of lung cancer cells by abruption of the mitochondrial membrane potential, inducing Bcl-2-mediated apoptosis and generating intracellular reactive oxygen species. As such, this study provides an effective strategy for increasing the anti-lung cancer efficacy by increasing mitochondria accumulation rate of cytosol released anticancer nanodrugs.

  9. The intermediate filament network protein, vimentin, is required for parvoviral infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fay, Nikta; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    Intermediate filaments (IFs) have recently been shown to serve novel roles during infection by many viruses. Here we have begun to study the role of IFs during the early steps of infection by the parvovirus minute virus of mice (MVM). We found that during early infection with MVM, after endosomal escape, the vimentin IF network was considerably altered, yielding collapsed immunofluorescence staining near the nuclear periphery. Furthermore, we found that vimentin plays an important role in the life cycle of MVM. The number of cells, which successfully replicated MVM, was reduced in infected cells in which the vimentin network wasmore » genetically or pharmacologically modified; viral endocytosis, however, remained unaltered. Perinuclear accumulation of MVM-containing vesicles was reduced in cells lacking vimentin. Our data suggests that vimentin is required for the MVM life cycle, presenting possibly a dual role: (1) following MVM escape from endosomes and (2) during endosomal trafficking of MVM. - Highlights: • MVM infection changes the distribution of the vimentin network to perinuclear regions. • Disrupting the vimentin network with acrylamide decreases MVM replication. • MVM replication is significantly reduced in vimentin-null cells. • Distribution of MVM-containing vesicles is affected in MVM infected vimentin-null cells.« less

  10. The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts*

    PubMed Central

    Jensen, Dane D.; Godfrey, Cody B.; Niklas, Christian; Canals, Meritxell; Kocan, Martina; Poole, Daniel P.; Murphy, Jane E.; Alemi, Farzad; Cottrell, Graeme S.; Korbmacher, Christoph; Lambert, Nevin A.; Bunnett, Nigel W.; Corvera, Carlos U.

    2013-01-01

    TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists

  11. The GPRC6A receptor displays constitutive internalization and sorting to the slow recycling pathway.

    PubMed

    Jacobsen, Stine Engesgaard; Ammendrup-Johnsen, Ina; Jansen, Anna Mai; Gether, Ulrik; Madsen, Kenneth Lindegaard; Bräuner-Osborne, Hans

    2017-04-28

    The class C G protein-coupled receptor GPRC6A is a putative nutrient-sensing receptor and represents a possible new drug target in metabolic disorders. However, the specific physiological role of this receptor has yet to be identified, and the mechanisms regulating its activity and cell surface availability also remain enigmatic. In the present study, we investigated the trafficking properties of GPRC6A by use of both a classical antibody feeding internalization assay in which cells were visualized using confocal microscopy and a novel internalization assay that is based on real-time measurements of fluorescence resonance energy transfer. Both assays revealed that GPRC6A predominantly undergoes constitutive internalization, whereas the agonist-induced effects were imperceptible. Moreover, postendocytic sorting was investigated by assessing the co-localization of internalized GPRC6A with selected Rab protein markers. Internalized GPRC6A was mainly co-localized with the early endosome marker Rab5 and the long loop recycling endosome marker Rab11 and to a much lesser extent with the late endosome marker Rab7. This suggests that upon agonist-independent internalization, GPRC6A is recycled via the Rab11-positive slow recycling pathway, which may be responsible for ensuring a persistent pool of GPRC6A receptors at the cell surface despite chronic agonist exposure. Distinct trafficking pathways have been reported for several of the class C receptors, and our results thus substantiate that non-canonical trafficking mechanisms are a common feature for the nutrient-sensing class C family that ensure functional receptors in the cell membrane despite prolonged agonist exposure. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The GPRC6A receptor displays constitutive internalization and sorting to the slow recycling pathway

    PubMed Central

    Jacobsen, Stine Engesgaard; Ammendrup-Johnsen, Ina; Jansen, Anna Mai; Gether, Ulrik; Madsen, Kenneth Lindegaard; Bräuner-Osborne, Hans

