Sample records for early eocene continental

  1. Mid-latitude continental temperatures through the early Eocene in western Europe

    NASA Astrophysics Data System (ADS)

    Inglis, Gordon N.; Collinson, Margaret E.; Riegel, Walter; Wilde, Volker; Farnsworth, Alexander; Lunt, Daniel J.; Valdes, Paul; Robson, Brittany E.; Scott, Andrew C.; Lenz, Olaf K.; Naafs, B. David A.; Pancost, Richard D.

    2017-02-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are increasingly used to reconstruct mean annual air temperature (MAAT) during the early Paleogene. However, the application of this proxy in coal deposits is limited and brGDGTs have only been detected in immature coals (i.e. lignites). Using samples recovered from Schöningen, Germany (∼48°N palaeolatitude), we provide the first detailed study into the occurrence and distribution of brGDGTs through a sequence of early Eocene lignites and associated interbeds. BrGDGTs are abundant and present in every sample. In comparison to modern studies, changes in vegetation type do not appear to significantly impact brGDGT distributions; however, there are subtle differences between lignites - representing peat-forming environments - and siliciclastic nearshore marine interbed depositional environments. Using the most recent brGDGT temperature calibration (MATmr) developed for soils, we generate the first continental temperature record from central-western continental Europe through the early Eocene. Lignite-derived MAAT estimates range from 23 to 26 °C while those derived from the nearshore marine interbeds exceed 20 °C. These estimates are consistent with other mid-latitude environments and model simulations, indicating enhanced mid-latitude, early Eocene warmth. In the basal part of the section studied, warming is recorded in both the lignites (∼2 °C) and nearshore marine interbeds (∼2-3 °C). This culminates in a long-term temperature maximum, likely including the Early Eocene Climatic Optimum (EECO). Although this long-term warming trend is relatively well established in the marine realm, it has rarely been shown in terrestrial settings. Using a suite of model simulations we show that the magnitude of warming at Schöningen is broadly consistent with a doubling of CO2, in agreement with late Paleocene and early Eocene pCO2 estimates.

  2. Continental temperatures through the early Eocene in western central Europe

    NASA Astrophysics Data System (ADS)

    Inglis, G. N.; Collinson, M. E.; Riegel, W.; Wilde, V.; Farnsworth, A.; Lunt, D. J.; Robson, B.; Scott, A. C.; Lenz, O.; Pancost, R.

    2016-12-01

    In contrast to the marine realm, our understanding of terrestrial temperature change during greenhouse climates is poorly constrained. Recently, branched glycerol dialkyl glycerol tetraethers (brGDGTs) have been used to successfully reconstruct mean annual air temperature (MAAT) during the early Paleogene. However, despite the potential to provide new insights into terrestrial climate, the application of this proxy in lignite and coal deposits is still limited. Using samples recovered from Schöningen, Germany ( 48°N), we provide the first detailed study into the occurrence and distribution of brGDGTs through a sequence of Early Eocene lignites and associated marine interbeds. Branched GDGTs are abundant and present in every sample. In comparison to modern studies, changes in vegetation type do not appear to significantly impact brGDGT distributions; however, there are subtle differences in these distributions between lignites and siliciclastic nearshore marine interbed sediments. Using the most recent brGDGT temperature calibration, we generate the first continental temperature record from central-western continental Europe through the Early Eocene. Lignite-derived MAAT estimates range from 23 to 26°C and those derived from the nearshore marine interbeds always exceed 20°C. These estimates are consistent with other mid-latitude palaeoclimate proxy records which indicate enhanced early Eocene warmth. In the basal part of the section, warming is recorded in both the lignites ( 2°C) and nearshore marine interbeds ( 2-3°C). This culminates in a long-term temperature maximum, likely including the Early Eocene Climatic Optimum (EECO). Although this trend is relatively well established in marginal marine sediments within the SW Pacific, it has rarely been shown in other regions or terrestrial settings. Using a suite of new climate model simulations, our warming trend is consistent with a doubling of CO2 (from 560ppmv to 1120ppmv) which broadly agrees with proxy

  3. Astronomically forced paleoclimate change from middle Eocene to early Oligocene: continental conditions in central China compared with the global marine isotope record

    NASA Astrophysics Data System (ADS)

    Huang, C.; Hinnov, L. A.

    2010-12-01

    The early Eocene climatic optimum ended with a long interval of global cooling that began in the early Middle Eocene and ended at the Eocene-Oligocene transition. During this long-term cooling, a series of short-term warming reversals occurred in the marine realm. Here, we investigate corresponding continental climate conditions as revealed in the Qianjiang Formation of the Jianghan Basin in central China, which consists of more than 4000 m of saline lake sediments. The Qianjiang Formation includes, in its deepest sections, a halite-rich rhythmic sediment succession with dark mudstone, brownish-white siltstone and sandstone, and greyish-white halite. Alternating fresh water (humid/cool)—saline water (dry/hot) deposits reflect climate cycles driven by orbital forcing. High-resolution gamma ray (GR) logging from the basin center captures these pronounced lithological rhythms throughout the formation. Several halite-rich intervals are interpreted as short-term warming events within the middle Eocene to early Oligocene, and could be expressions of coeval warming events in the global marine oxygen isotope record, for example, the middle Eocene climate optimum (MECO) event around 41 Ma. The Eocene-Oligocene boundary is distinguished by a radical change from halite-rich to clastic sediments, indicating a dramatic climate change from warm to cool conditions. Power spectral analysis of the GR series indicates strong short (~100 kyr) eccentricity cycling during the warm/hot episodes. Amplitude modulation of the short eccentricity in the GR series occurs with a strong 405 kyr periodicity. This cycling is calibrated to the La2004 orbital eccentricity model. A climate reversal occurs at 36.5 Ma within the long-term marine cooling trend following MECO, which is reflected also in the Qianjiang GR series, with the latter indicating several brief warm/dry reversals within the trend. A ~2.6 Myr halite-rich warm interval occurs in the latest Eocene in the continental record; both

  4. Eocene cooling linked to early flow across the Tasmanian Gateway.

    PubMed

    Bijl, Peter K; Bendle, James A P; Bohaty, Steven M; Pross, Jörg; Schouten, Stefan; Tauxe, Lisa; Stickley, Catherine E; McKay, Robert M; Röhl, Ursula; Olney, Matthew; Sluijs, Appy; Escutia, Carlota; Brinkhuis, Henk

    2013-06-11

    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52-50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ~49-50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2-4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling.

  5. Eocene cooling linked to early flow across the Tasmanian Gateway

    PubMed Central

    Bijl, Peter K.; Bendle, James A. P.; Bohaty, Steven M.; Pross, Jörg; Schouten, Stefan; Tauxe, Lisa; Stickley, Catherine E.; McKay, Robert M.; Röhl, Ursula; Olney, Matthew; Sluijs, Appy; Escutia, Carlota; Brinkhuis, Henk; Klaus, Adam; Fehr, Annick; Williams, Trevor; Carr, Stephanie A.; Dunbar, Robert B.; Gonzàlez, Jhon J.; Hayden, Travis G.; Iwai, Masao; Jimenez-Espejo, Francisco J.; Katsuki, Kota; Kong, Gee Soo; Nakai, Mutsumi; Passchier, Sandra; Pekar, Stephen F.; Riesselman, Christina; Sakai, Toyosaburo; Shrivastava, Prakash K.; Sugisaki, Saiko; Tuo, Shouting; van de Flierdt, Tina; Welsh, Kevin; Yamane, Masako

    2013-01-01

    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52–50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ∼49–50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2–4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling. PMID:23720311

  6. New Insights into Early Cenozoic Carbon Cycling: Continental Ecosystem Response to Orbital Forcing in the Lacustrine Green River Formation (Western US) at the Conclusion of the Early Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Musher, D.; Grogan, D. S.; Whiteside, J. H.

    2010-12-01

    A series of extreme warming events, known as hyperthermals, interrupted the equable climate conditions predominant during the early Cenozoic hothouse. In marine sediments, these hyperthermals are marked by prominent negative carbon isotope excursions, indicative of dramatic and abrupt changes in the global exogenic carbon pool, as well as carbonate dissolution horizons and benthic foraminiferal extinctions. Hyperthermals are well documented in the marine record, but it is less clear how patterns of global carbon cycling manifested in early Cenozoic terrestrial environments, although some studies have documented amplified excursions relative to that of the marine record. The lacustrine Eocene Green River Formation of Utah is an excellent system for studying the continental environmental context of global carbon cycle dynamics during this time. These sediments span a ~15 Myr time interval, including the entire Early Eocene Climatic Optimum (EECO) and the transition to the long-term Cenozoic cooling trend. To investigate the relationship between the continental carbon record and global carbon cycling, climate, and orbital forcing, we studied a detailed section from the P-4 core drilled in the Uinta Basin bracketing the famous “Mahogany Bed”, a petroliferous layer of oil shale recording a period of enhanced productivity and carbon burial near the end of the EECO. Our carbon isotope measurements of high molecular weight n-alkanes across this boundary suggest a stable global carbon cycle and climate regime persisting ~400 kyr at the terminal EECO. Frequency spectra of published oil yield and gamma ray data from this section reveal concentrated power at Milankovitch frequencies, permitting the assembly of a robust age model. In concert with radioisotopic age control, our orbital chronology allows for comparison of our carbon cycle record to early Eocene astronomical solutions. We show that the Mahogany Bed corresponds to strong minima in short and long eccentricity

  7. Cretaceous-Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Shao, Lei; Cao, Licheng; Qiao, Peijun; Zhang, Xiangtao; Li, Qianyu; van Hinsbergen, Douwe J. J.

    2017-11-01

    The plate kinematic history of the South China Sea opening is key to reconstructing how the Mesozoic configuration of Panthalassa and Tethyan subduction systems evolved into today's complex Southeast Asian tectonic collage. The South China Sea is currently flanked by the Palawan Continental Terrane in the south and South China in the north and the two blocks have long been assumed to be conjugate margins. However, the paleogeographic history of the Palawan Continental Terrane remains an issue of uncertainty and controversy, especially regarding the questions of where and when it was separated from South China. Here we employ detrital zircon U-Pb geochronology and heavy mineral analysis on Cretaceous and Eocene strata from the northern South China Sea and Palawan to constrain the Late Mesozoic-Early Cenozoic provenance and paleogeographic evolution of the region testing possible connection between the Palawan Continental Terrane and the northern South China Sea margin. In addition to a revision of the regional stratigraphic framework using the youngest zircon U-Pb ages, these analyses show that while the Upper Cretaceous strata from the Palawan Continental Terrane are characterized by a dominance of zircon with crystallization ages clustering around the Cretaceous, the Eocene strata feature a large range of zircon ages and a new mineral group of rutile, anatase, and monazite. On the one hand, this change of sediment compositions seems to exclude the possibility of a latest Cretaceous drift of the Palawan Continental Terrane in response to the Proto-South China Sea opening as previously inferred. On the other hand, the zircon age signatures of the Cretaceous-Eocene strata from the Palawan Continental Terrane are largely comparable to those of contemporary samples from the northeastern South China Sea region, suggesting a possible conjugate relationship between the Palawan Continental Terrane and the eastern Pearl River Mouth Basin. Thus, the Palawan Continental

  8. Late Eocene to early Oligocene quantitative paleotemperature record: Evidence from continental halite fluid inclusions

    PubMed Central

    Zhao, Yan-jun; Zhang, Hua; Liu, Cheng-lin; Liu, Bao-kun; Ma, Li-chun; Wang, Li-cheng

    2014-01-01

    Climate changes within Cenozoic extreme climate events such as the Paleocene–Eocene Thermal Maximum and the First Oligocene Glacial provide good opportunities to estimate the global climate trends in our present and future life. However, quantitative paleotemperatures data for Cenozoic climatic reconstruction are still lacking, hindering a better understanding of the past and future climate conditions. In this contribution, quantitative paleotemperatures were determined by fluid inclusion homogenization temperature (Th) data from continental halite of the first member of the Shahejie Formation (SF1; probably late Eocene to early Oligocene) in Bohai Bay Basin, North China. The primary textures of the SF1 halite typified by cumulate and chevron halite suggest halite deposited in a shallow saline water and halite Th can serve as an temperature proxy. In total, one-hundred-twenty-one Th data from primary and single-phase aqueous fluid inclusions with different depths were acquired by the cooling nucleation method. The results show that all Th range from 17.7°C to 50.7°C,with the maximum homogenization temperatures (ThMAX) of 50.5°C at the depth of 3028.04 m and 50.7°C at 3188.61 m, respectively. Both the ThMAX presented here are significantly higher than the highest temperature recorded in this region since 1954and agree with global temperature models for the year 2100 predicted by the Intergovernmental Panel on Climate Change. PMID:25047483

  9. Synchronizing early Eocene deep-sea and continental records - cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores

    NASA Astrophysics Data System (ADS)

    Westerhold, Thomas; Röhl, Ursula; Wilkens, Roy H.; Gingerich, Philip D.; Clyde, William C.; Wing, Scott L.; Bowen, Gabriel J.; Kraus, Mary J.

    2018-03-01

    A consistent chronostratigraphic framework is required to understand the effect of major paleoclimate perturbations on both marine and terrestrial ecosystems. Transient global warming events in the early Eocene, at 56-54 Ma, show the impact of large-scale carbon input into the ocean-atmosphere system. Here we provide the first timescale synchronization of continental and marine deposits spanning the Paleocene-Eocene Thermal Maximum (PETM) and the interval just prior to the Eocene Thermal Maximum 2 (ETM-2). Cyclic variations in geochemical data come from continental drill cores of the Bighorn Basin Coring Project (BBCP, Wyoming, USA) and from marine deep-sea drilling deposits retrieved by the Ocean Drilling Program (ODP). Both are dominated by eccentricity-modulated precession cycles used to construct a common cyclostratigraphic framework. Integration of age models results in a revised astrochronology for the PETM in deep-sea records that is now generally consistent with independent 3He age models. The duration of the PETM is estimated at ˜ 200 kyr for the carbon isotope excursion and ˜ 120 kyr for the associated pelagic clay layer. A common terrestrial and marine age model shows a concurrent major change in marine and terrestrial biota ˜ 200 kyr before ETM-2. In the Bighorn Basin, the change is referred to as Biohorizon B and represents a period of significant mammalian turnover and immigration, separating the upper Haplomylus-Ectocion Range Zone from the Bunophorus Interval Zone and approximating the Wa-4-Wa-5 land mammal zone boundary. In sediments from ODP Site 1262 (Walvis Ridge), major changes in the biota at this time are documented by the radiation of a second generation of apical spine-bearing sphenolith species (e.g., S. radians and S. editus), the emergence of T. orthostylus, and the marked decline of D. multiradiatus.

  10. Extreme Seasonality During Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, P.; Birgenheier, L.

    2012-12-01

    An outcrop multi-proxy dataset from the Uinta Basin, Utah, US indicates that extreme seasonality occurred repeatedly during the Early Eocene transient global warming events (hyperthermals), during the Palaeocene-Eocene Thermal Maximum (PETM) as well as during the six consequent younger hyperthermals. In this multi-proxy analysis we have investigated the precipitation distribution and peakedness changes during Early Eocene hyperthermals. This dataset is different from previously published terrestrial climate proxy analyses, in that we fully utilize the sedimentary record itself, and especially the hydrodynamic indicators within the river strata. We combine these high-resolution sedimentologic-stratigraphic analyses, with analyses of terrestrial burrowing traces, and the conventional palaeosol and stable carbon isotope analyses. With this approach, we are able to better document hydroclimatologic changes, and identify climate seasonality changes, rather than just long-term mean humidity/aridity and temperature trends. For this study we analyzed over 1000 m of Palaeocene and Early Eocene river and lake strata in the Uinta Basin, Utah, US (Figs. 1 and 2). The sedimentologic-stratigraphic analyses of outcrops included measuring detailed stratigraphic sections, analyzing photopanels, a spatial GPS survey, and lateral walk-out of stratigraphic packages across an area of 300 km2, with additional data across an area of ca 6000 km2 (Fig. 2). Continental burrowing traces and palaeosols were analyzed along the measured sections. For geochemical analysis 196 samples of mudrock facies were collected along the measured sections and analyzed for total organic carbon (Corg), total nitrogen (Ntot), and δ13C values of bulk organic matter. Biostratigraphy (25), radiometric dates, and carbon isotope stratigraphy, using bulk δ13C of organic matter in floodplain siltstones confirm the position of the PETM and the 6-8 post-PETM hyperthermals in the studied strata The seasonality

  11. MECO Warming Changes Continental Rainfall Patterns in Eocene Western North America

    NASA Astrophysics Data System (ADS)

    Methner, K.; Mulch, A.; Fiebig, J.; Wacker, U.; Gerdes, A.; Graham, S. A.; Chamberlain, C. P.

    2016-12-01

    Eocene hyperthermals represent temperature extremes superimposed on an existing warm climate. They dramatically affected the marine and terrestrial biosphere, but still remain among the most enigmatic phenomena of Cenozoic climate dynamics. To evaluate the impacts of global warm periods on terrestrial temperature and rainfall records in continental interiors, we sampled a suite of middle Eocene ( 40 Ma) paleosols from a high-elevation mammal fossil locality in the hinterland of the North American Cordillera (Sage Creek Basin, Montana, USA) and integrated laser ablation U-Pb dating of pedogenic carbonate, stable isotope (δ18O) and clumped isotope temperature (Δ47) records. Δ47 temperature data of soil carbonates progressively increase from 23 °C ±3 °C to peak temperatures of 32 °C ±3 °C and subsequently drop to 21 °C ±2 °C and delineate a rapid +9/-11 °C temperature excursion in the paleosol record. This hyperthermal event is accompanied by large and rapid shifts towards low δ18O values and reduced pedogenic CaCO3 contents. U-Pb geochronology of the paleosol carbonate confirms a middle Eocene age for soil carbonate formation (39.5 ±1.4 Ma and 40.1 ±0.8 Ma). Based on U-Pb geochronology, magneto- and biostratigraphy we suggest that the recorded Δ47 temperature excursion reflects peak warming during the Middle Eocene Climatic Optimum (MECO). The MECO in continental western North America appears to be characterized by warmer and wetter (sub-humid) conditions in this high-elevation site. Shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes and require modification of mid-latitude rainfall patterns, indicating a profound impact of the MECO on the hydrological cycle and consequently on atmospheric circulation patterns in the hinterland of the North American Cordillera.

  12. Petrology and age of volcanic-arc rocks from the continental margin of the Bering Sea: implications for Early Eocene relocation of plate boundaries

    USGS Publications Warehouse

    Davis, A.S.; Pickthorn, L.-B.G.; Vallier, T.L.; Marlow, M. S.

    1989-01-01

    Eocene volcanic flow and dike rocks from the Beringian margin have arc characteristics, implying a convergent history for this region during the early Tertiary. Chemical and mineralogical compositions are similar to those of modern Aleutian-arc lavas. They also resemble volcanic-arc compositions from western mainland Alaska, although greater chemical diversity and a stronger continental influence are observed in the Alaskan mainland rocks. Early Eocene ages of 54.4-50.2 Ma for the Beringian samples are well constrained by conventional K-Ar ages of nine plagioclase separates and by concordant 40Ar/39Ar incremental heating and total-fusion experiments. A concordant U-Pb zircon age of 53 Ma for the quartz-diorite dike is in good agreement with the K-Ar data. Plate motion studies of the North Pacific Ocean indicate more northerly directed subduction prior to the Tertiary and a continuous belt of arc-type volcanism extending from Siberia, along the Beringian margin, into mainland Alaska. Around 56 Ma (chron 25-24), subduction changed to a more westerly direction and subduction-related volcanism ceased for most of mainland Alaska. The increasingly oblique angle of convergence should have ended subduction along the Beringian margin as well. However, consistent ages of 54-50 Ma indicate a final pulse in arc-type magmatism during this period of plate adjustment. -from Authors

  13. The terrestrial hydro-climate of the Early Eocene: insights from the oxygen and clumped isotope composition of pedogenic siderite

    NASA Astrophysics Data System (ADS)

    van Dijk, J.; Fernandez, A.; Müller, I.; White, T. S.; Bernasconi, S. M.

    2016-12-01

    The Early Eocene (56 Ma) is the youngest period of Earth's history when CO2 concentrations in the atmosphere (600-1500 ppm) reached levels close to those predicted for future emission scenarios. Proxy-based climate reconstructions from this interval can therefore be used to gain insights on effects that anthropogenic emissions might have on the climate system. So far, Early Eocene climatic data is limited to the oceans, where proxies for temperature are abundant and relatively well understood. However, in order to get a complete picture of the Early Eocene climate, temperature and rainfall reconstructions on the continental paleo-surface are needed. Here, we present clumped and stable oxygen isotope measurements of siderite samples collected along a North-South transect in the North American Continent. These siderites formed in kaolinitic soils that developed globally under the extremely wet and warm conditions of the Early Eocene. They provide a record of both soil temperature and the δ18O composition of meteoric water, which can be used to unravel the regional paleo-precipitation rate. Both parameters were estimated using an elaborate in-house calibration constructed with synthetic siderite precipitated in the presence or absence of iron reducing bacteria. Measurements of δD on plant-derived N-alkanes present within the same soils align well with our δ18Owater data, confirming an Early Eocene meteoric water line similar to the present day. We provide an estimate of the meridional temperature gradient during the Early Eocene and offer constraints on the boundary conditions of the Earth's hydrologic cycle under high pCO2.

  14. Possible role of oceanic heat transport in early Eocene climate

    NASA Technical Reports Server (NTRS)

    Sloan, L. C.; Walker, J. C.; Moore, T. C. Jr

    1995-01-01

    Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an approximately 30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.

  15. The first Late Eocene continental faunal assemblage from tropical North America

    NASA Astrophysics Data System (ADS)

    Jiménez-Hidalgo, Eduardo; Smith, Krister T.; Guerrero-Arenas, Rosalia; Alvarado-Ortega, Jesus

    2015-01-01

    To date, the terrestrial faunal record of the North American late Eocene has been recovered from its subtropical and temperate regions. We report the first late Eocene continental faunal assemblage from tropical North America, in southern Mexico. Fossil specimens were collected from mudstones that crop out in the Municipality of Santiago Yolomécatl, in northwestern Oaxaca. Previously published K-Ar ages of 32.9 ± 0.9 and 35.7 ± 1.0 Ma in overlain nearby volcanic rocks and biostratigraphy of these new localities suggests a Chadronian mammal age for this new local fauna. The assemblage is composed by two turtle taxa, Rhineura, two caniform taxa, a sciurid, a jimomyid rodent, a geomyine rodent, Gregorymys, Leptochoerus, Perchoerus probus, Merycoidodon, a protoceratid, Poebrotherium, Nanotragulus, Miohippus assinoboiensis, a chalicotherid, a tapiroid, cf. Amynodontopsis, Trigonias and the hymenopteran ichnofossils Celliforma curvata and Fictovichnus sciuttoi. The records of these taxa in northwestern Oaxaca greatly expand southerly their former geographic distribution in North America. The records of the geomorph rodents and Nanotragulus extend their former known biochronological range to the late Eocene. The hymenopteran ichnofossils in the localities suggest the presence of a bare soil after periodic waterlogging, under a sub-humid to sub-arid climate. This new local fauna represents the first glimpse of Eocene vertebrate and invertebrate terrestrial life from tropical North America.

  16. Middle Eocene Climatic Optimum linked to continental arc flare-up in Iran?

    NASA Astrophysics Data System (ADS)

    van der Boon, A.; Kuiper, K.; van der Ploeg, R.; Cramwinckel, M.; Honarmand, M.; Sluijs, A.; Krijgsman, W.; Langereis, C. G.

    2017-12-01

    A 500 kyr episode of 3-5 °C gradual global climate warming, some 40 Myr ago, has been termed the Middle Eocene climatic optimum (MECO). It has been associated with a rise in atmospheric CO2 concentrations, but the source of this carbon remains enigmatic. We show, based on new Ar-Ar ages of volcanic rocks in Iran and Azerbaijan, that the time interval spanning the MECO was associated with a massive increase in continental arc volcanism. We also collected almost 300 Ar-Ar and U-Pb ages from literature. Typically, U-Pb ages from the Eocene are slightly younger, by 3 Myr, than Ar-Ar ages. We observed that U-Pb ages are obtained mostly from intrusive rocks and therefore must reflect an intrusive stage that post-dated extrusive volcanism. Combining all ages for extrusive rocks, we show that they cluster around 40.2 Ma, exactly within the time span of the MECO (40.5-40.0 Ma). We estimate volumes of volcanism based on a shapefile of outcrops and average thickness of the sequences. We calculate CO2 estimates using a relation volcanism-CO2 that was earlier used for the Deccan traps (Tobin et al., 2017). Our calculations indicate that the volume of the Iranian middle Eocene volcanic rocks (estimated at 37000 km3) is sufficient to explain the CO2 rise during the MECO. We conclude that continental arc flare-up in the Neotethys subduction zone is a plausible candidate for causing the MECO.

  17. Arctic plant diversity in the Early Eocene greenhouse

    PubMed Central

    Harrington, Guy J.; Eberle, Jaelyn; Le-Page, Ben A.; Dawson, Mary; Hutchison, J. Howard

    2012-01-01

    For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants. PMID:22072610

  18. Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world

    PubMed Central

    Thomas, Ellen; D’haenens, Simon; Speijer, Robert P.; Alegret, Laia

    2018-01-01

    The early Eocene greenhouse world was marked by multiple transient hyperthermal events. The most extreme was the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma), linked to the extinction of the globally recognised deep-sea benthic foraminiferal Velasco fauna, which led to the development of early Eocene assemblages. This turnover has been studied at high resolution, but faunal development into the later early Eocene is poorly documented. There is no widely accepted early Eocene equivalent of the Late Cretaceous-Paleocene Velasco fauna, mainly due to the use of different taxonomic concepts. We compiled Ypresian benthic foraminiferal data from 17 middle bathyal-lower abyssal ocean drilling sites in the Pacific, Atlantic and Indian Oceans, in order to characterise early Eocene deep-sea faunas by comparing assemblages across space, paleodepth and time. Nuttallides truempyi, Oridorsalis umbonatus, Bulimina trinitatensis, the Bulimina simplex group, the Anomalinoides spissiformis group, pleurostomellids, uniserial lagenids, stilostomellids and lenticulinids were ubiquitous during the early Eocene (lower-middle Ypresian). Aragonia aragonensis, the Globocassidulina subglobosa group, the Cibicidoides eocaenus group and polymorphinids became ubiquitous during the middle Ypresian. The most abundant early Ypresian taxa were tolerant to stressed or disturbed environments, either by opportunistic behavior (Quadrimorphina profunda, Tappanina selmensis, Siphogenerinoides brevispinosa) and/or the ability to calcify in carbonate-corrosive waters (N. truempyi). Nuttallides truempyi, T. selmensis and other buliminids (Bolivinoides cf. decoratus group, Bulimina virginiana) were markedly abundant during the middle Ypresian. Contrary to the long-lived, highly diverse and equitable Velasco fauna, common and abundant taxa reflect highly perturbed assemblages through the earliest Ypresian, with lower diversity and equitability following the PETM extinction. In contrast, the middle Ypresian

  19. Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world.

    PubMed

    Arreguín-Rodríguez, Gabriela J; Thomas, Ellen; D'haenens, Simon; Speijer, Robert P; Alegret, Laia

    2018-01-01

    The early Eocene greenhouse world was marked by multiple transient hyperthermal events. The most extreme was the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma), linked to the extinction of the globally recognised deep-sea benthic foraminiferal Velasco fauna, which led to the development of early Eocene assemblages. This turnover has been studied at high resolution, but faunal development into the later early Eocene is poorly documented. There is no widely accepted early Eocene equivalent of the Late Cretaceous-Paleocene Velasco fauna, mainly due to the use of different taxonomic concepts. We compiled Ypresian benthic foraminiferal data from 17 middle bathyal-lower abyssal ocean drilling sites in the Pacific, Atlantic and Indian Oceans, in order to characterise early Eocene deep-sea faunas by comparing assemblages across space, paleodepth and time. Nuttallides truempyi, Oridorsalis umbonatus, Bulimina trinitatensis, the Bulimina simplex group, the Anomalinoides spissiformis group, pleurostomellids, uniserial lagenids, stilostomellids and lenticulinids were ubiquitous during the early Eocene (lower-middle Ypresian). Aragonia aragonensis, the Globocassidulina subglobosa group, the Cibicidoides eocaenus group and polymorphinids became ubiquitous during the middle Ypresian. The most abundant early Ypresian taxa were tolerant to stressed or disturbed environments, either by opportunistic behavior (Quadrimorphina profunda, Tappanina selmensis, Siphogenerinoides brevispinosa) and/or the ability to calcify in carbonate-corrosive waters (N. truempyi). Nuttallides truempyi, T. selmensis and other buliminids (Bolivinoides cf. decoratus group, Bulimina virginiana) were markedly abundant during the middle Ypresian. Contrary to the long-lived, highly diverse and equitable Velasco fauna, common and abundant taxa reflect highly perturbed assemblages through the earliest Ypresian, with lower diversity and equitability following the PETM extinction. In contrast, the middle Ypresian

  20. Megadroughts and Intensified Terrestrial Flooding - Underrated Consequences of Early Eocene Hyperthermals?

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, P.; Birgenheier, L.; Golab, J.

    2011-12-01

    Here we present results of independent multi-proxy analyses of an Early Eocene sedimentary succession from the interior of the US, combining detailed sedimentologic and stratigraphic analyses with ichno-pedogenic analyses and stable carbon isotope analyses through 1000 m of river and lake deposits, across an area of ca 600 km2 in the Uinta Basin, Utah. This Early Eocene Climatic Optimum (ca 55.5-51.4 Myr ago) dataset is different from previously published terrestrial climate proxy analyses, in that we document the Palaeocene Eocene Thermal Maximum (PETM) as well as 6-8 post-PETM transient global warming events or hyperthermals by δ13Corg excursions, as well as river systems response to these events from the sedimentary record. Moreover, our dataset indicates that palaeosols and isotope values may in some cases only capture the long-term conditions, and are not able to reproduce the seasonality. We show that there are 6-8 Early Eocene hyperthermals that are climatically prominent enough to cause significant changes in the climate processes, as well as generate significant consequences to the river systems behaviour, recorded in the geological record. We show that in the continental interior of North America each of the Early Eocene transient global warming events or hyperthermals includes an onset period that reflects increased temperatures, weathering and sediment production, while the peaks of the hyperthermals indicate a shift to significantly intensified hydrological cycle with extreme conditions of prolonged megadroughts and short catastrophic terrestrial flooding episodes, followed by a recovery period. We demonstrate that only the PETM event exhibits a non-linear response to global warming, in that the system responded by alternations between increasing and decreasing seasonality during onset and offset, and has two distinct episodes of peak conditions. The PETM, and the H1, H2, I1, I2 events are distinct in both sedimentary and isotope record, whereas the

  1. Continental warming preceding the Palaeocene-Eocene thermal maximum.

    PubMed

    Secord, Ross; Gingerich, Philip D; Lohmann, Kyger C; Macleod, Kenneth G

    2010-10-21

    Marine and continental records show an abrupt negative shift in carbon isotope values at ∼55.8 Myr ago. This carbon isotope excursion (CIE) is consistent with the release of a massive amount of isotopically light carbon into the atmosphere and was associated with a dramatic rise in global temperatures termed the Palaeocene-Eocene thermal maximum (PETM). Greenhouse gases released during the CIE, probably including methane, have often been considered the main cause of PETM warming. However, some evidence from the marine record suggests that warming directly preceded the CIE, raising the possibility that the CIE and PETM may have been linked to earlier warming with different origins. Yet pre-CIE warming is still uncertain. Disentangling the sequence of events before and during the CIE and PETM is important for understanding the causes of, and Earth system responses to, abrupt climate change. Here we show that continental warming of about 5 °C preceded the CIE in the Bighorn Basin, Wyoming. Our evidence, based on oxygen isotopes in mammal teeth (which reflect temperature-sensitive fractionation processes) and other proxies, reveals a marked temperature increase directly below the CIE, and again in the CIE. Pre-CIE warming is also supported by a negative amplification of δ(13)C values in soil carbonates below the CIE. Our results suggest that at least two sources of warming-the earlier of which is unlikely to have been methane-contributed to the PETM.

  2. Early Eocene biota (ostracoda, foraminifera) and paleoenvironment of the Blue Marls in the Corbieres Hills (Aude, France): building a framework for the identification of early Eocene hyperthermals in continental margin records.

    NASA Astrophysics Data System (ADS)

    Pirkenseer, C.; King, C.; Steurbaut, E.; Speijer, R.

    2009-04-01

    The Corbières Foreland Basin represents the southeastern-most extension of the Aquitanian Basin and is thus palaeo(bio)geographically related to the West-European Cenozoic Basin. During the Ypresian (‘Ilerdien') a succession of marine carbonates (e.g., Calcaires blancs à Alvéolines), marine marls (Blue Marls, Marnes à Térebratulides), brackish marls to sandstones and subsequent fluvio-lacustrine sediments (e.g., Montlaur Molasse) were deposited in the Corbières Hills (Aude, France) area in several depositional sequences. The present study focuses on the upper part of the open marine Blue Marls and the overlying brackish marls and sandstones spanning about 120m thickness close to the village Pradelles-en-Val. Over one hundred samples were collected in 1m intervals in order to document the early Eocene biogeographical and paleoenvironmental evolution of this open marine sequence, through a quantitative analysis of the ostracod assemblages. Furthermore, we aim at identifying anomalous environmental conditions that might be expected to be associated with the early Eocene hyperthermals known as Elmo- (ETM2) and X-event (ETM3). These events are subordinate to the best known hyperthermal, the Paleocene-Eocene thermal maximum, which has been recorded in deep-sea to non-marine depositional settings. ETM2 and ETM3, however, have until now only been demonstrated in deep-sea sequences, not in shelf deposits. In accordance with biostratigraphical data derived from other outcrops in the region, the sampled succession is attributed to the interval of calcareous nannofossil zones NP10-NP12. The occurrences of planktonic foraminifera of the Morozovella subbotinae-group are in agreement with this stratigraphic position (P6-7) for the lower part of the profile. Recorded fossil groups include generally abundant marine ostracoda, bryozoa, benthic and planktonic foraminifera, fragments of echinoderms including ophiuroidea, moulds of gastropods (often pyritised), large dinocysts

  3. The oldest African bat from the early Eocene of El Kohol (Algeria).

    PubMed

    Ravel, Anthony; Marivaux, Laurent; Tabuce, Rodolphe; Adaci, Mohammed; Mahboubi, Mohammed; Mebrouk, Fateh; Bensalah, Mustapha

    2011-05-01

    The Afro-Arabian Paleogene fossil record of Chiroptera is very poor. In North Africa and Arabia, this record is limited, thus far, to a few localities mainly in Tunisia (Chambi, late early Eocene), Egypt (Fayum, late Eocene to early Oligocene), and Sultanate of Oman (Taqah, early Oligocene). It consists primarily of isolated teeth or mandible fragments. Interestingly, these African fossil bats document two modern groups (Vespertilionoidea and Rhinolophoidea) from the early Eocene, while the bat fossil record of the same epoch of North America, Eurasia, and Australia principally includes members of the "Eochiroptera." This paraphyletic group contains all primitive microbats excluding modern families. In Algeria, the region of Brezina, southeast of the Atlas Mountains, is famous for the early Eocene El Kohol Formation, which has yielded one of the earliest mammalian faunas of the African landmass. Recent fieldwork in the same area has led to the discovery of a new vertebrate locality, including isolated teeth of Chiroptera. These fossils represent the oldest occurrence of Chiroptera in Africa, thus extending back the record of the group to the middle early Eocene (Ypresian) on that continent. The material consists of an upper molar and two fragments of lower molars. The dental character association matches that of "Eochiroptera." As such, although very fragmentary, the material testifies to the first occurrence of "Eochiroptera" in Algeria, and by extension in Africa. This discovery demonstrates that this basal group of Chiroptera had a worldwide distribution during the early Paleogene.

  4. The oldest African bat from the early Eocene of El Kohol (Algeria)

    NASA Astrophysics Data System (ADS)

    Ravel, Anthony; Marivaux, Laurent; Tabuce, Rodolphe; Adaci, Mohammed; Mahboubi, Mohammed; Mebrouk, Fateh; Bensalah, Mustapha

    2011-05-01

    The Afro-Arabian Paleogene fossil record of Chiroptera is very poor. In North Africa and Arabia, this record is limited, thus far, to a few localities mainly in Tunisia (Chambi, late early Eocene), Egypt (Fayum, late Eocene to early Oligocene), and Sultanate of Oman (Taqah, early Oligocene). It consists primarily of isolated teeth or mandible fragments. Interestingly, these African fossil bats document two modern groups (Vespertilionoidea and Rhinolophoidea) from the early Eocene, while the bat fossil record of the same epoch of North America, Eurasia, and Australia principally includes members of the "Eochiroptera." This paraphyletic group contains all primitive microbats excluding modern families. In Algeria, the region of Brezina, southeast of the Atlas Mountains, is famous for the early Eocene El Kohol Formation, which has yielded one of the earliest mammalian faunas of the African landmass. Recent fieldwork in the same area has led to the discovery of a new vertebrate locality, including isolated teeth of Chiroptera. These fossils represent the oldest occurrence of Chiroptera in Africa, thus extending back the record of the group to the middle early Eocene (Ypresian) on that continent. The material consists of an upper molar and two fragments of lower molars. The dental character association matches that of "Eochiroptera." As such, although very fragmentary, the material testifies to the first occurrence of "Eochiroptera" in Algeria, and by extension in Africa. This discovery demonstrates that this basal group of Chiroptera had a worldwide distribution during the early Paleogene.

  5. Dispersal of thermophilic beetles across the intercontinental Arctic forest belt during the early Eocene.

    PubMed

    Brunke, Adam J; Chatzimanolis, Stylianos; Metscher, Brian D; Wolf-Schwenninger, Karin; Solodovnikov, Alexey

    2017-10-11

    Massive biotic change occurred during the Eocene as the climate shifted from warm and equable to seasonal and latitudinally stratified. Mild winter temperatures across Arctic intercontinental land bridges permitted dispersal of frost-intolerant groups until the Eocene-Oligocene boundary, while trans-Arctic dispersal in thermophilic groups may have been limited to the early Eocene, especially during short-lived hyperthermals. Some of these lineages are now disjunct between continents of the northern hemisphere. Although Eocene climate change may have been one of the most important drivers of these ancient patterns in modern animal and plant distributions, its particular events are rarely implicated or correlated with group-specific climatic requirements. Here we explored the climatic and geological drivers of a particularly striking Neotropical-Oriental disjunct distribution in the rove beetle Bolitogyrus, a suspected Eocene relict. We integrated evidence from Eocene fossils, distributional and climate data, paleoclimate, paleogeography, and phylogenetic divergence dating to show that intercontinental dispersal of Bolitogyrus ceased in the early Eocene, consistent with the termination of conditions required by thermophilic lineages. These results provide new insight into the poorly known and short-lived Arctic forest community of the Early Eocene and its surviving lineages.

  6. Paleocene-Eocene Thermal Maximum (PETM) and its Effects on Continental Biotas: Evidence from Polecat Bench in Northwestern Wyoming

    NASA Astrophysics Data System (ADS)

    Gingerich, P. D.

    2012-12-01

    Many important environmental events in the geological past were first recognized by their effects on the associated biota, and this is true for the Paleocene-Eocene Thermal Maximum or PETM global greenhouse warming event, which happened 55 million years before present. In the Southern Ocean, PETM carbon and oxygen isotope anomalies were found to coincide with a major terminal-Paleocene disappearance or extinction of benthic foraminiferans. On North America the PETM carbon isotope excursion (CIE) was found to coincide with mammalian dwarfing and a major initial-Eocene appearance or origination event of continental mammals. Linking the two records, marine and continental, resolved a long-standing disagreement over competing definitions of the Paleocene-Eocene epoch boundary, and more importantly indicated that the PETM greenhouse warming event was global. Dwarfing of herbivorous mammals can be interpreted as a response to elevated atmospheric CO2. The origin of modern orders of mammals including Artiodactyla, Perissodactyla, and Primates ('APP' taxa) is more complicated and difficult to explain but the origin of these orders may also be a response, directly or indirectly, to PETM warming. We now know from Polecat Bench and elsewhere in North America that the biotic response to PETM greenhouse warming involved the appearance of at least two new mammalian faunas distinct from previously known Clarkforkian mammals of the upper or late Paleocene and previously known Wasatchian mammals of the lower or early Eocene. Three stages and ages of the former are known (Cf-1 to Cf-3) and seven stages and ages of the latter are known (Wa-1 to Wa-7), each occupying about a hundred meters of strata representing a half-million years or so of time. Between the standard Clarkforkian and Wasatchian faunal zones is an initial 'Wa-M' faunal zone of only five or so meters in thickness and something on the order of 20 thousand years of geological time. The Wa-M fauna includes the first

  7. Furrowed outcrops of Eocene chalk on the lower continental slop offshore New Jersey

    USGS Publications Warehouse

    Robb, James M.; Kirby, John R.; Hampson, John C., Jr.; Gibson, Patricia R.; Hecker, Barbara

    1983-01-01

    A sea bottom of middle Eocene calcareous claystone cut by downslope-trending furrows was observed during an Alvin dive to the mouth of Berkeley Canyon on the continental slope off New Jersey. The furrows are 10 to 50 m apart, 4 to 13 m deep, linear, and nearly parallel in water depths of 2,000 m. They have steep walls and flat floors 3 to 5 m wide, of fine-grained sediment. Mid-range sidescan-sonar images show that similarly furrowed surfaces are found on nearby areas of the lower continental slope, not associated with canyons. The furrows are overlain in places by Pleistocene sediments. Although they show evidence of erosional origin, they do not appear to be related to observed structures, and their straight, parallel pattern is not well understood. A general cover of flocky unconsolidated sediments implies that bottom-current erosion is not active now.

  8. A structural intermediate between triisodontids and mesonychians (Mammalia, Acreodi) from the earliest Eocene of Portugal.

    PubMed

    Tabuce, Rodolphe; Clavel, Julien; Antunes, Miguel Telles

    2011-02-01

    A new mammal, Mondegodon eutrigonus gen. et sp. nov., is described from the earliest Eocene locality of Silveirinha, Portugal. This species shows dental adaptations indicative of a carnivorous diet. M. eutrigonus is referred to the order Acreodi and considered, along with the early Paleocene North American species Oxyclaenus cuspidatus, as a morphological intermediate between two groups of ungulate-like mammals, namely, the triisodontids and mesonychians. Considering that triisodontids are early to early-late Paleocene North American taxa, Mondegodon probably belongs to a group that migrated from North America towards Europe during the first part of the Paleocene. Mondegodon could represent thus a relict genus, belonging to the ante-Eocene European mammalian fauna. The occurrence of such a taxon in Southern Europe may reflect a period of isolation of this continental area during the Paleocene/Eocene transition. In this context, the non-occurrence of closely allied forms of Mondegodon in the Eocene North European mammalian faunas is significant. This strengthens the hypothesis that the mammalian fauna from Southern Europe is characterized by a certain degree of endemism during the earliest Eocene. Mondegodon also presents some striking similarities with an unnamed genus from the early Eocene of India which could represent the first Asian known transitional form between the triisodontids and mesonychians.

  9. Lygistorrhinidae (Diptera: Bibionomorpha: Sciaroidea) in early Eocene Cambay amber.

    PubMed

    Stebner, Frauke; Singh, Hukam; Rust, Jes; Grimaldi, David A

    2017-01-01

    One new genus and three new species of Lygistorrhinidae in early Eocene Cambay amber from India are described, which significantly increases our knowledge about this group in the Eocene. Lygistorrhina indica n. sp. is the oldest fossil known from this extant genus. Indorrhina sahnii n. gen. et sp. shows morphological similarities to each of the two extant genera Lygistorrhina and Asiorrhina . Palaeognoriste orientale is the third species known from a group that has only been recorded from Eocene Baltic amber before. The latter finding reveals faunal links between Cambay amber and the probably slightly younger Baltic amber, adding further evidence that faunal exchange between Europe/Asia and India took place before the formation of Cambay amber.

  10. Evidence of cyclic climatic changes recorded in clay mineral assemblages from a continental Paleocene-Eocene sequence, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Do Campo, Margarita; Bauluz, Blanca; del Papa, Cecilia; White, Timothy; Yuste, Alfonso; Mayayo, Maria Jose

    2018-06-01

    The continental Paleocene-Eocene sequence investigated in this study belongs to the Salta Group, deposited in an intracontinental rift, the Salta Basin (NW Argentina), that evolved from the lower Cretaceous to the middle Paleogene, and is subdivided into the Pirgua, the Balbuena and the Santa Barbara Subgroups. The Maíz Gordo Formation (200 m thick) is the middle unit of the Santa Bárbara Subgroup, deposited during late post-rift sedimentation. We studied the mineralogy of fine-grained horizons of this formation by X-ray diffraction and Scanning Electron Microscopy (SEM) in order to examine the connection between vertical changes in clay mineralogy in alluvial sediments and paleosols, and global paleoclimatic changes registered during the Paleogene. Paleosols vary from calcic vertisols in the lowermost levels, to inseptisols and gleysols in intermediate positions, to gleyed oxisols in the upper section, indicating increased chemical weathering through time. Clay mineral relative abundances vary with a general increase in kaolinite content from bottom to top. However, at one site there are significant variations in kaolinite/muscovite (Kln/Ms) that define five cycles of kaolinite abundance and Kln/Ms. that indicate cyclic patterns of paleoprecipitation and paleotemperature. These are interpreted as several short-lived hyperthermals during the Paleocene-early Eocene in the Southern Hemisphere, which correlate with well-established episodes of warmth documented from the Northern Hemisphere.

  11. A redescription of Lithornis vulturinus (Aves, Palaeognathae) from the Early Eocene Fur Formation of Denmark.

    PubMed

    Bourdon, Estelle; Lindow, Bent

    2015-10-20

    The extinct Lithornithidae include several genera and species of flying palaeognathous birds of controversial affinities known from the Early Paleogene of North America and Europe. An almost complete, articulated skeleton from the Early Eocene marine deposits of the Fur Formation (Denmark) was recently assigned to Lithornis vulturinus Owen, 1840. This study provides a detailed redescription and comparison of this three-dimensionally preserved specimen (MGUH 26770), which is one of the best preserved representatives of the Lithornithidae yet known. We suggest that some new features might be diagnostic of Lithornis vulturinus, including a pterygoid fossa shallower than in other species of Lithornis and the presence of a small caudal process on the os palatinum. We propose that Lithornis nasi (Harrison, 1984) is a junior synonym of Lithornis vulturinus and we interpret minor differences in size and shape among the specimens as intraspecific variation. To date, Lithornis vulturinus is known with certainty from the latest Paleocene-earliest Eocene to Early Eocene of the North Sea Basin (Ølst, Fur and London Clay Formations). Among the four species of the genus Lithornis, the possibility that Lithornis plebius Houde, 1988 (Early Eocene of Wyoming) is conspecific with either Lithornis vulturinus or Lithornis promiscuus Houde, 1988 (Early Eocene of Wyoming) is discussed. The presence of closely related species of Lithornis on either side of the North Atlantic in the Early Eocene reflects the existence of a high-latitude land connection between Europe and North America at that time.

  12. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch.

    PubMed

    Pross, Jörg; Contreras, Lineth; Bijl, Peter K; Greenwood, David R; Bohaty, Steven M; Schouten, Stefan; Bendle, James A; Röhl, Ursula; Tauxe, Lisa; Raine, J Ian; Huck, Claire E; van de Flierdt, Tina; Jamieson, Stewart S R; Stickley, Catherine E; van de Schootbrugge, Bas; Escutia, Carlota; Brinkhuis, Henk

    2012-08-02

    The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.

  13. Influence of Large Lakes on Methane Greenhouse Forcing in the Early Eocene

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Granberg, D. L.; Kasprak, A. H.; Taylor, K. W.; Pancost, R. D.

    2011-12-01

    Long-duration elevated global temperatures and increased atmospheric pCO2 levels (~1000-2000 ppm) characterized the earliest portion of the Eocene (Ypressian; ~55 to 49 Ma). This extended period of global warmth was also punctuated by a series of short (sub-precessional) hyperthermal events in which atmospheric CO2 (>2000 ppm) and global temperatures rose with unprecedented and (as of yet) unexplained rapidity. This interval is perhaps the best temporal analog for assessing contemporary response of the biosphere and global carbon cycle to increased CO2 emissions. Although these hyperthermals appear paced by 100 Ka and 1 Ma scale orbital (eccentricity) cycles in the marine realm, high frequency forcing processes have not yet been examined, and long continental records have yet to be explored for their expression. To identify sub-eccentricity (<100,000 year) scale variability in Early Eocene carbon cycling, we examined lacustrine records of organic carbon isotopes and carbon content from a ~5 Ma record in the Green River Formation (GRF) in the Uinta Basin of Utah, U.S.A. and a ~1 Ma record from the Messel Shale, (Darmstadt, Germany.) We demonstrate that in addition to the expected 100 Ka eccentricity cycle, the 40 Ka cycle of obliquity is also an important component of climate variability as reflected in the lacustrine carbon cycle and hence a potential driver of global carbon cycling. We further investigated carbon cycle dynamics by examining biomarker evidence for changes in the terrestrial methane cycle during this time interval. Due to their increased volumes (>60,000 km2), highly stratified and cyclically anoxic lakes of the Eocene could have provided enough methane to alter global radiative forcing. This is consistent with our data, which demonstrate that the GRF and Messel Shale both exhibit strongly reducing conditions as well as abundant methanogen and methanotroph biomarkers. Further, the GRF lacustrine environment was highly stratified with, at times

  14. A terrestrial Eocene stack: tying terrestrial lake ecology to marine carbon cycling through the Early Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Grogan, D. S.; Whiteside, J. H.; Musher, D.; Rosengard, S. Z.; Vankeuren, M. A.; Pancost, R. D.

    2010-12-01

    The lacustrine Green River Formation is known to span ≥15 million years through the early-middle Eocene, and recent work on radioisotopic dating has provided a framework on which to build ties to the orbitally-tuned marine Eocene record. Here we present a spliced stack of Fischer assay data from drilled cores of the Green River Formation that span both an East-West and a North-South transect of the Uinta Basin of Utah. Detailed work on two cores demonstrate that Fischer assay measurements covary with total organic carbon and bulk carbon isotopes, allowing us to use Fisher assay results as a representative carbon cycling proxy throughout the stack. We provide an age model for this core record by combining radioisotopic dates of tuff layers with frequency analysis of Fischer assay measurements. Identification of orbital frequencies tied directly to magnetochrons through radioisotopic dates allows for a direct comparison of the terrestrial to the marine Eocene record. Our analysis indicates that the marker beds used to correlate the stack cores represent periods of enhanced lake productivity and extreme carbon burial; however, unlike the hyperthermal events that are clearly marked in the marine Eocene record, the hydrocarbon-rich "Mahogany Bed" period of burial does not correspond to a clear carbon isotope excursion. This suggests that the terrestrial realm may have experienced extreme ecological responses to relatively small perturbations in the carbon cycle during the Early Eocene Climatic Optimum. To investigate the ecological responses to carbon cycle perturbations through the hydrocarbon rich beds, we analyzed a suite of microbial biomarkers, finding evidence for cyanobacteria, dinoflagellates, and potentially green sulfur bacteria. These taxa indicate fluctuating oxic/anoxic conditions in the lake during abrupt intervals of carbon burial, suggesting a lake biogeochemical regime with no modern analogues.

  15. Origin of whales in epicontinental remnant seas: new evidence from the early eocene of pakistan.

    PubMed

    Gingerich, P D; Wells, N A; Russell, D E; Shah, S M

    1983-04-22

    Pakicetus inachus from the early Eocene of Pakistan is the oldest and most primitive cetacean known. The dentition of Pakicetus resembles that of carnivorous mesonychid land mammals as well as middle Eocene cetaceans. The otic region of the cranium lacks characteristic specializations of whales necessary for efficient directional hearing under water. Pakicetus occurs with a land-mammal fauna in fluvial sediments bordering epicontinental Eocene remnants of the eastern Tethys seaway. Discovery of Pakicetus strengthens earlier inferences that whales originated from terrestrial carnivorous mammals and suggests that whales made a gradual transition from land to sea in the early Eocene, spending progressively more time feeding on planktivorous fishes in shallow, highly productive seas and embayments associated with tectonic closure of eastern Tethys.

  16. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals

    NASA Astrophysics Data System (ADS)

    Zachos, James C.; McCarren, Heather; Murphy, Brandon; Röhl, Ursula; Westerhold, Thomas

    2010-10-01

    The upper Paleocene and lower Eocene are marked by several prominent (> 1‰) carbon isotope (δ 13C) excursions (CIE) that coincide with transient global warmings, or thermal maxima, including the Paleocene-Eocene Thermal Maximum (PETM). The CIE, which are recorded mainly in marine sedimentary sequences, have also been identified in continental sequences, occurred episodically, and yet appear to be paced or triggered by orbital forcing. To constrain the timing and scale of the CIE relative to long-term baseline variability, we have constructed a 4.52 million year (myr) long, high-resolution (~ 3 kyr) bulk sediment carbon isotope record spanning the lower Eocene to upper Paleocene (C25r-C24n) from a pelagic sediment section recovered at ODP Site 1262 in the southeast Atlantic. This section, which was orbitally-tuned utilizing high-resolution core log physical property and geochemical records, is the most stratigraphically complete upper Paleocene to lower Eocene sequence recovered to date. Time-series analysis of the carbon isotope record along with a high-resolution Fe intensity record obtained by XRF core scanner reveal cyclicity with variance concentrated primarily in the precession (21 kyr) and eccentricity bands (100 and 400-kyr) throughout the upper Paleocene-lower Eocene. In general, minima in δ 13C correspond with peaks in Fe (i.e., carbonate dissolution), both of which appear to be in phase with maxima in eccentricity. This covariance is consistent with excess oceanic uptake of isotopically depleted carbon resulting in lower carbonate saturation during periods of high eccentricity. This relationship includes all late Paleocene and early Eocene CIE confirming pacing by orbital forcing. The lone exception is the PETM, which appears to be out of phase with the 400-kyr cycle, though possibly in phase with the 100-kyr cycle, reinforcing the notion that a mechanism other than orbital forcing and/or an additional source of carbon is required to account for the

  17. Atmospheric pCO2 Reconstructed across the Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Schubert, B.

    2015-12-01

    Negative carbon isotope excursions (CIEs) are commonly associated with extreme global warming. The Early Eocene is punctuated by five such CIEs, the Paleocene-Eocene thermal maximum (PETM, ca. 55.8 Ma), H1 (ca. 53.6 Ma), H2 (ca. 53.5 Ma), I1 (ca. 53.3 Ma), and I2 (ca. 53.2 Ma), each characterized by global warming. The negative CIEs are recognized in both marine and terrestrial substrates, but the terrestrial substrates exhibit a larger absolute magnitude CIE than the marine substrates. Here we reconcile the difference in CIE magnitude between the terrestrial and marine substrates for each of these events by accounting for the additional carbon isotope fractionation by C3 land plants in response to increased atmospheric pCO2. Our analysis yields background and peak pCO2 values for each of the events. Assuming a common mechanism for each event, we calculate that background pCO2 was not static across the Early Eocene, with the highest background pCO2 immediately prior to I2, the last of the five CIEs. Background pCO2 is dependent on the source used in our analysis with values ranging from 300 to 720 ppmv provided an injection of 13C-depleted carbon with δ13C value of -60‰ (e.g. biogenic methane). The peak pCO2 during each event scales according to the magnitude of CIE, and is therefore greatest during the PETM and smallest during H2. Both background and peak pCO2 are higher if we assume a mechanism of permafrost thawing (δ13C = -25‰). Our reconstruction of pCO2 across these events is consistent with trends in the δ18O value of deep-sea benthic foraminifera, suggesting a strong link between pCO2 and temperature during the Early Eocene.

  18. Palaeotectonic implications of increased late Eocene-early Oligocene volcanism from South Pacific DSDP sites

    USGS Publications Warehouse

    Kennett, J.P.; Von Der Borch, C.; Baker, P.A.; Barton, C.E.; Boersma, A.; Cauler, J.P.; Dudley, W.C.; Gardner, J.V.; Jenkins, D.G.; Lohman, W.H.; Martini, E.; Merrill, R.B.; Morin, R.; Nelson, Campbell S.; Robert, C.; Srinivasan, M.S.; Stein, R.; Takeuchi, A.; Murphy, M.G.

    1985-01-01

    Late Eocene-early Oligocene (42-35 Myr) sediments cored at two DSDP sites in the south-west Pacific contain evidence of a pronounced increase in local volcanic activity, particularly in close association with the Eocene-Oligocene boundary. This pulse of volcanism is coeval with that in New Zealand and resulted from the development of an Indo- Australian / Pacific Plate boundary through the region during the late Eocene. The late Eocene / earliest Oligocene was marked by widespread volcanism and tectonism throughout the Pacific and elsewhere, and by one of the most important episodes of Cenozoic climatic cooling. ?? 1985 Nature Publishing Group.

  19. Development of the Philippine Mobile Belt in northern Luzon from Eocene to Pliocene

    NASA Astrophysics Data System (ADS)

    Suzuki, Shigeyuki; Peña, Rolando E.; Tam, Tomas A.; Yumul, Graciano P.; Dimalanta, Carla B.; Usui, Mayumi; Ishida, Keisuke

    2017-07-01

    The origin of the Philippine Archipelago is characterized by the combination of the oceanic Philippine Mobile Belt (PMB) and the Palawan Continental Block (PCB). This paper is focused on the geologic evolution of the PMB in northern Luzon from Eocene to Pliocene. The study areas (northern Luzon) are situated in the central part of the PMB which is occupied by its typical components made up of a pre-Paleocene ophiolitic complex, Eocene successions, Eocene to Oligocene igneous complex and late Oligocene to Pliocene successions. Facies analysis of the middle Eocene and late Oligocene to early Pliocene successions was carried out to understand the depositional environment of their basins. Modal sandstone compositions, which reflect the basement geology of the source area, were analyzed. Major element geochemistry of sediments was considered to reconstruct the tectonic settings. The following brief history of the PMB is deduced. During the middle Eocene, the PMB was covered by mafic volcanic rocks and was a primitive island arc. In late Eocene to late Oligocene time, the intermediate igneous complex was added to the mafic PMB crust. By late Oligocene to early Miocene time, the PMB had evolved into a volcanic island arc setting. Contributions from alkalic rocks are detected from the rock fragments in the sandstones and chemical composition of the Zigzag Formation. During the middle Miocene to Pliocene, the tectonic setting of the PMB remained as a mafic volcanic island arc.

  20. Atmospheric pCO2 reconstructed across five early Eocene global warming events

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Schubert, Brian A.

    2017-11-01

    Multiple short-lived global warming events, known as hyperthermals, occurred during the early Eocene (56-52 Ma). Five of these events - the Paleocene-Eocene Thermal Maximum (PETM or ETM1), H1 (or ETM2), H2, I1, and I2 - are marked by a carbon isotope excursion (CIE) within both marine and terrestrial sediments. The magnitude of CIE, which is a function of the amount and isotopic composition of carbon added to the ocean-atmosphere system, varies significantly between marine versus terrestrial substrates. Here we use the increase in carbon isotope fractionation by C3 land plants in response to increased pCO2 to reconcile this difference and reconstruct a range of background pCO2 and peak pCO2 for each CIE, provided two potential carbon sources: methane hydrate destabilization and permafrost-thawing/organic matter oxidation. Although the uncertainty on each pCO2 estimate using this approach is low (e.g., median uncertainty = + 23% / - 18%), this work highlights the potential for significant systematic bias in the pCO2 estimate resulting from sampling resolution, substrate type, diagenesis, and environmental change. Careful consideration of each of these factors is required especially when applying this approach to a single marine-terrestrial CIE pair. Given these limitations, we provide an upper estimate for background early Eocene pCO2 of 463 +248/-131 ppmv (methane hydrate scenario) to 806 +127/-104 ppmv (permafrost-thawing/organic matter oxidation scenario). These results, which represent the first pCO2 proxy estimates directly tied to the Eocene hyperthermals, demonstrate that early Eocene warmth was supported by background pCO2 less than ∼3.5× preindustrial levels and that pCO2 > 1000 ppmv may have occurred only briefly, during hyperthermal events.

  1. Fossil palm beetles refine upland winter temperatures in the Early Eocene Climatic Optimum

    PubMed Central

    Archibald, S. Bruce; Morse, Geoffrey E.; Greenwood, David R.; Mathewes, Rolf W.

    2014-01-01

    Eocene climate and associated biotic patterns provide an analog system to understand their modern interactions. The relationship between mean annual temperatures and winter temperatures—temperature seasonality—may be an important factor in this dynamic. Fossils of frost-intolerant palms imply low Eocene temperature seasonality into high latitudes, constraining average winter temperatures there to >8 °C. However, their presence in a paleocommunity may be obscured by taphonomic and identification factors for macrofossils and pollen. We circumvented these problems by establishing the presence of obligate palm-feeding beetles (Chrysomelidae: Pachymerina) at three localities (a fourth, tentatively) in microthermal to lower mesothermal Early Eocene upland communities in Washington and British Columbia. This provides support for warmer winter Eocene climates extending northward into cooler Canadian uplands. PMID:24821798

  2. Fossil palm beetles refine upland winter temperatures in the Early Eocene Climatic Optimum.

    PubMed

    Archibald, S Bruce; Morse, Geoffrey E; Greenwood, David R; Mathewes, Rolf W

    2014-06-03

    Eocene climate and associated biotic patterns provide an analog system to understand their modern interactions. The relationship between mean annual temperatures and winter temperatures-temperature seasonality-may be an important factor in this dynamic. Fossils of frost-intolerant palms imply low Eocene temperature seasonality into high latitudes, constraining average winter temperatures there to >8 °C. However, their presence in a paleocommunity may be obscured by taphonomic and identification factors for macrofossils and pollen. We circumvented these problems by establishing the presence of obligate palm-feeding beetles (Chrysomelidae: Pachymerina) at three localities (a fourth, tentatively) in microthermal to lower mesothermal Early Eocene upland communities in Washington and British Columbia. This provides support for warmer winter Eocene climates extending northward into cooler Canadian uplands.

  3. Body size and premolar evolution in the early-middle eocene euprimates of Wyoming.

    PubMed

    Jones, Katrina E; Rose, Kenneth D; Perry, Jonathan M G

    2014-01-01

    The earliest euprimates to arrive in North America were larger-bodied notharctids and smaller-bodied omomyids. Through the Eocene, notharctids generally continued to increase in body size, whereas omomyids generally radiated within small- and increasingly mid-sized niches in the middle Eocene. This study examines the influence of changing body size and diet on the evolution of the lower fourth premolar in Eocene euprimates. The P4 displays considerable morphological variability in these taxa. Despite the fact that most studies of primate dental morphology have focused on the molars, P4 can also provide important paleoecological insights. We analyzed the P4 from 177 euprimate specimens, representing 35 species (11 notharctids and 24 omomyids), in three time bins of approximately equal duration: early Wasatchian, late Wasatchian, and Bridgerian. Two-dimensional surface landmarks were collected from lingual photographs, capturing important variation in cusp position and tooth shape. Disparity metrics were calculated and compared for the three time bins. In the early Eocene, notharctids have a more molarized P4 than omomyids. During the Bridgerian, expanding body size range of omomyids was accompanied by a significant increase in P4 disparity and convergent evolution of the semimolariform condition in the largest omomyines. P4 morphology relates to diet in early euprimates, although patterns vary between families. Copyright © 2013 Wiley Periodicals, Inc.

  4. Persistence of carbon release events through the peak of early Eocene global warmth

    NASA Astrophysics Data System (ADS)

    Kirtland Turner, Sandra; Sexton, Philip F.; Charles, Christopher D.; Norris, Richard D.

    2014-10-01

    The Early Eocene Climatic Optimum (53-50 million years ago) was preceded by approximately six million years of progressive global warming. This warming was punctuated by a series of rapid hyperthermal warming events triggered by the release of greenhouse gases. Over these six million years, the carbon isotope record suggests that the events became more frequent but smaller in magnitude. This pattern has been suggested to reflect a thermodynamic threshold for carbon release that was more easily crossed as global temperature rose, combined with a decrease in the size of carbon reservoirs during extremely warm conditions. Here we present a continuous, 4.25-million-year-long record of the stable isotope composition of carbonate sediments from the equatorial Atlantic, spanning the peak of early Eocene global warmth. A composite of this and pre-existing records shows that the carbon isotope excursions that identify the hyperthermals exhibit continuity in magnitude and frequency throughout the approximately 10-million-year period covering the onset, peak and termination of the Early Eocene Climate Optimum. We suggest that the carbon cycle processes behind these events, excluding the largest event, the Palaeocene-Eocene Thermal Maximum (about 56 million years ago), were not exceptional. Instead, we argue that the hyperthermals may reflect orbital forcing of the carbon cycle analogous to the mechanisms proposed to operate in the cooler Oligocene and Miocene.

  5. Terrestrial Palynology of Paleocene and Eocene Sediments Above the Chicxulub Impact Crater

    NASA Astrophysics Data System (ADS)

    Smith, V.; Warny, S.; Bralower, T. J.; Jones, H.; Lowery, C. M.; Smit, J.; Vajda, V.; Vellekoop, J.; 364 Scientists, E.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 364, with support from the International Continental Scientific Drilling Program, cored through Paleocene and Eocene sediments and into the impact structure of the Chicxulub impact crater. Three palynological studies of the post-impact section are currently underway. The two other studies are investigating the dinoflagellate palynology and terrestrial palynology of the K/Pg boundary section, while this study focuses on the early Eocene terrestrial palynology of the IODP 364 core, which has yielded a diverse and well preserved pollen assemblage. A few samples from the Early Paleocene have also been examined but organic microfossil preservation is quite poor. Samples from this core are the oldest palynological record from the Yucatan peninsula. Sample preparation and detailed abundance counts of sixty samples throughout the post-impact section are in progress, with a particular focus on the Paleocene-Eocene Thermal Maximum (PETM) and the Early Eocene Climatic Optimum (EECO). Terrestrial palynomorph assemblages will be used to reconstruct paleoclimatological conditions throughout this time period. Floral response to hyperthermal events in the IODP 364 core will be compared with records from other Gulf of Mexico and Caribbean sections. In addition to the biological and paleoclimatological implications of this research, age control from foraminiferal and nannofossil biostratigraphy, paleomagnetism, and radiometric dating will provide a chronological framework for the terrestrial pollen biostratigraphy, with applications to hydrocarbon exploration in the Wilcox Formation and age equivalent sections in the Gulf of Mexico.

  6. A Model-Model and Data-Model Comparison for the Early Eocene Hydrological Cycle

    NASA Technical Reports Server (NTRS)

    Carmichael, Matthew J.; Lunt, Daniel J.; Huber, Matthew; Heinemann, Malte; Kiehl, Jeffrey; LeGrande, Allegra; Loptson, Claire A.; Roberts, Chris D.; Sagoo, Navjit; Shields, Christine

    2016-01-01

    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and P - E distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO2 level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP=dT ) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in simulating a

  7. Characterising Atlantic deep waters during the extreme warmth of the early Eocene 'greenhouse'.

    NASA Astrophysics Data System (ADS)

    Cameron, A.; Sexton, P. F.; Anand, P.; Huck, C. E.; Fehr, M.; Dickson, A.; Scher, H. D.; van de Flierdt, T.; Westerhold, T.; Roehl, U.

    2014-12-01

    The meridional overturning circulation (MOC) is a planetary-scale oceanic flow that is of direct importance to the climate system because it transports heat, salt and nutrients to high latitudes and regulates the exchange of CO2 with the atmosphere. The Atlantic Ocean plays a strong role in the modern day MOC however, it is unclear what role it may have played during extreme climate conditions such as those found in the early Eocene 'greenhouse'. In order to resolve the Atlantic's role in the MOC during the early/middle Eocene, we present a multi-proxy approach to investigate changes in ocean circulation, water mass geometry, sediment supply to the deep oceans and the physical strength of deep waters from four different IODP drill sites. Neodymium isotopes (ɛNd), REE profiles and cerium anomalies measured in fossilised fish teeth help to characterise geochemical changes to water masses throughout the Atlantic whilst bulk sediment ɛNd and XRF-core scan data documents changes in sediment supply to the region. Sortable silt data provides a physical constraint on the strength of deep-water movements during the extreme climatic conditions of the early Eocene. We utilise expanded and continuous sequences from two sites in the North west Atlantic spanning the early to middle Eocene recently recovered on IODP Exp. 342 (1403, 1409) that are located on the Newfoundland Ridge, directly in the flow path of today's Deep Western Boundary Current. We also present data from equatorial Demerara Rise (IODP site 1258) and from further north at the mouth of the Labrador Sea (ODP Site 647).

  8. Structure and development of the southern Moroccan continental shelf

    USGS Publications Warehouse

    Dillon, William P.

    1974-01-01

    The structure of the continental shelf off southern Morocco was studied by means of 2,100 km of seismic reflection profiles, magnetic and bathymetric surveys, and dredge samples. The research area lies off four geologic divisions adjacent to the coast: the Atlas Mountains; the Souss Trough; the Anti-Atlas Mountains; and the Aaiun Basin. The continental shelf, along with the western Atlas Mountains, the western Souss Trough, and the entire Aaiun Basin, has subsided along a normal fault-flexure system. This system runs along the shore at the Anti-Atlas Mountains, and cuts off this cratonic block from the shelf subsidence. The shelf is narrow and characterized by out-building off the Anti-Atlas range, whereas it is broader and characterized by upbuilding to the north and south. Deposition was essentially continuous at least from Early Cretaceous through Eocene time. Published work suggests that the last cycle of sedimentation began during Permian rifting. After Eocene time, most sediments carried to the shelf must have bypassed it and gone to construct the slope and rise or to the deep sea. Tertiary orogenies caused extensive folding of Mesozoic and early Tertiary deposits off the Atlas Mountains. ?? 1974.

  9. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals.

    PubMed

    Archibald, S Bruce; Johnson, Kirk R; Mathewes, Rolf W; Greenwood, David R

    2011-12-22

    Early Eocene land bridges allowed numerous plant and animal species to cross between Europe and North America via the Arctic. While many species suited to prevailing cool Arctic climates would have been able to cross throughout much of this period, others would have found dispersal opportunities only during limited intervals when their requirements for higher temperatures were met. Here, we present Titanomyrma lubei gen. et sp. nov. from Wyoming, USA, a new giant (greater than 5 cm long) formiciine ant from the early Eocene (approx. 49.5 Ma) Green River Formation. We show that the extinct ant subfamily Formiciinae is only known from localities with an estimated mean annual temperature of about 20°C or greater, consistent with the tropical ranges of almost all of the largest living ant species. This is, to our knowledge, the first known formiciine of gigantic size in the Western Hemisphere and the first reported cross-Arctic dispersal by a thermophilic insect group. This implies intercontinental migration during one or more brief high-temperature episodes (hyperthermals) sometime between the latest Palaeocene establishment of intercontinental land connections and the presence of giant formiciines in Europe and North America by the early middle Eocene.

  10. Larger benthic foraminiferal turnover across the Eocene-Oligocene transition at Siwa Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Orabi, H.; El Beshtawy, M.; Osman, R.; Gadallah, M.

    2015-05-01

    In the Eocene part of the Siwa Oasis, the larger foraminifera are represented by the genera Nummulites, Arxina, Operculina, Sphaerogypsina, Asterocyclina, Grzybowskia, Silvestriella, Gaziryina and Discocyclina in order of abundance. Operculina continues up to the early Oligocene as modern representatives in tropical regions, while the other genera became extinct. Nevertheless, the most common larger foraminiferal genus Lepidocyclina (Nephrolepidina) appears only in the lowermost Oligocene. In spite of the Eocene-Oligocene (E/O) transition is thought to have been attended by major continental cooling at northern middle and high latitudes, we discover that at the Siwa Oasis, there is a clear warming trend from the late Eocene (extinction level of Nummulites, Sphaerogypsina, Asterocyclina, Grzybowskia, Silvestriella and Discocyclina) to the early Oligocene is observed due to the high abundance of Operculina and occurrence of kaolinite and gypsiferous shale deposits in both Qatrani and El Qara formations (Oligocene) at this transition. The El Qara Formation is a new rock unit proposed herein for the Oligocene (Rupelian age) in the first time. Several episodes of volcanic activity occurred in Egypt during the Cenozoic. Mid Tertiary volcanicity was widespread and a number of successive volcanic pulses are starting in the late Eocene. The release of mantle CO2 from this very active volcanic episode may have in fact directly caused the warm Eocene-Oligocene greenhouse climate effect.

  11. Rapid Middle Eocene temperature change in western North America

    NASA Astrophysics Data System (ADS)

    Methner, Katharina; Mulch, Andreas; Fiebig, Jens; Wacker, Ulrike; Gerdes, Axel; Graham, Stephan A.; Chamberlain, C. Page

    2016-09-01

    Eocene hyperthermals are among the most enigmatic phenomena of Cenozoic climate dynamics. These hyperthermals represent temperature extremes superimposed on an already warm Eocene climate and dramatically affected the marine and terrestrial biosphere, yet our knowledge of temperature and rainfall in continental interiors is still rather limited. We present stable isotope (δ18O) and clumped isotope temperature (Δ47) records from a middle Eocene (41 to 40 Ma) high-elevation mammal fossil locality in the North American continental interior (Montana, USA). Δ47 paleotemperatures of soil carbonates delineate a rapid +9/-11 °C temperature excursion in the paleosol record. Δ47 temperatures progressively increase from 23 °C ± 3 °C to peak temperatures of 32 °C ± 3 °C and subsequently drop by 11 °C. This hyperthermal event in the middle Eocene is accompanied by low δ18O values and reduced pedogenic carbonate concentrations in paleosols. Based on laser ablation U/Pb geochronology of paleosol carbonates in combination with magnetostratigraphy, biostratigraphy, stable isotope, and Δ47 evidence, we suggest that this pronounced warming event reflects the Middle Eocene Climatic Optimum (MECO) in western North America. The terrestrial expression of northern hemisphere MECO in western North America appears to be characterized by warmer and wetter (sub-humid) conditions, compared to the post-MECO phase. Large and rapid shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes, indicating the profound impact of the MECO on atmospheric circulation and rainfall patterns in the western North American continental interior during this transient warming event.

  12. A roller-like bird (Coracii) from the Early Eocene of Denmark.

    PubMed

    Bourdon, Estelle; Kristoffersen, Anette V; Bonde, Niels

    2016-09-27

    The fossil record of crown group birds (Neornithes) prior to the Cretaceous-Paleogene boundary is scarce and fragmentary. Early Cenozoic bird fossils are more abundant, but are typically disarticulated and/or flattened. Here we report the oldest roller (Coracii), Septencoracias morsensis gen. et sp. nov. (Primobucconidae), based on a new specimen from the Early Eocene (about 54 million years ago) Fur Formation of Denmark. The new fossil is a nearly complete, three-dimensionally preserved and articulated skeleton. It lies at the lower end of the size range for extant rollers. Salient diagnostic features of Septencoracias relative to other Coracii include the proportionally larger skull and the small, ovoid and dorsally positioned narial openings. Our discovery adds to the evidence that the Coracii had a widespread northern hemisphere distribution in the Eocene. Septencoracias is the oldest substantial record of the Picocoraciae and provides a reliable calibration point for molecular phylogenetic studies.

  13. Large Scale Eocene Ocean Circulation Transition Could Help Antarctic Glaciation.

    NASA Astrophysics Data System (ADS)

    Baatsen, M.

    2016-12-01

    The global climate underwent major changes going from the Eocene into the Oligocene, including the formation of a continental-scale Antarctic ice sheet. In addition to a gradual drawdown of CO2 since the Early Eocene, the changing background geography of the earth may also have played a crucial role in setting the background oceanic circulation pattern favorable to ice growth. On the other hand, the ocean circulation may have changed only after the ice sheet started growing, with a similar climatic imprint. It is, therefore, still under debate what the primary forcing or trigger of this transition was. Using an ocean general circulation model (POP) and two different geography reconstruc-tions for the middle-late Eocene, we find two distinctly different patterns of the oceanic circulation to be possible under the same forcing. The first one features deep-water formation and warmer SSTs in the Southern Pacific while in the second, deep water forms in the North Pacific Ocean and Southern Ocean SSTs are colder. The presence of a double equilibrium shows that the ocean circulation was highly susceptible to large scale transitions during the middle-late Eocene. Additionally, changes in benthic oxygen and Neodymium isotopes depict significant changes during the same period. We suggest that a transition in the global meridional overturing circulation can explain the observed changes and preconditions the global climate for the two-step transition into an Icehouse state at the Eocene-Oligocene boundary.

  14. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals

    PubMed Central

    Archibald, S. Bruce; Johnson, Kirk R.; Mathewes, Rolf W.; Greenwood, David R.

    2011-01-01

    Early Eocene land bridges allowed numerous plant and animal species to cross between Europe and North America via the Arctic. While many species suited to prevailing cool Arctic climates would have been able to cross throughout much of this period, others would have found dispersal opportunities only during limited intervals when their requirements for higher temperatures were met. Here, we present Titanomyrma lubei gen. et sp. nov. from Wyoming, USA, a new giant (greater than 5 cm long) formiciine ant from the early Eocene (approx. 49.5 Ma) Green River Formation. We show that the extinct ant subfamily Formiciinae is only known from localities with an estimated mean annual temperature of about 20°C or greater, consistent with the tropical ranges of almost all of the largest living ant species. This is, to our knowledge, the first known formiciine of gigantic size in the Western Hemisphere and the first reported cross-Arctic dispersal by a thermophilic insect group. This implies intercontinental migration during one or more brief high-temperature episodes (hyperthermals) sometime between the latest Palaeocene establishment of intercontinental land connections and the presence of giant formiciines in Europe and North America by the early middle Eocene. PMID:21543354

  15. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.

    PubMed

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.

  16. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic

    PubMed Central

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048

  17. The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions?

    PubMed

    Sagoo, Navjit; Valdes, Paul; Flecker, Rachel; Gregoire, Lauren J

    2013-10-28

    Geological data for the Early Eocene (56-47.8 Ma) indicate extensive global warming, with very warm temperatures at both poles. However, despite numerous attempts to simulate this warmth, there are remarkable data-model differences in the prediction of these polar surface temperatures, resulting in the so-called 'equable climate problem'. In this paper, for the first time an ensemble with a perturbed climate-sensitive model parameters approach has been applied to modelling the Early Eocene climate. We performed more than 100 simulations with perturbed physics parameters, and identified two simulations that have an optimal fit with the proxy data. We have simulated the warmth of the Early Eocene at 560 ppmv CO2, which is a much lower CO2 level than many other models. We investigate the changes in atmospheric circulation, cloud properties and ocean circulation that are common to these simulations and how they differ from the remaining simulations in order to understand what mechanisms contribute to the polar warming. The parameter set from one of the optimal Early Eocene simulations also produces a favourable fit for the last glacial maximum boundary climate and outperforms the control parameter set for the present day. Although this does not 'prove' that this model is correct, it is very encouraging that there is a parameter set that creates a climate model able to simulate well very different palaeoclimates and the present-day climate. Interestingly, to achieve the great warmth of the Early Eocene this version of the model does not have a strong future climate change Charney climate sensitivity. It produces a Charney climate sensitivity of 2.7(°)C, whereas the mean value of the 18 models in the IPCC Fourth Assessment Report (AR4) is 3.26(°)C±0.69(°)C. Thus, this value is within the range and below the mean of the models included in the AR4.

  18. A roller-like bird (Coracii) from the Early Eocene of Denmark

    PubMed Central

    Bourdon, Estelle; Kristoffersen, Anette V.; Bonde, Niels

    2016-01-01

    The fossil record of crown group birds (Neornithes) prior to the Cretaceous-Paleogene boundary is scarce and fragmentary. Early Cenozoic bird fossils are more abundant, but are typically disarticulated and/or flattened. Here we report the oldest roller (Coracii), Septencoracias morsensis gen. et sp. nov. (Primobucconidae), based on a new specimen from the Early Eocene (about 54 million years ago) Fur Formation of Denmark. The new fossil is a nearly complete, three-dimensionally preserved and articulated skeleton. It lies at the lower end of the size range for extant rollers. Salient diagnostic features of Septencoracias relative to other Coracii include the proportionally larger skull and the small, ovoid and dorsally positioned narial openings. Our discovery adds to the evidence that the Coracii had a widespread northern hemisphere distribution in the Eocene. Septencoracias is the oldest substantial record of the Picocoraciae and provides a reliable calibration point for molecular phylogenetic studies. PMID:27670387

  19. Crown Group Lejeuneaceae and Pleurocarpous Mosses in Early Eocene (Ypresian) Indian Amber.

    PubMed

    Heinrichs, Jochen; Scheben, Armin; Bechteler, Julia; Lee, Gaik Ee; Schäfer-Verwimp, Alfons; Hedenäs, Lars; Singh, Hukam; Pócs, Tamás; Nascimbene, Paul C; Peralta, Denilson F; Renner, Matt; Schmidt, Alexander R

    2016-01-01

    Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae.

  20. Global warming and ocean acidification through halted weathering feedback during the Middle Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    van der Ploeg, R.; Selby, D. S.; Cramwinckel, M.; Bohaty, S. M.; Sluijs, A.; Middelburg, J. J.

    2016-12-01

    The Middle Eocene Climatic Optimum (MECO) represents a 500 kyr period of global warming 40 million years ago associated with a rise in atmospheric CO2 concentrations, but its cause remains enigmatic. Moreover, on the timescale of the MECO, an increase in silicate weathering rates on the continents is expected to balance carbon input and restore the alkalinity of the oceans, but this is in sharp disagreement with observations of extensive carbonate dissolution. Here we show, based on osmium isotope ratios of marine sediments from three different sites, that CO2 rise and warming did not lead to enhanced continental weathering during the MECO, in contrast to expectations from carbon cycle theory. Remarkably, a minor shift to lower, more unradiogenic osmium isotope ratios rather indicates an episode of increased volcanism or reduced continental weathering. This disproves silicate weathering as a geologically constant feedback to CO2 variations. Rather, we suggest that global Early and Middle Eocene warmth diminished the weatherability of continental rocks, ultimately leading to CO2 accumulation during the MECO, and show the plausibility of this scenario using carbon cycle modeling simulations. We surmise a dynamic weathering feedback might explain multiple enigmatic phases of coupled climate and carbon cycle change in the Cretaceous and Cenozoic.

  1. Tectonic Reorganization and the Cause of Paleocene and Eocene pCO2 Anomalies

    NASA Astrophysics Data System (ADS)

    Austermann, Jacqueline; Carter, Laura B.; Middleton, Jennifer; Stellmann, Jessica; Pyle, Lacey

    2017-04-01

    Oxygen isotope records reveal that deep-sea temperatures were relatively stable in the early and mid Paleocene before they rose by approx. 4°C to peak in the early Eocene. This Early Eocene Climate Optimum was followed by a 17 Myr cooling trend that led to the onset of Antarctic glaciation at the end of the Eocene. Several studies have examined the potential influence of perturbations to the sinks and sources of atmospheric carbon as mechanisms for the temperature drawdown over the Eocene. Examination of the changing magnitude of carbon sinks has focused on the importance of increased weathering associated with the uplift of the Tibetan plateau (Raymo and Ruddiman, 1992), the continental drift of basaltic provinces through the equatorial humid belt (Kent and Muttoni, 2013), or the emplacement of ophiolites during arc-continent collision in the face of a closing Tethys ocean (Jagoutz et al., 2016). With respect to carbon sources, the shutdown of Tethys subduction and related arc volcanism has been argued to significantly decrease carbon emissions and consequently global temperatures (Hoareau et al., 2015). In this study, we re-assess and quantify proposed atmospheric carbon sinks and sources to obtain an integrated picture of carbon flux changes over the Paleocene and Eocene and to estimate the relative importance of different mechanisms. To constrain carbon sources, we attempt to calculate the outgassing associated with large igneous provinces, mid-ocean ridges and volcanic arcs. We use plate reconstructions to track changes in length and divergence / convergence rates at plate boundaries as well as account for the onset and extinction of volcanic arcs. To constrain carbon sinks, we account for the sequestering of carbon due to silicate weathering and organic carbon burial. We again make use of plate reconstructions to trace highly weatherable arc systems and basaltic extrusions through the tropical humid belt and to assess the interplay between warmer Eocene

  2. Changes in Sediment Provenance to the Southeast Newfoundland Ridge from the late Eocene to the Early Oligocene; Northern Hemisphere Glaciation or Deep Water Circulation?

    NASA Astrophysics Data System (ADS)

    Scher, H. D.; Romans, B.; Moffett, Z. J.; Buckley, W. P.; Gibson, K.

    2013-12-01

    We report radiogenic isotope results from IODP Site U1411 (41° 37.10' N; 48° 59.98' W; 3300 m) on the Southeast Newfoundland Ridge (SENR) that span the Eocene Oligocene Transition (EOT). Neodymium (Nd) and strontium (Sr) isotope compositions of decarbonated and acid-reduced bulk sediments (i.e., the terrigenous fraction) are consistent with sources from ancient cratons on the Canadian, Greenland, and Fennoscandian shields. Down-core Nd isotope records were generated from the terrigenous fraction and fossil fish teeth at a resolution of 50 kyr spanning the late Eocene to the early Oligocene (ca. 37.5 to 32 Ma). The Nd isotope record of the terrigenous fraction reveals variability on two time scales. First, a long-term shift to less radiogenic ɛNd values occurs from the late Eocene to the early Oligocene. In the late Eocene the baseline ɛNd value is -14 and decreases to -18 in the early Oligocene. The main phase of the long-term shift begins after 34.6 Ma. Second, there are two short-lived excursions toward less radiogenic ɛNd values during the Eocene. Both excursions are on the order of 200 - 300 kyr and involve a shift from the late Eocene baseline ɛNd value of -14 to -18. The older excursion is from 37.3 to 37.0 Ma and the younger excursion from 36.2 to 36.0 Ma. The fossil fish tooth Nd isotope record indicates that the source of Nd to bottom waters at U1411 did not change over the investigated interval. Fossil fish tooth ɛNd values average -10.3 × 0.8 ɛNd (2σ, n=75). This level of ɛNd variability is very low compared to other Nd isotope records spanning the EOT. Both the long and short-term terrigenous ɛNd variability indicates changes in sediment provenance to the study site. A change in sediment provenance can be attributed to either 1) a change in the strength or position of the Deep Western Boundary Current that supplies sediment to the site or 2) an influx of sediment to the North Atlantic resulting from enhanced weathering/erosion on adjacent

  3. Marine vs. local control on seawater Nd-isotope ratios at the northwest coast of Africa during the late Cretaceous-early Eocene

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Ulianov, A.; Chiaradia, M.

    2013-12-01

    At the northwest corner of Africa excellent conditions existed for phosphate formation (i.e., stable upwelling system) during the late Cretaceous-early Eocene. This is probably in relation to stable tectonic evolution of shallow epicontinental basins at a passive continental margin and to their paleogeographic situation between the Atlantic and Tethys marine realms. To better comprehend paleoceanic conditions in this area, radiogenic isotope ratios (87Sr/86Sr and 143Nd/144Nd) and trace element compositions of fossil biogenic apatite are investigated from Maastrichtian to Ypresian shallow marine phosphorite deposits in Morocco (Ouled Abdoun and Ganntour Basins). Rare earth elements (REE) distributions in the fossils are compatible with early diagenetic marine pore fluid represented by negative Ce-anomaly and heavy REE enrichment. An overall shift in Ce-anomaly is apparent with gradually lower values in younger fossils along three distinct assemblages that correspond to Maastrichtian, Danian-Thanetian and Ypresian periods. The temporal change can be interpreted as presence of gradually more oxygenated seawater in the basins. Strontium isotopic ratios of the fossils follow the global Sr-evolution curve. However, the latest Cretaceous and the oldest Paleocene fossils yielded slightly higher ratios than the global ocean, which could reflect minor diagenetic alteration. Neodymium isotopic ratios are quite even along the phosphate series with ɛNd(t) values ranges from -6.8 to -5.8. These values are higher than those reported for average North Atlantic deep water and Tethyan seawater (e.g., Stille et al., 1996; Thomas et al., 2003). For the origin of the stable, high 143Nd/144Nd we propose three main hypotheses: (1) contribution of continental Nd-source, (2) locally controlled deep water Nd-isotope ratios near the coast from where upwelling originated in the area and (3) possible surface marine water contribution from the Pacific across the Atlantic. Stille, P., Steinmann

  4. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada

    PubMed Central

    Stidham, Thomas A.; Eberle, Jaelyn J.

    2016-01-01

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52–53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle. PMID:26867798

  5. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada.

    PubMed

    Stidham, Thomas A; Eberle, Jaelyn J

    2016-02-12

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52-53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle.

  6. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Stidham, Thomas A.; Eberle, Jaelyn J.

    2016-02-01

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52-53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle.

  7. Continental Arcs as Both Carbon Source and Sink in Regulating Long Term Climate

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Lee, C. T.