    2017-01-01

    The class C G protein-coupled receptor GPRC6A is a putative nutrient-sensing receptor and represents a possible new drug target in metabolic disorders. However, the specific physiological role of this receptor has yet to be identified, and the mechanisms regulating its activity and cell surface availability also remain enigmatic. In the present study, we investigated the trafficking properties of GPRC6A by use of both a classical antibody feeding internalization assay in which cells were visualized using confocal microscopy and a novel internalization assay that is based on real-time measurements of fluorescence resonance energy transfer. Both assays revealed that GPRC6A predominantly undergoes constitutive internalization, whereas the agonist-induced effects were imperceptible. Moreover, postendocytic sorting was investigated by assessing the co-localization of internalized GPRC6A with selected Rab protein markers. Internalized GPRC6A was mainly co-localized with the early endosome marker Rab5 and the long loop recycling endosome marker Rab11 and to a much lesser extent with the late endosome marker Rab7. This suggests that upon agonist-independent internalization, GPRC6A is recycled via the Rab11-positive slow recycling pathway, which may be responsible for ensuring a persistent pool of GPRC6A receptors at the cell surface despite chronic agonist exposure. Distinct trafficking pathways have been reported for several of the class C receptors, and our results thus substantiate that non-canonical trafficking mechanisms are a common feature for the nutrient-sensing class C family that ensure functional receptors in the cell membrane despite prolonged agonist exposure. PMID:28280242

  13. Biocompatible mannosylated endosomal-escape nanoparticles enhance selective delivery of short nucleotide sequences to tumor associated macrophages

    NASA Astrophysics Data System (ADS)

    Ortega, Ryan A.; Barham, Whitney J.; Kumar, Bharat; Tikhomirov, Oleg; McFadden, Ian D.; Yull, Fiona E.; Giorgio, Todd D.

    2014-12-01

    Tumor associated macrophages (TAMs) can modify the tumor microenvironment to create a pro-tumor niche. Manipulation of the TAM phenotype is a novel, potential therapeutic approach to engage anti-cancer immunity. siRNA is a molecular tool for knockdown of specific mRNAs that is tunable in both strength and duration. The use of siRNA to reprogram TAMs to adopt an immunogenic, anti-tumor phenotype is an attractive alternative to ablation of this cell population. One current difficulty with this approach is that TAMs are difficult to specifically target and transfect. We report here successful utilization of novel mannosylated polymer nanoparticles (MnNP) that are capable of escaping the endosomal compartment to deliver siRNA to TAMs in vitro and in vivo. Transfection with MnNP-siRNA complexes did not significantly decrease TAM cell membrane integrity in culture, nor did it create adverse kidney or liver function in mice, even at repeated doses of 5 mg kg-1. Furthermore, MnNP effectively delivers labeled nucleotides to TAMs in mice with primary mammary tumors. We also confirmed TAM targeting in the solid tumors disseminated throughout the peritoneum of ovarian tumor bearing mice following injection of fluorescently labeled MnNP-nucleotide complexes into the peritoneum. Finally, we show enhanced uptake of MnNP in lung metastasis associated macrophages compared to untargeted particles when using an intubation delivery method. In summary, we have shown that MnNP specifically and effectively deliver siRNA to TAMs in vivo.

  14. The Class III Kinase Vps34 Promotes T Lymphocyte Survival through Regulating IL-7Rα Surface Expression

    PubMed Central

    McLeod, Ian X.; Zhou, Xiang; Li, Qi-Jing; Wang, Fan; He, You-Wen

    2011-01-01

    IL-7Rα mediated signals are essential for naive T lymphocyte survival. Recent studies show that IL-7Rα is internalized and either recycled to cell surface or degraded. However, how the intracellular process of IL-7Rα trafficking is regulated is unclear. Here we show that Vps34, the class III phosphatidylinositol 3-kinase, plays a critical role in proper IL-7Rα intracellular trafficking. Mice lacking Vps34 in T lymphocytes had a severely reduced T lymphocyte compartment. Vps34-deficient T lymphocytes exhibit increased death and reduced IL-7Rα surface expression, though three major forms of autophagy remain intact. Intracellular IL-7Rα in normal T lymphocytes at steady-state is trafficked through either early endosome/multivesicular bodies (MVB) to the late endosome-Golgi for surface expression or to the lysosome for degradation. However, Vps34-deficient T cells have mislocalized intracellular Eea1, HRS, and Vps36 protein levels, the combined consequence of which is the inability to mobilize internalized IL-7Rα into the retromer pathway for surface display. Our studies reveal that Vps34, though dispensible for autophagy induction, is a critical regulator of naïve T cell homeostasis, modulating IL-7Rα trafficking, signaling, and recycling. PMID:22021616

  15. Effects of cholesterol on CCK-1 receptors and caveolin-3 proteins recycling in human gallbladder muscle

    PubMed Central

    Cong, P.; Pricolo, V.; Biancani, P.