    2017-12-01

    The long-term variability of atmospheric pCO2 is determined by the balance between the rate of geologic inputs of CO­­2 (e.g., magmatic/metamorphic degassing, carbonate weathering) and the rate of carbonate precipitation driven by silicate weathering. The Late Cretaceous-Early Cenozoic was characterized by elevated atmospheric pCO2 and greenhouse climate, likely due to increased magmatic flux from mid-ocean ridges and, in particular, continental arcs. However, it has been suggested that continental arc magmatism is accompanied by rapid uplift and erosion due to magmatic/tectonic thickening of the crust, thus continental arcs likely enhance the chemical weathering flux, in turn increasing the carbon sink. To assess the contribution of continental arcs to global carbon inputs and sinks, we conducted a case study in the Cretaceous Peninsular Ranges batholith (PRB) and associated forearc basin in southern California, USA, representing one segment of the Cretaceous Cordillera arc-forearc system. Arc magmatism occurred between 170-85 Ma, peaking at 100 Ma, but erosion of the arc continues into the early Eocene, with forearc sediments representing this protracted arc unroofing. During magmatism, we estimate the CO2 degassing flux from the PRB was at least 5-25*105 mol·km-2·yr-1. By calculating the depletion of Ca and Mg in the forearc sediments relative to their arc protoliths, we estimate the silicate weathering/carbonate precipitation flux to be 106 mol·km-2·yr-1 during Late Cretaceous magmatism, decreasing to 105 mol·km-2·yr-1 by the Early Eocene. We show that during active continental arc magmatism, the CO2 degassing flux is comparable to CO2 consumption driven by silicate weathering in the arc. However, after magmatism ends, a regional imbalance arises in which the arc no longer contributes to CO2 inputs but continued silicate weathering of the arc drives carbonate precipitation such that the arc indirectly becomes CO2 sink. We propose that the development of

  8. An Antarctic stratigraphic record of step-wise ice-sheet growth through the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Passchier, S.; Ciarletta, D. J.; Miriagos, T.; Bijl, P.; Bohaty, S. M.

    2016-12-01

    The Antarctic cryosphere plays a critical role in the ocean-atmosphere system, but its early evolution is still poorly known. With a near-field record from Prydz Bay, Antarctica, we conclude that Antarctic continental ice-sheet growth commenced with the EOT-1 "precursor" glaciation, during a time of Subantarctic surface ocean cooling and a decline in atmospheric pCO2. Prydz Bay lies downstream of a major East Antarctic ice-sheet drainage system and the Gamburtsev Mountains, a likely nucleation point for the first ice sheets. Its sedimentary records uniquely constrain the timing of ice-sheet advance onto the continental shelf. We investigate a detrital record extracted from three Ocean Drilling Program drill holes in Prydz Bay within a new depositional and chronological framework spanning the late Eocene to early Oligocene ( 36-33 Ma). The chemical index of alteration (CIA) and the S-index, calculated from the major element geochemistry of bulk samples, yield estimates of chemical weathering intensities and mean annual temperature (MAT) on the East Antarctic continent. We document evidence for late Eocene mountain glaciation along with transient warm events at 35.8-34.8 Ma. These data and our sedimentological analyses confirm the presence of ephemeral mountain glaciers on East Antarctica during the late Eocene between 35.9 and 34.4 Ma. Furthermore, we document the stepwise climate cooling of the Antarctic hinterland from 34.4 Ma as the ice sheet advanced towards the edges of the continent during EOT-1. The youngest part of our data set correlates to the time interval of the Oi-1 glaciation, when the ice-sheet in Prydz Bay extended to the outer shelf. Cooling and ice growth on Antarctica was spatially variable and ice sheets formed under declining pCO2. These results point to complex ice sheet - atmosphere - ocean - solid-earth feedbacks.

  9. The demise of the early Eocene greenhouse - Decoupled deep and surface water cooling in the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Bornemann, André; D'haenens, Simon; Norris, Richard D.; Speijer, Robert P.

    2016-10-01

    Early Paleogene greenhouse climate culminated during the early Eocene Climatic Optimum (EECO, 50 to 53 Ma). This episode of global warmth is subsequently followed by an almost 20 million year-long cooling trend leading to the Eocene-Oligocene glaciation of Antarctica. Here we present the first detailed planktic and benthic foraminiferal isotope single site record (δ13C, δ18O) of late Paleocene to middle Eocene age from the North Atlantic (Deep Sea Drilling Project Site 401, Bay of Biscay). Good core recovery in combination with well preserved foraminifera makes this site suitable for correlations and comparison with previously published long-term records from the Pacific Ocean (e.g. Allison Guyot, Shatsky Rise), the Southern Ocean (Maud Rise) and the equatorial Atlantic (Demerara Rise). Whereas our North Atlantic benthic foraminiferal δ18O and δ13C data agree with the global trend showing the long-term shift toward heavier δ18O values, we only observe minor surface water δ18O changes during the middle Eocene (if at all) in planktic foraminiferal data. Apparently, the surface North Atlantic did not cool substantially during the middle Eocene. Thus, the North Atlantic appears to have had a different surface ocean cooling history during the middle Eocene than the southern hemisphere, whereas cooler deep-water masses were comparatively well mixed. Our results are in agreement with previously published findings from Tanzania, which also support the idea of a muted post-EECO surface-water cooling outside the southern high-latitudes.

  10. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Early/Middle Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, Eveline N.; Sewall, Jacob O.; Noone, David; Huber, Matthew; von der Heydt, Anna; Damsté, Jaap Sinninghe; Reichart, Gert-Jan

    2010-09-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during the Azolla interval in the Early/Middle Eocene, compared to modern. Changes in the hydrological cycle, as a consequence of a reduced temperature gradient, are expected to be reflected in the isotopic composition of precipitation (δD, δ 18O). The interpretation of water isotopic records to quantitatively reconstruct past precipitation patterns is, however, hampered by a lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled version of the National Center for Atmospheric Research (NCAR) atmospheric general circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of an imposed reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Early/Middle Eocene setting. As a result of the applied forcings, the Eocene simulation predicts the occurrence of less depleted high latitude precipitation, with δD values ranging only between 0 and -140‰ (compared to Present-day 0 to -300‰). Comparison with Early/Middle Eocene-age isotopic proxy data shows that the simulation accurately captures the main features of the spatial distribution of the isotopic composition of Early/Middle Eocene precipitation over land in conjunction with the aspects of the modeled Early/Middle Eocene climate. Hence, the included stable isotope module quantitatively supports the existence of a reduced meridional temperature gradient during this interval.

  11. Analysis of Benthic Foraminiferal Size Change During the Eocene-Oligocene Transition

    NASA Astrophysics Data System (ADS)

    Zachary, W.; Keating-Bitonti, C.

    2017-12-01

    The Eocene-Oligocene transition is a significant global cooling event with the first growth of continental ice on Antarctica. In the geologic record, the size of fossils can be used to indirectly observe how organisms respond to climate change. For example, organisms tend to be larger in cooler environments as a physiological response to temperature. This major global cooling event should influence organism physiology, resulting in significant size trends observed in the fossil record. Benthic foraminifera are protists and those that grow a carbonate shell are both well-preserved and abundant in marine sediments. Here, we used the foraminiferal fossil record to study the relationship between their size and global cooling. We hypothesize that cooler temperatures across the Eocene-Oligocene boundary promoted shell size increase. To test this hypothesis, we studied benthic foraminifera from 10 deep-sea cores drilled at Ocean Drilling Program Site 744, located in the southern Indian Ocean. We washed sediment samples over a 63-micron sieve and picked foraminifera from a 125-micron sieve. We studied the benthic foraminiferal genus Cibicidoides and its size change across this cooling event. Picked specimens were imaged and we measured the diameter of their shells using "imageJ". Overall, we find that Cibicidoides shows a general trend of increasing size during this transition. In particular, both the median and maximum sizes of Cibicidoides increase from the Eocene into the Oligocene. We also analyzed C. pachyderma and C. mundulus for size trends. Although both species increase in median size across the boundary, only C. pachyderma shows a consistent trend of increasing maximum, median, and minimum shell diameter. After the Eocene-Oligocene boundary, we observe that shell diameter decreases following peak cooling and that foraminiferal sizes remain stable into the early Oligocene. Therefore, the Eocene-Oligocene cooling event appears to have strong influence on shell size.

  12. Flashy Water and Sediment Delivery to Fluvial Megafan andFan Delta Systems on Opposing Shorelines of an Early Eocene Lake

    NASA Astrophysics Data System (ADS)

    Jones, E. R.; Plink-Bjorklund, P.

    2015-12-01

    Flashy delivery of water and sediment had distinct effects on the process of deposition in coeval fluvial megafan and fan delta deposits on opposing shorelines of a paleolake that occupied the Uinta Basin throughout the Eocene. The Tertiary Uinta Basin was an asymmetric continental interior basin with a steep northern margin, adjacent to the block uplift controlling basin subsidence, and a low gradient southern margin. A ~140 km wide fluvial megafan with catchments as far as ~750 km away occupied the southern margin of the lacustrine basin. Within this megafan system, fluvial deposits contain within-channel continental bioturbation and paleosol development on bar accretion surfaces that are evidence of prolonged periods of groundwater flow or channel abandonment. These are punctuated by channel fills exhibiting a suite of both high-deposition rate and upper flow regime sedimentary structures that were deposited by very rapid suspension-fallout during seasonal to episodic river flooding events. A series of small (~8 km wide) and proximally sourced fan deltas fed sediment into the steeper northern margin of the lacustrine basin. 35-50% of the deposits in the delta plain environment of these fan deltas are very sandy debris flows with as low as 5% clay and silt sized material. Detrital zircon geochronology shows that these fan deltas were tapping catchments where mostly unconsolidated Cretaceous sedimentary cover and thick Jurassic eolianites were being eroded. A combination of flashy precipitation, arid climate, catchments mantled by abundant loose sand-sized colluvium, and steep depositional gradients promoted generation of abundant very sandy (5-10% clay and silt sized material) debris flows. In this way, the Wasatch and Green River Formations in the Uinta Basin, Utah, U.S.A. gives us two very different examples of how routing flashy water and sediment delivery (associated with pulses of hyperthermal climate change during the Early Eocene) through different

  13. Salinity of the Early and Middle Eocene Arctic Ocean From Oxygen Isotope Analysis of Fish Bone Carbonate

    NASA Astrophysics Data System (ADS)

    Waddell, L. M.; Moore, T. C.

    2006-12-01

    Plate tectonic reconstructions indicate that the Arctic was largely isolated from the world ocean during the early and middle Eocene, with exchange limited to shallow, and possibly intermittent, connections to the North Atlantic and Tethys (via the Turgay Strait). Relative isolation, combined with an intensification of the hydrologic cycle under an Eocene greenhouse climate, is suspected to have led to the development of a low- salinity surface water layer in the Arctic that could have affected deep and intermediate convection in the North Atlantic. Sediment cores recently recovered from the Lomonosov Ridge by the IODP 302 Arctic Coring Expedition (ACEX) allow for the first assessment of the salinity of the Arctic Ocean during the early and middle Eocene. Stable isotope analysis performed on the structural carbonate of fish bone apatite from ~30 samples between the ages of ~55 and ~44 myr yielded δ18O values between -6.84‰ and -2.96‰ VPDB, with a mean value of -4.89‰. From the δ18O values we calculate that the Arctic Ocean was probably brackish during most of the early and middle Eocene, with an average salinity of 19 to 24‰. Negative excursions in the δ18O record (<-6‰) indicate three events during which the salinity of the Arctic surface waters was severely lowered: the Paleocene Eocene Thermal Maximum (PETM), the Azolla event at ~49 Ma, and a third previously unidentified event at ~46 Ma. During the PETM, low salinities developed under conditions of increased regional precipitation and runoff associated with extreme high latitude warmth and possible tectonic uplift in the North Atlantic. During the other two low-salinity events, sea level was lowered by ~20-30 m, implying a possible severing of Arctic connections to the world ocean. The most positive δ18O value (-2.96‰) occurs at ~45 Ma, the age of the youngest dropstone discovered in the ACEX sediments, and may therefore correspond to a climatic cooling rather than a high salinity event.

  14. The early Eocene birds of the Messel fossil site: a 48 million-year-old bird community adds a temporal perspective to the evolution of tropical avifaunas.

    PubMed

    Mayr, Gerald

    2017-05-01

    Birds play an important role in studies addressing the diversity and species richness of tropical ecosystems, but because of the poor avian fossil record in all extant tropical regions, a temporal perspective is mainly provided by divergence dates derived from calibrated molecular analyses. Tropical ecosystems were, however, widespread in the Northern Hemisphere during the early Cenozoic, and the early Eocene German fossil site Messel in particular has yielded a rich avian fossil record. The Messel avifauna is characterized by a considerable number of flightless birds, as well as a high diversity of aerial insectivores and the absence of large arboreal birds. With about 70 currently known species in 42 named genus-level and at least 39 family-level taxa, it approaches extant tropical biotas in terms of species richness and taxonomic diversity. With regard to its taxonomic composition and presumed ecological characteristics, the Messel avifauna is more similar to the Neotropics, Madagascar, and New Guinea than to tropical forests in continental Africa and Asia. Because the former regions were geographically isolated during most of the Cenozoic, their characteristics may be due to the absence of biotic factors, especially those related to the diversification of placental mammals, which impacted tropical avifaunas in Africa and Asia. The crown groups of most avian taxa that already existed in early Eocene forests are species-poor. This does not support the hypothesis that the antiquity of tropical ecosystems is key to the diversity of tropical avifaunas, and suggests that high diversification rates may be of greater significance. © 2016 Cambridge Philosophical Society.

  15. An eocene hystricognathous rodent from Texas: its significance in interpretations of continental drift.

    PubMed

    Wood, A E

    1972-03-17

    The earliest known representative of the fundamentally South American and African hystricognathous rodents has recently been found in the middle or late Eocene of southwestern Texas; this discovery supports the postulate of a northern and independent origin for the two southern groups and increases the evidence against mid-Tertiary trans-Atlantic migration of these rodents at a time when the South Atlantic was narrower than it is at present. The fossil seems to be related to the North American Eocene family Sciuravidae.

  16. Interaction Between Magmatism and Continental Extension, Insight From an Extensional Terrain in the Iranian Plateau

    NASA Astrophysics Data System (ADS)

    Malekpour Alamdari, A.; Axen, G. J.; Hassanzadeh, J.

    2014-12-01

    Our knowledge about the spatial and temporal relationship between continental extension and its related magmatism is mainly from the western US where removal of a flat subducting slab from under the continent controlled thermal weakening and some extensional collapse. The Iranian plateau, where flat-slab subduction and its subsequent rollback is suggested for the Tertiary magmatic evolution, is an ideal place to see if a similar interaction exists. Between the Late Cretaceous and, at least, the Early Eocene, large-scale continental extension affected the NE Iranian plateau. An ~100 km-long, SE tilted upper to mid-crustal section was exhumed by slip along a low-angle, NW-dipping detachment fault. From SE to NW (young to old) this section includes late Cretaceous pelagic limestones of the Kashmar ophiolites, Late and Early Cretaceous sedimentary rocks, and the Late Triassic and older crystalline rocks of the Biarjmand-Shotor Kuh metamorphic core complex. Little pre-extensional magmatic activity exists in the tilted sequence and in surrounding regions, as Late Jurassic and Early Cretaceous dikes. Similarly, syn-extensional magmatism is absent. In contrast, the tilted sequence is unconformably overlain by >4000 m of volcanic rocks with age ranging from the Middle Eocene (explosive, calc-alkaline?) to the Late Eocene (effusive, alkaline). The absence of considerable pre-extensional magmatism in the NE Iranian plateau does not support magma underplating, subsequent thermal weakening and collapse as a mechanism for the extension in this region. It also indicates that the models that consider waning of volcanism as a controlling mechanism for triggering of extensional faulting (Sonder & Jones, 1999) is not applicable for this region. The amagmatic extension may reflect magma crystallization at depth due to reduced confining pressure resulted from active normal faulting and fracturing (Gans & Bohrson, 1998). The extension and related asthenospheric rise may be developed in

  17. Early-middle Eocene transition in calcareous nannofossil assemblages at IODP Site U1410 (Southeast Newfoundland Ridge, NW Atlantic)

    NASA Astrophysics Data System (ADS)

    Cappelli, Carlotta; Agnini, Claudia; Yamamoto, Yuhji

    2017-04-01

    The early-middle Eocene interval documents the shift from the warmest greenhouse conditions occurred during the Early Eocene Climatic Optimum (EECO, 52-50 Ma) to the beginning of the cooling phase which led to the Oligocene icehouse regime. This important transition is well expressed as a reversal in the global oxygen and carbonate isotope trends (Zachos et al., 2001). Moreover, this interval was a time of remarkable transformation in the marine biosphere. Communities of calcareous nannoplankton, marine calcifying algae at the base of the oceans food chain, experienced transient and permanent profound changes. Calcareous nannofossil are regarded as remarkable tools both in biostratigraphy and paleoecology, with several taxa that show different responses to changes in physical parameters of surface waters. Here, we aim to document calcareous nannoplankton assemblage changes across the early-middle Eocene transition, in order to upset the biostratigraphic framework and to increase comprehension of how phytoplankton communities responded to paleoenvironmental changes at that time. The sedimentary successions recovered at IODP Site U1410 (Exp. 342; 41˚ 19.6987'N; 49˚ 10.1995'W, Norris et al., 2012) on the Southeast Newfoundland Ridge (NW Atlantic) offer an expanded record of the early-middle Eocene interval that is marked by an increase in accumulation rate related to sedimentation of clay-rich nannofossil oozes. Quantitative analysis of calcareous nannofossil assemblages was conducted, encompassing calcareous nannofossil Zones NP12 -NP15 or CNE4-CNE10 (Martini, 1971; Agnini et al., 2014). The study interval records the appearance and proliferation of Noelaerhabdaceae family (i.e, Reticulofenestra/Dictyococcites group), which can be considered one of the most significant shifts in the assemblage structure of the Paleogene. This change was probably favored by modifications in surface water chemistry. The middle Eocene clay-rich sediments contain well preserved

  18. Arctic Climate and Terrestrial Vegetation Responses During the Middle to Late Eocene and Early Oligocene: Colder Winters Preceded Cool-Down.

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; Eldrett, J.

    2006-12-01

    The late Eocene to early Oligocene is recognized as an interval of substantial change in the global climate, with isotopic proxies of climate indicating a significant drop in sea surface temperatures. Other studies have shown, however that at middle latitudes that terrestrial mean annual temperature did not change significantly over this interval, and that the major change was likely a shift towards a greater range of seasonal temperatures; colder winters and warmer summers. Previous analyses of high latitude (Arctic) middle Eocene climate using both leaf physiognomic analysis and qualitative analysis of identified nearest living relatives of terrestrial floras indicated upper microthermal environments (mean annual temp. or MAT ca 10°C but perhaps as high as 15°C, coldest month mean temp. or CMMT ca 0°C) for Axel Heiberg Island in the Arctic Archipelago, but did not address precipitation nor provide data on the Eocene-Oligocene transition in the Arctic. Presented here are new estimates of temperature and precipitation (annual and season amounts) for the Arctic based on NLR analysis of terrestrial plant palynomorphs (spores and pollen) from the ODP 913B and 985 cores from near Greenland. The record of climate for the Greenland cores show a similar climate in the middle Eocene to that previously estimated for Axel Heiberg Island further to the west, with MAT 10- 15°C but with CMMT >5°C. Precipitation was high (mean annual precip. or MAP >180 cm/yr), although with large uncertainties attached to the estimate. The climate proxy record for the late Eocene to early Oligocene shows a lack of change in MAT and MAP over the time interval. Consistent with other published records at middle latitudes, however, winter temperatures (as CMMT) show greater variability leading up to the E-O boundary, and consistently cooler values in the early Oligocene (CMMT <5°C) than recorded for most of the middle to late Eocene record (CMMT >5°C). Plant groups sensitive to freezing such

  19. The Influence of the Green River Lake System on the Local Climate During the Early Eocene Period

    NASA Astrophysics Data System (ADS)

    Elguindi, N.; Thrasher, B.; Sloan, L. C.

    2006-12-01

    Several modeling efforts have attempted to reproduce the climate of the early Eocene North America. However when compared to proxy data, General Circulation Models (GCMs) tend to produce a large-scale cold-bias. Although higher resolution Regional Climate Models (RCMs) that are able to resolve many of the sub-GCM scale forcings improve this cold bias, RCMs are still unable to reproduce the warm climate of the Eocene. From geologic data, we know that the greater Green River and the Uinta basins were intermontane basins with a large lake system during portions of the Eocene. We speculate that the lack of presence of these lakes in previous modeling studies may explain part of the persistent cold-bias of GCMs and RCMs. In this study, we utilize a regional climate model coupled with a 1D-lake model in an attempt to reduce the uncertainties and biases associated with climate simulations over Eocene western North American. Specifically, we include the Green River Lake system in our RCM simulation and compare climates with and without lakes to proxy data.

  20. A large mimotonid from the Middle Eocene of China sheds light on the evolution of lagomorphs and their kin

    PubMed Central

    Fostowicz-Frelik, Łucja; Li, Chuankui; Mao, Fangyuan; Meng, Jin; Wang, Yuanqing

    2015-01-01

    Mimotonids share their closest affinity with lagomorphs and were a rare and endemic faunal element of Paleogene mammal assemblages of central Asia. Here we describe a new species, Mimolagus aurorae from the Middle Eocene of Nei Mongol (China). This species belongs to one of the most enigmatic genera of fossil Glires, previously known only from the type and only specimen from the early Oligocene of Gansu (China). Our finding extends the earliest occurrence of the genus by at least 10 million years in the Paleogene of Asia, which closes the gap between Mimolagus and other mimotonids that are known thus far from middle Eocene or older deposits. The new species is one of the largest known pre-Oligocene Glires. As regards duplicidentates, Mimolagus is comparable with the largest Neogene continental leporids, namely hares of the genus Lepus. Our results suggest that ecomorphology of this species was convergent on that of small perissodactyls that dominated faunas of the Mongolian Plateau in the Eocene, and probably a result of competitive pressure from other Glires, including a co-occurring mimotonid, Gomphos. PMID:25818513

  1. A large mimotonid from the middle Eocene of China sheds light on the evolution of lagomorphs and their kin.

    PubMed

    Fostowicz-Frelik, Łucja; Li, Chuankui; Mao, Fangyuan; Meng, Jin; Wang, Yuanqing

    2015-03-30

    Mimotonids share their closest affinity with lagomorphs and were a rare and endemic faunal element of Paleogene mammal assemblages of central Asia. Here we describe a new species, Mimolagus aurorae from the Middle Eocene of Nei Mongol (China). This species belongs to one of the most enigmatic genera of fossil Glires, previously known only from the type and only specimen from the early Oligocene of Gansu (China). Our finding extends the earliest occurrence of the genus by at least 10 million years in the Paleogene of Asia, which closes the gap between Mimolagus and other mimotonids that are known thus far from middle Eocene or older deposits. The new species is one of the largest known pre-Oligocene Glires. As regards duplicidentates, Mimolagus is comparable with the largest Neogene continental leporids, namely hares of the genus Lepus. Our results suggest that ecomorphology of this species was convergent on that of small perissodactyls that dominated faunas of the Mongolian Plateau in the Eocene, and probably a result of competitive pressure from other Glires, including a co-occurring mimotonid, Gomphos.

  2. Rethinking Controls on the Long-Term Cenozoic Carbonate Compensation Depth: Case Studies across Late Paleocene - Early Eocene Warming and Late Eocene - Early Oligocene Cooling

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A. J.; Schmidt, D. N.; Kirtland Turner, S.; Paelike, H.; Thomas, E.

    2014-12-01

    The carbonate compensation depth (CCD) is the depth below which negligible calcium carbonate is preserved in marine sediments. The long-term position of the CCD is often considered to be a powerful constraint on palaeoclimate and atmospheric CO2 concentration due to the requirement that carbonate burial balance riverine weathering over long timescales. The requirement that weathering and burial be in balance is clear, but it is less certain that burial compensates for changes in weathering via shoaling or deepening of the CCD. Because most carbonate burial occurs well above the CCD , changes in weathering fluxes may be primarily accommodated by increasing or decreasing carbonate burial at shallower depths, i.e., at or near the lysocline, the depth range over which carbonate dissolution markedly increases. Indeed, recent earth system modelling studies have suggested that the position of the CCD is relatively insensitive to changes in atmospheric pCO2. Additionally, studies have questioned the nature and strength of the relationship between the CCD, carbonate saturation state in the water column, and lysocline. To test the relationship between palaeoclimate and the location of the CCD, we reconstructed the global, long-term CCD behaviour across major Cenozoic climate transitions: the late Paleocene - early Eocene long-term warming trend (study interval ~58 to 49 Ma) and the late Eocene - early Oligocene cooling and glaciation (study interval ~38 to 27 Ma). We use Earth system modelling (GENIE) to explore the links between atmospheric pCO2 and the CCD, isolating and teasing apart the roles of total dissolved inorganic carbon, temperature, circulation, and productivity in determining the CCD.

  3. New euprimate postcrania from the early Eocene of Gujarat, India, and the strepsirrhine-haplorhine divergence.

    PubMed

    Dunn, Rachel H; Rose, Kenneth D; Rana, Rajendra S; Kumar, Kishor; Sahni, Ashok; Smith, Thierry

    2016-10-01

    The oldest primates of modern aspect (euprimates) appear abruptly on the Holarctic continents during a brief episode of global warming known as the Paleocene-Eocene Thermal Maximum, at the beginning of the Eocene (∼56 Ma). When they first appear in the fossil record, they are already divided into two distinct clades, Adapoidea (basal members of Strepsirrhini, which includes extant lemurs, lorises, and bushbabies) and Omomyidae (basal Haplorhini, which comprises living tarsiers, monkeys, and apes). Both groups have recently been discovered in the early Eocene Cambay Shale Formation of Vastan lignite mine, Gujarat, India, where they are known mainly from teeth and jaws. The Vastan fossils are dated at ∼54.5 Myr based on associated dinoflagellates and isotope stratigraphy. Here, we describe new, exquisitely preserved limb bones of these Indian primates that reveal more primitive postcranial characteristics than have been previously documented for either clade, and differences between them are so minor that in many cases we cannot be certain to which group they belong. Nevertheless, the small distinctions observed in some elements foreshadow postcranial traits that distinguish the groups by the middle Eocene, suggesting that the Vastan primates-though slightly younger than the oldest known euprimates-may represent the most primitive known remnants of the divergence between the two great primate clades. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. K-Ar age and geochemistry of the SW Japan Paleogene cauldron cluster: Implications for Eocene-Oligocene thermo-tectonic reactivation

    NASA Astrophysics Data System (ADS)

    Imaoka, T.; Kiminami, K.; Nishida, K.; Takemoto, M.; Ikawa, T.; Itaya, T.; Kagami, H.; Iizumi, S.

    2011-01-01

    Systematic K-Ar dating and geochemical analyses of Paleogene cauldrons in the Sanin Belt of SW Japan have been made to explore the relationship between the timing of their formation and the Paleogene subduction history of SW Japan documented in the Shimanto accretionary complex. We also examine the magma sources and tectonics beneath the backarc region of SW Japan at the eastern plate boundary of Eurasia. Fifty-eight new K-Ar ages and 19 previously reported radiometric age data show that the cauldrons formed during Middle Eocene to Early Oligocene time (43-30 Ma), following a period of magmatic hiatus from 52 to 43 Ma. The hiatus coincides with absence of an accretionary prism in the Shimanto Belt. Resumption of the magmatism that formed the cauldron cluster in the backarc was concurrent with voluminous influx of terrigenous detritus to the trench, as a common tectono-thermal event within a subduction system. The cauldrons are composed of medium-K calc-alkaline basalts to rhyolites and their plutonic equivalents. These rocks are characterized by lower concentrations of large ion lithophile elements (LILE) including K 2O, Ba, Rb, Th, U and Li, lower (La/Yb) n ratios, lower initial Sr isotopic ratios (0.7037-0.7052) and higher ɛNd( T) values (-0.5 to +3.5) relative to Late Cretaceous to Early Paleogene equivalents. There are clear trends from enriched to depleted signatures with decreasing age, from the Late Cretaceous to the Paleogene. The same isotopic shift is also confirmed in lower crust-derived xenoliths, and is interpreted as mobilization of pre-existing enriched lithospheric mantle by upwelling depleted asthenosphere. Relatively elevated geothermal gradients are presumed to have prevailed over wide areas of the backarc and forearc of the SW Japan arc-trench system during the Eocene to Oligocene. Newly identified Late Eocene low silica adakites and high-Mg andesites in the Sanin Belt and Early Eocene A-type granites in the SW Korea Peninsula probably formed

  5. Multiple states in the late Eocene ocean circulation

    NASA Astrophysics Data System (ADS)

    Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.

    2018-04-01

    The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.

  6. Ocean Nitrogen Isotopic Change in the Early Eocene

    NASA Astrophysics Data System (ADS)

    Kast, E.; Stolper, D. A.; Higgins, J. A.; Ren, H. A.; Wang, X. T.; Sigman, D. M.

    2017-12-01

    The long term variability of the marine nitrogen (N) cycle is an open question. The Cenozoic provides a well-studied framework for investigating the marine N cycle over long time scales and across large climate transitions. However, only sparse bulk Cenozoic sediment δ15N data exist, the utility of which for reconstructing environmental conditions is unclear. We present a record of foraminifera-bound organic matter δ15N from the Paleocene to late Eocene. At three distant sites, foraminifera-bound δ15N decreases dramatically between 56 Ma and 50 Ma: from 14‰ to 2‰ in the northwest Pacific (ODP site 1209), from 12‰ to 4‰ in the southeast Atlantic (ODP site 1263), and from 9‰ to 4‰ in the northwest Atlantic (IODP site U1409). This foraminifera-bound δ15N change is on par, if not greater, than the largest changes that have been observed in bulk sediment δ15N over the last 600 million years. The shared change among the sites implies a change in mean δ15N of oceanic fixed N, which is thought to be sensitive to the ratio of water column to sedimentary denitrification, with a higher δ15N reflecting a greater proportion of denitrification occurring in the water column. Today, water column denitrification occurs in the shallow subsurface, in regions where these waters are suboxic. Thus, the δ15N decrease may reflect a slowing of water column denitrification, which can be generated by a decline in shallow subsurface suboxia. A key factor in the extent of shallow subsurface suboxia is the amount of "preformed oxygen," the initial concentration of dissolved O2 in the water that flows from the surface into the shallow subsurface: a decline in suboxia would require a rise in preformed oxygen from 56 to 50 Ma. The δ15N decline occurs before the onset of cooling in the Eocene, eliminating global temperature change as the driver of increased preformed oxygen. Instead we favor explanations that involve tectonically driven changes in continental configuration and

  7. Anatomically preserved seeds of Nuphar (Nymphaeaceae) from the Early Eocene of Wutu, Shandong Province, China.

    PubMed

    Chen, Iju; Manchester, Steven R; Chen, Zhiduan

    2004-08-01

    Well-preserved seeds from the early Eocene of Wutu, Shandong, China are assigned to the genus Nuphar (Nymphaeaceae) based on morphology and anatomy. The seeds of Nuphar wutuensis sp. nov. are ellipsoidal to ovoid, 4-5 mm long with a clearly visible raphe ridge, and a truncate apex capped by a circular operculum ca. 1 mm in diameter bearing a central micropylar protrusion. These features, along with the testa composed of a uniseriate outer layer of equiaxial pentagonal to hexagonal surface cells and a middle layer 4-6 cells thick composed of thick-walled, periclinally elongate sclereids, correspond to the morphology and anatomy of extant Nuphar and distinguish this fossil species from all other extant and extinct genera of Nymphaeales. These seeds provide the oldest record for the genus in Asia and are supplemented by a similar well-preserved specimen from the Paleocene of North Dakota, USA. These data, together with the prior recognition of Brasenia (Cabombaceae) in the middle Eocene, indicate that the families Nymphaeaceae and Cabombaceae had differentiated by the early Tertiary.

  8. Continental crust beneath southeast Iceland.

    PubMed

    Torsvik, Trond H; Amundsen, Hans E F; Trønnes, Reidar G; Doubrovine, Pavel V; Gaina, Carmen; Kusznir, Nick J; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D; Griffin, William L; Werner, Stephanie C; Jamtveit, Bjørn

    2015-04-14

    The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the Öræfajökull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume.

  9. Continental crust beneath southeast Iceland

    PubMed Central

    Torsvik, Trond H.; Amundsen, Hans E. F.; Trønnes, Reidar G.; Doubrovine, Pavel V.; Gaina, Carmen; Kusznir, Nick J.; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D.; Griffin, William L.; Werner, Stephanie C.; Jamtveit, Bjørn

    2015-01-01

    The magmatic activity (0–16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland—and especially the Öræfajökull volcano—is characterized by a unique enriched-mantle component (EM2-like) with elevated 87Sr/86Sr and 207Pb/204Pb. Here, we demonstrate through modeling of Sr–Nd–Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2–6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  10. Pollen and palynofacies analyses of Paleocene-Eocene Thermal Maximum sediments from the North American continental shelf

    NASA Astrophysics Data System (ADS)

    Willard, D. A.; Robinson, M. M.; Self-Trail, J. M.; Wandless, G. A.; Sluijs, A.

    2014-12-01

    Analyses of pollen and palynofacies from Paleocene-Eocene Thermal Maximum (PETM) sediments from three cores collected on the Atlantic Coastal Plain provide insights into the timing of vegetation and hydrologic changes associated with the PETM in eastern North America. The Mattawoman Creek-Billingsley Road (MCBR2), South Dover Bridge (SDB), and Bass River (ODP Site 1074AX) cores were collected at progressively greater distances from the paleoshoreline in continental shelf deposits in Maryland and New Jersey, USA. The PETM carbon isotope excursion (CIE) at each site is accompanied by sharp increases in pollen and spore concentrations, as well as changes in terrestrial palynomorph assemblage composition. In the two sites proximal to the paleoshoreline in Maryland, CIE fern spore abundance was two- to three times greater than in pre-CIE assemblages. At the distal site at Bass River, fern spores are present in CIE sediments and absent in pre-CIE sediments. Angiosperm pollen is most common in CIE sediments at all three sites. Palynofacies analyses, which quantify contributions of organic material from marine and non-marine sources, indicate that terrestrial influx increased sharply at the CIE onset. This observation is consistent with seasonally increased runoff from the continent.

  11. Cretaceous and Eocene Adakites in the Sikhote-Alin area (Russian Far East) and their correlation with adakitic rocks in the East Asia continental margin

    NASA Astrophysics Data System (ADS)

    Wu, T. J.; Jahn, B. M.

    2017-12-01

    Adakitic rocks of the Sikhote-Alin area were emplaced during two main periods: the Cretaceous (132-98 Ma) and Eocene (46-39 Ma). These rocks primarily occur in the Khanka Block and, less commonly, in the Sikhote-Alin Orogenic Belt. The adakitic rocks record the following chemical compositions: SiO2 = 57-74%, Al2O3 = 15-18%, Na2O = 3.5-6.1%, K2O = 0.7-3.2%, Na2O/K2O = 1.1-3.9, Sr/Y = 33-145, and (La/Yb)N = 11-53. The HREE and HFSE in these rocks are remarkably depleted. The Early Cretaceous adakites record ɛNd(T) = -1.0 to +3.2 and ISr = 0.7040-0.7090, and the Eocene adakitic rocks record Nd(T) = -2.0 to +2.2 and ISr = 0.7042-0.7058. Adakitic features suggest different modes of magma generation; a comparison of the Sr/Y and La/Yb ratios and geochemical data on Harker diagrams between the two periods of adakitic rocks reveals differences in their petrogenesis. The Cretaceous adakites may have been generated by the partial melting of meta-basic rocks in a subduction zone, accompanied by the emplacement of volcanic arc granitoids. Therefore, the subduction of the Paleo-Pacific Plate beneath the Sikhote-Alin was probably initiated during this time. The Eocene rocks, which record increasing adakitic features with increasing silica content, are most likely the product of andesite that underwent fractionation of mineral assemblage including clinopyoxene, orthopyroxene, garnet and amphibole. These rocks and associated basalts and rhyolite were formed after Cretaceous arc magmatism in the Sikhote-Alin area and were most likely generated by rollback of the subducting Pacific Plate after the Eocene. Abundant adakitic granitoids of Early Cretaceous and Eocene age occur in the Kitakami and Abukuma Mountains of NE Japan. Consequently, it is highly probable that a geological correlation existed between Sikhote-Alin and North Japan, particularly before the opening of the Japan Sea.

  12. Recent advances on the knowledge of the Eocene primates from the Pyrenean Basins (NE Spain)

    NASA Astrophysics Data System (ADS)

    Minwer-Barakat, Raef; Marigó, Judit; Femenias-Gual, Joan; Moyà-Solà, Salvador

    2017-04-01

    The Eocene was one of the warmest epochs of the Cenozoic and documented the first occurrence of several orders of modern mammals. Among them, Euprimates underwent a very important radiation favored by the development of dense forests throughout the Northern Hemisphere. Two main groups reached a great abundance and diversity during the Eocene, Adapiformes and Omomyiformes, which are related to the main clades of living primates (strepsirrhines and haplorhines, respectively). In the Iberian Peninsula, Eocene primates have been known since the 1960s, when several fossil sites containing prosimian remains were discovered. Nevertheless, it was not until 2010 that the research on Eocene primates from Spain has increased strikingly, and the results achieved in this last stage have surpassed those of the whole past century in terms of number of publications. Besides some interesting findings in the Ebro, Almazán and Miranda-Trebiño basins, the Pyrenees have yielded the most abundant record of Eocene primates from the Iberian Peninsula, constituting therefore an excellent region for evaluating the evolution of primates through this epoch. In the early Eocene continental deposits of the Àger area, adapiforms are well represented, with three species of the genus Agerinia. Besides, the only record of Plesiadapiformes (archaic primates) from Spain has been documented in this zone. The middle Eocene is particularly well represented in the Eastern Pyrenees. In the section of Sant Jaume de Frontanyà, three primate species have been described in the last years. The adapiform Anchomomys frontanyensis and the omomyiform Pseudoloris pyrenaicus, found in the oldest levels of the section, and the omomyiform Necrolemur anadoni, identified in the youngest levels, have allowed reconstructing the relationships of these taxa with their correlatives found in other parts of Europe. Late Eocene deposits with mammal remains crop out in the area of La Pobla de Segur. The most relevant fossil

  13. The Eocene-Oligocene transition in the North Alpine Foreland Basin and subsequent closure of a Paratethys gateway

    NASA Astrophysics Data System (ADS)

    van der Boon, A.; Beniest, A.; Ciurej, A.; Gaździcka, E.; Grothe, A.; Sachsenhofer, R. F.; Langereis, C. G.; Krijgsman, W.

    2018-03-01

    During the Eocene-Oligocene transition (EOT), a major palaeoenvironmental change took place in the Paratethys Sea of central Eurasia. Restricted connectivity and increased stratification resulted in wide-spread deposition of organic-rich sediments which nowadays make up important hydrocarbon source rocks. The North Alpine Foreland Basin (NAFB) was a major gateway of the Paratethys Sea to the open ocean during the Eocene, but the age of closure of this gateway is still uncertain. The Ammer section in southern Germany documents the shallowing of this connection and subsequent disappearance of marine environments in the NAFB, as reflected in its sedimentary succession of turbidites to marls (Deutenhausen to Tonmergel beds), via coastal sediments (Baustein beds) to continental conglomerates (Weißach beds). Here, we apply organic geochemistry and date the lithological transitions in the Ammer section using integrated stratigraphy, including magnetostratigraphy and biostratigraphy. Nannoplankton and dinocyst results can be reconciled when dinoflagellate species Wetzeliella symmetrica is of late Eocene age. Our magnetostratigraphy then records C13r-C13n-C12r and allows calculation of sediment accumulation rates and estimation of ages of lithological transitions. We show that the shallowing from turbiditic slope deposits (Deutenhausen beds) to shelf sediments (Tonmergel beds) coincides with the Eocene-Oligocene boundary at 33.9 Ma. The transition to continental sediments is dated at ca. 33.15 Ma, significantly older than suggested by previous studies. We conclude that the transition from marine to continental sediments drastically reduced the marine connection through the western part of the NAFB and influenced the oxygen conditions of the Paratethys Sea.

  14. A late eocene-early Oligocene transgressive event in the Golfo San Jorge basin: Palynological results and stratigraphic implications

    NASA Astrophysics Data System (ADS)

    Paredes, José M.; Foix, Nicolás; Guerstein, G. Raquel; Guler, María V.; Irigoyen, Martín; Moscoso, Pablo; Giordano, Sergio

    2015-11-01

    A new Cenozoic dataset in the subsurface of the South Flank of the Golfo San Jorge Basin (Santa Cruz province) allowed to identify a non-previously recognized transgressive event of late Eocene to early Oligocene age. Below of a marine succession containing a dinoflagellate cyst assemblage that characterizes the C/G palynological zone of the Chenque Formation (early Miocene), a 80-110 m thick marine succession contains a palynological assemblage integrated by Gelatia inflata, Diphyes colligerum and Reticulatosphaera actinocoronata supporting the occurrence of a marine incursion in the basin during the Eocene-Oligocene transition (EOT). The new lithostratigraphic unit - here defined as El Huemul Formation - covers in sharp contact to the Sarmiento Formation, and become thinner from East to West; the unit has been identified in about 1800 well logs covering up to 3500 km2, and its subsurface distribution exceed the boundaries of the study area. The El Huemul Formation consists of a thin lag of glauconitic sandstones with fining-upward log motif, followed by a mudstone-dominated succession that coarsening-upward to sandstones, evidencing a full T-R cycle. Preservation of the El Huemul Formation in the subsurface of the South Flank has been favored by the reactivation of WNW-ESE late Cretaceous normal faults, and by the generation of N-S striking normal faults of Paleocene-Eocene age. Flexural loading associated to igneous intrusions of Paleocene?- middle Eocene age also promoted the increase of subsidence in the South Flank of the basin prior to the transgression.

  15. First record of eocene bony fishes and crocodyliforms from Canada's Western Arctic.

    PubMed

    Eberle, Jaelyn J; Gottfried, Michael D; Hutchison, J Howard; Brochu, Christopher A

    2014-01-01

    Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in Canada's High Arctic was a critical paleontological contribution of the last century because it indicated that this region of the Arctic had been mild, temperate, and ice-free during the early - middle Eocene (∼53-50 Ma), despite being well above the Arctic Circle. To date, these discoveries have been restricted to Canada's easternmost Arctic - Ellesmere and Axel Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada's westernmost Arctic Island - Banks Island, Northwest Territories - they have been interpreted as predominantly marine. We document the first Eocene bony fish and crocodyliform fossils from Banks Island. We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a crocodyliform, from lower - middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National Park (∼76°N. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the Early Eocene Climatic Optimum (EECO). These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and crocodyliforms west by approximately 40° of longitude or ∼1100 km. The low diversity bony fish fauna, at least at the family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform, gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the Canadian Arctic during early - middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the phylogenetic hypothesis of a Paleogene divergence time between the two extant alligatorid lineages Alligator

  16. Refining the Early and Middle Eocene Geomagnetic Polarity Time Scale: new results from ODP Leg 208 (Walvis Ridge)

    NASA Astrophysics Data System (ADS)

    Westerhold, T.; Roehl, U.; Frederichs, T.; Bohaty, S. M.; Florindo, F.; Zachos, J. C.; Raffi, I.; Agnini, C.

    2015-12-01

    Astronomical calibration of the Geomagnetic Polarity Time Scale (GPTS) for the Eocene (34-56 Ma) has advanced tremendously in recent years. Combining a cyclostratigraphic approach based on the recognition of the stable 405-kyr eccentricity cycle of Earth's orbit with high-resolution bio- and magnetostratigraphy from deep-sea sedimentary records (ODP Legs 171B, 189 and 207; IODP Exp. 320/321) resulted in a new calibration of the middle-to-late Eocene GPTS spanning Chrons C12r to C19n (30.9-41.3 Ma). A fully astronomically calibrated GPTS for the Eocene was established recently by integrating cyclo-bio-magnetostratigraphy from ODP Sites 702 and 1263 records spanning the middle Eocene with Site 1258 records covering the early Eocene. Comparison of this deep sea-derived GPTS with GTS2012 and GPTS calibration points from terrestrial successions show overall consistent results, but there are still major offsets for the duration of Chrons C20r, C22r and C23n.2n. Because of the relatively large uncertainty of the calibration point, a radioisotopic dated ash layer in DSDP 516F, at C21n.75 (46.24±0.5 Ma) the duration of C20r in GPTS2012 (2.292 myr) is uncertain. Offsets in durations of C22r and C23n.2n between GPTS2012 and the new astronomical GPTS (~400-kyr longer C22r; ~400-kyr shorter C23n.2n) could be due to uncertainties in the interpretation of Site 1258 magnetostratigraphic data. Here we present new results toward establishing a more accurate and complete bio-, magneto- and chemostratigraphy for South Atlantic Leg 208 sites encompassing magnetochrons C13 to C24 (33 to 56 Ma). Our study aims to integrate paleomagnetic records from multiple drilled sites with physical property data, stable isotope data and XRF core scanning data to construct an astronomically calibrated framework for refining GPTS age estimates. This effort will complete the Early-to-Middle Eocene GPTS and allow evaluation of the relative position of calcareous nannofossil events to magnetostratigraphy.

  17. Paleoclimatic analyses of middle Eocene through Oligocene planktic foraminiferal faunas

    USGS Publications Warehouse

    Keller, G.

    1983-01-01

    Quantitative faunal analyses and oxygen isotope ranking of individual planktic foraminiferal species from deep sea sequences of three oceans are used to make paleoceanographic and paleoclimatic inferences. Species grouped into surface, intermediate and deep water categories based on ??18O values provide evidence of major changes in water-mass stratification, and individual species abundances indicate low frequency cool-warm oscillations. These data suggest that relatively stable climatic phases with minor cool-warm oscillations of ???0.5 m.y. frequency are separated by rapid cooling events during middle Eocene to early Oligocene time. Five major climatic phases are evident in the water-mass stratification between middle Eocene through Oligocene time. Phase changes occur at P14/P15, P15/P16, P20/P21 and P21/P22 Zone boundaries and are marked by major faunal turnovers, rapid cooling in the isotope record, hiatuses and changes in the eustatic sea level. A general cooling trend between middle Eocene to early late Oligocene is indicated by the successive replacement of warm middle Eocene surface water species by cooler late Eocene intermediate water species and still cooler Oligocene intermediate and deep water species. Increased water-mass stratification in the latest Eocene (P17), indicated by the coexistence of surface, intermediate and deep dwelling species groups, suggest that increased thermal gradients developed between the equator and poles nearly coincident with the development of the psychrosphere. This pattern may be related to significant ice accumulation between late Eocene and early late Oligocene time. ?? 1983.

  18. Was the Eocene Arctic a Source Area for Exotic Plants and Mammals? (Invited)

    NASA Astrophysics Data System (ADS)

    Eberle, J. J.; Harrington, G. J.; Fricke, H. C.; Humphrey, J.; Hackett, L.; Newbrey, M.; Hutchison, J. H.

    2010-12-01

    Today’s High Arctic is undergoing rapid warming, but the impact on its animal and plant communities is not clear. As a deep time analog to better understand and predict the impacts of global warming on the Arctic biota, early Eocene (52-53 Ma) rocks on Ellesmere Island, Nunavut in Canada’s High Arctic (~79°N latitude) preserve evidence of diverse terrestrial ecosystems that supported dense forests inhabited by turtles, alligators, snakes, primates, tapirs, brontotheres, and hippo-like Coryphodon. The fossil localities were just a few degrees further south and still well above the Arctic Circle during the early Eocene; consequently, the biota experienced months of continuous sunlight as well as darkness, the Arctic summer and winter, respectively. The flora and fauna of the early Eocene Arctic imply warmer, wetter conditions than at present, and recently published analyses of biogenic phosphate from fossil fish, turtle, and mammal estimate warm summers (19 - 20 C) and mild, above-freezing winters. In general, temperature estimates for the early Eocene Arctic can be compared to those found today in temperate rainforests in the Pacific Northwest of the United States. The early Eocene Arctic mammalian fauna shares most genera with coeval mid-latitude faunas thousands of kilometers to the south in the US Western Interior, and several genera also are shared with Europe and Asia. Recent analyses suggest that the large herbivores such as hippo-like Coryphodon were year-round inhabitants in the Eocene Arctic forests. Although several of the Eocene Arctic mammalian taxa are hypothesized to have originated in either mid-latitude North America or Asia, the earlier occurrence of certain clades (e.g., tapirs) in the Arctic raises the possibility of a northern high-latitude origin. Analysis of the early Eocene Arctic palynoflora indicates comparable richness to early Eocene plant communities in the US Western Interior, but nearly 50% of its species (mostly angiosperms) are

  19. Stable isotope study of fluid inclusions in fluorite from Idaho: implications for continental climates during the Eocene

    USGS Publications Warehouse

    Seal, R.R.; Rye, R.O.

    1993-01-01

    Isotopic studies of fluid inclusions from meteoric water-dominated epithermal ore deposits offer a unique opportunity to study paleoclimates because the fluids can provide direct samples of ancient waters. Fluorite-hosted fluid inclusions from the Eocene (51-50 Ma) epithermal deposits of the Bayhorse mining district, have low salinities and low to moderate homogenization temperatures indicating meteoric origins for the fluids. Oxygen and hydrogen isotope data on inclusion fluids are almost identical to those of modern meteoric waters in the area. The equivalence of the isotope composition of the Eocene inclusion fluids and modern meteoric waters indicates that the Eocene climatic conditions were similar to those today. -from Authors

  20. Taxonomy, affinities, and paleobiology of the tiny metatherian mammal Minusculodelphis, from the early Eocene of South America.

    PubMed

    Oliveira, Édison Vicente; Zimicz, Natalia; Goin, Francisco J

    2016-02-01

    With less than 3 g of estimated body mass, the early Eocene Minusculodelphis minimus Paula Couto (Mammalia, Metatheria, Jaskhadelphyidae) is one of the smallest mammals, living or extinct. It has alternatively been regarded as a didelphid or a derorhynchid "ameridelphian," or even as an eometatherian marsupial. Here, we describe a new species of Minusculodelphis coming from the same locality (Itaboraí Quarry, Brazil) and age (Itaboraian age) of the type species of the genus. It differs from M. minimus in its larger size and several dental characters. The new species offers data on the upper dentition and femur, which are unknown in the type species. Compared to other Paleogene metatherians, Minusculodelphis shows closer relationships with Jaskhadelphys, from the early Paleocene of Tiupampa, Bolivia, as well as with Kiruwamaq, from the late Eocene-early Oligocene of Perú. A cladistic analysis places all three genera within the family Jaskhadelphyidae (Metatheria, Order indet.), which includes small to tiny, insectivorous-like metatherians. We argue that insectivory (soft insects) is the best-supported diet for both species of Minusculodelphis, and that the most probable microhabitat for them was the understorey or leaf litter of tropical, rain forested environments.

  1. Taxonomy, affinities, and paleobiology of the tiny metatherian mammal Minusculodelphis, from the early Eocene of South America

    NASA Astrophysics Data System (ADS)

    Oliveira, Édison Vicente; Zimicz, Natalia; Goin, Francisco J.

    2016-02-01

    With less than 3 g of estimated body mass, the early Eocene Minusculodelphis minimus Paula Couto (Mammalia, Metatheria, Jaskhadelphyidae) is one of the smallest mammals, living or extinct. It has alternatively been regarded as a didelphid or a derorhynchid "ameridelphian," or even as an eometatherian marsupial. Here, we describe a new species of Minusculodelphis coming from the same locality (Itaboraí Quarry, Brazil) and age (Itaboraian age) of the type species of the genus. It differs from M. minimus in its larger size and several dental characters. The new species offers data on the upper dentition and femur, which are unknown in the type species. Compared to other Paleogene metatherians, Minusculodelphis shows closer relationships with Jaskhadelphys, from the early Paleocene of Tiupampa, Bolivia, as well as with Kiruwamaq, from the late Eocene-early Oligocene of Perú. A cladistic analysis places all three genera within the family Jaskhadelphyidae (Metatheria, Order indet.), which includes small to tiny, insectivorous-like metatherians. We argue that insectivory (soft insects) is the best-supported diet for both species of Minusculodelphis, and that the most probable microhabitat for them was the understorey or leaf litter of tropical, rain forested environments.

  2. Magnetostratigraphy in the Lodo Formation, CA: An Attempt to Locate Hyperthermals of the Early Eocene

    NASA Astrophysics Data System (ADS)

    Aldrich, N. C.; Pluhar, C. J.; Gibbs, S.; Rieth, J. A.

    2015-12-01

    The Lodo Formation in the California Coast Range, Fresno County records the Paleocene Eocene Thermal Maximum (PETM) and possibly other Early Eocene hyperthermal events. The Eocene Thermal Maximum 2 (ETM2, ELMO, or H1) represents a hyperthermal event that occurred approximately 2 million years after the PETM and just prior to the C24r - C24n magnetic reversal (≈ 53.9 Ma) in the Ypresian. While the ETM2 event has been located in offshore samples, it has been more difficult to locate in a terrestrial section. This project attempts to locate the ETM2 magnetostratigraphically by finding the paleomagnetic reversal at C24r-C24n.3n, provide geochronological framework, and assess sedimentation rate changes during this time. This area is known to have had a high rate of deposition (16.8 cm/kyr ) during the PETM, which is found lower in the section. We collected 36 new samples from a 13.44m section spanning stratigraphy thought to cover the ETM2 along with 31 previous samples spanning the PETM, and prepared them for paleomagnetic and paleontological analysis. We analyzed samples using standard paleomagnetic methods including low-temperature and thermal demagnetization. Preliminary results suggest that the magnetostratigraphy spans the C24r-C24n boundary, while the micropaleontology shows the NP10-NP11 boundary, which occurs near the ETM2 as well as the NP11-NP12 boundary. The data indicate an order-of-magnitude drop in sedimentation rate in the lower Eocene at this site, concomitant with a drop in grain size, compared with the PETM.

  3. Late Cretaceous-Early Eocene Climate Change Linked to Tectonic Eevolution of Neo-Tethyan Subduction Systems

    NASA Astrophysics Data System (ADS)

    Jagoutz, O. E.; Royden, L.; Macdonald, F. A.

    2015-12-01

    In this presentation we demonstrate that the two tectonic events in the late Cretaceous-Early Tertiary triggered the two distinct cooling events that followed the Cretaceous Thermal Maximum (CTM). During much of the Cretaceous time, the northern Neo Tethyan ocean was dominated by two east-west striking subduction system. Subduction underneath Eurasia formed a continental arc on the southern margin of Eurasia and intra oceanic subduction in the equatorial region of the Neo Tethys formed and intra oceanic arc. Beginning at ~85-90 Ma the western part of the TTSS collided southward with the Afro-Arabian continental margin, terminating subduction. This resulted in southward obduction of the peri-Arabian ophiolite belt, which extends for ~4000 km along strike and includes the Cypus, Semail and Zagros ophiolites. At the same time also the eastern part of the TTS collided northwards wit Eurasia. After this collisional event, only the central part of the subduction system remained active until it collided with the northern margin of the Indian continent at ~50-55 Ma. The collision of the arc with the Indian margin, over a length of ~3000 km, also resulted in the obduction of arc material and ophiolitic rocks. Remnants of these rocks are preserved today as the Kohistan-Ladakh arc and ophiolites of the Indus-Tsangpo suture zone of the Himalayas. Both of these collision events occurred in the equatorial region, near or within the ITCZ, where chemical weathering rates are high and are contemporaneous with the onset of the global cooling events that mark the end of the CTM and the EECO. The tectonic collision events resulted in a shut down of subduction zone magmatism, a major CO2 source and emplacement of highly weatherable basaltic rocks within the ITCZ (CO2 sink). In order to explore the effect of the events in the TTSS on atmospheric CO2, we model the potential contribution of subduction zone volcanism (source) and ophiolite obduction (sink) to the global atmospheric CO2

  4. On a grain of sand - a microhabitat for the opportunistic agglutinated foraminifera Hemisphaerammina apta n. sp., from the early Eocene Arctic Ocean

    NASA Astrophysics Data System (ADS)

    McNeil, David H.; Neville, Lisa A.

    2018-02-01

    Hemisphaerammina apta n. sp. is an attached monothalamous agglutinated foraminifera discovered in shelf sediments of the early Eocene Arctic Ocean. It is a simple yet distinctive component of the endemic agglutinated foraminiferal assemblage that colonized the Arctic Ocean after the microfaunal turnover caused by the Paleocene-Eocene Thermal Maximum. Associated foraminifera are characterized by a high percentage of monothalamous species (up to 60 %) and are entirely agglutinated indicating a brackish (mesohaline) early Eocene Arctic Ocean. Hemisphaerammina apta occurs exclusively as individuals attached to fine detrital grains (0.2 to 1.8 mm) of sediment. It is a small species (0.06 to 0.2 mm in diameter), fine-grained, with a low hemispherical profile, no floor across the attachment area, no substantive marginal flange, no internal structures, and no aperture. Lacking an aperture, it apparently propagated and fed through minute (micrometre-sized) interstitial pores in the test wall. Attachment surfaces vary from concave to convex and rough to smooth. Grains for attachment are diverse in shape and type but are predominantly of quartz and chert. The presence of H. apta in the early Eocene was an opportunistic response to an environment with an active hydrological system (storm events). Attachment to grains of sand would provide a more stable base on a sea floor winnowed by storm-generated currents. Active transport is indicated by the relative abundance of reworked foraminifera mixed with in situ species. Contemporaneous reworking and colonization by H. apta is suggested by its attachment to a reworked specimen of Cretaceous foraminifera.

  5. A new commelinid monocot seed fossil from the early Eocene previously identified as Solanaceae.

    PubMed

    Särkinen, Tiina; Kottner, Sören; Stuppy, Wolfgang; Ahmed, Farah; Knapp, Sandra

    2018-01-01

    Fossils provide minimum age estimates for extant lineages. Here we critically evaluate Cantisolanum daturoides Reid & Chandler and two other early putative seed fossils of Solanaceae, an economically important plant family in the Asteridae. Three earliest seed fossil taxa of Solanaceae from the London Clay Formation (Cantisolanum daturoides) and the Poole and Branksome Sand Formations (Solanum arnense Chandler and Solanispermum reniforme Chandler) were studied using x-ray microcomputed tomography (MCT) and scanning electron microscopy (SEM). The MCT scans of Cantisolanum daturoides revealed a high level of pyrite preservation at the cellular level. Cantisolanum daturoides can be clearly excluded from Solanaceae and has more affinities to the commelinid monocots based on a straight longitudinal axis, a prominent single layer of relatively thin-walled cells in the testa, and a clearly differentiated micropyle surrounded by radially elongated and inwardly curved testal cells. While the MCT scans show no internal preservation in Solanum arnense and Solanispermum reniforme, SEM images show the presence of several characteristics that allow the placement of these taxa at the stem node of Solanaceae. Cantisolanum daturoides is likely a member of commelinid monocots and not Solanaceae as previously suggested. The earliest fossil record of Solanaceae is revised to consist of fruit fossil with inflated calyces from the early Eocene of Patagonia (52 Ma) and fossilized seeds from the early to mid-Eocene of Europe (48-46 Ma). The new identity for Cantisolanum daturoides does not alter a late Cretaceous minimum age for commelinids. © 2018 Botanical Society of America.

  6. New Early Eocene Basal tapiromorph from Southern China and Its Phylogenetic Implications

    PubMed Central

    Bai, Bin; Wang, Yuanqing; Meng, Jin; Li, Qian; Jin, Xun

    2014-01-01

    A new Early Eocene tapiromorph, Meridiolophus expansus gen. et sp. nov., from the Sanshui Basin, Guangdong Province, China, is described and discussed. It is the first reported Eocene mammal from the basin. The new taxon, represented by a left fragmentary mandible, is characterized by an expanded anterior symphyseal region, a long diastema between c1 and p1, a rather short diastema between p1 and p2, smaller premolars relative to molars, an incipient metaconid appressed to the protoconid on p3, a prominent entoconid on p4, molar metaconid not twinned, cristid obliqua extending mesially and slightly lingually from the hypoconid, inclined metalophid and hypolophid, and small hypoconulid on the lower preultimate molars. Meridiolophus is morphologically intermediate between basal Homogalax-like taxa and derived tapiromorphs (such as Heptodon). Phylogenetic analysis indicates Equidae is more closely related to Tapiromorpha than to Palaeotheriidae, although the latter is only represented by a single species Pachynolophus eulaliensis. ‘Isectolophidae’, with exception of Meridiolophus and Karagalax, has the closest affinity with Chalicotherioidea. Furthermore, the majority rule consensus tree shows that Meridiolophus is closer to Karagalax than to any other ‘isectolophid’, and both genera represent stem taxa to crown group Ceratomorpha. PMID:25353987

  7. The Eocene climate of China, the early elevation of the Tibetan Plateau and the onset of the Asian Monsoon.

    PubMed

    Wang, Qing; Spicer, Robert A; Yang, Jian; Wang, Yu-Fei; Li, Cheng-Sen

    2013-12-01

    Eocene palynological samples from 37 widely distributed sites across China were analysed using co-existence approach to determine trends in space and time for seven palaeoclimate variables: Mean annual temperature, mean annual precipitation, mean temperature of the warmest month, mean temperature of the coldest month, mean annual range of temperature, mean maximum monthly precipitation and mean minimum monthly precipitation. Present day distributions and observed climates within China of the nearest living relatives of the fossil forms were used to find the range of a given variable in which a maximum number of taxa can coexist. Isotherm and isohyet maps for the early, middle and late Eocene were constructed. These illustrate regional changing patterns in thermal and precipitational gradients that may be interpreted as the beginnings of the modern Asian Monsoon system, and suggest that the uplift of parts of the Tibetan Plateau appear to have taken place by the middle to late Eocene. © 2013 John Wiley & Sons Ltd.

  8. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition.

    PubMed

    Pound, Matthew J; Salzmann, Ulrich

    2017-02-24

    Rapid global cooling at the Eocene - Oligocene Transition (EOT), ~33.9-33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO 2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first global vegetation and terrestrial temperature reconstructions for the EOT. Using an extensive palynological dataset, that has been statistically grouped into palaeo-biomes, we show a more transitional nature of terrestrial climate change by indicating a spatial and temporal heterogeneity of vegetation change at the EOT in both hemispheres. The reconstructed terrestrial temperatures show for many regions a cooling that started well before the EOT and continued into the Early Oligocene. We conclude that the heterogeneous pattern of global vegetation change has been controlled by a combination of multiple forcings, such as tectonics, sea-level fall and long-term decline in greenhouse gas concentrations during the late Eocene to early Oligocene, and does not represent a single response to a rapid decline in atmospheric pCO 2 at the EOT.

  9. First Record of Eocene Bony Fishes and Crocodyliforms from Canada’s Western Arctic

    PubMed Central

    Eberle, Jaelyn J.; Gottfried, Michael D.; Hutchison, J. Howard; Brochu, Christopher A.

    2014-01-01

    Background Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in Canada’s High Arctic was a critical paleontological contribution of the last century because it indicated that this region of the Arctic had been mild, temperate, and ice-free during the early – middle Eocene (∼53–50 Ma), despite being well above the Arctic Circle. To date, these discoveries have been restricted to Canada’s easternmost Arctic – Ellesmere and Axel Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada’s westernmost Arctic Island – Banks Island, Northwest Territories – they have been interpreted as predominantly marine. We document the first Eocene bony fish and crocodyliform fossils from Banks Island. Principal Findings We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a crocodyliform, from lower – middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National Park (∼76°N. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the Early Eocene Climatic Optimum (EECO). Conclusions/Significance These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and crocodyliforms west by approximately 40° of longitude or ∼1100 km. The low diversity bony fish fauna, at least at the family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform, gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the Canadian Arctic during early – middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the phylogenetic hypothesis of a Paleogene divergence

  10. Virtual endocranial cast of earliest Eocene Diacodexis (Artiodactyla, Mammalia) and morphological diversity of early artiodactyl brains

    PubMed Central

    Orliac, M. J.; Gilissen, E.

    2012-01-01

    The study of brain evolution, particularly that of the neocortex, is of primary interest because it directly relates to how behavioural variations arose both between and within mammalian groups. Artiodactyla is one of the most diverse mammalian clades. However, the first 10 Myr of their brain evolution has remained undocumented so far. Here, we used high-resolution X-ray computed tomography to investigate the endocranial cast of Diacodexis ilicis of earliest Eocene age. Its virtual reconstruction provides unprecedented access to both metric parameters and fine anatomy of the most complete endocast of the earliest artiodactyl. This picture is assessed in a broad comparative context by reconstructing endocasts of 14 other Early and Middle Eocene representatives of basal artiodactyls, allowing the tracking of the neocortical structure of artiodactyls back to its simplest pattern. We show that the earliest artiodactyls share a simple neocortical pattern, so far never observed in other ungulates, with an almond-shaped gyrus instead of parallel sulci as previously hypothesized. Our results demonstrate that artiodactyls experienced a tardy pulse of encephalization during the Late Neogene, well after the onset of cortical complexity increase. Comparisons with Eocene perissodactyls show that the latter reached a high level of cortical complexity earlier than the artiodactyls. PMID:22764165

  11. Deep Sea Drilling Project Site 612 bolide event: New evidence of a late Eocene impact-wave deposit and a possible impact site, US east coast

    USGS Publications Warehouse

    Wei, W.; Poag, C. Wylie; Poppe, Lawrence J.; Folger, David W.; Powars, David S.; Mixon, Robert B.; Edwards, Lucy E.; Bruce, Scott

    1992-01-01

    A remarkable >60-m-thick, upward-fining, polymictic, marine boulder bed is distributed over >15 000 km2 beneath Chesapeake Bay and the surrounding Middle Atlantic Coastal Plain and inner continental shelf. The wide varieties of clast lithologies and microfossil assemblages were derived from at least seven known Cretaceous, Paleocene, and Eocene stratigraphic units. The supporting pebbly matrix contains variably mixed assemblages of microfossils along with trace quantities of impact ejecta. The youngest microfossils in the boulder bed are of early-late Eocene age. On the basis of its unusual characteristics and its stratigraphic equivalent to a layer of impact ejecta at Deep Sea Drilling Project (DSDP) Site 612. It is postulated that this boulder bed was formed by a powerful bolide-generated wave train that scoured the ancient inner shelf and coastal plain of southeastern Virginia. 

  12. The Late Eocene 187Os / 188Os excursion: Chemostratigraphy, cosmic dust flux and the Early Oligocene glaciation

    NASA Astrophysics Data System (ADS)

    Dalai, Tarun K.; Ravizza, Gregory E.; Peucker-Ehrenbrink, B.

    2006-01-01

    High resolution records (ca. 100 kyr) of Os isotope composition ( 187Os / 188Os) in bulk sediments from two tropical Pacific sites (ODP Sites 1218 and 1219) capture the complete Late Eocene 187Os / 188Os excursion and confirm that the Late Eocene 187Os / 188Os minimum, earlier reported by Ravizza and Peucker-Ehrenbrink [Earth Planet. Sci. Lett. 210 (2003) 151-165], is a global feature. Using the astronomically tuned age models available for these sites, it is suggested that the Late Eocene 187Os / 188Os minimum can be placed at 34.5 ± 0.1 Ma in the marine records. In addition, two other distinct features of the 187Os / 188Os excursion that are correlatable among sections are proposed as chemostratigraphic markers which can serve as age control points with a precision of ca. ± 0.1 Myr. We propose a speculative hypothesis that higher cosmic dust flux in the Late Eocene may have contributed to global cooling and Early Oligocene glaciation (Oi-1) by supplying bio-essential trace elements to the oceans and thereby resulting in higher ocean productivity, enhanced burial of organic carbon and draw down of atmospheric CO 2. To determine if the hypothesis that enhanced cosmic dust flux in the Late Eocene was a cause for the 187Os / 188Os excursion can be tested by using the paired bulk sediment and leachate Os isotope composition; 187Os / 188Os were also measured in sediment leachates. Results of analyses of leachates are inconsistent between the south Atlantic and the Pacific sites, and therefore do not yield a robust test of this hypothesis. Comparison of 187Os / 188Os records with high resolution benthic foraminiferal δ18O records across the Eocene-Oligocene transition suggests that 187Os flux to the oceans decreased during cooling and ice growth leading to the Oi-1 glaciation, whereas subsequent decay of ice-sheets and deglacial weathering drove seawater 187Os / 188Os to higher values. Although the precise timing and magnitude of these changes in weathering fluxes

  13. An Early Middle Eocene Orbital Scale Benthic Isotope Record From IODP Site 1408, Newfoundland Rise

    NASA Astrophysics Data System (ADS)

    Wu, F.; Lawler, N.; Penman, D. E.; Zachos, J. C.; Kirtland Turner, S.; Norris, R. D.; Wilson, P. A.; Hull, P. M.

    2014-12-01

    The long-term Paleogene global cooling trend and eventual glaciation of Antarctica has been attributed to a reduction in greenhouse gas levels as well as changes in the configuration of high-latitude oceanic gateways. This major trend in climate and forcing is known to have initiated in the early middle Eocene, between 44-49 Mya, yet our understanding of the detailed evolution of climate and oceanic circulation and carbon chemistry of this critical interval has been limited for lack of high-resolution proxy climate records. Integrated Ocean Drilling Program (IODP) Expedition 342, designed in part to address this deficiency, successfully recovered highly expanded sequences of middle Eocene sediment from multiple sites in the western North Atlantic, with several sites characterized by high sedimentation rates (>2.8 cm/kyr) and pronounced lithologic cycles. Using samples from cores recovered at one of these sites, 1408, located on Southeast Newfoundland Ridge, we are reconstructing the first orbital-scale deep sea δ18O and δ13C records spanning a ~1.6 million year interval (~Chron 20r) of the middle Eocene. Based on analyses of benthic foraminifer N. truempyi, our preliminary data reveal distinct high-frequency cycles with periods matching those of the orbital cycles, particularly precession and obliquity. Cross spectral analysis of δ18O, δ13C and lithologic records reveal a high degree of coherency, implying a high sensitivity in local sediment fluxes and bottom water chemistry (and circulation) to orbital forcing. Also, given the location and depth (~2600 m at 50 Ma), Site 1408 constrains the end-member composition of northern component bathyal bottom waters so that comparison with benthic isotope records from the south Atlantic and other basins can be used to assess ocean circulation patterns in the mid-Eocene. In general, bottom water temperatures appear to have been warmer, and DIC δ13C lower than observed elsewhere. Thus, our preliminary results are

  14. Agerinia smithorum sp. nov., a new early Eocene primate from the Iberian Peninsula.

    PubMed

    Femenias-Gual, Joan; Minwer-Barakat, Raef; Marigó, Judit; Moyà-Solà, Salvador

    2016-09-01

    The new species Agerinia smithorum (Adapiformes, Primates) from the early Eocene of the Iberian Peninsula is erected in this work. An emended diagnosis of the genus is provided, together with a broad description of the new species and comparisons with other samples assigned to Agerinia and other similar medium-sized cercamoniines. The new species is based on the most complete specimen of this genus published to date, a mandible preserving the alveoli of the canine and P1 , the roots of the P2 and all teeth from P3 to M3 . It was found in Casa Retjo-1, a new early Eocene locality from Northeastern Spain. The studied specimen is clearly distinguishable from other cercamoniines such as Periconodon, Darwinius, and Donrussellia, but very similar to Agerinia roselli, especially in the similar height of P3 and P4 and the general morphology of the molars, therefore allowing the allocation to the same genus. However, it is undoubtedly distinct from A. roselli, having a less molarized P4 and showing a larger paraconid in the M1 and a tiny one in the M2 , among other differences. The body mass of A. smithorum has also been estimated, ranging from 652 to 724 g, similar to that of A. roselli. The primitive traits shown by A. smithorum (moderately molarized P4 , large paraconid in the M1 and small but distinct in the M2 ) suggest that it could be the ancestor of A. roselli. © 2016 Wiley Periodicals, Inc.

  15. Polar amplification of the early Eocene indicated by δ2H values of lignin methoxyl groups of mummified wood

    NASA Astrophysics Data System (ADS)

    Anhäuser, Tobias; Hook, Benjamin; Halfar, Jochen; Greule, Markus; Keppler, Frank

    2017-04-01

    A number of well-preserved mummified wood samples have been excavated during diamond mining operations in early Eocene (55-50 Ma) kimberlite deposits located near the Arctic Circle (64° N, 110° W) in the Canadian Northwest Territories. The preserved wood, containing multi-decadal length tree-ring information, therefore allows the reconstruction of an unprecedented snapshot of terrestrial high-latitude climate during the early Eocene. Here we used wood-derived stable hydrogen isotopes (δ2H) as proxy for paleoclimatic interpretations. While cellulose extractions are commonly used for the analysis of modern wood-derived δ2H values, the mummified wood samples had been affected by selective degradation leading to a strong or even complete loss of cellulose while leaving a lignin-rich material behind. We have therefore analyzed δ2H values of the lignin methoxyl groups that have previously been shown to reflect the δ2H values of the local precipitation and can thus be used to infer paleoclimate information such as temperature changes. We applied this proxy to specimens found in three adjacent kimberlite pipes (30 km apart) which represent a range of early Eocene ages (Rb/Sr dating: 55.5 ± 0.7, 55.2 ± 0.3 and 53.3 ± 0.6 Ma [2σ standard deviation]). The δ2H values were measured at annual resolution for the three mummified wood series (length of individual time series: 82, 62 and 40 years) and the mean δ2H value of precipitation for the three decadal-scale time slices was reconstructed. Finally, we used existing relationships between early Eocene temperatures and stable isotopes in precipitation to quantify temperature changes. Warming phases such as the one covered here (culminating in the Early Eocene Climatic Optimum [52 to 50 Ma]) are commonly accompanied by a stronger increase in arctic/subarctic surface air temperatures in comparison to the global average (the ratio of these temperature differences is referred to as the polar amplification). Our estimation

  16. Pennsylvanian and Early Permian paleogeography of east-central California: Implications for the shape of the continental margin and the timing of continental truncation

    NASA Astrophysics Data System (ADS)

    Stone, Paul; Stevens, Calvin H.

    1988-04-01

    Pennsylvanian and Early Permian paleogeographic features in east-central California include a southeast-trending carbonate shelf edge and turbidite basin that we infer paralleled a segment of the western margin of the North American continent. This segment of the continental margin was oblique to an adjoining segment on the north that trended southwestward across Nevada into easternmost California. We propose that the southeast-trending segment of the margin originated by tectonic truncation of the originally longer southwest-trending segment in Early or Middle Pennsylvanian to late Early Permian time, significantly earlier than a previously hypothesized Late Permian or Early Triassic continental truncation event. We interpret the truncating structure to have been a sinistral transform fault zone along which a continental fragment was removed and carried southeastward into the Caborca-Hermosillo region of northern Mexico, where it is now represented by exposures of Late Proterozoic and Paleozoic miogeoclinal rocks.

  17. Paleogeography, Paleo-drainage Systems, and Tectonic Reconstructions of Eocene Northern South America Constrained by U-Pb Detrital Zircon Geochronology

    NASA Astrophysics Data System (ADS)

    Xie, X.; Mann, P.; Escalona, A.

    2008-12-01

    Thick, Eocene to Miocene clastic sedimentary basins are widespread across on- and offshore northern South America and have been identified using seismic reflection data in offshore basins of the Leeward Antilles, the Lesser Antilles arc and forearc, and the Barbados accretionary prism. Several 3 to12-km-thick Paleogene depocenters occur in shelf to deep basinal settings along the offshore margins of Venezuela, Trinidad and Tobago, and Barbados. Previous studies proposed that the proto-Orinoco River has been the single fluvial source for these distal, continentally-derived sandstone units along northern Venezuela as part of the early Eocene to Miocene, proto-Maracaibo fluvial-deltaic system that emanated from the northern Andes of western Venezuela and Colombia. Those distal sandstones were displaced eastward with the movement of the Caribbean plate by several hundred kilometers and are now found in basins and islands of the southeastern Caribbean region. We collected nine Eocene age sandstone samples from well cores and outcrops along the northern South America margin, including Lake Maracaibo, Trinidad and Tobago, and Barbados Island. In total, 945 single detrital zircon grains were analyzed using LA-ICP-MS. The objective is to reconstruct the paleogeography, paleo-drainage system, and tectonic history during Eocene time. New data show that the Eocene Misoa Formation of Lake Maracaibo was characterized by a mixture of Precambrian, Paleozoic, and Mesozoic ages matching age provinces from eastern Cordillera and the Guayana Shield, which is consistent with previous proto-Orinoco River model flowing from the western Amazonian region of Colombia and Brazil through the Maracaibo basin into the area of western Falcon basin. However, coeval Eocene samples from Barbados and Trinidad show a much different age population dominated by Precambrian matching the eastern part of the Guyana shield to the south, which suggests that the western onland system and eastern offshore

  18. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition

    PubMed Central

    Pound, Matthew J.; Salzmann, Ulrich

    2017-01-01

    Rapid global cooling at the Eocene – Oligocene Transition (EOT), ~33.9–33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first global vegetation and terrestrial temperature reconstructions for the EOT. Using an extensive palynological dataset, that has been statistically grouped into palaeo-biomes, we show a more transitional nature of terrestrial climate change by indicating a spatial and temporal heterogeneity of vegetation change at the EOT in both hemispheres. The reconstructed terrestrial temperatures show for many regions a cooling that started well before the EOT and continued into the Early Oligocene. We conclude that the heterogeneous pattern of global vegetation change has been controlled by a combination of multiple forcings, such as tectonics, sea-level fall and long-term decline in greenhouse gas concentrations during the late Eocene to early Oligocene, and does not represent a single response to a rapid decline in atmospheric pCO2 at the EOT. PMID:28233862

  19. Agerinia marandati sp. nov., a new early Eocene primate from the Iberian Peninsula, sheds new light on the evolution of the genus Agerinia

    PubMed Central

    Minwer-Barakat, Raef; Marigó, Judit; Poyatos-Moré, Miquel; Moyà-Solà, Salvador

    2017-01-01

    Background The Eocene was the warmest epoch of the Cenozoic and recorded the appearance of several orders of modern mammals, including the first occurrence of Euprimates. During the Eocene, Euprimates were mainly represented by two groups, adapiforms and omomyiforms, which reached great abundance and diversity in the Northern Hemisphere. Despite this relative abundance, the record of early Eocene primates from the European continent is still scarce and poorly known, preventing the observation of clear morphological trends in the evolution of the group and the establishment of phylogenetic relationships among different lineages. However, knowledge about the early Eocene primates from the Iberian Peninsula has been recently increased through the description of new material of the genus Agerinia from several fossil sites from Northeastern Spain. Methods Here we present the first detailed study of the euprimate material from the locality of Masia de l’Hereuet (early Eocene, NE Spain). The described remains consist of one fragment of mandible and 15 isolated teeth. This work provides detailed descriptions, accurate measurements, high-resolution figures and thorough comparisons with other species of Agerinia as well with other Eurasian notharctids. Furthermore, the position of the different species of Agerinia has been tested with two phylogenetic analyses. Results The new material from Masia de l’Hereuet shows several traits that were previously unknown for the genus Agerinia, such as the morphology of the upper and lower fourth deciduous premolars and the P2, and the unfused mandible. Moreover, this material clearly differs from the other described species of Agerinia, A. roselli and A. smithorum, thus allowing the erection of the new species Agerinia marandati. The phylogenetic analyses place the three species of Agerinia in a single clade, in which A. smithorum is the most primitive species of this genus. Discussion The morphology of the upper molars reinforces

  20. Agerinia marandati sp. nov., a new early Eocene primate from the Iberian Peninsula, sheds new light on the evolution of the genus Agerinia.

    PubMed

    Femenias-Gual, Joan; Minwer-Barakat, Raef; Marigó, Judit; Poyatos-Moré, Miquel; Moyà-Solà, Salvador

    2017-01-01

    The Eocene was the warmest epoch of the Cenozoic and recorded the appearance of several orders of modern mammals, including the first occurrence of Euprimates. During the Eocene, Euprimates were mainly represented by two groups, adapiforms and omomyiforms, which reached great abundance and diversity in the Northern Hemisphere. Despite this relative abundance, the record of early Eocene primates from the European continent is still scarce and poorly known, preventing the observation of clear morphological trends in the evolution of the group and the establishment of phylogenetic relationships among different lineages. However, knowledge about the early Eocene primates from the Iberian Peninsula has been recently increased through the description of new material of the genus Agerinia from several fossil sites from Northeastern Spain. Here we present the first detailed study of the euprimate material from the locality of Masia de l'Hereuet (early Eocene, NE Spain). The described remains consist of one fragment of mandible and 15 isolated teeth. This work provides detailed descriptions, accurate measurements, high-resolution figures and thorough comparisons with other species of Agerinia as well with other Eurasian notharctids. Furthermore, the position of the different species of Agerinia has been tested with two phylogenetic analyses. The new material from Masia de l'Hereuet shows several traits that were previously unknown for the genus Agerinia, such as the morphology of the upper and lower fourth deciduous premolars and the P 2 , and the unfused mandible. Moreover, this material clearly differs from the other described species of Agerinia , A. roselli and A. smithorum , thus allowing the erection of the new species Agerinia marandati . The phylogenetic analyses place the three species of Agerinia in a single clade, in which A. smithorum is the most primitive species of this genus. The morphology of the upper molars reinforces the distinction of Agerinia from

  1. Characterizing the Response of Fluvial Systems to Extreme Global Warming During the Early Eocene Climatic Optimum: An Analysis of the Wasatch and Green River Formations, Uinta Basin, UT

    NASA Astrophysics Data System (ADS)

    Jones, E. R.; Plink-Bjorklund, P.

    2013-12-01

    The Wasatch and Green River Formations in the Uinta Basin, UT contain fluvial sandstones that record changes in terrestrial sedimentation coincident with Paleocene-Eocene Thermal Maximum (PETM) and at least six post-PETM hyperthermal climate change events. While proxies for chemical weathering rates during the PETM have been developed using the marine osmium isotope record, to date there has been little research on chemical weathering rates in proximal terrestrial depocenters. This work is one part of a multi-proxy research effort combining quantitative petrographic analysis, the stable carbon isotope record, and a high-resolution stratigraphic and sedimentologic framework across the southern margin of the Uinta Basin. Relative tectonic quiescence in the Uinta Basin during the Early Eocene suggests that climate is the forcing mechanism controlling fluvial architecture and composition, and gradual basin subsidence has preserved at least six pulses of greenhouse climate change during the Early Eocene Climatic Optimum (EECO). Terrestrial records of PETM climate do not support a humid climate with increased precipitation as previously suggested from marine proxies of climate change. Instead, terrestrial records of the PETM climate show evidence of prolonged drought punctuated by intense terrestrial flooding events in mid-latitude continental interiors. Increases in chemical weathering rates during the PETM due to increased temperature and average precipitation is cited as a key carbon sink to initiate a recovery phase where atmospheric CO2 returned to normal concentrations. If terrestrial records of chemical weathering rates differ substantially from marine proxies the carbon-cycle dynamics active during the EECO must be reconsidered. Initial results of this study show that these peak hyperthermal climate change conditions in the Uinta Basin preserve more compositionally and texturally immature sediments due to extremely high erosion and deposition rates, and subdued

  2. Revision of Eocene Antarctic carpet sharks (Elasmobranchii, Orectolobiformes) from Seymour Island, Antarctic Peninsula.

    PubMed

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A; Kriwet, Jürgen

    2017-01-01

    Seymour Island, Antarctic Peninsula, was once called the 'Rosetta Stone' of Southern Hemisphere palaeobiology, because this small island provides the most complete and richly fossiliferous Palaeogene sequence in Antarctica. Among fossil marine vertebrate remains, chondrichthyans seemingly were dominant elements in the Eocene Antarctic fish fauna. The fossiliferous sediments on Seymour Island are from the La Meseta Formation, which was originally divided into seven stratigraphical levels, TELMs 1-7 (acronym for Tertiary Eocene La Meseta) ranging from the upper Ypresian (early Eocene) to the late Priabonian (late Eocene). Bulk sampling of unconsolidated sediments from TELMs 5 and 6, which are Ypresian (early Eocene) and Lutetian (middle Eocene) in age, respectively, yielded very rich and diverse chondrichthyan assemblages including over 40 teeth of carpet sharks representing two new taxa, Notoramphoscyllium woodwardi gen. et sp. nov. and Ceolometlaouia pannucae gen. et sp. nov. Two additional teeth from TELM 5 represent two different taxa that cannot be assigned to any specific taxon and thus are left in open nomenclature. The new material not only increases the diversity of Eocene Antarctic selachian faunas but also allows two previous orectolobiform records to be re-evaluated. Accordingly, Stegostoma cf. faciatum is synonymized with Notoramphoscyllium woodwardi gen. et sp. nov., whereas Pseudoginglymostoma cf. brevicaudatum represents a nomen dubium . The two new taxa, and probably the additional two unidentified taxa, are interpreted as permanent residents, which most likely were endemic to Antarctic waters during the Eocene and adapted to shallow and estuarine environments.

  3. Lignite deposits of the Kutch Basin, western India: Carbon isotopic and palynological signatures of the early Eocene hyperthermal event ETM2

    NASA Astrophysics Data System (ADS)

    Agrawal, Shailesh; Verma, Poonam; Rao, M. R.; Garg, Rahul; Kapur, Vivesh V.; Bajpai, Sunil

    2017-09-01

    This study presents new results of combined palynological and stable carbon isotope (δ13C) investigations carried out in the well known lignite sequence at Panandhro, District Kutch, in the Gujarat state of western India. Dinoflagellate cysts and associated spore-pollen assemblage assign an early Eocene (Ypresian) age to the lignitic succession at Panandhro. Furthermore, a pronounced negative Carbon Isotope Excursion (CIE) of about 2.7‰, correlated to the Second Eocene Thermal Maximum (53.7 Ma), a globally recognized hyperthermal event, was discovered in the middle part of the succession, consistent with the palynological constraints. This is the first record of an Eocene hyperthermal event (ETM2) from the Kutch Basin. Our data has regional implications for the age of the lignitic sequences across western India as it demonstrates that there is no significant age difference between the lignite deposits of the Kutch and Cambay basins. Our results also support a Lutetian age for the previously described vertebrate fossils, including whales, from the Panandhro mine section.

  4. Bichordites from the early Eocene of Cuba: significance in the evolutionary history of the spatangoids

    NASA Astrophysics Data System (ADS)

    Villegas-Martín, Jorge; Netto, Renata Guimarães

    2017-12-01

    The trace fossil Bichordites monastiriensis is found in early Eocene turbiditic sandstones of the upper-slope deposits from the Capdevila Formation in Los Palacios Basin, Pinar del Río region, western Cuba. The potential tracemakers of B. monastiriensis include fossil spatangoids from the family Eupatagidae. The record of Bichordites in the deposits from Cuba allows to suppose that Eupatagidae echinoids were the oldest potential tracemakers of Bichordites isp. and reinforce the hypothesis that the ichnological record are relevant in envisaging the evolutionary history of the spatangoids.

  5. Large Variations in Ice Volume During the Middle Eocene "Doubthouse"

    NASA Astrophysics Data System (ADS)

    Dawber, C. F.; Tripati, A. K.

    2008-12-01

    The onset of glacial conditions in the Cenozoic is widely held to have begun ~34 million years ago, coincident with the Eocene-Oligocene boundary1. Warm and high pCO2 'greenhouse' intervals such as the Eocene are generally thought to be ice-free2. Yet the sequence stratigraphic record supports the occurrence of high-frequency sea-level change of tens of meters in the Middle and Late Eocene3, and large calcite and seawater δ18O excursions (~0.5-1.0 permil) have been reported in foraminifera from open ocean sediments4. As a result, the Middle Eocene is often considered the intermediary "doubthouse". The extent of continental ice during the 'doubthouse' is controversial, with estimates of glacioeustatic sea level fall ranging from 30 to 125m2,3,5. We present a new δ18Osw reconstruction for Ocean Drilling Project (ODP) Site 1209 in the tropical Pacific Ocean. It is the first continuous high-resolution record for an open-ocean site that is not directly influenced by changes in the carbonate compensation depth, which enables us to circumvent many of the limitations of existing records. Our record shows increases of 0.8 ± 0.2 (1 s.e) permil and 1.1 ± 0.2 permil at ~44-45 and ~42-41 Ma respectively, which suggests glacioeustatic sea level variations of ~90 m during the Middle Eocene. Modelling studies have shown that fully glaciating Antarctica during the Eocene should drive a change in seawater (δ18Osw) of 0.45 permil, and lower sea level by ~55 m6. Our results therefore support significant ice storage in both the Northern and Southern Hemisphere during the Middle Eocene 'doubthouse'. 1.Miller, Kenneth G. et al., 1990, Eocene-Oligocene sea-level changes in the New Jersey coastal plain linked to the deep-sea record. Geological Society of America Bulletin 102, 331-339 2.Pagani, M. et al., 2005, Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309 (5734), 600-603. 3.Browning, J., Miller, K., and Pak, D., 1996, Global implications

  6. Identifying tectonic and climatic drivers for deep-marine siliciclastic systems: Middle Eocene, Spanish Pyrenees

    NASA Astrophysics Data System (ADS)

    Pickering, K. T.; Scotchman, J. I.; Robinson, S. A.

    2009-12-01

    Analysis of the sedimentary record in deep time requires the deconvolution of tectonic and climatic drivers. The deep-marine siliciclastic systems in the Middle Eocene Ainsa-Jaca basin, Spanish Pyrenees, with their excellent outcrops and good temporal resolution, provide an opportunity to identify the relative importance of tectonic and climatic drivers on deposition over ~10 Myr at a time when the Earth’s climate was shifting from a greenhouse to icehouse conditions. The cumulative ~4 km of stratigraphy contains 8 sandy systems with a total of ~25 discrete channelized sandbodies that accumulated in water depths of ~400-800 m, and that were controlled by the ~400-kyr Milkankovitch frequency with modes, at ~100 kyr and ~41 kyr (possibly stacked ~23-kyr) influencing bottom-water conditions, causing periodic stratification in the water column across a submarine sill within the eastern, more proximal depositional systems in the Ainsa basin. We also identify a range of sub-Milankovitch millennial-scale cycles (Scotchman et al. 2009). In the Ainsa basin, the interplay of basin-bounding growth anticlines defined and controlled the position and stacking patterns of the sandy systems and their constituent channelized sandbodies, in a process of seesaw tectonics by: (i) Westward lateral offset-stacking of channelized sandbodies due to growth of the eastern anticline (Mediano), and (ii) Eastward (orogenwards) back-stepping of the depositional axis of each sandy system, due to phases of relative uplift of the opposing Boltaña growth anticline. The first-order control on accommodation, and the flow paths, for deep-marine sedimentation were tectonic, with the pacing of the supply of coarse siliciclastics being driven by global climatic processes, particularly Milankovitch-type frequencies. The dominance of eccentricity and obliquity is similar to results from the continental lacustrine Eocene Green River Formation, and the observations from ODP Site 1258 that the early to

  7. Planktic foraminiferal response to early Eocene carbon cycle perturbations in the southeast Atlantic Ocean (ODP Site 1263)

    NASA Astrophysics Data System (ADS)

    Luciani, Valeria; D'Onofrio, Roberta; Dickens, Gerald R.; Wade, Bridget S.

    2017-11-01

    At low latitude locations in the northern hemisphere, striking changes in the relative abundances and diversity of the two dominant planktic foraminifera genera, Morozovella and Acarinina, are known to have occurred close to the Early Eocene Climatic Optimum (EECO; 49-53 Ma). Lower Eocene carbonate-rich sediments at Ocean Drilling Program (ODP) Site 1263 were deposited on a bathymetric high (Walvis Ridge) at 40° S, and afford an opportunity to examine such planktic foraminiferal assemblage changes in a temperate southern hemisphere setting. We present here quantified counts of early Eocene planktic foraminiferal assemblages from Hole 1263B, along with bulk sediment stable isotope analyses and proxy measurements for carbonate dissolution. The bulk sediment δ13C record at Site 1263 resembles similar records generated elsewhere, such that known and inferred hyperthermal events can be readily identified. Although some carbonate dissolution has occurred, the well-preserved planktic foraminiferal assemblages mostly represent primary changes in environmental conditions. Our results document the permanent decrease in Morozovella abundance and increase in Acarinina abundance at the beginning of the EECO, although this switch occurred 165 kyr after that at low-latitude northern hemisphere locations. This suggests that unfavourable environmental conditions for morozovellids at the start of the EECO, such as sustained passage of a temperature threshold or other changes in surface waters, occurred at lower latitudes first. The remarkable turnover from Morozovella to Acarinina was widely geographically widespread, although the causal mechanism remains elusive. In addition, at Site 1263, we document the virtual disappearance within the EECO of the biserial chiloguembelinids, commonly considered as inhabiting intermediate water depths, and a reduction in abundance of the thermocline-dwelling subbotinids. We interpret these changes as signals of subsurface water properties

  8. Late Eocene stable isotope stratigraphy of North Atlantic IODP Site U1411: Orbitally paced climatic heartbeat at the close of the Eocene greenhouse

    NASA Astrophysics Data System (ADS)

    Coxall, Helen; Bohaty, Steve; Wilson, Paul; Liebrand, Diederik; Nyberg, Anna; Holmström, Max

    2016-04-01

    Integrated Ocean Drilling Program (IODP) Expedition 342 drilled sediment drifts on the Newfoundland margin to recover high-resolution records of North Atlantic ocean-climate history and track the evolution of the modern climate system through the Late Cretaceous and Early Cenozoic. An early Paleogene deep-sea benthic stable isotope composite record from multiple Exp. 342 sites is currently in development and will provide a key reference section for investigations of Atlantic and global climate dynamics. This study presents initial results for the late Eocene slice of the composite from Site U1411, located at mid depth (˜2850m Eocene paleodepth) on the Southeast Newfoundland Ridge. Stable oxygen (δ18O) and carbon (δ13C) isotope ratios were measured on 640 samples hosting exceptionally well-preserved epifaunal benthic foraminifera obtained from the microfossil-rich uppermost Eocene clays at 4cm spacing. Sedimentation rates average 2-3 cm/kyr through the late Eocene, such that our sampling resolution is sufficient to capture the dominant Milankovitch frequencies. Late Eocene Site U1411 benthic δ18O values (1.4 to 0.5‰ VPDB) are comparable to the Pacific and elsewhere in the Atlantic at similar depths; however, δ13C is lower by ˜0.5 ‰ with values intermediate between those of the Southern Labrador Sea to the north (-1 to 0) and mid latitude/South Atlantic (0.5 to 1.5) to the south, suggesting poorly ventilated bottom waters in the late Eocene North Atlantic and limited production of North Atlantic deep water. Applying the initial shipboard magneto-biostratigraphic age framework, the Site U1411 benthic δ13C and δ18O records display clear cyclicity on orbital timescales. Spectral analysis of the raw unfiltered datasets identifies eccentricity (400 and 100 kyr), obliquity (40 kyr) and precession (˜20 kyr) signals imprinted on our time series, revealing distinct climatic heart beats in the late Eocene prior to the transition into the 'ice house'.

  9. Carbon Cycle Dynamics through the Early Eocene Climatic Optimum: Orbital Couplings to Lacustrine Cycling

    NASA Astrophysics Data System (ADS)

    Rosengard, S. Z.; Grogan, D. S.; Whiteside, J. H.; van Keuren, M.; Musher, D.

    2010-12-01

    The early Eocene represents the most recent hothouse climate state of Earth history, a period during which Earth’s surface temperatures warmed and reached a steady peak at the Early Eocene Climatic Optimum (EECO), 53.5-50 Ma. Interspersed through the primary warming interval were several hyperthermals, or rapid peaks in surface temperature and pulses of carbon dioxide into the atmosphere, followed by rapid declines, lasting 10^4 to 10^5 years. Various hypotheses have been offered to explain the climatic triggers during the hothouse interval, including changes in ocean circulation, methane release from hydrates, volcanism, and turnover of terrestrial organic matter, implicating various couplings and feedbacks in the global carbon cycle. The present study investigates the prevailing changes in carbon cycle dynamics that occurred during a specific subinterval of the Early Eocene Climatic Optimum. We sampled a carbon-rich 300-ft ( 1100 kyr) section of lacustrine Green River Formation sediments from the TOSCO core in the Uinta Basin at a one-foot resolution for organic carbon content and δ^{13}C. The compiled data comprise a high-resolution profile of total organic carbon and isotopic organic carbon composition through the section, showing cyclic patterns that we hypothesize reflect orbital signals. Bulk isotopic carbon and shale oil measurements from an earlier Fischer Assay across TOSCO’s entire 1030-ft core were then filtered using the expected frequency of a 23-kyr precession cycle. The overlaid cycles reveal δ^{13}C and oil content to be anti-phase through the 300-ft section, except for an interval of 50 feet (180 kyr) from the Mahogany Zone to the B-groove of the core, where the two measurements are in-phase. Given that shale oil, a proxy for lake primary productivity and carbon burial, and δ^{13}C typically correlate inversely, this short, 180-kyr interval of in-phase variation suggests a significant alteration in the local carbon cycle. These preliminary

  10. Revision of Eocene Antarctic carpet sharks (Elasmobranchii, Orectolobiformes) from Seymour Island, Antarctic Peninsula

    PubMed Central

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A.; Kriwet, Jürgen

    2017-01-01

    Seymour Island, Antarctic Peninsula, was once called the ‘Rosetta Stone’ of Southern Hemisphere palaeobiology, because this small island provides the most complete and richly fossiliferous Palaeogene sequence in Antarctica. Among fossil marine vertebrate remains, chondrichthyans seemingly were dominant elements in the Eocene Antarctic fish fauna. The fossiliferous sediments on Seymour Island are from the La Meseta Formation, which was originally divided into seven stratigraphical levels, TELMs 1–7 (acronym for Tertiary Eocene La Meseta) ranging from the upper Ypresian (early Eocene) to the late Priabonian (late Eocene). Bulk sampling of unconsolidated sediments from TELMs 5 and 6, which are Ypresian (early Eocene) and Lutetian (middle Eocene) in age, respectively, yielded very rich and diverse chondrichthyan assemblages including over 40 teeth of carpet sharks representing two new taxa, Notoramphoscyllium woodwardi gen. et sp. nov. and Ceolometlaouia pannucae gen. et sp. nov. Two additional teeth from TELM 5 represent two different taxa that cannot be assigned to any specific taxon and thus are left in open nomenclature. The new material not only increases the diversity of Eocene Antarctic selachian faunas but also allows two previous orectolobiform records to be re-evaluated. Accordingly, Stegostoma cf. faciatum is synonymized with Notoramphoscyllium woodwardi gen. et sp. nov., whereas Pseudoginglymostoma cf. brevicaudatum represents a nomen dubium. The two new taxa, and probably the additional two unidentified taxa, are interpreted as permanent residents, which most likely were endemic to Antarctic waters during the Eocene and adapted to shallow and estuarine environments. PMID:28785171

  11. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires.

    PubMed

    Bertrand, Ornella C; Amador-Mughal, Farrah; Silcox, Mary T

    2016-01-27

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires. © 2016 The Author(s).

  12. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires

    PubMed Central

    Amador-Mughal, Farrah

    2016-01-01

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires. PMID:26817776

  13. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    NASA Astrophysics Data System (ADS)

    Anagnostou, Eleni; John, Eleanor H.; Edgar, Kirsty M.; Foster, Gavin L.; Ridgwell, Andy; Inglis, Gordon N.; Pancost, Richard D.; Lunt, Daniel J.; Pearson, Paul N.

    2016-05-01

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  14. An interesting new genus of Berothinae (Neuroptera: Berothidae) from the early Eocene Green River Formation, Colorado.

    PubMed

    Makarkin, Vladimir N

    2017-01-30

    Xenoberotha angustialata gen. et sp. nov. (Neuroptera: Berothidae) is described from the early Eocene of the Parachute Creek Member of the Green River Formation (U.S.A., Colorado). It is assigned to Berothinae as an oldest known member of the subfamily based on the presence of scale-like setae on the foreleg coxae. Distal crossveins of the fourth (outer) gradate series which are located very close to the wing margin in Xenoberotha gen. nov. is a character state previously unknown in Berothinae.

  15. Pristine Early Eocene wood buried deeply in kimberlite from northern Canada.

    PubMed

    Wolfe, Alexander P; Csank, Adam Z; Reyes, Alberto V; McKellar, Ryan C; Tappert, Ralf; Muehlenbachs, Karlis

    2012-01-01

    We report exceptional preservation of fossil wood buried deeply in a kimberlite pipe that intruded northwestern Canada's Slave Province 53.3±0.6 million years ago (Ma), revealed during excavation of diamond source rock. The wood originated from forest surrounding the eruption zone and collapsed into the diatreme before resettling in volcaniclastic kimberlite to depths >300 m, where it was mummified in a sterile environment. Anatomy of the unpermineralized wood permits conclusive identification to the genus Metasequoia (Cupressaceae). The wood yields genuine cellulose and occluded amber, both of which have been characterized spectroscopically and isotopically. From cellulose δ(18)O and δ(2)H measurements, we infer that Early Eocene paleoclimates in the western Canadian subarctic were 12-17°C warmer and four times wetter than present. Canadian kimberlites offer Lagerstätte-quality preservation of wood from a region with limited alternate sources of paleobotanical information.

  16. Did Photosymbiont Bleaching Lead to the Demise of Planktic Foraminifer Morozovella at the Early Eocene Climatic Optimum?

    PubMed

    Luciani, Valeria; D'Onofrio, Roberta; Dickens, Gerald R; Wade, Bridget S

    2017-11-01

    The symbiont-bearing mixed-layer planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of early Paleogene tropical-subtropical oceans. A marked and permanent switch in the abundance of these genera is known to have occurred at low-latitude sites at the beginning of the Early Eocene Climatic Optimum (EECO), such that the relative abundance of Morozovella permanently and significantly decreased along with a progressive reduction in the number of species; concomitantly, the genus Acarinina almost doubled its abundance and diversified. Here we examine planktic foraminiferal assemblages and stable isotope compositions of their tests at Ocean Drilling Program Site 1051 (northwest Atlantic) to detail the timing of this biotic event, to document its details at the species level, and to test a potential cause: the loss of photosymbionts (bleaching). We also provide stable isotope measurements of bulk carbonate to refine the stratigraphy at Site 1051 and to determine when changes in Morozovella species composition and their test size occurred. We demonstrate that the switch in Morozovella and Acarinina abundance occurred rapidly and in coincidence with a negative carbon isotope excursion known as the J event (~53 Ma), which marks the start of the EECO. We provide evidence of photosymbiont loss after the J event from a size-restricted δ 13 C analysis. However, such inferred bleaching was transitory and also occurred in the acarininids. The geologically rapid switch in planktic foraminiferal genera during the early Eocene was a major evolutionary change within marine biota, but loss of photosymbionts was not the primary causal mechanism.

  17. Did Photosymbiont Bleaching Lead to the Demise of Planktic Foraminifer Morozovella at the Early Eocene Climatic Optimum?

    PubMed Central

    D'Onofrio, Roberta; Dickens, Gerald R.; Wade, Bridget S.

    2017-01-01

    Abstract The symbiont‐bearing mixed‐layer planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of early Paleogene tropical–subtropical oceans. A marked and permanent switch in the abundance of these genera is known to have occurred at low‐latitude sites at the beginning of the Early Eocene Climatic Optimum (EECO), such that the relative abundance of Morozovella permanently and significantly decreased along with a progressive reduction in the number of species; concomitantly, the genus Acarinina almost doubled its abundance and diversified. Here we examine planktic foraminiferal assemblages and stable isotope compositions of their tests at Ocean Drilling Program Site 1051 (northwest Atlantic) to detail the timing of this biotic event, to document its details at the species level, and to test a potential cause: the loss of photosymbionts (bleaching). We also provide stable isotope measurements of bulk carbonate to refine the stratigraphy at Site 1051 and to determine when changes in Morozovella species composition and their test size occurred. We demonstrate that the switch in Morozovella and Acarinina abundance occurred rapidly and in coincidence with a negative carbon isotope excursion known as the J event (~53 Ma), which marks the start of the EECO. We provide evidence of photosymbiont loss after the J event from a size‐restricted δ13C analysis. However, such inferred bleaching was transitory and also occurred in the acarininids. The geologically rapid switch in planktic foraminiferal genera during the early Eocene was a major evolutionary change within marine biota, but loss of photosymbionts was not the primary causal mechanism. PMID:29398777

  18. Major early Eocene carbon cycle perturbations and changes in planktic foraminiferal assemblages from the southeast Atlantic Ocean (ODP Site 1263)

    NASA Astrophysics Data System (ADS)

    Luciani, Valeria; D'Onofrio, Roberta; Dickens, Gerald Roy; Wade, Bridget

    2017-04-01

    On a paleoclimatic perspective the early Paleogene represents one of the most interesting and dynamic intervals of the Earth's history. Present record indicates that the Earth climate system reached its Cenozoic maximum peak of global warming and probably of pCO2 during the early Eocene climatic optimum (EECO, 49-53 Ma). Superimposed to the general trend, our planet experienced short-term ( 40-200 kyr) repeated peaks in global temperatures and major changes in the carbon cycle, known as hyperthermals. Great scientific interest has been focused on the early Paleogene hyperthermal events, given the assumed similarity with the current climatic scenario. Less attention has been dedicated to the EECO long lasting perturbation of extraordinary warming thus many characters of this interval still remain largely unconstrained, especially as for the biotic response. We present here results on early Eocene planktic foraminiferal analysis from the southeast Atlantic Ocean Drilling Program (ODP) Site 1263 (Walvis Ridge, Leg 208) to explore possible relationship between changes in assemblages and carbon cycle perturbation. The time interval is of particular interest for an abrupt switch occurred at low-latitude of the northern hemisphere between two important calcifiers of the tropical-subtropical early Paleogene oceans, the genera Morozovella and Acarinina at the carbon isotopic excursion known as J event, at the EECO onset. Precisely, the relative abundance of Morozovella permanently decreased by at least half, along with a progressive decrease in the number of species. Concomitantly, Acarinina almost doubled its abundance and diversified. Site 1263 was located during the early Eocene at a latitude of 40° south therefore representing a temperate setting of southern hemisphere not yet explored for planktic foraminiferal changes. We document a permanent decrease in Morozovella abundance at the beginning of the EECO, although this decline is delayed by 165 kyr with respect to

  19. Icacinaceae from the eocene of Western North America.

    PubMed

    Allen, Sarah E; Stull, Gregory W; Manchester, Steven R

    2015-05-01

    The Icacinaceae are a pantropical family of trees, shrubs, and climbers with an extensive Paleogene fossil record. Our improved understanding of phylogenetic relationships within the family provides an excellent context for investigating new fossil fruit and leaf material from the Eocene of western North America. We examined fossils from early and middle Eocene sediments of western Wyoming, northeastern Utah, northwestern Colorado, and Oregon and compared them with extant species of Iodes and other icacinaceous genera as well as previously described fossils of the family. Three new fossil species are described, including two based on endocarps (Iodes occidentalis sp. nov. and Icacinicaryites lottii sp. nov.) and one based on leaves (Goweria bluerimensis sp. nov.). The co-occurrence of I. occidentalis and G. bluerimensis suggests these might represent detached organs of a single species. A new genus, Biceratocarpum, is also established for morphologically distinct fossil fruits of Icacinaceae previously placed in Carpolithus. Biceratocarpum brownii gen. et comb. nov. resembles the London Clay species "Iodes" corniculata in possessing a pair of subapical protrusions. These fossils increase our knowledge of Icacinaceae in the Paleogene of North America and highlight the importance of the Northern Hemisphere in the early diversification of the family. They also document interchange with the Eocene flora of Europe and biogeographic connections with modern floras of Africa and Asia, where Icacinaceae are diverse today. The present-day restriction of this family to tropical regions offers ecological implications for the Eocene floras in which they occur. © 2015 Botanical Society of America, Inc.

  20. Reconstruction of the Eocene Arctic Ocean Using Ichthyolith Isotope Analyses

    NASA Astrophysics Data System (ADS)

    Gleason, J. D.; Thomas, D. J.; Moore, T. C.; Waddell, L. M.; Blum, J. D.; Haley, B. A.

    2007-12-01

    Nd, Sr, O and C isotopic compositions of Eocene fish debris (teeth, bones, scales), and their reduced organic coatings, have been used to reconstruct water mass composition, water column structure, surface productivity and salinities of the Arctic Ocean Basin at Lomonosov Ridge between 55 and 44 Ma. Cleaned ichthyolith samples from IODP Expedition 302 (ACEX) record epsilon Nd values that range from -5.7 to -7.8, distinct from modern Arctic Intermediate Water (-10.5) and North Atlantic Deep Water. These Nd values may record some exchange with Pacific/Tethyan water masses, but inputs from local continental sources are more likely. Sr isotopic values are consistent with a brackish-to-fresh water surface layer (87Sr/86Sr = 0.7079-0.7087) that was poorly mixed with Eocene global seawater (0.7077-0.7078). Leaching experiments show reduced organic coatings to be more radiogenic (>0.7090) than cleaned ichthyolith phosphate. Ichthyolith Sr isotopic variations likely reflect changes in localized river input as a function of shifts in the Arctic hydrologic cycle, and 87Sr/86Sr values might be used as a proxy for surface water salinity. Model mixing calculations indicate salinities of 5 to 20 per mil, lower than estimates based on O isotopes from fish bone carbonate (16 to 26 per mil). Significant salinity drops (i.e., 55 Ma PETM and 48.5 Ma Azolla event) registered in oxygen isotopes do not show large excursions in the 87Sr/86Sr data. Carbon isotopes in fish debris record a spike in organic activity at 48.5 Ma (Azolla event), and otherwise high-productivity waters between 55 and 44 Ma. The combined Sr-Nd-O-C isotopic record is consistent with highly restricted basin-wide circulation in the Eocene, indicative of a highly stratified water column with anoxic bottom waters, a "fresh" water upper layer, and enhanced continental runoff during warm intervals until the first appearance of ice rafted debris at 45 Ma.

  1. Eocene tectonic compression in Northern Zealandia: Magneto-biostratigraphic constraints from the sedimentary records of New Caledonia (Southwest Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Dallanave, E.; Agnini, C.; Pascher, K. M.; Maurizot, P.; Bachtadse, V.; Hollis, C. J.; Dickens, G. R.; Collot, J.; Sevin, B.; Strogen, D.; Monesi, E.

    2017-12-01

    Published seismic profiles acquired from the Tasman Sea and northern Zealandia area (southwest Pacific) point to a widespread Eocene convergent deformation of oceanic and continental crust, with reverse faults and uplift (Tectonic Event of the Cenozoic in the Tasman Area; TECTA). The TECTA is interpreted as the precursor of the Tonga-Kermadec subduction initiation. Grande Terre is the main island of the New Caledonia archipelago and the largest emergent portion of northern Norfolk Ridge (part of northern Zealandia). Eocene sedimentary records exposed in Grande Terre contain a transition from pelagic micrite to terrigenous-rich calciturbidites, marking a shift from passive margin to convergent tectonic regime. This could represent the local expression of the convergence inception observed on a regional scale. We conducted an integrated magneto-biostratigraphic study, based on calcareous nannofossil and radiolaria, of two early-middle Eocene records cropping out near Noumea (southwest Grande Terre) and Koumac (northwest Grande Terre). The natural remanent magnetization of the sediments is complicated by multiple vector components, likely related to the late Eocene obduction, but a characteristic remanent magnetization has been successfully isolated. Overall the record spans from magnetic polarity Chron C23n to C18n, i.e. from 51 to 39 Ma. In this robust magnetic polarity-based chronological frame, the pelagic micrite to terrigenous-rich calciturbidites occurred near the top of Chron C21n and is dated 46 Ma. Furthermore, the magnetic mineral assemblage within part of the calciturbidites consists of hematite associated with maghemite. This association indicates emergent land as source of the terrigenous, suggesting a considerable uplift. Because 94% of the Zealandia continent is submerged, ocean drilling is needed to gauge the full extent and timing of Eocene compressive deformation revealed by the seismic profiles acquired in the Tasman area. This is a primary aim of

  2. First South American Agathis (Araucariaceae), Eocene of Patagonia.

    PubMed

    Wilf, Peter; Escapa, Ignacio H; Cúneo, N Rubén; Kooyman, Robert M; Johnson, Kirk R; Iglesias, Ari

    2014-01-01

    Agathis is an iconic genus of large, ecologically important, and economically valuable conifers that range over lowland to upper montane rainforests from New Zealand to Sumatra. Exploitation of its timber and copal has greatly reduced the genus's numbers. The early fossil record of Agathis comes entirely from Australia, often presumed to be its area of origin. Agathis has no previous record from South America. We describe abundant macrofossils of Agathis vegetative and reproductive organs, from early and middle Eocene rainforest paleofloras of Patagonia, Argentina. The leaves were formerly assigned to the New World cycad genus Zamia. Agathis zamunerae sp. nov. is the first South American occurrence and the most complete representation of Agathis in the fossil record. Its morphological features are fully consistent with the living genus. The most similar living species is A. lenticula, endemic to lower montane rainforests of northern Borneo. Agathis zamunerae sp. nov. demonstrates the presence of modern-aspect Agathis by 52.2 mya and vastly increases the early range and possible areas of origin of the genus. The revision from Zamia breaks another link between the Eocene and living floras of South America. Agathis was a dominant, keystone element of the Patagonian Eocene floras, alongside numerous other plant taxa that still associate with it in Australasia and Southeast Asia. Agathis extinction in South America was an integral part of the transformation of Patagonian biomes over millions of years, but the living species are disappearing from their ranges at a far greater rate.

  3. Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate

    NASA Astrophysics Data System (ADS)

    Waddell, Lindsey M.; Moore, Theodore C.

    2008-03-01

    Stable isotope analysis was performed on the structural carbonate of fish bone apatite from early and early middle Eocene samples (˜55 to ˜45 Ma) recently recovered from the Lomonosov Ridge by Integrated Ocean Drilling Program Expedition 302 (the Arctic Coring Expedition). The δ18O values of the Eocene samples ranged from -6.84‰ to -2.96‰ Vienna Peedee belemnite, with a mean value of -4.89‰, compared to 2.77‰ for a Miocene sample in the overlying section. An average salinity of 21 to 25‰ was calculated for the Eocene Arctic, compared to 35‰ for the Miocene, with lower salinities during the Paleocene Eocene thermal maximum, the Azolla event at ˜48.7 Ma, and a third previously unidentified event at ˜47.6 Ma. At the Azolla event, where the organic carbon content of the sediment reaches a maximum, a positive δ13C excursion was observed, indicating unusually high productivity in the surface waters.

  4. Pristine Early Eocene Wood Buried Deeply in Kimberlite from Northern Canada

    PubMed Central

    Wolfe, Alexander P.; Csank, Adam Z.; Reyes, Alberto V.; McKellar, Ryan C.; Tappert, Ralf; Muehlenbachs, Karlis

    2012-01-01

    We report exceptional preservation of fossil wood buried deeply in a kimberlite pipe that intruded northwestern Canada’s Slave Province 53.3±0.6 million years ago (Ma), revealed during excavation of diamond source rock. The wood originated from forest surrounding the eruption zone and collapsed into the diatreme before resettling in volcaniclastic kimberlite to depths >300 m, where it was mummified in a sterile environment. Anatomy of the unpermineralized wood permits conclusive identification to the genus Metasequoia (Cupressaceae). The wood yields genuine cellulose and occluded amber, both of which have been characterized spectroscopically and isotopically. From cellulose δ18O and δ2H measurements, we infer that Early Eocene paleoclimates in the western Canadian subarctic were 12–17°C warmer and four times wetter than present. Canadian kimberlites offer Lagerstätte-quality preservation of wood from a region with limited alternate sources of paleobotanical information. PMID:23029080

  5. Geology, geochemistry and genesis of the Eocene Lailishan Sn deposit in the Sanjiang region, SW China

    NASA Astrophysics Data System (ADS)

    Cao, Hua-Wen; Pei, Qiu-Ming; Zhang, Shou-Ting; Zhang, Lin-Kui; Tang, Li; Lin, Jin-Zhan; Zheng, Luo

    2017-04-01

    The Lailishan deposit is an important tin deposit that is genetically associated with an Early Eocene biotite granite in the western Yunnan metallogenic belt in the Sanjiang region, SW China. This study reports new zircon U-Pb ages and Hf isotopic data, whole-rock elements, mica Ar-Ar age and C-H-O-S-Pb isotope for the Lailishan Sn deposit. The mineralization-related biotite granite crystallized during the Early Eocene (50.5 Ma), with its zircon εHf(t) values ranging from -11.5 to -7.6 and two-stage Hf model ages (TDM2) ranging from 1.60 to 1.85 Ga. The rocks are peraluminous with A/CNK values of 0.99-1.08. The granites display high Si, Al and K contents but low Mg, Fe and Ca contents. The rocks show flat chondrite-normalized REE patterns with strong Eu negative anomalies. These characteristics indicate that the magma originated from a continental crustal source. The hydrothermal muscovite exhibits an Ar-Ar plateau age of 50.4 ± 0.2 Ma. The δ18O and δD values of hydrothermal quartz from the deposit range from -7.32‰ to 4.01‰ and from -124.9‰ to -87.1‰, respectively. The δ13CPDB and δ18OSMOW values of calcite range from -11.3‰ to -3.7‰ and from +2.2‰ to +12.7‰, respectively. The sulfur isotopic compositions (δ34SV-CDT) range from +3.3‰ to +8.6‰ for sulfide separates, and the lead isotopic ratios 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb range from 18.668 to 18.746, from 15.710 to 15.743 and from 39.202 to 39.295, respectively. These isotopic compositions are similar to those of magma-derived fluids, indicating that the ore-forming fluids and materials mainly originated from magmatic rocks with some input from meteoric water. This evidence suggests that the tin mineralization is closely linked to the Lailishan I-type granites. In combination with previous data, it is proposed in this study that widespread early Eocene magmatism resulted from the slab breakoff of the subducting Neo-Tethyan slab at ca. 55 Ma.

  6. Late Paleocene- Early Eocene paleoenvironments in the Southwest Pacific (ODP Leg 189): Revised Stratigraphy of an Antarctic PETM Record.

    NASA Astrophysics Data System (ADS)

    Bijl, P. K.; Brinkhuis, H.; Sluijs, A.; Reichart, G.; Schouten, S.; Röhl, U.

    2007-12-01

    The Late Paleocene and Early Eocene (~60 ¡V 50 Ma) were characterized by globally warm climates. Superimposed on this general warmth, several episodes of further warming occurred (so-called hyperthermals), including the Paleocene-Eocene thermal maximum (PETM, ~55 Ma) and Eocene thermal maximum 2 (ETM2, ~53 Ma). While the PETM is by now well documented from Northern Hemisphere, and some equatorial locations, southern high-latitude records are still rare. Here we present high-resolution palynological, XRF, bulk organic stable carbon isotope (Ô13CTOC), and TEX86 palaeothermometry data across Upper Paleocene through Lower Eocene pro-deltaic deposits from the Southwest Pacific Ocean, at ~65¢XS palaeolatitude (ODP Site 1172). Based on a revised integrated biomagnetostratigraphic age model and Ô13CTOC stratigraphy, we identify the southernmost marginal marine PETM ever encountered. Moreover, there is every indication that ETM2 was recovered as well at Site 1172. Despite a high latitude source of the surface waters at this site, the PETM is marked by the characteristic acme of representatives of the (sub) tropical dinoflagellate cyst (dinocyst) Apectodinium, confirming the truly global nature of this PETM event. TEX86 values indicate that surface ocean temperatures rose from ~23¢XC to ~30¢XC during the PETM at Site 1172, hence by a similar magnitude as recorded in other PETM successions globally. Before and after the CIE, mass abundances of low salinity tolerant dinocysts are recorded, taken as indicative of increased runoff. These trends are analogous to those recorded at northern high latitudes, indicating a similar climate response at both polar regions during the PETM. Yet, some distinct differences are apparent, and are discussed.

  7. Strong Central Asian seasonality from Eocene oysters indicates early monsoons and aridification

    NASA Astrophysics Data System (ADS)

    Bougeois, Laurie; de Rafélis, Marc; Tindall, Julia; Proust, Jean-Noël; Reichart, Gert-Jan; de Nooijer, Lennart; Guo, ZhaoJie; Ormukov, Cholponbek; Dupont-Nivet, Guillaume

    2017-04-01

    Climate models suggest that the onset of Asian monsoons and aridification have been governed by Tibetan plateau uplift, global climate changes and the retreat to the west of the vast epicontinental Proto-Paratethys sea during the warm Eocene greenhouse period (55-34 million years ago). However, the role of the Proto-Paratethys sea on climate remains to be quantified by accurate and precise reconstructions. By applying a novel intra-annual geochemical multi-proxy methodology on Eocene oyster shells of the Proto-Paratethys sea and comparing results to climate simulations and sedimentology analyses, we show that the Central Asian region was generally arid with a high seasonal contrast characterized by hot and arid summers and wetter winters. Hotter and more arid summers despite the presence of the Proto-Paratethys may be explained by warmer Eocene global conditions with a strong anticyclonic Hadley cell descending at Central Asian latitudes and a stronger Foehn effect from the emerging Tibetan Plateau to the south. This implies that the shallow sea did not have a strong dampening thermal effect on the monsoonal circulation in contrast to previous circulation models results but in agreement with recent evidence for Eocene summer monsoons. Enhanced winter precipitations, relative to modern, is linked to a westerly moisture source coming from the Proto-Paratethys sea at that time. Additional bulk sediment stable isotope data from marine limestones and pedogenic carbonates suggest a gradual decrease in this westerly moisture source, which is in line with the retreat of the Proto-Paratethys followed by the Oligo-Miocene orogeny of the Central Asian ranges (Tian Shan and Pamir) shielding the westerlies.

  8. Integrated stratigraphy and astronomical tuning of Smirra cores, lower Eocene, Umbria-Marche basin, Italy.

    NASA Astrophysics Data System (ADS)

    Lauretano, Vittoria; Turtù, Antonio; Hilgen, Frits; Galeotti, Simone; Catanzariti, Rita; Reichart, Gert Jan; Lourens, Lucas J.

    2016-04-01

    The early Eocene represents an ideal case study to analyse the impact of increase global warming on the ocean-atmosphere system. During this time interval, the Earth's surface experienced a long-term warming trend that culminated in a period of sustained high temperatures called the Early Eocene Climatic Optimum (EECO). These perturbations of the ocean-atmosphere system involved the global carbon cycle and global temperatures and have been linked to orbital forcing. Unravelling this complex climatic system strictly depends on the availability of high-quality suitable geological records and accurate age models. However, discrepancies between the astrochronological and radioisotopic dating techniques complicate the development of a robust time scale for the early Eocene (49-54 Ma). Here we present the first magneto-, bio-, chemo- and cyclostratigraphic results of the drilling of the land-based Smirra section, in the Umbria Marche Basin. The sediments recovered at Smirra provide a remarkably well-preserved and undisturbed succession of the early Palaeogene pelagic stratigraphy. Bulk stable carbon isotope and X-Ray Fluorescence (XRF) scanning records are employed in the construction of an astronomically tuned age model for the time interval between ~49 and ~54 Ma based on the tuning to long-eccentricity. These results are then compared to the astronomical tuning of the benthic carbon isotope record of ODP Site 1263 to evaluate the different age model options and improve the time scale of the early Eocene by assessing the precise number of eccentricity-related cycles comprised in this critical interval.

  9. Eocene Temperature Evolution of the Tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cramwinckel, M.; Kocken, I.; Agnini, C.; Huber, M.; van der Ploeg, R.; Frieling, J.; Bijl, P.; Peterse, F.; Roehl, U.; Bohaty, S. M.; Schouten, S.; Sluijs, A.

    2016-12-01

    The transition from the early Eocene ( 50 Ma) hothouse towards the Oligocene ( 33 Ma) icehouse was interrupted by the Middle Eocene Climatic Optimum (MECO) ( 40 Ma), a 500,000-year long episode of deep sea and Southern Ocean warming. It remains unclear whether this transient warming event was global, and whether it was caused by changes in atmospheric greenhouse gas concentrations or confined to high latitudes resulting from ocean circulation change. Here we show, based on biomarker paleothermometry applied at Ocean Drilling Program Site 959, offshore Ghana, that sea surface temperatures in the eastern equatorial Atlantic Ocean declined by 7°C over the middle-late Eocene, in agreement with temperature trends documented in the southern high latitudes. In the equatorial Atlantic, this long-term trend was punctuated by 2.5°C warming during the MECO. At the zenith of MECO warmth, changes in dinoflagellate cyst assemblages and laminated sediments at Site 959 point to open ocean hyperstratification and seafloor deoxygenation, respectively. Remarkably, the data reveal that the magnitude of temperature change in the tropics was approximately half that in the Southern Ocean. This suggests that the generally ice free Eocene yielded limited but significant polar amplification of climate change. Crucially, general circulation model (GCM) simulations reveal that the recorded tropical and deep ocean temperature trends are best explained by greenhouse gas forcing, controlling both middle-late Eocene cooling and the superimposed MECO warming.

  10. Paleobotanical Evidence for Coupling of Temperature and pCO2 during the Early Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Smith, R. Y.; Greenwood, D. R.; Basinger, J. F.

    2009-12-01

    The Early Eocene Climatic Optimum (EECO) was the warmest period of the Cenozoic, indicated by multiple proxy mean annual temperature estimates for sea and land surface. However, estimates of pCO2 from geochemical, modeling, and paleontological proxies show a wide range of values, from near modern day levels to an order of magnitude greater. Resolving the pCO2 record for this time period, and correlating it with trends in temperature, is a key task in understanding the interaction of climate and pCO2 in globally warm periods. Here we present a fine scale study of trends in temperature and pCO2 based on paleobotanical data from an early Eocene site from the Okanagan Highlands of British Columbia, Canada. Plant macrofossils were collected using an unbiased census approach from three informal units, allowing for quantitative comparison of trends within the site. Temperature estimates derived from multiple paleobotanical techniques (physiognomic and floristic approaches) suggest microthermal (MAT <13°C) but equable (CMMT >0°C) conditions for this upland site, and show a trend in declining MAT over time reflected in the three units. At the same time, stomatal frequency of Ginkgo suggests that pCO2 was high (>2x modern values), but also declining over time. These results suggest that temperature and pCO2 were coupled during this globally warm period, and that fine scale trends on the order of 103 - 104 years can be tracked within fossil sites to provide a window on climate/pCO2 interactions.

  11. Modelling the interactions between vegetation and climate from the Cretaceous to the Eocene

    NASA Astrophysics Data System (ADS)

    Loptson, Claire; Lunt, Dan; Francis, Jane

    2013-04-01

    The climates during the Cretaceous (~144 to 66 Ma) and the early Eocene (~56 to 48 Ma) were much warmer than the present day. Atmospheric CO2 levels for these past climates have a large uncertainty associated with them, but were possibly as high as 2000 to 3000 ppm for the early Eocene (Beerling and Royer, 2011; Lowenstein and Demicco, 2006) and maximum values are thought to range from 800 to 1800 ppm during the Cretaceous (Royer et al., 2012). Current modelling efforts have had great difficulty in replicating the shallow latitudinal temperature gradient indicated by proxy data for these time periods (e.g. Heinemann et al., 2009; Winguth et al., 2010; Shellito et al., 2009). Mechanisms that can result in such a low temperature gradient have not been found (Winguth et al., 2010; Beerling et al., 2011; Sloan and Morrill, 1998), but a contributing factor could be that not all climate feedbacks are included in these models. Vegetation feedbacks have been shown to be especially important (e.g. Otto-Bliesner and Upchurch, 1997; Bonan, 2008) so by including a more accurate representation of vegetation in the climate model, the model-data discrepancies may be reduced. A fully coupled atmosphere-ocean GCM, HadCM3L, coupled to a dynamic global vegetation model (TRIFFID), was used to simulate the climate and the predicted vegetation distributions for and the early Eocene and 12 different time slices representing different ages throughout the Cretaceous at 4x pre-industrial CO2. The only difference in the way these simulations were set up are different boundary conditions that are specific to that time period, e.g. different solar constants and paleogeographies. This allows a direct comparison between the time slices. We present the changes in climate, and therefore vegetation, during the Cretaceous due to changes in these boundary conditions alone, with a focus on Antarctica. Additional Eocene simulations were also carried out with a) fixed globally-uniform vegetation and b

  12. Eocene volcanism and the origin of horizon A

    USGS Publications Warehouse

    Gibson, T.G.; Towe, K.M.

    1971-01-01

    A series of closely time-equivalent deposits that correlate with seismic reflector horizon A exists along the coast of eastern North America. These sediments of Late-Early to Early-Middle Eocene age contain an authigenic mineral suite indicative of the alteration of volcanic glass. A volcanic origin for these siliceous deposits onshore is consistent with a volcanic origin for the cherts of horizon A offshore.

  13. Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India.

    PubMed

    Rose, Kenneth D; Holbrook, Luke T; Rana, Rajendra S; Kumar, Kishor; Jones, Katrina E; Ahrens, Heather E; Missiaen, Pieter; Sahni, Ashok; Smith, Thierry

    2014-11-20

    Cambaytheres (Cambaytherium, Nakusia and Kalitherium) are recently discovered early Eocene placental mammals from the Indo-Pakistan region. They have been assigned to either Perissodactyla (the clade including horses, tapirs and rhinos, which is a member of the superorder Laurasiatheria) or Anthracobunidae, an obscure family that has been variously considered artiodactyls or perissodactyls, but most recently placed at the base of Proboscidea or of Tethytheria (Proboscidea+Sirenia, superorder Afrotheria). Here we report new dental, cranial and postcranial fossils of Cambaytherium, from the Cambay Shale Formation, Gujarat, India (~54.5 Myr). These fossils demonstrate that cambaytheres occupy a pivotal position as the sister taxon of Perissodactyla, thereby providing insight on the phylogenetic and biogeographic origin of Perissodactyla. The presence of the sister group of perissodactyls in western India near or before the time of collision suggests that Perissodactyla may have originated on the Indian Plate during its final drift toward Asia.

  14. Paleoenvironmental changes across the Eocene-Oligocene boundary: insights from the Central-Carpathian Paleogene Basin

    NASA Astrophysics Data System (ADS)

    Soták, Ján

    2010-10-01

    The sedimentary sequence of the Central-Carpathian Paleogene Basin provides proxy records of climatic changes related to cooling events at the Eocene/Oligocene boundary (TEE). In this basin, climatic deterioration is inferred from the demise of the carbonate platform and oligotrophic benthic biota in the SBZ19 and from the last species of warm-water planktonic foraminifers in the E14 Zone. Upper Eocene formations already indicate warm-temperate to cool-temperate productivity and nutrient-enriched conditions (Bryozoan Marls, Globigerina Marls). Rapid cooling during the earliest Oligocene (Oi-1 event) led to a temperature drop (~11 °C), humidity, fresh water influx and continental runoff, water mass stratification, bottom water anoxia, eutrofication, estuarine circulation and upwelling, carbonate depletion, sapropelitic and biosiliceous deposition, H2S intoxication and mass faunal mortality, and also other characteristics of Black Sea-type basins. Tectonoeustatic events with the interference of TA 4.4 sea-level fall and the Pyrenean phase caused basin isolation at the beginning of the Paratethys. The Early Oligocene stage of Paratethyan isolation is indicated by a stagnant regime, low tide influence, endemic fauna development, widespread anoxia and precipitation of manganese deposits. The episodic rise in the sea-level, less humid conditions and renewed circulation is marked by calcareous productivity, nannoplankton blooms and the appearance of planktic pteropods and re-oxygenation. Paleogeographic differentiation of the Carpatho-Pannonian Paleogene basins resulted from plate-tectonic reorganization during the Alpine orogenesis.

  15. New fossils from Tadkeshwar Mine (Gujarat, India) increase primate diversity from the early Eocene Cambay Shale.

    PubMed

    Rose, Kenneth D; Dunn, Rachel H; Kumar, Kishor; Perry, Jonathan M G; Prufrock, Kristen A; Rana, Rajendra S; Smith, Thierry

    2018-06-07

    Several new fossil specimens from the Cambay Shale Formation at Tadkeshwar Lignite Mine in Gujarat document the presence of two previously unknown early Eocene primate species from India. A new species of Asiadapis is named based on a jaw fragment preserving premolars similar in morphology to those of A. cambayensis but substantially larger. Also described is an exceptionally preserved edentulous dentary (designated cf. Asiadapis, unnamed sp. nov.) that is slightly larger and much more robust than previously known Cambay Shale primates. Its anatomy most closely resembles that of Eocene adapoids, and the dental formula is the same as in A. cambayensis. A femur and calcaneus are tentatively allocated to the same taxon. Although the dentition is unknown, exquisite preservation of the dentary of cf. Asiadapis sp. nov. enables an assessment of masticatory musculature, function, and gape adaptations, as well as comparison with an equally well-preserved dentary of the asiadapid Marcgodinotius indicus, also from Tadkeshwar. The new M. indicus specimen shows significant gape adaptations but was probably capable of only weak bite force, whereas cf. Asiadapis sp. nov. probably used relatively smaller gapes but could generate relatively greater bite forces. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Warm Eocene climate enhanced petroleum generation from Cretaceous source rocks - a potential climate feedback mechanism?

    NASA Astrophysics Data System (ADS)

    Kroeger, K. F.; Funnell, R. H.

    2012-04-01

    Surface and deep sea temperatures from late Paleocene to early Eocene until the Early Eocene climatic Optimum increased by 5 - 10° C. This change was associated with a negative δ13C trend which implies major changes in global carbon cycling and enrichment of surface systems in isotopically light carbon. The degree of change in sedimentary δ13C requires emission of >10,000 gigatonnes of isotopically light carbon into the ocean. We reveal a relationship between global warming and increased petroleum generation in sedimentary basins operating on 100 kyr to Myr time scales that may explain the observed isotope shift. We use TEX86-based surface temperature data1 to predict how change in surface temperature influences the temperature evolution and resultant petroleum generation in four southwest Pacific sedimentary basins. Models predict an up to 50% increase in oil and gas expulsion rates in response to the increase in temperatures from late Paleocene to early Eocene in the region. Such an increase in petroleum generation would have significantly increased leakage of light hydrocarbons and oil degeneration products into surface systems. We propose that our modelling results are representative of a large number of sedimentary basins world-wide and that early Eocene warming has led to a synchronization of periods of maximum petroleum generation and enhanced generation in otherwise unproductive basins through extension of the volume of source rock within the oil and gas window. Extrapolating our modelling results to hundreds of sedimentary basins worldwide suggests that globally increased leakage could have led to the release of an amount of CH4, CO2 and light petroleum components into surface systems compatible with the observed changes in δ13C. We further suggest that this is a significant feedback effect, enhancing early Eocene climate warming. 1Bijl, P. K., S. Schouten, A. Sluijs, G.-J. Reichart, J. C. Zachos, and H. Brinkhuis (2009), Early Palaeogene temperature

  17. Early evidence of xeromorphy in angiosperms: stomatal encryption in a new eocene species of Banksia (Proteaceae) from Western Australia.

    PubMed

    Carpenter, Raymond J; McLoughlin, Stephen; Hill, Robert S; McNamara, Kenneth J; Jordan, Gregory John

    2014-09-01

    • Globally, the origins of xeromorphic traits in modern angiosperm lineages are obscure but are thought to be linked to the early Neogene onset of seasonally arid climates. Stomatal encryption is a xeromorphic trait that is prominent in Banksia, an archetypal genus centered in one of the world's most diverse ecosystems, the ancient infertile landscape of Mediterranean-climate southwestern Australia.• We describe Banksia paleocrypta, a sclerophyllous species with encrypted stomata from silcretes of the Walebing and Kojonup regions of southwestern Australia dated as Late Eocene.• Banksia paleocrypta shows evidence of foliar xeromorphy ∼20 Ma before the widely accepted timing for the onset of aridity in Australia. Species of Banksia subgenus Banksia with very similar leaves are extant in southwestern Australia. The conditions required for silcrete formation infer fluctuating water tables and climatic seasonality in southwestern Australia in the Eocene, and seasonality is supported by the paucity of angiosperm closed-forest elements among the fossil taxa preserved with B. paleocrypta. However, climates in the region during the Eocene are unlikely to have experienced seasons as hot and dry as present-day summers.• The presence of B. paleocrypta within the center of diversity of subgenus Banksia in edaphically ancient southwestern Australia is consistent with the continuous presence of this lineage in the region for ≥40 Ma, a testament to the success of increasingly xeromorphic traits in Banksia over an interval in which numerous other lineages became extinct. © 2014 Botanical Society of America, Inc.

  18. Late Eocene obliquity domination and impact of the Eocene/Oligocene climate transition on central Asian climate at the northeastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqiao; Abels, Hemmo A.; Yao, Zhengquan; Dupont-Nivet, Guillaume; Hilgen, Frederik J.

    2010-05-01

    At the boundary between the Eocene and Oligocene epochs, approximately 34 million years ago (Ma), the Earth experienced a significant change from a greenhouse world to an icehouse world. The present understanding of the triggering mechanisms, processes and environmental effects of this climatic event is mostly based upon ocean sediment records and climatic modeling results. Terrestrial records of the critical interval are rare and, where available, often poorly constrained in time. Here, we present a continuous continental record (Tashan section) from the Xining basin at the northeastern edge of Tibetan Plateau, covering the period between ~35 to 33 Ma. Lithology supplemented with high-resolution magnetic susceptibility (MS), median grain size (MGS) and color reflectance (a*) records show clear Late Eocene basic cyclicity of ~3.5 m in length. Our detailed magnetostratigraphic age model indicates that this cycle was most likely forced by the 41-kyr obliquity cycle driving drier and wetter periods in northern hemisphere Asian interior climates already 1 million year before the Eocene-Oligocene Climate Transition (EOCT). Detailed comparison of the E/O boundary interval in the Tashan section with marine records show that the most pronounced lithofacies change in the Xining Basin corresponds to the first of two widely recognized steps in oxygen isotopes making up the EOCT. This first step is reported to precede the major and second step (base of the Oi-1 phase) by around 0.2 to 0.3 Myr and has recently been suggested to be mainly related to atmospheric cooling rather than ice volume growth.

  19. Integrated Late Eocene-Oligocene Stratigraphy of the Alabama Coastal Plain: Correlation of Hiatuses and Stratal Surfaces to Glacioeustatic Lowerings

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth G.; Thompson, Peter R.; Kent, Dennis V.

    1993-04-01

    We integrated strontium and oxygen isotopic, biostratigraphic, and magnetostratigraphic studies of two upper Eocene-Oligocene boreholes drilled near Bay Minette and St. Stephens Quarry (SSQ), Alabama. Continuous coring provided fresh, unweathered material for magnetostratigraphic studies, minimizing problems reported from nearby outcrops. Difficulties with each technique were encountered because of diagenesis, absence of marker fossils, and the presence of unconformities; however, by integrating results from isotopic stratigraphy, biostratigraphy, and magnetostratigraphy, we correlated these relatively shallow-water deposits to the geomagnetic polarity time scale (GPTS). At the SSQ borehole, the upper Eocene to lower Oligocene section is apparently complete within our stratigraphic resolution (0.2-0.5 m.y.), allowing us to estimate the ages of several stratal surfaces. Late Eocene Sr isotope age estimates are as expected at the SSQ borehole, but Oligocene ages are ˜1 m.y. older than expected due to diagenesis. At the Bay Minette borehole, a latest Eocene-earliest Oligocene and a late early Oligocene hiatus were detected. We correlate these two hiatuses and stratal surfaces at SSQ with global δ18O increases inferred to represent glacioeustatic lowerings and with evidence for hiatuses on other continental margins: (1) a distinct disconformity at the base of the Chickasawhay Limestone at both boreholes and a hiatus at Bay Minette correlates with a global δ18O increase; we revise the age of this surface (equivalent to the TB 1.1 sequence boundary) making it ˜2 m.y. older than previously reported; and (2) a surface at the top of the Shubuta Member (lowermost Oligocene) has been interpreted both as a condensed section and a disconformity; this surface at SSQ and a hiatus at Bay Minette correlate with a sharp global δ18O increase and with hiatuses on the New Jersey and Irish margins. The timing of the hiatuses and stratal surfaces correlates with the inflection of

  20. Geochemistry of East Antarctic Margin Sediments Spanning the Eocene Oligocene Transition.

    NASA Astrophysics Data System (ADS)

    Light, J. J.; Passchier, S.

    2016-12-01

    The Eocene Oligocene Transition (EOT) 34 million years ago (Ma), marked the global climate change from greenhouse to icehouse, and the full establishment of the East Antarctic Ice Sheet (EAIS). The initiation of the EAIS during the EOT is believed to have been a step-wise transition; however, data resolution is low and merits the need for further study. The purpose of this study is to expand upon existing knowledge of EAIS dynamics spanning the EOT by creating a higher resolution geochemical record of cores taken from continental shelf sites 1166 in Prydz Bay and U1360 from the Wilkes Land margin. We used Inductively Coupled Plasma Optical Emission Spectrometry and Mass Spectrometry (ICP-OES/ ICP-MS) to determine the bulk chemical composition of samples. Results were used to calculate the Chemical Index of Alteration (CIA), Al2O3/TiO2 ratios, and trace elemental variation down core. CIA values for the early Oligocene in Site U1360 indicate an arid colder environment less likely to be chemically weathered. In contrast, Hole 1166A shows values similar to average shales that increase up core and abruptly decrease at the overlying Neogene diamict, suggesting a warmer more humid environment at Prydz Bay during the late Eocene. Al2O3/TiO2 ratios were used to evaluate mud provenance changes at each site. At site 1166 redox sensitive elements (Cr, Ni, and V) show similar down core distributions to one another. The changes in elemental intensities are likely being controlled by factors such as sediment provenance, changes in redox conditions and surficial weathering. We expect the outcomes of this study to allow us to interpret regional depositional environments at a higher resolution, as well as to shed light on the EAIS's step-wise initiation.

  1. The initial superposition of oceanic and continental units in the southern Western Alps: constraints on geometrical restoration and kinematics of the continental subduction wedge

    NASA Astrophysics Data System (ADS)

    Dumont, Thierry; Schwartz, Stéphane; Matthews, Steve; Malusa, Marco; Jouvent, Marine

    2017-04-01

    older in the oceanic rocks (Malusà et al. 2015). Finally, further SE, the Voltri massif shows a huge volume of serpentinized mantle which locally overlies continental basement (strongly metamorphosed), and is interpreted as an exhumed remnant of the subduction channel (Federico et al., 2007). In all these localities the transport directions during initial pulses of stacking were consistently oriented generally towards the NW to N, taking into account the subsequent Oligocene and younger collision-related deformation (complex folds, thrusts, backfolds and backthrusts, and block-rotations). It is thus possible to attempt reconstructing an early stage continental subduction wedge involving these different elements from the subduction channel to the most frontal part of the accretionary complex. However, this early Alpine orogen which was active throughout the Eocene is interpreted to have propagated generally towards the NW to N, prior to subsequent pulses of more westerly directed deformation from the Oligocene onwards within the southern part of the Western Alps arc. It is therefore essential to continually improve high-resolution 3D geophysical imaging to facilitate a better understanding of the complex western termination of the Alpine orogen. References: Dumont T., Schwartz S., Guillot S., Simon-Labric S., Tricart P. & Jourdan S. (2012), Structural and sedimentary record of the Oligocene revolution in the Western Alpine arc. Jour. Geodynamics, doi:10.1016/j.jog.2011.11.006 Federico L., Crispini L., Scambelluri M. & Capponi G. (2007), Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 35, p. 499-502 Malusà M.G., Faccenna C., Baldwin S.L., Fitzgerald P.G., Rossetti F., Balestrieri M.L., Danišík M., Ellero A., Ottria G. & Piromallo C. (2015), Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochem. Geophys. Geosyst. ,16, p. 1786-1824 Tricart P. & Schwartz S

  2. The Impact of Elevated Temperatures on Continental Carbon Cycling in the Paleogene

    NASA Astrophysics Data System (ADS)

    Pancost, R. D.; Handley, L.; Taylor, K. W.; Collinson, M. E.; Weijers, J.; Talbot, H. M.; Hollis, C. J.; Grogan, D. S.; Whiteside, J. H.

    2010-12-01

    Recent climate and biogeochemical modelling suggests that methane flux from wetlands and soils was greater during past greenhouse climates, due to a combination of higher continental temperatures, an enhanced hydrological cycle, and elevated primary production. Here, we examine continental environments in the Paleogene using a range of biomarker proxies (complemented by palaeobotanical approaches), including air temperatures derived from the distribution of soil bacterial glycerol dialkyl glycerol tetraethers (the MBT/CBT proxy), as well as evidence from wetland and lacustrine settings for enhanced methane cycling. Previously published and new MBT/CBT records parallel sea surface temperature records, suggesting elevated continental temperatures during the Eocene even at mid- to high latitudes (New Zealand, 20-28°C; the Arctic, 17°C; across the Sierra Nevada, 15-25°C; and SE England, 20-30°C). Such temperatures are broadly consistent with paleobotanical records and would have directly led to increased methane production via the metabolic impact of temperature on rates of methanogenesis. To test this, we have determined the distributions and carbon isotopic compositions of archaeal ether lipids and bacterial hopanoids in thermally immature Eocene lignites. In particular, the Cobham lignite, deposited in SE England and spanning the PETM, is characterised by markedly higher concentrations of both methanogen and methanotroph biomarkers compared to modern and Holocene temperate peats. Elevated temperatures, by fostering either stratification and/or decreased oxygen solubility, could have also led to enhanced methane production in Paleogene lakes. Both the Messel Shale (Germany) and Green River Formation, specifically the Parachute Creek oil shale horizons (Utah and Wyoming), are characterised by strongly reducing conditions (including euxinic conditions in the latter), as well as abundant methanogen and methanotroph biomarkers. Such results confirm model predictions

  3. A Phororhacoid bird from the Eocene of Africa

    NASA Astrophysics Data System (ADS)

    Mourer-Chauviré, Cécile; Tabuce, Rodolphe; Mahboubi, M'hammed; Adaci, Mohammed; Bensalah, Mustapha

    2011-10-01

    The bird fossil record is globally scarce in Africa. The early Tertiary evolution of terrestrial birds is virtually unknown in that continent. Here, we report on a femur of a large terrestrial new genus discovered from the early or early middle Eocene (between ˜52 and 46 Ma) of south-western Algeria. This femur shows all the morphological features of the Phororhacoidea, the so-called Terror Birds. Most of the phororhacoids were indeed large, or even gigantic, flightless predators or scavengers with no close modern analogs. It is likely that this extinct group originated in South America, where they are known from the late Paleocene to the late Pleistocene (˜59 to 0.01 Ma). The presence of a phororhacoid bird in Africa cannot be explained by a vicariant mechanism because these birds first appeared in South America well after the onset of the mid-Cretaceous Gondwana break up (˜100 million years old). Here, we propose two hypotheses to account for this occurrence, either an early dispersal of small members of this group, which were still able of a limited flight, or a transoceanic migration of flightless birds from South America to Africa during the Paleocene or earliest Eocene. Paleogeographic reconstructions of the South Atlantic Ocean suggest the existence of several islands of considerable size between South America and Africa during the early Tertiary, which could have helped a transatlantic dispersal of phororhacoids.

  4. Cenozoic tectono-thermal history of the Tordrillo Mountains, Alaska: Paleocene-Eocene ridge subduction, decreasing relief, and late Neogene faulting

    USGS Publications Warehouse

    Benowitz, Jeff A.; Haeussler, Peter J.; Layer, Paul W.; O'Sullivan, Paul B.; Wallace, Wes K.; Gillis, Robert J.

    2012-01-01

    Topographic development inboard of the continental margin is a predicted response to ridge subduction. New thermochronology results from the western Alaska Range document ridge subduction related orogenesis. K-feldspar thermochronology (KFAT) of bedrock samples from the Tordrillo Mountains in the western Alaska Range complement existing U-Pb, 40Ar/39Ar and AFT (apatite fission track) data to provide constraints on Paleocene pluton emplacement, and cooling as well as Late Eocene to Miocene vertical movements and exhumation along fault-bounded blocks. Based on the KFAT analysis we infer rapid exhumation-related cooling during the Eocene in the Tordrillo Mountains. Our KFAT cooling ages are coeval with deposition of clastic sediments in the Cook Inlet, Matanuska Valley and Tanana basins, which reflect high-energy depositional environments. The Tordrillo Mountains KFAT cooling ages are also the same as cooling ages in the Iliamna Lake region, the Kichatna Mountains of the western Alaska Range, and Mt. Logan in the Wrangell-St. Elias Mountains, thus rapid cooling at this time encompasses a broad region inboard of, and parallel to, the continental margin extending for several hundred kilometers. We infer these cooling events and deposition of clastic rocks are related to thermal effects that track the eastward passage of a slab window in Paleocene-Eocene time related to the subduction of the proposed Resurrection-Kula spreading ridge. In addition, we conclude that the reconstructed KFATmax negative age-elevation relationship is likely related to a long period of decreasing relief in the Tordrillo Mountains.

  5. Mineralogy and Chemistry of Continental-like Calc-alkaline Plutons on Adak Island in the Oceanic Aleutian arc: Emplacement and Implications for the Eocene History of the Arc

    NASA Astrophysics Data System (ADS)

    Kay, S. M.; Citron, G. P.; Kay, R. W.; Jicha, B. R.

    2016-12-01

    The mineralogy and chemistry of the 15 km wide latest Eocene/Oligocene (34.6-30.9 Ma) Hidden Bay and Miocene (14.2-13.7 Ma) Kagalaska calc-alkaline plutons on Adak and Kagalaska Islands in the central Aleutian arc provide insight into the arc's Tertiary evolution. The plutons intrude the moderately light REE-enriched tholeiitic basaltic to mafic andesites of the Eocene Finger Bay Formation. The Hidden Bay pluton largely consists of mid to high-K amphibole-bearing cumulate diorite (53-55% SiO2) and granodiorite (57-64% & 61-64% SiO2) with lesser amounts of gabbro (50-52%), leucogranodiorite (67-69% SiO2) and aplite (76-77% SiO2). REE patterns indicate important fractionation of amphibole and plagioclase with pyroxene and olivine present in mafic units and orthopyroxene, biotite, quartz and K-feldspar in silicic units. Quartz, K-feldspar and biotite occur in interstices in most units. Plagioclase cores are mostly from AN40-60 with K-feldspar at OR95-OR98. Fractionation of homogeneous gabbros with high-Al basalt compositions (51% SiO2) best explains the chemistry and mineralogy of the Hidden Bay pluton. The presence of pargasitic amphibole in medium to course grained diorite cumulates indicates fractionation at 12-14 km at 950-1000°C with 5.5% H2O and a NNO oxygen fugacity. Two pyroxene, Mg hornblende and Ti-Zr zircon thermometers for granodiorite and late crystallized areas record temperatures of 850-750°C at 3.5- 4.5 % H2O and a NNO+2 oxygen fugacity. The Kagalaska pluton differs in being more calc-alkaline (alkali-rich), more bimodal in being dominated by amphibole-bearing gabbro and granodiorite/ leucogranodiorite (63-68% SiO2) and in requiring more amphibole fractionation. Both plutons have compositions approaching continental crust and characteristics that are similar to plutons intruded into continental crust. Differences with the Finger Bay Volcanic are best explained by thickening of the crust to near modern thicknesses ( 35-38 km) by the time of pluton

  6. High plant diversity in Eocene South America: Evidence from Patagonia

    USGS Publications Warehouse

    Wilf, P.; Cuneo, N.R.; Johnson, K.R.; Hicks, J.F.; Wing, S.L.; Obradovich, J.D.

    2003-01-01

    Tropical South America has the highest plant diversity of any region today, but this richness is usually characterized as a geologically recent development (Neogene or Pleistocene). From caldera-lake beds exposed at Laguna del Hunco in Patagonia, Argentina, paleolatitude ~47oS, we report 102 leaf species. Radioisotopic and paleomagnetic analyses indicate that the flora was deposited 52 million years ago, the time of the early Eocene climatic optimum, when tropical plant taxa and warm, equable climates reached middle latitudes of both hemispheres. Adjusted for sample size, observed richness exceeds that of any other Eocene leaf flora, supporting an ancient history of high plant diversity in warm areas of South America.

  7. Warm ocean processes and carbon cycling in the Eocene.

    PubMed

    John, Eleanor H; Pearson, Paul N; Coxall, Helen K; Birch, Heather; Wade, Bridget S; Foster, Gavin L

    2013-10-28

    Sea surface and subsurface temperatures over large parts of the ocean during the Eocene epoch (55.5-33.7 Ma) exceeded modern values by several degrees, which must have affected a number of oceanic processes. Here, we focus on the effect of elevated water column temperatures on the efficiency of the biological pump, particularly in relation to carbon and nutrient cycling. We use stable isotope values from exceptionally well-preserved planktonic foraminiferal calcite from Tanzania and Mexico to reconstruct vertical carbon isotope gradients in the upper water column, exploiting the fact that individual species lived and calcified at different depths. The oxygen isotope ratios of different species' tests are used to estimate the temperature of calcification, which we converted to absolute depths using Eocene temperature profiles generated by general circulation models. This approach, along with potential pitfalls, is illustrated using data from modern core-top assemblages from the same area. Our results indicate that, during the Early and Middle Eocene, carbon isotope gradients were steeper (and larger) through the upper thermocline than in the modern ocean. This is consistent with a shallower average depth of organic matter remineralization and supports previously proposed hypotheses that invoke high metabolic rates in a warm Eocene ocean, leading to more efficient recycling of organic matter and reduced burial rates of organic carbon.

  8. On the possibility of ice on Greenland during the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Langebroek, Petra M.; Nisancioglu, Kerim H.; Lunt, Daniel J.; Kathrine Pedersen, Vivi; Nele Meckler, A.; Gasson, Edward

    2017-04-01

    The Eocene-Oligocene transition ( 34 Ma) is one of the major climate transitions of the Cenozoic era. Atmospheric CO2 decreased from the high levels of the Greenhouse world (>1000 ppm) to values of about 600-700 ppm in the early Oligocene. High latitude temperatures dropped by several degrees, causing a large-scale expansion of the Antarctic ice sheet. Concurrently, in the Northern Hemisphere, the inception of ice caps on Greenland is suggested by indirect evidence from ice-rafted debris and changes in erosional regime. However, ice sheet models have not been able to simulate extensive ice on Greenland under the warm climate of the Eocene-Oligocene transition. We show that elevated bedrock topography is key in solving this inconsistency. During the late Eocene / early Oligocene, East Greenland bedrock elevations were likely higher than today due to tectonic and deep-Earth processes related to the break-up of the North Atlantic and the position of the Icelandic plume. When allowing for higher initial bedrock topography, we do simulate a large ice cap on Greenland under the still relatively warm climate of the early Oligocene. Ice inception takes place at high elevations in the colder regions of North and Northeast Greenland; with the size of the ice cap being strongly dependent on the climate forcing and the bedrock topography applied.

  9. Terrestrial and lacustrine gastropods from the Priabonian (upper Eocene) of the Sultanate of Oman.

    PubMed

    Harzhauser, Mathias; Neubauer, Thomas A; Kadolsky, Dietrich; Pickford, Martin; Nordsieck, Hartmut

    2016-01-01

    Terrestrial and aquatic gastropods from the upper Eocene (Priabonian) Zalumah Formation in the Salalah region of the Sultanate of Oman are described. The assemblages reflect the composition of the continental mollusc fauna of the Palaeogene of Arabia, which, at that time, formed parts of the southeastern Tethys coast. Several similarities with European faunas are observed at the family level, but are rarer at the genus level. These similarities point to an Eocene (Priabonian) rather than to a Rupelian age, although the latter correlation cannot be entirely excluded. At the species level, the Omani assemblages lack any relations to coeval faunas. This suggests the possible presence of a distinct biogeographic province during the Palaeogene or may simply reflect the extremely sparse non-marine fossil record of the Eocene in the Tethys region. The occurrence of the genera Lanistes, Pila, and Gulella along with some pomatiids, probably related to extant genera, suggests that the modern African-Arabian continental faunas can be partly traced back to Eocene times and reflect very old autochthonous developments. In contrast, the diverse Vidaliellidae went extinct, and the morphologically comparable Neogene Achatinidae may have occupied the equivalent niches in extant environments. Carnevalea Harzhauser and Neubauer nov. gen., Arabiella Kadolsky, Harzhauser and Neubauer nov. gen., Pyrgulella Harzhauser, Kadolsky and Neubauer nov. gen., Salalahia Kadolsky, Harzhauser and Neubauer nov. gen., Omanitopsis Harzhauser and Neubauer nov. gen., Arabicolaria Harzhauser and Neubauer nov. gen., Pacaudiella Harzhauser and Neubauer nov. gen., Goniodomulus Harzhauser and Neubauer nov. gen., Eoquickia Harzhauser and Neubauer nov. gen., Omanillya H. Nordsieck nov. gen. and Omanifera H. Nordsieck nov. gen. are introduced as new genera. Pila neuberti Harzhauser and Neubauer nov. sp., Arabiella arabica Kadolsky, Harzhauser and Neubauer nov. sp., Pyrgulella parva Harzhauser, Kadolsky and

  10. Antarctic climate, Southern Ocean circulation patterns, and deep water formation during the Eocene

    NASA Astrophysics Data System (ADS)

    Huck, Claire E.; van de Flierdt, Tina; Bohaty, Steven M.; Hammond, Samantha J.

    2017-07-01

    We assess early-to-middle Eocene seawater neodymium (Nd) isotope records from seven Southern Ocean deep-sea drill sites to evaluate the role of Southern Ocean circulation in long-term Cenozoic climate change. Our study sites are strategically located on either side of the Tasman Gateway and are positioned at a range of shallow (<500 m) to intermediate/deep ( 1000-2500 m) paleowater depths. Unradiogenic seawater Nd isotopic compositions, reconstructed from fish teeth at intermediate/deep Indian Ocean pelagic sites (Ocean Drilling Program (ODP) Sites 738 and 757 and Deep Sea Drilling Project (DSDP) Site 264), indicate a dominant Southern Ocean-sourced contribution to regional deep waters (ɛNd(t) = -9.3 ± 1.5). IODP Site U1356 off the coast of Adélie Land, a locus of modern-day Antarctic Bottom Water production, is identified as a site of persistent deep water formation from the early Eocene to the Oligocene. East of the Tasman Gateway an additional local source of intermediate/deep water formation is inferred at ODP Site 277 in the SW Pacific Ocean (ɛNd(t) = -8.7 ± 1.5). Antarctic-proximal shelf sites (ODP Site 1171 and Site U1356) reveal a pronounced erosional event between 49 and 48 Ma, manifested by 2 ɛNd unit negative excursions in seawater chemistry toward the composition of bulk sediments at these sites. This erosional event coincides with the termination of peak global warmth following the Early Eocene Climatic Optimum and is associated with documented cooling across the study region and increased export of Antarctic deep waters, highlighting the complexity and importance of Southern Ocean circulation in the greenhouse climate of the Eocene.

  11. Spring sapping on the lower continental slope, offshore New Jersey

    USGS Publications Warehouse

    Robb, James M.

    1984-01-01

    Undersea discharge of ground water during periods of lower sea level may have eroded valleys on part of the lower continental slope, offshore New Jersey. Steep-headed basins, cliffed and terraced walls, and irregular courses of these valleys may have been produced by sapping of exposed near-horizontal Tertiary strata. Joints in Eocene calcareous rocks would have localized ground-water movement. Some karstlike features of the submarine topography and the outcrops suggest that solution of the calcareous rocks also took place.

  12. The Cenozoic Cooling - continental signals from the Atlantic and Pacific side of Eurasia

    NASA Astrophysics Data System (ADS)

    Utescher, Torsten; Bondarenko, Olesya V.; Mosbrugger, Volker

    2015-04-01

    The evolution of Cenozoic continental climate signals from the Atlantic and Pacific side of Eurasia can be assessed for the first time by comparing climate records obtained for two mid-latitudinal regions. For the West, a detailed climate record over the past 45 Ma, based on palaeofloras from two Northern German Cenozoic basins (Mosbrugger et al., 2005) revealed major trends and shorter-term events throughout the Cenozoic Cooling, thus testifying the close correlation of continental and marine temperature evolution as derived from oxygen isotopes (Zachos et al., 2008). Using the same methodology, we analyze a total of 14 floral horizons originating from continental strata of Southern Primory'e (Russia) in order to study the evolution at the eastern side of the continent. The Primory'e record spans the middle Eocene to early Pleistocene. As the coeval record for the Atlantic side, it reflects major global signals of Cenozoic climate change such as the temperature decline throughout the late Eocene, coinciding with the growth of Antarctic Ice-sheets, warming during the Mid-Miocene Climatic Optimum, and step-wise cooling throughout the later Neogene. The comparison of both records reveals differing regional patterns. The considerable longitudinal temperature gradient, currently existing between both study areas, already began to evolve during the Aquitanian, and was very significant during the Mid-Miocene Climatic Optimum. The temperature offset between East and West is likely attributable to an effective North Atlantic Current, already operational from the late early Miocene onwards bringing about mild winters and low seasonality in Western Europe, while in Primory'e, seasonality steadily increased from the late Oligocene on. The strong late Pliocene decline of cold month mean temperatures recorded in Primory'e is supposed to coincide with the establishment of the Siberian High as semi-permanent structure of the Northern Hemisphere circulation pattern. When comparing

  13. Thermochronologic Evidence for Late Eocene Andean Mountain Building at 30°S

    NASA Astrophysics Data System (ADS)

    Lossada, Ana C.; Giambiagi, Laura; Hoke, Gregory D.; Fitzgerald, Paul G.; Creixell, Christian; Murillo, Ismael; Mardonez, Diego; Velásquez, Ricardo; Suriano, Julieta

    2017-11-01

    The Andes between 28° and 30°S represent a transition between the Puna-Altiplano Plateau and the Frontal/Principal Cordillera fold-and-thrust belts to the south. While significant early Cenozoic deformation documented in the Andean Plateau, deciphering the early episodes of deformation during Andean mountain building in the transition area is largely unstudied. Apatite fission track (AFT) and (U-Th-Sm)/He (AHe) thermochronology from a vertical and a horizontal transect reveal the exhumation history of the High Andes at 30°S, an area at the heart of this major transition. Interpretation of the age-elevation profile, combined with inverse thermal modeling, indicates that the onset of rapid cooling was underway by 35 Ma, followed by a significant decrease in cooling rate at 30-25 Ma. AFT thermal models also reveal a second episode of rapid cooling in the early Miocene ( 18 Ma) related to rock exhumation to its present position. Low exhumation between the rapid cooling events allowed for the development of a partial annealing zone. We interpret the observed Eocene rapid exhumation as the product of a previously unrecognized compressive event in this part of the Andes that reflects a southern extension of Eocene orogenesis recognized in the Puna/Altiplano. Renewed early-Miocene exhumation indicates that the late Cenozoic compressional stresses responsible for the main phase of uplift of the South Central Andes also impacted the core of the range in this transitional sector. The major episode of Eocene exhumation suggests the creation of significant topographic relief in the High Andes earlier than previously thought.

  14. Before the freeze: otoliths from the Eocene of Seymour Island, Antarctica, reveal dominance of gadiform fishes (Teleostei)

    PubMed Central

    Schwarzhans, Werner; Mörs, Thomas; Engelbrecht, Andrea; Reguero, Marcelo; Kriwet, Jürgen

    2017-01-01

    The first record of fossil teleostean otoliths from Antarctica is reported. The fossils were obtained from late Early Eocene shell beds of the La Meseta Formation, Seymour Island that represent the last temperate marine climate phase in Antarctica prior to the onset of cooling and subsequent glaciation during the late Eocene. A total of 17 otolith-based teleost taxa are recognized, with 10 being identifiable to species level containing nine new species and one new genus: Argentina antarctica sp. nov., Diaphus? marambionis sp. nov., Macruronus eastmani sp. nov., Coelorinchus balushkini sp. nov., Coelorinchus nordenskjoeldi sp. nov., Palimphemus seymourensis sp. nov., Hoplobrotula? antipoda sp. nov., Notoberyx cionei gen. et sp. nov. and Cepola anderssoni sp. nov. Macruronus eastmani sp. nov. is also known from the late Eocene of Southern Australia, and Tripterophycis immutatus Schwarzhans, widespread in the southern oceans during the Eocene, has been recorded from New Zealand, southern Australia, and now Antarctica. The otolith assemblage shows a typical composition of temperate fishes dominated by gadiforms, very similar at genus and family levels to associations known from middle Eocene strata of New Zealand and the late Eocene of southern Australia, but also to the temperate Northern Hemisphere associations from the Paleocene of Denmark. The Seymour Island fauna bridges a gap in the record of global temperate marine teleost faunas during the early Eocene climate maximum. The dominant gadiforms are interpreted as the main temperate faunal component, as in the Paleocene of Denmark. Here they are represented by the families Moridae, Merlucciidae (Macruroninae), Macrouridae and Gadidae. Nowadays Gadidae are a chiefly Northern Hemisphere temperate family. Moridae, Macruroninae and Macrouridae live today on the lower shelf to deep-water or mesopelagically with Macruroninae being restricted to the Southern Ocean. The extant endemic Antarctic gadiform family

  15. Before the freeze: otoliths from the Eocene of Seymour Island, Antarctica, reveal dominance of gadiform fishes (Teleostei).

    PubMed

    Schwarzhans, Werner; Mörs, Thomas; Engelbrecht, Andrea; Reguero, Marcelo; Kriwet, Jürgen

    2017-01-01

    The first record of fossil teleostean otoliths from Antarctica is reported. The fossils were obtained from late Early Eocene shell beds of the La Meseta Formation, Seymour Island that represent the last temperate marine climate phase in Antarctica prior to the onset of cooling and subsequent glaciation during the late Eocene. A total of 17 otolith-based teleost taxa are recognized, with 10 being identifiable to species level containing nine new species and one new genus: Argentina antarctica sp. nov., Diaphus? marambionis sp. nov., Macruronus eastmani sp. nov., Coelorinchus balushkini sp. nov., Coelorinchus nordenskjoeldi sp. nov., Palimphemus seymourensis sp. nov., Hoplobrotula? antipoda sp. nov., Notoberyx cionei gen. et sp. nov. and Cepola anderssoni sp. nov. Macruronus eastmani sp. nov. is also known from the late Eocene of Southern Australia, and Tripterophycis immutatus Schwarzhans, widespread in the southern oceans during the Eocene, has been recorded from New Zealand, southern Australia, and now Antarctica. The otolith assemblage shows a typical composition of temperate fishes dominated by gadiforms, very similar at genus and family levels to associations known from middle Eocene strata of New Zealand and the late Eocene of southern Australia, but also to the temperate Northern Hemisphere associations from the Paleocene of Denmark. The Seymour Island fauna bridges a gap in the record of global temperate marine teleost faunas during the early Eocene climate maximum. The dominant gadiforms are interpreted as the main temperate faunal component, as in the Paleocene of Denmark. Here they are represented by the families Moridae, Merlucciidae (Macruroninae), Macrouridae and Gadidae. Nowadays Gadidae are a chiefly Northern Hemisphere temperate family. Moridae, Macruroninae and Macrouridae live today on the lower shelf to deep-water or mesopelagically with Macruroninae being restricted to the Southern Ocean. The extant endemic Antarctic gadiform family

  16. Micron-scale intra-ring analyses of δ13C in early Eocene Arctic wood from Ellesmere Island

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, H.; Eberle, J.; Sternberg, L.

    2009-12-01

    Early Eocene (ca. 53 Ma) fossil assemblages on Ellesmere Island (75 oN paleolatitude), provide rich information about the plant and animal life of the lush polar ecosystems of the time. Fossil wood recovered from Ellesmere Island is abundant and not permineralized; however, morphological features such as growth rings and resin canals have been obliterated by compression. We report on exceptionally high-resolution intra-ring analyses of δ13C within fossil wood, sampled at ~30 micron intervals across several centimeters of wood sample. Clear patterns in systematic seasonal increases and decreases in wood δ13C allowed us to identify at least 5 annual cycles in the wood. The patterns of increase and decrease in δ13C were consistent with patterns observed for evergreen wood, and distinct from the deciduous patterns we have observed for Metasequoia fossil wood from the middle Eocene (ca. 45 Ma) Arctic site on Axel Heiberg Island. We believe that the high point in the δ13C value of wood seen in each cycle corresponds to the highest environmental temperatures during the annual cycle, as has been seen for modern evergreens (e.g., Barbour et al., 2002). Modern studies have also noted that high temperature periods are correlated with the highest vapor-pressure and soil-water deficits of the annual cycle; these environmental factors would cause the plant to change its discrimination during photosynthesis. We will discuss the relatively low amplitude of δ13C fluctuations (0.5-1.0 ‰) clearly defined by Ellesmere fossil wood, in comparison to observations on modern common evergreens (2.0-4.0 ‰), and speculate that this difference implies greatly dampened seasonal temperature fluctuations in Eocene polar environments, relative to today. Barbour M.M., Walcroft A.S., Farquhar G.D., 2002, Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell and Environment: v. 25, p. 1483-1499.

  17. Africa was still far south in the Late Ypresian: Paleomagnetic study on the early Eocene 'Minia' formation in central Egypt

    NASA Astrophysics Data System (ADS)

    Lotfy, H.; Heleika, M. Abu; Mostafa, R.; Wahbah, D.

    2017-12-01

    The paleomagnetic study was carried out on three sections of the Late Ypresian "Minia" formation limestone, in order to shed light on the paleolatitude of northeast Africa upon the end of the Early Eocene. The initial study on the anisotropy of magnetic susceptibility [AMS] helped in confining the paleomagnetic sampling to the virtually isotropic limestone beds. The subsequent stepwise thermal demagnetization of the three-axis isothermal remanence acquired in one sample of each sampled site, revealed the limited contribution of goethite and hematite with the main remanence carrier magnetite in most samples.

  18. Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice.

    PubMed

    Tripati, Aradhna; Darby, Dennis

    2018-03-12

    Earth's modern climate is defined by the presence of ice at both poles, but that ice is now disappearing. Therefore understanding the origin and causes of polar ice stability is more critical than ever. Here we provide novel geochemical data that constrain past dynamics of glacial ice on Greenland and Arctic sea ice. Based on accurate source determinations of individual ice-rafted Fe-oxide grains, we find evidence for episodic glaciation of distinct source regions on Greenland as far-ranging as ~68°N and ~80°N synchronous with ice-rafting from circum-Arctic sources, beginning in the middle Eocene. Glacial intervals broadly coincide with reduced CO 2 , with a potential threshold for glacial ice stability near ~500 p.p.m.v. The middle Eocene represents the Cenozoic onset of a dynamic cryosphere, with ice in both hemispheres during transient glacials and substantial regional climate heterogeneity. A more stable cryosphere developed at the Eocene-Oligocene transition, and is now threatened by anthropogenic emissions.

  19. Hydrological cycle during the early Eocene: What can we learn from leaf waxes?

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Pagani, M.; Huber, M.

    2012-12-01

    Understanding how rapid warming modified global precipitation patterns during periods of global warming is essential to forecasting the impact of future climate change. The early Eocene (~55-52 Ma) represents a period of peak warmth for the past 65 million years with global temperatures ~10 degrees C warmer than present. This period is also known for at least three, greenhouse gas-induced episodes of rapid global warming (hyperthermals: PETM; ~55 Ma, ETM-2; ~53.7 Ma and ETM-3; 52.8 Ma), often considered extreme analogues to modern climate change. Hyperthermals are also characterized by negative carbon isotope excursions (CIE), which reflect the input of isotopically light carbon responsible for observed temperature increases. A novel proxy used for hydrological reconstructions uses the hydrogen isotopic composition of compound-specific biomarkers preserved in the sedimentary record. For terrestrial leaf-wax lipids (e.g., n-alkanes), the hydrogen isotopic composition primarily reflects the isotopic composition of meteoric waters, which is dependent on distance of vapor transport, number of rainout events, precipitation amount, and evapotranspiration. Isotopic compositions of PETM n-alkanes (δDalkanes) recovered from the Arctic Ocean show a substantial deuterium (D)-enrichment at the onset of the CIE which was argued to potentially reflect reduced rainout in the mid-latitudes, resulting in increased precipitation in the Arctic (Pagani et al., 2006). D-depleted values of n-alkanes during peak warmth of the PETM suggest either modification of local precipitation or a global change in the fraction of rainout. In this study, we evaluate the veracity of previous conclusions by compiling existing δDalkanes records (including from Mar-2X, Venezuela; Tawanui, New Zealand; Wilkes Land, Antarctica; and the Lomonsov Ridge, Arctic) with new records from the Pacific and Atlantic oceans and marginal marine sections (including Cicogna, Italy; Giraffe Core, Canadian High Arctic

  20. Arctic Climate during Eocene Hyperthermals: Wet Summers on Ellesmere Island?

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; West, C. K.; Basinger, J. F.

    2012-12-01

    Previous work has shown that during the late Paleocene to middle Eocene, mesothermal conditions (i.e., MAT ~12-15° C) and high precipitation (MAP > 150cm/yr) characterized Arctic climates - an Arctic rain forest. Recent analyses of Arctic Eocene wood stable isotope chemistry are consistent with the annual and seasonal temperature estimates from leaf physiognomy and nearest living relative analogy from fossil plants, including the lack of freezing winters, but is interpreted as showing that there was a summer peak in precipitation - modern analogs are best sought on the summer-wet east coasts (e.g., China, Japan, South Korea) not the winter-wet west coasts of present-day northern temperate continents (e.g., Pacific northwest of North America). Highly seasonal 'monsoon-type' summer-wet precipitation regimes (i.e., summer precip./winter precip. > 3.0) seem to characterize Eocene hyperthermal conditions in several regions of the earth, including the Arctic and Antarctic, based on both climate model sensitivity experiments and the paleoclimate proxy evidence. The leaf physiognomy proxy previously applied to estimate Arctic Paleogene precipitation was leaf area analysis (LAA), a correlation between mean leaf size in woody dicot vegetation and annual precipitation. New data from modern monsoonal sites, however demonstrates that for deciduous-dicot dominated vegetation, summer precipitation determines mean leaf size, not annual totals, and therefore that under markedly seasonal precipitation and/or light regimes that summer precipitation is being estimated using LAA. Presented here is a new analysis of a leaf macrofloras from 3 separate florules of the Margaret Formation (Split Lake, Stenkul Fiord and Strathcona Fiord) from Ellesmere Island that are placed stratigraphically as early Eocene, and likely fall within Eocene thermal maximum 1 (ETM1; = the 'PETM') or ETM2. These floras are each characterized by a mix of large-leafed and small-leafed dicot taxa, with overall

  1. Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the southwest Pacific

    NASA Astrophysics Data System (ADS)

    Pascher, K. M.; Hollis, C. J.; Bohaty, S. M.; Cortese, G.; McKay, R. M.; Seebeck, H.; Suzuki, N.; Chiba, K.

    2015-12-01

    The long-term cooling trend from middle to late Eocene was punctuated by several large-scale climate perturbations that culminated in a shift to "icehouse" climates at the Eocene-Oligocene transition. We present radiolarian micro-fossil assemblage and foraminiferal oxygen and carbon stable isotope data from Deep Sea Drilling Project (DSDP) sites 277, 280, 281, and 283 and Ocean Drilling Project (ODP) Site 1172 to identify significant oceanographic changes in the southwest Pacific through this climate transition (~ 40-30 Ma). We find that the Middle Eocene Climatic Optimum at ~ 40 Ma, which is truncated but identified by a negative shift in foraminiferal δ18O values at Site 277, is associated with a small increase in radiolarian taxa with low-latitude affinities (5 % of total fauna). In the early late Eocene at ~ 37 Ma, a positive oxygen isotope shift at Site 277 is correlated with the Priabonian Oxygen Isotope Maximum (PrOM). Radiolarian abundance, diversity, and preservation increase within this cooling event at Site 277 at the same time as diatom abundance. A negative δ18O excursion above the PrOM is correlated with a late Eocene warming event (~ 36.4 Ma). Radiolarian abundance and diversity decline within this event and taxa with low-latitude affinities reappear. Apart from this short-lived warming event, the PrOM and latest Eocene radiolarian assemblages are characterised by abundant high-latitude taxa. High-latitude taxa are also abundant during the late Eocene and early Oligocene (~ 38-30 Ma) at DSDP sites 280, 281, 283 and 1172 and are associated with very high diatom abundance. We therefore infer a northward expansion of high-latitude radiolarian taxa onto the Campbell Plateau in the latest Eocene. In the early Oligocene there is an overall decrease in radiolarian abundance and diversity at Site 277, and diatoms are scarce. These data indicate that, once the Antarctic Circumpolar Current was established in the early Oligocene (~ 30 Ma), a frontal system

  2. Eocene and miocene rocks off the northeastern coast of the United States

    USGS Publications Warehouse

    Gibson, T.G.

    1965-01-01

    A grab sample from a depth of 1675 m at a point south of Cape Cod contains early Eocene planktonic Foraminifera and is correlated with the Globorotalia rex zone of Trinidad. The assemblage indicates a depth comparable to that existing today. Regional relations suggest that the Cretaceous and Eocene deposits deepen to the west toward New Jersey. Two mollusk-bearing blocks dredged from the northern side of Georges Bank are correlative with the Miocene Yorktown Formation. Rocks from two other stations are probably Miocene. Benthonic Foraminifera in one sample indicate deposition in cool temperate waters of less than 60 m depth. ?? 1965.

  3. Evidence of late Palaeocene-early Eocene equatorial rain forest refugia in southern Western Ghats, India.

    PubMed

    Prasad, V; Farooqui, A; Tripathi, S K M; Garg, R; Thakur, B

    2009-11-01

    Equatorial rain forests that maintain a balance between speciation and extinction are hot-spots for studies of biodiversity. Western Ghats in southern India have gained attention due to high tropical biodiversity and endemism in their southern most area. We attempted to track the affinities of the pollen fl ora of the endemic plants of Western Ghat area within the fossil palynoflora of late Palaeocene-early Eocene (approximately 55-50 Ma) sedimentary deposits of western and northeastern Indian region. The study shows striking similarity of extant pollen with twenty eight most common fossil pollen taxa of the early Palaeogene. Widespread occurrences of coal and lignite deposits during early Palaeogene provide evidence of existence of well diversified rain forest community and swampy vegetation in the coastal low lying areas all along the western and northeastern margins of the Indian subcontinent. Prevalence of excessive humid climate during this period has been seen as a result of equatorial positioning of Indian subcontinent, superimposed by a long term global warming phase (PETM and EECO) during the early Palaeogene. The study presents clear evidence that highly diversifi ed equatorial rain forest vegetation once widespread in the Indian subcontinent during early Palaeogene times, are now restricted in a small area as a refugia in the southernmost part of the Western Ghat area. High precipitation and shorter periods of dry months seem to have provided suitable environment to sustain lineages of ancient tropical vegetation in this area of Western Ghats in spite of dramatic climatic changes subsequent to the post India-Asia collision and during the Quaternary and Recent times.

  4. Initiation of Extension in South China Continental Margin during the Active-Passive Margin Transition: Thermochronological and Kinematic Constraints

    NASA Astrophysics Data System (ADS)

    Zuo, X.; Chan, L. S.

    2015-12-01

    The South China continental margin is characterized by a widespread magmatic belt, prominent NE-striking faults and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from active to passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. Our zircon fission-track data in this region show two episodes of exhumation: The first episode, occurring during 170-120Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115-70Ma, including the Yunkai Terrane and the Nanling Range. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the fact that exhumation of the granite-dominant Nanling Range occurred earlier than that of the gneiss-dominant Yunkai Terrane. In addition to the difference in rock types, the heat from Jurassic-Early Cretaceous magmatism in Nanling may have softened the upper crust, causing the area to exhume more readily than Yunkai. Numerical modeling results also indicate that (1) high lithospheric geothermal gradient, high slab dip angle and low convergence velocity favor the reversal of crustal stress state from compression to extension in the upper continental plate; (2) late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension imply that the Late Cretaceous-early Paleogene red-bed basins in South China could have formed during the late stage of the subduction, accounting for the occurrence of volcanic events in some sedimentary basins. We propose that the rifting started as early as Late Cretaceous, probably before the cessation of subduction process.

  5. Discovery of Eocene adakites in Primor'e

    NASA Astrophysics Data System (ADS)

    Chashchin, A. A.; Nechaev, V. P.; Nechaeva, E. V.; Blokhin, M. G.