    2010-01-01

    The contraction of gallbladders (GBs) with cholesterol stones is impaired due to high cholesterol concentrations in caveolae compared with GBs with pigment stones. The reduced contraction is caused by a lower cholecystokinin (CCK)-8 binding to CCK-1 receptors (CCK-1R) due to caveolar sequestration of receptors. We aimed to examine the mechanism of cholesterol-induced sequestration of receptors. Muscle cells from human and guinea pig GBs were studied. Antibodies were used to examine CCK-1R, antigens of early and recycling endosomes, and total (CAV-3) and phosphorylated caveolar-3 protein (pCAV-3) by Western blots. Contraction was measured in muscle cells transfected with CAV3 mRNA or clathrin heavy-chain small-interfering RNA (siRNA). CCK-1R returned back to the bulk plasma membrane (PM) 30 min after CCK-8 recycled by endosomes, peaking at 5 min in early endosomes and at 20 min in recycling endosomes. Pretreatment with cholesterol-rich liposomes inhibited the transfer of CCK-1R and of CAV-3 in the endosomes by blocking CAV-3 phosphorylation. 4-Amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (inhibitor of tyrosine kinase) reproduced these effects by blocking pCAV-3 formation, increasing CAV-3 and CCK-1R sequestration in the caveolae and impairing CCK-8-induced contraction. CAV-3 siRNA reduced CAV-3 protein expression, decreased CCK-8-induced contraction, and accumulated CCK-1R in the caveolae. Abnormal concentrations of caveolar cholesterol had no effect on met-enkephalin that stimulates a δ-opioid receptor that internalizes through clathrin. We found that impaired muscle contraction in GBs with cholesterol stones is due to high caveolar levels of cholesterol that inhibits pCAV-3 generation. Caveolar cholesterol increases the caveolar sequestration of CAV-3 and CCK-1R caused by their reduced recycling to the PM. PMID:20558763

  16. Specific biomolecule corona is associated with ring-shaped organization of silver nanoparticles in cells

    NASA Astrophysics Data System (ADS)

    Drescher, Daniela; Guttmann, Peter; Büchner, Tina; Werner, Stephan; Laube, Gregor; Hornemann, Andrea; Tarek, Basel; Schneider, Gerd; Kneipp, Janina

    2013-09-01

    We correlate the localization of silver nanoparticles inside cells with respect to the cellular architecture with the molecular information in the vicinity of the particle surface by combining nanoscale 3D cryo-soft X-ray tomography (cryo-SXT) with surface-enhanced Raman scattering (SERS). The interaction of the silver nanoparticle surface with small molecules and biopolymers was monitored by SERS in vitro over time in living cells. The spectra indicate a stable, time-independent surface composition of silver nanoparticles, despite the changing environment in the endosomal structure. Cryo-SXT reveals a characteristic ring-shaped organization of the silver nanoparticles in endosomes of different cell types. The ring-like structures inside the endosomes suggest a strong association among silver particles and with membrane structures. The comparison of the data with those obtained with gold nanoparticles suggests that the interactions between the nanoparticles and with the endosomal component are influenced by the molecular composition of the corona.We correlate the localization of silver nanoparticles inside cells with respect to the cellular architecture with the molecular information in the vicinity of the particle surface by combining nanoscale 3D cryo-soft X-ray tomography (cryo-SXT) with surface-enhanced Raman scattering (SERS). The interaction of the silver nanoparticle surface with small molecules and biopolymers was monitored by SERS in vitro over time in living cells. The spectra indicate a stable, time-independent surface composition of silver nanoparticles, despite the changing environment in the endosomal structure. Cryo-SXT reveals a characteristic ring-shaped organization of the silver nanoparticles in endosomes of different cell types. The ring-like structures inside the endosomes suggest a strong association among silver particles and with membrane structures. The comparison of the data with those obtained with gold nanoparticles suggests that the