    2011-06-01

    This paper presents the first results of petrochemical and geochemical studies (by the ICP-MS technique) of adakites comprising a small extrusive body in the Ilistaya River basin (West Primor'e). Based on the data of radioisotopic dating (K-Ar method), the age of adakites corresponds to the Middle Eocene (45.52 ± 1.1 Ma). In terms of the content of most microelements and the value of the Sr/Y ratio, the discussed rocks are close to Paleogene adakites from northwest China, the Kitakami massif in Japan, and the northwestern margin of North America; these rocks are attributed to gaps in the subducted plate (slab windows). Additionally, the adakites found in Primor'e significantly differ from adakite-like rocks found in Tibet formed during melting of bottoms of the superthickened continental crust. Thus, this discovery proves the hypothesis about formation of slab windows at the Paleogene stage of the region's evolution.

  6. Molecular composition and paleobotanical origin of Eocene resin from northeast India

    NASA Astrophysics Data System (ADS)

    Rudra, Arka; Dutta, Suryendu; Raju, Srinivasan V.

    2014-06-01

    The molecular composition of fossil resins from early to middle Eocene coal from northeast India, has been analyzed for the first time to infer their paleobotanical source. The soluble component of fossil resin was analyzed using gas chromatography-mass spectrometry (GC-MS). The resin extracts are composed of cadalene-based C15 sesquiterpenoids and diagenetically altered triterpenoids. The macromolecular composition was investigated using pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) and Fourier transform infrared (FTIR) spectroscopy. The major pyrolysis products are C15 bicyclic sesquiterpenoids, alkylated naphthalenes, benzenes and a series of C17-C34 n-alkene- n-alkane pairs. Spectroscopic analysis revealed the dominance of aliphatic components. The presence of cadalene-based sequiterpenoids confirms the resin to be Class II or dammar resin, derived from angiosperms of Dipterocarpaceae family. These sesquiterpenoids are often detected in many SE Asian fluvio-deltaic oils. Dipterocarpaceae are characteristic of warm tropical climate suggesting the prevalence of such climate during early Eocene in northeast India.

  7. The record of Tethyan planktonic foraminifera at the early Paleogene hyperthermal events and Middle Eocene Climatic Optimum in northeastern Italy: are they comparable?

    NASA Astrophysics Data System (ADS)

    Luciani, Valeria; Giusberti, Luca; Agnini, Claudia; Fornaciari, Eliana; Rio, Domenico

    2010-05-01

    The early Paleogene is one of the more climatically and evolutionary dynamic periods in the Earth history that records a pronounced warming trend peaking in the Early Eocene, and a successive composite transition towards the modern icehouse world. Ever increasingly scientific attention is dedicated to definitely comprehend timing, nature and characters of the complex, non-linear evolution of the Paleogene climate. Several complete and expanded Paleogene successions (Forada, Possagno, Alano, Farra), with a sound magneto-biochronostratigraphic and stable isotope record crop out in the Venetian Southern Alps (Northeast Italy). Recent studies (Giusberti et. al., 2007; Luciani et al., 2007; Agnini et al., 2008) and unpublished data document the presence in these section of the main short-lived warming events (hyperthermals) of the Eocene (Paleocene-Eocene Thermal Maximum, PETM, ca 55 Ma, Eocene Layer of Mysterious Origin (ELMO, ca 53,6 Ma), X-event (ca 52.5 Ma), of the Early Eocene Climatic Optimum (EECO, ca 50-52 Ma) and of the Middle Eocene Climatic Optimum (MECO, ca 40 Ma; Zachos et al., 2001. 2008). All these events are typified by marked negative shifts in δ13C curves that correspond to carbonate decrease related to rise of the carbonate compensation depth in turn induced by large introduction in the ocean-atmosphere system of CO2. Common features to the warming events are pronounced and complex changes in planktonic foraminiferal assemblages, indicating strong environmental perturbations that perfectly parallel the variations of the stable isotope curves in all the examined events. These strict correspondences indicate close cause-effect relationships between changes in environmental conditions and modifications of the assemblages. Our analysis shows that the most striking variations are recorded by the PETM and MECO assemblages that reflect highly perturbed environments. The ELMO, X-event and EECO exhibit planktic foraminiferal responses that are similar to

  8. Terrestrial cooling in Northern Europe during the eocene-oligocene transition.

    PubMed

    Hren, Michael T; Sheldon, Nathan D; Grimes, Stephen T; Collinson, Margaret E; Hooker, Jerry J; Bugler, Melanie; Lohmann, Kyger C

    2013-05-07

    Geochemical and modeling studies suggest that the transition from the "greenhouse" state of the Late Eocene to the "icehouse" conditions of the Oligocene 34-33.5 Ma was triggered by a reduction of atmospheric pCO2 that enabled the rapid buildup of a permanent ice sheet on the Antarctic continent. Marine records show that the drop in pCO2 during this interval was accompanied by a significant decline in high-latitude sea surface and deep ocean temperature and enhanced seasonality in middle and high latitudes. However, terrestrial records of this climate transition show heterogeneous responses to changing pCO2 and ocean temperatures, with some records showing a significant time lag in the temperature response to declining pCO2. We measured the Δ47 of aragonite shells of the freshwater gastropod Viviparus lentus from the Solent Group, Hampshire Basin, United Kingdom, to reconstruct terrestrial temperature and hydrologic change in the North Atlantic region during the Eocene-Oligocene transition. Our data show a decrease in growing-season surface water temperatures (~10 °C) during the Eocene-Oligocene transition, corresponding to an average decrease in mean annual air temperature of ~4-6 °C from the Late Eocene to Early Oligocene. The magnitude of cooling is similar to observed decreases in North Atlantic sea surface temperature over this interval and occurs during major glacial expansion. This suggests a close linkage between atmospheric carbon dioxide concentrations, Northern Hemisphere temperature, and expansion of the Antarctic ice sheets.

  9. Wet tropical climate in SE Tibet during the Late Eocene.

    PubMed

    Sorrel, Philippe; Eymard, Ines; Leloup, Philippe-Herve; Maheo, Gweltaz; Olivier, Nicolas; Sterb, Mary; Gourbet, Loraine; Wang, Guocan; Jing, Wu; Lu, Haijian; Li, Haibing; Yadong, Xu; Zhang, Kexin; Cao, Kai; Chevalier, Marie-Luce; Replumaz, Anne

    2017-08-10

    Cenozoic climate cooling at the advent of the Eocene-Oligocene transition (EOT), ~33.7 Ma ago, was stamped in the ocean by a series of climatic events albeit the impact of this global climatic transition on terrestrial environments is still fragmentary. Yet archival constraints on Late Eocene atmospheric circulation are scarce in (tropical) monsoonal Asia, and the paucity of terrestrial records hampers a meaningful comparison of the long-term climatic trends between oceanic and continental realms. Here we report new sedimentological data from the Jianchuan basin (SE Tibet) arguing for wetter climatic conditions in monsoonal Asia at ~35.5 Ma almost coevally to the aridification recognized northwards in the Xining basin. We show that the occurrence of flash-flood events in semi-arid to sub-humid palustrine-sublacustrine settings preceded the development of coal-bearing deposits in swampy-like environments, thus paving the way to a more humid climate in SE Tibet ahead from the EOT. We suggest that this moisture redistribution possibly reflects more northern and intensified ITCZ-induced tropical rainfall in monsoonal Asia around 35.5 Ma, in accordance with recent sea-surface temperature reconstructions from equatorial oceanic records. Our findings thus highlight an important period of climatic upheaval in terrestrial Asian environments ~2-4 millions years prior to the EOT.

  10. New tropical carcharhinids (chondrichthyes, carcharhiniformes) from the late Eocene early Oligocene of Balochistan, Pakistan: Paleoenvironmental and paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Adnet, S.; Antoine, P.-O.; Hassan Baqri, S. R.; Crochet, J.-Y.; Marivaux, L.; Welcomme, J.-L.; Métais, G.

    2007-04-01

    New selachians (sharks and rays) have been collected from several late Eocene and early Oligocene marine localities in the Bugti Hills (Balochistan, Pakistan). Two new species of Requiem sharks (close to the Recent "Bull shark") are described : Carcharhinus balochensis and Carcharhinus perseus. The rest of the fauna is notable for the strong representation of Carcharhiniformes. These selachian faunas represent a unique tropical association for the Oligocene period and one of the first modern tropical selachian faunas, with modern taxa such as the two new species of "Bull sharks", Negaprion sp. and one of the first occurrences of Sphyrna sp. Moreover, these faunas permit paleoenvironmental interpretation of adjacent land masses. The relatively modern aspect of these faunas, compared with other contemporaneous and younger selachian associations from Atlantic and Mediterranean seas, suggests biogeographic isolation of selachian communities living in eastern and western parts of the Tethys before its final closure during the early-middle Miocene.

  11. Oxygen isotopes of marine mollusc shells record Eocene elevation change in the Pyrenees

    NASA Astrophysics Data System (ADS)

    Huyghe, Damien; Mouthereau, Frédéric; Emmanuel, Laurent

    2012-09-01

    Constraining paleoaltimetry of collisional orogens is critical to understand the dynamics of topographic evolution and climate/tectonics retroactions. Here, we use oxygen stable-isotope record on oyster shells, preserved in marine foreland deposits, to examine the past elevation of the Pyrenees during the Eocene. Our approach is based on the comparison with the Paris basin, an intracratonic basin not influenced by orogenic growth. The finding of a shift of 1.5‰ between 49 and 41 Ma, indicating more negative δ18Oc in the south Pyrenean foreland, is interpreted to reflect the inflow of river water sourced from higher elevation in the Pyrenees. To test this and provide paleoelevation estimate, we adopt a morphologic-hydrological model accounting for the hypsometry of drainage basin. Our best fitting model shows that the Pyrenees rose up to 2000 m. This indicates that the Pyrenees reached high elevation in the Eocene, thus providing new critical constraints on their long-term orogenic development. δ18O of marine mollusc shells are proved potentially attractive for paleoelevation studies, especially for mountain belts where elevated continental surfaces have not been preserved.

  12. A Reconstruction of Sea Surface Temperature Gradients and an Assessment of the Suspected Presence of Continental Ice During the Cold Mid-Paleocene (61-57 Ma)

    NASA Astrophysics Data System (ADS)

    Bijl, P.; Cramwinckel, M.; Frieling, J.; Peterse, F.

    2016-12-01

    The early Eocene `hothouse' climate experienced paratropical vegetation on high latitudes and high (>1100 ppmv) atmospheric CO2 concentrations. It is generally considered as analogous to the endmember climate state should we use up all available fossil fuels. However, we do not know exactly through which processes this long-term warm episode came to be nor do we understand what the initial climate state was at the onset of this long-term climate. Deep-sea warming towards early Eocene hothouse conditions started in the mid-Paleocene, ending a 2 Myr time interval of relatively cold deep ocean temperatures. Reconstructed pCO2 concentrations of the mid-Paleocene seem to have been close to those of present-day, although data is scarce. The mid-Paleocene is notoriously sparsely represented in shelf sedimentary records, as most records show a conspicuous hiatus between 58 and 60 Mys. This gives the suggestion of a major global low in sea level, which is inconsistent with estimates of global ocean spreading rates, which suggest a relatively high sea level on long time scales for the Cretaceous-early Paleogene. The cold deep-sea temperatures, the conspicuously low sea level and low atmospheric CO2 during the mid-Paleocene have stimulated suggestions of the presence of major ice sheets on the poles, yet the absence of any trace for continental ice, either direct ice-proximal evidence or from benthic foraminiferal oxygen isotope records, calls the presence of such ice sheets into question. I will present a number of high resolution sea surface temperature records (based mostly on organic geochemical biomarker proxies) which start to reveal a latitudinal temperature gradient for the mid-Paleocene. Reconstructions come from shelf sediments from Tasmania, Australia, Tanzania, Tropical Atlantic Ocean, New Jersey). With these new records, I put Paleogene climate evolution into context. I will further present a review of shelf sedimentary records across the mid-paleocene to assess

  13. Anatomy of a mountain: The Thebes Limestone Formation (Lower Eocene) at Gebel Gurnah, Luxor, Nile Valley, Upper Egypt

    NASA Astrophysics Data System (ADS)

    King, Christopher; Dupuis, Christian; Aubry, Marie-Pierre; Berggren, William A.; Knox, Robert O.'B.; Galal, Wael Fathi; Baele, Jean-Marc

    2017-12-01

    We present a detailed geologic study of the Thebes Formation at Gebel Gurnah in its locus typicus on the West Bank (opposite Luxor) of the Nile River in the Upper Nile Valley, Egypt. This is the first detailed measurement and lithologic description of the ∼340 m thick (predominantly) carbonate section. The Thebes Formation is divided into thirteen major lithic units (A to M). We interpret data on the lithologic succession and variations, whole rock/clay mineralogy, and macro/micropaleontology in terms of deposition on a shallow carbonate platform episodically influenced by continental runoff, and describe six depositional sequences that we place in the global framework of Lower Eocene (Ypresian) sequence stratigraphy. We note however significant incompatibilities between the Thebes depositional sequences and the global sequences. We emend the definition of the Thebes Formation by defining its top as corresponding to level 326 m at the top of Nodular Limestone 'L' (NLL), and assigning the overlying beds to the Minia Limestone Formation. New biostratigraphic data and revision of previous studies establish the direct assignment of the Thebes Formation to planktonic foraminiferal Zones E4/P6b (upper part), E5/P7 and (indirectly) Zone E6/P8, and (probably, indirectly) Zone E7a/;P9;, and to calcareous nannofossil Zone NP12 and lower Zone NP13 of the Lower Eocene (Ypresian) and provide a temporal framework spanning ∼ 2.8 Myr from <52.45 to ∼49.6 Ma for the deposition of the Thebes Formation prior to the prominent sea level fall (∼49.6 Ma) towards the end of the Early Eocene. Dominantly carbonate deposition, with a strongly reduced detrital influx, occurred on a very wide shelf (probably) at least ∼ 100 km from the coastline. The thick sedimentary succession and the marked vertical lithologic variations are interpreted as resulting from sea level fluctuations imprinted on a long-term decrease in sea-level associated with rapid subsidence reflecting tectonic

  14. Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan

    NASA Astrophysics Data System (ADS)

    Aslam, K.; Khan, M.; Liu, Y.; Farid, A.

    2017-12-01

    The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post

  15. Integrated stratigraphy of a shallow marine Paleocene-Eocene boundary section, MCBR cores, Maryland (USA)

    NASA Astrophysics Data System (ADS)

    Self-Trail, J. M.; Robinson, M. M.; Edwards, L. E.; Powars, D. S.; Wandless, G. A.; Willard, D. A.

    2013-12-01

    An exceptional Paleocene-Eocene boundary section occurs in a cluster of six short (<15m) coreholes (MCBR 1 through 6) drilled near Mattawoman Creek in western Charles County, Maryland. The sediments consist of glauconite-rich sand of the upper Paleocene Aquia Formation and silty clay of the lower Eocene Marlboro Clay. Sediment samples were analyzed for carbon and oxygen isotopes, percent calcium carbonate, calcareous nannofossils, planktic and benthic foraminifera, dinoflagellates, pollen, and lithology. A well-defined carbon isotope excursion (CIE) documents a gradual negative shift in δ13C values that starts below the lithologic break between the Aquia Formation and the Marlboro Clay. A benthic foraminifer extinction event, reduction of calcareous nannofossil assemblages, and change in core color from gray to alternating gray and pink also occurs within the CIE transition. These alternating changes in color coincide with cyclic peaks in the carbon isotope and percent calcium carbonate curves, where gray color corresponds to a positive shift in carbon isotope values and to a corresponding increase in percent benthic and planktic foraminifera. The upper third of the Marlboro Clay is barren of all calcareous microfossil material, although the presence of foraminiferal molds and linings proves that deposition occurred in a marine environment. Co-occurrence of the dinoflagellates Apectodinium augustum and Phthanoperidinium crenulatum at the top of the Marlboro Clay suggests that the Marlboro Clay at Mattawoman Creek is truncated. This is corroborated by the absence in the Marlboro of specimens of the calcareous nannofossil Rhomboaster-Discoaster assemblage, which is restricted to early Eocene Zone NP9b. Based on planktic/benthic foraminifera ratios, deposition of sediments at Mattawoman Creek occurred predominantly in an inner neritic environment, at water depths between 25-50 m. Occasional deepening to approximately 75m (middle neritic environment) occurred in the

  16. A Giant Arctic Freshwater Pond at the end of the Early Eocene; Implications for Ocean Heat Transport and Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Brinkhuis, H.; Schouten, S.; Collinson, M. E.; Sluijs, A.; Sinninghe-Damste, J. S.; Dickens, G. R.; Huber, M.; Cronin, T. M.; Bujak, J. P.; Stein, R.; Eldrett, J. S.; Harding, I. C.; Sangiorgi, F.

    2005-12-01

    In the last decades remains of the free-floating, fresh water fern Azolla have been found in unusually high abundances in basal middle Eocene (~48.5 Ma) marine sediments deposited in all Nordic seas. While generally taken to signal some `freshwater input', their source and significance were not determined. Through palynological and organic geochemical analyses of unique cores obtained from unprecedented Arctic Ocean drilling (IODP 302 - ACEX) we show that the brackish surface conditions that prevailed in the Arctic Ocean through the late Paleocene and early Eocene culminated in the deposition of laminated organic rich deposits yielding huge amounts of remains of Azolla. This, plus e.g., low diversity dinoflagellate assemblages, and concomitant low BIT values, indicates in-situ Azolla growth, and that the surface of the Arctic Ocean episodically resembled a giant fresh water pond over an interval altogether lasting ~800,000 years. The Arctic Basin thus constituted the main source of the freshwater pulses found elsewhere, reaching as far south as the southern North Sea.TEX86-derived surface temperatures were 13-14°C before and after the Azolla interval and only 10°C during the event, which may be related to obstruction of pole ward ocean heat transport and/or increased carbon burial.

  17. New early eocene anaptomorphine primate (Omomyidae) from the Washakie Basin, Wyoming, with comments on the phylogeny and paleobiology of anaptomorphines.

    PubMed

    Williams, B A; Covert, H H

    1994-03-01

    Recent paleontological collecting in the Washakie Basin, southcentral Wyoming, has resulted in the recovery of over 100 specimens of omomyid primates from the lower Eocene Wasatch Formation. Much of what is known about anaptomorphine omomyids is based upon work in the Bighorn and Wind River Basins of Wyoming. This new sample documents greater taxonomic diversity of omomyids during the early Eocene and contributes to our understanding of the phylogeny and adaptations of some of these earliest North American primates. A new middle Wasatchian (Lysitean) anaptomorphine, Anemorhysis savagei, n. sp., is structurally intermediate between Teilhardina americana and other species of Anemorhysis and may be a sister group of other Anemorhysis and Trogolemur. Body size estimates for Anemorhysis, Tetonoides, Trogolemur, and Teilhardina americana indicate that these animals were extremely small, probably less than 50 grams. Analysis of relative shearing potential of lower molars of these taxa indicates that some were primarily insectivorous, some primarily frugivorous, and some may have been more mixed feeders. Anaptomorphines did not develop the extremes of molar specialization for frugivory or insectivory seen in extant prosimians. Incisor enlargement does not appear to be associated with specialization in either fruits or insects but may have been an adaptation for specialized grooming or food manipulation.

  18. The termites of Early Eocene Cambay amber, with the earliest record of the Termitidae (Isoptera)

    PubMed Central

    Engel, Michael S.; Grimaldi, David A.; Nascimbene, Paul C.; Singh, Hukam

    2011-01-01

    Abstract The fauna of termites (Isoptera) preserved in Early Eocene amber from the Cambay Basin (Gujarat, India) are described and figured. Three new genera and four new species are recognized, all of them Neoisoptera – Parastylotermes krishnai Engel & Grimaldi, sp. n. (Stylotermitidae); Prostylotermes kamboja Engel & Grimaldi, gen. et sp. n. (Stylotermitidae?); Zophotermes Engel, gen. n., with Zophotermes ashoki Engel & Singh, sp. n. (Rhinotermitidae: Prorhinotermitinae); and Nanotermes isaacae Engel & Grimaldi, gen. et sp. n. (Termitidae: Termitinae?). Together these species represent the earliest Tertiary records of the Neoisoptera and the oldest definitive record of Termitidae, a family that comprises >75% of the living species of Isoptera. Interestingly, the affinities of the Cambay amber termites are with largely Laurasian lineages, in this regard paralleling relationships seen between the fauna of bees and some flies. Diversity of Neoisoptera in Indian amber may reflect origin of the amber deposit in Dipterocarpaceae forests formed at or near the paleoequator. PMID:22287892

  19. Geological constraints on continental arc activity since 720 Ma: implications for the link between long-term climate variability and episodicity of continental arcs

    NASA Astrophysics Data System (ADS)

    Cao, W.; Lee, C. T.

    2016-12-01

    Continental arc volcanoes have been suggested to release more CO2 than island arc volcanoes due to decarbonation of wallrock carbonates in the continental upper plate through which the magmas traverse (Lee et al., 2013). Continental arcs may thus play an important role in long-term climate. To test this hypothesis, we compiled geological maps to reconstruct the surface distribution of granitoid plutons and the lengths of ancient continental arcs. These results were then compiled into a GIS framework and incorporated into GPlates plate reconstructions. Our results show an episodic nature of global continental arc activity since 720 Ma. The lengths of continental arcs were at minimums during most of the Cryogenian ( 720-670 Ma), the middle Paleozoic ( 460-300 Ma) and the Cenozoic ( 50-0 Ma). Arc lengths were highest during the Ediacaran ( 640-570 Ma), the early Paleozoic ( 550-430 Ma) and the entire Mesozoic with peaks in the Early Triassic ( 250-240 Ma), Late Jurassic-Early Cretaceous ( 160-130 Ma), and Late Cretaceous ( 90-65 Ma). The extensive continental arcs in the Ediacaran and early Paleozoic reflect the Pan-African events and circum-Gondwana subduction during the assembly of the Gondwana supercontinent. The Early Triassic peak is coincident with the final closure of the paleo-Asian oceans and the onset of circum-Pacific subduction associated with the assembly of the Pangea supercontinent. The Jurassic-Cretaceous peaks reflect the extensive continental arcs established in the western Pacific, North and South American Cordillera, coincident with the initial dispersal of the Pangea. Continental arcs are favored during the final assembly and the early-stage dispersal of a supercontinent. Our compilation shows a temporal match between continental arc activity and long-term climate at least since 720 Ma. For example, continental arc activity was reduced during the Cryogenian icehouse event, and enhanced during the Early Paleozoic and Jurassic-Cretaceous greenhouse

  20. From Greenhouse to Icehouse: Evidence of Climatic Changes Across the Marine Eocene-Oligocene Transition From the Massignano GSSP Section (Central Italy)

    NASA Astrophysics Data System (ADS)

    Coccioni, R.; Marsili, A.; Montanari, A.

    2004-12-01

    The transition from global "greenhouse" conditions of the early and middle Eocene to global "icehouse" conditions of the early Oligocene marks a turning point in Cenozoic Earth history which was marked by reorganization of global ocean circulation patterns and significant turnovers in the marine and terrestrial biota (Prothero et al., 2003) and led to the development of the first East Antarctic ice-sheet, close to the Eocene/Oligocene boundary (33.7 Ma). The Massignano GSSP for the Eocene/Oligocene boundary (Premoli Silva & Jenkins, 1993), exposed in an abandoned quarry in the Monte Conero area, on the Adriatic coast of central Italy, was investigated at high-resolution in order to provide evidence for climatic changes across the marine Eocene-Oligocene transition. The Massignano section is 23-m thick and consists of alternating reddish/greenish-grey marls and calcareous marls with several biotite-rich levels of volcanic origin which were deposited in a lower bathyal depositional setting, at a paleodepth of 1000-2000 m (Coccioni & Galeotti, 2003). A complete geological record of 3 myr (from 36.2 to 33.2 Ma according to the time scale of Berggren et al., 1995) is preserved which spans the interval from the latest Eocene to the early Oligocene, from Chron C16n to C13n (Bice & Montanari, 1988; Lowrie & Lanci, 1994), and is provided by an accurate calibration of bio- and geochemical events. Cosmic signatures are also recorded in the Massignano section (Montanari et al., 1993) where three impactoclastic, iridium-rich layers occurs in the middle-lower part of the succession (Montanari et al., 1988, 1993; Bodeselitsch et al., 2004). They are possibly linked to the Popigai and Chesapeake Bay impacts and related to a comet shower over a duration of 2.2 myr (Farley et al., 1998). Calcareous nannofossil and foraminiferal assemblages (Coccioni et al., 2000; Spezzaferri et al., 2002), dinoflagellate cyst palynology (Brinkhuis & Biffi, 1993), ostracod faunas (Dall'Antonia et al

  1. Review of the enigmatic Eocene shark genus Xiphodolamia (Chondrichthyes, Lamniformes) and description of a new species recovered from Angola, Iran and Jordan

    NASA Astrophysics Data System (ADS)

    Adnet, S.; Hosseinzadeh, R.; Antunes, M. T.; Balbino, A. C.; Kozlov, V. A.; Cappetta, H.

    2009-10-01

    Little is known about the extinct Xiphodolamia, a peculiar lamnid shark which inhabited the Eocene seas. The reexamination of a large set of fossilized teeth specimens from the Ypresian of Kazakhstan has enabled the reconstitution of the tooth series of this enigmatic taxa of lamnid shark. Five distinct tooth morphologies seem to occur in X. ensis Leidy [Leidy, J., 1877. Description of vertebrate remains, chiefly from the phosphate beds of South Carolina. Journal of the Academy of Natural Sciences of Philadelphia 8, 209-261] species revealing a weak ontogenetic variation. Such specific variation in tooth shape means that the other described species may be their junior synonyms. Dental morphology perfectly conforms with a Lamniforme but does not prove the current attribution to the Lamnidae family due to some inconsistent dental features observed, such as the presence of symphysial teeth. This genus could be regarded as an old lineage branched from the stem group of Lamnidae, close to the Isuroids sharks. Several Xiphodolamia teeth, originating both from old collections and new acquisitions, are reported and illustrated in order to provide information about a new species described here: Xiphodolamia serrata nov. sp. This species, currently limited to deposits in Angola, Jordan and Iran and dated at the Late Eocene, is easily distinguishable from the Early-Middle Eocene material belonging to the genus by the presence of serrated cutting edges. Adding to the type species considered here as the only valid taxa during the Early-Middle Eocene period, the temporal range of this genus extends to the Late Eocene, thus setting its upper stratigraphic limit prior to its disappearance as enigmatic as its appearance in the Early Eocene was.

  2. Shallow marine ostracode turnover in response to environmental change during the Paleocene-Eocene thermal maximum in northwest Tunisia

    NASA Astrophysics Data System (ADS)

    Morsi, Abdel-Mohsen M.; Speijer, Robert P.; Stassen, Peter; Steurbaut, Etienne

    2011-02-01

    Two outcrop sections spanning the Paleocene-early Eocene boundary in the Sidi Nasseur-Wadi Mezaz area in northwest Tunisia provided rich ostracode assemblages, yielding 26 species of which three are newly described: Reymenticosta bassiounii, Reymenticosta nasseurensis and Buntonia? tunisiensis. The recorded ostracode fauna and associated foraminifera reflect deposition in a coastal to inner neritic environment. Many of the recorded taxa have a wide geographic distribution throughout the Middle East and North Africa. A correspondence is also observed with West African faunas, especially in the early Eocene fauna. These taxa seem to have originated in West Africa during the Paleocene and migrated northwards during the late Paleocene to early Eocene. Sea-level change and decrease in oxygenation associated with the Paleocene-Eocene thermal maximum (PETM) caused the local disappearance of the South Tethyan Paleocene fauna represented by Paracosta kefensis (morphotype-A), Paracosta aff. paleomokattamensis, Paracypris sp. B Esker, Loxoconcha saharaensis, Buntonia sp. 3 Donze et al., Protobuntonia nakkadii, and probably Reymenticosta bassiounii and R. nasseurensis. Simultaneously, a new but poorly diverse Afro-Tethyan fauna, mainly represented by Alocopocythere attitogonensis and Buntonia? tunisiensis, settled in the studied part of the basin. After the PETM, diversity increased again as various taxa (e.g. Bairdia aegyptiaca, Reticulina lamellata and Aegyptiana duwiensis) (re)appeared. Although detailed records across the P/E boundary are still sparse, it appears that the PETM exerted significant influence on the paleobiogeography and composition of Tethyan ostracode faunas.

  3. Multiple microtektite horizons in upper Eocene marine sediments: No evidence for mass extinctions

    USGS Publications Warehouse

    Keller, G.; D'Hondt, Steven L.; Vallier, T.L.

    1983-01-01

    Microtektites have been recovered from three horizons in eight middle Eocene to middle Oligocene marine sediment sequences. Five of these occurrences are coeval and of latest Eocene age (37.5 to 38.0 million years ago); three are coeval and of early late Eocene age (38.5 to 39.5 million years ago); and three are of middle Oligocene age (31 to 32 million years ago). In addition, rare probable microtektites have been found in sediments with ages of about 36.0 to 36.5 million years. The microtektite horizon at 37.5 to 38.0 million years can be correlated with the North American tektite-strewn field, which has a fission track age (minimum) of 34 to 35 million years and a paleomagnetic age of 37.5 to 38.0 million years. There is no evidence for mass faunal extinctions at any of the microtektite horizons. Many of the distinct faunal changes that occurred in the middle Eocene to middle Oligocene can be related to the formation of the Antarctic ice sheet and the associated cooling phenomena and intensification of bottom currents that led to large-scale dissolution of calcium carbonate and erosion, which created areally extensive hiatuses in the deep-sea sediment records. The occurrence of microtektite horizons of several ages and the lack of evidence for faunal extinctions suggest that the effects of extraterrestrial bolide impacts may be unimportant in the biologic realm during middle Eocene to middle Oligocene time.

  4. Palynostratigraphy and depositional environment of Vastan Lignite Mine (Early Eocene), Gujarat, western India

    NASA Astrophysics Data System (ADS)

    Rao, M. R.; Sahni, Ashok; Rana, R. S.; Verma, Poonam

    2013-04-01

    Early Eocene sedimentary successions of south Asia, are marked by the development of extensive fossil-bearing, lignite-rich sediments prior to the collision of India with Asia and provide data on contemporary equatorial faunal and vegetational assemblages. One such productive locality in western India is the Vastan Lignite Mine representing approximately a 54-52 Ma sequence dated by the presence of benthic zone marker species, Nummulites burdigalensis burdigalensis. The present study on Vastan Lignite Mine succession is based on the spore-pollen and dinoflagellate cyst assemblages and documents contemporary vegetational changes. 86 genera and 105 species belonging to algal remains (including dinoflagellate cysts), fungal remains, pteridophytic spores and angiospermous pollen grains have been recorded. On the basis of first appearance, acme and decline of palynotaxa, three cenozones have been recognized and broadly reflect changing palaeodepositional environments. These are in ascending stratigraphic order (i) Proxapertites Spp. Cenozone, (ii) Operculodinium centrocarpum Cenozone and (iii) Spinizonocolpites Spp. Cenozone. The basal sequence is lagoonal, palm-dominated and overlain by more open marine conditions with dinoflagellate cysts and at the top, mangrove elements are dominant. The succession has also provided a unique record of fish, lizards, snakes, and mammals.

  5. Geomorphology and Sediment Stability of a Segment of the U.S. Continental Slope off New Jersey.

    PubMed

    Robb, J M; Hampson, J C; Twichell, D C

    1981-02-27

    The morphology of complex deposits of Pleistocene sediments covering the upper continental slope between Lindenkohl Canyon and South Toms Canyon results from both depositional and erosional processes. Small slump or slide features were detected primarily on the flanks of canyons or valleys and were observed to occur only within Pleistocene-aged sediments. Eocene to Miocene sediments are exposed over much of the mid- and lower slope in this area.

  6. Diatom and silicoflagellate biostratigraphy for the late Eocene: ODP 1090 (sub-Antarctic Atlantic)

    USGS Publications Warehouse

    Barron, John A.; Bukry, David B.; Gersonde, Rainer

    2014-01-01

    Abundant and well-preserved diatoms and silicofl agellate assemblages are documented through a complete late Eocene sequence, ODP Hole 1090B, recovered from the southern Agulhas Ridge in the sub-Antarctic South Atlantic. A sequence of Cestodiscus (diatom) species occurrence events involving C. pulchellus var. novazealandica, C. fennerae, C. antarcticus, C. convexus, C. trochus, and C. robustus is tied with paleomagnetic stratigraphy and provides the basis of proposing a new diatom zonation for the latest middle Eocene to early Oligocene (~37.6–33.4 Ma) of the sub-Antarctic South Atlantic. Comparison with previously published diatom occurrence charts suggested this zonation should be applicable throughout the low latitude regions of the world’s oceans. Silicofl agellates belong to the Dictyocha hexacantha and the overlying Corbisema apiculata Zones. The late Eocene succession of silicofl agellate species is dominated by Naviculopsis (20–60%). Naviculopsis constricta and N. foliacea dominate the D. hexacantha Zone, followed by the N. constricta, then N. biapiculata in the C. apiculata Zone. Cold-water Distephanus is most abundant in the latest Eocene along with N. biapiculata. The tops of zonal guide fossils Dictyocha hexacantha and Hannaites quadria (both 36.6 Ma) and Dictyocha spinosa (37.1 Ma) are tied with paleomagnetic stratigraphy.

  7. Chapter D: With or Without Salt-a Comparison of Marine and Continental-Lacustrine Diatomite Deposits

    USGS Publications Warehouse

    Moyle, Phillip R.; Dolley, Thomas P.

    2003-01-01

    Diatoms in sedimentary deposits of marine and continental, especially lacustrine, origin have similar nutrient (for example, phosphate, nitrate, and silica) and light requirements; however, their geologic ranges and physiographic environments vary. Marine diatoms range in age from Early Cretaceous to Holocene, and continental diatoms range in age from Eocene to Holocene; however, most commercial diatomites, both marine and lacustrine, were deposited during the Miocene. Marine deposits of commercial value generally accumulated along continental margins with submerged coastal basins and shelves where wind-driven boundary currents provided the nutrient-rich upwelling conditions capable of supporting a productive diatom habitat. Commercial freshwater diatomite deposits occur in volcanic terrains associated with events that formed sediment-starved drainage basins, such as the Basin and Range Province, particularly in Nevada. Marine habitats generally are characterized by stable conditions of temperature, salinity, pH, nutrients, and water currents, in contrast to lacustrine habitats, which are characterized by wide variations in these conditions. Marine deposits generally are of higher quality and contain larger resources, owing to their greater areal extent and thickness, whereas most of the world's known diatomites are of lacustrine origin. Both types of deposit are commonly mined by open-pit methods and subjected to processing designed to remove organic matter, CO2, pore water, and inorganic contaminants in order to produce purified products. The highest quality diatomites, predominantly from marine sources, are used in filtration, although both types of deposit produce filter grades, and additional end uses include fillers, additives, absorbents, and abrasives.

  8. EAG Eminent Speaker: Two types of Archean continental crust: plume and plate tectonics on early Earth

    NASA Astrophysics Data System (ADS)

    Van Kranendonk, M. J.

    2012-04-01

    Over 4.5 billion years, Earth has evolved from a molten ball to a cooler planet with large continental plates, but how and when continents grew and plate tectonics started remain poorly understood. In this paper, I review the evidence that 3.5-3.2 Ga continental nuclei of the Pilbara (Australia) and Kaapvaal (southern Africa) cratons formed as thick volcanic plateaux over hot, upwelling mantle and survived due to contemporaneous development of highly depleted, buoyant, unsubductable mantle roots. This type of crust is distinct from, but complimentary to, high-grade gneiss terranes, as exemplified by the North Atlantic Craton of West Greenland, which formed through subduction-accretion tectonics on what is envisaged as a vigorously convecting early Earth with small plates. Thus, it is proposed that two types of crust formed on early Earth, in much the same way as in modern Earth, but with distinct differences resulting from a hotter Archean mantle. Volcanic plateaux provided a variety of stable habitats for early life, including chemical nutrient rich, shallow-water hydrothermal systems and shallow marine carbonate platforms.

  9. Geochemistry and depositional environments of Paleocene-Eocene phosphorites: Metlaoui Group, Tunisia

    NASA Astrophysics Data System (ADS)

    Garnit, Hechmi; Bouhlel, Salah; Jarvis, Ian

    2017-10-01

    The Late Paleocene-Early Eocene phosphorites of the Metlaoui Group in Tunisia are a world-class phosphate resource. We review the characteristics of phosphorites deposited in three areas: the Northern Basins; Eastern Basins; and Gafsa-Metlaoui Basin. Comprehensive new bulk rock elemental data are presented, together with complementary mineralogical and mineral chemical results. Carbonate fluorapatite (francolite) constitutes the dominant mineral phase in the deposits. Phosphorite samples are enriched in Cd, Sr, U, rare-earth elements and Y, together with environmentally diagnostic trace elements that provide detrital (Cr, Zr), productivity (Cu, Ni, Zn) and redox (Mo, V) proxies. Suboxic bottom-water conditions predominated, with suboxic to anoxic porewaters accompanying francolite precipitation. Phosphorite deposition occurred under increasingly arid climate conditions, accompanying global Paleocene-Eocene warming. The Northern Basins show the strongest Tethys Ocean influence, with surface seawater rare-earth element signatures consistently developed in the phosphorites. Bed-scale compositional variation indicates relatively unstable environmental conditions and episodes of sediment redeposition, with varying detrital supply and a relatively wet local climate. Glauconitic facies in the Northern Basins and the more isolated evaporite-associated phosphorites in the dryer Eastern Basins display the greatest diagenetic influences. The phosphorite - organic-rich marl - diatom-bearing porcelanite facies association in the Gafsa-Metlaoui Basin represents the classic coastal upwelling trinity. Modified Tethyan waters occurred within the Basin during phosphorite deposition, with decreasing marine productivity from NW to SE evidenced by systematically falling enrichment factors for Cu, Ni, Cd and Zn in the phosphorites. Productivity declined in concert with increasing basin isolation during the deposition of the commercial phosphorite beds in the latest Paleocene to earliest

  10. Tectonic Reorganization of the Western Pacific in Eocene Time: Missing Pieces in the Subduction Initiation Puzzle

    NASA Astrophysics Data System (ADS)

    Bloomer, S. H.; Stern, R. J.

    2002-12-01

    The initiation of subduction is probably the geologic process most responsible for large-scale changes in the motions and interactions of plates. To the extent that subduction drives mantle convection, the initiation of subduction also drives major changes in the convection of the mantle. The mechanisms of subduction initiation remain, however, obscure, but it is becoming increasingly clear that Eocene sequences in the western Pacific provide an outstanding opportunity to study this phenomenon. The major subduction zones of the western Pacific (Tonga, Mariana, Izu, Bonin) all first produced volcanic products in early Eocene time (55-48 Ma). The similarity of timing and of the characteristics of these margins suggests that there may be a common process involved. There is no evidence in the forearc crust of any of these convergent margins for proximity to a continental margin at the time of initiation. Current models of plate motion (particularly given recent reinterpretations of the Hawaiian hotspot bend) show no major plate reorganization that might have provided excess compressional stress across the western Pacific margins. The only mechanically viable mechanism for subduction initiation in the region appears to be spontaneous failure due to gravitational instability of cold, old oceanic lithosphere. There are a number of geologic and geophysical unknowns in assessing the viability of such spontaneous nucleation. The lithosphere becomes stronger as it ages as well as becoming denser. Failure of such crust to form a nascent subduction zone requires a crustal weakness such as a fault and a mechanism to decrease the bending strength of the plate. Paleomagnetic data and plate reconstructions for both the IBM and the Tonga-Kermedec region provide no clear answer to these issues and in fact conflict with interpretations placing large transform faults at the site of subduction nucleation. The large-scale rotations inferred from those data for the IBM conflict, or at

  11. Eocene sea temperatures for the mid-latitude southwest Pacific from Mg/Ca ratios in planktonic and benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Creech, John B.; Baker, Joel A.; Hollis, Christopher J.; Morgans, Hugh E. G.; Smith, Euan G. C.

    2010-11-01

    We have used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to measure elemental (Mg/Ca, Al/Ca, Mn/Ca, Zn/Ca, Sr/Ca, and Ba/Ca) ratios of 13 species of variably preserved early to middle Eocene planktonic and benthic foraminifera from New Zealand. The foraminifera were obtained from Ashley Mudstone, mid-Waipara River, South Island, which was deposited at bathyal depth ( ca. 1000 m) on the northern margin of the east-facing Canterbury Basin at a paleo-latitude of ca. 55°S. LA-ICP-MS data yield trace element depth profiles through foraminifera test walls that can be used to identify and exclude zones of surficial contamination and infilling material resulting from diagenetic coatings, mineralisation and detrital sediment. Screened Mg/Ca ratios from 5 species of foraminifera are used to calculate sea temperatures from late Early to early Middle Eocene ( ca. 51 to 46.5 Ma), a time interval that spans the termination of the Early Eocene Climatic Optimum (EECO). During this time, sea surface temperatures (SST) varied from 30 to 24 °C, and bottom water temperatures (BWT) from 21 to 14 °C. Comparison of Mg/Ca sea temperatures with published δ 18O and TEX 86 temperature data from the same samples (Hollis et al., 2009) shows close correspondence, indicating that LA-ICP-MS can provide reliable Mg/Ca sea temperatures even where foraminiferal test preservation is variable. Agreement between the three proxies also implies that Mg/Ca-temperature calibrations for modern planktonic and benthic foraminifera can generally be applied to Eocene species, although some species (e.g., V. marshalli) show significant calibration differences. The Mg/Ca ratio of the Eocene ocean is constrained by our data to be 35-50% lower than the modern ocean depending on which TEX 86 - temperature calibration (Kim et al., 2008; Liu et al., 2009) - is used to compare with the Mg/Ca sea temperatures. Sea temperatures derived from δ 18O analysis of foraminifera from Waipara show

  12. Sea Surface Warming and Increased Aridity at Mid-latitudes during Eocene Thermal Maximum 2

    NASA Astrophysics Data System (ADS)

    Harper, D. T.; Zeebe, R. E.; Hoenisch, B.; Schrader, C.; Lourens, L. J.; Zachos, J. C.

    2017-12-01

    Early Eocene hyperthermals, i.e. abrupt global warming events characterized by the release of isotopically light carbon to the atmosphere, can provide insight into the sensitivity of the Earth's climate system and hydrologic cycle to carbon emissions. Indeed, the largest Eocene hyperthermal, the Paleocene-Eocene Thermal Maximum (PETM), has provided one case study of extreme and abrupt global warming, with a mass of carbon release roughly equivalent to total modern fossil fuel reserves and a release rate 1/10 that of modern. Global sea surface temperatures (SST) increased by 5-8°C during the PETM and extensive evidence from marine and terrestrial records indicates significant shifts in the hydrologic cycle consistent with an increase in poleward moisture transport in response to surface warming. The second largest Eocene hyperthermal, Eocene Thermal Maximum 2 (ETM-2) provides an additional calibration point for determining the sensitivity of climate and the hydrologic cycle to massive carbon release. Marine carbon isotope excursions (CIE) and warming at the ETM-2 were roughly half as large as at the PETM, but reliable evidence for shifts in temperature and the hydrologic cycle are sparse for the ETM-2. Here, we utilize coupled planktic foraminiferal δ18O and Mg/Ca to determine ΔSST and ΔSSS (changes in sea surface temperature and salinity) for ETM-2 at ODP Sites 1209 (28°N paleolatitude in the Pacific) and 1265 (42°S paleolatitude in the S. Atlantic), accounting for potential pH influence on the two proxies by using LOSCAR climate-carbon cycle simulated ΔpH. Our results indicate a warming of 2-4°C at both mid-latitude sites and an increase in SSS of 1-3ppt, consistent with simulations of early Paleogene hydroclimate that suggest an increase in low- to mid-latitude aridity due to an intensification of moisture transport to high-latitudes. Furthermore, the magnitude of the CIE and warming for ETM-2 scales with the CIE and warming for the PETM, suggesting that

  13. How do I know if I’ve improved my continental scale flood early warning system?

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah L.; Pappenberger, Florian; Smith, Paul J.; Wetterhall, Fredrik

    2017-04-01

    Flood early warning systems mitigate damages and loss of life and are an economically efficient way of enhancing disaster resilience. The use of continental scale flood early warning systems is rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early warning system forced by a multi-model ensemble of numerical weather predictions. Responses to scientific and technical changes can be complex in these computationally expensive continental scale systems, and improvements need to be tested by evaluating runs of the whole system. It is demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell if the system has been improved an evaluation strategy is required that considers both forecast skill and warning value. The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting, but, there are spatial variations in the optimal forecast combination. Results indicate that optimizing forecasts based on value rather than skill alters the optimal forcing combination and the forecast performance. Also indicated is that model diversity and ensemble size are both important in achieving best overall performance. The use of several evaluation measures that consider both skill and value is strongly recommended when considering improvements to early warning systems.

  14. A Possible Late Paleocene-Early Eocene Ocean Acidification Event Recoded in the Adriatic Carbonate Platform

    NASA Astrophysics Data System (ADS)

    Weiss, A.; Martindale, R. C.; Kosir, A.; Oefinger, J.

    2017-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) event ( 56.3 Ma) was a period of massive carbon release into the Earth system, resulting in significant shifts in ocean chemistry. It has been proposed that ocean acidification - a decrease in the pH and carbonate saturation state of the water as a result of dissolved carbon dioxide in sea water - occurred in both the shallow and deep marine realms. Ocean acidification would have had a devastating impact on the benthic ecosystem, and has been proposed as the cause of decreased carbonate deposition in marine sections and coral reef collapse during the late Paleocene. To date, however, the only physical evidence of Paleocene-Eocene ocean acidification has been shown for offshore sites (i.e., a shallow carbonate compensation depth), but isotope analysis (i.e. B, I/Ca) suggests that acidification occurred in the shallow shelves as well. Several sites in the Kras region of Slovenia, has been found to contain apparent erosion surfaces coeval with the Paleocene-Eocene Boundary. We have investigated these potentially acidified horizons using petrography, stable carbon isotopes, cathodoluminescence, and elemental mapping. These datasets will inform whether the horizons formed by seafloor dissolution in an acidified ocean, or are due to subaerial exposure, or burial diagenesis (i.e. stylotization). Physical erosion and diagenesis can easily be ruled out based on field relationships and petrography, but the other potential causes must be analyzed more critically.

  15. Magnetic microspherules associated with the K/T and upper Eocene extinction events

    NASA Technical Reports Server (NTRS)

    Cisowski, Stanley M.

    1988-01-01

    Magnetic microspherules were identified in over 20 K/T boundary sites, and in numerous Deep Sea Drilling Project (DSDP) cores from the Caribbean and Pacific, synchronous with the extinction of several radiolarian species near the end of the Eocene. The K/T magnetic spherules are of particular interest as carriers of Ir and other siderophiles generally found in abundance in K/T boundary clay. Furthermore the textures and unusual chemistry of their component magnetic phases indicate an origin at high temperature, possibly related to (an) unusual event(s) marking the end of the Cretaceous and Eocene periods. Their origin, along with the non-magnetic (sanidine) spheules, is generally ascribed directly to megaimpact events hypothesized to have periodically disrupted life on Earth. A survey of microspherical forms associated with known meteorite and impact derived materials reveals fundamental differences from the extinction related spherules. Low temperature magnetic experiments on the K/T and Upper Eocene spheroids indicate that, unlike tektites, extremely small superparamagnetic carriers are not present in abundance. The extensive subaerial exposure of Cretaceous combustible black shale during sea level regression in the latest Cretaceous represents a potential source for the magnetic spheroids found in certain K/T boundary clays. The recent discovery of high Ir abundances distributed above and below the K/T boundary within shallow water sediments in Israel, which also contain the most extensive known zones of combustion metamorphism, the so called Mottled Zone, adds a further dramatic footnote to the proposed association between the magnetic spheroids and combustion of organic shales. Interestingly, the Mottled Zone also contains the rare mineral magnesioferrite, which was identified both within the K/T magnetic spheroids and as discrete crystals in boundary clay from marine and continental sites.

  16. Eocene Antarctic seasonality inferred from high-resolution stable isotope profiles of fossil bivalves and driftwood

    NASA Astrophysics Data System (ADS)

    Judd, E. J.; Ivany, L. C.; Miklus, N. M.; Uveges, B. T.; Junium, C. K.

    2017-12-01

    The Eocene Epoch was a time of large-scale global climate change, experiencing both the warmest temperatures of the Cenozoic and the onset of southern hemisphere glaciation. The record of average global temperatures throughout this transition is reasonably well constrained, however considerably less is known about the accompanying changes in seasonality. Seasonally resolved temperature data provide a wealth of information not readily available from mean annual temperature data alone. These data are particularly important in the climatically sensitive high latitudes, as they can elucidate the means by which climate changes and the conditions necessary for the growth of ice sheets. Several recent studies, however, have suggested the potential for monsoonal precipitation regimes in the early-middle Eocene high latitudes, which complicates interpretation of seasonally resolved oxygen isotope records in shallow nearshore marine settings. Seasonal precipitation and runoff could create a brackish, isotopically depleted lens in these environments, depleting summertime δ18Ocarb and thereby inflating the inferred mean and range of isotope-derived temperatures. Here, we assess intra-annual variations in temperature in shallow nearshore Antarctic waters during the middle and late Eocene, inferred from high-resolution oxygen isotope profiles from accretionary bivalves of the La Meseta Formation, Seymour Island, Antarctica. To address concerns related to precipitation and runoff, we also subsample exceptionally preserved fossil driftwood from within the formation and use seasonal differences in δ13Corg values to estimate the ratio of summertime to wintertime precipitation. Late Eocene oxygen isotope profiles exhibit strongly attenuated seasonal amplitudes and more enriched mean annual values in comparison with data from the middle Eocene. Preliminary fossil wood data are not indicative of a strongly seasonal precipitation regime, implying that intra-annual variation in oxygen

  17. Craniodental Morphology and Systematics of a New Family of Hystricognathous Rodents (Gaudeamuridae) from the Late Eocene and Early Oligocene of Egypt

    PubMed Central

    Sallam, Hesham M.; Seiffert, Erik R.; Simons, Elwyn L.

    2011-01-01

    Background Gaudeamus is an enigmatic hystricognathous rodent that was, until recently, known solely from fragmentary material from early Oligocene sites in Egypt, Oman, and Libya. Gaudeamus' molars are similar to those of the extant cane rat Thryonomys, and multiple authorities have aligned Gaudeamus with Thryonomys to the exclusion of other living and extinct African hystricognaths; recent phylogenetic analyses have, however, also suggested affinities with South American caviomorphs or Old World porcupines (Hystricidae). Methodology/Principal Findings Here we describe the oldest known remains of Gaudeamus, including largely complete but crushed crania and complete upper and lower dentitions. Unlike younger Gaudeamus species, the primitive species described here have relatively complex occlusal patterns, and retain a number of plesiomorphic features. Unconstrained parsimony analysis nests Gaudeamus and Hystrix within the South American caviomorph radiation, implying what we consider to be an implausible back-dispersal across the Atlantic Ocean to account for Gaudeamus' presence in the late Eocene of Africa. An analysis that was constrained to recover the biogeographically more plausible hypothesis of caviomorph monophyly does not place Gaudeamus as a stem caviomorph, but rather as a sister taxon of hystricids. Conclusions/Significance We place Gaudeamus species in a new family, Gaudeamuridae, and consider it likely that the group originated, diversified, and then went extinct over a geologically brief period of time during the latest Eocene and early Oligocene in Afro-Arabia. Gaudeamurids are the only known crown hystricognaths from Afro-Arabia that are likely to be aligned with non-phiomorph members of that clade, and as such provide additional support for an Afro-Arabian origin of advanced stem and basal crown members of Hystricognathi. PMID:21364934

  18. Continental crust formation on early Earth controlled by intrusive magmatism

    NASA Astrophysics Data System (ADS)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.

    2017-05-01

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the “Plutonic squishy lid” tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  19. Continental crust formation on early Earth controlled by intrusive magmatism.

    PubMed

    Rozel, A B; Golabek, G J; Jain, C; Tackley, P J; Gerya, T

    2017-05-18

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  20. Tectonic evolution of the northeastern part of the African continental margin, Egypt

    NASA Astrophysics Data System (ADS)

    Hussein, I. M.; Abd-Allah, A. M. A.

    2001-07-01

    The area between Manzalah Lake and the southern Galala Plateau in northeast Egypt constitutes the Galalas, Cairo-Suez, southern Nile Delta and northern Nile Delta structural provinces. The northern Galala Fault separates the Galalas Province from the Cairo-Suez Province and is considered to be the westward extension of the Themed Fault in central Sinai. The pre-Eocene rocks are affected by northeast to east-northeast-orientated folds and reverse faults, as well as east-west-orientated oblique-slip faults with dextral and normal components. Some folds and reverse faults are interpreted to have been formed by northwest to north-northwest-orientated compression related to the Syrian Arc movement, whereas the others by the secondary northwest orientated shortening, which accompanied dextral strike-slip component along the planes of the east-west-orientated faults. The east-west-orientated faults were initially formed during the Late Triassic/Early Jurassic extension related to the drifting of the African/Arabian Plate away from the Eurasian Plate as a result of opening of the Neotethyan Sea. The Neotethyan began to close due to convergence between the two plates, leading to the Syrian Arc deformation. This deformation mildly started in Late Cenomanian and followed by a more intensive phase in Conacian/Santonian. It mildly continued in the Maastrichtian, Early Palæocene and Late Palæocene/Early Eocene. The southward thinning of the pre-Eocene rocks controlled the intensity and style of deformation. Two deformational mechanisms are proposed for the Nile Delta hinge zone. The first is related to Late Oligocene—Early Miocene north-northwest-orientated Alpine compression. The second is related to northward gravitational sliding of the post-Oligocene shale and sandstone over Cretaceous-Eocene carbonates.

  1. Nonexplosive and explosive magma/wet-sediment interaction during emplacement of Eocene intrusions into Cretaceous to Eocene strata, Trans-Pecos igneous province, West Texas

    USGS Publications Warehouse

    Befus, K.S.; Hanson, R.E.; Miggins, D.P.; Breyer, J.A.; Busbey, A.B.

    2009-01-01

    Eocene intrusion of alkaline basaltic to trachyandesitic magmas into unlithified, Upper Cretaceous (Maastrichtian) to Eocene fluvial strata in part of the Trans-Pecos igneous province in West Texas produced an array of features recording both nonexplosive and explosive magma/wet-sediment interaction. Intrusive complexes with 40Ar/39Ar dates of ~ 47-46??Ma consist of coherent basalt, peperite, and disrupted sediment. Two of the complexes cutting Cretaceous strata contain masses of conglomerate derived from Eocene fluvial deposits that, at the onset of intrusive activity, would have been > 400-500??m above the present level of exposure. These intrusive complexes are inferred to be remnants of diatremes that fed maar volcanoes during an early stage of magmatism in this part of the Trans-Pecos province. Disrupted Cretaceous strata along diatreme margins record collapse of conduit walls during and after subsurface phreatomagmatic explosions. Eocene conglomerate slumped downward from higher levels during vent excavation. Coherent to pillowed basaltic intrusions emplaced at the close of explosive activity formed peperite within the conglomerate, within disrupted Cretaceous strata in the conduit walls, and within inferred remnants of the phreatomagmatic slurry that filled the vents during explosive volcanism. A younger series of intrusions with 40Ar/39Ar dates of ~ 42??Ma underwent nonexplosive interaction with Upper Cretaceous to Paleocene mud and sand. Dikes and sills show fluidal, billowed, quenched margins against the host strata, recording development of surface instabilities between magma and groundwater-rich sediment. Accentuation of billowed margins resulted in propagation of intrusive pillows into the adjacent sediment. More intense disruption and mingling of quenched magma with sediment locally produced fluidal and blocky peperite, but sufficient volumes of pore fluid were not heated rapidly enough to generate phreatomagmatic explosions. This work suggests that

  2. “Terror Birds” (Phorusrhacidae) from the Eocene of Europe Imply Trans-Tethys Dispersal

    PubMed Central

    Angst, Delphine; Buffetaut, Eric; Lécuyer, Christophe; Amiot, Romain

    2013-01-01

    Background Phorusrhacidae was a clade including middle-sized to giant terrestrial carnivorous birds, known mainly from the Cenozoic of South America, but also occurring in the Plio-Pleistocene of North America and the Eocene of Africa. Previous reports of small phorusrhacids in the Paleogene of Europe have been dismissed as based on non-phorusrhacid material. Methodology we have re-examined specimens of large terrestrial birds from the Eocene (late Lutetian) of France and Switzerland previously referred to gastornithids and ratites and have identified them as belonging to a phorusrhacid for which the name Eleutherornis cotei should be used. Conclusions/Significance The occurrence of a phorusrhacid in the late Lutetian of Europe indicates that these flightless birds had a wider geographical distribution than previously recognized. The likeliest interpretation is that they dispersed from Africa, where the group is known in the Eocene, which implies crossing the Tethys Sea. The Early Tertiary distribution of phorusrhacids can be best explained by transoceanic dispersal, across both the South Atlantic and the Tethys. PMID:24312212

  3. Lithospheric convective removal related post-collisional middle Eocene magmatism along the Izmir-Ankara-Erzincan suture zone (NE Turkey).

    NASA Astrophysics Data System (ADS)

    Göçmengil, Gönenç; Karacık, Zekiye; Genç, Ş. Can

    2017-04-01

    Obliteration of the Mesozoic Neo-Tethyan Ocean and succeeding collision of the micro plates along the northern part of Turkey lead the development of the İzmir-Ankara-Erzincan suture zone (IAESZ). The suturing and collision stages terminate with the amalgamation of the three different crustal blocks (Pontides, Central Anatolian Crystalline Complex and Anatolide-Tauride Block) in the Paleocene-Early Eocene period. After the collisional stage; a new phase of extension and magmatism concomitantly developed at the both sides and as well as along the IAESZ during the Middle Eocene period. However, the origin, mechanism and driving force of the post-collisional magmatism is still enigmatic. To understand and better constrain the syn-to post collisional evolutionary stages, we have carried out volcano-stratigraphy and geochemistry based study on the middle Eocene magmatic associations along a transect ( 100 km) from Pontides to the Central Anatolian Crystalline Complex (CACC) at the NE part of the Turkey. Middle Eocene magmatic activity in the region has been represented by calc-alkaline, alkaline, shoshonitic volcanic and granitic rocks together with scarce gabbroic intrusions. We particularly focused on middle Eocene volcano-sedimentary successions (MEVSS) to constrain the tectono-magmatic evolution of the abovementioned transect. The volcano-sedimentary succsessions are coevally developed and cover the crustal blocks (Pontides and CACC) and the IAESZ with a region wide unconformity. We have differentiated three lava series (V1-V2-V3) and their sub-groups (V1a-V1b; V2a-V2b) in MEVSS. Generally, all lava series have middle-K to shoshonitic composition with distinct subduction characteristics. V1 series is marked by presence of hydrous phenocrysts such as amphibole+biotite. V1a sub-group constitute the first volcanic product and characterized by the high Mg# (42-69); alkaline basaltic andesite, and hawaiites. V1b sub-group is represented by calc-alkaline, low Mg# (24

  4. Extinction vs. Rapid Radiation: The Juxtaposed Evolutionary Histories of Coelotine Spiders Support the Eocene-Oligocene Orogenesis of the Tibetan Plateau.

    PubMed

    Zhao, Zhe; Li, Shuqiang

    2017-11-01

    Evolutionary biology has long been concerned with how changing environments affect and drive the spatiotemporal development of organisms. Coelotine spiders (Agelenidae: Coelotinae) are common species in the temperate and subtropical areas of the Northern Hemisphere. Their long evolutionary history and the extremely imbalanced distribution of species richness suggest that Eurasian environments, especially since the Cenozoic, are the drivers of their diversification. We use phylogenetics, molecular dating, ancestral area reconstructions, diversity, and ecological niche analyses to investigate the spatiotemporal evolution of 286 coelotine species from throughout the region. Based on eight genes (6.5 kb) and 2323 de novo DNA sequences, analyses suggest an Eocene South China origin for them. Most extant, widespread species belong to the southern (SCG) or northern (NCG) clades. The origin of coelotine spiders appears to associate with either the Paleocene-Eocene Thermal Maximum or the hot period in early Eocene. Tibetan uplifting events influenced the current diversity patterns of coelotines. The origin of SCG lies outside of the Tibetan Plateau. Uplifting in the southeastern area of the plateau blocked dispersal since the Late Eocene. Continuous orogenesis appears to have created localized vicariant events, which drove rapid radiation in SCG. North-central Tibet is the likely location of origin for NCG and many lineages likely experienced extinction owing to uplifting since early Oligocene. Their evolutionary histories correspond with recent geological evidence that high-elevation orographical features existed in the Tibetan region as early as 40-35 Ma. Our discoveries may be the first empirical evidence that links the evolution of organisms to the Eocene-Oligocene uplifting of the Tibetan Plateau. [Tibet; biogeography; ecology; molecular clock; diversification.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic

  5. Nature and composition of interbedded marine basaltic pumice in the ˜52-50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea

    NASA Astrophysics Data System (ADS)

    Sensarma, Sarajit; Singh, Hukam; Rana, R. S.; Paul, Debajyoti; Sahni, Ashok

    2017-03-01

    The recognition of pyroclasts preserved in sedimentary environments far from its source is uncommon. We here describe occurrences of several centimetres-thick discontinuous basaltic pumice lenses occurring within the Early Eocene Vastan lignite mine sedimentary sequence, western India at two different levels - one at ˜5 m and the other at 10 m above a biostratigraphically constrained 52 Ma old marker level postdating the Deccan Volcanism. These sections have received global attention as they record mammalian and plant radiations. We infer the repetitive occurrence of pumice have been sourced from a ˜52-50 Ma MORB related to sea-floor spreading in the western Arabian Sea, most plausibly along the Carlsberg Ridge. Pyroclasts have skeletal plagioclase with horsetail morphologies ± pyroxene ± Fe-Ti oxide euhedral crystals, and typically comprise of circular polymodal (radii ≤10 to ≥30 μm), non-coalescing microvesicles (>40-60%). The pumice have undergone considerable syngenetic alteration during oceanic transport and post-burial digenesis, and are a composite mixture of Fe-Mn-rich clay and hydrated altered basaltic glass (palagonite). The Fe-Mn-rich clay is extremely low in SiO 2, Al 2 O 3, TiO 2, MgO, alkalies and REE, but very high in Fe 2 O 3, MnO, P, Ba, Sr contents, and palagonitization involved significant loss of SiO 2, Al 2 O 3, MgO and variable gain in Fe 2 O 3, TiO 2, Ni, V, Zr, Zn and REE. Bubble initiation to growth in the ascending basaltic magma (liquidus ˜1200-1250 ∘C) may have occured in ˜3 hr. Short-distance transport, non-connected vesicles, deposition in inner shelf to more confined lagoonal condition in the Early Eocene and quick burial helped preservation of the pumice in Vastan. Early Eocene Arabian Sea volcanism thus might have been an additional source to marginal sediments along the passive margin of western India.

  6. Raising the continental crust

    NASA Astrophysics Data System (ADS)

    Campbell, Ian H.; Davies, D. Rhodri

    2017-02-01

    The changes that occur at the boundary between the Archean and Proterozoic eons are arguably the most fundamental to affect the evolution of Earth's continental crust. The principal component of Archean continental crust is Granite-Greenstone Terranes (GGTs), with granites always dominant. The greenstones consist of a lower sequence of submarine komatiites and basalts, which erupted onto a pre-existing Tonalite-Trondhjemite-Granodiorite (TTG) crust. These basaltic rocks pass upwards initially into evolved volcanic rocks, such as andesites and dacites and, subsequently, into reworked felsic pyroclastic material and immature sediments. This transition coincides with widespread emplacement of granitoids, which stabilised (cratonised) the continental crust. Proterozoic supra-crustal rocks, on the other hand, are dominated by extensive flat-lying platform sequences of mature sediments, which were deposited on stable cratonic basements, with basaltic rocks appreciably less abundant. The siliceous TTGs cannot be produced by direct melting of the mantle, with most hypotheses for their origin requiring them to be underlain by a complimentary dense amphibole-garnet-pyroxenite root, which we suggest acted as ballast to the early continents. Ubiquitous continental pillow basalts in Archean lower greenstone sequences require the early continental crust to have been sub-marine, whereas the appearance of abundant clastic sediments, at higher stratigraphic levels, shows that it had emerged above sea level by the time of sedimentation. We hypothesise that the production of komatiites and associated basalts, the rise of the continental crust, widespread melting of the continental crust, the onset of sedimentation and subsequent cratonisation form a continuum that is the direct result of removal of the continent's dense amphibole-garnet-pyroxenite roots, triggered at a regional scale by the arrival of a mantle plume at the base of the lithosphere. Our idealised calculations suggest

  7. Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica.

    PubMed

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A; Kriwet, Jürgen

    2017-10-01

    Rare remains of predominantly deep-water sharks of the families Hexanchidae, Squalidae, Dalatiidae, Centrophoridae, and Squatinidae are described from the Eocene La Meseta Formation, Seymour Island, Antarctic Peninsula, which has yielded the most abundant chondrichthyan assemblage from the Southern Hemisphere to date. Previously described representatives of Hexanchus sp., Squalus weltoni , Squalus woodburnei , Centrophorus sp., and Squatina sp. are confirmed and dental variations are documented. Although the teeth of Squatina sp. differ from other Palaeogene squatinid species, we refrain from introducing a new species. A new dalatiid taxon, Eodalatias austrinalis gen. et sp. nov. is described. This new material not only increases the diversity of Eocene Antarctic elasmobranchs but also allows assuming that favourable deep-water habitats were available in the Eocene Antarctic Ocean off Antarctica in the Eocene. The occurrences of deep-water inhabitants in shallow, near-coastal waters of the Antarctic Peninsula agrees well with extant distribution patterns.

  8. Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A.; Kriwet, Jürgen

    2017-10-01

    Rare remains of predominantly deep-water sharks of the families Hexanchidae, Squalidae, Dalatiidae, Centrophoridae, and Squatinidae are described from the Eocene La Meseta Formation, Seymour Island, Antarctic Peninsula, which has yielded the most abundant chondrichthyan assemblage from the Southern Hemisphere to date. Previously described representatives of Hexanchus sp., Squalus weltoni, Squalus woodburnei, Centrophorus sp., and Squatina sp. are confirmed and dental variations are documented. Although the teeth of Squatina sp. differ from other Palaeogene squatinid species, we refrain from introducing a new species. A new dalatiid taxon, Eodalatias austrinalis gen. et sp. nov. is described. This new material not only increases the diversity of Eocene Antarctic elasmobranchs but also allows assuming that favourable deep-water habitats were available in the Eocene Antarctic Ocean off Antarctica in the Eocene. The occurrences of deep-water inhabitants in shallow, near-coastal waters of the Antarctic Peninsula agrees well with extant distribution patterns.

  9. Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica

    PubMed Central

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A.; Kriwet, Jürgen

    2017-01-01

    Rare remains of predominantly deep-water sharks of the families Hexanchidae, Squalidae, Dalatiidae, Centrophoridae, and Squatinidae are described from the Eocene La Meseta Formation, Seymour Island, Antarctic Peninsula, which has yielded the most abundant chondrichthyan assemblage from the Southern Hemisphere to date. Previously described representatives of Hexanchus sp., Squalus weltoni, Squalus woodburnei, Centrophorus sp., and Squatina sp. are confirmed and dental variations are documented. Although the teeth of Squatina sp. differ from other Palaeogene squatinid species, we refrain from introducing a new species. A new dalatiid taxon, Eodalatias austrinalis gen. et sp. nov. is described. This new material not only increases the diversity of Eocene Antarctic elasmobranchs but also allows assuming that favourable deep-water habitats were available in the Eocene Antarctic Ocean off Antarctica in the Eocene. The occurrences of deep-water inhabitants in shallow, near-coastal waters of the Antarctic Peninsula agrees well with extant distribution patterns. PMID:29118464

  10. Late Eocene Inversion and Exhumation of the Sivas Basin (Central Anatolia) Based On Low-Temperature Thermochronometry: Implications for Diachronous Initiation of Arabia-Eurasia Collision

    NASA Astrophysics Data System (ADS)

    Darin, M. H.; Umhoefer, P. J.; Thomson, S. N.; Schleiffarth, W. K.

    2017-12-01

    The timing of initial Arabia-Eurasia collision along the Bitlis-Zagros suture is controversial, with widely varying estimates from middle Eocene to late Miocene ( 45-10 Ma). The Cenozoic Sivas Basin (central Anatolia) preserves a detailed record of the initial stages of Arabia collision directly north of the suture in the Eurasian foreland. New apatite fission track and (U-Th)/He thermochronology data from Late Cretaceous to Paleogene units indicate rapid basin inversion and initiation of the north-vergent Southern Sivas Fold and Thrust Belt (SSFTB) during the late Eocene to early Oligocene ( 40-30 Ma), consistent with the age of a basin-wide unconformity and switch from marine to nonmarine sedimentation. We interpret late Eocene exhumation and the predominantly north-vergent kinematics of the SSFTB to reflect northward propagation of contraction into the Sivas retro-foreland basin due to initial collision of the Arabian passive margin with the Anatolide-Tauride block along the southern Eurasian margin during the late middle Eocene. We test this hypothesis by comparing our new results with regional-scale compilations of both published thermochronology and geochronology data from the entire Arabia-Eurasia collision zone. Low-temperature thermochronology data from eastern Anatolia, the Caucasus, Zagros, and Alborz demonstrate that rapid cooling and intraplate deformation occurred across much of the Eurasian foreland during the middle Eocene to early Oligocene ( 45-30 Ma). Our regional compilation of published geochronology data from central and eastern Anatolia reveals a distinct magmatic lull during the latest Eocene, Oligocene, and earliest Miocene (ca. 38-20 Ma), slightly earlier than a diachronous magmatic lull initiating at 25-5 Ma from northwest to southeast in Iran (Chiu et al., 2013). These results support a tectonic model for diachronous collision in which initial collision of the Arabia promontory occurred in central-eastern Anatolia during the middle

  11. Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties.

    PubMed

    Kiehl, Jeffrey T; Shields, Christine A

    2013-10-28

    The Palaeocene-Eocene Thermal Maximum (PETM) was a significant global warming event in the Earth's history (approx. 55 Ma). The cause for this warming event has been linked to increases in greenhouse gases, specifically carbon dioxide and methane. This rapid warming took place in the presence of the existing Early Eocene warm climate. Given that projected business-as-usual levels of atmospheric carbon dioxide reach concentrations of 800-1100 ppmv by 2100, it is of interest to study past climates where atmospheric carbon dioxide was higher than present. This is especially the case given the difficulty of climate models in simulating past warm climates. This study explores the sensitivity of the simulated pre-PETM and PETM periods to change in cloud condensation nuclei (CCN) and microphysical properties of liquid water clouds. Assuming lower levels of CCN for both of these periods leads to significant warming, especially at high latitudes. The study indicates that past differences in cloud properties may be an important factor in accurately simulating past warm climates. Importantly, additional shortwave warming from such a mechanism would imply lower required atmospheric CO2 concentrations for simulated surface temperatures to be in reasonable agreement with proxy data for the Eocene.

  12. Early Depositional History of the Eocene Izu-Bonin Mariana Arc, Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Waldman, R.; Marsaglia, K. M.; Tepley, F. J., III

    2015-12-01

    Expedition 351 of the International Ocean Discovery Program cored an Eocene section at Site U1438 in the Philippine Sea that provides insight into the early history of the Izu-Bonin arc. Subduction here is hypothesized to have initiated spontaneously, leaving a characteristic depositional sequence of post-subduction-initiation localized extension and volcanism. We conducted detailed macroscopic and microscopic study of the cores of the lowermost 100m of volcaniclastic and sedimentary rocks (Unit IV) directly overlying subduction initiation igneous basement, to identify depositional facies and trends. We subdivided Unit IV into three subunits based on lithologic characteristics. Transitions between the subunits are relatively abrupt, occurring within the length of a single core. The lowermost subunit (IVA) consists of 4 meters of laminated pelagic claystone with thin beds of graded volcaniclastic siltstone, and fine-grained tuff laminae composed of plagioclase feldspar and green-brown amphibole. The middle subunit (IVB) comprises 51 meters of texturally variable, thick-bedded, coarse-grained gravity flow deposits. These are composed of volcaniclastic sandstone and conglomerate containing glassy and tachylitic volcanic grains as well as sedimentary lithic fragments, along with traces of shallow-water carbonate bioclasts. Subunit IVB sediments are poorer in feldspar than IVA and contain only trace amphibole. They show variable grain rounding and an upsection increase in vitric components. Tachylite grains range from sub-angular to well rounded throughout, and other volcanic grain types show upward increases in angularity and vesicularity. The abrupt transition from pelagic sediments in subunit IVA to shallow-water-sourced gravity flows in subunit IVB suggests a rapid emergence of shallow-water to subaerial volcanic center early in the arc's development. The upper part of subunit IVB also contains igneous intrusions, providing possible evidence for more proximal

  13. Cenozoic evolution of the Pamir plateau recorded in surrounding basins, implications on Asian climate, land-sea distribution and biotic crises

    NASA Astrophysics Data System (ADS)

    Dupont Nivet, G.; Yang, W.; Blayney, T.; Bougeois, L.; Manceau, C.; Najman, Y.; Proust, J. N.; Guo, Z.; Grothe, A.; Mandic, O.; Fioroni, C.

    2014-12-01

    The Cenozoic Pamir orogen formed in response to the India-Asia collision. Existing datasets shows that the range grew since ca. 25 Ma, however the early Cenozoic history remains unconstrained. In that period, global climate changed from greenhouse to icehouse, the proto-Paratethys sea retreated out of Asia and continental aridification as well as monsoons established over Asia. These environmental changes are held responsible for major floral and faunal crises. However, the causal relationships between these events remains to be established because of the lack of accurate age constraints on their geological records. Here, we provide well-dated stratigraphic records using magneto- and bio-stratigraphy from the basins surrounding the Pamir. Southeast of the Pamir, along the Kunlun Shan into the southwestern Tarim Basin, Eocene marine deposits are continuously overlain by 41 to 15 Ma continental redbeds themselves overlain by conglomerates in a classic foreland sequence with upward increasing grain-size, accumulation rates and provenance proximity. However, North of the Pamir along the southwestern Tian Shan and West of the Pamir into the Afghan-Tadjik Basin, the entire Oligocene period appears to be missing from the record between the last marine and the first continental sediments dated to the Early Miocene. This supports a simple model in response to initial Eocene Pamir indentation with foreland basin activation in the Southeast related to the Kunlun Shan northward thrusting, followed much later by early Miocene activation of the northern foreland basin related to the southwestern Tian Shan overthrusting. The coeval activation of a lithospheric right-lateral strike-slip system along the Pamir/Tarim boundary may have enabled to transfer deformation from the India-Asia collision to the Tian Shan and possibly the Talas Fergana fault. This simple model suggests the following two-stage paleoenvironmental evolution: (1) Late Eocene sea retreat linked to the onset of

  14. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong

    2015-12-01

    The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by

  15. 3D seismic imaging of voluminous earliest Eocene buried lava fields and coastal escarpments off mid-Norway

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Millett, John M.; Maharjan, Dwarika; Jerram, Dougal A.; Mansour Abdelmalak, Mohamed

    2017-04-01

    Continental breakup between Greenland and NW Europe in the Paleogene was associated with massive basaltic volcanism, forming kilometer-thick sequences of flood basalts along the conjugate rifted margins. This event was temporarily associated with a warm world, the early Eocene greenhouse, and the short-lived Paleocene-Eocene Thermal Maximum (PETM). A 2500 km2 large industry-standard 3D seismic cube has recently been acquired on the Vøring Marginal High offshore mid-Norway to image sub-basalt sedimentary rocks. This cube also provides a unique opportunity for imaging top- and intra-basalt structures. Detailed seismic geomorphological interpretation of the Top basalt horizon reveal new insight into the late-stage development of the lava flow fields and the kilometer high coastal Vøring Escarpment. Subaerial lava flows with compressional ridges and inflated lava lobes cover the marginal high, with comparable structure and size to modern subaerial lava fields. Pitted surfaces, likely formed by lava emplaced in a wet environment, are present in the western part of the study area near the continent-ocean boundary. The prominent Vøring Escarpment formed when eastward-flowing lava reached the coastline. The escarpment morphology is influenced by pre-existing structural highs, and locally these highs are by-passed by the lava flows which are clearly deflected around them. Volcanogenic debris flows are well-imaged on the escarpment horizon along with large-scale slump blocks. Similar features exist in active volcanic environments, e.g. on the south coast of Hawaii. Numerous post-volcanic extensional faults and incised channels cut both into the marginal high and the escarpment, and show that the area was geologically active after the volcanism ceased. In conclusion, igneous seismic geomorphology and seismic volcanostratigraphy are two very powerful methods to understand the volcanic deposits and development of rifted margins, and the association of major volcanic events

  16. Benthic foraminiferal and isotopic patterns during the Early Eocene Climatic Optimum (Aktulagay section, Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Deprez, Arne; Tesseur, Steven; Stassen, Peter; D'haenens, Simon; Steurbaut, Etienne; King, Christopher; Claeys, Philippe; Speijer, Robert P.

    2015-04-01

    The early Eocene is characterized by long-term global warming culminating in the Early Eocene Climatic Optimum (EECO). During this time interval, the Peri-Tethys was connected to the Arctic and Atlantic Oceans by north-south and east-west trending seaways. The Aktulagay section in Kazakhstan provides an expanded record of the middle Ypresian (NP11-13, ~54-50 Ma; King et al., 2013), including the EECO. The marl sequence features a series of sapropel beds, observed throughout the Peri-Tethys, indicative of basin-wide episodic hypoxic events. In order to unravel paleoenvironmental changes, we carried out quantitative faunal studies and stable isotopic (C, O) investigations on excellently preserved foraminiferal assemblages. The period from 54 to 52.5 Ma (NP11 to lower NP12; Alashen Formation) is characterized by a diverse assemblage of deep outer neritic (~200-250 m) benthic foraminifera, with common Pulsiphonina prima and Paralabamina lunata. The initially (54 Ma) well-ventilated oligo- to mesotrophic seafloor conditions gradually changed to more eutrophic and oxygen-limited. These conditions were more permanent in the sapropel-bearing unit at 52.5-52 Ma (middle NP12; Aktulagay B1 unit). This observation is based on the dominance of Anomalinoides acutus and Bulimina aksuatica and the lower diversity. Also the upward migration of endobenthic species, as suggested by rising δ13Cendobenthic, supports this interpretation. These low-oxygen conditions might have been caused by a transgression, flooding lowlands. Benthic foraminiferal assemblages dominated by Epistominella minuta at ~52-50 Ma (top NP12-NP13; Aktulagay B2 unit) suggest an oligotrophic environment, with transient pulses of phytodetritus. Dinoflagellate blooms and Acarinina isotope values at ~50.5 Ma indicate lower salinity (lower δ18O) and higher productivity (higher δ13C), possibly due to riverine input. Large river plumes, episodically reaching the area, in a monsoonal climate context, might explain this

  17. New data on Amynodontidae (Mammalia, Perissodactyla) from Eastern Europe: Phylogenetic and palaeobiogeographic implications around the Eocene-Oligocene transition.

    PubMed

    Tissier, Jérémy; Becker, Damien; Codrea, Vlad; Costeur, Loïc; Fărcaş, Cristina; Solomon, Alexandru; Venczel, Marton; Maridet, Olivier

    2018-01-01

    Amynodontidae is a family of Rhinocerotoidea (Mammalia, Perissodactyla) known from the late Early Eocene to the latest Oligocene, in North America and Eurasia. European Amynodontidae are very rare, and all remains belong almost exclusively to a single post-Grande Coupure genus from the Oligocene, Cadurcotherium. The "Grande Coupure" defines an extinctions and dispersal-generated originations event in Europe that is nearly contemporaneous with the Eocene-Oligocene transition. Perissodactyls are one of the major groups affected by this event: Palaeotheriidae went almost extinct during this crisis, whereas Rhinocerotidae appeared for the first time in Europe. Study of fossiliferous Eastern-European localities from this age is crucial for the understanding of this crisis. We report here three new localities of Amynodontidae in Eastern Europe. Two of them are dated from the Eocene (Morlaca, Romania; Dorog, Hungary), whereas the other is either Late Eocene or Early Oligocene (Dobârca, Romania). The skull from this latter locality belongs unexpectedly to the same individual as a previously described mandible attributed to "Cadurcodon" zimborensis. As a result, this specimen can be allocated to its proper locality, Dobârca, and is assigned to a new genus, Sellamynodon gen. nov. It is characterised by an extraordinary growth of the nuchal crest, a unique character among amynodontids. Along with this remarkable material from Dobârca, two specimens from another Romanian locality, Morlaca, have been recently discovered and are dated from the Late Eocene. They belong, as well as new material from Dorog (Middle Eocene, Hungary), to the genus Amynodontopsis, also found in North America. The new Hungarian material represents the earliest occurrence of Amynodontidae in Europe. New phylogenetic hypotheses of Rhinocerotoidea are proposed, including the new material presented here, and show that Amynodontidae may be closer to the polyphyletic family 'Hyracodontidae' than to

  18. New data on Amynodontidae (Mammalia, Perissodactyla) from Eastern Europe: Phylogenetic and palaeobiogeographic implications around the Eocene-Oligocene transition

    PubMed Central

    Becker, Damien; Codrea, Vlad; Costeur, Loïc; Fărcaş, Cristina; Solomon, Alexandru; Venczel, Marton; Maridet, Olivier

    2018-01-01

    Amynodontidae is a family of Rhinocerotoidea (Mammalia, Perissodactyla) known from the late Early Eocene to the latest Oligocene, in North America and Eurasia. European Amynodontidae are very rare, and all remains belong almost exclusively to a single post—Grande Coupure genus from the Oligocene, Cadurcotherium. The “Grande Coupure” defines an extinctions and dispersal-generated originations event in Europe that is nearly contemporaneous with the Eocene-Oligocene transition. Perissodactyls are one of the major groups affected by this event: Palaeotheriidae went almost extinct during this crisis, whereas Rhinocerotidae appeared for the first time in Europe. Study of fossiliferous Eastern-European localities from this age is crucial for the understanding of this crisis. We report here three new localities of Amynodontidae in Eastern Europe. Two of them are dated from the Eocene (Morlaca, Romania; Dorog, Hungary), whereas the other is either Late Eocene or Early Oligocene (Dobârca, Romania). The skull from this latter locality belongs unexpectedly to the same individual as a previously described mandible attributed to “Cadurcodon” zimborensis. As a result, this specimen can be allocated to its proper locality, Dobârca, and is assigned to a new genus, Sellamynodon gen. nov. It is characterised by an extraordinary growth of the nuchal crest, a unique character among amynodontids. Along with this remarkable material from Dobârca, two specimens from another Romanian locality, Morlaca, have been recently discovered and are dated from the Late Eocene. They belong, as well as new material from Dorog (Middle Eocene, Hungary), to the genus Amynodontopsis, also found in North America. The new Hungarian material represents the earliest occurrence of Amynodontidae in Europe. New phylogenetic hypotheses of Rhinocerotoidea are proposed, including the new material presented here, and show that Amynodontidae may be closer to the polyphyletic family

  19. Deciphering the Boron Proxy Records of the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Hoenisch, B.; Haynes, L.; Harper, D. T.; Penman, D. E.; Holland, K.; Rosenthal, Y.; Zachos, J. C.

    2016-12-01

    Rapid surface ocean acidification at the PETM has been documented by pronounced decreases in the boron isotope and B/Ca proxies measured in surface dwelling planktic foraminifera (Babila et al., 2016; Penman et al., 2014). However, translating these geochemical signatures to past seawater carbonate chemistry is challenging due to the different-from-modern elemental and isotopic composition of seawater, in addition to the lack of constraints on vital effects in foraminifer species that are now extinct. While the pH decrease can be reasonably quantified from boron isotopes, the application of modern laboratory calibrations to translate the B/Ca signal yields unfeasible estimates, thus raising questions about how well we understand fundamental proxy systematics. Here we present a possible solution to this conundrum from laboratory culture experiments performed under simulated Paleocene seawater conditions, with lower [B] and [Mg], higher [Ca] and across a range of dissolved inorganic carbon and pH. These experiments suggest that raising DIC in addition to acidification amplifies the B/Ca decrease recorded in planktic foraminifera shells, thus providing an opportunity to deconvolve the B/Ca record into pH and DIC signals. Using the boron proxy records in ODP 1209 from Shatsky Rise in the Pacific Ocean as a case study, we will perform a series of sensitivity studies to better constrain the carbon perturbation at the PETM, and the long-term evolution of surface ocean chemistry from the Paleocene into the Eocene. Our results will be compared to LOSCAR model estimates of different carbon input scenarios at the PETM. Babila, T.L., Rosenthal, Y., Wright, J.D. and Miller, K.G. (2016) A continental shelf perspective of ocean acidification and temperature evolution during the Paleocene-Eocene Thermal Maximum. Geology 44, 275-278. Penman, D.E., Hönisch, B., Zeebe, R.E., Thomas, E. and Zachos, J.C. (2014) Rapid and sustained surface ocean acidification during the Paleocene-Eocene

  20. Circum-Pacific accretion of oceanic terranes to continental blocks: accretion of the Early Permian Dun Mountain ophiolite to the E Gondwana continental margin, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair

    2016-04-01

    Accretionary orogens, in part, grow as a result of the accretion of oceanic terranes to pre-existing continental blocks, as in the circum-Pacific and central Asian regions. However, the accretionary processes involved remain poorly understood. Here, we consider settings in which oceanic crust formed in a supra-subduction zone setting and later accreted to continental terranes (some, themselves of accretionary origin). Good examples include some Late Cretaceous ophiolites in SE Turkey, the Jurassic Coast Range ophiolite, W USA and the Early Permian Dun Mountain ophiolite of South Island, New Zealand. In the last two cases, the ophiolites are depositionally overlain by coarse clastic sedimentary rocks (e.g. Permian Upukerora Formation of South Island, NZ) that then pass upwards into very thick continental margin fore-arc basin sequences (Great Valley sequence, California; Matai sequence, South Island, NZ). Field observations, together with petrographical and geochemical studies in South Island, NZ, summarised here, provide evidence of terrane accretion processes. In a proposed tectonic model, the Early Permian Dun Mountain ophiolite was created by supra-subduction zone spreading above a W-dipping subduction zone (comparable to the present-day Izu-Bonin arc and fore arc, W Pacific). The SSZ oceanic crust in the New Zealand example is inferred to have included an intra-oceanic magmatic arc, which is no longer exposed (other than within a melange unit in Southland), but which is documented by petrographic and geochemical evidence. An additional subduction zone is likely to have dipped westwards beneath the E Gondwana margin during the Permian. As a result, relatively buoyant Early Permian supra-subduction zone oceanic crust was able to dock with the E Gondwana continental margin, terminating intra-oceanic subduction (although the exact timing is debatable). The amalgamation ('soft collision') was accompanied by crustal extension of the newly accreted oceanic slab, and

  1. Astronomically paced middle Eocene deepwater circulation in the western North Atlantic

    NASA Astrophysics Data System (ADS)

    Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Lohmann, Gerrit; Pälike, Heiko; Zachos, James C.

    2017-04-01

    The role of the Atlantic Meridional Overturning Circulation (AMOC) as a key player for abrupt climatic changes (e.g. Heinrich Stadials) during the Pleistocene is relatively well constrained. However, the timing of the onset of a „modern" North Atlantic Deepwater (NADW) formation are still debated: Recent estimates range from the middle Miocene to the Early Eocene [Davies et al., 2001, Stoker et al., 2005, Hohbein et al., 2012] and are mainly based on the seismic interpretation contourite drifts. Another understudied aspect of the AMOC is its behavior during climatic variations on orbital time scales and under different climatic boundary conditions (icehouse vs hothouse). IODP Expedition 342 drilled carbonate-rich sequences from sediment drifts offshore Newfoundland that cover the middle Eocene with high sedimentation rates ( 3 cm/ kyr). We present a 2 Myr long stable carbon and oxygen isotope record of benthic foraminifera nuttalides truempyi spanning magnetochron C20r in unprecedented resolution (< 2 kyr/sample), sufficient to resolve dominant Milankovic frequencies. Data from Site U1410 (3400m water depth) indicate an active overturning in the North Atlantic during the middle Eocene, sensitively responding to variations in Earth's axial tilt (obliquity). Experiments in a GCM (ECHAM5 - MPIOM, OASIS 3 coupled) indicate that temperatures in the Norwegian and Labrador Sea could have allowed for sea ice during winter in a minimal obliquity setting (22.1°), whereas temperatures are too high to allow sea ice formation under maximum obliquity (24.5°) winter conditions depending on Eocene boundary conditions (atmospheric CO2 concentration). We hypothesize that the combined effect of low temperatures in the sinking areas, an increased latitudinal SST gradient seasonal, and the potential formation of sea ice during obliquity minima results in an initial shallow NADW formation during the middle Eocene. This hypothesis is in accordance with the astronomical imprint

  2. Late Eocene diatomite from the Peruvian coastal desert, coastal upwelling in the eastern Pacific, and Pacific circulation before the terminal Eocene event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marty, R.; Dunbar, R.; Martin, J.B.

    1988-09-01

    Previously undocumented late Eocene diatomaceous sediments are present near Fundo Desbarrancado (FD) in southern Peru. These sediments are similar to Miocene diatomite from the same area but, unlike the Miocene diatomite, the FD sediments contain cherty layers, are enriched in CaCO/sub 3/, have a diverse and abundant radiolarian fauna, and possess varved-massive and millimeter- and meter-scale biogenic-terrigenous alternations. The FD sediments are part of an Eocene sequence that includes the clastic sediments of the Paracas Formation, and they are correlative to the Chira Formation of northern Peru. The Paleogene biogenic sediments of western South America show that coastal upwelling developedmore » in the eastern Pacific before the latest Eocene, argue for the existence of a proto-Humboldt current at this time, and suggest that the terminal Eocene event was the culmination of gradual changes and not a catastrophic event at the Eocene/Oligocene boundary.« less

  3. Modeling the response of precipitation oxygen stable isotopes to the Eocene climate changes over Asia

    NASA Astrophysics Data System (ADS)

    Botsyun, Svetlana; Sepulchre, Pierre; Donnadieu, Yannick; Risi, Camille; Caves, Jeremy K.; Licht, Alexis

    2017-04-01

    The Himalayas and the Tibetan Plateau have become a focus of the Earth sciences because they provide a classical example of tectonics-climate interactions. Present-day high elevations of the Himalayas and the Tibetan Plateau is the ultimate result of the collision between Indian and Asia plates during the Cenozoic, however, the precise uplift history of the Himalayas and the Tibetan Plateau is still uncertain, especially for the early Cenozoic. For the purpose of paleoelevations reconstructions, multiple methods are available, but stable oxygen paleoaltimetry is considered to be one of the most efficient techniques and has been widely applied in Asia. However, paleoelevations studies using stable oxygen presume that climatic processes control δ18O in a uniform way through time. We use climate modeling tools in order to investigate Eocene climate and δ18O over Asia and its controlling factors. The state-of-the-art general circulation model embedded with isotopes LMDz-iso has been applied together with Eocene boundary conditions and varied Eocene topography of the Himalayas and Tibet. The results of our simulations suggest that topography change has a minor direct impact on δ18O over the Himalayas and the Tibetan Plateau. On the contrary, Eocene δ18O in precipitation is primarily controlled by the atmosphere circulation and global temperature changes. Based on our numerical experiments, we show that despite persistence of large-scale atmospheric flows such as the monsoons and westerlies, Eocene δ18O over the region is different from those of the present-day due to global higher temperatures, southward shift to a zone of strong convection and increased role of westerlies moisture source. We show that the Rayleigh distillation is not applicable for the Eocene Himalayas and conclude that the assumption about the stationarity of δ18O-elevation relationship through geological time is inaccurate and misleading for paleoelevation estimates. We also show that Eocene

  4. Multi-proxy reconstructions of hydrologic change during the Eocene-Oligocene transition in the North American Interior

    NASA Astrophysics Data System (ADS)

    Eley, Y.; Hren, M. T.

    2016-12-01

    The dramatic shift from a 'greenhouse' to an 'icehouse' world that occurred during the Eocene-Oligocene transition (EOT, 34-33.5 Ma) is associated with changes in atmospheric and oceanic circulation patterns, extinction events in both marine and terrestrial ecosystems, and the establishment of a continental-scale ice sheet on Antarctica. Terrestrial records of the EOT, however, show limited consensus regarding the intensity and impact of this transition, complicating our understanding of how terrestrial hydrology responds to climatic change of this magnitude. Stable isotopes of fossil bones and teeth from the White River Group (WRG) in Nebraska have been interpreted to show an 8 °C decrease in mean annual temperatures across the EOT, with an increase in seasonality, however these studies find no evidence for accompanying changes in aridity. Conversely, other studies have inferred increased aridity in the early Oligocene based on changes in the δ18O and δ13C values of mammalian tooth enamel sampled from the same location. Some of this ambiguity is likely to stem from the difficulty in separating the influence of factors such as temperature, water availability and atmospheric circulation patterns on the δ18O composition of ungulate tooth enamel. We present paired leaf wax biomarker and clay hydrogen isotope data from the WRG to produce a new multi-proxy record of hydrological change and accompanying ecosystem shifts through the EOT in the North American interior. Hydrogen isotopes of clay minerals show a negative shift of <15‰ from the late Eocene through early Oligocene, while in contrast leaf wax n-alkanes record a negative shift in excess of 50‰, in tandem with a positive change in average chain length. We infer an increase in aridity from these data, with an associated potential shift in vegetation cover towards more savannah-style plant species as the climate became drier during the transition into the Oligocene. These data provide new constraints on the

  5. Paleocene-Eocene and Plio-Pleistocene sea-level changes as "species pumps" in Southeast Asia: Evidence from Althepus spiders.

    PubMed

    Li, Fengyuan; Li, Shuqiang

    2018-05-17

    Sea-level change has been viewed as a primary driver in the formation of biodiversity. Early studies confirmed that Plio-Pleistocene sea-level changes led to the isolation and subsequent genetic differentiation of Southeast (SE) Asian organisms over short geological timescales. However, long-time consequences of sea-level fluctuations remain unclear. Herein, we analyze the evolutionary history of Althepus (spiders) whose distribution encompasses Indo-Burma and the Sunda shelf islands to understand how sea-level changes over shallow and deep timescales effected their history. Our integrative analyses, including phylogeny, divergence times, ancestral area reconstruction and diversification dynamics, reveal an intricate pattern of diversification, probably triggered by sea-level fluctuations during the Paleocene-Eocene and Plio-Pleistocene. The timing of one early divergence between the Indo-Burmese and Sundaic species coincides with late Paleocene and early Eocene high global sea levels, which induced the formation of inland seaways in the Thai-Malay Peninsula. Subsequent lowered sea levels could have provided a land bridge for its dispersal colonization across the Isthmus of Kra. Analyses suggest that Plio-Pleistocene sea-level rises contributed to recent divergence of many species. Thus, our findings cannot reject the hypothesis that sea-level changes during the Paleocene-Eocene and Plio-Pleistocene played a major role in generating biodiversity in SE Asia; sea-level changes can act as "species pumps". Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Post-Paleogene (post-Middle Eocene-pre-Miocene) Geodynamic evolution of the Upper Cretaceous-Paleogene Basins in Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Rojay, Bora

    2017-04-01

    Central Anatolia is one of the key areas on the evolution of Cretaceous-Paleogene Tethys where stratigraphy of the region is well studied. However not well linked with tectonics. The so-called "Ankara Mélange" belt (AOM) and the basins on top are important elements in the understanding of the İzmir-Ankara-Erzincan suture belt (İAES) evolution in Anatolia (Turkey) and in the evolution of Tethys in minor Asia (Turkey). Some of the basins are directly situated on top of the tectonic slices of the accretionary prism (IAES). However, some are not tectonically well explained as in the case of Haymana basin. The southern continental fragments (eg. Kütahya-Bolkardaǧ and Kırşehir blocks from Gondwana) are approaching to northern continents (Pontides of Lauriasia) where basins like Haymana, Alçı, Kırıkkale and Orhaniye extensional basins are evolved in between the closing margins of two continents. Haymana basin is an extensional basin developed under contractional regime on top of both northward subducting oceanic fragments and an approaching fragments of southern continents. Paleogene (end of Eocene) is the time where the Seas were retreated to S-SE Anatolia leaving a continental setting in Anatolia during Oligocene-Miocene. The slip data gathered from the faults cross-cutting the Paleogene Units and the fabric from Cretaceous mélanges depicts a NNW-SSE to NNE-SSW compressional stress regime operated during post-Eocene-pre-Miocene period. Lately the slip surfaces were overprinted by post-Pliocene normal faulting. Key words: fault slip data, Paleogene, NNW-SSE compression, Anatolia.

  7. Late Cretaceous-Cenozoic subduction-collision history of the Southern Neotethys: new evidence from the Çağlayancerit area, SE Turkey

    NASA Astrophysics Data System (ADS)

    Akıncı, Ahmet Can; Robertson, Alastair H. F.; Ünlügenç, Ulvi Can

    2016-01-01

    Evidence of the subduction-collision history of the S Neotethys is well exposed in the frontal part of the SE Anatolian thrust belt and the adjacent Arabian continental margin. The foreland succession in the study area begins with Eocene shelf carbonates, ranging from shallow marine to deeper marine, without sedimentary input from the Tauride continent to the north. After a regional hiatus (Oligocene), sedimentation resumed during the Early Miocene with terrigenous gravity-flow deposition in the north (Lice Formation) and shallow-marine carbonates further south. Clastic detritus was derived from the Tauride continent and oceanic accretionary material. The base of the overriding Tauride allochthon comprises ophiolite-derived debris flows, ophiolite-related mélange and dismembered ophiolitic rocks. Above this, the regional-scale Bulgurkaya sedimentary mélange (an olistostrome) includes blocks and dismembered thrust sheets of metamorphic rocks, limestone and sandstone, which include Late Cretaceous and Eocene foraminifera. The matrix is mainly strongly deformed Eocene-Oligocene mudrocks, hemipelagic marl and sandstone turbidites. The thrust stack is topped by a regionally extensive thrust sheet (Malatya metamorphic unit), which includes greenschist facies marble, calcschist, schist and phyllite, representing Tauride continental crust. Beginning during the Late Mesozoic, the S Neotethys subducted northwards beneath a backstop represented by the Tauride microcontinent (Malatya metamorphic unit). Ophiolites formed within the S Neotethys and accreted to the Tauride active margin. Large-scale sedimentary mélange developed along the Tauride active margin during Eocene-Oligocene. On the Arabian margin, a sedimentary hiatus and tilting (Oligocene) is interpreted to record initial continental collision. The Early Miocene terrigenous gravity flows represent a collision-related flexural foreland basin. Southward overthrusting of the Tauride allochthon took place during Early

  8. Geological Development of the Izu-Bonin Forearc Since the Eocene Based on Biostratigraphic, Rock Magnetic, and Sediment Provenance Observations from IODP Expedition 352 Drill Cores

    NASA Astrophysics Data System (ADS)

    Petronotis, K. E.; Robertson, A.; Kutterolf, S.; Avery, A.; Baxter, A.; Schindlbeck, J. C.; Wang, K. L.; Acton, G.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 352 recovered early Oligocene to recent sediments above Eocene igneous basement at 4 sites in the Izu-Bonin Forearc. The sites were selected to investigate the forearc region since subduction initiation in the Eocene, with Sites U1439 and U1442 being cored into the upper trench slope and Sites U1440 and U1441 into the lower trench slope. Postcruise studies of biostratigraphy, sediment chemistry, tephra composition and chronology and magnetic properties, along with observations from prior coring help constrain the regional geological development. Volcanic activity in the area, as inferred from its influence on sediment composition, has varied between long periods of activity and quiescence. Combined whole-rock sediment chemistry and tephra compositions suggest that during the Oligocene to earliest Miocene ( 30-22 Ma) tuffaceous input of predominantly dacitic composition was mainly derived from the intra-oceanic Izu-Bonin Arc. The early Miocene interval ( 22-15 Ma) lacks tuffaceous input, as supported by rock magnetic data. During this period, the forearc subsided beneath the carbonate compensation depth (CCD), as evidenced by radiolarian-bearing mud and metal-rich silty clay. This was followed by input of tephra with bimodal felsic and mafic compositions from the Izu-Bonin Arc from 15 to 5 Ma. Middle Miocene to Quaternary time was characterized by increased carbonate preservation, coupled with abundant, predominantly felsic tephra input, which is chemically indicative of a Japan continental arc source (Honshu), with additional chemically distinctive input from the Izu-Bonin Arc. Extending back to 32 Ma, tephra layers can be correlated between the upper-slope sites, extrapolated to the less well-dated lower-slope sites, and further correlated with onland Japanese tephra (Kutterolf et al., 2016; Goldschmidt Conference). Overall, the new results provide an improved understanding of the regional tectonic evolution.

  9. Pulses of middle Eocene to earliest Oligocene climatic deterioration in southern California and the Gulf Coast

    USGS Publications Warehouse

    Frederiksen, N.O.

    1991-01-01

    A general deterioration of terrestrial climate took place during middle Eocene to earliest Oligocene time in southern California and in the Gulf Coast. Pollen data, calibrated by calcareous nannofossil ages, indicate four events of rapid floral and/or vegetational change among angiosperms during this time interval. The events can be correlated between the two regions even though these regions lay within different floristic provinces, and each event of angiosperm change is interpreted to indicate a pulse of rapid climatic shift. The most distinct of these events is the Middle Eocene Diversity Decline, which resulted from a peak in last appearances (extinctions, emigrations) centered in the early Bartonian. -from Author

  10. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry.

    PubMed

    Evans, David; Sagoo, Navjit; Renema, Willem; Cotton, Laura J; Müller, Wolfgang; Todd, Jonathan A; Saraswati, Pratul Kumar; Stassen, Peter; Ziegler, Martin; Pearson, Paul N; Valdes, Paul J; Affek, Hagit P

    2018-02-06

    Past greenhouse periods with elevated atmospheric CO 2 were characterized by globally warmer sea-surface temperatures (SST). However, the extent to which the high latitudes warmed to a greater degree than the tropics (polar amplification) remains poorly constrained, in particular because there are only a few temperature reconstructions from the tropics. Consequently, the relationship between increased CO 2 , the degree of tropical warming, and the resulting latitudinal SST gradient is not well known. Here, we present coupled clumped isotope (Δ 47 )-Mg/Ca measurements of foraminifera from a set of globally distributed sites in the tropics and midlatitudes. Δ 47 is insensitive to seawater chemistry and therefore provides a robust constraint on tropical SST. Crucially, coupling these data with Mg/Ca measurements allows the precise reconstruction of Mg/Ca sw throughout the Eocene, enabling the reinterpretation of all planktonic foraminifera Mg/Ca data. The combined dataset constrains the range in Eocene tropical SST to 30-36 °C (from sites in all basins). We compare these accurate tropical SST to deep-ocean temperatures, serving as a minimum constraint on high-latitude SST. This results in a robust conservative reconstruction of the early Eocene latitudinal gradient, which was reduced by at least 32 ± 10% compared with present day, demonstrating greater polar amplification than captured by most climate models.

  11. Revision of the Wind River faunas, early Eocene of central Wyoming. IX - The oldest known hystricomorphous rodent (Mammalia: Rodentia)

    NASA Technical Reports Server (NTRS)

    Dawson, Mary R.; Krishtalka, Leonard; Stucky, Richard K.

    1990-01-01

    The rostral portion of the skull of a new genus and species of rodent, Armintomys tullbergi, from the earliest middle Eocene of the Wind River Basin (Wyoming) provides the geologically oldest known record of the hystricomorphous zygomasseteric structure. Armintomys also preserves the oldest known occurrence of incisor enamel that is transitional from pauciserial to uniserial. Other dental characters include: anteriorly grooved incisor, small premolars, and relatively primitive sciuravidlike molars. Analysis of this unique combination of characters implies that Armintomys is the oldest known myomorph rodent and the only known representative of a new family. Armintomyidae, which is referred, with question, to the myomorph superfamily Dipodoidea. Armintomys is more primitive, especially in premolar retention and structure, than the Bridgerian zapodid Elymys from Nevada, but adds to evidence from the latter for an early origin and radiation of dipodoid rodents.

  12. The Eocene Thermal Maximum 2 (ETM-2) in a terrestrial section of the High Arctic: identification by U-Pb zircon ages of volcanic ashes and carbon isotope records of coal and amber (Stenkul Fiord, Ellesmere Island, Canada)

    NASA Astrophysics Data System (ADS)

    Reinhardt, Lutz; von Gosen, Werner; Piepjohn, Karsten; Lückge, Andreas; Schmitz, Mark

    2017-04-01

    The Stenkul Fiord section on southern Ellesmere Island reveals largely fluvial clastic sediments with intercalated coal seams of the Margaret Formation of Late Paleocene/Early Eocene age according to palynology and vertebrate remains. Field studies in recent years and interpretative mapping of a high-resolution satellite image of the area southeast of Stenkul Fiord revealed that the clastic deposits consist of at least four sedimentary units (Units 1 to 4) separated by unconformities. Several centimeter-thin volcanic ash layers, recognized within coal layers and preserved as crandallite group minerals (Ca-bearing goyazite), suggest an intense volcanic ash fall activity. Based on new U-Pb zircon ages (ID-TIMS) of three ash layers, the volcanic ash fall took place at 53.7 Ma in the Early Eocene, i.e. within the Eocene Thermal Maximum 2 (ETM-2) hyperthermal. The ETM-2 is bracketed further by discrete negative excursions of carbon isotope records of both bulk coal and amber droplets collected from individual coal layers of the section. The identification of the ETM-2 hyperthermal provides a stratigraphic tie-point in the terrestrial Margaret Formation sediments enabling assignment of the lowermost sedimentary Unit 1 to the Late Paleocene-earliest Eocene, Unit 2 to the Early Eocene, whereas Unit 3 and 4 might be Early to Middle Eocene in age. Thus the timing of syn-sedimentary movements of the Eurekan deformation causal for the observed unconformities in the section can be studied and the positions of further hyperthermals like the PETM or the ETM-3 in the section can be identified in the future. The integration of structural studies, new U-Pb zircon ages, and different carbon isotope records provides a new stratigraphic framework for further examination of the unique Early Eocene flora and fauna preserved in this high-latitude outcrop.

  13. Eocene high-latitude temperature gradients over time and space based on d18O values of fossil shark teeth

    NASA Astrophysics Data System (ADS)

    Zeichner, S. S.; Kim, S.; Colman, A. S.

    2015-12-01

    Early-Mid Eocene (56.0-33.9Mya) is characterized by a temperate Antarctic climate and shallower latitudinal temperature gradients than those in present day. The warmer waters off the coast of the Antarctic Peninsula provided suitable habitats for taxa (i.e., sharks) that live today at lower latitudes. Stable isotope analysis of Eocene shark teeth provides a proxy to understand high latitude temperature gradients. However, shark ecology, in particular migration and occupation of tidal versus pelagic habitats, must be considered in the interpretation of stable isotope data. In this study, we analyze d18OPO4 values from the enameloid of Striatolamia (synonymized with Carcharias) shark teeth from the La Meseta formation (Seymour Island, Antarctica) to estimate paleotemperature in Early-Mid Eocene Antarctica, and assess the impact of ecology versus environmental signals on d18OPO4 values. We compare the ranges and offsets between our measured shark tooth d18OPO4 and published bivalve d18OCO3 values to test whether shark teeth record signals of migration across latitudinal temperature gradients, or instead reflect seasonal and long-term temporal variation across La Meseta stratigraphic units.

  14. Antarctic glacial history from numerical models and continental margin sediments

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Cooper, A. K.; Huybrechts, P.

    1999-01-01

    The climate record of glacially transported sediments in prograded wedges around the Antarctic outer continental shelf, and their derivatives in continental rise drifts, may be combined to produce an Antarctic ice sheet history, using numerical models of ice sheet response to temperature and sea-level change. Examination of published models suggests several preliminary conclusions about ice sheet history. The ice sheet's present high sensitivity to sea-level change at short (orbital) periods was developed gradually as its size increased, replacing a declining sensitivity to temperature. Models suggest that the ice sheet grew abruptly to 40% (or possibly more) of its present size at the Eocene-Oligocene boundary, mainly as a result of its own temperature sensitivity. A large but more gradual middle Miocene change was externally driven, probably by development of the Antarctic Circumpolar Current (ACC) and Polar Front, provided that a few million years' delay can be explained. The Oligocene ice sheet varied considerably in size and areal extent, but the late Miocene ice sheet was more stable, though significantly warmer than today's. This difference probably relates to the confining effect of the Antarctic continental margin. Present-day numerical models of ice sheet development are sufficient to guide current sampling plans, but sea-ice formation, polar wander, basal topography and ice streaming can be identified as factors meriting additional modelling effort in the future.

  15. Eocene-Miocene igneous activity in Provence (SE France): 40Ar/39Ar data, geochemical-petrological constraints and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Lustrino, Michele; Fedele, Lorenzo; Agostini, Samuele; Di Vincenzo, Gianfranco; Morra, Vincenzo

    2017-09-01

    Provence (SE France) was affected by two main phases of sporadic igneous activity during the Cenozoic. New 40Ar/39Ar laser step-heating data constrain the beginning of the oldest phase to late Eocene (40.82 ± 0.73 Ma), with activity present until early Miocene ( 20 Ma). The products are mainly andesites, microdiorites, dacites and basaltic andesites mostly emplaced in the Agay-Estérel area. Major- and trace-element constraints, together with Srsbnd Ndsbnd Pb isotopic ratios suggest derivation from a sub-continental lithosphere mantle source variably modified by subduction-related metasomatic processes. The compositions of these rocks overlap those of nearly coeval (emplaced 38-15 Ma) late Eocene-middle Miocene magmatism of Sardinia. The genesis of dacitic rocks cannot be accounted for by simple fractional crystallization alone, and may require interaction of evolved melts with lower crustal lithologies. The youngest phase of igneous activity comprises basaltic volcanic rocks with mildly sodic alkaline affinity emplaced in the Toulon area 10 Myr after the end of the previous subduction-related phase. These rocks show geochemical and isotopic characteristics akin to magmas emplaced in intraplate tectonic settings, indicating a sub-lithospheric HiMu + EM-II mantle source for the magmas, melting approximately in the spinel/garnet-lherzolite transition zone. New 40Ar/39Ar laser step-heating ages place the beginning of the volcanic activity in the late Miocene-Pliocene (5.57 ± 0.09 Ma). The emplacement of "anorogenic" igneous rocks a few Myr after rocks of orogenic character is a common feature in the Cenozoic districts of the Central-Western Mediterranean area. The origin of such "anorogenic" rocks can be explained with the activation of different mantle sources not directly modified by subduction-related metasomatic processes, possibly located in the sub-lithospheric mantle, and thus unrelated to the shallower lithospheric mantle source of the "orogenic" magmatism.

  16. Tracing climatic conditions during the deposition of late Cretaceous-early Eocene phosphate beds in Morocco by geochemical compositions of biogenic apatite fossils

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Yans, J.; Ulianov, A.; Amaghzaz, M.

    2012-04-01

    Morocco's Western Atlantic coast was covered by shallow seas during the late Cretaceous-early Eocene when large amount of phosphate rich sediments were deposited. This time interval envelops a major part of the last greenhouse period and gives the opportunity to study the event's characteristics in shallow water settings. These phosphate deposits are extremely rich in vertebrate fossils, while other types of fossils are rare or often poorly preserved. Hence the local stratigraphy is based on the most abundant marine vertebrate fossils, on the selachian fauna (sharks and rays). Our geochemical investigations were also carried out on these remains, though in some cases frequently found coprolites were involved as well. The main goal of our study was to test whether stable isotope compositions (δ18OPO4, δ13C) of these fossils reflect any of the hyperthermal events and/or the related perturbations in the carbon cycle during the early Paleogene (Lourens et al. 2005) and whether these geochemical signals can be used to refine the local stratigraphy. Additionally, the samples were analyzed for trace element composition in order to better assess local taphonomy and burial conditions. The samples came from two major phosphate regions, the Ouled Abdoun and the Ganntour Basins and they were collected either directly on the field during excavations (Sidi Chennane) or were obtained from museum collections with known stratigraphical position (Sidi Daoui, Ben Guerrir). The phosphate oxygen isotopic compositions of shark teeth display large range across the entire series (18.5-22.4 ) which can partly be related to the habitat of sharks. For instance the genus Striatolamnia often yielded the highest δ18O values indicating possible deep water habitat. Despite the large variation in δ18O values, a general isotope trend is apparent. In the Maastrichtian after a small negative shift, the δ18O values increase till the Danian from where the trend decrease till the Ypresian. The

  17. Magmatismes tholéiitique et alcalin des demi-grabens crétacés de Mayo Oulo Léré et de Babouri Figuil (Nord du Cameroun Sud du Tchad) en domaine d'extension continentaleTholeiitic and alkaline magmatisms of the Early-Cretaceous half-grabens of Mayo Oulo Léré and Babouri Figuil (Northern Cameroon Southern Chad) in extensional structural settings

    NASA Astrophysics Data System (ADS)

    Ngounouno, Ismaı̈la; Déruelle, Bernard; Guiraud, René; Vicat, Jean-Paul

    2001-08-01

    Two major dykes of basalts, microgabbros, olivine dolerites (continental tholeiites), and of camptonites and benmoreites (alkaline rocks) are respectively exposed in the Mayo Oulo-Léré and Babouri-Figuil Early Cretaceous half-grabens (Northern Cameroon-Southern Chad). The tholeiites were probably derived from an asthenospheric source in connection with a lithospheric thinning occurring between Santonian and Eocene times. In contrast, the alkaline rocks may be derived from a deeper metasomatized mantle source.

  18. The Eocene-Oligocene sedimentary record in the Chesapeake Bay impact structure: Implications for climate and sea-level changes on the western Atlantic margin

    USGS Publications Warehouse

    Schulte, P.; Wade, B.S.; Kontny, A.; ,

    2009-01-01

    A multidisciplinary investigation of the Eocene-Oligocene transition in the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville core from the Chesapeake Bay impact basin was conducted in order to document environmental changes and sequence stratigraphic setting. Planktonic foraminifera and calcareous nannofossil biostratigraphy indicate that the Eyreville core includes an expanded upper Eocene (Biozones E15 to E16 and NP19/20 to NP21, respectively) and a condensed Oligocene-Miocene (NP24-NN1) sedimentary sequence. The Eocene-Oligocene contact corresponds to a =3-Ma-long hiatus. Eocene- Oligocene sedimentation is dominated by great diversity and varying amounts of detrital and authigenic minerals. Four sedimentary intervals are identified by lithology and mineral content: (1) A 30-m-thick, smectite- and illite-rich interval directly overlies the Exmore Formation, suggesting long-term reworking of impact debris within the Chesapeake Bay impact structure. (2) Subsequently, an increase in kaolinite content suggests erosion from soils developed during late Eocene warm and humid climate in agreement with data derived from other Atlantic sites. However, the kaolinite increase may also be explained by change to a predominant sediment input from outside the Chesapeake Bay impact structure caused by progradation of more proximal facies belts during the highstand systems tract of the late Eocene sequence E10.Spectral analysis based on gamma-ray and magnetic susceptibility logs suggests infl uence of 1.2 Ma low-amplitude oscillation of the obliquity period during the late Eocene. (3) During the latest Eocene (Biozones NP21 and E16), several lithological contacts (clay to clayey silt) occur concomitant with a prominent change in the mineralogical composition with illite as a major component: This lithological change starts close to the Biozone NP19/20-NP21 boundary and may correspond to sequence boundary E10-E11 as observed in

  19. Cenozoic global sea level, sequences, and the New Jersey transect: Results from coastal plain and continental slope drilling

    USGS Publications Warehouse

    Miller, K.G.; Mountain, Gregory S.; Browning, J.V.; Kominz, M.; Sugarman, P.J.; Christie-Blick, N.; Katz, M.E.; Wright, J.D.

    1998-01-01

    The New Jersey Sea Level Transect was designed to evaluate the relationships among global sea level (eustatic) change, unconformity-bounded sequences, and variations in subsidence, sediment supply, and climate on a passive continental margin. By sampling and dating Cenozoic strata from coastal plain and continental slope locations, we show that sequence boundaries correlate (within ??0.5 myr) regionally (onshore-offshore) and interregionally (New Jersey-Alabama-Bahamas), implicating a global cause. Sequence boundaries correlate with ??18O increases for at least the past 42 myr, consistent with an ice volume (glacioeustatic) control, although a causal relationship is not required because of uncertainties in ages and correlations. Evidence for a causal connection is provided by preliminary Miocene data from slope Site 904 that directly link ??18O increases with sequence boundaries. We conclude that variation in the size of ice sheets has been a primary control on the formation of sequence boundaries since ~42 Ma. We speculate that prior to this, the growth and decay of small ice sheets caused small-amplitude sea level changes (<20 m) in this supposedly ice-free world because Eocene sequence boundaries also appear to correlate with minor ??18O increases. Subsidence estimates (backstripping) indicate amplitudes of short-term (million-year scale) lowerings that are consistent with estimates derived from ??18O studies (25-50 m in the Oligocene-middle Miocene and 10-20 m in the Eocene) and a long-term lowering of 150-200 m over the past 65 myr, consistent with estimates derived from volume changes on mid-ocean ridges. Although our results are consistent with the general number and timing of Paleocene to middle Miocene sequences published by workers at Exxon Production Research Company, our estimates of sea level amplitudes are substantially lower than theirs. Lithofacies patterns within sequences follow repetitive, predictable patterns: (1) coastal plain sequences consist

  20. Atlantic continental margin of the United States

    USGS Publications Warehouse

    Grow, John A.; Sheridan, Robert E.; Palmer, A.R.

    1982-01-01

    The objective of this Decade of North American Geology (D-NAG) volume will be to focus on the Mesozoic and Cenozoic evolution of the U.S. Atlantic continental margin, including the onshore coastal plain, related onshore Triassic-Jurassic rift grabens, and the offshore basins and platforms. Following multiple compressional tectonic episodes between Africa and North America during the Paleozoic Era that formed the Appalachian Mountains, the Mesozoic and Cenozoic Eras were dominated by tensional tectonic processes that separated Africa and North America. Extensional rifting during Triassic and Early Jurassic times resulted in numerous tensional grabens both onshore and offshore, which filled with nonmarine continental red beds, lacustrine deposits, and volcanic flows and debris. The final stage of this breakup between Africa and North America occurred beneath the present outer continental shelf and continental slope during Early or Middle Jurassic time when sea-floor spreading began to form new oceanic crust and lithosophere between the two continents as they drifted apart. Postrift subsidence of the marginal basins continued in response to cooling of the lithosphere and sedimentary loading.Geophysical surveys and oil-exploration drilling along the U.S. Atlantic continental margin during the past 5 years are beginning to answer many questions concerning its deep structure and stratigraphy and how it evolved during the rifting and early sea-floor-spreading stages of the separation of this region from Africa. Earlier geophysical studies of the U.S. continental margin used marine refraction and submarine gravity measurements. Single-channel seismic-reflection, marine magnetic, aeromagnetic, and continuous gravity measurements became available during the 1960s.

  1. Stratigraphic response and mammalian dispersal during initial India-Asia collision: Evidence from the Ghazij Formation, Balochistan, Pakistan

    NASA Astrophysics Data System (ADS)

    Clyde, William C.; Khan, Intizar H.; Gingerich, Philip D.

    2003-12-01

    Initial continental collision between India and Asia is thought to have caused significant changes to global climate and biota, yet its timing and biogeographic consequences are uncertain. Structural and geophysical evidence indicates initial collision during the early Paleogene, but sedimentary evidence of this has been controversial owing to the intense deformation and metamorphism along the suture zone. Modern orders of mammals that appeared abruptly on northern continents coincident with the global warming event marking the Paleocene-Eocene boundary are hypothesized to have originated on the Indian subcontinent, but no relevant paleontological information has been available to test this idea. Here we present new paleomagnetic, sedimentologic, and paleontologic evidence to show that the lower Eocene Ghazij Formation of western Pakistan records continental sedimentation and mammalian dispersal associated with initial India-Asia collision. Our results are consistent with the initial collision occurring near the Paleocene-Eocene boundary, but modern orders of mammals appeared later in Indo-Pakistan and thus did not likely originate on the Indian subcontinent.

  2. Eocene Hyperthermal Event Offers Insight Into Greenhouse Warming

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Bralower, Timothy J.; Delaney, Margaret L.; Dickens, Gerald R.; Kelly, Daniel C.; Koch, Paul L.; Kump, Lee R.; Meng, Jin; Sloan, Lisa C.; Thomas, Ellen; Wing, Scott L.; Zachos, James C.

    2006-04-01

    What happens to the Earth's climate, environment, and biota when thousands of gigatons of greenhouse gases are rapidly added to the atmosphere? Modern anthropogenic forcing of atmospheric chemistry promises to provide an experiment in such change that has not been matched since the early Paleogene, more than 50 million years ago (Ma),when catastrophic release of carbon to the atmosphere drove abrupt, transient, hyperthermal events. Research on the Paleocene-Eocene Thermal Maximum (PETM)-the best documented of these events, which occurred about 55 Ma-has advanced significantly since its discovery 15 years ago. During the PETM, carbon addition to the oceans and atmosphere was of a magnitude similar to that which is anticipated through the 21st century. This event initiated global warming, biotic extinction and migration, and fundamental changes in the carbon and hydrological cycles that transformed the early Paleogene world.

  3. Clay mineral assemblages of terrestrial records (Xining Basin, China) during the Eocene-Oligocene climate Transition (EOT) and its environmental implications

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Guo, Z.

    2013-12-01

    The Eocene-Oligocene Transition (EOT) between ~34.0 and 33.5 million years ago, where global climate cooled from 'greenhouse' to 'icehouse' at ~33.5 Ma ago, is one of the great events during Cenozoic climate deterioration. In contrast to the marine records of the EOT, significantly less research has focused on the continental climate change during this time, particularly in inner Asia. We present a comprehensive study of the upper Eocene to lower Oligocene succession with regular alternations of laterally continuous gypsum/gypsiferous layers and red mudstone beds in Tashan section of Xining Basin, which is located at the northeastern margin of the Tibetan Plateau. Clay minerals, which were extracted from this succession, were analyzed qualitatively and semi-quantitatively by using X-ray differaction (XRD). Base on detailed magnetostratigraphic time control, clay mineral compositions of this succession (33.1-35.5 Ma) are compared with open ocean marine records and Northern Hemisphere continental records to understand the process and characteristics of Asian climate change before, during and after EOT. Our results indicate that illite is the dominant clay mineral with less chlorite and variable smectite. Multi-parameter evidence suggests that the source areas of detrital inputs in Tashan have not changed and climate is the main control for the composition of the clay fraction. The characteristics of clay mineral concentrations suggest warm and humid fluctuations with cold and dry conditions and intense of seasonality during ~35.5-34.0 Ma in inner Asian. This changed to cold and dry condition at ~34 Ma and remained so from ~34-33.1 Ma. The comparisons between continental and marine records indicate that the climate changes experienced in the Xining basin region are more consistent with Northern Hemisphere rather than open oceans records. This indicates that paleoclimate changes for inner Asian before, during and after EOT was not controlled by Antarctic ice growth

  4. Calcareous nannofossil assemblage changes across the Paleocene-Eocene thermal maximum: Evidence from a shelf setting

    USGS Publications Warehouse

    Self-Trail, Jean M.; Powars, David S.; Watkins, David K.; Wandless, Gregory A.

    2012-01-01

    Biotic response of calcareous nannoplankton to abrupt warming across the Paleocene/Eocene boundary reflects a primary response to climatically induced parameters including increased continental runoff of freshwater, global acidification of seawater, high sedimentation rates, and calcareous nannoplankton assemblage turnover. We identify ecophenotypic nannofossil species adapted to low pH conditions (Discoaster anartios, D. araneus, Rhomboaster spp.), excursion taxa adapted to the extremely warm climatic conditions (Bomolithus supremus and Coccolithus bownii), three species of the genus Toweius (T. serotinus, T. callosus, T. occultatus) adapted to warm, rather than cool, water conditions, opportunists adapted to high productivity conditions (Coronocyclus bramlettei, Neochiastozygus junctus), and species adapted to oligotropic and/or cool‐water conditions that went into refugium during the PETM (Zygrablithus bijugatus, Calcidiscus? parvicrucis and Chiasmolithus bidens). Discoaster anartios was adapted to meso- to eutrophic, rather than oligotrophic, conditions. Comparison of these data to previous work on sediments deposited on shelf settings suggests that local conditions such as high precipitation rates and possible increase in major storms such as hurricanes resulted in increased continental runoff and high sedimentation rates that affected assemblage response to the PETM.

  5. Model Simulations of the Global Carbon and Sulfur Cycles: Implications for the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.; Schrag, D. P.

    2004-12-01

    Extreme global warmth and an abrupt negative carbon isotope excursion during the Paleocene-Eocene Thermal Maximum (PETM) have been attributed to a rapid addition of isotopically depleted carbon to the ocean-atmosphere system. Potential carbon sources include the abrupt release of 1000-2000 Gt C as methane hydrate (\\delta13C ~-60\\permil) from sediments on the continental slope (Dickens et al., 1995) and the oxidation of 8000-9000 Gt of organic carbon (\\delta13C ~-25\\permil) in rampant global wildfires (Kurtz et al., 2003). Using a simple geochemical model of the global carbon and sulfur cycles, we investigate whether these hypotheses are consistent with estimates of climate warming during the PETM by considering the effects of atmospheric composition and climate in the Paleocene and feedbacks driven by changes in sulfur cycling and seawater chemistry. Modest increases in atmospheric CO2 (70-150 ppm) associated with methane hydrate release cannot, without additional feedbacks in the climate system, account for a 5-6° C increase in global sea surface temperature during the PETM. In contrast, a significant increase in atmospheric CO2 (600-700 ppm) is observed following the oxidation of 8000-9000 Gt of organic carbon. However, constraints on the size and extent of the Paleocene terrestrial carbon pool and the absence of geologic evidence indicative of vast wildfires argue against a global conflagration as an important source of depleted carbon. Instead, we interpret the PETM and its associated negative carbon isotope excursion as representing the oxidation of 8000-9000 Gt C as organic matter in shallow marine and near shore terrestrial sediments following the retreat of major epicontinental seaways in the Paleocene. This hypothesis is also consistent with large changes in the sulfur cycle in the early Eocene inferred from the \\delta34S of seawater sulfate. References: Dickens G.R., et al., (1995) Paleoceanography, 10, 965-971. Kurtz, A.C., et al., (2003

  6. Humidity estimate for the middle Eocene Arctic rain forest

    NASA Astrophysics Data System (ADS)

    Jahren, A. Hope; Silveira Lobo Sternberg, Leonel

    2003-05-01

    The exquisite preservation of fossilized Metasequoia trees that grew near 80°N latitude during the middle Eocene (ca. 45 Ma) in Nunavut, Canada, allowed for δD and δ18O analyses of cellulose, techniques previously restricted to wood <30,000 yr old. From the isotopic results, we determined that the middle Eocene Arctic atmosphere contained ˜2× the water found in the region's atmosphere today. This water vapor contributed to a middle Eocene greenhouse effect that insulated the polar region during dark polar winters.

  7. Cenozoic evolution of the Pamir plateau recorded in surrounding basins, implications on Asian climate and land-sea distribution

    NASA Astrophysics Data System (ADS)

    Dupont-Nivet, Guillaume; Yang, Wei; Blayney, Tamsin; Proust, Jean-Noel; Guo, Zhaojie; Grothe, Arjen; Mandic, Oleg; Fionori, Chiara; Bougeois, Laurie; Najman, Yanina

    2015-04-01

    The Cenozoic Pamir orogen formed in response to the India-Asia collision. Existing datasets shows that the range grew since ca. 25 Ma, however the early Cenozoic history remains particularly enigmatic. In that peculiar period, global climate changed from greenhouse to icehouse, the proto-Paratethys sea retreated out of Asia and continental aridification as well as monsoons established over Asia. These environmental changes are held responsible for major floral and faunal crises including the emergence of plant communities and the dispersion of key mammal groups from Asia onto other continents. However, the causal relationships between these events remains to be established because of the lack of accurate age constraints on their geological records. Here, we provide well-dated stratigraphic records using magneto- and bio-stratigraphy from the basins surrounding the Pamir. Southeast of the Pamir, along the Kunlun Shan into the southwestern Tarim Basin, Eocene marine deposits are continuously overlain by 41 to 15 Ma continental redbeds themselves overlain by conglomerates in a classic foreland sequence with upward increasing grain-size, accumulation rates and provenance proximity. However, North of the Pamir along the southwestern Tian Shan and West of the Pamir into the Afghan-Tadjik Basin, the entire Oligocene period appears to be missing from the record between the last marine and the first continental sediments dated to the Early Miocene. This supports a simple basin evolution model in response to initial Pamir indentation with Eocene foreland basin activation in the Southeast related to the Kunlun Shan northward thrusting, followed much later by early Miocene activation of the northern foreland basin related to the southwestern Tian Shan overthrusting. The coeval activation of a lithospheric right-lateral strike-slip system along the Pamir/Tarim boundary may have enabled to transfer deformation from the India-Asia collision zone to the Tian Shan and possibly the

  8. A new Eocene archaeocete (Mammalia, Cetacea) from India and the time of origin of whales

    PubMed Central

    Bajpai, Sunil; Gingerich, Philip D.

    1998-01-01

    Himalayacetus subathuensis is a new pakicetid archaeocete from the Subathu Formation of northern India. The type dentary has a small mandibular canal indicating a lack of auditory specializations seen in more advanced cetaceans, and it has Pakicetus-like molar teeth suggesting that it fed on fish. Himalayacetus is significant because it is the oldest archaeocete known and because it was found in marine strata associated with a marine fauna. Himalayacetus extends the fossil record of whales about 3.5 million years back in geological time, to the middle part of the early Eocene [≈53.5 million years ago (Ma)]. Oxygen in the tooth-enamel phosphate has an isotopic composition intermediate between values reported for freshwater and marine archaeocetes, indicating that Himalayacetus probably spent some time in both environments. When the temporal range of Archaeoceti is calibrated radiometrically, comparison of likelihoods constrains the time of origin of Archaeoceti and hence Cetacea to about 54–55 Ma (beginning of the Eocene), whereas their divergence from extant Artiodactyla may have been as early as 64–65 Ma (beginning of the Cenozoic). PMID:9860991

  9. Towards completion of the early Eocene aviary: A new bird group from the Messel oil shale (Aves, Eopachypterygidae, fam. nov.).

    PubMed

    Mayr, Gerald

    2015-09-08

    A new avian species is described from the early Eocene Messel fossil site in Germany. Eopachypteryx praeterita, gen. et sp. nov. is a small bird and exhibits a characteristic morphology with a short and robust beak, a distinctively shaped coracoid, stout humerus, robust pectoral girdle skeleton, and short hindlimbs. Although similarities to the Paleogene Eocuculus as well as to some extant telluravian and strisorine taxa are noted, the phylogenetic affinities of the new species are unresolved. To account for the fact that the new species is clearly distinguished from any of the known fossil or extant avian taxa, it is here assigned to the new taxon Eopachypterygidae, fam. nov.. Eopachypteryx praeterita is represented by three partial skeletons. A further partial skeleton from Messel belongs to a second, unnamed species, which is tentatively referred to Eopachypteryx.

  10. Neotropical eocene coastal floras and [sup 18]O/[sup 16]O-estimated warmer vs. cooler equatorial waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, A.

    1994-03-01

    The history of the earth's sea-surface temperature (SST) in equatorial regions during the Tertiary is unsettled because of uncertainty as to the presence and extent of glaciers during the Paleogene. The [sup 16]O trapped in glaciers and subsequently released back to the ocean basins as meltwater during interglacials affects the [sup 18]O/[sup 16]O ratio of sea water, one of the variables that must be known for oxygen isotope paleotemperature analysis of calcareous fossils. Estimates of SST range from [approximately]18 to 20 C, assuming an ice-free earth, to [approximately]28 C assuming glaciers were present in the Paleogene. Low latitude SST presentlymore » averages 28C, so the former estimate gives a value 8 to 10 C cooler than present, while the latter gives a value as warm or slightly warmer than present. The figures are important for interpreting terrestrial vegetational history because the temperature differential between low and high latitudes is a major factor in determining global climates through the control of poleward transfer of heat. The middle( ) to late Eocene Gatuncillo Formation palynoflora of Panama was deposited at the ocean-continental interface at [approximately]9[degrees]N latitude. The individual components and paleocommunities are distinctly tropical and similar to the present vegetation along the Atlantic coast of southern Central America. This is consistent with data emerging from other recently studied tropical coastal biotas and represents a contribution from paleobiology toward eventually resolving the problem of Eocene equatorial marine environments. Collectively, the evidence is beginning to favor a model of Eocene SST near present values. 50 refs., 1 fig., 2 tabs.« less

  11. Reconstructing a lost Eocene paradise: Part I. Simulating the change in global floral distribution at the initial Eocene thermal maximum

    NASA Astrophysics Data System (ADS)

    Shellito, Cindy J.; Sloan, Lisa C.

    2006-02-01

    This study utilizes the NCAR Land Surface Model (LSM1.2) integrated with dynamic global vegetation to recreate the early Paleogene global distribution of vegetation and to examine the response of the vegetation distribution to changes in climate at the Paleocene-Eocene boundary (˜ 55 Ma). We run two simulations with Eocene geography driven by climatologies generated in two atmosphere global modeling experiments: one with atmospheric pCO 2 at 560 ppm, and another at 1120 ppm. In both scenarios, the model produces the best match with fossil flora in the low latitudes. A comparison of model output from the two scenarios suggests that the greatest impact of climate on vegetation will occur in the high latitudes, in the Arctic Circle and in Antarctica. In these regions, greater accumulated summertime warmth in the 1120 ppm simulation allows temperate plant functional types to expand further poleward. Additionally, the high pCO 2 scenario produces a greater abundance of trees over grass at these high latitudes. In the middle and low latitudes, the general distribution of plant functional types is similar in both pCO 2 scenarios. Likely, a greater increment of greenhouse gases is necessary to produce the type of change evident in the mid-latitude paleobotanical record. Overall, differences between model output and fossil flora are greatest at high latitudes.

  12. Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dien, P.T.

    1994-07-01

    The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, whichmore » developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and

  13. Rediscovery of type locality of Turritella andersoni and its geologic age implications for Eocene strata in northeast Pacific

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squires, R.L.

    1988-03-01

    Turritella andersoni is one of the most important index fossils from the early Eocene in the northeast Pacific region. Its geographic range is from Baja Sur, Mexico, to Victoria, British Columbia. Its holotype locality is in Urruttia Canyon, 26 km (16 mi) north of Coalinga, central California, but the exact topographic and stratigraphic positions of this locality have been a source of confusion and uncertainty for the past 76 years. The holotype locality has been rediscovered, based on consultation of museum records, original field notes of early workers, and field checking. Numerous specimens were found only in the upper partmore » of the Cerros Shale Member of the Lodo Formation in the center of Sec. 15, T18S, R14E, (1969, Joaquin Rocks, 7.5' quadrangle, California). The Cerros Shale Member is 26 m thick in this area. Microfossil samples were taken from greenish-gray siltstone in the immediate area of the holotype locality. Calcareous nannofossils (especially Discoaster lodoensis) from these strata indicate an early Eocene (CP10 Biozone) age, which would be equivalent to the provincial molluscan Capay Stage in the restricted sense of modern workers. Previously the molluscan stage of T. andersoni had been Meganos . (earliest Eocene) through Capay, because of the possibility that the holotype locality (when eventually rediscovered) might be of Meganos age. This present study negates the Meganos age possibility, and T. andersoni can now be shown to be confined to the Capay Stage. This age refinement will be a valuable asset to future biostratigraphic, paleogeographic, and paleobiogeographic work.« less

  14. The nummulithoclast event within the Lower Eocene in the Southern Tethyan margin: Mechanisms involved, analogy with the filament event and climate implication (Kairouan, Central Tunisia)

    NASA Astrophysics Data System (ADS)

    Mardassi, Besma

    2017-10-01

    Early Eocene deposits in Tunisia are marked by clear variations in terms of facies and thickness. Each facies corresponds to an appropriate depositional environment. Shallow water deposits pass gradually offshore into deeper carbonates along a homoclinal ramp. In Central Tunisia, detailed investigation of carbonate facies under transmitted light shows a particular richness of the middle part of Early Eocene deposits in nummulithoclasts. These facies are often frequent within corrugated banks. They are overlaying Globigerina rich well-bedded limestones and overlain by nummulites and Discocyclina rich massively-bedded carbonates. Nummulithoclasts occurrence is recorded on field by an abrupt vertical change from autochthonous thinly-bedded limestones to massively-bedded fossiliferous carbonates. Change concerns structures, textures and limestones' composition. Nummulithoclasts are associated either to planktonic micro-organisms or to benthic fauna and phosphates grains. The middle and the upper parts of the Early Eocene deposits, particularly, fossilize hummocky cross-stratifications and megaripples. Their presence advocates the role of energetic currents in sweeping nummulites from lower circatidal to upper bathyal environments. The absence of a slope break helped the settling of reworked nummulites within deeper environments. The abrupt change, nummulithoclast associations and current structures arouse reflection and make them not reliable to characterize depositional environments. However, their preferential occurrence within the middle part of Early Eocene deposits and the tight linkage with storm activity lead them to be considered as event. The large scale hummocks recorded on field suggests that nummulite fragmentation was triggered by tropical cyclones rather than humble storms. The frequent occurrence of cyclones which correspond to low pressure atmospheric systems seems in relation with a global warming enhancing the sea surface temperature.

  15. From continental to oceanic rifting in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Ferrari, Luca; Bonini, Marco; Martín, Arturo

    2017-11-01

    heterogeneities and thus early evidence of extension may provide useful information about the thermal conditions of the crust over a broader region encompassing the effects of coeval subduction and crustal stretching. On the other hand, onshore and offshore geologic studies have shown that lithospheric extension associated with a wide rift mode was already ongoing during the final stage of subduction of the Farallon plate and its remnants in the early to middle Miocene times (Ferrari et al., 2013; Murray et al., 2013; Bryan et al., 2014; Duque-Trujillo et al., 2014, 2015). More broadly, the complexity in the present rift architecture and Plio-Quaternary magmatism is related to the pre-middle Miocene geodynamic history that accompanied the removal of the slab since the Eocene (Ferrari et al., 2017).

  16. Paleontology, paleobiogeography and paleoecology of Carolia-bearing beds from the Late Eocene rocks at Nile-Fayum Divide, Egypt

    NASA Astrophysics Data System (ADS)

    El-Shazly, Soheir H.; Abdel-Gawad, Gouda I.; Salama, Yasser F.; Sayed, Dina M.

    2016-12-01

    The Paleontological study of the Carolia-bearing beds in (Qasr El-Sagha Formation) at Nile-Fayum Divide reveals the presences of thirteen species (three gastropods, six oysters and four Carolias). The paleobiogeography of these fauna indicates that genus Carolia Cantraine, 1838 was first recorded from the Lower Eocene of Egypt and Indian-Pakistani Region and spread out throughout the Tethyan province, West Africa and North and South America and its last occurrence was in the Early Miocene of North America. It shows also that, the first appearance of Ostrea (T.) multicostata (Deshayes, 1832) was in the Paleocene of Tunis and Algeria, and spread during the Eocene into India, northwestern Europe and the entire northern African regions. However, Cubitostrea (Cubitostrea) cubitus (Deshayes, 1832) was first reported in the Middle Eocene of France and spread to Texas in North America and North Africa. The statistical study on genus Carolia indicates that the distance between the byssal muscle scar and the retractor muscle scar increases with the increase of the left valve convexity. The paleoecological study of these faunal groups shows that, the predation and the parasitic elements as well as the stress environmental factors, caused the extinction of genus Carolia at the end of Late Eocene in Egypt.

  17. TEST FUSION IN ADULT FORAMINIFERA: A REVIEW WITH NEW OBSERVATIONS OF AN EARLY EOCENE NUMMULITES SPECIMEN

    PubMed Central

    Ferràndez-Cañadell, Carles; Briguglio, Antonino; Hohenegger, Johann; Wöger, Julia

    2015-01-01

    In foraminifera, so-called “double tests” usually arise due to abnormal growth originating mainly from twinning, but may also be caused by irregularities in the early chambers and by regeneration after test injury that modifies the direction of growth. A fourth cause of double tests has only rarely been reported: the fusion of the tests of two adult individuals. We studied an early Eocene Nummulites double test consisting of two adult individuals that fused after an extended period of independent growth. The specimen was studied using computed tomography with micrometric resolution (micro-CT) that allowed bi- and three-dimensional visualization of the internal structure. Before fusion each individual test had 30–36 chambers, which, by comparison with growth rates in recent nummulitids, implies at least three months of independent growth. After fusion, the compound test grew in two spirals that fused after about one whorl and then continued in a single spiral. To fuse their tests, either adult individuals have to be forced to do so or the allorecognition (ability to distinguish between self and another individual) mechanisms must fail. A possible explanation for the merged Nummulites tests in this study is forced fusion in attached individuals after surviving ingestion and digestion by a metazoan. Alternatively, environmental stress could lead to a failure of allorecognition mechanisms and/or foraminiferal motility. Once fused, subsequent growth seems to be determined mainly by the relative orientation of individual tests. In any case, the frequency in which adult fusion occurs remains unknown. PMID:26166916

  18. Middle Eocene paleocirculation of the southwestern Atlantic Ocean, the anteroom to an ice-house world: evidence from dinoflagellates

    NASA Astrophysics Data System (ADS)

    Raquel Guerstein, G.; Daners, Gloria; Palma, Elbio; Ferreira, Elizabete P.; Premaor, Eduardo; Amenábar, Cecilia R.; Belgaburo, Alexandra

    2016-04-01

    Middle Eocene dinoflagellate cyst organic walled assemblages from sections located in the Antarctic Peninsula, Tierra del Fuego, Santa Cruz province and south of Chile are mainly represented by endemic taxa, which are also dominant in several circum - Antarctic sites located southern 45° S. Some members of this endemic Antarctic assemblage, including especies of Enneadocysta, Deflandrea, Vozzhennikovia, and Spinidinium, have been recognised in sites along the Southwest Atlantic Ocean Shelf at Colorado (˜38° S), Punta del Este (˜36° S) and Pelotas (˜30° S) basins. Northern 30° S, at Jequitinhonha (˜17oS) and Sergipe (˜11° S) basins, there is no evidence of the endemic Antarctic members, except for Enneadocysta dictyostila, recorded in very low proportion. Based on its positive correlation with CaCO3 percentages we assume that this species is the unique member of the endemic assemblage apparently tolerant to warm surface waters. Previous research developed in the Tasman area has related the presence of endemic taxa at mid- latitudes to a strong clockwise subpolar gyre favoured by the partial continental blockage of the Tasmanian Gateways and the Drake Passage. In this work we propose that the dinoflagellate cyst distribution along the South Atlantic Ocean Shelf can be explained by a similar dynamical mechanism induced by a cyclonic subpolar gyre on the South Atlantic Ocean. The western boundary current of this gyre, starting on the west Antarctic continental slope, would follow a similar path to the present Malvinas Current on the Patagonian slope. Modelling and observational studies at the Patagonian shelf-break have shown that a cyclonic western boundary current promotes upwelling and intrusion of cold oceanic waters to the shelf and intensifies the northward shelf transport. In a similar way we hypothesize that during the Middle Eocene the western boundary current of a proto-Weddell Gyre transported the circum-antarctic waters and the endemic components

  19. Molecular and Morphological Evidence Challenges the Records of the Extant Liverwort Ptilidium pulcherrimum in Eocene Baltic Amber.

    PubMed

    Heinrichs, Jochen; Scheben, Armin; Lee, Gaik Ee; Váňa, Jiří; Schäfer-Verwimp, Alfons; Krings, Michael; Schmidt, Alexander R

    2015-01-01

    Preservation of liverworts in amber, a fossilized tree resin, is often exquisite. Twenty-three fossil species of liverworts have been described to date from Eocene (35-50 Ma) Baltic amber. In addition, two inclusions have been assigned to the extant species Ptilidium pulcherrimum (Ptilidiales or Porellales). However, the presence of the boreal P. pulcherrimum in the subtropical or warm-temperate Baltic amber forest challenges the phytogeographical interpretation of the Eocene flora. A re-investigation of one of the fossils believed to be P. pulcherrimum reveals that this specimen in fact represents the first fossil evidence of the genus Tetralophozia, and thus is re-described here as Tetralophozia groehnii sp. nov. A second fossil initially assigned to P. pulcherrimum is apparently lost, and can be reassessed only based on the original description and illustrations. This fossil is morphologically similar to the extant North Pacific endemic Ptilidium californicum, rather than P. pulcherrimum. Divergence time estimates based on chloroplast DNA sequences provide evidence of a Miocene origin of P. pulcherrimum, and thus also argue against the presence of this taxon in the Eocene. Ptilidium californicum originated 25-43 Ma ago. As a result, we cannot rule out that the Eocene fossil belongs to P. californicum. Alternatively, the fossil might represent a stem lineage element of Ptilidium or an early crown group species with morphological similarities to P. californicum.

  20. The middle Eocene Oyambre section (northern Spain): an example of the need for pairing cyclic deep-sea records and outcrop successions in astrochronology

    NASA Astrophysics Data System (ADS)

    Dinarès-Turell, Jaume; Martínez-Braceras, Naroa; Payros, Aitor

    2017-04-01

    Undoubtedly, the legacy of DSSP/ODP/IODP programs that have targeted deep-sea records around world oceans to paleoceanography and chronostratigraphy is invaluable. The advent in the early 90's of the strategy to drill multiple holes at a single site for construction of complete composite sections, thus overcoming one major drawback for high-resolution studies, is remarkable. Yet, depths for shipboard splice records often require revision/amendments as higher resolution and better signal to noise ratio proxy data become available (e.g. Westerhold and Röhl, 2013). Additionally, shifting moderate to low sedimentation rates and condensed intervals are common in the deep-sea records hampering the use of standard filtering techniques in cyclostratigraphy as shown for the Danian stage (Dinarès-Turell et al., 2014). It thus becomes clear that combining deep-sea records and expanded marine sections outcropping on land potentially allows more consolidated outcomes in cyclostratigraphy. The Eocene period is critical for paleoclimate research because it offers great potential to gain insight into the carbon cycle dynamics and Earth's climate evolution. In particular, the middle Eocene portrays the beginning of the transition from the warm, high-diversity greenhouse of the early Eocene to the icehouse conditions of the early Oligocene and has been recently orbitally tuned from deep-sea sequences in the South Atlantic Ocean, closing a gap in the Paleogene astronomical time scale (Westerhold et al., 2015). The Eocene Oyambre section, exposed on the eastern side of the Cape of Oyambre in San Vicente de la Barquera (Cantabria province, Basque-Cantabrian region, western Pyrenees), is composed of limestone-marl alternations with interbedded turbidites. The Lutetian/Bartonian transition interval has recently been the focus of an integrated stratigraphic study (Payros et al., 2015) in the evaluation of a prospective Bartonian GSSP. Here, a high-resolution bulk low-field magnetic

  1. Sedimentary characteristics and depositional model of a Paleocene-Eocene salt lake in the Jiangling Depression, China

    NASA Astrophysics Data System (ADS)

    Yu, Xiaocan; Wang, Chunlian; Liu, Chenglin; Zhang, Zhaochong; Xu, Haiming; Huang, Hua; Xie, Tengxiao; Li, Haonan; Liu, Jinlei

    2015-11-01

    We studied the sedimentary characteristics of a Paleocene-Eocene salt lake in the Jiangling Depression through field core observation, thin section identification, scanning electron microscopy, and X-ray diffraction analysis. On the basis of sedimentary characteristics we have summarized the petrological and mineralogical characteristics of the salt lake and proposed 9 types of grade IV salt rhythms. The deposition shows a desalting to salting order of halite-argillaceous-mudstone-mud dolostonemud anhydrock-glauberite-halite. The relationship among grade IV rhythms, water salinity and climate fluctuations was analyzed. Based on the analysis of the relationship between boron content and mudstone color and by combining the mineralogy and sedimentary environment characteristics, we propose that the early and late Paleocene Shashi Formation in the Jiangling Depression was a paleolacustrine depositional environment with a high salt content, which is a representation of the shallow water salt lake depositional model. The middle Paleocene Shashi Formation and the early Eocene Xingouzui Formation were salt and brackish sedimentary environments with low salt content in a deep paleolake, which represents a deep salt lake depositional model.

  2. Earliest Mysticete from the Late Eocene of Peru Sheds New Light on the Origin of Baleen Whales.

    PubMed

    Lambert, Olivier; Martínez-Cáceres, Manuel; Bianucci, Giovanni; Di Celma, Claudio; Salas-Gismondi, Rodolfo; Steurbaut, Etienne; Urbina, Mario; de Muizon, Christian

    2017-05-22

    Although combined molecular and morphological analyses point to a late middle Eocene (38-39 million years ago) origin for the clade Neoceti (Odontoceti, echolocating toothed whales plus Mysticeti, baleen whales, and relatives), the oldest known mysticete fossil dates from the latest Eocene (about 34 million years ago) of Antarctica [1, 2]. Considering that the latter is not the most stemward mysticete in recent phylogenies and that Oligocene toothed mysticetes display a broad morphological disparity most likely corresponding to contrasted ecological niches, the origin of mysticetes from a basilosaurid ancestor and its drivers are currently poorly understood [1, 3-8]. Based on an articulated cetacean skeleton from the early late Eocene (Priabonian, around 36.4 million years ago) of the Pisco Basin, Peru, we describe a new archaic tooth-bearing mysticete, Mystacodon selenensis gen. et sp. nov. Being the geologically oldest neocete (crown group cetacean) and the earliest mysticete to branch off described so far, the new taxon is interpreted as morphologically intermediate between basilosaurids and later toothed mysticetes, providing thus crucial information about the anatomy of the skull, forelimb, and innominate at these critical initial stages of mysticete evolution. Major changes in the morphology of the oral apparatus (including tooth wear) and flipper compared to basilosaurids suggest that suction and possibly benthic feeding represented key, early ecological traits accompanying the emergence of modern filter-feeding baleen whales' ancestors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Paleoecological evaluation of Late Eocene biostratigraphic zonations of the Pacific Coast of North America

    USGS Publications Warehouse

    McDougall, Kristin

    1980-01-01

    The late Eocene zonal criteria of the west coast of North America are to a large extent controlled by paleoecology and, therefore, the correlation of coeval but environmentally different benthic foraminiferal faunas cannot be achieved before paleoecological control of the biostratigraphy is understood. The faunal trends, morphology, characteristic occurrences and estimated upper depth limits of the benthic foraminifers and associated microfossils in the Oregon and Washington study sections lead to the recognition of paleoecologic facies. The interpretation of these late Eocene facies as bathymetric and low-oxygen facies is based on analogous late Eocene and Holocene assemblages. The paleoecologic facies criteria are often identical to the stage and zonal criteria. In the California zonal schemes, the Narizian zones are identified by lower and middle bathyal faunas whereas the Refugian zones are identified by outer neritic and upper bathyal faunas. The Washington late Eocene zones are identified by middle bathyal and transported neritic faunas. Modifications of the existing zonal schemes such that time and not paleoecology is the controlling factor results in a zonation that synthesizes the existing zonal schemes, recognizes regional stratigraphic ranges of diagnostic species, and removes paleoecologically controlled species occurrences. The late Narizian encompasses a bathyal and a neritic facies. The bathyal facies is correlative with a modified Bulimina corrugata Zone of California and the Uvigerina cf. U. yazooensis Zone of Washington. The neritic late Narizian facies corresponds to a modified Bulimina schencki-Plectofrondicularia cf. P. jenkinsi Zone of Washington and a modified Amphimorphina jenkinsi Zone of California. The Refugian can also be divided into a neritic and a bathyal facies. Although the early and late subdivisions of this stage are tentative, the early Refugian is equivalent to the modified versions of the Cibicides haydoni and the Uvigerina

  4. Early evolution of Tubulogenerina during the Paleogene of Europe

    USGS Publications Warehouse

    Gibson, T.G.; Barbin, V.; Poignant, A.; Sztrakos, K.

    1991-01-01

    The early evolution of Tubulogenerina took place in Europe where eight species occur in lower Eocene to uppermost Oligocene or lower Miocene strata. Species diversity within Tubulogenerina dropped significantly in the early Oligocne; only a single species persisted from the late Eocene, and it became extinct before the end of the early Oligocene. Morphologic changes during the European phylogeny of Tubulogenerina include (1) the development of costate and more complex tubulopore ornamentation, and (2) the change from a single elongated apertural slit with a single toothplate to multiple apertures and toothplates. Three new Tubulogenerina species are described. -from Authors

  5. Late Eocene rings around the earth

    NASA Technical Reports Server (NTRS)

    King, E. A.

    1980-01-01

    The suggestion of O'Keefe (1980) that the terminal Eocene event was caused by rings of tektite material encircling the earth is discussed. It is argued that the assumption that the tektites are of lunar volcanic origin is unwarranted and contrary to existing data, including the lack of lunar rocks of suitable composition, the lack of lunar rocks of the correct age, the lack of evidence that the North American tektites fell throughout a sedimentary rock column of a few million years, and the nondetection of a tektite with a measurable cosmic ray exposure age. Alternatively, it is suggested that the terminal Eocene event may be associated with volcanic ash, air-fall tuff and bentonite in the late Eocene. O'Keefe replies that the hypothesis of the terrestrial origin of the tektites conflicts with the laws of physics, for example in the glass structure and shaping of the tektites. Furthermore, evidence is cited for lunar rocks of the proper major-element composition and ages, and it is noted that the proposed solar Poynting-Robertson effect would account for the particle fall distributions and cosmic ray ages.

  6. Eocene Patagonia fossils of the daisy family.

    PubMed

    Barreda, V D; Palazzesi, L; Tellería, M C; Katinas, L; Crisci, J V; Bremer, K; Passalia, M G; Corsolini, R; Rodríguez Brizuela, R; Bechis, F

    2010-09-24

    Fossil capitula and pollen grains of Asteraceae from the Eocene of Patagonia, southern Argentina, exhibit morphological features recognized today in taxa, such as Mutisioideae and Carduoideae, that are phylogenetically close to the root of the asteracean tree. This fossil supports the hypothesis of a South American origin of Asteraceae and an Eocene age of divergence and suggests that an ancestral stock of Asteraceae may have formed part of a geoflora developed in southern Gondwana before the establishment of effective dispersal barriers within this landmass.

  7. Late Eocene impacts: Geologic record, correlation, and paleoenvironmental consequences

    USGS Publications Warehouse

    Poag, C. Wylie; Mankinen, Edward A.; Norris, Richard D.

    2003-01-01

    We present new magnetostratigraphic and stable isotopic (18C, 13Ccarb) data to help improve correlations among three late Eocene impact craters and their inferred breccia and ejecta deposits. Our analyses also shed light on potential global environmental consequences attributable to the impacts. The new data come from a continuously cored interval of the subsurface Chickahominy Formation, which lies conformably above the Chesapeake Bay impact crater in southeastern Virginia. The new magnetostratigraphic data indicate that the Chesapeake Bay impact took place in Chron C16n. 2n, the same magnetochron that encompasses the late Eocene ejecta layer at Massignano, Italy. This correlation places both the Chesapeake Bay impact and the Massignano ejecta at ~35.6 Ma, and resolves a previous miscorrelation between these two sites based on planktonic foraminifera and calcareous nannofossils. The new magnetostratigraphic correlations also suggest that the published magnetostratigraphic framework for ejecta-bearing late Eocene strata ar ODP Site 689B (Maud Rise) is incorrect, due to an incomplete section.New 18C data (single species of benthic foraminifera) from the same Chickahominy section ar Chesapeake Bay indicate that successional intervals of warm oceanic bottom-water may be characteristic of the late Eocene. We infer that the warm intervals correlate with successive episodes of greenhouse warming, triggered in part by a comer shower, which produced the Chesapeake Bay, Toms Canyon, Popigai, and presumably additional (as yet undiscovered) late Eocene impact craters. We also demonstrate that a marked negative execution of 13Ccarb persists through the upper half of the Chickahominy Formation. This excursion, also recorded at Massigno, at Bath Cliff, Barbados, and at other widespread localities in the world ocean, may be additional evidence of global-scale, long-term environmental disturbances related to the bolide impacts. As such, this  13C signal may be useful for global

  8. Eocene euthecosomatous pteropoda (gastropoda) of North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgkinson, K.A.; Allan, W.H.; Garvie, C.

    1985-02-01

    Thirty-four species of Eocene pteropods (minute, shell-bearing, planktonic gastropods) are added to the 11 previously known from North America. They can, on occasion, be used effectively for global correlation of synchronous strata. As pteropods receive further attention, the number and accuracy of these correlations will increase. Pteropods are one of the most abundant and ubiquitous members of the plankton community in modern oceans. They were just as diverse and abundant in Eocene seas. There are about 28 modern euthecosome species. The authors identified 45 Eocene species in North America, 7 of which were already known in England and Europe; 27more » are new. They were collected from outcrops in Texas and Alabama and from exploratory wells in Louisiana and the Nova Scotian shelf. All euthecosomatous pteropods have aragonitic shells but there are at least 3 different kinds of microstructure: (1) most spirally coiled species (family Spiratellidae) have crossed-lamellar microstructure, (2) straight or bilaterally symmetrical shells (family Cavoliniidae and Creisidae) have a helical microstructure, and (3) the Eocene species, Plotophysops bearnensis Curry (family Spiratellidae), has both crossed-lamellar and helical microstructure. Helical microstructure, first described in pteropods by Be, MacClintock, and Chew-Currie in the modern species, Cuvierina columnella Rang, is now known to exist in other molluscan groups. The helical rods are nested in such a manner as to give maximum strength to the thin fragile shell, a decided advantage for an organism with a planktonic life style.« less

  9. Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation

    NASA Astrophysics Data System (ADS)

    Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann; Faghih, Ali; Kusky, Timothy

    2012-09-01

    To advance our understanding of the Mesozoic to Eocene tectonics and kinematics of basement units exposed in the south-western Central Iran plateau, this paper presents new structural and thermochronological data from the Chapedony metamorphic core complex and hangingwall units, particularly from the Posht-e-Badam complex. The overall Paleogene structural characteristics of the area are related to an oblique convergent zone. The Saghand area represents part of a deformation zone between the Arabian and Eurasian plates, and can be interpreted to result from the Central Iran intracontinental deformation acting as a weak zone during Mesozoic to Paleogene times. Field and microstructural evidence reveal that the metamorphic and igneous rocks suffered a ductile shear deformation including mylonitization at the hangingwall boundary of the Eocene Chapedony metamorphic core complex. Comparison of deformation features in the mylonites and other structural features within the footwall unit leads to the conclusion that the mylonites were formed in a subhorizontal shear zone by NE-SW stretching during Middle to Late Eocene extensional tectonics. The Chapedony metamorphic core complex is characterized by amphibolite-facies metamorphism and development of S and S-L tectonic fabrics. The Posht-e-Badam complex was deformed by two stages during Cimmerian tectonic processes forming the Paleo-Tethyan suture.

  10. Ironstone deposits hosted in Eocene carbonates from Bahariya (Egypt)-New perspective on cherty ironstone occurrences

    NASA Astrophysics Data System (ADS)

    Afify, A. M.; Sanz-Montero, M. E.; Calvo, J. P.

    2015-11-01

    This paper gives new insight into the genesis of cherty ironstone deposits. The research was centered on well-exposed, unique cherty ironstone mineralization associated with Eocene carbonates from the northern part of the Bahariya Depression (Egypt). The economically important ironstones occur in the Naqb Formation (Early Eocene), which is mainly formed of shallow marine carbonate deposits. Periods of lowstand sea-level caused extensive early dissolution (karstification) of the depositional carbonates and dolomitization associated with mixing zones of fresh and marine pore-water. In faulted areas, the Eocene carbonate deposits were transformed into cherty ironstone with preservation of the precursor carbonate sedimentary features, i.e. skeletal and non-skeletal grain types, thickness, bedding, lateral and vertical sequential arrangement, and karst profiles. The ore deposits are composed of iron oxyhydroxides, mainly hematite and goethite, chert in the form of micro- to macro-quartz and chalcedony, various manganese minerals, barite, and a number of subordinate sulfate and clay minerals. Detailed petrographic analysis shows that quartz and iron oxides were coetaneous and selectively replaced carbonates, the coarse dolomite crystals having been preferentially transformed into quartz whereas the micro-crystalline carbonates were replaced by the iron oxyhydroxides. A number of petrographic, sedimentological and structural features including the presence of hydrothermal-mediated minerals (e.g., jacobsite), the geochemistry of the ore minerals as well as the structure-controlled location of the mineralization suggest a hydrothermal source for the ore-bearing fluids circulating through major faults and reflect their proximity to centers of magmatism. The proposed formation model can contribute to better understanding of the genetic mechanisms of formation of banded iron formations (BIFs) that were abundant during the Precambrian.

  11. Ultimate Eocene (Priabonian) Chondrichthyans (Holocephali, Elasmobranchii) of Antarctica.

    PubMed

    Kriwet, Jürgen; Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo; Pfaff, Cathrin

    2016-01-01

    The Eocene La Meseta Formation on Seymour Island, Antarctic Peninsula, is known for its remarkable wealth of fossil remains of chondrichthyans and teleosts. Chondrichthyans seemingly were dominant elements in the Antarctic Paleogene fish fauna, but decreased in abundance from middle to late Eocene, during which time remains of bony fishes increase. This decline of chondrichthyans at the end of the Eocene generally is related to sudden cooling of seawater, reduction in shelf area, and increasing shelf depth due to the onset of the Antarctic thermal isolation. The last chondrichthyan records known so far include a chimeroid tooth plate from TELM 6 (Lutetian) and a single pristiophorid rostral spine from TELM 7 (Priabonian). Here, we present new chondrichthyan records of Squalus , Squatina , Pristiophorus , Striatolamia , Palaeohypotodus , Carcharocles , and Ischyodus from the upper parts of TELM 7 (Priabonian), including the first record of Carcharocles sokolovi from Antarctica. This assemblage suggests that chondrichthyans persisted much longer in Antarctic waters despite rather cool sea surface temperatures of approximately 5°C. The final disappearance of chondrichthyans at the Eocene-Oligocene boundary concurs with abrupt ice sheet formation in Antarctica. Diversity patterns of chondrichthyans throughout the La Meseta Formation appear to be related to climatic conditions rather than plate tectonics.

  12. Eocene lake basins in Wyoming and Nevada record rollback of the Farallon flat-slab beneath western North America

    NASA Astrophysics Data System (ADS)

    Smith, M. E.; Cassel, E. J.; Jicha, B. R.; Singer, B. S.; Carroll, A.

    2014-12-01

    Numerical and conceptual models of flat-slab rollback predict broad initial dynamic subsidence above the slab hinge then uplift and volcanism triggered by the advection of asthenosphere beneath the overriding plate. These predicted surface effects provide a viable but largely untested explanation for lake basin formation in Cordilleran-type orogenies. We argue that the hydrologic closure of both the foreland (early Eocene) and hinterland (late Eocene) of the North American Cordillera were caused by a trenchward-migrating wave of dynamic and thermal topography resulting from progressive removal of the Farallon flat-slab. Two major episodes of hydrologic drainage closure are recorded by Eocene terrestrial strata in the western United States. The first occurred in the retroarc foreland during the early Eocene, and resulted in the deposition of the Green River Fm. The second occurred in the hinterland during the late Eocene and resulted in accumulation of the Elko Fm. In both regions, lake strata overlie fluvial strata and become progressively more evaporative up-section, and are overlain by volcaniclastic strata. Both successions were then truncated by regional unconformities that extend until the Oligocene. We interpret these stratigraphic successions to record trenchward propagation of a regional topographic wave, caused by slab rollback. Migration of the slab-hinge initially caused dynamic subsidence and initiation of lacustrine deposition. Regional surface uplift followed, and was associated with scattered volcanism. Uplift promoted formation of endorheic basins and ultimately the development of regional unconformities. The height of the uplift can be roughly approximated by the preserved thickness of lacustrine and other nonmarine deposits at both locations (0.2-1.0 km). The 40Ar/39Ar and U-Pb geochronology of Green River Fm ash beds indicate that this surface topographic wave migrated trenchward (SW) across the foreland from 53 to 47 Ma at a velocity of ~6 cm

  13. The initiation of segmented buoyancy-driven melting during continental breakup

    PubMed Central

    Gallacher, Ryan J.; Keir, Derek; Harmon, Nicholas; Stuart, Graham; Leroy, Sylvie; Hammond, James O. S.; Kendall, J-Michael; Ayele, Atalay; Goitom, Berhe; Ogubazghi, Ghebrebrhan; Ahmed, Abdulhakim

    2016-01-01

    Melting of the mantle during continental breakup leads to magmatic intrusion and volcanism, yet our understanding of the location and dominant mechanisms of melt generation in rifting environments is impeded by a paucity of direct observations of mantle melting. It is unclear when during the rifting process the segmented nature of magma supply typical of seafloor spreading initiates. Here, we use Rayleigh-wave tomography to construct a high-resolution absolute three-dimensional shear-wave velocity model of the upper 250 km beneath the Afar triple junction, imaging the mantle response during progressive continental breakup. Our model suggests melt production is highest and melting depths deepest early during continental breakup. Elevated melt production during continental rifting is likely due to localized thinning and melt focusing when the rift is narrow. In addition, we interpret segmented zones of melt supply beneath the rift, suggesting that buoyancy-driven active upwelling of the mantle initiates early during continental rifting. PMID:27752044

  14. A new tarkadectine primate from the Eocene of Inner Mongolia, China: phylogenetic and biogeographic implications

    PubMed Central

    Ni, Xijun; Meng, Jin; Beard, K. Christopher; Gebo, Daniel L.; Wang, Yuanqing; Li, Chuankui

    2010-01-01

    Tarka and Tarkadectes are Middle Eocene mammals known only from the Rocky Mountains region of North America. Previous work has suggested that they are members of the Plagiomenidae, an extinct family often included in the order Dermoptera. Here we describe a new primate, Tarkops mckennai gen. et sp. nov., from the early Middle Eocene Irdinmanha Formation of Inner Mongolia, China. The new taxon is particularly similar to Tarka and Tarkadectes, but it also displays many features observed in omomyids. A phylogenetic analysis based on a data matrix including 59 taxa and 444 dental characters suggests that Tarkops, Tarka and Tarkadectes form a monophyletic group—the Tarkadectinae—that is nested within the omomyid clade. Within Omomyidae, tarkadectines appear to be closely related to Macrotarsius. Dermoptera, including extant and extinct flying lemurs and plagiomenids, is recognized as a clade nesting within the polyphyletic group of plesiadapiforms, therefore supporting the previous suggestion that the relationship between dermopterans and primates is as close as that between plesiadapiforms and primates. The distribution of tarkadectine primates on both sides of the Pacific Ocean basin suggests that palaeoenvironmental conditions appropriate to sustain primates occurred across a vast expanse of Asia and North America during the Middle Eocene. PMID:19386655

  15. Eocene climate and Arctic paleobathymetry: A tectonic sensitivity study using GISS ModelE-R

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2009-12-01

    The early Paleogene (65-45 million years ago, Ma) was a ‘greenhouse’ interval with global temperatures warmer than any other time in the last 65 Ma. This period was characterized by high levels of CO2, warm high-latitudes, warm surface-and-deep oceans, and an intensified hydrological cycle. Sediments from the Arctic suggest that the Eocene surface Arctic Ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions remain uncertain. We present equilibrium climate conditions derived from a fully-coupled, water-isotope enabled, general circulation model (GISS ModelE-R) configured for the early Eocene. We also present model-data comparison plots for key climatic variables (SST and δ18O) and analyses of the leading modes of variability in the tropical Pacific and North Atlantic regions. Our tectonic sensitivity study indicates that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the seaways connecting the Arctic to the Atlantic and Tethys. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~6 psu and warming of sea-surface temperatures by 2°C in the North Atlantic and 5-10°C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We also suggest that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates in the Atlantic.

  16. Indo-Burma Range: a belt of accreted microcontinents, ophiolites and Mesozoic-Paleogene flyschoid sediments

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.

    2015-07-01

    This study provides an insight into the lithotectonic evolution of the N-S trending Indo-Burma Range (IBR), constituting the southern flank of the Himalayan syntaxis. Paleogene flyschoid sediments (Disang-Barail) that represent a shallow marine to deltaic environment mainly comprise the west-central sector of IBR, possibly resting upon a continental base. On the east, these sequences are tectonically flanked by the Eocene olistostromal facies of the Disang, which developed through accretion of trench sediments during the subduction. The shelf and trench facies sequences of the Disang underwent overthrusting from the east, giving rise to two ophiolite suites ( Naga Hills Lower Ophiolite ( NHLO) and Victoria Hills Upper Ophiolite ( VHUO), but with different accretion history. The ophiolite and ophiolite cover rock package were subsequently overthrusted by the Proterozoic metamorphic sequence, originated from the Burmese continent. The NHLO suite of Late Jurassic to Early Eocene age is unconformably overlain by mid-Eocene shallow marine ophiolite-derived clastics. On the south, the VHUO of Mesozoic age is structurally underlain by continental metamorphic rocks. The entire package in Victoria Hills is unconformably overlain by shallow marine Late Albian sediments. Both the ophiolite suites and the sandwiched continental metamorphic rocks are thrust westward over the Paleogene shelf sediments. These dismembered ophiolites and continental metamorphic rocks suggest thin-skinned tectonic detachment processes in IBR, as reflected from the presence of klippe of continental metamorphic rocks over the NHLO and the flyschoid Disang floor sediments and half windows exposing the Disang beneath the NHLO.

  17. Revised East-West Antarctic plate motions since the Middle Eocene

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. C.; Stock, J.; Damaske, D.

    2010-12-01

    The middle Cenozoic (43-26 Ma) rifting between East and West Antarctica is defined by an episode of ultraslow seafloor spreading in the Adare Basin, located off northwestern Ross Sea. The absence of fracture zones and the lack of sufficient well-located magnetic anomaly picks have resulted in a poorly constrained kinematic model (Cande et al., 2000). Here we utilize the results from a dense aeromagnetic survey (Damaske et al., 2007) collected as part of GANOVEX IX 2005/06 campaign to re-evaluate the kinematics of the West Antarctic rift system since the Middle Eocene. We identify marine magnetic anomalies (anomalies 12o, 13o, 16y, and 18o) along a total of 25,000 km of the GPS navigated magnetic profiles. The continuation of these anomalies into the Northern Basin has allowed us to use the entire N-S length of this dataset in our calculations. A distinct curvature in the orientation of the spreading axis provides a strong constraint on our calculated kinematic models. The results from two- (East-West Antarctica) and three- (Australia-East Antarctica-West Antarctica) plate solutions agree well and create a cluster of rotation axes located south of the rift system, near the South Pole. These solutions reveal that spreading rate and direction, and therefore motion between East and West Antarctica, were steady between the Middle Eocene and Early Oligocene. Our kinematic solutions confirm the results of Davey and De Santis (2005) that the Victoria Land Basin has accommodated ~95 km of extension since the Middle Eocene. This magnetic pattern also provides valuable constraints on the post-spreading deformation of the Adare Basin (Granot et al., 2010). The Adare Basin has accommodated very little extension since the Late Oligocene (<7 km), but motion has probably increased southward. The details of this younger phase of motion are still crudely constrained.

  18. Quantifying the Eocene to Pleistocene topographic evolution of the southwestern Alps, France and Italy

    NASA Astrophysics Data System (ADS)

    Fauquette, Séverine; Bernet, Matthias; Suc, Jean-Pierre; Grosjean, Anne-Sabine; Guillot, Stéphane; van der Beek, Peter; Jourdan, Sébastien; Popescu, Speranta-Maria; Jiménez-Moreno, Gonzalo; Bertini, Adele; Pittet, Bernard; Tricart, Pierre; Dumont, Thierry; Schwartz, Stéphane; Zheng, Zhuo; Roche, Emile; Pavia, Giulio; Gardien, Véronique

    2015-02-01

    We evaluate the topographic evolution of the southwestern Alps using Eocene to Pleistocene pollen data combined with existing sedimentological, petrographic and detrital geo- and thermochronological data. We report 32 new pollen analyses from 10 sites completed by an existing dataset of 83 samples from 14 localities situated across the southwestern Alps, including both the pro- and the retro-foreland basins. The presence of microthermic tree pollen (mainly Abies, Picea) indicates that this part of the mountain belt attained elevations over 1900 m as early as the Oligocene. Inferred rapid surface uplift during the mid-Oligocene coincided with a previously documented brief phase of rapid erosional exhumation, when maximum erosion rates may have reached values of up to 1.5-2 km/Myr. Slower long-term average exhumation rates of ∼0.3 km/Myr since the Late Oligocene helped maintaining the high Alpine topography of the southwestern Alps until today. The relative abundances of meso-microthermic tree pollen (Cathaya, Cedrus and Tsuga) and microthermic tree pollen (Abies, Picea) in the pro- and retro-foreland basin deposits, indicate that the present-day asymmetric topography, with a relatively gentle western flank and steeper eastern flank, was established early in the southwestern Alps, at least since the Early Miocene, and possibly since the Oligocene or Late Eocene. Therefore, the high topography and asymmetric morphology of this part of the Alps has been maintained throughout the past ∼30 Ma.

  19. Scale insect larvae preserved in vertebrate coprolites (Le Quesnoy, France, Lower Eocene): paleoecological insights.

    PubMed

    Robin, Ninon; Foldi, Imre; Godinot, Marc; Petit, Gilles

    2016-10-01

    Coprolites of terrestrial vertebrates from the Sparnacian Le Quesnoy locality (Ypresian, Eocene, MP7, 53 Ma; Oise, France) were examined for possible parasitic helminth eggs. The extraction of the coprolite components was performed by a weak acetolyse and a slide mounting in glycerin. This long examination did not reveal paleoparasite remains, which may be explained through several arguments. However, some pollen grains, some enigmatic components, and two well-preserved first-instar cochineal nymphs (Hemiptera: Sternorrhyncha: Coccoidea) were evidenced in coprolites. Identified as Coccidae, these larvae are the earliest stage of the scale insect development ever reported as fossil, revealing the specific environment of preservation that fossilized scats may provide. These observations, combined to the coprolites morphotype, enable to ascribe the fossil scats producer to a small herbivorous mammal present in the deposit (early perissodactyls or Plesiadapidae). Regarding the ecology of extant representatives of Coccidae, this mammal was a likely foliage consumer, and the abundant Juglandaceae and/or Tiliaceae from Le Quesnoy might have lived parasitized by scale insects. These Early Eocene parasites had an already well-established dissemination strategy, with prevalent minute first-instar larvae. The herein performed extraction technique appears well-suited for the study of carbonate coprolites and could certainly be useful for evidencing other kind of microorganisms (including internal parasites).

  20. Scale insect larvae preserved in vertebrate coprolites (Le Quesnoy, France, Lower Eocene): paleoecological insights

    NASA Astrophysics Data System (ADS)

    Robin, Ninon; Foldi, Imre; Godinot, Marc; Petit, Gilles

    2016-10-01

    Coprolites of terrestrial vertebrates from the Sparnacian Le Quesnoy locality (Ypresian, Eocene, MP7, 53 Ma; Oise, France) were examined for possible parasitic helminth eggs. The extraction of the coprolite components was performed by a weak acetolyse and a slide mounting in glycerin. This long examination did not reveal paleoparasite remains, which may be explained through several arguments. However, some pollen grains, some enigmatic components, and two well-preserved first-instar cochineal nymphs (Hemiptera: Sternorrhyncha: Coccoidea) were evidenced in coprolites. Identified as Coccidae, these larvae are the earliest stage of the scale insect development ever reported as fossil, revealing the specific environment of preservation that fossilized scats may provide. These observations, combined to the coprolites morphotype, enable to ascribe the fossil scats producer to a small herbivorous mammal present in the deposit (early perissodactyls or Plesiadapidae). Regarding the ecology of extant representatives of Coccidae, this mammal was a likely foliage consumer, and the abundant Juglandaceae and/or Tiliaceae from Le Quesnoy might have lived parasitized by scale insects. These Early Eocene parasites had an already well-established dissemination strategy, with prevalent minute first-instar larvae. The herein performed extraction technique appears well-suited for the study of carbonate coprolites and could certainly be useful for evidencing other kind of microorganisms (including internal parasites).

  1. Volatile components and continental material of planets

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Nikolayeva, O. V.

    1986-01-01

    It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H20, CO2, etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes.

  2. Identification of the Paleocene-Eocene boundary in coastal strata in the Otway Basin, Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Frieling, Joost; Huurdeman, Emiel P.; Rem, Charlotte C. M.; Donders, Timme H.; Pross, Jörg; Bohaty, Steven M.; Holdgate, Guy R.; Gallagher, Stephen J.; McGowran, Brian; Bijl, Peter K.

    2018-02-01

    dinocyst Apectodinium prior to this negative carbon isotope excursion prohibit a direct correlation of this regional bio-event with the quasi-global Apectodinium acme at the Paleocene-Eocene Thermal Maximum (PETM; 56 Ma). Therefore, the first occurrence of the pollen species Spinizonocolpites prominatus and the dinocyst species Florentinia reichartii are here designated as regional markers for the PETM. In the Latrobe-1 drill core, dinocyst biostratigraphy further indicates that the early Eocene ( ˜ 56-51 Ma) sediments are truncated by a ˜ 10 Myr long hiatus overlain by middle Eocene ( ˜ 40 Ma) strata. These sedimentary archives from southeast Australia may prove key in resolving the model-data discrepancy in this region, and the new stratigraphic data presented here allow for detailed comparisons between paleoclimate records on both sides of the Tasmanian Gateway.

  3. Reconstruction of Middle Eocene - Late Oligocene Southern Ocean paleoclimate through calcareous nannofossils and stable isotopes

    NASA Astrophysics Data System (ADS)

    Villa, Giuliana; Fioroni, Chiara; Persico, Davide; Pea, Laura; Bohaty, Steve

    2010-05-01

    The transition from the ice free early Paleogene world to the glaciated conditions of the early Oligocene has been matter of discussion in the last years. This transition has not been monotonic but punctuated by numerous transient cooling and warming events. Here we present a summary of recent studies based on Nannofossil response to climatic changes during the Eocene and Oligocene. Collected data issue from high latitudes ODP Sites 748, 738, 744, 689 and 690. Based on a detailed revision of the biostratigraphy carried out through quantitative analysis, we conducted paleoecological studies on calcareous nannofossils through the late middle Eocene to the - late Oligocene interval to identify abundance variations of selected taxa in response to changes in sea surface temperature (SST) and trophic conditions. The nannofossil-based interpretation has been compared with detailed oxygen and carbon stable isotope stratigraphy confirming the climate variability in the Southern Ocean for this time interval. We identify the Middle Eocene Climatic optimum (MECO) event, related with the regional exclusion of Paleogenic warm-water taxa from the Southern Ocean, followed by the progressive cooling trend particularly emphasized during the cooling events at about 39 Ma, 37 Ma and 35.5 Ma. In the earliest Oligocene, marked changes in calcareous nannofossil assemblages are strikingly associated with the Oi-1 event recorded in perfect accordance with the oxygen isotope records. For most of the Oligocene we recorded a cold phase, while a warming trend is detected in the late Oligocene. In addiction, a marked increase of taxa thriving in eutrophic conditions coupled with a decrease in oligotrophic taxa, suggests the presence of a time interval (from about 36 Ma to about 26 Ma) with prevailing eutrophic conditions that correspond to an increase of the carbon stable isotope curve. This interval well corresponds with the clay mineral concentration that shows at Site 738 a higher

  4. Beyond methane: Towards a theory for the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Higgins, John A.; Schrag, Daniel P.