  17. Novel functions for the endocytic regulatory proteins MICAL-L1 and EHD1 in mitosis.

    PubMed

    Reinecke, James B; Katafiasz, Dawn; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    During interphase, recycling endosomes mediate the transport of internalized cargo back to the plasma membrane. However, in mitotic cells, recycling endosomes are essential for the completion of cytokinesis, the last phase of mitosis that promotes the physical separation the two daughter cells. Despite recent advances, our understanding of the molecular determinants that regulate recycling endosome dynamics during cytokinesis remains incomplete. We have previously demonstrated that Molecule Interacting with CasL Like-1 (MICAL-L1) and C-terminal Eps15 Homology Domain protein 1 (EHD1) coordinately regulate receptor transport from tubular recycling endosomes during interphase. However, their potential roles in controlling cytokinesis had not been addressed. In this study, we show that MICAL-L1 and EHD1 regulate mitosis. Depletion of either protein resulted in increased numbers of bi-nucleated cells. We provide evidence that bi-nucleation in MICAL-L1- and EHD1-depleted cells is a consequence of impaired recycling endosome transport during late cytokinesis. However, depletion of MICAL-L1, but not EHD1, resulted in aberrant chromosome alignment and lagging chromosomes, suggesting an EHD1-independent function for MICAL-L1 earlier in mitosis. Moreover, we provide evidence that MICAL-L1 and EHD1 differentially influence microtubule dynamics during early and late mitosis. Collectively, our new data suggest several unanticipated roles for MICAL-L1 and EHD1 during the cell cycle. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils.

    PubMed

    Sugitani, K; Mimura, K; Takeuchi, M; Lepot, K; Ito, S; Javaux, E J

    2015-11-01

    The Strelley Pool Formation (SPF) is widely distributed in the East Pilbara Terrane (EPT) of the Pilbara Craton, Western Australia, and represents a Paleoarchean shallow-water to subaerial environment. It was deposited ~3.4 billion years ago and displays well-documented carbonate stromatolites. Diverse putative microfossils (SPF microfossils) were recently reported from several localities in the East Strelley, Panorama, Warralong, and Goldsworthy greenstone belts. Thus, the SPF provides unparalleled opportunities to gain insights into a shallow-water to subaerial ecosystem on the early Earth. Our new micro- to nanoscale ultrastructural and microchemical studies of the SPF microfossils show that large (20-70 μm) lenticular organic-walled flanged microfossils retain their structural integrity, morphology, and chain-like arrangements after acid (HF-HCl) extraction (palynology). Scanning and transmitted electron microscopy of extracted microfossils revealed that the central lenticular body is either alveolar or hollow, and the wall is continuous with the surrounding smooth to reticulated discoidal flange. These features demonstrate the evolution of large micro-organisms able to form an acid-resistant recalcitrant envelope or cell wall with complex morphology and to form colonial chains in the Paleoarchean era. This study provides evidence of the evolution of very early and remarkable biological innovations, well before the presumed late emergence of complex cells. © 2015 John Wiley & Sons Ltd.

  19. Single-virus tracking approach to reveal the interaction of Dengue virus with autophagy during the early stage of infection

    NASA Astrophysics Data System (ADS)

    Chu, Li-Wei; Huang, Yi-Lung; Lee, Jin-Hui; Huang, Long-Ying; Chen, Wei-Jun; Lin, Ya-Hsuan; Chen, Jyun-Yu; Xiang, Rui; Lee, Chau-Hwang; Ping, Yueh-Hsin

    2014-01-01

    Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.

  20. DNA internalized via caveolae requires microtubule-dependent, Rab7-independent transport to the late endocytic pathway for delivery to the nucleus.

    PubMed

    Wong, Athena W; Scales, Suzie J; Reilly, Dorothea E

    2007-08-03

    Using cationic liposomes to mediate gene delivery by transfection has the advantages of improved safety and simplicity of use over viral gene therapy. Understanding the mechanism by which cationic liposome:DNA complexes are internalized and delivered to the nucleus should help identify which transport steps might be manipulated in order to improve transfection efficiencies. We therefore examined the endocytosis and trafficking of two cationic liposomes, DMRIE-C and Lipofectamine LTX, in CHO cells. We found that DMRIE-C-transfected DNA is internalized via caveolae, while LTX-transfected DNA is internalized by clathrin-mediated endocytosis, with both pathways converging at the late endosome or lysosome. Inhibition of microtubule-dependent transport with nocodazole revealed that DMRIE-C:DNA complexes cannot enter the cytosol directly from caveosomes. Lysosomal degradation of transfected DNA has been proposed to be a major reason for poor transfection efficiency. However, in our system dominant negatives of both Rab7 and its effector RILP inhibited late endosome to lysosome transport of DNA complexes and LDL, but did not affect DNA delivery to the nucleus. This suggests that DNA is able to escape from late endosomes without traversing lysosomes and that caveosome to late endosome transport does not require Rab7 function. Lysosomal inhibition with chloroquine likewise had no effect on transfection product titers. These data suggest that DMRIE-C and LTX transfection complexes are endocytosed by separate pathways that converge at the late endosome or lysosome, but that blocking lysosomal traffic does not improve transfection product yields, identifying late endosome/lysosome to nuclear delivery as a step for future study.