    2006-05-01

    Extreme global warmth and an abrupt negative carbon isotope excursion during the Paleocene-Eocene Thermal Maximum (PETM) have been attributed to a massive release of methane hydrate from sediments on the continental slope [1]. However, the magnitude of the warming (5 to 6 °C [2],[3]) and rise in the depth of the CCD (> 2 km; [4]) indicate that the size of the carbon addition was larger than can be accounted for by the methane hydrate hypothesis. Additional carbon sources associated with methane hydrate release (e.g. pore-water venting and turbidite oxidation) are also insufficient. We find that the oxidation of at least 5000 Gt C of organic carbon is the most likely explanation for the observed geochemical and climatic changes during the PETM, for which there are several potential mechanisms. Production of thermogenic CH4 and CO2 during contact metamorphism associated with the intrusion of a large igneous province into organic rich sediments [5] is capable of supplying large amounts of carbon, but is inconsistent with the lack of extensive carbon loss in metamorphosed sediments, as well as the abrupt onset and termination of carbon release during the PETM. A global conflagration of Paleocene peatlands [6] highlights a large terrestrial carbon source, but massive carbon release by fire seems unlikely as it would require that all peatlands burn at once and then for only 10 to 30 ky. In addition, this hypothesis requires an order of magnitude increase in the amount of carbon stored in peat. The isolation of a large epicontinental seaway by tectonic uplift associated with volcanism or continental collision, followed by desiccation and bacterial respiration of the aerated organic matter is another potential mechanism for the rapid release of large amounts of CO2. In addition to the oxidation of the underlying marine sediments, the desiccation of a major epicontinental seaway would remove a large source of moisture for the continental interior, resulting in the

  5. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    USGS Publications Warehouse

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  6. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum.

    PubMed

    Sluijs, Appy; Schouten, Stefan; Pagani, Mark; Woltering, Martijn; Brinkhuis, Henk; Sinninghe Damsté, Jaap S; Dickens, Gerald R; Huber, Matthew; Reichart, Gert-Jan; Stein, Ruediger; Matthiessen, Jens; Lourens, Lucas J; Pedentchouk, Nikolai; Backman, Jan; Moran, Kathryn

    2006-06-01

    The Palaeocene/Eocene thermal maximum, approximately 55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from 18 degrees C to over 23 degrees C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10 degrees C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms--perhaps polar stratospheric clouds or hurricane-induced ocean mixing--to amplify early Palaeogene polar temperatures.

  7. Episodic fresh surface waters in the Eocene Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Brinkhuis, Henk; Schouten, Stefan; Collinson, Margaret E.; Sluijs, Appy; Damsté, Jaap S. Sinninghe; Dickens, Gerald R.; Huber, Matthew; Cronin, Thomas M.; Onodera, Jonaotaro; Takahashi, Kozo; Bujak, Jonathan P.; Stein, Ruediger; van der Burgh, Johan; Eldrett, James S.; Harding, Ian C.; Lotter, André F.; Sangiorgi, Francesca; Cittert, Han Van Konijnenburg-Van; de Leeuw, Jan W.; Matthiessen, Jens; Backman, Jan; Moran, Kathryn; Expedition 302 Scientists

    2006-06-01

    It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (~50Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an ~800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from ~10°C to 13°C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas.

  8. Episodic fresh surface waters in the Eocene Arctic Ocean

    USGS Publications Warehouse

    Brinkhuis, H.; Schouten, S.; Collinson, M.E.; Sluijs, A.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Cronin, T. M.; Onodera, J.; Takahashi, K.; Bujak, J.P.; Stein, R.; Van Der Burgh, J.; Eldrett, J.S.; Harding, I.C.; Lotter, A.F.; Sangiorgi, F.; Cittert, H.V.K.V.; De Leeuw, J. W.; Matthiessen, J.; Backman, J.; Moran, K.

    2006-01-01

    It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45 Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (???50 Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an ???800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from ???10??C to 13??C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas. ?? 2006 Nature Publishing Group.

  9. Composition of Eocene Ice-Rafted Debris, Central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ramstad, C.; St. John, K.

    2007-12-01

    IODP Expedition 302 drilled a 400-m sediment record which contains physical evidence of ice-rafting in the Eocene and Neogene in the Arctic (Backman et al., 2006; Moran et al., 2006, St. John, in press). An increase in the terrigenous sand abundance occurs above 246 mcd (~46 Ma), with a flux similar to that in the Neogene. Higher resolution sampling in an interval of good recovery from 246-236 mcd shows evidence of cyclic input of IRD and biogenic components that fits with Milankovitch forcing at the obliquity period (Sangiorgi et al., in press). The question remains - what areas of the Arctic were ice-covered at this early stage in the Cenozoic? To address this provenance issue the composition of the terrigenous sands (250 micron fraction) in cores 55-56X is being quantified. Grains in 75 samples are being point-counted and their compositions categorized. Quartz grains are the dominant component (greater than 10,000 grains per gram), with some being hematite-stained, and there are lesser amounts of mafic minerals. No carbonate grains are identified so far in this study. Possible sources areas for Eocene IRD are the Eastern European and Russian Arctic margins. Tracking compositional variations of the IRD over the interval of cyclic deposition, should indicate whether the cyclic IRD deposition was consistently derived from one source region or multiple regions during this time.

  10. The Wandering Indian Plate and Its Changing Biogeography During the Late Cretaceous-Early Tertiary Period

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sankar; Scotese, Christopher

    Palaeobiogeographic analysis of Indian tetrapods during the Late Cretaceous-Early Tertiary time has recognized that both vicariance and geodispersal have played important roles in producing biogeographic congruence. The biogeographic patterns show oscillating cycles of geodispersal (Late Cretaceous), followed by congruent episodes of vicariance and geodispersal (Early Eocene), followed by another geodispersal event (Middle Eocene). New biogeographic synthesis suggests that the Late Cretaceous Indian tetrapod fauna is cosmopolitan with both Gondwanan and Laurasian elements. Throughout most of the Cretaceous, India was separated from the rest of Gondwana, but in the latest Cretaceous it reestablished contact with Africa through Kohistan-Dras (K-D) volcanic arc, and maintained biotic link with South America via Ninetyeast Ridge-Kerguelen-Antarctica corridor. These two geodispersal routes allowed exchanges of "pan-Gondwana" terrestrial tetrapods from Africa, South America, and Madagascar. During that time India also maintained biotic connections with Laurasia across the Neotethys via Kohistan-Dras Arc and Africa. During the Palaeocene, India, welded to the K-D Arc, rafted like a "Noah's Ark" as an island continent and underwent rapid cladogenesis because of allopatric speciation. Although the Palaeocene fossil record is blank, Early Eocene tetrapods contain both endemic and cosmopolitan elements, but Middle Eocene faunas have strong Asian character. India collided with Asia in Early and Middle Eocene time and established a new northeast corridor for faunal migration to facilitate the bidirectional "Great Asian Interchange" dispersals.

  11. Winged fruits and associated leaves of Shorea (Dipterocarpaceae) from the Late Eocene of South China and their phytogeographic and paleoclimatic implications.

    PubMed

    Feng, Xinxin; Tang, Biao; Kodrul, Tatiana M; Jin, Jianhua

    2013-03-01

    Dipterocarps are the representative component of tropical rain forests in Southeast Asia and hold important economic and ecological significance, but their origin and migration are controversial. Information on dipterocarpaceous fossils, particularly the more convincing reproductive structures, not only can improve the phylogenetic and phytogeographic studies of this family, but also provide important information for reconstructing paleoclimate. • Morphologically preserved winged fruits and associated leaves were collected from the Late Eocene Huangniuling Formation, Maoming Basin, South China. We determined their taxonomic positions based on comparative morphology with similar extant and fossil specimens and discuss their phytogeographic and paleoclimatic implications by consulting the distribution and habitat of fossil and modern populations. • The Late Eocene winged fruits are attributed to Shorea Roxburgh ex Gaertner (Dipterocarpaceae) as Shorea maomingensis sp. nov. The associated leaves are recognized as Shorea sp. based on leaf architecture, and they are likely to be conspecific with the winged fruits. • The discovery of dipterocarps indicates that they had arrived in tropical and humid South China by the Late Eocene. Dipterocarps including Shorea exhibit a wide range of physiological tolerance to climate; palynological analysis suggests an increase in aridity and seasonality in the Maoming Basin from the Late Eocene. Dipterocarps became adapted to this seasonal climate from the Late Eocene to Early Miocene, expanded northward in the climatic optimum of the Middle Miocene, and declined and gradually disappeared from the southeastern part of the continent from the Late Miocene.

  12. Earth system feedback statistically extracted from the Indian Ocean deep-sea sediments recording Eocene hyperthermals.

    PubMed

    Yasukawa, Kazutaka; Nakamura, Kentaro; Fujinaga, Koichiro; Ikehara, Minoru; Kato, Yasuhiro

    2017-09-12

    Multiple transient global warming events occurred during the early Palaeogene. Although these events, called hyperthermals, have been reported from around the globe, geologic records for the Indian Ocean are limited. In addition, the recovery processes from relatively modest hyperthermals are less constrained than those from the severest and well-studied hothouse called the Palaeocene-Eocene Thermal Maximum. In this study, we constructed a new and high-resolution geochemical dataset of deep-sea sediments clearly recording multiple Eocene hyperthermals in the Indian Ocean. We then statistically analysed the high-dimensional data matrix and extracted independent components corresponding to the biogeochemical responses to the hyperthermals. The productivity feedback commonly controls and efficiently sequesters the excess carbon in the recovery phases of the hyperthermals via an enhanced biological pump, regardless of the magnitude of the events. Meanwhile, this negative feedback is independent of nannoplankton assemblage changes generally recognised in relatively large environmental perturbations.

  13. Paleomagnetic Results for Eocene Volcanic Rocks from Northeastern Washington and the Tertiary Tectonics of the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Fox, Kenneth F., Jr.; Beck, Myrl E., Jr.

    1985-04-01

    The direction of remanent magnetization for 102 sites in Eocene volcanic and volcaniclastic rocks of the O'Brien Creek Formation, Sanpoil Volcanics, and Klondike Mountain Formation suggests approximately 25° of clockwise rotation of a 100 by 200 km area in northeastern Washington. The volcanic rocks consist chiefly of rhyodacite and quartz latite flows, with intercalated ash flow tuff and volcaniclastic layers. These rocks have been sampled at 102 sites distributed among five volcanotectonic depressions: the Toroda Creek, Republic, Keller, and First Thought grabens and the Spokane-Enterprise lineament. The volcanic rocks probably range in age from 55 m.y. to about 48 m.y., and the 50- to 48-m.y.-old volcanic rocks within this suite appear to be rotated as much as the older rocks. Previous investigators have shown that 40-m.y.-old and younger plutonic rocks of northwestern Washington are not rotated; hence we infer that the north-central Washington rocks were rotated to their present declination between 48 and 40 m.y. B.P. (during the middle and/or late Eocene). During early Eocene time this region was extended in a westward direction through crustal necking, gneiss-doming, diking, and graben formation. Internal deformation of the region related to this crustal extension was extreme, but most bedrock units that were formed concurrent with the crustal extension were probably in place prior to the rotation; hence we infer that the rotation was chiefly accommodated by movement on faults peripheral to the sampled area. Faults active during Paleogene time appear to define boundaries of a triangular crustal block (the Sanpoil block), encompassing much of northeastern Washington, northern Idaho, northwestern Montana, and adjacent parts of British Columbia. The faults include the Laramide thrusts of the Rocky Mountain thrust belt, the strike-slip faults of the Lewis and Clark line, and strike-slip faults of the Straight Creek-Fraser zone. We suggest that during early

  14. The Eocene Arctic Azolla phenomenon: species composition, temporal range and geographic extent.

    NASA Astrophysics Data System (ADS)

    Collinson, Margaret; Barke, Judith; van der Burgh, Johan; van Konijnenburg-van Cittert, Johanna; Pearce, Martin; Bujak, Jonathan; Brinkhuis, Henk

    2010-05-01

    Azolla is a free-floating freshwater fern that is renowned for its rapid vegetative spread and invasive biology, being one of the world's fastest growing aquatic macrophytes. Two species of this plant have been shown to have bloomed and reproduced in enormous numbers in the latest Early to earliest Middle Eocene of the Arctic Ocean and North Sea based on samples from IODP cores from the Lomonosov Ridge (Arctic) and from outcrops in Denmark (Collinson et al 2009 a,b Review of Palaeobotany and Palynology 155,1-14; and doi:10.1016/j.revpalbo.2009.12.001). To determine the geographic and temporal extent of this Azolla phenomenon, and the spatial distribution of the different species, we have examined samples from 15 additional sites using material from ODP cores and commercial exploration wells. The sites range from the Sub-Arctic (Northern Alaska and Canadian Beaufort Mackenzie Basin) to the Nordic Seas (Norwegian-Greenland Sea and North Sea Basin). Our data show that the Azolla phenomenon involved at least three species. These are distinguished by characters of the megaspore apparatus (e.g. megaspore wall, floats, filosum) and the microspore massulae (e.g. glochidia fluke tips). The Lomonosov Ridge (Arctic) and Danish occurrences are monotypic but in other sites more than one species co-existed. The attachment to one another and the co-occurrence of megaspore apparatus and microspore massulae, combined with evidence that these spores were shed at the fully mature stage of their life cycle, shows that the Azolla remains were not transported over long distances, a fact which could not be assumed from isolated massula fragments alone. Our evidence, therefore, shows that Azolla plants grew on the ocean surfaces for approximately 1.2 million years (from 49.3 to 48.1 Ma) and that the Azolla phenomenon covered the area from Denmark northwards across the North Sea Basin and the whole of the Arctic and Nordic seas. Apparently, early Middle Eocene Northern Hemisphere middle

  15. Middle to Late Eocene paleoenvironmental changes in a marine transgressive sequence from the northern Tethyan margin (Adelholzen, Germany)

    PubMed Central

    GEBHARDT, Holger; ĆORIĆ, Stjepan; DARGA, Robert; BRIGUGLIO, Antonino; SCHENK, Bettina; WERNER, Winfried; ANDERSEN, Nils; SAMES, Benjamin

    2015-01-01

    The northern Tethyan margin is a key region for determining environmental changes associated with the collision of continental and oceanic tectonic plates and Alpine orogeny. Herein we investigated Middle to Late Eocene neritic to bathyal sediments deposited during an interval of unstable climatic conditions. In order to quantify paleoenvironmental changes, we developed a detailed age model based on biozonations of planktic foraminifera, calcareous nannoplankton, and larger benthic foraminifera. The section at Adelholzen covers the almost complete Lutetian Stage (calcareous nannoplankton zones NP15a-16, planktic foraminifera zones E8-11, shallow benthic (foraminifera) zones SBZ13-15) and large parts of the Priabonian Stage (NP18-20, E14/15), while the intermediate Bartonian Stage (NP17) is completely missing. Foraminiferal, calcareous nannoplankton, and macrofossil assemblages were analyzed for changes in paleo-water depth, mixing and stratification, paleo-primary productivity (pPP), food supply, and bottom water oxygenation. Paleo-water depth estimates range from 50 m (middle neritic, early Lutetian) to nearly 500 m (upper bathyal, late Priabonian). The combination of assemblage composition, planktic and benthic foraminiferal accumulation rates, and derived parameters (carbon-flux to sea floor, pPP) enabled us to identify a series of distinct paleoceanographic events of at least regional significance. Such events are characterized by considerable changes in primary productivity or reduced bottom water ventilation. Calculated pPP-values indicate oligotrophic conditions throughout. PMID:26346423

  16. Middle to Late Eocene paleoenvironmental changes in a marine transgressive sequence from the northern Tethyan margin (Adelholzen, Germany).

    PubMed

    Gebhardt, Holger; Ćorić, Stjepan; Darga, Robert; Briguglio, Antonino; Schenk, Bettina; Werner, Winfried; Andersen, Nils; Sames, Benjamin

    The northern Tethyan margin is a key region for determining environmental changes associated with the collision of continental and oceanic tectonic plates and Alpine orogeny. Herein we investigated Middle to Late Eocene neritic to bathyal sediments deposited during an interval of unstable climatic conditions. In order to quantify paleoenvironmental changes, we developed a detailed age model based on biozonations of planktic foraminifera, calcareous nannoplankton, and larger benthic foraminifera. The section at Adelholzen covers the almost complete Lutetian Stage (calcareous nannoplankton zones NP15a-16, planktic foraminifera zones E8-11, shallow benthic (foraminifera) zones SBZ13-15) and large parts of the Priabonian Stage (NP18-20, E14/15), while the intermediate Bartonian Stage (NP17) is completely missing. Foraminiferal, calcareous nannoplankton, and macrofossil assemblages were analyzed for changes in paleo-water depth, mixing and stratification, paleo-primary productivity (pPP), food supply, and bottom water oxygenation. Paleo-water depth estimates range from 50 m (middle neritic, early Lutetian) to nearly 500 m (upper bathyal, late Priabonian). The combination of assemblage composition, planktic and benthic foraminiferal accumulation rates, and derived parameters (carbon-flux to sea floor, pPP) enabled us to identify a series of distinct paleoceanographic events of at least regional significance. Such events are characterized by considerable changes in primary productivity or reduced bottom water ventilation. Calculated pPP-values indicate oligotrophic conditions throughout.

  17. The dynamics of continental breakup-related magmatism on the Norwegian volcanic margin

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.

    2007-12-01

    The Vøring margin off mid-Norway was initiated during the earliest Eocene (~54 Ma), and large volumes of magmatic rocks were emplaced during and after continental breakup. In 2003, an ocean bottom seismometer survey was acquired on the Norwegian margin to constrain continental breakup and early seafloor spreading processes. The profile P-wave model described here crosses the northern part of the Vøring Plateau. Maximum igneous crustal thickness was found to be 18 km, decreasing to ~6.5 km over ~6 M.y. after continental breakup. Both the volume and the duration of excess magmatism after breakup is about twice of what is observed off the Møre Margin south of the Jan Mayen Fracture Zone, which offsets the margin segments by ~170 km. A similar reduction in magmatism occurs to the north over an along-margin distance of ~100 km to the Lofoten margin, but without a margin offset. There is a strong correlation between magma productivity and early plate spreading rate, which are highest just after breakup, falling with time. This is seen both at the Møre and the Vøring margin segments, suggesting a common cause. A model for the breakup- related magmatism should be able to (1) explain this correlation, (2) the magma production peak at breakup, and (3) the magmatic segmentation. Proposed end-member hypotheses are elevated upper-mantle temperatures caused by a hot mantle plume, or edge-driven small-scale convection fluxing mantle rocks through the melt zone. Both the average P-wave velocity and the major-element data at the Vøring margin indicate a low degree of melting consistent with convection. However, small scale convection does not easily explain the issues listed above. An elaboration of the mantle plume model by N. Sleep, in which buoyant plume material fills the rift-topography at the base of the lithosphere, can explain these: When the continents break apart, the buoyant plume-material flows up into the rift zone, causing excess magmatism by both elevated

  18. Towards a robust and consistent middle Eocene astronomical timescale

    NASA Astrophysics Data System (ADS)

    Boulila, Slah; Vahlenkamp, Maximilian; De Vleeschouwer, David; Laskar, Jacques; Yamamoto, Yuhji; Pälike, Heiko; Kirtland Turner, Sandra; Sexton, Philip F.; Westerhold, Thomas; Röhl, Ursula

    2018-03-01

    Until now, the middle Eocene has remained a poorly constrained interval of efforts to produce an astrochronological timescale for the entire Cenozoic. This has given rise to a so-called "Eocene astronomical timescale gap" (Vandenberghe et al., 2012). A high-resolution astrochronological calibration for this interval has proven to be difficult to realize, mainly because carbonate-rich deep-marine sequences of this age are scarce. In this paper, we present records from middle Eocene carbonate-rich sequences from the North Atlantic Southeast Newfoundland Ridge (IODP Exp. 342, Sites U1408 and U1410), of which the cyclical sedimentary patterns allow for an orbital calibration of the geologic timescale between ∼38 and ∼48 Ma. These carbonate-rich cyclic sediments at Sites U1408 and U1410 were deposited as drift deposits and exhibit prominent lithological alternations (couplets) between greenish nannofossil-rich clay and white nannofossil ooze. The principal lithological couplet is driven by the obliquity of Earth's axial tilt, and the intensity of their expression is modulated by a cyclicity of about 173 kyr. This cyclicity corresponds to the interference of secular frequencies s3 and s6 (related to the precession of nodes of the Earth and Saturn, respectively). This 173-kyr obliquity amplitude modulation cycle is exceptionally well recorded in the XRF (X-ray fluorescence)-derived Ca/Fe ratio. In this work, we first demonstrate the stability of the (s3-s6) cycles using the latest astronomical solutions. Results show that this orbital component is stable back to at least 50 Ma, and can thus serve as a powerful geochronometer in the mid-Eocene portion of the Cenozoic timescale. We then exploit this potential by calibrating the geochronology of the recovered middle Eocene timescale between magnetic polarity Chrons C18n.1n and C21n. Comparison with previous timescales shows similarities, but also notable differences in durations of certain magnetic polarity chrons. We

  19. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian--African shield during the Cretaceous--Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation

    NASA Astrophysics Data System (ADS)

    Soudry, D.; Glenn, C. R.; Nathan, Y.; Segal, I.; VonderHaar, D.

    2006-09-01

    The evolution of Tethyan phosphogenesis during the Cretaceous-Eocene is examined to try to explain fluctuations of phosphogenesis through time, and whether or not they reflect long-term changes in ocean circulation or in continental weathering. Twenty-seven time-stratigraphic phosphate levels in various Tethyan sites, covering a time span of about 90 Myr from the Hauterivian to the Eocene, were analyzed for 44Ca/ 42Ca and 143Nd/ 144Nd in their carbonate fluorapatite (CFA) fraction. P and Ca accumulation rates and bulk sedimentation rates were quantified throughout the Cretaceous-Eocene Negev sequence to examine how changes in 44Ca/ 42Ca and 143Nd/ 144Nd are reflected in the intensity of phosphogenesis. A clear-cut change occurs in ɛNd( T) and δ44Ca and in the rates of P and Ca accumulation and bulk sedimentation through the time analyzed. ɛNd( T) is much lower in the Hauterivian-Lower Cenomanian (- 12.8 to - 10.9) than in the Upper Cenomanian-Eocene (- 7.8 to - 5.9). Much lower δ44Ca values occur in the Hauterivian-Turonian (- 0.22 to + 0.02) than in the Coniacian-Eocene (+ 0.23 to + 0.40). P accumulation rates in the Negev steeply increase from < 200 μmol cm - 2 k yr - 1 in the Albian-Coniacian to ˜ 1500 μmol cm - 2 k yr - 1 in the Campanian, whereas a strong decrease is concomitantly recorded in the rates of Ca accumulation and bulk sedimentation. In addition, distinct ɛNd( T) values are shown by the phosphorites of the Negev (- 6.7 to - 6.4) and Egypt (- 9.1 to - 7.6) during the Campanian, and by those of the Negev (- 7.8 to - 6.3) and North Africa (- 10.1 to - 8.9) during the Maastrichtian-Eocene. The culmination of P accumulation rates in the Negev during the Campanian, occurring with a high in ɛNd( T) and δ44Ca and a low in sedimentation rates, indicates that paleoceanographic and paleogeographical factors mostly governed phosphorite accumulation in this area. The abrupt ɛNd( T) rise after the Cenomanian is attributed to increased incursion of

  20. Asian monsoons in a late Eocene greenhouse world.

    PubMed

    Licht, A; van Cappelle, M; Abels, H A; Ladant, J-B; Trabucho-Alexandre, J; France-Lanord, C; Donnadieu, Y; Vandenberghe, J; Rigaudier, T; Lécuyer, C; Terry, D; Adriaens, R; Boura, A; Guo, Z; Soe, Aung Naing; Quade, J; Dupont-Nivet, G; Jaeger, J-J

    2014-09-25

    The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan-Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55-34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan-Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago.

  1. Eclogite-facies metamorphism in impure marble from north Qaidam orogenic belt: Geodynamic implications for early Paleozoic continental-arc collision

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xu, Rongke; Schertl, Hans-Peter; Zheng, Youye

    2018-06-01

    In the North Qaidam ultrahigh-pressure (UHP) metamorphic belt, impure marble and interbedded eclogite represent a particular sedimentary provenance and tectonic setting, which have important implications for a controversial problem - the dynamic evolution of early Paleozoic subduction-collision complexes. In this contribution, detailed field work, mineral chemistry, and whole-rock geochemistry are presented for impure marble to provide the first direct evidence for the recycling of carbonate sediments under ultrahigh-pressures during subduction and collision in the Yuka terrane, in the North Qaidam UHP metamorphic belt. According to conventional geothermobarometry, pre-peak subduction to 0.8-1.3 GPa/485-569 °C was followed by peak UHP metamorphism at 2.5-3.3 GPa/567-754 °C and cooling to amphibolite facies conditions at 0.6-0.7 GPa/571-589 °C. U-Pb dating of zircons from impure marble reveals a large group with ages ranging from 441 to 458 Ma (peak at 450 Ma), a smaller group ranging from 770 to 1000 Ma (peak at 780 Ma), and minor >1.8 Ga zircon aged ca. 430 Ma UHP metamorphism. The youngest detrital zircons suggest a maximum depositional age of ca. 442 Ma and a burial rate of ca. 1.0-1.1 cm/yr when combined with P-T conditions and UHP metamorphic age. The REE and trace element patterns of impure marble with positive Sr and U anomalies, negative high field strength elements (Nb, Ta, Zr, Hf, and Ti), and Ce anomalies imply that the marble had a marine limestone precursor. Impure marble intercalated with micaschist and eclogite was similar to limestone and siltstone protoliths deposited in continental fore-arc or arc setting with basic volcanic activity. Therefore, the Yuka terrane most likely evolved in a continental island arc setting during the Paleozoic. These data suggest that metasediments were derived from a mixture of Proterozoic continental crust and juvenile early Paleozoic oceanic and/or island arc crust. In addition, their protoliths were likely

  2. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    NASA Astrophysics Data System (ADS)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of

  3. Climatic conditions governing extensive Azolla bloom during the Middle Eocene

    NASA Astrophysics Data System (ADS)

    Dekker, Rolande; Speelman, Eveline N.; Barke, Judith; Konijnendijk, Tiuri; Sinninge Damste, Jaap S.; Reichart, Gert-Jan

    2010-05-01

    Enormous amounts of intact mega- and microspores from the free floating aquatic fern Azolla were found in sediments recovered during Integrated Ocean Drilling Program expedition 302, indicating that Azolla grew and reproduced in situ in the Eocene Arctic Ocean. In general, the Early/Middle Eocene is characterized by enhanced greenhouse conditions with elevated sea surface temperatures (SSTs) in the Arctic (~10°C), while tropical sea surface temperatures (SSTs) were only a little warmer than today (with a mean annual temperature (MAT) of 32-34 °C) (Pearson et al., 2007). The consequently reduced temperature gradient between the equator and the poles and the presence of freshwater at the North Pole as indicated by the presence of the freshwater fern Azolla (Brinkhuis et al., 2006) provide important boundary conditions for understanding the hydrological cycle and latent heat transport during this interval. Here we reconstruct variations in SST and mean annual air temperature using the TEX86 and MBT temperature proxies for the Azolla interval. Sediments from around the Arctic Basin have been analyzed, including samples from Alaska, the Mackenzie Basin, Greenland (IODP core 913b), and Denmark. Furthermore, a high resolution sea surface temperature record for the Azolla interval has been constructed from sediment samples from the Lomonosov Ridge, showing a cyclic signal. Model experiments have shown that the here confirmed low equator-to-pole temperature gradient modulated the hydrological cycle. Since the growth of Azolla is restricted to low salinity conditions, changes in the hydrological cycle are proposed to coincide with the cyclic occurrence of Azolla throughout the interval. To confirm the overlapping presence of high quantities of Azolla and increased precipitation, changes in the hydrogen cycle are reconstructed by creating a high resolution hydrogen isotope record throughout the interval. By performing compound specific analyses (δD) on terrestrial derived

  4. Zircon (U-Th)/He evidence for pre-Eocene orogenic exhumation of eastern North Pyrenean massifs, France

    NASA Astrophysics Data System (ADS)

    Ternois, Sébastien; Vacherat, Arnaud; Pik, Raphaël; Ford, Mary; Tibari, Bouchaïb

    2017-04-01

    Orogens and their associated foreland basins are considered as part of a single dynamic system evolving from an early, non equilibrated, growth stage to a late, mature, steady-state stage. Most of our understanding in foreland basins, in particular early convergence-stage deposition, comes from the subducting plate, so that the classic paradigm for foreland basins is the pro-wedge. Models that clearly depict the relationship between erosion of the orogenic wedge and sedimentation into its associated foreland basin only focus on the late post-orogenic phase. Relatively little is known and understood about the very long phase of initiation of orogenesis. In the doubly wedged Pyrenean orogen, where we know and understand relatively little about how the early retro-wedge developed, the record of the onset of orogenic denudation from massifs is quite limited, not only in time but also in space. As part of the OROGEN project funded by TOTAL and the BRGM, this study presents first single-grain zircon (U-Th)/He data from two Palaeozoic massifs of the external Northern Pyrenean Zone, the Agly and Salvezines massifs. It aims at constraining the exhumation history of eastern Pyrenean massifs and understanding what is their significance for early orogenic wedge growth. The Pyrenean orogeny was generated from end Santonian (84 Ma) to Oligocene-Miocene due to convergence of the Iberian and European plates. Aquitaine foreland basin history (Ariège region) indicates that convergence took place in two phases, Campanian to Maastrichian and Eocene, separated by a quiet Paleocene phase. Yet, only Eocene cooling events are recorded by low-temperature thermochronometers in the central Pyrenean massifs (Arize and Trois-Seigneurs). Nine bedrock samples were collected along a WNW-ESE traverse (Salvezines and Saint-Arnac granites, Belesta-Caramany gneisses) and analysed for ZHe dating. Zircon (U-Th)/He data for the Agly and Salvezines massifs, together with forward modelling of data for

  5. Cenomanian to Eocene Stratigraphy of the Jeanne d'Arc Basin Offshore Newfoundland, Canada, with Detailed Examination of Depositional Architecture of the South Mara Member

    NASA Astrophysics Data System (ADS)

    Karlzen, Kyle

    The South Mara Member in the Jeanne d'Arc Basin offshore Newfoundland, Canada forms significant sand deposits within the post-rift Early Eocene basin. This thesis present through examination of seismic and well data the Cenomanian to Eocene stratigraphy and depositional environments with a detailed examination of transport conduits and depositional architecture of the South Mara Member. South Mara submarine fan deposits are found in the northern basin and deltaic deposits are found in the southern basin. This study proposes north-eastward prograding deltas and mounded pro-delta turbidites were transported through the Cormorant Canyon system onto the peneplain surface on the uplifted Morgiana Anticlinorium. The Cormorant canyons cut into top seals of Lower Cretaceous reservoir units and pose a risk to hydrocarbon exploration of older strata; however, they create hydrocarbon migration pathways between Lower Cretaceous to Eocene reservoir zones.

  6. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    PubMed

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-06

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

  7. Preliminary digital geologic map of the Penokean (early Proterozoic) continental margin in northern Michigan and Wisconsin

    USGS Publications Warehouse

    Cannon, W.F.; Ottke, Doug

    1999-01-01

    The data on this CD consist of geographic information system (GIS) coverages and tabular data on the geology of Early Proterozoic and Archean rocks in part of the Early Proterozoic Penokean orogeny. The map emphasizes metasedimentary and metavolcanic rocks that were deposited along the southern margin of the Superior craton and were later deformed during continental collision at about 1850 Ma. The area includes the famous iron ranges of the south shore region of the Lake Superior district. Base maps, both as digital raster graphics (DRG) and digital line graphs (DLG) are also provided for the convenience of users. The map has been compiled from many individual studies, mostly by USGS researchers, completed during the past 50 years, including many detailed (1:24,000 scale) geologic maps. Data was compiled at 1:100,000 scale and preserves most of the details of source materials. This product is a preliminary release of the geologic map data bases during ongoing studies of the geology and metallogeny of the Penokean continental margin. Files are provided in three formats: Federal Spatial Data Transfer format (SDTS), Arc export format (.e00) files, and Arc coverages. All files can be accessed directly from the CD-ROM using either ARC/INFO 7.1.2 or later or Arc View 3.0 or later software. ESRI's Arc Explorer, a free GIS data viewer available at the web site: http://www.esri.com/software/arcexplorer/index.html also provides display and querying capability for these files.

  8. Isotopic evidence for continental ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous

    PubMed Central

    Yang, Wu-Bin; Niu, He-Cai; Sun, Wei-Dong; Shan, Qiang; Zheng, Yong-Fei; Li, Ning-Bo; Li, Cong-Ying; Arndt, Nicholas T.; Xu, Xing; Jiang, Yu-Hang; Yu, Xue-Yuan

    2013-01-01

    Cretaceous represents one of the hottest greenhouse periods in the Earth's history, but some recent studies suggest that small ice caps might be present in non-polar regions during certain periods in the Early Cretaceous. Here we report extremely negative δ18O values of −18.12‰ to −13.19‰ for early Aptian hydrothermal zircon from an A-type granite at Baerzhe in northeastern China. Given that A-type granite is anhydrous and that magmatic zircon of the Baerzhe granite has δ18O value close to mantle values, the extremely negative δ18O values for hydrothermal zircon are attributed to addition of meteoric water with extremely low δ18O, mostly likely transported by glaciers. Considering the paleoaltitude of the region, continental glaciation is suggested to occur in the early Aptian, indicating much larger temperature fluctuations than previously thought during the supergreenhouse Cretaceous. This may have impact on the evolution of major organism in the Jehol Group during this period. PMID:24061068

  9. Djebelemur, a Tiny Pre-Tooth-Combed Primate from the Eocene of Tunisia: A Glimpse into the Origin of Crown Strepsirhines

    PubMed Central

    Marivaux, Laurent; Ramdarshan, Anusha; Essid, El Mabrouk; Marzougui, Wissem; Ammar, Hayet Khayati; Lebrun, Renaud; Marandat, Bernard; Merzeraud, Gilles; Tabuce, Rodolphe; Vianey-Liaud, Monique

    2013-01-01

    Background Molecular clock estimates of crown strepsirhine origins generally advocate an ancient antiquity for Malagasy lemuriforms and Afro-Asian lorisiforms, near the onset of the Tertiary but most often extending back to the Late Cretaceous. Despite their inferred early origin, the subsequent evolutionary histories of both groups (except for the Malagasy aye-aye lineage) exhibit a vacuum of lineage diversification during most part of the Eocene, followed by a relative acceleration in diversification from the late Middle Eocene. This early evolutionary stasis was tentatively explained by the possibility of unrecorded lineage extinctions during the early Tertiary. However, this prevailing molecular view regarding the ancient origin and early diversification of crown strepsirhines must be viewed with skepticism due to the new but still scarce paleontological evidence gathered in recent years. Methodological/Principal Findings Here, we describe new fossils attributable to Djebelemur martinezi, a≈50 Ma primate from Tunisia (Djebel Chambi). This taxon was originally interpreted as a cercamoniine adapiform based on limited information from its lower dentition. The new fossils provide anatomical evidence demonstrating that Djebelemur was not an adapiform but clearly a distant relative of lemurs, lorises and galagos. Cranial, dental and postcranial remains indicate that this diminutive primate was likely nocturnal, predatory (primarily insectivorous), and engaged in a form of generalized arboreal quadrupedalism with frequent horizontal leaping. Djebelemur did not have an anterior lower dentition as specialized as that characterizing most crown strepsirhines (i.e., tooth-comb), but it clearly exhibited a transformed antemolar pattern representing an early stage of a crown strepsirhine-like adaptation (“pre-tooth-comb”). Conclusions/Significance These new fossil data suggest that the differentiation of the tooth-comb must postdate the djebelemurid divergence, a view

  10. A long-lived Late Cretaceous-early Eocene extensional province in Anatolia? Structural evidence from the Ivriz Detachment, southern central Turkey

    NASA Astrophysics Data System (ADS)

    Gürer, Derya; Plunder, Alexis; Kirst, Frederik; Corfu, Fernando; Schmid, Stefan M.; van Hinsbergen, Douwe J. J.

    2018-01-01

    Central Anatolia exposes previously buried and metamorphosed, continent-derived rocks - the Kırşehir and Afyon zones - now covering an area of ∼300 × 400 km. So far, the exhumation history of these rocks has been poorly constrained. We show for the first time that the major, >120 km long, top-NE 'Ivriz' Detachment controlled the exhumation of the HP/LT metamorphic Afyon Zone in southern Central Anatolia. We date its activity at between the latest Cretaceous and early Eocene times. Combined with previously documented isolated extensional detachments found in the Kırşehir Block, our results suggest that a major province governed by extensional exhumation was active throughout Central Anatolia between ∼80 and ∼48 Ma. Although similar in dimension to the Aegean extensional province to the east, the Central Anatolian extensional province is considerably older and was controlled by a different extension direction. From this, we infer that the African slab(s) that subducted below Anatolia must have rolled back relative to the Aegean slab since at least the latest Cretaceous, suggesting that these regions were underlain by a segmented slab. Whether or not these early segments already corresponded to the modern Aegean, Antalya, and Cyprus slab segments remains open for debate, but slab segmentation must have occurred much earlier than previously thought.

  11. Biostratigraphic implications of the first Eocene land-mammal fauna from the North American coastal plain

    NASA Astrophysics Data System (ADS)

    Westgate, James W.

    1988-11-01

    A newly discovered vertebrate fossil assemblage, the Casa Blanca local fauna, comes from the Laredo Formation, Claiborne Group, of Webb County, Texas, and is the first reported Eocene land-mammal fauna from the coastal plain of North America. The mammalian fauna is correlated with the Serendipity and Candelaria local faunas of west Texas, the Uinta C faunas of the Rocky Mountains, the Santiago Formation local fauna of southern California, and the Swift Current Creek local fauna of Saskatchewan. The vertebrate-bearing deposit lies about 32 m above a horizon containing the marine gastropod Turritella cortezi, which ranges from east Texas to northeast Mexico in the lower half of the Cook Mountain and Laredo Formations and is a guide fossil to the Hurricane Lentil in the Cook Mountain Formation. Nannoplankton found in these middle Eocene formations belong to the upper half of Nannoplankton Zone I6 and allow correlation with European beds of late Lutetian to early Bartonian age.

  12. The Post-Eocene Evolution of the Doruneh Fault Region (Central Iran): The Intraplate Response to the Reorganization of the Arabia-Eurasia Collision Zone

    NASA Astrophysics Data System (ADS)

    Tadayon, Meisam; Rossetti, Federico; Zattin, Massimiliano; Nozaem, Reza; Calzolari, Gabriele; Madanipour, Saeed; Salvini, Francesco

    2017-12-01

    The Cenozoic deformation history of Central Iran has been dominantly accommodated by the activation of major intracontinental strike-slip fault zones, developed in the hinterland domain of the Arabia-Eurasia convergent margin. Few quantitative temporal and kinematic constraints are available from these strike-slip deformation zones, hampering a full assessment of the style and timing of intraplate deformation in Iran and the understanding of the possible linkage to the tectonic reorganization of the Zagros collisional zone. This study focuses on the region to the north of the active trace of the sinistral Doruneh Fault. By combing structural and low-temperature apatite fission track (AFT) and (U-Th)/He (AHe) thermochronology investigations, we provide new kinematic and temporal constraints to the deformation history of Central Iran. Our results document a post-Eocene polyphase tectonic evolution dominated by dextral strike-slip tectonics, whose activity is constrained since the early Miocene in response to an early, NW-SE oriented paleo-σ1 direction. A major phase of enhanced cooling/exhumation is constrained at the Miocene/Pliocene boundary, caused by a switch of the maximum paleo-σ1 direction to N-S. When integrated into the regional scenario, these data are framed into a new tectonic reconstruction for the Miocene-Quaternary time lapse, where strike-slip deformation in the intracontinental domain of Central Iran is interpreted as guided by the reorganization of the Zagros collisional zone in the transition from an immature to a mature stage of continental collision.

  13. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures

    PubMed Central

    Douglas, Peter M. J.; Affek, Hagit P.; Ivany, Linda C.; Houben, Alexander J. P.; Sijp, Willem P.; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-01-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10–17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands. PMID:24753570

  14. New Apterodontinae (Hyaenodontida) from the Eocene Locality of Dur At-Talah (Libya): Systematic, Paleoecological and Phylogenetical Implications

    PubMed Central

    Grohé, Camille; Morlo, Michael; Chaimanee, Yaowalak; Blondel, Cécile; Coster, Pauline; Valentin, Xavier; Salem, Mustapha; Bilal, Awad A.; Jaeger, Jean-Jacques; Brunet, Michel

    2012-01-01

    The African Hyaenodontida, mainly known from the Late Eocene and Early Oligocene Fayum depression in Egypt, show a very poor diversity in oldest Paleogene localities. Here we report new hyaenodontidans found in the late Middle Eocene deposits of Dur At-Talah (Central Libya), known to have recorded the earliest radiation of African anthropoids. The new hyaenodontidan remains are represented by dental and postcranial specimens comprising the historical material discovered by R.J.G. Savage in the last century and that of the recent Franco-Libyan campaigns. This material includes two apterodontines, in particular a subcomplete skeleton of Apterodon langebadreae nov. sp., bringing new postcranial elements to the fossil record of the genus Apterodon. Anatomical analysis of the postcranial remains of Dur At-Talah suggests a semi-aquatic lifestyle for Apterodon, a completely unusual locomotion pattern among hyaenodontidans. We also perform the first cladistic analysis of hyaenodontidans including apterodontines: Apterodon and Quasiapterodon appear close relatives to “hyainailourines”, in particular to the African Oligo-Miocene Metasinopa species. Apterodon langebadreae nov. sp. could be the most primitive species of the genus, confirming an African origin of the Apterodontinae and a further dispersion event to Europe before the early Oligocene. These data enhance our knowledge of early hyaenodontidan diversification into Africa and underline how crucial is the understanding of their evolutionary history for the improvement of Paleogene paleobiogeographic scenarii. PMID:23185292

  15. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, E. N.; Sewall, J. O.; Noone, D. C.; Huber, M.; Sinninghe Damsté, J. S.; Reichart, G.

    2009-12-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during most of the Early Eocene. With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions related to Eocene (global) hydrological cycling facilitating these blooms arose. Changes in hydrological cycling, as a consequence of a reduced temperature gradient, are expected to be most clearly reflected in the isotopic composition (D, 18O) of precipitation. The interpretation of water isotopic records to quantitatively estimate past precipitation patterns is, however, hampered by the lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled global circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of a reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Eocene setting. Overall, our combination of Eocene climate forcings, with superimposed TEX86-derived SST estimates and elevated pCO2 concentrations, produces a climate that agrees well with proxy data in locations around the globe. It shows the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. The Eocene model runs with a significantly reduced equator-to-pole temperature gradient in a warmer more humid world predict occurrence of less depleted precipitation, with δD values ranging only between 0 and -140‰ (as opposed to the present-day range of 0 to -300‰). Combining new results obtained from compound specific isotope analyses on terrestrially derived n-alkanes extracted from Eocene sediments, and model calculations, shows that the model not only captures the main features, but reproduces isotopic values

  16. Eocene and Oligocene basins and ridges of the Coral Sea-New Caledonia region: Tectonic link between Melanesia, Fiji, and Zealandia

    NASA Astrophysics Data System (ADS)

    Mortimer, Nick; Gans, Phillip B.; Palin, J. Michael; Herzer, Richard H.; Pelletier, Bernard; Monzier, Michel

    2014-07-01

    This paper presents 34 geochemical analyses, 24 Ar-Ar ages, and two U-Pb ages of igneous rocks from the back-arc basins and submarine ridges in the Coral Sea-New Caledonia region. The D'Entrecasteaux Ridge is a composite structural feature. Primitive arc tholeiites of Eocene age (34-56 Ma) are present along a 200 km length of the ridge and arguably were part of the initial line of subduction inception between Fiji and the Marianas; substantial Eocene arc edifices are only evident at the eastern end where Bougainville Guyot andesite breccias are dated at 40 ± 2 Ma. The South Rennell Trough is confidently identified as a 28-29 Ma (early Oligocene) fossil spreading ridge, and hence, the flanking Santa Cruz and D'Entrecasteaux basins belong in the group of SW Pacific Eocene-Early Miocene back-arc basins that include the Solomon Sea, North Loyalty, and South Fiji basins. The rate and duration of spreading in the North Loyalty Basin is revised to 43 mm/yr between 28 and 44 Ma, longer and faster than previously recognized. The direction of its opening was to the southeast, that is, parallel to the continent-ocean boundary and perpendicular to the direction of coeval New Caledonia ophiolite emplacement. Medium- and high-K alkaline lavas of 23-25 Ma (late Oligocene) age on the northern Norfolk Ridge are an additional magmatic response to Pacific trench rollback.

  17. Foraminiferal repopulation of the late Eocene Chesapeake Bay impact crater

    USGS Publications Warehouse

    Poag, C. Wylie

    2012-01-01

    The Chickahominy Formation is the initial postimpact deposit in the 85km-diameter Chesapeake Bay impact crater, which is centered under the town of Cape Charles, Virginia, USA. The formation comprises dominantly microfossil-rich, silty, marine clay, which accumulated during the final ~1.6myr of late Eocene time. At cored sites, the Chickahominy Formation is 16.8-93.7m thick, and fills a series of small troughs and subbasins, which subdivide the larger Chickahominy basin. Nine coreholes drilled through the Chickahominy Formation (five inside the crater, two near the crater margin, and two ~3km outside the crater) record the stratigraphic and paleoecologic succession of 301 indigenous species of benthic foraminifera, as well as associated planktonic foraminifera and bolboformids. Two hundred twenty of these benthic species are described herein, and illustrated with scanning electron photomicrographs. Absence of key planktonic foraminiferal and Bolboforma species in early Chickahominy sediments indicates that detrimental effects of the impact also disturbed the upper oceanic water column for at least 80-100kyr postimpact. After an average of ~73kyr of stressed, rapidly fluctuating paleoenvironments, which were destabilized by after-effects of the impact, most of the cored Chickahominy subbasins maintained stable, nutrient-rich, low-oxygen bottom waters and interstitial microhabitats for the remaining ~1.3myr of late Eocene time.

  18. Late Middle Eocene primate from Myanmar and the initial anthropoid colonization of Africa.

    PubMed

    Chaimanee, Yaowalak; Chavasseau, Olivier; Beard, K Christopher; Kyaw, Aung Aung; Soe, Aung Naing; Sein, Chit; Lazzari, Vincent; Marivaux, Laurent; Marandat, Bernard; Swe, Myat; Rugbumrung, Mana; Lwin, Thit; Valentin, Xavier; Zin-Maung-Maung-Thein; Jaeger, Jean-Jacques

    2012-06-26

    Reconstructing the origin and early evolutionary history of anthropoid primates (monkeys, apes, and humans) is a current focus of paleoprimatology. Although earlier hypotheses frequently supported an African origin for anthropoids, recent discoveries of older and phylogenetically more basal fossils in China and Myanmar indicate that the group originated in Asia. Given the Oligocene-Recent history of African anthropoids, the colonization of Africa by early anthropoids hailing from Asia was a decisive event in primate evolution. However, the fossil record has so far failed to constrain the nature and timing of this pivotal event. Here we describe a fossil primate from the late middle Eocene Pondaung Formation of Myanmar, Afrasia djijidae gen. et sp. nov., that is remarkably similar to, yet dentally more primitive than, the roughly contemporaneous North African anthropoid Afrotarsius. Phylogenetic analysis suggests that Afrasia and Afrotarsius are sister taxa within a basal anthropoid clade designated as the infraorder Eosimiiformes. Current knowledge of eosimiiform relationships and their distribution through space and time suggests that members of this clade dispersed from Asia to Africa sometime during the middle Eocene, shortly before their first appearance in the African fossil record. Crown anthropoids and their nearest fossil relatives do not appear to be specially related to Afrotarsius, suggesting one or more additional episodes of dispersal from Asia to Africa. Hystricognathous rodents, anthracotheres, and possibly other Asian mammal groups seem to have colonized Africa at roughly the same time or shortly after anthropoids gained their first toehold there.

  19. New data on stratigraphy (palynomorphs, ostracods, paleomagnetism) of Cenozoic continental deposits of the Ishim plain, Western Siberia

    NASA Astrophysics Data System (ADS)

    Kuzmina, O. B.; Gnibidenko, Z. N.; Khazin, L. B.; Khazina, I. V.

    2017-05-01

    New micropaleontological and paleomagnetic data were obtained by studying core samples of Cenozoic continental deposits from two boreholes drilled in the south of Tyumen oblast (Western Siberia). Palynological assemblages in deposits of the Tavda (upper part), Novomikhailovka, Turtas, Abrosimovka, Tobolsk, Smirnovka, and Suzgun formations were described. Deposits of these formations are enriched in spore-pollen assemblages, which can be correlated with assemblages of regional palynozones of the West Siberian Plain. Ostracods were described in Quaternary deposits. On the basis of biostratigraphic and paleomagnetic data, the Late Eocene (Priabonian)-Holocene age of deposits was substantiated. For the first time, beds with dinocysts of genus Pseudokomewuia were identified in deposits of the Turtas Formation (Upper Oligocene) of the Ishim lithofacial area. In total, nine regional magnetozones were distinguished in the paleomagnetic section. On the basis of palynological and paleomagnetic data, sections of two boreholes were correlated, and hiatuses in sedimentation were revealed. A large hiatus is at the Eocene-Oligocene boundary (Western Siberia): the Lower Oligocene Atlym Horizon and Miocene-Pliocene and Eopleistocene sediments are missing. The Oligocene interval of the section is represented in a reduced volume.

  20. Impact ejecta at the Paleocene-Eocene boundary.

    PubMed

    Schaller, Morgan F; Fung, Megan K; Wright, James D; Katz, Miriam E; Kent, Dennis V

    2016-10-14

    Extraterrestrial impacts have left a substantial imprint on the climate and evolutionary history of Earth. A rapid carbon cycle perturbation and global warming event about 56 million years ago at the Paleocene-Eocene (P-E) boundary (the Paleocene-Eocene Thermal Maximum) was accompanied by rapid expansions of mammals and terrestrial plants and extinctions of deep-sea benthic organisms. Here, we report the discovery of silicate glass spherules in a discrete stratigraphic layer from three marine P-E boundary sections on the Atlantic margin. Distinct characteristics identify the spherules as microtektites and microkrystites, indicating that an extraterrestrial impact occurred during the carbon isotope excursion at the P-E boundary. Copyright © 2016, American Association for the Advancement of Science.

  1. New Eocene damselflies and first Cenozoic damsel-dragonfly of the isophlebiopteran lineage (Insecta: Odonata).

    PubMed

    Garrouste, Romain; Nel, André

    2015-10-09

    The study of a new specimen of Petrolestes hendersoni from the Eocene Green Formation allows a more precise description of the enigmatic damselfly and the diagnosis of the Petrolestini. Petrolestes messelensis sp. nov. is described from the Eocene Messel Formation in Germany, extending the distribution of the Petrolestini to the European Eocene. The new damsel-dragonfly family Pseudostenolestidae is described for the new genus and species Pseudostenolestes bechlyi, from the Eocene Messel Formation. It is the first Cenozoic representative of the Mesozoic clade Isophlebioptera.

  2. Omomyid primates (Tarsiiformes) from the Early Middle Eocene at South Pass, Greater Green River Basin, Wyoming.

    PubMed

    Muldoon, Kathleen M; Gunnell, Gregg F

    2002-10-01

    relegated to upland refugia as omomyine taxa began to appear in the later part of the early Eocene. Another possible explanation for the unusual co-occurrence of species at South Pass relates to fluctuating lake levels in the Green River Basin, which intermittently would have made lowland environments inhospitable for arboreal fauna. This would have created a situation whereby species which would normally be allopatric become sympatric at South Pass.

  3. Climate change likely to favor shift toward warmer climate states of the Pliocene and Eocene

    NASA Astrophysics Data System (ADS)

    Burke, K. D.; Williams, J. W.

    2017-12-01

    As the world warms due to rising greenhouse gas concentrations, the climate system is moving toward a state without precedent in the historical record. Various past climate states have been proposed as potential analogues or model systems for the coming decades, including the early to middle Holocene, the last interglacial, the middle Pliocene, and the early Eocene. However, until now, such comparisons have been qualitative. To compare these time periods to the projected climate states for the 21st and 22nd centuries, we conduct a climate similarity analysis using the standardized Euclidean distance metric (SED) and seasonal means of surface air temperature and precipitation. We make this future-to-past comparison using 30-year mean climatologies, for every decade between 2020 and 2280 AD (27 total comparisons). The list of past earth system states includes the historical period (1940-1970 AD), a pre-industrial control (ca. 1850), the middle Holocene (ca. 6 ka), the last glacial maximum (ca. 21 ka), the last interglacial (ca. 125 ka), the middle Pliocene (ca. 3 Ma), and the early Eocene (ca. 50-55 Ma). To reduce uncertainties resulting from choice of earth system model, analyses are based on simulations from three earth system models (HadCM, CCSM, NASA/GISS Model-E), using in part experiments from PMIP2, PMIP3/CMIP5, EoMIP, and PlioMIP. Results are presented for two representative concentration pathways (RCP's 4.5, 8.5). By 2050 AD, the most common past climate analogue is sourced from the Pliocene for RCP 8.5, while by 2190 AD, the Eocene becomes the source of the most common past climate analogue. For RCP 4.5, in which radiative forcings stabilize this century, the Pliocene becomes the most important past climate analogue by 2100 AD. Low latitude climates are the first to most closely resemble these past earth warm periods. The mid-latitudes then follow this pattern by the end of the 22nd century. Although no past state of the earth system is a perfect analogue

  4. The Rajang Unconformity: Major provenance change between the Eocene and Miocene sequences in NW Borneo

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. T.; Hennig, J.; BouDagher-Fadel, M.; Hall, R.

    2017-12-01

    The offshore Sarawak Basin NW of North Sarawak is a major hydrocarbon province in SE Asia. A very thick sedimentary sequence of Oligocene to ?Early Miocene age, named Cycle 1, is an important hydrocarbon source and reservoir. Despite numerous wells the stratigraphy and tectonic history is not very well understood. The Nyalau Formation of onshore North Sarawak is the supposed equivalent of the offshore Cycle 1 sequence. The Nyalau Formation is a thick sedimentary sequence of mainly tidal to deltaic deposits. The formation is dominated by well-bedded sandstone-mudstone alternations and thicker sandstones with abundant bioturbation. The sandstones are predominantly arenaceous. Various lithic fragments and feldspar indicate multiple sources and fresh input from igneous and metamorphic rocks. Interbedded thin limestone beds and marls yielded Early Miocene foraminifera for the upper part of the succession. Zircons separated from the sandstones yielded mainly Cretaceous and Triassic ages. The Triassic is the dominant age population. The Nyalau Formation conformably overlies the Buan Shale and the Tatau Formation, and in places unconformably overlies the Belaga Formation. The Belaga Formation is part of the Rajang Group that represents remnants of a large submarine fan deposited in the Late Cretaceous to Eocene in Central Sarawak. In contrast to the Nyalau Formation, the majority of zircons from the Rajang Group have Cretaceous ages. This marks an important change in provenance at the major unconformity separating the Belaga and Nyalau Formations. This unconformity was previously interpreted as the result of an orogeny in the Late Eocene. However, there is no evidence for a subduction or collision event at this time in Sarawak. We interpret it to mark plate reorganisation in the Middle Eocene and name it the Rajang Unconformity. Borneo is the principal source of Cretaceous zircons which were derived from the Schwaner Mountains and West Sarawak. The dominant Triassic zircon

  5. Magnetostratigraphy of the Willwood Formation, Bighorn Basin, Wyoming: new constraints on the location of Paleocene/Eocene boundary

    USGS Publications Warehouse

    Tauxe, L.; Gee, J.; Gallet, Y.; Pick, T.; Bown, T.

    1994-01-01

    The lower Eocene Willwood Formation in the Bighorn Basin of Wyoming preserves a rich and diverse mammalian and floral record. The paleomagnetic behavior of the sequence of floodplain paleosols of varying degrees of maturation ranges from excellent to poor. We present a magnetostratigraphic section for a composite section near Worland, Wyoming, by using a set of strict criteria for interpreting the step-wise alternating field and thermal demagnetization data of 266 samples from 90 sites throughout the composite section. Correlation to the geomagnetic reversal time scale was achieved by combining magnetostratigraphic and biostratigraphic data from this section, from a section in the Clark's Fork Basin in northern Wyoming, and from DSDP Site 550, with the isotopic data determined on a tuff near the top of our section. Our correlation suggests that the Bighorn Basin composite section in the Worland area spans from within Chron C24r to near the top of Chron C24n, or from approximately 55 to 52 Ma. This correlation places the Paleocene/Eocene boundary within the vicinity of the base of the section. Cryptochron C24r.6 of Cande and Kent is tentatively identified some 100 m above the base of the section. The temporal framework provided here enables correlation of the mammalian biostratigraphy of the Bighorn Basin to other continental sequences as well as to marine records. It also provides independent chronological information for the calculation of sediment accumulation rates to constrain soil maturation rates. We exclude an age as young as 53 Ma for the Paleocene/Eocene boundary and support older ages, as recommended in recent time scales. The location of a tuff dated at 52.8 ?? 0.3 Ma at the older boundary C24n.1 is consistent with the age of 52.5 Ma estimated by Cande and Kent and inconsistent with that of 53.7 Ma, from Harland et al. ?? 1994.

  6. Tectonic events reflected by palaeocurrents, zircon geochronology, and palaeobotany in the Sierra Baguales of Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Nestor M.; Le Roux, Jacobus P.; Vásquez, Ana; Carreño, Catalina; Pedroza, Viviana; Araos, José; Oyarzún, José Luis; Pablo Pino, J.; Rivera, Huber A.; Hinojosa, L. F.

    2017-01-01

    The Sierra Baguales, situated north of the Torres Del Paine National Park in the Magallanes region of southern Chile, shows a well-exposed stratigraphic sequence ranging from the Late Cretaceous to late Pliocene, which presents a unique opportunity to study the evolution of sedimentological styles and trends, palaeoclimate changes, and tectonic events during this period. The depositional environment changed from a continental slope and shelf during the Cenomanian-Campanian (Tres Pasos Formation) to deltaic between the Campanian-Maastrichtian (Dorotea Formation) and estuarine in the Lutetian-Bartonian (Man Aike Formation). During the Rupelian, a continental environment with meandering rivers and overbank marshes was established (Río Leona Formation). This area was flooded in the early Burdigalian (Estancia 25 de Mayo Formation) during the Patagonian Transgression, but emerged again during the late Burdigalian (Santa Cruz Formation). Measured palaeocurrent directions in this Mesozoic-Cenozoic succession indicate source areas situated between the northeast and east-southeast during the Late Cretaceous, east-southeast during the middle Eocene, and southwest during the early Oligocene to early Miocene. This is confirmed by detrital zircon age populations in the different units, which can be linked to probable sources of similar ages in these areas. The east-southeastern provenance is here identified as the Antarctic Peninsula or its northeastern extension, which is postulated to have been attached to Fuegian Patagonia during the Eocene. The southwestern and western sources were exhumed during gradual uplift of the Southern Patagonian Andes, coinciding with a change from marine to continental conditions in the Magallanes-Austral Basin, as well as a decrease in mean annual temperature and precipitation indicated by fossil leaves in the Río Leona Formation. The rain shadow to the east of the Andes thus started to develop here during the late Eocene-early Oligocene ( 34

  7. Highly-seasonal monsoons controlled by Central Asian Eocene epicontinental sea

    NASA Astrophysics Data System (ADS)

    Bougeois, Laurie; Tindall, Julia; de Rafélis, Marc; Reichart, Gert-Jan; de Nooijer, Lennart; Dupont-Nivet, Guillaume

    2015-04-01

    Modern Asian climate is mainly controlled by seasonal reverse winds driven by continent-ocean thermal contrast. This yields monsoon pattern characterized by a strong seasonality in terms of precipitation and temperature and a duality between humidity along southern and eastern Asia and aridity in Central Asia. According to climate models, Asian Monsoons and aridification have been governed by Tibetan plateau uplift, global climate changes and the retreat of a vast epicontinental sea (the Proto-Paratethys sea) that used to cover Eurasia in Eocene times (55 to 34 Myr ago). Evidence for Asian aridification and monsoons a old as Eocene, are emerging from proxy and model data, however, the role of the Proto-Paratethys sea remains to be established by proxy data. By applying a novel infra-annual geochemical multi-proxy methodology on Eocene oyster shells of the Proto-Paratethys sea and comparing results to climate simulations, we show that the Central Asian region was generally arid with high seasonality from hot and arid summers to wetter winters. This high seasonality in Central Asia supports a monsoonal circulation was already established although the climate pattern was significantly different than today. During winter months, a strong influence of the Proto-Paratethys moisture is indicated by enhanced precipitations significantly higher than today. Precipitation probably dwindled because of the subsequent sea retreat as well as the uplift of the Tibetan and Pamir mountains shielding the westerlies. During Eocene summers, the local climate was hotter and more arid than today despite the presence of the Proto Paratethys. This may be explained by warmer Eocene global conditions with a strong anticyclonic Hadley cell descending at Central Asian latitudes (25 to 45 N). urthermore, the Tibetan plateau emerging at this time to the south must have already contributed a stronger Foehn effect during summer months bringing warm and dry air into Central Asia. Proto

  8. Climatic changes in the Antarctic Eocene: - palaeontological, mineralogical and geochemical fossil proxies from bryozoans

    NASA Astrophysics Data System (ADS)

    Hara, Urszula

    2017-04-01

    The earliest Antarctic Cenozoic (late early Eocene) bryozoan fossil records, recognized in the La Meseta Fm. on Seymour Island (Antarctic Peninsula) are connected with the major K/T phase of the cheilostome evolution, clear preponderance of cerioporoidean cyclostomes along with abundant occurrence of microporoideans, umbonulomorphs and lepraliomorphs. The presence of the loose, small zooecia of the cheilostome bryozoans in the lowermost part of this formation, systematically includes the buguloids and catenicelloideans such as e.g. Beanidae, Catenicellidae, Savignyellidae and Calwelliidae families, which in the present day are widely distributed in the tropical-warm latitudes mostly in the shallow-marine settings (Hara 2015). Undoubtedly, the occurrence of over 90% of the warm-loving multilamellar cyclostomes with the relatively slow growing rate is connected with a short-term episode in the lower part of the La Meseta Formation (Telm1), during their long in situ evolution. The recently recognized biota in the middle part of the La Meseta Formation (Telm4 and Telm5) on the NE side of the Seymour Island, reveal a presence of the microporoideans of the Micropora as well as free-living lunulitiforms belonging to the Lunulites and Otionellina genera, which developed disc-shaped colonies (Hara et al. 2015, in review). They are dominated in the Telm5, along with the new umbonulomorph of the family Brydonellidae Uharella seymourensis, found as an epilithozoic, encrusting bryozoan occurring in a loose residuum of the siliciclastic sediments. Environmentally, Recent, free-living lunulitids are known to occur in warm, shallow-shelf conditions, at temperatures of 10-29˚C, on coarse, sandy to muddy bottom with low to moderate deposition in fairly high velocity current regime and they are overwhelmingly associated with sand fauna environments. The dominance of the lunulitiform colonies in the Telm4-5 may suggests the shallow-water setting in this middle part of the formation

  9. How Continental Bank outsourced its "crown jewels.".

    PubMed

    Huber, R L

    1993-01-01

    No industry relies more on information than banking does, yet Continental, one of America's largest banks, outsources its information technology. Why? Because that's the best way to service the customers that form the core of the bank's business, says vice chairman Dick Huber. In the late 1970s and early 1980s, Continental participated heavily with Penn Square Bank in energy investments. When falling energy prices burst Penn Square's bubble in 1982, Continental was stuck with more than $1 billion in bad loans. Eight years later when Dick Huber came on board, Continental was working hard to restore its once solid reputation. Executives had made many tough decisions already, altering the bank's focus from retail to business banking and laying off thousands of employees. Yet management still needed to cut costs and improve services to stay afloat. Regulators, investors, and analysts were watching every step. Continental executives, eager to focus on the bank's core mission of serving business customers, decided to outsource one after another in-house service--from cafeteria services to information technology. While conventional wisdom holds that banks must retain complete internal control of IT, Continental bucked this argument when it entered into a ten-year, multimillion-dollar contract with Integrated Systems Solutions Corporation. Continental is already reaping benefits from outsourcing IT. Most important, Continental staffers today focus on their true core competencies: intimate knowledge of customers' needs and relationships with customers.

  10. Middle Eocene echinoids from Gebel Qarara, Maghagh, Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Said M.

    2017-09-01

    The Middle Eocene echinoid fauna of Gebel Qarara is large and diverse. Twenty four species in seventeen genera are identified and described. Three species of them are new: Echinocyamus belali, Antillaster farisi and Metalia lindaae. The Caribbean genus Antillaster which is recorded for the first time from the Mediterranean region, suggests an east - west migration from the Tethys and Paratethys to the Caribbean region during the Eocene time by crossing the Atlantic Ocean in a westerly direction. The paleoecology and the paleogeography of the echinoid fauna are discussed. The paleoecological study appears to revel that the Middle Eocene rocks of that area were deposited in a shallow marine water conditions. Paleogeographically, 33.3% of the total echinoids are endemic to Egypt, 66.7% species are similar to that of the taxa of the adjacent countries.

  11. Oldest new genus of Myrmeleontidae (Neuroptera) from the Eocene Green River Formation.

    PubMed

    Makarkin, Vladimir N

    2017-10-20

    Epignopholeon sophiae gen. et sp. nov. (Neuroptera: Myrmeleontidae) is described from the early Eocene of the Green River Formation (Colorado, U.S.A.). It represents the oldest confident record of the family. The new genus is remarkable in that tergite 7 of the female is much shorter than its long sternite 7. The preserved wing venation shows that the genus belongs to the subfamily Myrmeleontinae, and most probably to the tribe Gnopholeontini. The discovery of this species is consistent with estimations of relatively dry and warm conditions during deposition of the upper Parachute Creek Member of the Green River Formation.

  12. A re-description of the fossil damselfly Eolestes syntheticus Cockerell, 1940 (Odonata: Zygoptera: Eolestidae n. fam.) with description of new taxa from the Eocene of North America.

    PubMed

    Greenwalt, Dale E; Bechly, Günter

    2014-11-24

    The enigmatic species Eolestes syntheticus Cockerell, 1940, from the Early Eocene of North America, previously attributed to the lestoid family Synlestidae, is re-examined in light of the discovery of new material from the Middle Eocene Kishenehn Formation in northwestern Montana. E. syntheticus and a new species, Eolestes ramosus sp. n., are attributed to a new family Eolestidae fam. n.. In addition, a new genus and species very closely related to Lestidae but assigned to family unknown, Lutetialestes uniformis sp. n., is described from the Kishenehn Formation.

  13. Ichnofabrics of the Capdevila Formation (early Eocene) in the Los Palacios Basin (western Cuba): Paleoenvironmental and paleoecological implications

    NASA Astrophysics Data System (ADS)

    Villegas-Martín, Jorge; Netto, Renata Guimarães; Lavina, Ernesto Luis Correa; Rojas-Consuegra, Reinaldo

    2014-12-01

    The ichnofabrics present in the early Eocene siliciclastic deposits of the Capdevila Formation exposed in the Pinar del Rio area (Los Palacios Basin, western Cuba) are analyzed in this paper and their paleoecological and paleoenvironmental significance are discussed. Nine ichnofabrics were recognized in the dominantly sandy sedimentary succession: Ophiomorpha, Asterosoma, Thalassinoides, Palaeophycus, Scolicia, Bichordites-Thalassinoides, Rhizocorallium, Scolicia-Thalassinoides and rhizobioturbation. Diversity of ichnofauna is low and burrows made by detritus-feeding organisms in well oxygenated and stenohaline waters predominate. Suites of the Cruziana and Skolithos Ichnofacies lacking their archetypical characteristics were recognized, being impoverished in diversity and presenting dominance of echinoderm and decapods crustacean burrows as a response to the environmental stress caused by the high frequency of deposition. The ichnofabric distribution in the studied succession, its recurrence in the sandstone beds and the presence of a Glossifungites Ichnofacies suite with rhizobioturbation associated reflect a shoaling-upward event with subaerial exposure of the substrate. The integrated analysis of the ichnology and the sedimentary facies suggests deposition in a shallow slope frequently impacted by gravitational flows and high-energy events. The evidence of substrate exposure indicates the occurrence of a forced regression and suggests the existence of a sequence boundary at the top of the Capdevila Formation.

  14. Eocene Total Petroleum System -- North and East of the Eocene West Side Fold Belt Assessment Unit of the San Joaquin Basin Province: Chapter 19 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Gautier, Donald L.; Hosford Scheirer, Allegra

    2009-01-01

    The North and East of Eocene West Side Fold Belt Assessment Unit (AU) of the Eocene Total Petroleum System of the San Joaquin Basin Province comprises all hydrocarbon accumulations within the geographic and stratigraphic limits of this confirmed AU. Oil and associated gas accumulations occur in Paleocene through early middle Miocene marine to nonmarine sandstones found on the comparatively stable northeast shelf of the basin. The assessment unit is located north and east of the thickest accumulation of Neogene sediments and the west side fold belt. The area enclosed by the AU has been affected by only mild deformation since Eocene time. Traps containing known accumulations are mostly low-relief domes, anticlines, and up-dip basin margin traps with faulting and stratigraphic components. Map boundaries of the assessment unit are shown in figures 19.1 and 19.2; this assessment unit replaces the Northeast Shelf of Neogene Basin play 1006, the East Central Basin and Slope North of Bakersfield Arch play 1010, and part of the West Side Fold Belt Sourced by Pre-middle Miocene Rocks play 1005 considered by the U.S. Geological Survey (USGS) in their 1995 National Assessment (Beyer, 1996). Stratigraphically, the AU includes rocks from the uppermost crystalline basement to the topographic surface. In the region of overlap with the Central Basin Monterey Diagenetic Traps Assessment Unit, the North and East of Eocene West Side Fold Belt AU extends from basement rocks to the top of the Temblor Formation (figs. 19.3 and 19.4). In map view, the northern boundary of the assessment unit corresponds to the northernmost extent of Eocene-age Kreyenhagen Formation. The northeast boundary is the eastern limit of possible oil reservoir rocks near the eastern edge of the basin. The southeast boundary corresponds to the pinch-out of Stevens sand of Eckis (1940) to the south, which approximately coincides with the northern flank of the Bakersfield Arch (fig. 19.1). The AU is bounded on the

  15. Trends in Seawater Boron-based Proxies during the Late Paleocene and Early Eocene Associated with Long-term Warming

    NASA Astrophysics Data System (ADS)

    Harper, D. T.; Penman, D. E.; Hoenisch, B.; Zachos, J. C.

    2014-12-01

    Boron isotopes (δ11B) and boron/calcium ratios (B/Ca) in tests of planktic foraminifera are controlled by equilibrium reactions between boron and carbon species in seawater, and thus represent important proxies of past marine carbonate chemistry. Indeed, the recent application of these boron-based proxies to fossil shells of planktic foraminifera from cores spanning the Paleocene-Eocene Thermal Maximum (PETM; 56Ma, an abrupt global warming and ocean acidification event) reveal a decline of ~0.3 in the pH of the mixed-layer [1], an anomaly that is well within the range of estimates based on the observed shoaling of the carbonate compensation depth (CCD) [2, and references therein]. The PETM occurred superimposed on a long-term warming trend that initiated in the Late Paleocene and continued into the Early Eocene (LPEE; 53-59Ma). The magnitude of warming [3] and deepening of the CCD [4] indicate that the LPEE was driven by a rise in pCO2 nearly equivalent to that of the PETM [5]. Here we extend the PETM record of boron-based proxies at IODP Site 1209 across the LPEE, in conjunction with stable carbon and oxygen isotopes in planktic foraminifera, in order to better constrain the long-term changes in pH and carbonate chemistry that accompanied the suggested rise in atmospheric CO2. The 20kyr resolution B/Ca record shows a long-term decline of ~25% during the LPEE, as well as subtle 400kyr cycles associated with eccentricity that mirror those observed in δ13C, and thus might reflect on changes in pH. The lower resolution δ11B record exhibits little change during the Late Paleocene before decreasing step-wise to lower values following the PETM, indicating that either pH in the upper ocean did not change significantly prior to the PETM, despite warming and inferred pCO2 increase, or changes in δ11Bseawater compensated for pH driven changes. As verification of these observations at Site 1209, complementary B/Ca and δ11B records are being generated for Atlantic IODP

  16. Paleomagnetic constraints on the interpretation of early Cenozoic Pacific Northwest paleogeography

    USGS Publications Warehouse

    Wells, Ray E.

    1984-01-01

    Widespread Cenozoic clockwise tectonic rotation in the Pacific Northwest is an established fact; however, the geologic reconstructions based on these rotations are the subject of continuing debate. Three basic mechanisms have been proposed to explain the rotations: (1) simple shear rotation of marginal terranes caught in the dextral shear couple between oceanic plates and North America; (2) rotation during oblique microplate collision and accretion to the continental margin; and (3) rotation of continental margin areas during episodes of intracontinental extension. In areas where detailed structure and stratigraphy are available, distributed shear rotations are amplv demonstrated paleomagnetically. However, rotation due to asymmetric interarc extension must be significant, especially for the Oregon Coast Range, in light of recent estimates of large Tertiary extension across the northern Basin and Range. The relative importance of shear versus extension is difficult to determine, but shear could account for nearly onehalf of the observed rotations. Oblique microplate collision has not contributed significantly to the observed Cenozoic rotations because most of the rotation post-dates collision-related deformation in the Oregon and Washington. Coast Range. The resultant continental reconstructions suggest that about 300 km of extension has occurred at 42°N. latitude (southern Oregon border) since early Eocene time. This reconstruction suggests that Cretaceous sedimentary basins east of the Klamath Mountains have undergone significant Tertiary extension (about f<0%) , but little rotation. Upper Cretaceous sedimentary rocks in the Blue Mountains of Oregon near Mitchell are probably rotated at least 15° and perhaps as much as 60°, which allows considerable latitude in the restoration of that part of the basin.

  17. Continental emergence and growth on a cooling earth

    NASA Astrophysics Data System (ADS)

    Vlaar, N. J.

    2000-07-01

    Isostasy considerations are connected to a 1-D model of mantle differentiation due to pressure release partial melting to obtain a model for the evolution of the relative sea level with respect to the continent during the earth secular cooling. In this context, a new mechanism is derived for the selective exhumation of exposed ancient cratons. The model results in a quantitative scenario for sea-level fall due to the changing thicknesses of the oceanic basaltic crust and its harzburgite residual layer as a function of falling mantle temperature. It is also shown that the buoyancy of the harzburgite root of a stabilized continental craton has an important effect on sea-level and on the isostatic readjustment and exhumation of exposed continental surface during the earth's secular cooling. The model does not depend on the usual assumption of constant continental freeboard and crustal thickness and its application is not restricted to the post-Archaean. It predicts large-scale continental emergence near the end of the Archaean and the early Proterozoic. This provides an explanation for reported late Archaean emergence and the subsequent formation of late Archaean cratonic platforms and early Proterozoic sedimentary basins. For a period of secular cooling of 3.8 Ga, corresponding to the length of the geological record, the model predicts a fall of the ocean floor of some 4 km or more. For a constant ocean depth, this implies a sea-level fall of the same magnitude. A formula is derived that allows for an increasing ocean depth due to either the changing ratio of continental with respect to oceanic area, or to a possible increase of the oceanic volume during the geological history. Increasing ocean depth results in a later emergence of submarine ancient geological formations compared to the case when ocean depth is constant. Selective exhumation is studied for the case of constant ocean depth. It is shown that for this case, early exposed continental crust can be exhumed

  18. Polyphase tectonics at the southern tip of the Manila trench, Mindoro-Tablas Islands, Philippines

    NASA Astrophysics Data System (ADS)

    Marchadier, Yves; Rangin, Claude

    1990-11-01

    The southern termination of the Manila trench within the South China Sea continental margin in Mindoro is marked by a complex polyphase tectonic fabric in the arc-trench gap area. Onshore Southern Mindoro the active deformation front of the Manila trench is marked by parallel folds and thrusts, grading southward to N50° W-trending left-lateral strike-slip faults. This transpressive tectonic regime, active at least since the Late Pliocene, has overprinted the collision of an Early Miocene volcanic arc with the South China Sea continental margin (San Jose platform). The collision is postdated by deposition of the Late Miocene-Early Pliocene elastics of the East Mindoro basin. The tectonic and geological framework of this arc, which overlies a metamorphic basement and Eocene elastics, suggests that it was built on a drifted block of the South China Sea continental margin.

  19. Fossil nutlets of Boraginaceae from the continental Eocene of Hamada of Méridja (southwestern Algeria): The first fossil of the Borage family in Africa.

    PubMed

    Hammouda, Sid Ahmed; Weigend, Maximilian; Mebrouk, Fateh; Chacón, Juliana; Bensalah, Mustapha; Ensikat, Hans-Jürgen; Adaci, Mohammed

    2015-12-01

    The Paleogene deposits of the Hamada of Méridja, southwestern Algeria, are currently dated as lower-to-middle Eocene in age based on fossil gastropods and charophytes. Here we report the presence of fruits that can be assigned to the Boraginaceae s.str., apparently representing the first fossil record for this family in Africa, shedding new light on the historical biogeography of this group. Microscopic studies of the fossil nutlets were carried out and compared to extant Boraginaceae nutlets, and to types reported in the literature for this family. The fossils are strikingly similar in general size and morphology, particularly in the finer details of the attachment scar and ornamentation, to nutlets of extant representatives of the Boraginaceae tribe Echiochileae, and especially the genus Ogastemma. We believe that these nutlets represent an extinct member of this lineage. The Ogastemma-like fossils indicate that the Echiochileae, which are most diverse in northern Africa and southwestern Asia, have a long history in this region, dating back to the Eocene. This tribe corresponds to the basal-most clade in Boraginaceae s.str., and the fossils described here agree well with an assumed African origin of the family and the Boraginales I, providing an important additional calibration point for dating the phylogenies of this clade. © 2015 Botanical Society of America.

  20. Paleomagnetic and rock magnetic study of the IODP Site U1332 sediments - relative paleointensity during Eocene and Oligocene

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Acton, G.; Channell, J. E.; Palmer, E. C.; Richter, C.; Yamazaki, T.

    2011-12-01

    Integrated Ocean Drilling Program (IODP) Expeditions 320 and 321 recovered sediment cores from equatorial Pacific. Cores were taken at eight Sites (U1331-U1338) and onboard measurements showed that those from Sites U1331, U1332, U1333 and U1334 covered Eocene and/or Oligocene (Expedition 320/321 Scientists, 2010). Although many efforts have been made to reveal relative geomagnetic paleointensity variations in geologic time, those prior to ca. 3 m.y. have been not yet reported except a few studies (e.g. ca. 23-34 Ma, Tauxe and Hartl, 1997). This study concentrates on paleomagnetic and rock magnetic measurements on the Site U1332 sediment core. The measurements include stepwise alternating field demagnetization of the natural remanent magnetization (NRM), the anhysteretic remanent magnetization (ARM) and the isothermal remanent magnetization (IRM). The magnetostrartigraphy constructed from the NRM data show that the sedimentary section extends from the early Oligocene to middle Eocene (23.030-41.358 Ma). Intensity variation of ARM and IRM is within about a factor of six throughout the core. Magnetic grain size proxy, ARM/IRM, differ between Eocene (about 0.11) and Oligocene (about 0.14). These suggest that relative paleointensity (RPI) estimation is basically possible if we divide the core into Eocene and Oligocene periods. RPI estimates have been done by using ARM and IRM as normalizers for NRM. RPIs by ARM and IRM generally show consistent variations. However, several experimental results imply that RPI by IRM may be more preferable. We will compare the U1332 RPI record with the U1331, U1333 and U1334 RPI records.

  1. Late Early Permian continental ichnofauna from Lake Kemp, north-central Texas, USA

    USGS Publications Warehouse

    Lucas, S.G.; Voigt, S.; Lerner, A.J.; Nelson, W.J.

    2011-01-01

    Continental trace fossils of Early Permian age are well known in the western United States from Wolfcampian (~. Asselian to Artinskian) strata, but few examples are known from Leonardian (~. Kungurian) deposits. A substantial ichnofauna from strata of the lower part of the Clear Fork Formation at Lake Kemp, Baylor County, Texas, augments the meager North American record of Leonardian continental trace fossil assemblages. Ichnofossils at Lake Kemp occur in the informally-named Craddock dolomite member of the Clear Fork Formation, which is 12-15. m above the local base of the Clear Fork. The trace-bearing stratum is an up-to-0.3. m thick, laminated to flaser-bedded, dolomitic siltstone that also contains mud cracks, raindrop impressions, microbially induced mat structures, and some land-plant impressions. We interpret the Craddock dolomite member as the feather-edge of a marine transgressive carbonate deposit of an irregular coastline marked by shallow bays or estuaries on the eastern shelf of the Midland basin, and the trace-fossil-bearing stratum at Lake Kemp is an unchannelized flow deposit on a muddy coastal plain. The fossil site at Lake Kemp yields a low to moderately diverse fauna of invertebrate and vertebrate traces. A sparse invertebrate ichnofauna consists of arthropod feeding and locomotion traces assigned to Walpia cf. W. hermitensis White, 1929 and Diplichnites gouldi Gevers in Gevers et al., 1971. Tetrapod footprints are most common and assigned to Batrachichnus salamandroides (Geinitz, 1861), cf. Amphisauropus kablikae (Geinitz and Deichm??ller, 1882), and Dromopus lacertoides (Geinitz, 1861), which represent small temnospondyl, seymouriamorph, and basal sauropsid trackmakers. Both the traces and sedimentary features of the fossil horizon indicate a freshwater setting at the time of track formation, and the trace assemblage represents the Scoyenia ichnofacies and the Batrachichnus ichnofacies in an overbank environment with sheet flooding and shallow

  2. The Jianchuan Basin, Yunnan: Implications on the Evolution of SE Tibet During the Eocene

    NASA Astrophysics Data System (ADS)

    Gourbet, L.; Mahéo, G.; Leloup, P. H.; Jean-Louis, P.; Sorrel, P.; Eymard, I.; Antoine, P. O.; Sterb, M.; Wang, G.; Cao, K.; Chevalier, M. L.; Lu, H.

    2015-12-01

    The Jianchuan basin, Yunnan Province, China, is the widest continental Cenozoic sedimentary basin in the southeastern Tibetan plateau. It is located ~10 km east of the Red River fault zone. Climatic simulations and palaeoenvironment studies suggest that SE Asia has experienced a variable intensity monsoon system for 40 Ma. Because sediments can record deformation, climate and environment changes, the Jianchuan basin provides the opportunity to assess the relative role of climate and tectonics on the Tibetan plateau formation. Sediments consist of floodplain siltites, massive fluvial sandstone, few carbonate levels, coal and volcanosedimentary deposits. U/Pb dating of zircons from dykes, volcanodetrital deposits and lava flows respectively cutting and interbedded within the sediments was performed by in-situ LA-ICPMS. All ages range from 38 to 35 Ma. Such absolute dating is confirmed by palaeontological evidence. Dental remains of Zaisanamynodonwere found in coal deposits. This giant Rhino lived in Asia during the Ergilian (late Eocene). Our data allow us to propose a revised stratigraphy for the Jianchuan basin: contrary to what was suggested by previous studies, i.e. a continuous sedimentation from the Paleocene to the Miocene, nearly no sedimentation occurred after 34 Ma. Combined with a sedimentological analysis, the data indicate that during the late Eocene, the Jianchuan area was covered by a large (>15 km) braided river system that coexisted with local transient lakes, in a moderate-slope and semi-arid environment. This major sedimentation event was followed by a period of more humid conditions that may be related to an intensification of the monsoon. The end of the sedimentation seems to be contemporaneous with the Ailao Shan-Red River fault activation. The new stratigraphy has also implications for regional studies that need robust age constraints, for example for reconstructing palaeoelevation or provenance of sediments.

  3. Chronology of Eocene-Miocene sequences on the New Jersey shallow shelf: implications for regional, interregional, and global correlations

    USGS Publications Warehouse

    Browning, James V.; Miller, Kenneth G.; Sugarman, Peter J.; Barron, John; McCarthy, Francine M.G.; Kulhanek, Denise K.; Katz, Miriam E.; Feigenson, Mark D.

    2013-01-01

    Integrated Ocean Drilling Program Expedition 313 continuously cored and logged latest Eocene to early-middle Miocene sequences at three sites (M27, M28, and M29) on the inner-middle continental shelf offshore New Jersey, providing an opportunity to evaluate the ages, global correlations, and significance of sequence boundaries. We provide a chronology for these sequences using integrated strontium isotopic stratigraphy and biostratigraphy (primarily calcareous nannoplankton, diatoms, and dinocysts [dinoflagellate cysts]). Despite challenges posed by shallow-water sediments, age resolution is typically ±0.5 m.y. and in many sequences is as good as ±0.25 m.y. Three Oligocene sequences were sampled at Site M27 on sequence bottomsets. Fifteen early to early-middle Miocene sequences were dated at Sites M27, M28, and M29 across clinothems in topsets, foresets (where the sequences are thickest), and bottomsets. A few sequences have coarse (∼1 m.y.) or little age constraint due to barren zones; we constrain the age estimates of these less well dated sequences by applying the principle of superposition, i.e., sediments above sequence boundaries in any site are younger than the sediments below the sequence boundaries at other sites. Our age control provides constraints on the timing of deposition in the clinothem; sequences on the topsets are generally the youngest in the clinothem, whereas the bottomsets generally are the oldest. The greatest amount of time is represented on foresets, although we have no evidence for a correlative conformity. Our chronology provides a baseline for regional and interregional correlations and sea-level reconstructions: (1) we correlate a major increase in sedimentation rate precisely with the timing of the middle Miocene climate changes associated with the development of a permanent East Antarctic Ice Sheet; and (2) the timing of sequence boundaries matches the deep-sea oxygen isotopic record, implicating glacioeustasy as a major driver

  4. Discovery of a new anthracobunidae (tethytheria, mammalia) from the lower eocene lignite of the kach-harnai area in baluchistan (pakistan)

    NASA Astrophysics Data System (ADS)

    Ginsburg, Léonard; Durrani, Khadim Hussain; Kassi, Akhtar Mohammad; Welcomme, Jean-Loup

    1999-02-01

    This paper deals with the discovery and the description of a new Anthracobunidae, Nakusia shahrigensis gen. et sp. nov., from the Ghazij Formation, Early Eocene, of the Kach area, west of Quetta in Pakistan. Discussion and comparison are made with the other anthracobunids, species and genera, the validity of which is discussed. Position of the Anthracobunidae in the Classification is discussed.

  5. Ceratopetalum (Cunoniaceae) fruits of Australasian affinity from the early Eocene Laguna del Hunco flora, Patagonia, Argentina

    PubMed Central

    Hermsen, Elizabeth J

    2017-01-01

    Abstract Background and Aims Radially symmetrical, five-winged fossil fruits from the highly diverse early Eocene Laguna del Hunco flora of Chubut Province, Patagonia, Argentina, are named, described and illustrated. The main goals are to assess the affinities of the fossils and to place them in an evolutionary, palaeoecological and biogeographic context. Methods Specimens of fossil fruits were collected from the Tufolitas Laguna del Hunco. They were prepared, photographed and compared with similar extant and fossil fruits using published literature. Their structure was also evaluated by comparing them with that of modern Ceratopetalum (Cunoniaceae) fruits through examination of herbarium specimens. Key Results The Laguna del Hunco fossil fruits share the diagnostic features that characterize modern and fossil Ceratopetalum (symmetry, number of fruit wings, presence of a conspicuous floral nectary and overall venation pattern). The pattern of the minor wing (sepal) veins observed in the Patagonian fossil fruits is different from that of modern and previously described fossil Ceratopetalum fruits; therefore, a new fossil species is recognized. An apomorphy (absence of petals) suggests that the fossils belong within crown-group Ceratopetalum. Conclusions The Patagonian fossil fruits are the oldest known record for Ceratopetalum. Because the affinities, provenance and age of the fossils are so well established, this new Ceratopetalum fossil species is an excellent candidate for use as a calibration point in divergence dating studies of the family Cunoniaceae. It represents the only record of Ceratopetalum outside Australasia, and further corroborates the biogeographic connection between the Laguna del Hunco flora and ancient and modern floras of the Australasian region. PMID:28110267

  6. Paleolimnology of Lake Tubutulik, an iron-meromictic Eocene Lake, eastern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Dickinson, K.A.

    1988-01-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual "iron-meromictic" Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a structural graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Late Cretaceous Darby Pluton, on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the river valley of the ancestral Tubutulik River in early Eocene time. Lake Tubutulik contained a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital layers containing mostly quartz and clay minerals. Both lacustrine facies contain turbidities. The lacustrine sediments graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake apparently occupied a small deep basin in a tectonically active area of high relief. Meromixus was probably stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixus decreased as the lake became shallower from sediment filling. The source of the iron, abundant in the monimolimnion of Lake Tubutulik, was probably the Eocene basalt. Based on carbon isotope analysis of the siderite, the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (??13C = +16.9) consistent with residual carbon formed during methanogenic fermentation. ?? 1988.

  7. Ultimate Eocene (Priabonian) Chondrichthyans (Holocephali, Elasmobranchii) of Antarctica

    PubMed Central

    Kriwet, Jürgen; Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo; Pfaff, Cathrin

    2017-01-01

    The Eocene La Meseta Formation on Seymour Island, Antarctic Peninsula, is known for its remarkable wealth of fossil remains of chondrichthyans and teleosts. Chondrichthyans seemingly were dominant elements in the Antarctic Paleogene fish fauna, but decreased in abundance from middle to late Eocene, during which time remains of bony fishes increase. This decline of chondrichthyans at the end of the Eocene generally is related to sudden cooling of seawater, reduction in shelf area, and increasing shelf depth due to the onset of the Antarctic thermal isolation. The last chondrichthyan records known so far include a chimeroid tooth plate from TELM 6 (Lutetian) and a single pristiophorid rostral spine from TELM 7 (Priabonian). Here, we present new chondrichthyan records of Squalus, Squatina, Pristiophorus, Striatolamia, Palaeohypotodus, Carcharocles, and Ischyodus from the upper parts of TELM 7 (Priabonian), including the first record of Carcharocles sokolovi from Antarctica. This assemblage suggests that chondrichthyans persisted much longer in Antarctic waters despite rather cool sea surface temperatures of approximately 5°C. The final disappearance of chondrichthyans at the Eocene–Oligocene boundary concurs with abrupt ice sheet formation in Antarctica. Diversity patterns of chondrichthyans throughout the La Meseta Formation appear to be related to climatic conditions rather than plate tectonics. PMID:28298806

  8. Iridium and Spherules in Late Eocene Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.; Liu, S.

    2002-01-01

    We have been independently examining the Ir (FTK) and spherule (SL) contents of recently discovered late Eocene impact deposits from the south Atlantic and western Indian oceans. These include ODP Sites 1090 [14,15], 709 [lo], and 699 [Liu in prep.]. Iridium abundances at these sites are within the typical range reported for late Eocene deposits, with peak concentrations between 100 and 1000 pg/g. In Table 1 we present estimated net Ir fluences (in ng Ir/cm ) for these and nine other sites. Although there are fewer sites than the K/T boundary, the average of 9 ng Ir/cm2 is probably a good estimate of the late Eocene global flux. This is enough Ir for a 6 km comet (assuming 250 ng/g Ir, p=1.5), is sufficient to produce the Popigai or Chesapeake Bay structures, and is 16% of the flux estimated for the K/T boundary (55 ng/cm2 [ 161). Figure 1 shows the relative abundances of Ir, glassy microtektites and cpx-bearing spherules in sediments from Sites 699 and 1090, which are separated by only 3100 km. Although these two sites have similar Ir anomalies, the abundances of spherules are quite different. Site 1090 has well-defined peaks for both types of spherules, with a peak of 562 cpx spheruledg, while Site 699 contains only a few glassy microtektites and no cpx spherules. While the different abundances of spherules may reflect a heterogeneous distribution of spherules on the Earth s surface, an equally likely cause of this difference may be differential preservation of spherules in the sediment. recovered are only a trace residue of the initial impact deposit. Earlier work found 0.22 ng/g Ir in glassy microtektites from Site 689 [17], an insufficient concentration to support 0.16 ng/g in the bulk sediment at this site. We measured 15 ng/g Ir in a group of 95 cpx spherules from Site 1090 with sizes from 63 to -200 pm, a set typical of the size distribution at this site. Although this is a significant concentration it also cannot support the Ir peak. We presently lack

  9. Expanded oxygen minimum zones during the late Paleocene-early Eocene: Hints from multiproxy comparison and ocean modeling

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Thomas, E.; Winguth, A. M. E.; Ridgwell, A.; Scher, H.; Hoogakker, B. A. A.; Rickaby, R. E. M.; Lu, Z.

    2016-12-01

    Anthropogenic warming could well drive depletion of oceanic oxygen in the future. Important insight into the relationship between deoxygenation and warming can be gleaned from the geological record, but evidence is limited because few ocean oxygenation records are available for past greenhouse climate conditions. We use I/Ca in benthic foraminifera to reconstruct late Paleocene through early Eocene bottom and pore water redox conditions in the South Atlantic and Southern Indian Oceans and compare our results with those derived from Mn speciation and the Ce anomaly in fish teeth. We conclude that waters with lower oxygen concentrations were widespread at intermediate depths (1.5-2 km), whereas bottom waters were more oxygenated at the deepest site, in the Southeast Atlantic Ocean (>3 km). Epifaunal benthic foraminiferal I/Ca values were higher in the late Paleocene, especially at low-oxygen sites, than at well-oxygenated modern sites, indicating higher seawater total iodine concentrations in the late Paleocene than today. The proxy-based bottom water oxygenation pattern agrees with the site-to-site O2 gradient as simulated in a comprehensive climate model (Community Climate System Model Version 3), but the simulated absolute dissolved O2 values are low (< 35 µmol/kg), while higher O2 values ( 60-100 µmol/kg) were obtained in an Earth system model (Grid ENabled Integrated Earth system model). Multiproxy data together with improvements in boundary conditions and model parameterization are necessary if the details of past oceanographic oxygenation are to be resolved.

  10. Impact damage to dinocysts from the Late Eocene Chesapeake Bay event

    USGS Publications Warehouse

    Edwards, L.E.; Powars, D.S.

    2003-01-01

    The Chesapeake Bay impact structure, formed by a comet or meteorite that struck the Virginia continental shelf about 35.5 million years ago, is the focus of an extensive coring project by the U.S. Geological Survey and its cooperators. Organic-walled dinocysts recovered from impact-generated deposits in a deep core inside the 85-90 km-wide crater include welded organic clumps and fused, partially melted and bubbled dinocysts unlike any previously observed. Other observed damage to dinocysts consists of breakage, pitting, and folding in various combinations. The entire marine Cretaceous, Paleocene, and Eocene section that was once present at the site has been excavated and redeposited under extreme conditions that include shock, heat, collapse, tsunamis, and airfall. The preserved dinocysts reflect these conditions and, as products of a known impact, may serve as guides for recognizing impact-related deposits elsewhere. Features that are not unique to impacts, such as breakage and folding, may offer new insights into crater-history studies in general, and to the history of the Chesapeake Bay impact structure in particular. Impact-damaged dinocysts also are found sporadically in post-impact deposits and add to the story of continuing erosion and faulting of crater material.

  11. Southern high-latitude terrestrial climate change during the Paleocene-Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau)

    NASA Astrophysics Data System (ADS)

    Contreras, L.; Pross, J.; Bijl, P. K.; O'Hara, R. B.; Raine, J. I.; Sluijs, A.; Brinkhuis, H.

    2014-01-01

    Reconstructing the early Paleogene climate dynamics of terrestrial settings in the high southern latitudes is important to assess the role of high-latitude physical and biogeochemical processes in the global climate system. However, whereas a number of high-quality Paleogene climate records has become available for the marine realm of the high southern latitudes over the recent past, the long-term evolution of coeval terrestrial climates and ecosystems is yet poorly known. We here explore the climate and vegetation dynamics on Tasmania from the middle Paleocene to the early Eocene (60.7-54.2 Ma) based on a sporomorph record from Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau. Our results show that three distinctly different vegetation types thrived on Tasmania under a high-precipitation regime during the middle Paleocene to early Eocene, with each type representing different temperature conditions: (i) warm-temperate forests dominated by gymnosperms that were dominant during the middle and late Paleocene; (ii) cool-temperate forests dominated by southern beech (Nothofagus) and araucarians across the middle/late Paleocene transition interval (~59.5 to ~59.0 Ma); and (iii) paratropical forests rich in ferns that were established during and in the wake of the Paleocene-Eocene Thermal Maximum (PETM). The transient establishment of cool-temperate forests lacking any frost-sensitive elements (i.e., palms and cycads) across the middle/late Paleocene transition interval indicates markedly cooler conditions, with the occurrence of frosts in winter, on Tasmania during that time. The integration of our sporomorph data with previously published TEX86-based sea-surface temperatures from ODP Site 1172 documents that the vegetation dynamics on Tasmania were closely linked with the temperature evolution in the Tasman sector of the Southwest Pacific region. Moreover, the comparison of our season-specific climate estimates for the sporomorph assemblages from ODP

  12. Southern high-latitude terrestrial climate change during the Palaeocene-Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau)

    NASA Astrophysics Data System (ADS)

    Contreras, L.; Pross, J.; Bijl, P. K.; O'Hara, R. B.; Raine, J. I.; Sluijs, A.; Brinkhuis, H.

    2014-07-01

    Reconstructing the early Palaeogene climate dynamics of terrestrial settings in the high southern latitudes is important to assess the role of high-latitude physical and biogeochemical processes in the global climate system. However, whereas a number of high-quality Palaeogene climate records has become available for the marine realm of the high southern latitudes over the recent past, the long-term evolution of coeval terrestrial climates and ecosystems is yet poorly known. We here explore the climate and vegetation dynamics on Tasmania from the middle Palaeocene to the early Eocene (60.7-54.2 Ma) based on a sporomorph record from Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau. Our results show that three distinctly different vegetation types thrived on Tasmania under a high-precipitation regime during the middle Palaeocene to early Eocene, with each type representing different temperature conditions: (i) warm-temperate forests dominated by gymnosperms that were dominant during the middle and late Palaeocene (excluding the middle/late Palaeocene transition); (ii) cool-temperate forests dominated by southern beech (Nothofagus) and araucarians that transiently prevailed across the middle/late Palaeocene transition interval (~ 59.5 to ~ 59.0 Ma); and (iii) paratropical forests rich in ferns that were established during and in the wake of the Palaeocene-Eocene Thermal Maximum (PETM). The transient establishment of cool-temperate forests lacking any frost-sensitive elements (i.e. palms and cycads) across the middle/late Palaeocene transition interval indicates markedly cooler conditions, with the occurrence of frosts in winter, on Tasmania during that time. The integration of our sporomorph data with previously published TEX86-based sea-surface temperatures from ODP Site 1172 documents that the vegetation dynamics on Tasmania were closely linked with the temperature evolution in the Tasman sector of the Southwest Pacific region. Moreover, the

  13. Eocene primates of South America and the African origins of New World monkeys

    NASA Astrophysics Data System (ADS)

    Bond, Mariano; Tejedor, Marcelo F.; Campbell, Kenneth E.; Chornogubsky, Laura; Novo, Nelson; Goin, Francisco

    2015-04-01

    The platyrrhine primates, or New World monkeys, are immigrant mammals whose fossil record comes from Tertiary and Quaternary sediments of South America and the Caribbean Greater Antilles. The time and place of platyrrhine origins are some of the most controversial issues in primate palaeontology, although an African Palaeogene ancestry has been presumed by most primatologists. Until now, the oldest fossil records of New World monkeys have come from Salla, Bolivia, and date to approximately 26 million years ago, or the Late Oligocene epoch. Here we report the discovery of new primates from the ?Late Eocene epoch of Amazonian Peru, which extends the fossil record of primates in South America back approximately 10 million years. The new specimens are important for understanding the origin and early evolution of modern platyrrhine primates because they bear little resemblance to any extinct or living South American primate, but they do bear striking resemblances to Eocene African anthropoids, and our phylogenetic analysis suggests a relationship with African taxa. The discovery of these new primates brings the first appearance datum of caviomorph rodents and primates in South America back into close correspondence, but raises new questions about the timing and means of arrival of these two mammalian groups.

  14. Eocene primates of South America and the African origins of New World monkeys.

    PubMed

    Bond, Mariano; Tejedor, Marcelo F; Campbell, Kenneth E; Chornogubsky, Laura; Novo, Nelson; Goin, Francisco

    2015-04-23

    The platyrrhine primates, or New World monkeys, are immigrant mammals whose fossil record comes from Tertiary and Quaternary sediments of South America and the Caribbean Greater Antilles. The time and place of platyrrhine origins are some of the most controversial issues in primate palaeontology, although an African Palaeogene ancestry has been presumed by most primatologists. Until now, the oldest fossil records of New World monkeys have come from Salla, Bolivia, and date to approximately 26 million years ago, or the Late Oligocene epoch. Here we report the discovery of new primates from the ?Late Eocene epoch of Amazonian Peru, which extends the fossil record of primates in South America back approximately 10 million years. The new specimens are important for understanding the origin and early evolution of modern platyrrhine primates because they bear little resemblance to any extinct or living South American primate, but they do bear striking resemblances to Eocene African anthropoids, and our phylogenetic analysis suggests a relationship with African taxa. The discovery of these new primates brings the first appearance datum of caviomorph rodents and primates in South America back into close correspondence, but raises new questions about the timing and means of arrival of these two mammalian groups.

  15. High latitude hydrological changes during the Eocene Thermal Maximum 2

    NASA Astrophysics Data System (ADS)

    Krishnan, Srinath; Pagani, Mark; Huber, Matthew; Sluijs, Appy

    2014-10-01

    -enriched signals at the base of the event, including (1) intense local drying and cooling leading to evaporative 2H-enrichment; (2) changes in frequency/intensity of storm events and its impact on high latitude amount effects; and (3) changes in low-latitude temperatures. Evidence for hydrological shifts at the base of both hyperthermals suggests that hydrological change or the factors promoting hydrological change played a role in triggering the release of greenhouse gases. Generation of similar high-resolution isotopic- and temperature records at other latitudes is crucial for understanding the causal links between temperature and hydrological changes and may help constrain the source and mechanism of carbon release that triggered the early Eocene hyperthermals.

  16. Metre-scale cyclicity in Middle Eocene platform carbonates in northern Egypt: Implications for facies development and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Tawfik, Mohamed; El-Sorogy, Abdelbaset; Moussa, Mahmoud

    2016-07-01

    The shallow-water carbonates of the Middle Eocene in northern Egypt represent a Tethyan reef-rimmed carbonate platform with bedded inner-platform facies. Based on extensive micro- and biofacies documentation, five lithofacies associations were defined and their respective depositional environments were interpreted. Investigated sections were subdivided into three third-order sequences, named S1, S2 and S3. Sequence S1 is interpreted to correspond to the Lutetian, S2 corresponds to the Late Lutetian and Early Bartonian, and S3 represents the Late Bartonian. Each of the three sequences was further subdivided into fourth-order cycle sets and fifth-order cycles. The complete hierarchy of cycles can be correlated along 190 km across the study area, and highlighting a general "layer-cake" stratigraphic architecture. The documentation of the studied outcrops may contribute to the better regional understanding of the Middle Eocene formations in northern Egypt and to Tethyan pericratonic carbonate models in general.

  17. Eocene Paleoclimate: Incredible or Uncredible? Model data syntheses raise questions.

    NASA Astrophysics Data System (ADS)

    Huber, M.

    2012-04-01

    Reconstructions of Eocene paleoclimate have pushed on the boundaries of climate dynamics theory for generations. While significant improvements in theory and models have brought them closer to the proxy data, the data themselves have shifted considerably. Tropical temperatures and greenhouse gas concentrations are now reconstructed to be higher than once thought--in agreement with models--but, many polar temperature reconstructions are even warmer than the eye popping numbers from only a decade ago. These interpretations of subtropical-to-tropical polar conditions once again challenge models and theory. But, the devil, is as always in the details and it is worthwhile to consider the range of potential uncertainties and biases in the paleoclimate record interpretations to evaluate the proposition that models and data may not materially disagree. It is necessary to ask whether current Eocene paleoclimate reconstructions are accurate enough to compellingly argue for a complete failure of climate models and theory. Careful consideration of Eocene model output and proxy data reveals that over most of the Earth the model agrees with the upper range of plausible tropical proxy data and the lower range of plausible high latitude proxy reconstructions. Implications for the sensitivity of global climate to greenhouse gas forcing are drawn for a range of potential Eocene climate scenarios ranging from a literal interpretation of one particular model to a literal interpretation of proxy data. Hope for a middle ground is found.

  18. Eocene diversification of crown group rails (Aves: Gruiformes: Rallidae).

    PubMed

    García-R, Juan C; Gibb, Gillian C; Trewick, Steve A

    2014-01-01

    Central to our understanding of the timing of bird evolution is debate about an apparent conflict between fossil and molecular data. A deep age for higher level taxa within Neoaves is evident from molecular analyses but much remains to be learned about the age of diversification in modern bird families and their evolutionary ecology. In order to better understand the timing and pattern of diversification within the family Rallidae we used a relaxed molecular clock, fossil calibrations, and complete mitochondrial genomes from a range of rallid species analysed in a Bayesian framework. The estimated time of origin of Rallidae is Eocene, about 40.5 Mya, with evidence of intrafamiliar diversification from the Late Eocene to the Miocene. This timing is older than previously suggested for crown group Rallidae, but fossil calibrations, extent of taxon sampling and substantial sequence data give it credence. We note that fossils of Eocene age tentatively assigned to Rallidae are consistent with our findings. Compared to available studies of other bird lineages, the rail clade is old and supports an inference of deep ancestry of ground-dwelling habits among Neoaves.

  19. Global vegetation distribution and terrestrial climate evolution at the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Pound, Matthew; Salzmann, Ulrich

    2016-04-01

    The Eocene - Oligocene transition (EOT; ca. 34-33.5 Ma) is widely considered to be the biggest step in Cenozoic climate evolution. Geochemical marine records show both surface and bottom water cooling, associated with the expansion of Antarctic glaciers and a reduction in the atmospheric CO2 concentration. However, the global response of the terrestrial biosphere to the EOT is less well understood and not uniform when comparing different regions. We present new global vegetation and terrestrial climate reconstructions of the Priabonian (late Eocene; 38-33.9 Ma) and Rupelian (early Oligocene; 33.9-28.45 Ma) by synthesising 215 pollen and spore localities. Using presence/absence data of pollen and spores with multivariate statistics has allowed the reconstruction of palaeo-biomes without relying on modern analogues. The reconstructed palaeo-biomes do not show the equator-ward shift at the EOT, which would be expected from a global cooling. Reconstructions of mean annual temperature, cold month mean temperature and warm month mean temperature do not show a global cooling of terrestrial climate across the EOT. Our new reconstructions differ from previous global syntheses by being based on an internally consistent statistically defined classification of palaeo-biomes and our terrestrial based climate reconstructions are in stark contrast to some marine based climate estimates. Our results raise new questions on the nature and extent of terrestrial global climate change at the EOT.

  20. Growth of early continental crust by partial melting of eclogite.

    PubMed

    Rapp, Robert P; Shimizu, Nobumichi; Norman, Marc D

    2003-10-09

    The tectonic setting in which the first continental crust formed, and the extent to which modern processes of arc magmatism at convergent plate margins were operative on the early Earth, are matters of debate. Geochemical studies have shown that felsic rocks in both Archaean high-grade metamorphic ('grey gneiss') and low-grade granite-greenstone terranes are comprised dominantly of sodium-rich granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. Here we present direct experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG, including the low Nb/Ta and high Zr/Sm ratios of 'average' Archaean TTG, but from a source with initially subchondritic Nb/Ta. In modern environments, basalts with low Nb/Ta form by partial melting of subduction-modified depleted mantle, notably in intraoceanic arc settings in the forearc and back-arc regimes. These observations suggest that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking and tectonic accretion of a diversity of subduction-related terranes. Partial melting accompanying dehydration of these generally basaltic source materials at the base of thickened, 'arc-like' crust would produce compositionally appropriate TTG granitoids in equilibrium with eclogite residues.

  1. Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah)

    USGS Publications Warehouse

    Methner, Katharina; Mulch, Andreas; Teyssier, Christian; Wells, Michael L.; Cosca, Michael A.; Gottardi, Raphael; Gebelin, Aude; Chamberlain, C. Page

    2015-01-01

    Metamorphic core complexes (MCCs) in the North American Cordillera reflect the effects of lithospheric extension and contribute to crustal adjustments both during and after a protracted subduction history along the Pacific plate margin. While the Miocene-to-recent history of most MCCs in the Great Basin, including the Raft River-Albion-Grouse Creek MCC, is well documented, early Cenozoic tectonic fabrics are commonly severely overprinted. We present stable isotope, geochronological (40Ar/39Ar), and microstructural data from the Raft River detachment shear zone. Hydrogen isotope ratios of syntectonic white mica (δ2Hms) from mylonitic quartzite within the shear zone are very low (−90‰ to −154‰, Vienna SMOW) and result from multiphase synkinematic interaction with surface-derived fluids. 40Ar/39Ar geochronology reveals Eocene (re)crystallization of white mica with δ2Hms ≥ −154‰ in quartzite mylonite of the western segment of the detachment system. These δ2Hms values are distinctively lower than in localities farther east (δ2Hms ≥ −125‰), where 40Ar/39Ar geochronological data indicate Miocene (18–15 Ma) extensional shearing and mylonitic fabric formation. These data indicate that very low δ2H surface-derived fluids penetrated the brittle-ductile transition as early as the mid-Eocene during a first phase of exhumation along a detachment rooted to the east. In the eastern part of the core complex, prominent top-to-the-east ductile shearing, mid-Miocene 40Ar/39Ar ages, and higher δ2H values of recrystallized white mica, indicate Miocene structural and isotopic overprinting of Eocene fabrics.

  2. Apatite fission-track evidence for regional exhumation in the subtropical Eocene, block faulting, and localized fluid flow in east-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Bacon, Charles R.; O'Sullivan, Paul B.; Day, Warren C.

    2016-01-01

    The origin and antiquity of the subdued topography of the Yukon–Tanana Upland (YTU), the physiographic province between the Denali and Tintina faults, are unresolved questions in the geologic history of interior Alaska and adjacent Yukon. We present apatite fission-track (AFT) results for 33 samples from the 2300 km2 western Fortymile district in the YTU in Alaska and propose an exhumation model that is consistent with preservation of volcanic rocks in valleys that requires base level stability of several drainages since latest Cretaceous–Paleocene time. AFT thermochronology indicates widespread cooling below ∼110 °C at ∼56–47 Ma (early Eocene) and ∼44–36 Ma (middle Eocene). Samples with ∼33–27, ∼19, and ∼10 Ma AFT ages, obtained near a major northeast-trending fault zone, apparently reflect hydrothermal fluid flow. Uplift and erosion following ∼107 Ma magmatism exposed plutonic rocks to different extents in various crustal blocks by latest Cretaceous time. We interpret the Eocene AFT ages to suggest that higher elevations were eroded during the Paleogene subtropical climate of the subarctic, while base level remained essentially stable. Tertiary basins outboard of the YTU contain sediment that may account for the required >2 km of removed overburden that was not carried to the sea by the ancestral Yukon River system. We consider a climate driven explanation for the Eocene AFT ages to be most consistent with geologic constraints in concert with block faulting related to translation on the Denali and Tintina faults resulting from oblique subduction along the southern margin of Alaska.

  3. Climate and Biota across the Eocene-Oligocene transition at Site 1090: recent advances on calcareous nannofossils as paleoclimatic and dissolution proxy

    NASA Astrophysics Data System (ADS)

    Pea, Laura; Fioroni, Chiara; Villa, Giuliana; Persico, Davide; Bohaty, Steve

    2010-05-01

    The Eocene-Oligocene transition represents the biggest biotic turnover in the Cenozoic, involving both terrestrial and marine realms. In this study we present the results obtained by a quantitative analysis of late Eocene-early Oligocene (35.5- 33.1 Ma) calcareous nannofossil assemblages from ODP Site 1090 Hole B (Leg 177). This Hole is located on the southern flank of the Agulhas Ridge on the Subantarctic sector of the Atlantic Ocean (42°54'S), and lies along the boundary between the North Atlantic Deep Water and the Circumpolar Deep Water. Thanks to its position above the Carbonate Compensation Depth (3702 m), the nannofossil assemblage preservation is from poor to good in most of the section, even thought some intervals are barren. A well-preserved magnetostratigraphic signal along all of the section and nannofossil biostratigraphy provided the time framework essential for interpreting the assemblage variations. Within a high resolution biostratigraphic framework and through the comparison with bulk oxygen and carbon isotope datasets we attempt to reconstruct sea surface water temperature and trophic conditions, aimed to a late Eocene - early Oligocene paleoceanographic reconstruction for the South Atlantic. A marked change in the nannofossil assemblages is associated with the Oi-1 event: a nonlinear increase of cool-water taxa gives evidence as the evolution of this climatic event is more complex than previously estimated by calcareous nannofossils in the Southern Ocean (Villa et al., 2008). In fact cool-water taxa variation trend likely reflects the two distinct shifts (Step 1 and Step) recognised by Coxall et al. (2005) within the oxygen isotope shift .Step 1 falls in the uppermost part of magnetochron C13r, while the end of step 2 correlates with the base of Chron C13n (Channell et al., 2005). Furthermore, changes in nannofossil abundance and preservation suggest CCD depth fluctuations, showing a deepening near the Eocene/Oligocene boundary, as previously

  4. New dental and postcranial material of Agerinia smithorum (Primates, Adapiformes) from the type locality Casa Retjo-1 (early Eocene, Iberian Peninsula).

    PubMed

    Femenias-Gual, Joan; Marigó, Judit; Minwer-Barakat, Raef; Moyà-Solà, Salvador

    2017-12-01

    New material attributed to Agerinia smithorum from Casa Retjo-1 (early Eocene, NE Iberian Peninsula), consisting of 13 isolated teeth and a fragment of calcaneus, is studied in this work. These fossils allow the first description of the calcaneus and the upper premolars for the genus Agerinia, as well as the first description of the P 2 and M 2 for A. smithorum. The newly recovered lower teeth are virtually identical to the holotype of A. smithorum and are clearly distinguishable from the other species of Agerinia. The upper teeth also show clear differences with Agerinia marandati. The morphology of the calcaneal remains reveals that A. smithorum practiced a moderately active arboreal quadrupedal mode of locomotion, showing less leaping proclivity than notharctines but more than asiadapids. All the morphological features observed in the described material reinforce the hypothesis of a single lineage consisting of the species A. smithorum, A. marandati, and Agerinia roselli. Furthermore, the phylogenetic analysis developed in this work, which incorporates the newly described remains of A. smithorum, maintains the position of Agerinia as closely related to sivaladapids and asiadapids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Coupled greenhouse warming and deep-sea acidification in the middle Eocene

    NASA Astrophysics Data System (ADS)

    Bohaty, Steven M.; Zachos, James C.; Florindo, Fabio; Delaney, Margaret L.

    2009-06-01

    The Middle Eocene Climatic Optimum (MECO) is an enigmatic warming event that represents an abrupt reversal in long-term cooling through the Eocene. In order to further assess the timing and nature of this event, we have assembled stable isotope and calcium carbonate concentration records from multiple Deep Sea Drilling Project and Ocean Drilling Program sites for the time interval between ˜43 and 38 Ma. Revised stratigraphy at several sites and compilation of δ18O records place peak warming during the MECO event at 40.0 Ma (Chron C18n.2n). The identification of the δ18O excursion at sites in different geographic regions indicates that the climatic effects of this event were globally extensive. The total duration of the MECO event is estimated at ˜500 ka, with peak warming lasting <100 ka. Assuming minimal glaciation in the late middle Eocene, ˜4°-6°C total warming of both surface and deep waters is estimated during the MECO at the study sites. The interval of peak warming at ˜40.0 Ma also coincided with a worldwide decline in carbonate accumulation at sites below 3000 m depth, reflecting a temporary shoaling of the calcite compensation depth. The synchroneity of deep-water acidification and globally extensive warming makes a persuasive argument that the MECO event was linked to a transient increase in atmospheric pCO2. The results of this study confirm previous reports of significant climatic instability during the middle Eocene. Furthermore, the direct link between warming and changes in the carbonate chemistry of the deep ocean provides strong evidence that changes in greenhouse gas concentrations exerted a primary control on short-term climate variability during this critical period of Eocene climate evolution.

  6. A Major Eocene Lake System in the Hinterland of the North American Cordillera Comes into Geochronologic Focus

    NASA Astrophysics Data System (ADS)

    Smith, M. E.; Cassel, E. J.; Canada, A.; Jicha, B.; Singer, B. S.

    2015-12-01

    Eastern Nevada lay east of the Cordilleran continental divide and experienced continental drainage ponding during the Eocene Epoch. Though recognized for nearly a century, lake deposits of the Elko Formation have yet to be placed in a regional chronostratigraphic context, due primarily to Neogene extension and a paucity of radioisotopic ages. New geochronology is essential for creating robust reconstructions of paleogeography and paloeohydrology from scattered surviving outcrops, and for assessing competing tectonic interpretations for lake basin formation and evolution. New single crystal sanidine 40Ar/39Ar ages for 21 ash beds collected from the Elko Formation and contemporaneous fluvial deposits indicate that lacustrine deposition occurred locally as early as ca. 48.7 Ma, coeval with deposition of the Bridgerian portion of the lacustrine Sheep Pass Formation to the south. Lake Elko's most expansive phase occurred between ca. 44.0 and 40.5 Ma, resulting in regional overlap of lacustrine strata atop fluvial strata. Based on lithofacies and lithofacies stacking patterns, an up-section transition from overfilled to balanced-fill conditions occurred at ca. 41.3 Ma. This transition led to increasing salinity and lake level variations that formed a prominent 1-4 meter-scale depositional cyclicity characteristic of partly closed lakes that periodically dropped below their sill elevation. The stromatolitic uppermost Elko Formation records proximal volcanism, including several welded ignimbrites, and is overlain by an unconformity of >10 m.y. duration. Initial ponding, the shift to balanced fill conditions, voluminous siliceous volcanism, and subsequent unconformity are interpreted to reflect the progressive NE to SW advance of 500-900 m of topographic uplift and volcanism resulting from rollback of the Farallon slab. 40Ar/39Ar ages for ash beds at five individual locations suggest that a single ignimbrite, likely the Tuff of Nelson Creek, was deposited across a ~10

  7. Provenance analysis and detrital zircon geochronology on the onshore Makran accretionary wedge, SE Iran: implication for the geodynamic setting

    NASA Astrophysics Data System (ADS)

    Mohammadi, Ali; Burg, Jean-Pierre; Winkler, Wilfried; Ruh, Jonas

    2014-05-01

    data do not support this conclusion. Instead, we identified rifting-related detrital sources from Middle Jurassic to late Early Cretaceous (175 - 100 Ma) and the establishment of a continental volcanic arc from Late Cretaceous to Eocene (80 to 40 Ma). In addition, paleocurrent directions in Makran sandstone show general sediment transport from North to South; Cr-spinel as well as high-P/low-T heavy minerals most likely have been derived from the blueschist-bearing Makran ophiolitic and igneous belt to the North.

  8. Xenoliths in Eocene lavas from Central Tibet record carbonated metasomatism of the lithosphere

    NASA Astrophysics Data System (ADS)

    Goussin, Fanny; Cordier, Carole; Boulvais, Philippe; Guillot, Stéphane; Roperch, Pierrick; Replumaz, Anne

    2017-04-01

    Cenozoic post-collisional volcanism of the Tibetan Plateau, emplaced on an accreted continental margin under compression, could bring important information regarding the edification of the Plateau. In this study, we combined petrography, whole rock geochemistry, stable isotopes and in situ mineral analysis to decipher the genesis of Eocene-Oligocene magmatic rocks from the Nangqian basin (35-38 Ma, [Spurlin et al., 2005; Xu et al., 2016]), located at the hinge between Central Tibet and the Eastern Indo-Asia Collision Zone. Our dataset includes potassic trachyandesites; amphibole-bearing potassic trachytes; and rare ultrapotassic (K2O/Na2O ≥ 4) mafic syenites. All samples have high REE abundances (La = 100 - 500 x primitive mantle). Fractionation of heavy REE (Gd/YbN > 3) indicates melting in the garnet stability field, and relative depletion in high-field strength elements (Nb, Ta) indicates a selective enrichment of the source by metasomatic fluids. This metasomatism event is also evidenced by the occurrence of re-equilibrated mantle xenocrysts of phlogopite (Mg# = 88 - 90 and Cr2O3 content = 0.9 - 1.82 wt%) in mafic syenites. Potassic trachyandesites have specific composition, with negative Zr-Hf anomaly and low Hf/Sm (0.2 - 0.4). Indeed, they include xenocrystic aggregates, composed of magmatic clinopyroxene, apatite and subordinate biotite and feldspar, with interstitial calcite and dolomite. δ18OV -SMOW (9.2 - 11.0 ) and δ13CV -PDB (-6.1 - -4.0 ) of these rocks indicate the presence of primary, mantle-derived carbonates. In situ analysis of the major and trace element compositions of the carbonates, clinopyroxenes and apatites further suggest that these aggregates represent cumulates of a carbonate-bearing magma. These xenoliths thus show that the lithospheric mantle was also metasomatized by CO2-rich fluids. Cenozoic carbonatites in China have been identified in Maoniuping in Western Sichuan (31.7 Ma), Lixian in the Western Qinlin (22-23 Ma), and

  9. Complete primate skeleton from the Middle Eocene of Messel in Germany: morphology and paleobiology.

    PubMed

    Franzen, Jens L; Gingerich, Philip D; Habersetzer, Jörg; Hurum, Jørn H; von Koenigswald, Wighart; Smith, B Holly

    2009-05-19

    The best European locality for complete Eocene mammal skeletons is Grube Messel, near Darmstadt, Germany. Although the site was surrounded by a para-tropical rain forest in the Eocene, primates are remarkably rare there, and only eight fragmentary specimens were known until now. Messel has now yielded a full primate skeleton. The specimen has an unusual history: it was privately collected and sold in two parts, with only the lesser part previously known. The second part, which has just come to light, shows the skeleton to be the most complete primate known in the fossil record. We describe the morphology and investigate the paleobiology of the skeleton. The specimen is described as Darwinius masillae n.gen. n.sp. belonging to the Cercamoniinae. Because the skeleton is lightly crushed and bones cannot be handled individually, imaging studies are of particular importance. Skull radiography shows a host of teeth developing within the juvenile face. Investigation of growth and proportion suggest that the individual was a weaned and independent-feeding female that died in her first year of life, and might have attained a body weight of 650-900 g had she lived to adulthood. She was an agile, nail-bearing, generalized arboreal quadruped living above the floor of the Messel rain forest. Darwinius masillae represents the most complete fossil primate ever found, including both skeleton, soft body outline and contents of the digestive tract. Study of all these features allows a fairly complete reconstruction of life history, locomotion, and diet. Any future study of Eocene-Oligocene primates should benefit from information preserved in the Darwinius holotype. Of particular importance to phylogenetic studies, the absence of a toilet claw and a toothcomb demonstrates that Darwinius masillae is not simply a fossil lemur, but part of a larger group of primates, Adapoidea, representative of the early haplorhine diversification.

  10. Ceratopetalum (Cunoniaceae) fruits of Australasian affinity from the early Eocene Laguna del Hunco flora, Patagonia, Argentina.

    PubMed

    Gandolfo, María A; Hermsen, Elizabeth J

    2017-03-01

    Radially symmetrical, five-winged fossil fruits from the highly diverse early Eocene Laguna del Hunco flora of Chubut Province, Patagonia, Argentina, are named, described and illustrated. The main goals are to assess the affinities of the fossils and to place them in an evolutionary, palaeoecological and biogeographic context. Specimens of fossil fruits were collected from the Tufolitas Laguna del Hunco. They were prepared, photographed and compared with similar extant and fossil fruits using published literature. Their structure was also evaluated by comparing them with that of modern Ceratopetalum (Cunoniaceae) fruits through examination of herbarium specimens. The Laguna del Hunco fossil fruits share the diagnostic features that characterize modern and fossil Ceratopetalum (symmetry, number of fruit wings, presence of a conspicuous floral nectary and overall venation pattern). The pattern of the minor wing (sepal) veins observed in the Patagonian fossil fruits is different from that of modern and previously described fossil Ceratopetalum fruits; therefore, a new fossil species is recognized. An apomorphy (absence of petals) suggests that the fossils belong within crown-group Ceratopetalum . The Patagonian fossil fruits are the oldest known record for Ceratopetalum . Because the affinities, provenance and age of the fossils are so well established, this new Ceratopetalum fossil species is an excellent candidate for use as a calibration point in divergence dating studies of the family Cunoniaceae. It represents the only record of Ceratopetalum outside Australasia, and further corroborates the biogeographic connection between the Laguna del Hunco flora and ancient and modern floras of the Australasian region. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  11. New protocetid whale from the middle eocene of pakistan: birth on land, precocial development, and sexual dimorphism.

    PubMed

    Gingerich, Philip D; Ul-Haq, Munir; von Koenigswald, Wighart; Sanders, William J; Smith, B Holly; Zalmout, Iyad S

    2009-01-01

    Protocetidae are middle Eocene (49-37 Ma) archaeocete predators ancestral to later whales. They are found in marine sedimentary rocks, but retain four legs and were not yet fully aquatic. Protocetids have been interpreted as amphibious, feeding in the sea but returning to land to rest. Two adult skeletons of a new 2.6 meter long protocetid, Maiacetus inuus, are described from the early middle Eocene Habib Rahi Formation of Pakistan. M. inuus differs from contemporary archaic whales in having a fused mandibular symphysis, distinctive astragalus bones in the ankle, and a less hind-limb dominated postcranial skeleton. One adult skeleton is female and bears the skull and partial skeleton of a single large near-term fetus. The fetal skeleton is positioned for head-first delivery, which typifies land mammals but not extant whales, evidence that birth took place on land. The fetal skeleton has permanent first molars well mineralized, which indicates precocial development at birth. Precocial development, with attendant size and mobility, were as critical for survival of a neonate at the land-sea interface in the Eocene as they are today. The second adult skeleton is the most complete known for a protocetid. The vertebral column, preserved in articulation, has 7 cervicals, 13 thoracics, 6 lumbars, 4 sacrals, and 21 caudals. All four limbs are preserved with hands and feet. This adult is 12% larger in linear dimensions than the female skeleton, on average, has canine teeth that are 20% larger, and is interpreted as male. Moderate sexual dimorphism indicates limited male-male competition during breeding, which in turn suggests little aggregation of food or shelter in the environment inhabited by protocetids. Discovery of a near-term fetus positioned for head-first delivery provides important evidence that early protocetid whales gave birth on land. This is consistent with skeletal morphology enabling Maiacetus to support its weight on land and corroborates previous ideas that

  12. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  13. Asian Eocene monsoons as revealed by leaf architectural signatures

    NASA Astrophysics Data System (ADS)

    Spicer, Robert A.; Yang, Jian; Herman, Alexei B.; Kodrul, Tatiana; Maslova, Natalia; Spicer, Teresa E. V.; Aleksandrova, Galina; Jin, Jianhua

    2016-09-01

    The onset and development of the Asian monsoon systems is a topic that has attracted considerable research effort but proxy data limitations, coupled with a diversity of definitions and metrics characterizing monsoon phenomena, have generated much debate. Failure of geological proxies to yield metrics capable of distinguishing between rainfall seasonality induced by migrations of the Inter-tropical Convergence Zone (ITCZ) from that attributable to topographically modified seasonal pressure reversals has frustrated attempts to understand mechanisms underpinning monsoon development and dynamics. Here we circumvent the use of such single climate parameter metrics in favor of detecting directly the distinctive attributes of different monsoon regimes encoded in leaf fossils. Leaf form adapts to the prevailing climate, particularly under the extreme seasonal stresses imposed by monsoons, so it is likely that fossil leaves carry a unique signature of past monsoon regimes. Leaf form trait spectra obtained from fossils from Eocene basins in southern China were compared with those seen in modern leaves growing under known climate regimes. The fossil leaf trait spectra, including those derived from previously published fossil floras from northwestern India, were most similar to those found in vegetation exposed to the modern Indonesia-Australia Monsoon (I-AM), which is largely a product of seasonal migrations of the ITCZ. The presence of this distinctive leaf physiognomic signature suggests that although a monsoon climate existed in Eocene time across southern Asia the characteristics of the modern topographically-enhanced South Asia Monsoon had yet to develop. By the Eocene leaves in South Asia had become well adapted to an I-AM type regime across many taxa and points to the existence of a pervasive monsoon climate prior to the Eocene. No fossil trait spectra typical of exposure to the modern East Asia monsoon were seen, suggesting the effects of this system in southern

  14. Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin

    USGS Publications Warehouse

    Gibson, T.G.; Bybell, L.M.; Mason, D.B.

    2000-01-01

    Eocene strata, rapid erosional removal of large parts of the most kaolinite-rich P/E boundary clay deposits occurred by early Eocene time. Erosion of the kaolinite-rich P/E boundary beds was enhanced during times of sea-level fall when kaolinite-rich sediments were redeposited to produce kaolinite spikes in basal beds of lower and middle Eocene sequences that have little or no kaolinite elsewhere in the sequence. In contrast, more downbasin sites document only the upper, decreasing part of the kaolinite pulse. The absence of strata documenting the earlier kaolinite increase is attributed to slow sedimentation (condensed interval) as a result of a significant sea level rise that ponded most sediments in shallower waters, combined with the probable subsequent erosional removal of these thin downbasin deposits by oceanic currents.

  15. Astronomical calibration of the middle Eocene Contessa Highway section (Gubbio, Italy)

    NASA Astrophysics Data System (ADS)

    Jovane, Luigi; Sprovieri, Mario; Coccioni, Rodolfo; Florindo, Fabio; Marsili, Andrea; Laskar, Jacques

    2010-09-01

    The Eocene climatic system experienced an important transition from warm Paleocene greenhouse to icehouse Oligocene conditions. This transition could first appear as a long-term cooling trend but, at an up-close look, this period is a complex combination of climatic events and, for most of them, causes and consequences are still not fully characterized. In this context, a study has been carried out on the middle Eocene sedimentary succession of the Contessa Highway section, central Italy, which is proposed as the Global Stratotype Section and Point (GSSP) for the Lutetian/Bartonian boundary at the top of the Chron 19n, with an astronomically calibrated age of 41.23 Ma. Through a cyclostratigraphic analysis of the rhythmic sedimentary alternations and combination with the results of time series analysis of the proxy record, we provide an orbital tuning of the middle Eocene and astronomical calibration of the bio-magnetostratigraphic events (particularly for the C19n/C18r Chron boundary) recognized at the Contessa Highway section.

  16. Living on the Edge? Clumped Isotope and Oxygen Isotope Record of Early Cascade Topography (Eocene Chumstick Basin, WA, USA)

    NASA Astrophysics Data System (ADS)

    Methner, K.; Mulch, A.; Fiebig, J.; Wacker, U.; Umhoefer, P. J.; Chamberlain, C. P.

    2014-12-01

    The topographic evolution of the world's major orogens exerts a strong impact on atmospheric circulation and precipitation patterns and is a key element in reconstructing the interactions among tectonics, climate, and Earth surface processes. Using carbonate stable and clumped isotope data together with low-temperature thermochronology information from the terrestrial Eocene Chumstick Basin (Central Washington; USA), today located to the East of the Washington Cascades, we investigate the E-W extent of the western North American plateau region and the evolution of Cascade topography. Oxygen isotope measurements of Eocene (51 to 37 Ma) pedogenic carbonate concretions and calcic horizons yield low δ18Ocarbonate values of +9 to +13 ‰ (SMOW) despite the proximity of the Eocene Chumstick Basin to the Pacific moisture source and paleofloral data that indicate moderate elevations and montane rain forest conditions during a warm and rather wet, seasonal climate. This either suggests that 51-37 Ma ago Cascade-like topography characterized the western edge of the North American-Pacific plate margin to the West of the Chumstick Basin or that the δ18Ocarbonate data were variably reset or only formed during burial and diagenesis. Clumped isotope (Δ47) thermometry of pedogenic carbonate and carbonate concretions (n=11 samples) indicates spatially variable burial temperatures of 80 to 120 °C that correlate with vitrinite reflectance data in these sediments. In concordance with changes in depositional environment the youngest (<40 Ma) Chumstick sediments experienced a lesser degree of post-depositional burial and heating (ca. 70 - 80 °C) compared to the older Chumstick series (80 - 120 °C). Calculated δ18O values of the circulating fluids in the Chumstick basin sediments range from -6 ‰ (T ~100 °C at ca. 40-30 Ma) to -9 ‰ (T ~75 °C at ca. 25-15 Ma). These values suggest a low-altitude meteoric fluid source and as a consequence only moderate Cascade topography during

  17. Mass-transport deposits controlling fault propagation, reactivation and structural decoupling on continental margins (Espírito Santo Basin, SE Brazil)

    NASA Astrophysics Data System (ADS)

    Omosanya, Kamal'deen O.; Alves, Tiago M.

    2014-07-01

    This work uses high-quality 3D seismic data to assess the importance of mass-transport deposits (MTDs) as markers of fault propagation. We mapped three distinct MTDs and several fault families on the continental slope of Espírito Santo, SE Brazil. Fault mapping was based on seismic attributes such as seismic coherence and structural smoothing, and was further completed using ant tracking algorithms. Genetically related fault families were analysed in terms of their throw-depth (t-z) and throw-distance (t-x) gradient curves. A key result in this paper is that vertical fault propagation can be hindered by MTDs, as demonstrated for Eocene to Early Miocene faults in parts of the study area. Throw-depth variations in faults affected by MTDs are associated with: a) lithologic controls resulting from the presence of MTDs, b) local fault segmentation and c) reactivation by dip linkage. Based on their orientation and degree of interaction with MTDs, interpreted faults can be classified as decoupled and non-decoupled. Importantly, faults decoupled by MTDs have quasi-elliptical t-x profiles and show smaller cumulative throw values and fault propagation rates when compared to their non-decoupled counterparts. Recurrent MTDs can therefore be used as markers to estimate structural decoupling between distinct fault families.

  18. The Early to Middle Triassic continental-marine transition of NW Bulgaria: sedimentology, palynology and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Ajdanlijsky, George; Götz, Annette E.; Strasser, André

    2018-04-01

    Sedimentary facies and cycles of the Triassic continental-marine transition of NW Bulgaria are documented in detail from reference sections along the Iskar river gorge between the villages of Tserovo and Opletnya. The depositional environments evolved from anastomosing and meandering river systems in the Petrohan Terrigenous Group to mixed fluvial and tidal settings in the Svidol Formation, and to peritidal and shallow-marine conditions in the Opletnya Member of the Mogila Formation. For the first time, the palynostratigraphic data presented here allow for dating the transitional interval and for the precise identification of a major sequence boundary between the Petrohan Terrigenous Group and the Svidol Formation (Iskar Carbonate Group). This boundary most probably corresponds to the major sequence boundary Ol4 occurring in the upper Olenekian of the Tethyan realm and thus enables interregional correlation. The identification of regionally traceable sequence boundaries based on biostratigraphic age control is a first step towards a more accurate stratigraphic correlation and palaeogeographic interpretation of the Early to early Middle Triassic in NW Bulgaria.

  19. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions

    NASA Astrophysics Data System (ADS)

    Inglis, Gordon N.; Farnsworth, Alexander; Lunt, Daniel; Foster, Gavin L.; Hollis, Christopher J.; Pagani, Mark; Jardine, Phillip E.; Pearson, Paul N.; Markwick, Paul; Galsworthy, Amanda M. J.; Raynham, Lauren; Taylor, Kyle. W. R.; Pancost, Richard D.

    2015-07-01

    The TEX86 proxy, based on the distribution of marine isoprenoidal glycerol dialkyl glycerol tetraether lipids (GDGTs), is increasingly used to reconstruct sea surface temperature (SST) during the Eocene epoch (56.0-33.9 Ma). Here we compile published TEX86 records, critically reevaluate them in light of new understandings in TEX86 palaeothermometry, and supplement them with new data in order to evaluate long-term temperature trends in the Eocene. We investigate the effect of archaea other than marine Thaumarchaeota upon TEX86 values using the branched-to-isoprenoid tetraether index (BIT), the abundance of GDGT-0 relative to crenarchaeol (%GDGT-0), and the Methane Index (MI). We also introduce a new ratio, %GDGTRS, which may help identify Red Sea-type GDGT distributions in the geological record. Using the offset between TEX86H and TEX86L (ΔH-L) and the ratio between GDGT-2 and GDGT-3 ([2]/[3]), we evaluate different TEX86 calibrations and present the first integrated SST compilation for the Eocene (55 to 34 Ma). Although the available data are still sparse some geographic trends can now be resolved. In the high latitudes (>55°), there was substantial cooling during the Eocene (~6°C). Our compiled record also indicates tropical cooling of ~2.5°C during the same interval. Using an ensemble of climate model simulations that span the Eocene, our results indicate that only a small percentage (~10%) of the reconstructed temperature change can be ascribed to ocean gateway reorganization or paleogeographic change. Collectively, this indicates that atmospheric carbon dioxide (pCO2) was the likely driver of surface water cooling during the descent toward the icehouse.

  20. Sedimentological context of the continental sabkhas of Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Lokier, Stephen; Paul, Andreas; Bixiao, Xin

    2017-04-01

    For more than half a century, the coastal sabkhas of Abu Dhabi have been the focus of intensive research focusing on deposition, early diagenesis and the role of microbial communities. Given all of this activity, it is somewhat surprising that their continental counterparts have been largely neglected with only a brief mention in larger-scale regional studies. This study redresses this imbalance by documenting the sedimentological, mineralogical and early diagenetic characteristics of continental sabkhas that are hosted in the Rub al Khali desert of the United Arab Emirates. During reconnaissance surveys it has been established that organic-rich microbial mats and evaporite minerals, both similar to those observed in the coastal sabkha, also occur in these continental sabkha settings. Satellite imagery was utilised to identify potential field locations for surface and shallow sub surface investigation; subsequent field reconnaissance established the validity of sites in terms of anthropogenic disruption and accessibility. At each site, surface features were described in detail, particularly with reference to any microbial communities or evaporite crusts; sample pits were dug in order to document sub-surface facies geometries and to recover both sediment and pore water samples for subsequent analysis. In each pit, a range of environmental parameters was measured over a prolonged period, including surface and sub-surface temperatures, ground water salinity and dissolved oxygen. Sediment samples were subjected to a range of analyses in order to establish and quantify primary sediment composition and any early diagenetic mineral phases. The results of this study are used to build an atlas of sedimentary structures and textures that are associated with continental sabkha settings. These observations allow us to establish the defining sedimentological and early diagenetic characteristics that can be employed to identify similar depositional environments in ancient

  1. Late Eocene impact events recorded in deep-sea sediments

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1988-01-01

    Raup and Sepkoski proposed that mass extinctions have occurred every 26 Myr during the last 250 Myr. In order to explain this 26 Myr periodicity, it was proposed that the mass extinctions were caused by periodic increases in cometary impacts. One method to test this hypothesis is to determine if there were periodic increases in impact events (based on crater ages) that correlate with mass extinctions. A way to test the hypothesis that mass extinctions were caused by periodic increases in impact cratering is to look for evidence of impact events in deep-sea deposits. This method allows direct observation of the temporal relationship between impact events and extinctions as recorded in the sedimentary record. There is evidence in the deep-sea record for two (possibly three) impact events in the late Eocene. The younger event, represented by the North American microtektite layer, is not associated with an Ir anomaly. The older event, defined by the cpx spherule layer, is associated with an Ir anomaly. However, neither of the two impact events recorded in late Eocene deposits appears to be associated with an unusual number of extinctions. Thus there is little evidence in the deep-sea record for an impact-related mass extinction in the late Eocene.

  2. Depositional environment, sand provenance, and diagenesis of the Basal Salina Formation (lower Eocene), northwestern Peru

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Carozzi, A. V.

    The Basal Salina Formation is a lower Eocene transgressive sequence consisting of interbedded shales, siltstones, and conglomeratic sandstones. This formation occurs in the Talara basin of northwestern Peru and is one of a series of complexly faulted hydrocarbon-producing formations within this extensional forearc basin. These sediments were probably deposited in a fan-delta complex that developed along the ancestral Amotape Mountains during the early Eocene. Most of the sediment was derived from the low-grade metamorphic and plutonic rocks that comprise the Amotape Mountains, and their sedimentary cover. Detrital modes of these sandstones reflect the complex tectonic history of the area, rather than the overall forearc setting. Unlike most forearc sediments, these are highly quartzose, with only minor percentages of volcanic detritus. This sand is variably indurated and cemented by chlorite, quartz, calcite, and kaolinite. Clay-mineral matrix assemblages show gradational changes with depth, from primarily detrital kaolinite to diagenetic chlorite and mixed-layered illite/smectite. Basal Salina sandstones exhibit a paragenetic sequence that may be tied to early meteoric influx or late-stage influx of thermally driven brines associated with hydrocarbon migration. Much of the porosity is secondary, resulting from a first-stage dissolution of silicic constituents (volcanic lithic fragments, feldspar, and fibrous quartz) and a later dissolution of surrounding carbonate cement. Types of pores include skeletal grains, grain molds, elongate pores, and fracture porosity. Measured porosity values range up to 24% and coarser samples tend to be more porous. Permeability is enhanced by fractures and deterred by clay-mineral cements and alteration residues.

  3. The palaeoclimatic significance of Eurasian Giant Salamanders (Cryptobranchidae: Zaissanurus, Andrias) - indications for elevated humidity in Central Asia during global warm periods (Eocene, late Oligocene warming, Miocene Climate Optimum)

    NASA Astrophysics Data System (ADS)

    Vasilyan, Davit; Böhme, Madelaine; Winklhofer, Michael

    2010-05-01

    Cryptobranchids represent a group of large sized (up to 1.8 m) tailed amphibians known since the Middle Jurassic (Gao & Shubin 2003). Two species are living today in eastern Eurasia: Andrias davidianus (China) and A. japonicus (Japan). Cenozoic Eurasian fossil giant salamanders are known with two genera and two or three species from over 30 localities, ranging from the Late Eocene to the Early Pliocene (Böhme & Ilg 2003). The Late Eocene species Zaissanurus beliajevae is restricted to the Central Asian Zaissan Basin (SE-Kazakhstan, 50°N, 85°E), whereas the Late Oligocene to Early Pliocene species Andrias scheuchzeri is distributed from Central Europe to the Zaissan Basin. In the latter basin the species occur during two periods; the latest Oligocene and the late Early to early Middle Miocene (Chkhikvadse 1982). Andrias scheuchzeri is osteological indistinguishable from both recent species, indicating a similar ecology (Westfahl 1958). To investigate the palaeoclimatic significance of giant salamanders we analyzed the climate within the present-day distribution area and at selected fossil localities with independent palaeoclimate record. Our results indicate that fossil and recent Andrias species occur in humid areas where the mean annual precipitation reach over 900 mm (900 - 1.300 mm). As a working hypothesis (assuming a similar ecology of Andrias and Zaissanurus) we interpret occurrences of both fossil Eurasian giant salamanders as indicative for humid palaeoclimatic conditions. Based on this assumption the Late Eocene, the latest Oligocene (late Oligocene warming) and the late Early to early Middle Miocene (Miocene Climatic Optimum) of Central Asia (Zaissan Basin) are periods of elevated humidity, suggesting a direct (positive) relationship between global climate and Central Asian humidity evolution. Böhme M., Ilg A. 2003: fosFARbase, www.wahre-staerke.com/ Chkhikvadze V.M. 1982. On the finding of fossil Cryptobranchidae in the USSR and Mongolia. Vertebrata

  4. 44Ca/42Ca and 143Nd/144Nd isotope variations in Cretaceous Eocene Tethyan francolites and their bearing on phosphogenesis in the southern Tethys

    NASA Astrophysics Data System (ADS)

    Soudry, David; Segal, Irena; Nathan, Yaacov; Glenn, Craig R.; Halicz, Ludwik; Lewy, Zeev; Vonderhaar, Denys L.

    2004-05-01

    Measurements of 44Ca/42Ca and 143Nd/144Nd isotope ratios in carbonate fluorapatite (CFA) through the Aptian Eocene section of the Negev (Israel), together with quantified rates of P and Ca accumulation and bulk sedimentation, permit an examination of the relationships of these five factors to Tethyan phosphogenesis. The data provide an Aptian Eocene (ca. 70 Ma) record of the Ca isotope composition of 35 CFA samples (24 of which were also analyzed for Nd isotopes), representing 11 time-stratigraphic phosphate horizons within the sequence. The δ44Ca values are significantly lower in the Aptian Albian samples (δ44Ca = -0.11‰ to -0.06‰) than in the Campanian Eocene samples (δ44Ca = +0.22‰ to +0.42‰), whereas the ɛNd(T) values increase from continental crust like in the Aptian Albian [ɛNd(T) = -10.9] to more radiogenic, Pacific-like [ɛNd(T) = -6.6 to -6.1] in the Campanian. Both peaks of δ44Ca and ɛNd(T) in the Campanian coincide with the peak of Tethyan phosphogenesis in the Negev, which is marked by a sharp increase of P accumulation rates (from <200 μmol·cm-2·k.y.-1 in pre-Campanian time to ˜1700 μmol·cm-2·k.y.-1 in the Campanian) and a decrease in rates of Ca accumulation and bulk sedimentation. The coincident increases of δ44Ca and ɛNd(T) values and P accumulation rates in the Negev area during the Campanian suggest that they are related in this time interval and were induced by the global Late Cretaceous sea- level rise and increasing circumequatorial Tethyan flow.

  5. Changes in Nannoplankton Assemblages during the recovery of the Paleocene Eocene Thermal Maximum (PETM)

    NASA Astrophysics Data System (ADS)

    Grey, J. A.; Bralower, T. J.; Self-Trail, J. M.

    2016-12-01

    The recovery interval of the Paleocene Eocene Thermal Maximum (PETM) presents an opportunity to examine how organisms adapt to environmental change after a rapid global warming event. Calcareous nannoplankton survived the PETM, but we lack an understanding of how long it took for assemblages to adapt to a changing climate and the millennial-scale changes in their ecology. Here, we present the first high-resolution record of nannoplankton community change during the PETM recovery using a global data set (United States Geological Survey (USGS) Wilson Lake core, USGS Cam-Dor core, Ocean Drilling Program (ODP) Sites 690, 1265, and 1209) to assess millennial-scale assemblage change across space and time. Preliminary multivariate analyses on assemblage changes at Wilson Lake demonstrate that within 20,000 years after the onset, the structure of nannoplankton communities shifts from an assemblage dominated by warm eutrophic specialists to one dominated by eutrophic low salinity specialists. In the late recovery, ubiquitous taxa dominate assemblages, suggesting that the shelf environment became favorable for generalists. The latest part of the recovery is marked by a slight increase in oligotrophic specialists, indicating that the shelf became less eutrophic into the early Eocene. Overall, these analyses suggest that assemblages changed rapidly in response to cooling and changing ocean circulation during the early recovery of the PETM. Future analyses will build on these data by comparing assemblage change from other PETM coastal and open ocean sites. These analyses will help us better understand the spatial and temporal changes of nannoplankton communities on a global scale, lessons that can inform how nannoplankton will respond to future climate change.

  6. Eocene Hyperthermal Climate Sensitivity to Greenhouse Gas and Aerosol Forcing

    NASA Astrophysics Data System (ADS)

    Winguth, A. M. E.; Hughlett, T. M.; Brown, M.; Rothstein, M.; Shields, C. A.; Winguth, C.

    2017-12-01

    A series of DeepMIP climate sensitivity experiments have been carried out with the Community Earth System Model CESM1.2 to evaluate how changes in the radiative forcing could have contributed to explain Eocene hyperthermal events. A rise in Eocene greenhouse gas forcing could have been linked to an increase in volcanism and associated destabilization of marine carbon reservoirs by dissociation of clathrathes, reorganization of the marine microbial loop, or terrestrial sources from e.g. wetlands. Such environmental changes could potentially have led to additional biophysical feedbacks altering the cloud aerosol optical depth for example by alteration of marine plankton productivity and DMS emissions to the atmosphere. The analysis of our simulations suggests a substantial warming from 3x to 12x CO2 PAL, reaching moderate temperatures of up to 20 °C over Antarctica and in the Article realm in the most extreme scenario, consistent to proxy estimates in a high CO2 world. The lower equator-to-pole temperature gradient compared to present-day is due to the lack of an ice sheet, an increase in greenhouse gases, and a lower cloud optical depth. The climate simulations suggest an intensified hydrological cycle with higher precipitation in the tropics, particularly over the Indian Eocene continent, and in mid-latitudes, whereas mega-droughts are prominent in the subtropics, particularly in Africa and South America. The Eocene geography (the closure of the Drake Passage and the more southern location of Australia) and a lower-than-present meridional temperature gradient contribute to a much weaker surface ocean circulation near the Antarctic continent as compared to the current pronounced Antarctic Circumpolar Current.

  7. Late Eocene white pines (Pinus subgenus Strobus) from southern China.

    PubMed

    Xu, Qingqing; Zhou, Wenjun; Kodrul, Tatiana M; Naugolnykh, Serge V; Jin, Jianhua

    2015-11-09

    Fossil records indicate that the genus Pinus L. split into two subgenera by the Late Cretaceous, although subgenus Strobus (D. Don) Lemmon is less well documented than subgenus Pinus L., especially in eastern Asia. In this paper, Pinus maomingensis sp. nov. is established based on a compressed seed cone from the upper Eocene of the Maoming Basin of southern China. This species is attributed to genus Pinus, subgenus Strobus, section Quinquefoliae Duhamel, subsection Strobus Loudon based on the combination of morphological characters obtained from the cone scales, specifically from the terminal umbo, rhombic apophysis, and cuticle structure. Associated fascicles of needle leaves with deciduous sheaths and bulbous bases are recognized as Pinus sp. and also represent Pinus subgenus Strobus. This new discovery from the Maoming Basin constitutes the first megafossil record of subgenus Strobus from southern China and implies that the members of this subgenus arrived in the southern region of China by the late Eocene. The extant species of subgenus Strobus are mainly distributed in northern temperate and tropical to subtropical mountainous regions. We propose that the Maoming Basin was adjacent to a mountainous region during the late Eocene.

  8. Late Eocene white pines (Pinus subgenus Strobus) from southern China

    PubMed Central

    Xu, Qingqing; Zhou, Wenjun; Kodrul, Tatiana M.; Naugolnykh, Serge V.; Jin, Jianhua

    2015-01-01

    Fossil records indicate that the genus Pinus L. split into two subgenera by the Late Cretaceous, although subgenus Strobus (D. Don) Lemmon is less well documented than subgenus Pinus L., especially in eastern Asia. In this paper, Pinus maomingensis sp. nov. is established based on a compressed seed cone from the upper Eocene of the Maoming Basin of southern China. This species is attributed to genus Pinus, subgenus Strobus, section Quinquefoliae Duhamel, subsection Strobus Loudon based on the combination of morphological characters obtained from the cone scales, specifically from the terminal umbo, rhombic apophysis, and cuticle structure. Associated fascicles of needle leaves with deciduous sheaths and bulbous bases are recognized as Pinus sp. and also represent Pinus subgenus Strobus. This new discovery from the Maoming Basin constitutes the first megafossil record of subgenus Strobus from southern China and implies that the members of this subgenus arrived in the southern region of China by the late Eocene. The extant species of subgenus Strobus are mainly distributed in northern temperate and tropical to subtropical mountainous regions. We propose that the Maoming Basin was adjacent to a mountainous region during the late Eocene. PMID:26548658

  9. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia

    NASA Astrophysics Data System (ADS)

    Sun, Jimin; Ni, Xijun; Bi, Shundong; Wu, Wenyu; Ye, Jie; Meng, Jin; Windley, Brian F.

    2014-12-01

    The Eocene-Oligocene Boundary (~34 million years ago) marks one of the largest extinctions of marine invertebrates in the world oceans and of mammalian fauna in Europe and Asia in the Cenozoic era. A shift to a cooler climate across this boundary has been suggested as the cause of this extinction in the marine environment, but there is no manifold evidence for a synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in a single terrestrial site in Asia to support this hypothesis. Here we report new data of magnetostratigraphy, pollen and climatic proxies in the Asian interior across the Eocene-Oligocene Boundary; our results show that climate change forced a turnover of flora and fauna, suggesting there was a change from large-size perissodactyl-dominant fauna in forests under a warm-temperate climate to small rodent/lagomorph-dominant fauna in forest-steppe in a dry-temperate climate across the Eocene-Oligocene Boundary. These data provide a new terrestrial record for this significant Cenozoic environmental event.

  10. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia.

    PubMed

    Sun, Jimin; Ni, Xijun; Bi, Shundong; Wu, Wenyu; Ye, Jie; Meng, Jin; Windley, Brian F

    2014-12-12

    The Eocene-Oligocene Boundary (~34 million years ago) marks one of the largest extinctions of marine invertebrates in the world oceans and of mammalian fauna in Europe and Asia in the Cenozoic era. A shift to a cooler climate across this boundary has been suggested as the cause of this extinction in the marine environment, but there is no manifold evidence for a synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in a single terrestrial site in Asia to support this hypothesis. Here we report new data of magnetostratigraphy, pollen and climatic proxies in the Asian interior across the Eocene-Oligocene Boundary; our results show that climate change forced a turnover of flora and fauna, suggesting there was a change from large-size perissodactyl-dominant fauna in forests under a warm-temperate climate to small rodent/lagomorph-dominant fauna in forest-steppe in a dry-temperate climate across the Eocene-Oligocene Boundary. These data provide a new terrestrial record for this significant Cenozoic environmental event.

  11. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Ivany, Linda C.; Patterson, William P.; Lohmann, Kyger C.

    2000-10-01

    The Eocene/Oligocene boundary, at about 33.7Myr ago, marks one of the largest extinctions of marine invertebrates in the Cenozoic period. For example, turnover of mollusc species in the US Gulf coastal plain was over 90% at this time. A temperature change across this boundary-from warm Eocene climates to cooler conditions in the Oligocene-has been suggested as a cause of this extinction event, but climate reconstructions have not provided support for this hypothesis. Here we report stable oxygen isotope measurements of aragonite in fish otoliths-ear stones-collected across the Eocene/Oligocene boundary. Palaeotemperatures reconstructed from mean otolith oxygen isotope values show little change through this interval, in agreement with previous studies. From incremental microsampling of otoliths, however, we can resolve the seasonal variation in temperature, recorded as the otoliths continue to accrete new material over the life of the fish. These seasonal data suggest that winters became about 4°C colder across the Eocene/Oligocene boundary. We suggest that temperature variability, rather than change in mean annual temperature, helped to cause faunal turnover during this transition.

  12. Arctic Ocean circulation during the anoxic Eocene Azolla event

    NASA Astrophysics Data System (ADS)

    Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan

    2010-05-01

    The Azolla interval, as encountered in Eocene sediments from the Arctic Ocean, is characterized by organic rich sediments ( 4wt% Corg). In general, high levels of organic matter may be caused by increased productivity, i.e. extensive growth of Azolla, and/or enhanced preservation of organic matter, or a combination of both. Anoxic (bottom) water conditions, expanded oxygen minimum zones, or increased sedimentation rates all potentially increase organic matter preservation. According to plate tectonic, bathymetric, and paleogeographic reconstructions, the Arctic Ocean was a virtually isolated shallow basin, with one possible deeper connection to the Nordic Seas represented by a still shallow Fram Strait (Jakobsson et al., 2007), hampering ventilation of the Arctic Basin. During the Azolla interval surface waters freshened, while at the same time bottom waters appear to have remained saline, indicating that the Arctic was highly stratified. The restricted ventilation and stratification in concert with ongoing export of organic matter most likely resulted in the development of anoxic conditions in the lower part of the water column. Whereas the excess precipitation over evaporation maintained the freshwater lid, sustained input of Nordic Sea water is needed to keep the deeper waters saline. To which degree the Arctic Ocean exchanged with the Nordic Seas is, however, still largely unknown. Here we present a high-resolution trace metal record (ICP-MS and ICP-OES) for the expanded Early/Middle Eocene section capturing the Azolla interval from Integrated Ocean Drilling Program (IODP) Expedition 302 (ACEX) drilled on the Lomonosov Ridge, central Arctic Ocean. Euxinic conditions throughout the interval resulted in the efficient removal of redox sensitive trace metals from the water column. Using the sedimentary trace metal record we also constrained circulation in the Arctic Ocean by assessing the relative importance of trace metal input sources (i.e. fluvial, eolian, and

  13. The Paleocene-Eocene "Greenhouse" Arctic Ocean paleoenvironment: Implications from biomarker results from IODP Expedition 302 (ACEX)

    NASA Astrophysics Data System (ADS)

    Weller, P.; Stein, R.

    2006-12-01

    In order to reconstruct the long-term Cenozoic climate history of the central Arctic Ocean and its role in earth's transition from Paleogene greenhouse to the Neogene icehouse conditions, IODP Expedition 302 (Arctic Ocean Coring Experiment ACEX) visited the Lomonosov Ridge in August 2004. Here, we present new data of organic-geochemical compounds determined in ACEX sediment samples to identify organic matter sources and biomarker proxies to decipher processes controlling organic-carbon accumulation and their paleo- environmental significance. Of special interest was the reconstruction of organic carbon composition, preservation and accumulation (i.e. high productivity vs. anoxia vs. terrigenous input) during periods of extreme global warmth and proposed increased freshwater discharge in the early Cenozoic. Specific source-related biomarkers (e.g. n-alkanes, fatty acids, isoprenoids, carotenoids, steranes/sterenes, hopanes/hopenes, hopanoic acids, aromatic terpenoids, benzohopanes, long-chain alkenones, organic sulfur compounds) and Rock-Eval parameters were determined in the ACEX sediment samples, ranging from the late Paleocene to the middle Miocene in age. The records show highly variable TOC-contents and a large variety and variability of compounds derived from marine, terrestrial and bacterial origin. The distribution of hopanoic acid isomers was dominated by compounds with the biological 17 beta (H), 21 beta (H) configuration indicating a low level of maturity, which was in good agreement with the data from Rock-Eval pyrolysis. Based on the biomarker data, the terrestrial organic matter supply was significantly enriched during the late Paleocene and part of the early Eocene, whereas n-alkanes and n-fatty acids in samples from the PETM and Elmo events as well as the middle Eocene indicate increased aquatic contributions. Furthermore samples from the middle Eocene were characterized by the occurrence of long-chain alkenones, high proportions of lycopane and high

  14. Astronomical calibration of the geological timescale: closing the middle Eocene gap

    NASA Astrophysics Data System (ADS)

    Westerhold, T.; Röhl, U.; Frederichs, T.; Bohaty, S. M.; Zachos, J. C.

    2015-09-01

    To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.

  15. Planktic foraminiferal photosymbiont bleaching during the Early Eocene Climatic Optimum (Site 1051, northwestern Atlantic)

    NASA Astrophysics Data System (ADS)

    Luciani, Valeria; D'Onofrio, Roberta; Dickens, Gerald Roy; Wade, Bridget

    2017-04-01

    The symbiotic relationship with algae is a key strategy adopted by many modern species and by early Paleogene shallow-dwelling planktic foraminifera. The endosymbionts play an important role in foraminiferal calcification, longevity and growth, allowing the host to succeed in oligotrophic environment. We have indirect evidence on the presence and loss of algae photosymbionts because symbionts modify the chemistry of the microenvironment where a foraminifer calcifies, resulting in a characteristic geochemical signature between test size and δ13C. We present here the result of a test on loss of algal photosymbiont (bleaching) in planktic foraminifera from the northwest Atlantic Ocean Drilling Program (ODP) Site 1051 across the Early Eocene Climatic Optimum (EECO), the interval ( 49-53 Ma) when Earth surface temperatures and probably atmospheric pCO2 reached their Cenozoic maximum. We select this interval because two symbiont-bearing planktic foraminiferal genera Morozovella and Acarinina, that were important calcifiers of the early Paleogene tropical-subtropical oceans, experienced a marked and permanent switch in abundance at the beginning of the EECO, close to the carbon isotope excursion known as J event. Specifically, the relative abundance of Morozovella permanently decreased by at least half, along with a progressive decrease in the number of species. Concomitantly, the genus Acarinina almost doubled its abundance and diversified within the EECO. Many stressors inducing loss of photosymbiosis may have occurred during the long-lasting environmental conditions relating to the EECO extreme warmth, such as high pCO2 and possible decrease of the surface-water pH. The bleaching may therefore represent a potential mechanism to explain the rapid morozovellid decline at the start of the EECO. Our geochemical data from Site 1051 demonstrate that there was indeed a reduction of algal-symbiosis in morozovellids at the EECO beginning. This bleaching event occurred at the

  16. Le 'continental terminal', sa place dans l'évolution géodynamique du bassin sénégalo-mauritanien durant le Cénozoïque

    NASA Astrophysics Data System (ADS)

    Conrad, Georges; Lappartient, Jean-René

    The 'Continental Terminal' in the Senegalo-Mauritanian basin is a Cenozoic and detrital formation, presenting signs of an intense ferralitic alteration with formation of ferruginous concretions and crustings, neo-formation of kaolinite and significant silica movements. Sedimentary structures are generally obliterated by alteration in the formation's summit. However, some fossil layers which have undergone epigenesis by geothite make it possible to establish the sea origin of the eocene and miocene deposits in this 'Continental Terminal'. A better idea of Cenozoic transgressions and regressions can be achieved by a reconstitution of fossil river beds through alterations on the edge of the African continent. The new elements in the 'Continental Terminal' and the Senegalo-Mauritanian Cenozoic paleoclimates are: The 'Continental Terminal' clearly represents an alteration fringe developed at the expense of marine formations (Tessier et al. 1975 Actes 9ème Congr. Int. Sédim., Nice, pp. 207-211), but this concept cannot be generalized to all of the coastal Cenozoic or interior Iullemmeden Nigerian basins. The ferrallitic alterations mostly occurred in the Pliocene period after the sinking of the basin, as in the Miocene margino-littoral facies, and are still highly dominant. The ferruginous crusting can be seen in this period and also during the lower Pleistocene, because of the latitudinal migration of the basin northwards starting from the upper Cretaceous period.

  17. Mineralogical and Geochemical Discrimination of the Occurrence and Genesis of Palygorskite in Eocene Sediments on the Northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ye, Chengcheng; Yang, Yibo; Fang, Xiaomin; Hong, Hanlie; Zhang, Weilin; Yang, Rongsheng; Song, Bowen; Zhang, Zhiguo

    2018-03-01

    Palygorskite is a widely used indicator of semiarid to arid environments in paleoclimate studies. In this study, we present detailed mineralogical and geochemical investigations exploring the genesis of palygorskite found in Eocene fluvial sediment in the northern Qaidam Basin on the northeastern Tibetan Plateau. The presence of two types of palygorskite is revealed, based on their crystallinity characteristics and distinctive rare earth element (REE) patterns in the coexisting clay fraction. Well-crystallized palygorskite samples are characterized by remarkably negative Ce anomalies and obvious middle rare earth element enrichment. Poorly crystallized palygorskite samples generally exhibit positive Ce anomalies and less pronounced middle rare earth element enrichment, which resemble those of nonpalygorskite-bearing clay samples. Given the presence of an overall oxidized fluvial sedimentary environment, we attribute the well-crystallized palygorskite (which has textures comprising long, interwoven fibers) to direct precipitation (i.e., neoformation) occurring within a reducing environment during early/postdepositional processes while the poorly crystallized palygorskite (which is characterized by short, club-shaped single crystals) originates as catchment-delivered detritus. These poorly crystallized palygorskites occur mostly in 49.5-47.0 Ma and are accompanied by decreasing kaolinite content, increasing chlorite content, and abundant xerophytic spore-pollen from the Qaidam Basin, and its neighboring Xining Basin. Collectively, these evidences suggest that a less humid climate followed after the Early Eocene Climate Optimum.

  18. Whence the beardogs? Reappraisal of the Middle to Late Eocene 'Miacis' from Texas, USA, and the origin of Amphicyonidae (Mammalia, Carnivora).

    PubMed

    Tomiya, Susumu; Tseng, Zhijie Jack

    2016-10-01

    The Middle to Late Eocene sediments of Texas have yielded a wealth of fossil material that offers a rare window on a diverse and highly endemic mammalian fauna from that time in the southern part of North America. These faunal data are particularly significant because the narrative of mammalian evolution in the Paleogene of North America has traditionally been dominated by taxa that are known from higher latitudes, primarily in the Rocky Mountain and northern Great Plains regions. Here we report on the affinities of two peculiar carnivoraforms from the Chambers Tuff of Trans-Pecos, Texas, that were first described 30 years ago as Miacis cognitus and M. australis . Re-examination of previously described specimens and their inclusion in a cladistic analysis revealed the two taxa to be diminutive basal amphicyonids; as such, they are assigned to new genera Gustafsonia and Angelarctocyon , respectively. These two taxa fill in some of the morphological gaps between the earliest-known amphicyonid genus, Daphoenus , and other Middle-Eocene carnivoraforms, and lend additional support for a basal caniform position of the beardogs outside the Canoidea. The amphicyonid lineage had evidently given rise to at least five rather distinct forms by the end of the Middle Eocene. Their precise geographical origin remains uncertain, but it is plausible that southern North America served as an important stage for a very early phase of amphicyonid radiation.

  19. Passifloraceae seeds from the late Eocene of Colombia.

    PubMed

    Martínez, Camila

    2017-12-01

    The plant fossil record for the neotropics is still sparse and temporally discontinuous. The location and description of new fossil material are fundamental for understanding evolutionary and biogeographic patterns of lineages. A new fossil record of Passifloraceae from the late Eocene of Colombia is described in this study. Plant fossils were collected from a new locality from the Eocene Esmeraldas Formation. Eighteen fossil seeds were selected, described, and compared with fossil and extant angiosperm seeds based on the literature and herbarium collections. Taxonomic affinities of the fossil seeds within Passifloraceae s.l. were evaluated by comparing morphological characters of the seeds in a phylogenetic context. Stratigraphic information associated with the fossil locality was used to interpret the environment and taphonomic processes associated with fossil deposition. A new seed fossil genus and species, Passifloroidesperma sogamosense gen. and sp. nov., is described and associated with the subfamily Passifloroideae based on the presence of a foveolate seed surface, ruminate endosperm, and a seed coat with prismatic palisade cells. The depositional environment of the locality is described as a floodplain associated with river channels. A detailed review of the Passifloraceae fossil record indicates that P. sogamosense is the oldest confirmed record of Passifloraceae. Its late Eocene age provides a minimum age that can be used as a calibration point for the crown Passifloroideae node in future dating analyses that together with its neotropical geographic location can shed light on the origin and diversification of the subfamily. © 2017 Botanical Society of America.

  20. The West Philippine Basin: An Eocene to early Oligocene back arc basin opened between two opposed subduction zones

    NASA Astrophysics Data System (ADS)

    Deschamps, Anne; Lallemand, Serge

    2002-12-01

    Based on geological and geophysical data collected from the West Philippine Basin and its boundaries, we propose a comprehensive Cenozoic history of the basin. Our model shows that it is a back arc basin that developed between two opposed subduction zones. Rifting started around 55 Ma and spreading ended at 33/30 Ma. The initial spreading axis was parallel to the paleo-Philippine Arc but became inactive when a new spreading ridge propagated from the eastern part of the basin, reaching the former one at an R-R-R triple junction. Spreading occurred mainly from this second axis, with a quasi-continuous counter-clockwise rotation of the spreading direction. The Gagua and Palau-Kyushu ridges acted as transform margins accommodating the opening. Arc volcanism occurred along the Palau-Kyushu Ridge (eastern margin) during the whole opening of the basin, whereas the paleo-Philippine Arc decreased its activity between 43 and 36 Ma. The western margin underwent a compressive event in late Eocene-early Oligocene time, leading to the rising of the Gagua Ridge and to a short subduction episode along Eastern Luzon. In the western part of the basin, the spreading system was highly disorganized due to the presence of a mantle plume. Overlapping spreading centers and ridge jumps occurred toward the hot region and a microplate developed. Shortly after the end of the spreading, a late stage of amagmatic extension occurred between 30 and 26 Ma in the central part of the basin, being responsible for the deep rift valley that cut across the older spreading fabric.

  1. Two Mechanisms for Methane Release at the Paleocene/Eocene Boundary

    NASA Astrophysics Data System (ADS)

    Katz, M. E.; Cramer, B. S.; Mountain, G. S.; Mountain, G. S.; Katz, S.; Miller, K. G.; Miller, K. G.

    2001-12-01

    The rapid global warming of the Paleocene/Eocene thermal maximum (PETM) has been attributed to a massive methane release from marine gas hydrate reservoirs. Two mechanisms have been proposed for this methane release. The first relies on a deepwater circulation change and water temperature increase that was sufficiently large and rapid to trigger massive thermal dissociation of gas hydrate frozen beneath the seafloor (Dickens et al., 1995). The second relies on slope failure (via erosion or seismic activity) of the oversteepened continental margins of the western North Atlantic to allow methane to escape from gas reservoirs trapped between the hydrate-bearing sediments and the underlying reef front (Katz et al., in press). We evaluate thermal dissociation by modeling heat flow through the sediments to show the effect of the temperature change on the gas hydrate stability zone through time. We use Paleocene bottom water temperatures (constrained by isotope records) and assume an instantaneous water temperature increase (i.e., no time allotted for ocean circulation change and water mass mixing). This yields an end-member minimum estimate of >2350 years necessary to melt all gas hydrate at locations shallower than 1570m; gas hydrates at greater depths remain frozen. We also use this model to predict the amount of C12-enriched methane that could have contributed to the carbon isotope excursion (CIE). Using reasonable methane distributions within sediments, we conclude that thermal dissociation alone cannot account for the full magnitude of the CIE. We propose that thermal dissociation did not initiate the CIE; rather, a different mechanism injected a large amount of carbon into the atmosphere, causing global greenhouse warming that could have led to subsequent thermal dissociation. Methane remains a plausible source for this initial carbon injection; however, initial release would have resulted from mechanical disruption of sediments rather than thermal dissociation

  2. Deep-sea Benthic Foraminifera in the SE Atlantic across Eocene Hyperthermal Events

    NASA Astrophysics Data System (ADS)

    Thomas, E.

    2016-12-01

    Short-term episodes of global warming (hyperthermal events) were superimposed on the warming trend into the Early Eocene Climate Optimum (EECO). The Paleocene-Eocene Thermal Maximum (PETM; 56 Ma) was the most extreme, followed by Eocene Thermal Maximum-2 and -3 (ETM2: 1.8 myr, ETM3: 3.1 myr post-PETM). Hyperthermals are characterized by negative carbon isotope excursions (CIEs, emission of isotopically light carbon in the ocean-atmosphere), negative oxygen isotope excursions (global warming) and carbonate dissolution (ocean acidification). Sensitivity of biota to environmental changes due to carbon emissions can be evaluated by studying their response to hyperthermals of different magnitude. Deep-sea benthic foraminiferal records across PETM, ETM2 and -3 are available for Site 1262 (3600 m) and 1263 (1500m) on SE Atlantic Walvis Ridge. Benthic foraminifera (carbonate and agglutinated) are absent in the carbonate-free PETM clay-layer (Site 1262: 65 kyr; Site1263: 10 kyr). Deep-sea benthic foraminifera suffered extinction and diversity loss at the start of the PETM, as they did globally, with diversity recovering only partially. Stable isotope records show a larger PETM-CIE and amount of warming at Site 1263 than global average (McCarren et al., 2008), and warming was more pronounced at Site 1263 than at 1262 during ETM2 (Jennions et al., 2015) and ETM3 (Roehl et al., 2005). During ETM2 and -3, carbonate dissolution affected the sites, both remaining between CCD and lysocline. Assemblages were more severely affected (larger drop in benthic foraminiferal accumulation rates, BFAR) at the shallower site, opposite to expected if caused mainly by carbonate corrosivity. The large decrease in BFAR indicates a decline in food arrival at the sea floor, more pronounced at the shallower site, as supported by changes in relative and absolute abundance of species, and more pronounced at ETM2 than at ETM3. Greater warming at intermediate depths could have been caused by ocean

  3. Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene-Eocene thermal maximum

    NASA Astrophysics Data System (ADS)

    Kelly, D. Clay; Zachos, James C.; Bralower, Timothy J.; Schellenberg, Stephen A.

    2005-12-01

    The carbonate saturation profile of the oceans shoaled markedly during a transient global warming event known as the Paleocene-Eocene thermal maximum (PETM) (circa 55 Ma). The rapid release of large quantities of carbon into the ocean-atmosphere system is believed to have triggered this intense episode of dissolution along with a negative carbon isotope excursion (CIE). The brevity (120-220 kyr) of the PETM reflects the rapid enhancement of negative feedback mechanisms within Earth's exogenic carbon cycle that served the dual function of buffering ocean pH and reducing atmospheric greenhouse gas levels. Detailed study of the PETM stratigraphy from Ocean Drilling Program Site 690 (Weddell Sea) reveals that the CIE recovery period, which postdates the CIE onset by ˜80 kyr, is represented by an expanded (˜2.5 m thick) interval containing a unique planktic foraminiferal assemblage strongly diluted by coccolithophore carbonate. Collectively, the micropaleontological and sedimentological changes preserved within the CIE recovery interval reflect a transient state when ocean-atmosphere chemistry fostered prolific coccolithophore blooms that suppressed the local lysocline to relatively deeper depths. A prominent peak in the abundance of the clay mineral kaolinite is associated with the CIE recovery interval, indicating that continental weathering/runoff intensified at this time as well (Robert and Kennett, 1994). Such parallel stratigraphic changes are generally consonant with the hypothesis that enhanced continental weathering/runoff and carbonate precipitation helped sequester carbon during the PETM recovery period (e.g., Dickens et al., 1997; Zachos et al., 2005).

  4. Environmental forcing of terrestrial carbon isotope excursion amplification across five Eocene hyperthermals

    NASA Astrophysics Data System (ADS)

    Bowen, G. J.; Abels, H.

    2015-12-01

    Abrupt changes in the isotope composition of exogenic carbon pools accompany many major episodes of global change in the geologic record. The global expression of this change in substrates that reflect multiple carbon pools provides important evidence that many events reflect persistent, global redistribution of carbon between reduced and oxidized stocks. As the diversity of records documenting any event grows, however, discrepancies in the expression of carbon isotope change among substrates are almost always revealed. These differences in magnitude, pace, and pattern of change can complicate interpretations of global carbon redistribution, but under ideal circumstances can also provide additional information on changes in specific environmental and biogeochemical systems that accompanied the global events. Here we evaluate possible environmental influences on new terrestrial records of the negative carbon isotope excursions (CIEs) associated with multiple hyperthermals of the Early Eocene, which show a common pattern of amplified carbon isotope change in terrestrial paleosol carbonate records relative to that recorded in marine substrates. Scaling relationships between climate and carbon-cycle proxies suggest that that the climatic (temperature) impact of each event scaled proportionally with the magnitude of its marine CIE, likely implying that all events involved release of reduced carbon with a similar isotopic composition. Amplification of the terrestrial CIEs, however, does not scale with event magnitude, being proportionally less for the first, largest event (the PETM). We conduct a sensitivity test of a coupled plant-soil carbon isotope model to identify conditions that could account for the observed CIE scaling. At least two possibilities consistent with independent lines of evidence emerge: first, varying effects of pCO2 change on photosynthetic carbon isotope discrimination under changing background pCO2, and second, contrasting changes in regional

  5. Fossil ostracodes of continental shelf cores at IODP Site U1354 (Expedition 317)

    NASA Astrophysics Data System (ADS)

    Kusunoki, S.; Ohi, T.; Kawagata, S.; Ishida, K.; Shipboard Scientific Party, E.

    2010-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 317 was devoted to understanding the relative importance of global sea level (eustasy) versus local tectonic and sedimentary processes in controlling continental margin sedimentary cycles. The expedition recovered sediments from the Eocene to recent period, with a particular focus on the sequence stratigraphy of the late Miocene to recent, when global sea level change was dominated by glacioeustasy. Drilling in the Canterbury Basin, on the eastern margin of the South Island of New Zealand took advantage of high rates of Neogene sediment supply, which preserved a high-frequency (0.1-0.5 m.y.) record of depositional cyclicity. Ostracodes are crustaceans that widely inhabit marine, brackish, and non-marine environments. Shallow marine species have more restricted habitat and respond sensitively to environmental changes. Therefore they are a useful tool for high-resolution analyses of paleoenvironmental changes. We study samples older than ~1.0 Ma from Site U1354, which is in an intermediate position within the three shelf sites transect of Expedition 317. Quaternary to early Pliocene (~4.5 Ma) sediments were cored in this site with best core recovery (81%) among the shelf sites. The period from the Pliocene to Pleistocene is known for distinct paleoclimatic changes, from the intensive warming at around 3.5 Ma, to the cooling stage starting from 2.75 Ma. We expect that high-resolution analyses of fossil ostracode assemblages reveal detailed sea level and paleoceanographic changes on the continental shelf of the Canterbury Basin caused by global climate changes. Samples were examined at 1.5 m depth intervals. Samples of ~20 cc were freeze-dried and washed through a 63 µm opening sieve. The residues were dried and then divided into aliquot parts containing around 200 specimens using a sample splitter. All individual ostracodes were picked from residues coarser than 125 µm. Valves and carapaces were counted as one

  6. Large sedimentary aquifer systems functioning. Constraints by classical isotopic and chemical tools, and REE in the Eocene sand aquifer, SW France

    NASA Astrophysics Data System (ADS)

    Petelet-Giraud, E.; Negrel, P. J.; Millot, R.; Guerrot, C.; Brenot, A.; Malcuit, E.

    2010-12-01

    Large sedimentary aquifer systems often constitute strategic water resources for drinking water supply, agriculture irrigation and industry, but can also represent an energetic resource for geothermal power. Large water abstractions can induce complete modification of the natural functioning of such aquifer systems, e.g. with seepage between aquifer layers that can lead to water quality degradation. These large aquifer systems thus require rational water management at the sedimentary basin scale in order to preserve both water quantity and quality. In addition to hydrogeological modelling mainly dealing with water quantity, chemical and isotopic methods were applied to evidence the spatial variability of water characteristics and to turn this into better understanding of hydrosystems functioning. The large Eocene Sand aquifer system of the Adour-Garonne sedimentary basin was studied through various hydrological, chemical and isotopic tools. This system extends over 116,000 km2 (one-fifth of the French territory, located in the South west part). The aquifer being artesian in the west of the district and confined with piezometric levels around 250-m depth in the east. The ‘Eocene Sands’, composed of sandy Tertiary sediments alternating with carbonate deposits, is a multi-layer system with high permeability and a thickness of several tens of metres to a hundred metres..The Eocene Sand aquifer system comprises at least five aquifers: Paleocene, Eocene infra-molassic sands (IMS), early Eocene, middle Eocene, and late Eocene. According to δ18O and δ2H values and estimated 14C ages, both present-day recharge (mainly located in the north of the area) and old recharge (16-35 ky) can be evidenced. High spatial variability was evidenced within a same aquifer layer, with temporal variability over one hydrological cycle limited to a few points located in the recharge areas. These results and especially the very old waters recharged under colder climate combined with the

  7. An extinct Eocene taxon of the daisy family (Asteraceae): evolutionary, ecological and biogeographical implications.

    PubMed

    Barreda, Viviana D; Palazzesi, Luis; Katinas, Liliana; Crisci, Jorge V; Tellería, María C; Bremer, Kåre; Passalia, Mauro G; Passala, Mauro G; Bechis, Florencia; Corsolini, Rodolfo

    2012-01-01

    Morphological, molecular and biogeographical information bearing on early evolution of the sunflower alliance of families suggests that the clade containing the extant daisy family (Asteraceae) differentiated in South America during the Eocene, although palaeontological studies on this continent failed to reveal conclusive support for this hypothesis. Here we describe in detail Raiguenrayun cura gen. & sp. nov., an exceptionally well preserved capitulescence of Asteraceae recovered from Eocene deposits of northwestern Patagonia, Argentina. The fossil was collected from the 47·5 million-year-old Huitrera Formation at the Estancia Don Hipólito locality, Río Negro Province, Argentina. The arrangement of the capitula in a cymose capitulescence, the many-flowered capitula with multiseriate-imbricate involucral bracts and the pappus-like structures indicate a close morphological relationship with Asteraceae. Raiguenrayun cura and the associated pollen Mutisiapollis telleriae do not match exactly any living member of the family, and clearly represent extinct taxa. They share a mosaic of morphological features today recognized in taxa phylogenetically close to the root of Asteraceae, such as Stifftieae, Wunderlichioideae and Gochnatieae (Mutisioideae sensu lato) and Dicomeae and Oldenburgieae (Carduoideae), today endemic to or mainly distributed in South America and Africa, respectively. This is the first fossil genus of Asteraceae based on an outstandingly preserved capitulescence that might represent the ancestor of Mutisioideae-Carduoideae. It might have evolved in southern South America some time during the early Palaeogene and subsequently entered Africa, before the biogeographical isolation of these continents became much more pronounced. The new fossil represents the first reliable point for calibration, favouring an earlier date to the split between Barnadesioideae and the rest of Asteraceae than previously thought, which can be traced back at least 47·5

  8. Crustal structure in the Elko-Carlin Region, Nevada, during Eocene gold mineralization: Ruby-East Humboldt metamorphic core complex as a guide to the deep crust

    USGS Publications Warehouse

    Howard, K.A.

    2003-01-01

    The deep crustal rocks exposed in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada, provide a guide for reconstructing Eocene crustal structure ~50 km to the west near the Carlin trend of gold deposits. The deep crustal rocks, in the footwall of a west-dipping normal-sense shear system, may have underlain the Pinon and Adobe Ranges about 50 km to the west before Tertiary extension, close to or under part of the Carlin trend. Eocene lakes formed on the hanging wall of the fault system during an early phase of extension and may have been linked to a fluid reservoir for hydrothermal circulation. The magnitude and timing of Paleogene extension remain indistinct, but dikes and tilt axes in the upper crust indicate that spreading was east-west to northwest-southeast, perpendicular to a Paleozoic and Mesozoic orogen that the spreading overprinted. High geothermal gradients associated with Eocene or older crustal thinning may have contributed to hydrothermal circulation in the upper crust. Late Eocene eruptions, upper crustal dike intrusion, and gold mineralization approximately coincided temporally with deep intrusion of Eocene sills of granite and quartz diorite and shallower intrusion of the Harrison Pass pluton into the core-complex rocks. Stacked Mesozoic nappes of metamorphosed Paleozoic and Precambrian rocks in the core complex lay at least 13 to 20 km deep in Eocene time, on the basis of geobarometry studies. In the northern part of the complex, the presently exposed rocks had been even deeper in the late Mesozoic, to >30 km depths, before losing part of their cover by Eocene time. Nappes in the core plunge northward beneath the originally thicker Mesozoic tectonic cover in the north part of the core complex. Mesozoic nappes and tectonic wedging likely occupied the thickened midlevel crustal section between the deep crustal core-complex intrusions and nappes and the overlying upper crust. These structures, as well as the subsequent large

  9. A middle Eocene mesoeucrocodylian (Crocodyliformes) from the Kaninah Formation, Republic of Yemen

    NASA Astrophysics Data System (ADS)

    Stevens, Nancy J.; Hill, Robert V.; Al-Wosabi, Mohammed; Schulp, Anne; As-Saruri, Mustafa; Al-Nimey, Fuad; Jolley, Lea Ann; Schulp-Stuip, Yvonne; O'Connor, Patrick

    2013-09-01

    During the Cenozoic, the Arabian Plate separated from continental Africa and assumed a closer geographical relationship with Eurasia. As such, the vertebrate fossil record of the Arabian Peninsula has great potential for documenting faunal interchanges that occurred as a result of such tectonic events, with a shift from a primarily Afro-Arabian fauna in the Palaeogene to a more cosmopolitan fauna in the Neogene. Understanding of the sequence and timing of this faunal interchange has long been hampered by a lack of palaeontological data. Recently recovered fossils from the Middle Eocene Kaninah Formation of Yemen constitute the earliest Palaeogene record of continental vertebrates from the Arabian Peninsula, thereby offering a rare glimpse at the region's post- -Cretaceous fauna. Here we describe fossil materials from the Kaninah Formation, a collection of dental and postcranial elements representing a mesoeucrocodylian crocodyliform of unclear affinities. The specimen exhibits ziphodont tooth morphology along with a biserial paravertebral shield and polygonal gastral osteoderms, consistent with certain mesoeucrocodylians (e.g., ziphodontan notosuchians). Yet the associated fragmentary anterior caudal vertebra, although badly abraded, preserves morphology suggestive of procoely. This vertebral type in combination with the dental and osteoderm morphology is much more taxonomically restrictive and consistent with the suite of characters exhibited by atoposaurids, a finding that would significantly extend that clade through the Cretaceous/Palaeogene boundary. Alternatively, given the relative paucity of information from the region during the Palaeogene, the combination of characteristics of the Kaninah crocodyliform may reflect a novel or poorly known form exhibiting previously unrecognised character mosaicism. We take a conservative approach, and refer the Kaninah specimen to Mesoeucrocodylia, Atoposauridae (?) pending discovery of more complete material. New fossils

  10. The oceanographic and climatic evolution of the Paleogene Southern Ocean (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Bijl, Peter; Houben, Alexander J. P.

    2014-05-01

    Continental-scale ice sheets first appeared in Antarctica following long-term cooling through the Eocene Epoch (56-34 Ma) within the Paleogene Period (65.5-23 Ma). Both the long-term cooling following early Eocene hothouse climates and the onset of large-scale glaciation itself has been related to the gradual decline of atmospheric greenhouse gas concentrations. Although much work is now centered in improving techniques for reconstructing past atmospheric pCO2, at present proxy-based reconstructions of atmospheric greenhouse gases for the Paleogene are of low temporal resolution and subject to a large degree of uncertainty. Furthermore, long-term mid-Eocene surface water cooling appears to have been confined to high- and mid-latitudes only, with little to no cooling in the tropical regions. This observation questions the role of atmospheric greenhouse gas (notably CO2) decline as a primary cause of Eocene climate cooling. Furthermore, the greenhouse-gas hypothesis has now superceded long-held hypothesis that the opening of southern ocean tectonic gateways cooled Antarctica. A direct relationship between the deepening of the Tasmanian Gateway and Antarctic glaciation has been refuted by accurate dating of this tectonic event, indicating that the Tasmanian Gateway deepened 2 million years prior to Antarctic glaciation. However, the precise secondary role of gateway evolution on Antarctic climate change is not well constrained. On the other hand, it is increasingly apparent that the Southern Ocean was the main region for intermediate-deep water formation in the Paleogene, which implies that even environmental change with regional effects may have had direct implications for global climate change. While the forcing mechanism that pushed Antarctica towards fully glaciated conditions is likely atmospheric pCO2 decline across a critical threshold, the regional environmental responses are not well constrained. Numerical modeling studies suggest that in conjunction with the

  11. Tectonic Evolution of Mozambique Ridge in East African continental margin

    NASA Astrophysics Data System (ADS)

    Tang, Yong

    2017-04-01

    Tectonic Evolution of Mozambique Ridge in East African continental margin Yong Tang He Li ES.Mahanjane Second Institute of Oceanography,SOA,Hangzhou The East Africa passive continental margin is a depression area, with widely distributed sedimentary wedges from southern Mozambique to northern Somali (>6500km in length, and about 6km in thickness). It was resulted from the separation of East Gondwana, and was developed by three stages: (1) rifting in Early-Middle Jurassic; (2) spreading from Late Jurassic to Early Cretaceous; (3) drifting since the Cretaceous period. Tectonic evolution of the Mozambique continental margin is distinguished by two main settings separated by a fossil transform, the Davie Fracture Zone; (i) rifting and transform setting in the northern margin related to opening of the Somali and Rovuma basins, and (ii) rifting and volcanism setting during the opening of the Mozambique basin in the southern margin. 2D reflection seismic investigation of the crustal structure in the Zambezi Delta Depression, provided key piece of evidence for two rifting phases between Africa and Antarctica. The magma-rich Rift I phase evolved from rift-rift-rift style with remarkable emplacement of dyke swarms (between 182 and 170 Ma). Related onshore outcrops are extensively studied, the Karoo volcanics in Mozambique, Zimbabwe and South Africa, all part of the Karoo "triple-junction". These igneous bodies flow and thicken eastwards and are now covered by up to 5 km of Cretaceous and Tertiary sediments and recorded by seismic and oil exploration wells. Geophysical and geological data recorded during oceanographic cruises provide very controversial results regarding the nature of the Mozambique Ridge. Two conflicting opinions remains open, since the early expeditions to the Indian Ocean, postulating that its character is either magmatic (oceanic) or continental origin. We have carried out an China-Mozambique Joint Cruise(CMJC) on southern Mozambique Basin on 1st June to

  12. A fossil unicorn crestfish (Teleostei, Lampridiformes, Lophotidae) from the Eocene of Iran.

    PubMed

    Davesne, Donald

    2017-01-01

    Lophotidae, or crestfishes, is a family of rare deep-sea teleosts characterised by an enlarged horn-like crest on the forehead. They are poorly represented in the fossil record, by only three described taxa. One specimen attributed to Lophotidae has been described from the pelagic fauna of the middle-late Eocene Zagros Basin, Iran. Originally considered as a specimen of the fossil lophotid † Protolophotus , it is proposed hereby as a new genus and species † Babelichthys olneyi , gen. et sp. nov., differs from the other fossil lophotids by its relatively long and strongly projecting crest, suggesting a close relationship with the modern unicorn crestfish, Eumecichthys . This new taxon increases the diversity of the deep-sea teleost fauna to which it belongs, improving our understanding of the taxonomic composition of the early Cenozoic mesopelagic ecosystems.

  13. New Protocetid Whale from the Middle Eocene of Pakistan: Birth on Land, Precocial Development, and Sexual Dimorphism

    PubMed Central

    Gingerich, Philip D.; ul-Haq, Munir; von Koenigswald, Wighart; Sanders, William J.; Smith, B. Holly; Zalmout, Iyad S.

    2009-01-01

    Background Protocetidae are middle Eocene (49–37 Ma) archaeocete predators ancestral to later whales. They are found in marine sedimentary rocks, but retain four legs and were not yet fully aquatic. Protocetids have been interpreted as amphibious, feeding in the sea but returning to land to rest. Methodology/Principal Findings Two adult skeletons of a new 2.6 meter long protocetid, Maiacetus inuus, are described from the early middle Eocene Habib Rahi Formation of Pakistan. M. inuus differs from contemporary archaic whales in having a fused mandibular symphysis, distinctive astragalus bones in the ankle, and a less hind-limb dominated postcranial skeleton. One adult skeleton is female and bears the skull and partial skeleton of a single large near-term fetus. The fetal skeleton is positioned for head-first delivery, which typifies land mammals but not extant whales, evidence that birth took place on land. The fetal skeleton has permanent first molars well mineralized, which indicates precocial development at birth. Precocial development, with attendant size and mobility, were as critical for survival of a neonate at the land-sea interface in the Eocene as they are today. The second adult skeleton is the most complete known for a protocetid. The vertebral column, preserved in articulation, has 7 cervicals, 13 thoracics, 6 lumbars, 4 sacrals, and 21 caudals. All four limbs are preserved with hands and feet. This adult is 12% larger in linear dimensions than the female skeleton, on average, has canine teeth that are 20% larger, and is interpreted as male. Moderate sexual dimorphism indicates limited male-male competition during breeding, which in turn suggests little aggregation of food or shelter in the environment inhabited by protocetids. Conclusions/Significance Discovery of a near-term fetus positioned for head-first delivery provides important evidence that early protocetid whales gave birth on land. This is consistent with skeletal morphology enabling

  14. Complete Primate Skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology

    PubMed Central

    Franzen, Jens L.; Gingerich, Philip D.; Habersetzer, Jörg; Hurum, Jørn H.; von Koenigswald, Wighart; Smith, B. Holly

    2009-01-01

    Background The best European locality for complete Eocene mammal skeletons is Grube Messel, near Darmstadt, Germany. Although the site was surrounded by a para-tropical rain forest in the Eocene, primates are remarkably rare there, and only eight fragmentary specimens were known until now. Messel has now yielded a full primate skeleton. The specimen has an unusual history: it was privately collected and sold in two parts, with only the lesser part previously known. The second part, which has just come to light, shows the skeleton to be the most complete primate known in the fossil record. Methodology/Principal Findings We describe the morphology and investigate the paleobiology of the skeleton. The specimen is described as Darwinius masillae n.gen. n.sp. belonging to the Cercamoniinae. Because the skeleton is lightly crushed and bones cannot be handled individually, imaging studies are of particular importance. Skull radiography shows a host of teeth developing within the juvenile face. Investigation of growth and proportion suggest that the individual was a weaned and independent-feeding female that died in her first year of life, and might have attained a body weight of 650–900 g had she lived to adulthood. She was an agile, nail-bearing, generalized arboreal quadruped living above the floor of the Messel rain forest. Conclusions/Significance Darwinius masillae represents the most complete fossil primate ever found, including both skeleton, soft body outline and contents of the digestive tract. Study of all these features allows a fairly complete reconstruction of life history, locomotion, and diet. Any future study of Eocene-Oligocene primates should benefit from information preserved in the Darwinius holotype. Of particular importance to phylogenetic studies, the absence of a toilet claw and a toothcomb demonstrates that Darwinius masillae is not simply a fossil lemur, but part of a larger group of primates, Adapoidea, representative of the early haplorhine

  15. New Insight Into the Crustal Structure of the Continental Margin offshore NW Sabah/Borneo

    NASA Astrophysics Data System (ADS)

    Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.

    2002-12-01

    The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. The focus of investigations was on the deep water areas. The margin looks like a typical accretionary margin and was presumably formed during the subduction of a proto South China Sea. Presently, no horizontal movements between the two plates are being observed. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere which is characterised by a pattern of rotated fault blocks and half grabens and a carbonate platform of Early Oligocene to Early Miocene age. We found evidence that the continental crust also underlies the Sabah Trough and the adjacent continental slope, a fact that raises many questions about the tectonic history and development of this margin. The tectonic pattern of the Dangerous Grounds' extended continental crust can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anomalies. Based on the new data we propose the following scenario for the development of the NW Sabah continental margin: Seafloor spreading in the present South China Sea started at about 30 Ma in the Late Oligocene. The spreading process separated the Dangerous Grounds area from the SE Asian continent and ceased in late Early Miocene when the oceanic crust of the proto South China Sea was fully subducted in eastward direction along the Borneo-Palawan Trough. During Lower and/or Middle Miocene, Borneo rotated counterclockwise and was

  16. Inland Aridification of NW China Since the Late Middle Eocene: Stable Isotope Evidence from Western Qaidam Basin

    NASA Astrophysics Data System (ADS)

    Li, L.; Garzione, C. N.; Pullen, A. T.; Chang, H.; Molnar, P. H.

    2014-12-01

    Cenozoic paleoclimate reconstructions of China, based on pollens, fossils and sedimentary deposits, show a change from planetary aridity to inland aridity of NW China by the early Miocene. However, the initiation of this paleoclimate transition is not well-documented and might be much earlier. The surface uplift of the Tibetan Plateau, the retreat of the Para-Tethys sea, and global cooling have all been suggested to influence the establishment of this inland aridity, although their relative significance remains obscure. This paper presents a stable isotope study of a 4435 m long sedimentary section from the western Qaidam Basin, northern Tibetan Plateau, that spans from the late middle Eocene to late Miocene. The lowermost and uppermost parts of the section are dominated by fluvial and alluvial fan deposits, while the majority of the middle of the section represents palustrine, lower fan delta and marginal to shallow lacustrine fine-grained sediments intercalated with coarse sandstone and conglomerate. Our isotope data show sporadic aridity events in the late middle Eocene to early Oligocene, which might mark the transition from planetary aridity to, or the initiation of, inland aridity in NW China, due to the retreat of the Para-Tethys sea, a process that might be significantly influenced by the early topographic growth of the south-central Tibetan Plateau. A negative shift in oxygen isotope values around 19 Ma is also in accordance with other geological evidence suggesting the Oligocene-early Miocene growth of the Kunlun mountains south of the Qaidam basin. Later intensification of aridity occurred at ~12 Ma that corresponds with a regional climate change event, which we attribute to the upward and outward growth of the northern Tibetan Plateau. The final establishment of extreme inland aridity that is comparable to present day was most likely established at ~3.1-2.6 Ma in the Qaidam basin, and therefore global cooling and northern hemisphere glaciation is a

  17. Initial India-Asia Collision: Sedimentologic, Paleomagnetic and Paleontologic Evidence From the Ghazij Formation, Balochistan, Pakistan

    NASA Astrophysics Data System (ADS)

    Clyde, W. C.; Khan, I. H.; Gingerich, P. D.

    2003-12-01

    Initial continental collision between India and Asia is thought to have caused significant changes to global climate and biota, yet its timing and biogeographic consequences are uncertain. Structural and geophysical evidence indicates initial collision during the early Paleogene, but sedimentary evidence of this has been controversial owing to the intense deformation and metamorphism along the suture zone. Modern orders of mammals that appeared abruptly on northern continents coincident with the global warming event marking the Paleocene-Eocene boundary are hypothesized to have originated on the Indian subcontinent, but no relevant paleontologic information has been available to test this idea. Here we present sedimentologic, paleomagnetic, and paleontologic results that show the lower Eocene Ghazij Formation of western Pakistan records continental sedimentation and mammalian dispersal associated with initial India-Asia collision. Sedimentologically, the Ghazij exhibits a clear transition from shallow-marine facies in the lower part, to paralic deltaic facies in the middle part, and continental fluvial facies in the upper part. Paleomagnetic data indicate that Ghazij deposition occurred just before a pronounced decrease in the sea-floor spreading rate of the Indian Ocean. Large fossil mammal assemblages show strong endemism in the middle part of the formation but increasing cosmopolitanism and affiliation with northern continents higher in the formation. Our results support the hypothesis that initial continent-continent contact occurred near the Paleocene-Eocene boundary along the northwest edge of the Indo-Pakistan plate and that subsequent closure occurred diachronously along the rest of the suture. However, it appears that during initial collision, modern orders of mammals dispersed into India rather than out of it.

  18. Miocene tectono-stratigraphic history of La Mision basin, northwestern Baja California: implications for early tectonic development of southern California continental borderland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, J.R.; Minch, J.

    1988-03-01

    The middle Miocene La Mision basin in northwestern Baja California, Mexico, provides a rare opportunity to study an onshore portion of the southern California continental borderland. Stratigraphy, geometry of dispersal, and a variety of lithotypes within the volcanic and volcaniclastic sediments of the Rosarito Beach Formation provide clues to the nature of early tectonic evolution of this area during the Miocene. The elongated, trough-shaped La Mision basin formed in response to peninsular basement uplifts and the formation of volcanic highlands west of the present coastline. Lithologies and depositional environments represented within the basin sediments include: subaerial basalt flows and airfallmore » tuffs, submarine muddy- and sandy-matrix mudflow breccias, lapilli tuffs, crystal tuffs, tuffaceous sandstones,d diatomites, and conglomerates. The environments of deposition range from fluvatile to intertidal to shallow marine. Early basin infilling is characterized by sediments and basalts, with a western source terrane, that were deposited against the faulted seacliffs. progressive infilling against the seacliff resulted in the formation of an extensive eastward-sloping basaltic platform extending eastward to the foothill coastal belt of the Peninsular Ranges. Marine transgression and subsequent regression are recorded by diverse marine volcaniclastic lithologies. Abundant fossils, K-Ar dates, and paleomagnetic data obtained from the La Mision basin allow precise correlation with other areas in the continental borderland and provide conclusive evidence that this block of the borderland was formed and in its present position by 16-14 Ma.« less

  19. Lutetian arc-type magmatism along the southern Eurasian margin: New U-Pb LA-ICPMS and whole-rock geochemical data from Marmara Island, NW Turkey

    NASA Astrophysics Data System (ADS)

    Ustaömer, P. Ayda; Ustaömer, Timur; Collins, Alan S.; Reischpeitsch, Jörg

    2009-07-01

    The rocks of Turkey, Greece and Syria preserve evidence for the destruction of Tethys, the construction of much of the continental crust of the region and the formation of the Tauride orogenic belt. These events occurred between the Late Cretaceous and Miocene, but the detailed evolution of the southern Eurasian margin during this period of progressive continental accretion is largely unknown. Marmara Island is a basement high lying at a key location in the Cenozoic Turkish tectonic collage, with a Palaeogene suture zone to the south and a deep Eocene sedimentary basin to the north. North-dipping metamorphic thrust sheets make up the island and are interlayered with a major metagranitoid intrusion. We have dated the intrusion by Laser Ablation ICP-MS analysis of U and Pb isotopes on zircon separates to 47.6 ± 2 Ma. We also performed major- and trace-elemental geochemical analysis of 16 samples of the intrusion that revealed that the intrusion is a calc-alkaline, metaluminous granitoid, marked by Nb depletion relative to LREE and LIL-element enrichment when compared to ocean ridge granite (ORG). We interpret the metagranitoid sill as a member of a mid-Eocene magmatic arc, forming a 30 km wide and more than 200 km long arcuate belt in NW Turkey that post-dates suturing along the İzmir-Ankara-Erzincan Suture zone. The arc magmatism was emplaced at the early stages of mountain building, related to collision of Eurasia with the Menderes-Taurus Platform in early Eocene times. Orogenesis and magmatism loaded the crust to the north creating coeval upward-deepening marine basins partially filled by volcanoclastic sediments.

  20. Whence the beardogs? Reappraisal of the Middle to Late Eocene ‘Miacis’ from Texas, USA, and the origin of Amphicyonidae (Mammalia, Carnivora)

    PubMed Central

    2016-01-01

    The Middle to Late Eocene sediments of Texas have yielded a wealth of fossil material that offers a rare window on a diverse and highly endemic mammalian fauna from that time in the southern part of North America. These faunal data are particularly significant because the narrative of mammalian evolution in the Paleogene of North America has traditionally been dominated by taxa that are known from higher latitudes, primarily in the Rocky Mountain and northern Great Plains regions. Here we report on the affinities of two peculiar carnivoraforms from the Chambers Tuff of Trans-Pecos, Texas, that were first described 30 years ago as Miacis cognitus and M. australis. Re-examination of previously described specimens and their inclusion in a cladistic analysis revealed the two taxa to be diminutive basal amphicyonids; as such, they are assigned to new genera Gustafsonia and Angelarctocyon, respectively. These two taxa fill in some of the morphological gaps between the earliest-known amphicyonid genus, Daphoenus, and other Middle-Eocene carnivoraforms, and lend additional support for a basal caniform position of the beardogs outside the Canoidea. The amphicyonid lineage had evidently given rise to at least five rather distinct forms by the end of the Middle Eocene. Their precise geographical origin remains uncertain, but it is plausible that southern North America served as an important stage for a very early phase of amphicyonid radiation. PMID:27853569

  1. The Middle Eocene flora of Csordakút (N Hungary)

    NASA Astrophysics Data System (ADS)

    Erdei, Boglárka; Rákosi, László

    2009-02-01

    The Middle Eocene fossil plant assemblage from Csordakút (N Hungary) comprises plant remains preserved exclusively as impressions. Algae are represented by abundant remains of Characeae, including both vegetative fragments and gyrogonites. Remains of angiosperms comprise Lauraceae (Daphnogene sp.), Fagaceae (cf. Eotrigonobalanus furcinervis), Ulmaceae (Cedrelospermum div. sp.), Myricaceae (Myrica sp., Comptonia div. sp.), Leguminosae (leaves and fruit), Rhamnaceae (?Zizyphus zizyphoides), Elaeocarpaceae (Sloanea nimrodi, Sloanea sp. fruit), Smilacaceae (Smilax div. sp.). The absence of gymnosperms is indicative of a floristic similarity to the coeval floras of Tatabánya (N Hungary) and Girbou in Romania. Sloanea nimrodi (Ettingshausen) Kvaček & Hably, a new element for the Hungarian fossil record indicates a floristic relation to the Late Eocene flora of Kučlin (Bohemia).

  2. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene thermal maximum: Implications for global productivity gradients

    USGS Publications Warehouse

    Gibbs, S.J.; Bralower, T.J.; Bown, Paul R.; Zachos, J.C.; Bybell, L.M.

    2006-01-01

    Abrupt global warming and profound perturbation of the carbon cycle during the Paleocene-Eocene Thermal Maximum (PETM, ca. 55 Ma) have been linked to a massive release of carbon into the ocean-atmosphere system. Increased phytoplankton productivity has been invoked to cause subsequent CO2 drawdown, cooling, and environmental recovery. However, interpretations of geochemical and biotic data differ on when and where this increased productivity occurred. Here we present high-resolution nannofossil assemblage data from a shelf section (the U.S. Geological Survey [USGS] drill hole at Wilson Lake, New Jersey) and an open-ocean location (Ocean Drilling Program [ODP] Site 1209, paleoequatorial Pacific). These data combined with published biotic records indicate a transient steepening of shelf-offshelf trophic gradients across the PETM onset and peak, with a decrease in open-ocean productivity coeval with increased nutrient availability in shelf areas. Productivity levels recovered in the open ocean during the later stages of the event, which, coupled with intensified continental weathering rates, may have played an important role in carbon sequestration and CO2 drawdown. ?? 2006 Geological Society of America.

  3. A morphological intermediate between eosimiiform and simiiform primates from the late middle Eocene of Tunisia: Macroevolutionary and paleobiogeographic implications of early anthropoids.

    PubMed

    Marivaux, Laurent; Essid, El Mabrouk; Marzougui, Wissem; Khayati Ammar, Hayet; Adnet, Sylvain; Marandat, Bernard; Merzeraud, Gilles; Ramdarshan, Anusha; Tabuce, Rodolphe; Vianey-Liaud, Monique; Yans, Johan

    2014-07-01

    Although advanced anthropoid primates (i.e., Simiiformes) are recorded at the end of the Eocene in North Africa (Proteopithecidae, Parapithecidae, and Oligopithecidae), the origin and emergence of this group has so far remained undocumented. The question as to whether these primates are the result of a monophyletic radiation of endemic anthropoids in Africa, or several Asian clades colonizing Africa, is a current focus of paleoprimatology. In this article, we report the discovery of a new anthropoid from Djebel el Kébar in central Tunisia, dating from the late middle Eocene (Bartonian). This taxon, Amamria tunisiensis, new genus and species, currently known by only one isolated upper molar, is among the most ancient anthropoids to be recorded in Africa thus far. Amamria displays a suite of dental features that are primarily observed in Eosimiiformes (stem Anthropoidea). However, it is not allocated to any known family of that group (i.e., Asian Eosimiidae and Afro-Asian Afrotarsiidae) inasmuch as it develops some dental traits that are unknown among eosimiiforms, but can be found in African simiiform anthropoids such as proteopithecids and oligopithecids. With such a mosaic of dental traits, Amamria appears to be a structural intermediate, and as such it could occupy a key position, close to the root of the African simiiforms. Given its antiquity and its apparent pivotal position, the possibility exists that Amamria could have evolved in Africa from Asian eosimiiform or Asian "proto"-simiiform ancestors, which would have entered Africa sometime during the middle Eocene. Amamria could then represent one of the earliest offshoots of the African simiiform radiation. This view would then be rather in favor of the hypothesis of a monophyletic radiation of endemic simiiform anthropoids in Africa. Finally, these new data suggest that there must have been at least two Asian anthropoid colonizers of Africa: the afrotarsiids and the ancestor of Amamria. © 2014 Wiley

  4. The circum-Antarctic sedimentary record; a dowsing rod for Antarctic ice in the Eocene

    NASA Astrophysics Data System (ADS)

    Scher, H.

    2012-12-01

    Arguments for short-lived Antarctic glacial events during the Eocene (55-34 Ma) are compelling, however the paleoceanographic proxy records upon which these arguments are based (e.g., benthic δ18O, eustatic sea level, deep sea carbonate deposition) are global signals in which the role of Antarctic ice volume variability is ambiguous. That is to say, the proxy response to ice volume may be masked other processes. As a result broad correlations between proxies for ice volume are lacking during suspected Eocene glacial events. I will present a more direct approach for detecting Antarctic ice sheets in the Eocene; utilizing provenance information derived from the radiogenic isotopic composition of the terrigenous component of marine sediments near Antarctica. The method relies on knowledge that marine sediments represent a mixture derived from different basement terrains with different isotopic fingerprints. A key issue when using sedimentary deposits to characterize continental sediment sources is to deconvolve different sources from the mixed signal of the bulk sample. The pioneering work of Roy et al. (2007) and van de Flierdt et al. (2007) represents a major advance in Antarctic provenance studies. It is now known that the isotopic composition of neodymium (Nd) and hafnium (Hf) in modern circum-Antarctic sediments are distributed in a pattern that mimics the basement age of sediment sources around Antarctica. For this study I selected two Ocean Drilling Program (ODP) sites on southern Kerguelen Plateau (ODP Sites 738 and 748) because of their proximity to Prydz Bay, where Precambrian sediment sources contribute to extremely nonradiogenic isotopic signatures in modern sediments in the Prydz Bay region. New detrital Nd isotope records from these sediment cores reveal an Nd isotope excursion at the Bartonian/Priabonian boundary (ca. 37 Ma) that coincides with a 0.5 ‰ increase in benthic foram δ18O values. Detrital sediment ɛNd values are around -12 in intervals

  5. Hinterland drainage closure and lake formation in response to middle Eocene Farallon slab removal, Nevada, U.S.A.

    NASA Astrophysics Data System (ADS)

    Smith, M. Elliot; Cassel, Elizabeth J.; Jicha, Brian R.; Singer, Brad S.; Canada, Andrew S.

    2017-12-01

    Hinterland basins can accumulate high resolution archives of orogenic processes and continental climate, but are challenging to reconstruct due to tectonic overprinting and the inherent complexity of their lithofacies assemblages. The Cordilleran hinterland of northeast Nevada has been interpreted to have overlain a flattened Farallon slab from the Late Cretaceous to Eocene. Slab removal and advection of asthenospheric mantle beneath Nevada have been invoked to explain a southwestward migrating wave of Eocene to Oligocene volcanism and proposed as a driver for topographic uplift. However, the timing of slab removal and possible subsequent delamination of North American lithospheric mantle can only ambiguously be related to the surface record. Subsequent Neogene extension and basin filling has complicated the correlation and interpretation of strata that record these events. Here we apply single crystal sanidine 40Ar/39Ar geochronology to 26 ash beds in northeast Nevada to reconstruct Paleogene geographic and hydrologic evolution. We use these ages and legacy geochronology to compare lithofacies and isotope proxy records of meteoric waters to regional tectonics and global climate, and assess competing tectonic interpretations for lake basin formation. Lakes formed locally prior to ca. 48.7 Ma in northeast Nevada, coeval with foreland lakes of the Green River Formation. The most expansive phase of lacustrine deposition resulted in onlap onto locally derived fluvial deposits and folded Paleozoic bedrock, and occurred between ca. 43.4 and ca. 40.8 Ma. Elko Formation strata exhibit a basin-wide transition from fluvial-lacustrine to fluctuating profundal lithofacies at ca. 42.7 Ma, suggesting a shift towards regional hydrologic closure. The stromatolitic upper Elko Formation is intercalated with ash fall tuffs and several partially welded to unwelded ignimbrites from increasingly proximal volcanism. Elko Formation deposition ended by ca. 40.4 Ma. 40Ar/39Ar ages for seven

  6. Paleohydrologic change across the Paleocene-Eocene Thermal Maximum, Bighorn Basin, WY

    NASA Astrophysics Data System (ADS)

    Baczynski, A. A.; McInerney, F. A.; Wing, S. L.; Kraus, M. J.

    2013-12-01

    One of the uncertainties in accurately predicting future climate change involves how the hydrologic cycle will respond to increasing pCO2 and temperature. Quantifying the relationship between carbon cycle perturbations and the hydrologic cycle in the geologic past is crucial to understanding and accurately modeling how anthropogenic carbon emissions will affect future changes in the hydrologic cycle. Records of paleohydrologic response to global warming in the geologic past are rare, particularly for continental interiors, where climate model projections of precipitation are highly uncertain. Here we examine hydrogen isotope ratios of leaf waxes as a tool for reconstructing paleohydrologic change in the continental interior of North America across the Paleocene-Eocene Thermal Maximum (PETM), an abrupt, transient episode of extreme global warming ~56 Ma. New hydrogen isotope measurements of leaf-wax n-alkanes from the southeastern Bighorn Basin, Wyoming record two positive shifts during the PETM. n-Alkane δD values first shift to more positive values just after the onset of the carbon isotope excursion and then again higher up in the body of the carbon isotope excursion, with a return to slightly more negative δD values in between. Paleobotanical, paleopedologic, and isotope data from the same field area have suggested that the Bighorn Basin may have experienced a drier or more seasonally dry climate during the PETM. Mean annual precipitation estimates based on paleosol major oxides, soil wetness assessed using the soil morphology index, and an aridity proxy based on differences in δ18O values of tooth enamel in aridity-sensitive and aridity-insensitive mammals each independently suggest a potential two-phase drying within the PETM interval. Similarly, the hydrogen isotope record could reflect two periods of drying, with a return to slightly wetter conditions in between. However, leaf-wax hydrogen isotope ratios reflect not only source water hydrogen isotope

  7. Eocene to Miocene Out-of-Sequence Deformation in the Eastern Tibetan Plateau: Insights From Shortening Structures in the Sichuan Basin

    NASA Astrophysics Data System (ADS)

    Tian, Yuntao; Kohn, Barry P.; Qiu, Nansheng; Yuan, Yusong; Hu, Shengbiao; Gleadow, Andrew J. W.; Zhang, Peizhen

    2018-02-01

    A distinctive NNE trending belt of shortening structures dominates the topography and deformation of the eastern Sichuan Basin, 300 km east of the Tibetan Plateau. Debate continues as to whether the structures resulted from Cenozoic eastward growth of the Tibetan Plateau. A low-temperature thermochronology (AFT and AHe) data set from four deep boreholes and adjacent outcrops intersecting a branch of the shortening structures indicates distinctive differential cooling at 35-28 Ma across the structure, where stratigraphy has been offset vertically by 0.8-1.3 km. This result forms the first quantitative evidence for the existence of a late Eocene-Oligocene phase of shortening in the eastern Sichuan Basin, synchronous with the early phase of eastward growth and extrusion of the Tibetan Plateau. Further, a compilation of regional Cenozoic structures reveals a Miocene retreat of deformation from the foreland basin to the hinterland areas. Such a tectonic reorganization indicates that Eocene to Miocene deformation in the eastern Tibetan Plateau is out-of-sequence and was probably triggered by enhanced erosion in the eastern Tibetan Plateau.

  8. Oxygen isotope ranking of late Eocene and Oligocene planktonic foraminifers: Implications for Oligocene sea-surface temperatures and global ice-volume

    USGS Publications Warehouse

    Poore, R.Z.; Matthews, R.K.

    1984-01-01

    Oxygen isotope analyses of late Eocene and Oligocene planktonic foraminifers from low and middle latitude sites in the Atlantic Basin show that different species from the same samples can yield significantly different isotopic values. The range of isotopic values observed between species is greatest at low-latitudes and declines poleward. Many planktonic foraminifers exhibit a systematic isotopic ranking with respect to each other and can therefore be grouped on the basis of their isotopic ranking. The isotopic ranking of some taxa, however, appears to vary geographically and/or through time. Isotopic and paleontologic data from DSDP Site 522 indicate that commonly used isotopic temperature scales underestimate Oligocene sea surface temperatures. We suggest these temperature scales require revision to reflect the presence of Oligocene glaciation. Comparison of isotopic and paleontologic data from Sites 522, 511 and 277 suggests cold, low-salinity surface waters were present in high southern latitudes during the early Oligocene. Lowsalinity, high latitude surface waters could be caused by Eocene/Oligocene paleogeography or by the production of warm saline bottom water. ?? 1984.

  9. Thermal maturation history of the Wilcox group (Paleocene-Eocene), Texas: Results of regional-scale multi-1D modeling

    USGS Publications Warehouse

    Rowan, E.L.; Warwick, Peter D.; Pitman, Janet K.; Kennan, Lorcan; Pindell, James; Rosen, Norman C.

    2007-01-01

    The thermal maturation history of the Paleocene-Eocene Wilcox Group has been reconstructed based on burial history models of 53 wells in the Texas coastal plain. This modeling study has been conducted in conjunction with a geologically based assessment of the oil and gas resources in Cenozoic strata of the Gulf of Mexico coastal plain and state waters. In the onshore Texas coastal plain, coals and organic-rich shales, predominantly of terrestrial origin, within the Wilcox Group are the primary source of oil (Wenger et al., 1994) as well as a source of gas. The Wilcox, however, is modeled as a single unit, without subdivision into source rock and non-source rock intervals.Generation of oil from Type III kerogen within the Wilcox Group is modeled using hydrous pyrolysis reaction kinetic parameters (Lewan, M.D., written communication, 2006). Gas generation from Type III kerogen is represented using calculated Ro values. The models are calibrated with bottom hole temperature (BHT), and vitrinite reflectance (Ro %) data for the Wilcox Group. Ro data from near-coastal sites have been selected to minimize the possible effects of uplift and erosion and then composited to give a regional Rodepth trend.Model calculations for the study area, the onshore Texas coastal plain, indicate that downdip portions of the basal Wilcox had reached sufficient thermal maturity to generate hydrocarbons by early Eocene (~50 Ma). This relatively early maturation is explained by rapid sediment accumulation in the early Tertiary combined with the reaction kinetic parameters used in the models. Thermal maturation increases through time with increasing burial depth and temperature, gradually moving the maturation front updip. At present day, hydrocarbon generation is complete in the downdip Wilcox within the study area but is currently ongoing in the updip portions of the formation.

  10. Première découverte de Cricetidae (Rodentia, Mammalia) oligocènes dans le synclinal sud de Gandoï (Bugti Hills, Balouchistan, Pakistan)

    NASA Astrophysics Data System (ADS)

    Marivaux, Laurent; Vianey-Liaud, Monique; Welcomme, Jean-Loup

    1999-12-01

    The preliminary analysis of a new continental vertebrate locality from the basal part of the Bugti Member (Baluchistan) focuses on the Cricetidae. From dental remains, two new species are described here, and related to genera Pseudocricetodon and Atavocricetodon, well known in the Early Oligocène from Europe. Compared to the European and Chinese Late Eocene specimen, their evolutionary stage suggests the Bugti locality to be Early Oligocène in age. These species are the first but also the oldest Paleogene record of the family on the Indian subcontinent and represent the originating ancestor group of the European cricetids.

  11. NRC Continental Margins Workshop

    NASA Astrophysics Data System (ADS)

    Katsouros, Mary Hope

    The Ocean Studies Board of the National Research Council is organizing a workshop, “Continental Margins: Evolution of Passive Continental Margins and Active Marginal Processes,” to stimulate discussion and longterm planning in the scientific community about the evolution of all types of continental margins. We want to coordinate academic, industry, and government agency efforts in this field, and to enhance communication between sea-based and land-based research programs.The continental margins constitute the only available record of the long-term dynamic interaction of oceanic and continental lithosphere. Of great interest are the unique structures and thick sedimentary sequences associated with this interaction. A major focus of the workshop will be to define strategies for exploring and understanding the continental margins in three dimensions and through geologic time. The workshop will be divided into 7 working groups, each concentrating on a major issue in continental margins research. A background document is being prepared summarizing recent research in specific continental margin fields and identifying key scientific and technical issues.

  12. Distribution of oceanic and continental leads in the Arabian-Nubian Shield

    USGS Publications Warehouse

    Stacey, J.S.; Stoeser, D.B.

    1983-01-01

    New common lead data for feldspar, whole-rock, and galena samples from the Arabian-Nubian Shield, together with data from previous work, can be divided into two main groups. Group I leads have oceanic (mantle) characteristics, whereas group II leads have incorporated a continental-crustal component of at least early Proterozoic age. The group I leads are found in rocks from the Red Sea Hills of Egypt and the western and southern parts of the Arabian Shield. Group II leads are found in rocks from the northeastern and eastern parts of the Arabian Shield, as well as from the southeastern Shield near Najran. They are also found in rocks to the south in Yemen, to the east in Oman, and to the west at Aswan, Egypt. This distribution of data suggests that the Arabian-Nubian Shield has an oceanic core flanked by rocks that have developed, at least in part, from older continental material. Two mechanisms are suggested by which this older lead component could have been incorporated into the late Proterozoic rocks, and each may have operated in different parts of the Shield. The older lead component either was derived directly from an underlying early Proterozoic basement or was incorporated from subducted pelagic sediments or sediments derived from an adjacent continent. New U-Pb zircon data indicate the presence of an early Proterozoic basement southeast of Jabal Dahul in the eastern Arabian Shield. These data, together with 2,000-Ma-old zircons from the Al Amar fault zone, verify the implication of the common lead data that at least a part of the eastern Arabian Shield has an older continental basement. Because continental margins are particularly favorable locations for development of ore deposits, these findings may have important economic implications, particularly for tin, tungsten, and molybdenum exploration. ?? 1983 Springer-Verlag.

  13. A fossil unicorn crestfish (Teleostei, Lampridiformes, Lophotidae) from the Eocene of Iran

    PubMed Central

    2017-01-01

    Lophotidae, or crestfishes, is a family of rare deep-sea teleosts characterised by an enlarged horn-like crest on the forehead. They are poorly represented in the fossil record, by only three described taxa. One specimen attributed to Lophotidae has been described from the pelagic fauna of the middle-late Eocene Zagros Basin, Iran. Originally considered as a specimen of the fossil lophotid †Protolophotus, it is proposed hereby as a new genus and species †Babelichthys olneyi, gen. et sp. nov., differs from the other fossil lophotids by its relatively long and strongly projecting crest, suggesting a close relationship with the modern unicorn crestfish, Eumecichthys. This new taxon increases the diversity of the deep-sea teleost fauna to which it belongs, improving our understanding of the taxonomic composition of the early Cenozoic mesopelagic ecosystems. PMID:28674642

  14. Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography

    PubMed Central

    Antoine, Pierre-Olivier; Marivaux, Laurent; Croft, Darin A.; Billet, Guillaume; Ganerød, Morgan; Jaramillo, Carlos; Martin, Thomas; Orliac, Maëva J.; Tejada, Julia; Altamirano, Ali J.; Duranthon, Francis; Fanjat, Grégory; Rousse, Sonia; Gismondi, Rodolfo Salas

    2012-01-01

    The long-term isolation of South America during most of the Cenozoic produced a highly peculiar terrestrial vertebrate biota, with a wide array of mammal groups, among which caviomorph rodents and platyrrhine primates are Mid-Cenozoic immigrants. In the absence of indisputable pre-Oligocene South American rodents or primates, the mode, timing and biogeography of these extraordinary dispersals remained debated. Here, we describe South America's oldest known rodents, based on a new diverse caviomorph assemblage from the late Middle Eocene (approx. 41 Ma) of Peru, including five small rodents with three stem caviomorphs. Instead of being tied to the Eocene/Oligocene global cooling and drying episode (approx. 34 Ma), as previously considered, the arrival of caviomorphs and their initial radiation in South America probably occurred under much warmer and wetter conditions, around the Mid-Eocene Climatic Optimum. Our phylogenetic results reaffirm the African origin of South American rodents and support a trans-Atlantic dispersal of these mammals during Middle Eocene times. This discovery further extends the gap (approx. 15 Myr) between first appearances of rodents and primates in South America. PMID:21993503

  15. Anorthosite belts, continental drift, and the anorthosite event

    USGS Publications Warehouse

    Herz, N.

    1969-01-01

    Most anorthosites lie in two principal belts when plotted on a predrift continental reconstruction. Anorthosite ages in the belts cluster around 1300 ?? 200 million years and range from 1100 to 1700 million years. This suggests that anorthosites are the product of a unique cataclysmic event or a thermal event that was normal only during the earth's early history.

  16. Anorthosite belts, continental drift, and the anorthosite event.

    PubMed

    Herz, N

    1969-05-23

    Most anorthosites lie in two principal belts when plotted on a predrift continental reconstruction. Anorthosite ages in the belts cluster around 1300 +/- 200 million years and range from 1100 to 1700 million years. This suggests that anorthosites are the product of a unique cataclysmic event or a thermal event that was normal only during the earth's early history.

  17. Formation of continental crust by intrusive magmatism

    NASA Astrophysics Data System (ADS)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.

    2017-09-01

    How were the continents formed in the Earth? No global numerical simulation of our planet ever managed to generate continental material self-consistently. In the present study, we show that the latest developments of the convection code StagYY enable to estimate how to produce the early continents, more than 3 billion years ago. In our models, melting of pyrolitic rocks generates a basaltic melt and leaves behind a depleted solid residue (a harzburgite). The melt generated in the mantle is transported to the surface. Only basaltic rocks melting again can generate continental crust. Should the basaltic melt always reach the open air and cool down? Should the melt be intruded warm in the pre-existing crust? The present study shows that both processes have to be considered to produce continents. Indeed, granitoids can only be created in a tight window of pressure-temperature. If all basalt is quickly cooled by surface volcanism, the lithosphere will be too cold. If all basalt is intruded warm below the crust then the lithosphere will be too warm. The key is to have both volcanism and plutonism (intrusive magmatism) to reach the optimal temperature and form massive volumes of continental material.

  18. Reconstruction of an early Paleozoic continental margin based on the nature of protoliths in the Nome Complex, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Ayuso, Robert A.; Aleinikoff, John N.; Amato, Jeffrey M.; Slack, John F.; Shanks, W.C. Pat

    2014-01-01

    The Nome Complex is a large metamorphic unit that sits along the southern boundary of the Arctic Alaska–Chukotka terrane, the largest of several micro continental fragments of uncertain origin located between the Siberian and Laurentian cratons. The Arctic Alaska–Chukotka terrane moved into its present position during the Mesozoic; its Mesozoic and older movements are central to reconstruction of Arctic tectonic history. Accurate representation of the Arctic Alaska–Chukotka terrane in reconstructions of Late Proterozoic and early Paleozoic paleogeography is hampered by the paucity of information available. Most of the Late Proterozoic to Paleozoic rocks in the Alaska–Chukotka terrane were penetratively deformed and recrystallized during the Mesozoic deformational events; primary features and relationships have been obliterated, and age control is sparse. We use a variety of geochemical, geochronologic, paleontologic, and geologic tools to read through penetrative deformation and reconstruct the protolith sequence of part of the Arctic Alaska–Chukotka terrane, the Nome Complex. We confirm that the protoliths of the Nome Complex were part of the same Late Proterozoic to Devonian continental margin as weakly deformed rocks in the southern and central part of the terrane, the Brooks Range. We show that the protoliths of the Nome Complex represent a carbonate platform (and related rocks) that underwent incipient rifting, probably during the Ordovician, and that the carbonate platform was overrun by an influx of siliciclastic detritus during the Devonian. During early phases of the transition to siliciclastic deposition, restricted basins formed that were the site of sedimentary exhalative base-metal sulfide deposition. Finally, we propose that most of the basement on which the largely Paleozoic sedimentary protolith was deposited was subducted during the Mesozoic.

  19. New Carcharhiniform Sharks (Chondrichthyes, Elasmobranchii) from the Early to Middle Eocene of Seymour Island, Antarctic Peninsula

    PubMed Central

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A.; Kriwet, Jürgen

    2018-01-01

    Seymour Island, Antarctic Peninsula, is known for its wealth of fossil remains. This island provides one of the richest fossiliferous Paleogene sequences in the world. Chondrichthyans seemingly dominate this Eocene marine fauna and offer a rare insight into high-latitude faunas during the Palaeogene. So far, only a few isolated teeth of carcharhinid sharks have been reported from Seymour Island. Bulk sampling in the well-exposed La Meseta and Submeseta formations yielded new and abundant chondrichthyan material, including numerous teeth of carcharhinid and triakid sharks. Here, we present a reevaluation of the previously described carcharhinid remains and a description of new taxa: Meridiogaleus cristatus, gen. et sp. nov., Kallodentis rythistemma, gen. et sp. nov., Abdounia richteri, sp. nov., and Abdounia mesetae, sp. nov. The carcharhiniforms Mustelus sp. and Galeorhinus sp. are reported based on rare material, whereas teeth previously assigned to Scoliodon represent a nomen dubium. PMID:29551850

  20. Diagenesis and porosity preservation in Eocene microporous limestones, South Florida, USA

    NASA Astrophysics Data System (ADS)

    Maliva, Robert G.; Missimer, Thomas M.; Clayton, Edward A.; Dickson, J. A. D.

    2009-05-01

    Microporous limestones may contain immobile, capillary-bound (irreducible) water that is only in diffusional contact with mobile pore waters or in some reservoirs may contain producible hydrocarbons. The preservation and distribution of microporosity impact both subsurface fluid flow and solute transport. The diagenesis of microporous limestones has received relatively little attention because their very fine grains and cements are not amenable to standard analytical methods. The Ocala Limestone (Upper Eocene) and upper Avon Park Formation (Middle Eocene) in South Florida contain microporous micritic limestones (mudstones to packstones) that are at an intermediate stage of diagenesis. The limestones have been exposed to the active near-surface environment, but have not yet reached a burial depth sufficient for intense chemical compaction and associated porosity reduction. Nuclear magnetic resonance (NMR) logging allowed for the quantification of total porosity, pore-size distribution, and permeability. The Ocala Limestone and Avon Park Formation have different predominant microfacies and porosity size distributions, but yet both retain total porosities predominantly between 35% and 37%. Estimated microporosities range mostly between 12% and 45%. The mudstones and wackestones of the Ocala Limestone have significantly lower permeabilities (mostly 3 to 12 md) than the wackestones to grainstones of the Avon Park Formation (commonly in the 100 to 3000 md range), which have more mixed and overall coarser pore sizes. Computer modeling using carbon and oxygen stable data indicates that the studied microporous limestones underwent only a low degree of chemical diagenetic alteration, despite likely experiencing episodes of freshwater flushing associated with post-depositional sea-level lowstands. The Ocala Limestone and Avon Park Formation limestones illustrate the general concept that total porosity is often largely preserved through early diagenesis (although may undergo

  1. Collisional emplacement history of the Naga-Andaman ophiolites and the position of the eastern Indian suture

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.

    2007-02-01

    Dismembered late Mesozoic ophiolites occur in two parallel belts along the eastern margin of the Indian Plate. The Eastern Belt, closely following the magmatic arc of the Central Burma Basin, coincides with a zone of high gravity. It is considered to mark a zone of steeply dipping mafic-ultramafic rocks and continental metamorphic rocks, which are the locus of two closely juxtaposed sutures. In contrast, the Western Belt, which follows the eastern margin of the Indo-Burma Range and the Andaman outer-island-arc, broadly follows a zone of negative gravity anomalies. Here the ophiolites occur mainly as rootless subhorizontal bodies overlying Eocene-Oligocene flyschoid sediments. Two sets of ophiolites that were accreted during the Early Cretaceous and mid-Eocene are juxtaposed in this belt. These are inferred to be westward propagated nappes from the Eastern Belt, emplaced during the late Oligocene collision between the Burmese and Indo-Burma-Andaman microcontinents. Ophiolite occurrences in the Andaman Islands belong to the Western Belt and are generally interpreted as upthrust oceanic crust, accreted due to prolonged subduction activity to the west of the island arc. This phase of subduction began only in the late Miocene and thus could not have produced the ophiolitic rocks, which were accreted in the late Early Eocene.

  2. Wrench related faults and their control on the tectonics and Eocene sedimentation in the L13-L15 sub-sag area, Pearl River Mouth basin, China

    NASA Astrophysics Data System (ADS)

    Chen, Shuping; Xu, Shunshan; Cai, Yu; Ma, Xiaodan

    2017-09-01

    Recent oil discoveries in the L13-L15 sub-sag area in the Pearl River Mouth basin have inspired interest in Paleogene hydrocarbon targets. However, the structures and their control on reservoirs have not been completely studied. The aim of this paper is to address the tectonics and Eocene sedimentation based on 3D seismic data. We documented characteristics from four aspects of the faults in the study area: (a) fault arrangement; (b) fault segmentation; (c) flower structures; and (d) distribution of the depocenters along the faults. Based on the above data, we propose that the structures in the studied area were formed by a right-handed wrench. The principal shear for this model was caused by NNE- to NE-ward motion of the eastern part of the Eurasia plate due to the collision of the Indian-Australian and Eurasian plates starting approximately 49 Ma ago. The L13-L15 sub-sag area underwent early Eocene rifting, a late Eocene rifting-depression transition and an Oligocene-Quaternary thermal depression. The rift phase included three stages: the initial rifting, intensive rifting and late rifting. The deep lake mudstone deposited during the intensive rifting stage is the source rock with the most potential for oil generation. Shallow lake source rocks formed in the late rifting and transition stages are the secondary source rocks. Reservoir sweet spots were formed in the early period of the intensive rifting and late rifting stages. The junction sites between the front of the meandering river delta plain and fault steps are favorable places for good reservoirs. The sediments in the transition stage are rich in sandstone, making them perfect sites for prospecting reservoirs.

  3. Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene

    NASA Astrophysics Data System (ADS)

    Carlson, Henrik; Caballero, Rodrigo

    2017-08-01

    Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2-thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has ˜ 11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.

  4. Oligocene sivaladapid primate from the Bugti Hills (Balochistan, Pakistan) bridges the gap between Eocene and Miocene adapiform communities in Southern Asia.

    PubMed

    Marivaux, Laurent; Welcomme, Jean-Loup; Ducrocq, Stéphane; Jaeger, Jean-Jacques

    2002-04-01

    A new species of Guangxilemur (Sivaladapidae, Adapiformes) is described from the early Oligocene Chitarwata Formation (Bugti Member) of the Bugti Hills, Sulaiman geological Province, Balochistan, Pakistan. Guangxilemur singsilai n. sp. provides further diagnostic morphological characters from its newly described upper and lower dentitions, confirming its intermediate phylogenetic position between Eocene and Miocene Asian sivaladapid adapiforms. G. singsilai possesses moderately developed shearing and puncturing molar features and maintains lingual cusps on upper molars as in Eocene hoanghoniines; in contrast, it possesses a typical molariform P(4) as in Miocene sivaladapines. The important paleogeographic changes that have affected South Asia during the Tertiary (related to the collision between the Indian and Eurasian Plates) have played a critical role in reforming circulation and climatic differentiation. The presence in Pakistan of an unique and well-diversified Oligocene primate fauna, clearly demonstrates that South Asia maintained favourable environmental conditions during the middle Caenozoic global climatic deterioration that coincides with drastic changes in faunal structure on the whole Holarctic Province, including the extinction of adapiform primates. Copyright 2002 Elsevier Science Ltd.

  5. Moroccan crustal response to continental drift.

    PubMed

    Kanes, W H; Saadi, M; Ehrlich, E; Alem, A

    1973-06-01

    The formation and development of a zone of spreading beneath the continental crust resulted in the breakup of Pangea and formation of the Atlantic Ocean. The crust of Morocco bears an extremely complete record of the crustal response to this episode of mantle dynamics. Structural and related depositional patterns indicate that the African margin had stabilized by the Middle Jurassic as a marine carbonate environment; that it was dominated by tensile stresses in the early Mesozoic, resulting in two fault systems paralleling the Atlantic and Mediterranean margins and a basin and range structural-depositional style; and that it was affected by late Paleozoic metamorphism and intrusion. Mesozoic events record the latter portion of African involvement in the spreading episode; late Paleozoic thermal orogenesis might reflect the earlier events in the initiation of the spreading center and its development beneath significant continental crust. In that case, more than 100 million years were required for mantle dynamics to break up Pangea.

  6. Discussion on ``Dextral transpression in Late Cretaceous continental collision, Sanandaj Sirjan Zone, western Iran'' [Journal of Structural Geology, 22(8) (2000) 1125 1139

    NASA Astrophysics Data System (ADS)

    Numan, Nazar M. S.

    2001-12-01

    The NW-SE trending Alpine Zagros Thrust Belt passes from southwest Iran into northeastern Iraq. Mohajjel and Fergusson contend in their work in Iran on the Sanandaj-Sirjan Zone (with a consistent Zagros trend) that collision of the Afro-Arabian continent and the Iranian microcontinent took place in the Late Cretaceous. It seems that tectonostratigraphic evidence from the neighbouring Iraqi territories, namely the Zagros Thrust Belt in the northern part, the Foreland Belt and the Quasiplatform of the north and the Platform in the western and southern deserts (Fig. 1), chronicles the subductional history in this part of the world to a fair degree of accuracy. It rather provides for an Eocene age of the continental collision between Arabia and the Iranian microcontinent.

  7. Eocene Loranthaceae pollen pushes back divergence ages for major splits in the family.

    PubMed

    Grímsson, Friðgeir; Kapli, Paschalia; Hofmann, Christa-Charlotte; Zetter, Reinhard; Grimm, Guido W

    2017-01-01

    We revisit the palaeopalynological record of Loranthaceae, using pollen ornamentation to discriminate lineages and to test molecular dating estimates for the diversification of major lineages. Fossil Loranthaceae pollen from the Eocene and Oligocene are analysed and documented using scanning-electron microscopy. These fossils were associated with molecular-defined clades and used as minimum age constraints for Bayesian node dating using different topological scenarios. The fossil Loranthaceae pollen document the presence of at least one extant root-parasitic lineage (Nuytsieae) and two currently aerial parasitic lineages (Psittacanthinae and Loranthinae) by the end of the Eocene in the Northern Hemisphere. Phases of increased lineage diversification (late Eocene, middle Miocene) coincide with global warm phases. With the generation of molecular data becoming easier and less expensive every day, neontological research should re-focus on conserved morphologies that can be traced through the fossil record. The pollen, representing the male gametophytic generation of plants and often a taxonomic indicator, can be such a tracer. Analogously, palaeontological research should put more effort into diagnosing Cenozoic fossils with the aim of including them into modern systematic frameworks.

  8. A new sawshark, Pristiophorus laevis, from the Eocene of Antarctica with comments on Pristiophorus lanceolatus.

    PubMed

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A; Kriwet, Jürgen

    2017-01-01

    The highly fossiliferous Eocene deposits of the Antarctic Peninsula are among the most productive sites for fossil remains in the Southern Hemisphere and offer rare insights into high-latitude faunas during the Palaeogene. Chondrichthyans, which are represented by abundant isolated remains, seemingly dominate the marine assemblages. Eocene Antarctic sawsharks have only been known from few isolated rostral spines up to now, that were assigned to Pristiophorus lanceolatus . Here, we present the first oral teeth of a sawshark from the Eocene of Seymour Island and a re-evaluation of previously described Pristiophorus remains from Gondwana consisting exclusively of rostral spines. The holotype of Pristiophorus lanceolatus represents a single, abraded and insufficiently illustrated spine from the Oligocene of New Zealand. All other Cenozoic rostral spines assigned to this species are morphologically very indistinct and closely resemble those of living taxa. Consequently, we regard this species as dubious and introduce a new species, Pristiophorus laevis , based on oral teeth. The combination of dental characteristics of the new species makes it unique compared to all other described species based on oral teeth. Rostral spines from the Eocene of Seymour Island are assigned to this new species whereas those from other Cenozoic Gondwana localities remain ambiguous.

  9. A new sawshark, Pristiophorus laevis, from the Eocene of Antarctica with comments on Pristiophorus lanceolatus

    PubMed Central

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A.; Kriwet, Jürgen

    2017-01-01

    The highly fossiliferous Eocene deposits of the Antarctic Peninsula are among the most productive sites for fossil remains in the Southern Hemisphere and offer rare insights into high-latitude faunas during the Palaeogene. Chondrichthyans, which are represented by abundant isolated remains, seemingly dominate the marine assemblages. Eocene Antarctic sawsharks have only been known from few isolated rostral spines up to now, that were assigned to Pristiophorus lanceolatus. Here, we present the first oral teeth of a sawshark from the Eocene of Seymour Island and a re-evaluation of previously described Pristiophorus remains from Gondwana consisting exclusively of rostral spines. The holotype of Pristiophorus lanceolatus represents a single, abraded and insufficiently illustrated spine from the Oligocene of New Zealand. All other Cenozoic rostral spines assigned to this species are morphologically very indistinct and closely resemble those of living taxa. Consequently, we regard this species as dubious and introduce a new species, Pristiophorus laevis, based on oral teeth. The combination of dental characteristics of the new species makes it unique compared to all other described species based on oral teeth. Rostral spines from the Eocene of Seymour Island are assigned to this new species whereas those from other Cenozoic Gondwana localities remain ambiguous. PMID:28579693

  10. Estimating long-wavelength dynamic topographic change of passive continental margins since the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Müller, Dietmar; Hassan, Rakib; Gurnis, Michael; Flament, Nicolas; Williams, Simon

    2017-04-01

    The influence of mantle convection on dynamic topographic change along continental margins is difficult to unravel, because their stratigraphic record is dominated by tectonic subsidence caused by rifting. Yet, dynamic topography can potentially introduce significant depth anomalies along passive margins, influencing their water depth, sedimentary environments and geohistory. Here we follow a three-fold approach to estimate changes in dynamic topography along both continental interiors and passive margins based on a set of seven global mantle convection models. These models include different methodologies (forward and hybrid backward-forward methods), different plate reconstructions and alternative mantle rheologies. We demonstrate that a geodynamic forward model that includes adiabatic heating in addition to internal heating from radiogenic sources, and a mantle viscosity profile with a gradual increase in viscosity below the mantle transition zone, provides a greatly improved match to the spectral range of residual topography end-members as compared with previous models at very long wavelengths (spherical degrees 2-3). We combine global sea level estimates with predicted surface dynamic topography to evaluate the match between predicted continental flooding patterns and published paleo-coastlines by comparing predicted versus geologically reconstructed land fractions and spatial overlaps of flooded regions for individual continents since 140 Ma. Modelled versus geologically reconstructed land fractions match within 10% for most models, and the spatial overlaps of inundated regions are mostly between 85% and 100% for the Cenozoic, dropping to about 75-100% in the Cretaceous. We categorise the evolution of modelled dynamic topography in both continental interiors and along passive margins using cluster analysis to investigate how clusters of similar dynamic topography time series are distributed spatially. A subdivision of four clusters is found to best reveal end

  11. Equatorial convergence of India and early Cenozoic climate trends.

    PubMed

    Kent, Dennis V; Muttoni, Giovanni

    2008-10-21

    India's northward flight and collision with Asia was a major driver of global tectonics in the Cenozoic and, we argue, of atmospheric CO(2) concentration (pCO(2)) and thus global climate. Subduction of Tethyan oceanic crust with a carpet of carbonate-rich pelagic sediments deposited during transit beneath the high-productivity equatorial belt resulted in a component flux of CO(2) delivery to the atmosphere capable to maintain high pCO(2) levels and warm climate conditions until the decarbonation factory shut down with the collision of Greater India with Asia at the Early Eocene climatic optimum at approximately 50 Ma. At about this time, the India continent and the highly weatherable Deccan Traps drifted into the equatorial humid belt where uptake of CO(2) by efficient silicate weathering further perturbed the delicate equilibrium between CO(2) input to and removal from the atmosphere toward progressively lower pCO(2) levels, thus marking the onset of a cooling trend over the Middle and Late Eocene that some suggest triggered the rapid expansion of Antarctic ice sheets at around the Eocene-Oligocene boundary.

  12. Provenance of the Walash-Naopurdan back-arc-arc clastic sequences in the Iraqi Zagros Suture Zone

    NASA Astrophysics Data System (ADS)

    Ali, Sarmad A.; Sleabi, Rajaa S.; Talabani, Mohammad J. A.; Jones, Brian G.

    2017-01-01

    Marine clastic rocks occurring in the Walash and Naopurdan Groups in the Hasanbag and Qalander areas, Kurdistan region, Iraqi Zagros Suture Zone, are lithic arenites with high proportions of volcanic rock fragments. Geochemical classification of the Eocene Walash and Oligocene Naopurdan clastic rocks indicates that they were mainly derived from associated sub-alkaline basalt and andesitic basalt in back-arc and island arc tectonic settings. Major and trace element geochemical data reveal that the Naopurdan samples are chemically less mature than the Walash samples and both were subjected to moderate weathering. The seaway in the southern Neotethys Ocean was shallow during both Eocene and Oligocene permitting mixing of sediment from the volcanic arcs with sediment derived from the Arabian continental margin. The Walash and Naopurdan clastic rocks enhance an earlier tectonic model of the Zagros Suture Zone with their deposition occurring during the Eocene Walash calc-alkaline back-arc magmatism and Early Oligocene Naopurdan island arc magmatism in the final stages of intra-oceanic subduction before the Miocene closure and obduction of the Neotethys basin.

  13. Highly Seasonal and Perennial Fluvial Facies: Implications for Climatic Control on the Douglas Creek and Parachute Creek Members, Green River Formation, Southeastern Uinta Basin, Utah

    NASA Astrophysics Data System (ADS)

    Gall, Ryan D.

    The early to middle Eocene Green River Formation consists of continental strata deposited in Laramide ponded basins in Utah, Colorado, and Wyoming. This study (1) documents fluvial and lacustrine strata from the Douglas Creek and Parachute Creek Members of the middle Green River Formation, southeastern Uinta Basin, Utah, and (2) uses new interpretations of the link between climate and fluvial sedimentary expression to interpret the terrestrial evolution of early Eocene climate. The stratigraphy was analyzed via outcrops along a 10 km transect in Main Canyon on the Tavaputs Plateau, and is divided into three distinct, stratigraphically separated depositional settings: (1) the lowermost Interval 1 is dominated by amalgamated sandstone channels that contain 70-100% upper flow regime sedimentary structures. The channels are interpreted to represent fluvial deposits controlled by a highly seasonal climate, where most deposition was limited to seasonal flooding events. (2) Interval 2 is dominated by alternating siliciclastic and carbonate lacustrine deposits, interpreted as local pulsed fluvial siliciclastic input into shallow Lake Uinta, and periods of fluvial quiescence represented by littoral carbonate deposition. (3) The uppermost Interval 3 is dominated by erosively-based, trough cross bedded sandstone channels interbedded with littoral lacustrine and deltaic deposits. The Interval 3 sandstone channels are interpreted as perennial fluvial deposits with relatively little variation in annual discharge, akin to modern humid-temperate fluvial systems. The stratigraphic transition from seasonally-controlled (Interval 1) to perennial (Interval 3) fluvial deposits is interpreted to represent a fundamental shift in Eocene climate, from the peak hyperthermal regime of the Early Eocene Climatic Optimum (EECO) to a more stable post-EECO climate.

  14. Provenance evolution in the northern South China Sea and its implication of paleo-drainage systems from Eocene to Miocene

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Shao, L.; Qiao, P.

    2017-12-01

    Geochemistry analysis and detrital zircon U-Pb geochronology aim to fully investigate the "source to sink" patterns of northern South China Sea (SCS) from Eocene to Miocene. Evolutional history of the surrounding drainage system has been highly focused on, in comparison to sedimentary characteristics of the SCS basins. Rapid local provenances were prevailed while large-scale fluvial transport remained to evolve during Eocene. Since early Oligocene, sediments from the South China were more abundantly delivered to the northeastern Pearl River Mouth Basin in addition to Dongsha volcanism supplement. Aside from intrabasinal provenances, long-distance transport started to play significant role in Zhu1 Depression, possibly reaching western and southern Baiyun Sag, partially. Western Qiongdongnan Basin might accept sediments from central Vietnam with its eastern area more affected from Hainan Island and Southern Uplift. In the late Oligocene, due to drastic sea-level changes and rapid exhumation, mafic to altramafic sediments were transported in abundance to Central Depression from Kontum Massif, while multiple provenances casted integrated influence on eastern sedimentary sequences. Southern Baiyun Sag was also affected by an increased supplement from the west Shenhu Uplift or even central Vietnam. Overall pattern did not change greatly since early Miocene, but long-distance transport has become dominant in the northern SCS. Under controlled by regional tectonic cycles, Pearl River gradually evolved into the present scale and exerted its influence on basinal provenances by several stages. Zhu1 Depression was partially delivered sediments from its tributaries in early Oligocene while northern Zhu2 Depression has not been provided abundant materials until late Oligocene. Meanwhile, although detailed transportation routine remains uncertain and controversial, an impressive paleo-channel spanning the whole Qiongdongnan Basin was presumed to supply huge amount of mafic to

  15. New phiomorph rodents from the latest Eocene of Egypt, and the impact of Bayesian "clock"-based phylogenetic methods on estimates of basal hystricognath relationships and biochronology.

    PubMed

    Sallam, Hesham M; Seiffert, Erik R

    2016-01-01

    The Fayum Depression of Egypt has yielded fossils of hystricognathous rodents from multiple Eocene and Oligocene horizons that range in age from ∼37 to ∼30 Ma and document several phases in the early evolution of crown Hystricognathi and one of its major subclades, Phiomorpha. Here we describe two new genera and species of basal phiomorphs, Birkamys korai and Mubhammys vadumensis, based on rostra and maxillary and mandibular remains from the terminal Eocene (∼34 Ma) Fayum Locality 41 (L-41). Birkamys is the smallest known Paleogene hystricognath, has very simple molars, and, like derived Oligocene-to-Recent phiomorphs (but unlike contemporaneous and older taxa) apparently retained dP(4)∕4 late into life, with no evidence for P(4)∕4 eruption or formation. Mubhammys is very similar in dental morphology to Birkamys, and also shows no evidence for P(4)∕4 formation or eruption, but is considerably larger. Though parsimony analysis with all characters equally weighted places Birkamys and Mubhammys as sister taxa of extant Thryonomys to the exclusion of much younger relatives of that genus, all other methods (standard Bayesian inference, Bayesian "tip-dating," and parsimony analysis with scaled transitions between "fixed" and polymorphic states) place these species in more basal positions within Hystricognathi, as sister taxa of Oligocene-to-Recent phiomorphs. We also employ tip-dating as a means for estimating the ages of early hystricognath-bearing localities, many of which are not well-constrained by geological, geochronological, or biostratigraphic evidence. By simultaneously taking into account phylogeny, evolutionary rates, and uniform priors that appropriately encompass the range of possible ages for fossil localities, dating of tips in this Bayesian framework allows paleontologists to move beyond vague and assumption-laden "stage of evolution" arguments in biochronology to provide relatively rigorous age assessments of poorly-constrained faunas. This

  16. Analysis of Eocene depositional environments - Preliminary TM and TIMS results, Wind River Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Stucky, Richard K.; Krishtalka, Leonard; Redline, Andrew D.; Lang, Harold R.

    1987-01-01

    Both Landsat TM and aircraft Thermal IR Multispectral Scanner (TIMS) data have been used to map the lithofacies of the Wind River Basin's Eocene physical and biological environments. Preliminary analyses of these data have furnished maps of a fault contact boundary and a complex network of fluvial ribbon channel sandstones. The synoptic view thereby emerging for Eocene fluvial facies clarifies the relationships of ribbon channel sandstones to fossil-bearing overbank/floodplain facies and certain peleosols. The utility of TM and TIMS data is thereby demonstrated.

  17. An extinct Eocene taxon of the daisy family (Asteraceae): evolutionary, ecological and biogeographical implications

    PubMed Central

    Barreda, Viviana D.; Palazzesi, Luis; Katinas, Liliana; Crisci, Jorge V.; Tellería, María C.; Bremer, Kåre; Passala, Mauro G.; Bechis, Florencia; Corsolini, Rodolfo

    2012-01-01

    Background and Aims Morphological, molecular and biogeographical information bearing on early evolution of the sunflower alliance of families suggests that the clade containing the extant daisy family (Asteraceae) differentiated in South America during the Eocene, although palaeontological studies on this continent failed to reveal conclusive support for this hypothesis. Here we describe in detail Raiguenrayun cura gen. & sp. nov., an exceptionally well preserved capitulescence of Asteraceae recovered from Eocene deposits of northwestern Patagonia, Argentina. Methods The fossil was collected from the 47·5 million-year-old Huitrera Formation at the Estancia Don Hipólito locality, Río Negro Province, Argentina. Key Results The arrangement of the capitula in a cymose capitulescence, the many-flowered capitula with multiseriate–imbricate involucral bracts and the pappus-like structures indicate a close morphological relationship with Asteraceae. Raiguenrayun cura and the associated pollen Mutisiapollis telleriae do not match exactly any living member of the family, and clearly represent extinct taxa. They share a mosaic of morphological features today recognized in taxa phylogenetically close to the root of Asteraceae, such as Stifftieae, Wunderlichioideae and Gochnatieae (Mutisioideae sensu lato) and Dicomeae and Oldenburgieae (Carduoideae), today endemic to or mainly distributed in South America and Africa, respectively. Conclusions This is the first fossil genus of Asteraceae based on an outstandingly preserved capitulescence that might represent the ancestor of Mutisioideae–Carduoideae. It might have evolved in southern South America some time during the early Palaeogene and subsequently entered Africa, before the biogeographical isolation of these continents became much more pronounced. The new fossil represents the first reliable point for calibration, favouring an earlier date to the split between Barnadesioideae and the rest of Asteraceae than previously

  18. Unravelling the stratigraphy and sedimentation history of the uppermost Cretaceous to Eocene sediments of the Kuching Zone in West Sarawak (Malaysia), Borneo

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; BouDagher-Fadel, Marcelle K.

    2018-07-01

    The Kuching Zone in West Sarawak consists of two different sedimentary basins, the Kayan and Ketungau Basins. The sedimentary successions in the basins are part of the Kuching Supergroup that extends into Kalimantan. The uppermost Cretaceous (Maastrichtian) to Lower Eocene Kayan Group forms the sedimentary deposits directly above a major unconformity, the Pedawan Unconformity, which marks the cessation of subduction-related magmatism beneath SW Borneo and the Schwaner Mountains, due to termination of the Paleo-Pacific subduction. The successions consist of the Kayan and Penrissen Sandstones and are dominated by fluvial channels, alluvial fans and floodplain deposits with some deltaic to tidally-influenced sections in the Kayan Sandstone. In the late Early or early Middle Eocene, sedimentation in this basin ceased and a new basin, the Ketungau Basin, developed to the east. This change is marked by the Kayan Unconformity. Sedimentation resumed in the Middle Eocene (Lutetian) with the marginal marine, tidal to deltaic Ngili Sandstone and Silantek Formation. Upsequence, the Silantek Formation is dominated by floodplain and subsidiary fluvial deposits. The Bako-Mintu Sandstone, a potential lateral equivalent of the Silantek Formation, is formed of major fluvial channels. The top of the Ketungau Group in West Sarawak is formed by the fluvially-dominated Tutoop Sandstone. This shows a transition of the Ketungau Group in time towards terrestrial/fluvially-dominated deposits. Paleocurrent measurements show river systems were complex, but reveal a dominant southern source. This suggests uplift of southern Borneo initiated in the region of the present-day Schwaner Mountains from the latest Cretaceous onwards. Additional sources were local sources in the West Borneo province, Mesozoic melanges to the east and potentially the Malay Peninsula. The Ketungau Group also includes reworked deposits of the Kayan Group. The sediments of the Kuching Supergroup are predominantly

  19. New Data On The Distribution Of Calcareous Nannofossils During And After The Paleocene/Eocene Transition

    NASA Astrophysics Data System (ADS)

    Raffi, I.

    2004-12-01

    RD distribution. The sudden appearance and short co-existence of R. calcitrapa gr. and D. araneus, and the lowermost occurrence of R. cuspis at the onset of CIE clearly can be extended to the equatorial regions of the Atlantic as well as the Pacific Ocean. The genus Fasciculithus undergoes a substantial decrease in diversification at the onset of CIE, and perish completely shortly afterwards. This significant turnover appears to represent a global event observed in all the known P/E boundary sections from different oceans and paleo-latitudes. The abundance cross-over between Fasciculithus spp. and Z. bijugatus has been observed to occur within the the CIE-PETM interval in several deep-sea sections. In the central paleo-equatorial Pacific Ocean, however, Z. bijugatus specimens were not present at all, whereas a marked increase in abundance of R. cuspis was observed in conjunction with the final decline of Fasciculithus spp. Data from the western paleo-equatorial Atlantic Ocean (Site 929) shows only few Z. bijugatus, implying that this particular early Eocene turnover is absent in these equatorial regions. Thoracosphaera spp. shows a short abundance peak immediately above the carbonate barren interval at the P/E boundary, during the CIE, at paleo-equatorial Pacific Site 1220, which probably reflects a stressed surface water environment.

  20. Ocean processes at the Antarctic continental slope.

    PubMed

    Heywood, Karen J; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker

    2014-07-13

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.

  1. Ocean processes at the Antarctic continental slope

    PubMed Central

    Heywood, Karen J.; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D.; Queste, Bastien Y.; Stevens, David P.; Wadley, Martin; Thompson, Andrew F.; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K.; Smith, Walker

    2014-01-01

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system. PMID:24891389

  2. Geochronological and Taxonomic Revisions of the Middle Eocene Whistler Squat Quarry (Devil’s Graveyard Formation, Texas) and Implications for the Early Uintan in Trans-Pecos Texas

    PubMed Central

    Campisano, Christopher J.; Kirk, E. Christopher; Townsend, K. E. Beth; Deino, Alan L.

    2014-01-01

    The Whistler Squat Quarry (TMM 41372) of the lower Devil’s Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47–50 Ma and below a tuff previously dated to ∼44 Ma. New 40Ar/39Ar analyses of both of the original tuff samples provide statistically indistinguishable ages of 44.88±0.04 Ma for the lower tuff and 45.04±0.10 Ma for the upper tuff. These dates are compatible with magnetically reversed sediments at the site attributable to C20r (43.505–45.942 Ma) and a stratigraphic position above a basalt dated to 46.80 Ma. Our reanalysis of mammalian specimens from the Whistler Squat Quarry and a stratigraphically equivalent locality significantly revises their faunal lists, confirms the early Uintan designation for the sites, and highlights several biogeographic and biochronological differences when compared to stratotypes in the Bridger and Uinta Formations. Previous suggestions of regional endemism in the early Uintan are supported by the recognition of six endemic taxa (26% of mammalian taxa) from the Whistler Squat Quarry alone, including three new taxa. The revised faunal list for the Whistler Squat Quarry also extends the biostratigraphic ranges of nine non-endemic mammalian taxa to Ui1b. PMID:24988115

  3. Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record

    NASA Astrophysics Data System (ADS)

    Bouaziz, Samir; Barrier, Eric; Soussi, Mohamed; Turki, Mohamed M.; Zouari, Hédi

    2002-11-01

    A reconstruction of the tectonic evolution of the northern African margin in Tunisia since the Late Permian combining paleostress, tectonic stratigraphic and sedimentary approaches allows the characterization of several major periods corresponding to consistent stress patterns. The extension lasting from the Late Permian to the Middle Triassic is contemporaneous of the rifting related to the break up of Pangea. During Liassic times, regional extensional tectonics originated the dislocation of the initial continental platform. In northern Tunisia, the evolution of the Liassic NE-SW rifting led during Dogger times to the North African passive continental margin, whereas in southern Tunisia, a N-S extension, associated with E-W trending subsiding basins, lasted from the Jurassic until the Early Cretaceous. After an Upper Aptian-Early Albian transpressional event, NE-SW to ENE-WSW trending extensions prevailed during Late Cretaceous in relationship with the general tectonic evolution of the northeastern African plate. The inversions started in the Late Maastrichtian-Paleocene in northern Tunisia, probably as a consequence of the Africa-Eurasia convergence. Two major NW-SE trending compressions occurred in the Late Eocene and in the Middle-Late Miocene alternating with extensional periods in the Eocene, Oligocene, Early-Middle Miocene and Pliocene. The latter compressional event led to the complete inversion of the basins of the northwestern African plate, originating the Maghrebide chain. Such a study, supported by a high density of paleostress data and including complementary structural and stratigraphic approaches, provides a reliable way of determining the regional tectonic evolution.

  4. Early Paleogene evolution of terrestrial climate in the SW Pacific, Southern New Zealand

    NASA Astrophysics Data System (ADS)

    Pancost, Richard D.; Taylor, Kyle W. R.; Inglis, Gordon N.; Kennedy, Elizabeth M.; Handley, Luke; Hollis, Christopher J.; Crouch, Erica M.; Pross, Jörg; Huber, Matthew; Schouten, Stefan; Pearson, Paul N.; Morgans, Hugh E. G.; Raine, J. Ian

    2013-12-01

    We present a long-term record of terrestrial climate change for the Early Paleogene of the Southern Hemisphere that complements previously reported marine temperature records. Using the MBT'-CBT proxy, based on the distribution of soil bacterial glycerol dialkyl glycerol tetraether lipids, we reconstructed mean annual air temperature (MAT) from the Middle Paleocene to Middle Eocene (62-42 Ma) for southern New Zealand. This record is consistent with temperature estimates derived from leaf fossils and palynology, as well as previously published MBT'-CBT records, which provides confidence in absolute temperature estimates. Our record indicates that through this interval, temperatures were typically 5°C warmer than those of today at such latitudes, with more pronounced warming during the Early Eocene Climate Optimum (EECO; ˜50 Ma) when MAT was ˜20°C. Moreover, the EECO MATs are similar to those determined for Antarctica, with a weak high-latitude terrestrial temperature gradient (˜5°C) developing by the Middle Eocene. We also document a short-lived cooling episode in the early Late Paleocene when MAT was comparable to present. This record corroborates the trends documented by sea surface temperature (SST) proxies, although absolute SSTs are up to 6°C warmer than MATs. Although the high-calibration error of the MBT'-CBT proxy dictates caution, the good match between our MAT results and modeled temperatures supports the suggestion that SST records suffer from a warm (summer?) bias, particularly during times of peak warming.

  5. Tectonic and climatic significance of a late Eocene low-relief, high-level geomorphic surface, Colorado

    NASA Technical Reports Server (NTRS)

    Gregory, Kathryn M.; Chase, Clement G

    1994-01-01

    New paleobotanical data suggest that in the late Eocene the erosion surface which capped the Front Range, Colorado was 2.2-2.3 km in elevation, which is similar to the 2.5-km present elevation of surface remnants. This estimated elevation casts doubt on the conventional belief that the low-relief geomorphic surface was formed by lateral planation of streams to a base level not much higher than sea level and that the present deeply incised canyons must represent Neogene uplift of Colorado. Description of the surface, calculations of sediment volume, and isostatic balance and fluvial landsculpting models demonstrate that while the high elevation of the erosion surface was due to tectonic forces, its smoothness was mostly a result of climatic factors. A sediment balance calculated for the Front Range suggests that from 2 to 4 km of material were eroded by the late Eocene, consistent with fission track ages. This amount of erosion would remove a significant portionof the 7 km of Laramide upper crustal thickening. Isostatic modeling implies that the 2.2-3.3 km elevation was most likely created by lower crustal thickening during the Laramide. A numerical model of fluvial erosion and deposition suggests a way that a late Eocene surface could have formed at this high elevation without incision. A humid climate with a preponderance of small storm events will diffusively smooth topography and is a possible mechanism for formation oflow-relief, high-level surfaces. Paleoclimate models suggest a lack of large strom events in the late Eocene because of cool sea surface temperatures in the equatorial region. Return to a drier but stormier climate post-Eocene could have caused the incision of the surface by young canyons. By this interpretation, regional erosion surfaces may represent regional climatic rather than tectonic conditions.

  6. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia

    NASA Astrophysics Data System (ADS)

    Carrapa, Barbara; DeCelles, Peter G.; Wang, Xin; Clementz, Mark T.; Mancin, Nicoletta; Stoica, Marius; Kraatz, Brian; Meng, Jin; Abdulov, Sherzod; Chen, Fahu

    2015-08-01

    Plate tectonics and eustatic sea-level changes have fundamental effects on paleoenvironmental conditions and bio-ecological changes. The Paratethys Sea was a large marine seaway that connected the Mediterranean Neotethys Ocean with Central Asia during early Cenozoic time. Withdrawal of the Paratethys from central Asia impacted the distribution and composition of terrestrial faunas in the region and has been largely associated with changes in global sea level and climate such as cooling associated with the Eocene/Oligocene transition (EOT). Whereas the regression has been dated in the Tarim basin (China), the pattern and timing of regression in the Tajik basin, 400 km to the west, remain unresolved, precluding a test of current paleogeographic models. Here we date the Paratethys regression in Tajikistan at ca. 39 million years ago (Ma), which is several million years older than the EOT (at ca. 34 Ma) marking the greenhouse to icehouse climate transition of the Cenozoic. Our data also show a restricted, evaporitic marine environment since the middle-late Eocene and establishment of desert like environments after ca. 39 Ma. The overall stratigraphic record from the Tajik basin and southern Tien Shan points to deposition in a foreland basin setting by ca. 40 Ma in response to active tectonic growth of the Pamir-Tibet Mountains at the same time. Combined with the northwestward younging trend of the regression in the region, the Tajik basin record is consistent with northward growth of the Pamir and suggests significant tectonic control on Paratethys regression and paleoenvironmental changes in Central Asia.

  7. New phiomorph rodents from the latest Eocene of Egypt, and the impact of Bayesian “clock”-based phylogenetic methods on estimates of basal hystricognath relationships and biochronology

    PubMed Central

    2016-01-01

    The Fayum Depression of Egypt has yielded fossils of hystricognathous rodents from multiple Eocene and Oligocene horizons that range in age from ∼37 to ∼30 Ma and document several phases in the early evolution of crown Hystricognathi and one of its major subclades, Phiomorpha. Here we describe two new genera and species of basal phiomorphs, Birkamys korai and Mubhammys vadumensis, based on rostra and maxillary and mandibular remains from the terminal Eocene (∼34 Ma) Fayum Locality 41 (L-41). Birkamys is the smallest known Paleogene hystricognath, has very simple molars, and, like derived Oligocene-to-Recent phiomorphs (but unlike contemporaneous and older taxa) apparently retained dP4∕4 late into life, with no evidence for P4∕4 eruption or formation. Mubhammys is very similar in dental morphology to Birkamys, and also shows no evidence for P4∕4 formation or eruption, but is considerably larger. Though parsimony analysis with all characters equally weighted places Birkamys and Mubhammys as sister taxa of extant Thryonomys to the exclusion of much younger relatives of that genus, all other methods (standard Bayesian inference, Bayesian “tip-dating,” and parsimony analysis with scaled transitions between “fixed” and polymorphic states) place these species in more basal positions within Hystricognathi, as sister taxa of Oligocene-to-Recent phiomorphs. We also employ tip-dating as a means for estimating the ages of early hystricognath-bearing localities, many of which are not well-constrained by geological, geochronological, or biostratigraphic evidence. By simultaneously taking into account phylogeny, evolutionary rates, and uniform priors that appropriately encompass the range of possible ages for fossil localities, dating of tips in this Bayesian framework allows paleontologists to move beyond vague and assumption-laden “stage of evolution” arguments in biochronology to provide relatively rigorous age assessments of poorly-constrained faunas

  8. A global census of continental rift activity since 250 Ma reveals a missing element of the deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Williams, Simon; Müller, Dietmar

    2017-04-01

    The deep carbon cycle connects CO2 concentrations within the atmosphere to the vast carbon reservoir in Earth's mantle: subducted lithosphere carries carbon into the mantle, while extensional plate boundaries and arc volcanoes release it back to Earth's surface. The length of plate boundaries thereby exerts first-order control on global CO2 fluxes on geological time scales. Here we provide a global census of rift length from the Triassic to present day, combining a new plate reconstruction analysis technique with data from the geological rift record. We find that the most extensive rift phase during the fragmentation of Pangea occurred in the Jurassic/Early Cretaceous with extension along the South Atlantic (9700 km) and North Atlantic rifts (9100 km), within East Gondwana (8500 km), the failed African rift systems (4900 km), and between Australia and Antarctica (3700 km). The combined extent of these and other rift systems amounts to more than 50.000 km of simultaneously active continental rifts. During the Late Cretaceous, in the aftermath of this massive rift episode, the global rift length dropped by 60% to 20.000 km. We further show that a second pronounced rift episode starts in the Eocene with global rift lengths of up to 30.000 km. It is well-accepted that volcanoes at plate boundaries release large amounts of CO2 from the Earth's interior. Recent work, however, highlights the importance of deep-cutting faults and diffuse degassing on CO2 emissions in the East African Rift, which appear to be comparable to CO2 release rates at mid-ocean ridges worldwide. Upscaling measured CO2 fluxes from East Africa to all concurrently active global rift zones with due caution, we compute the first-order history of cumulative rift-related CO2 degassing rates for the last 250 Myr. We demonstrate that rift-related CO2 release in the Early Cretaceous may have reached 400% of present-day rates. In first-order agreement with paleo-atmospheric CO2 concentrations from proxy

  9. Sensitivity of the Eocene climate to CO2 and orbital variability

    NASA Astrophysics Data System (ADS)

    Keery, John S.; Holden, Philip B.; Edwards, Neil R.

    2018-02-01

    The early Eocene, from about 56 Ma, with high atmospheric CO2 levels, offers an analogue for the response of the Earth's climate system to anthropogenic fossil fuel burning. In this study, we present an ensemble of 50 Earth system model runs with an early Eocene palaeogeography and variation in the forcing values of atmospheric CO2 and the Earth's orbital parameters. Relationships between simple summary metrics of model outputs and the forcing parameters are identified by linear modelling, providing estimates of the relative magnitudes of the effects of atmospheric CO2 and each of the orbital parameters on important climatic features, including tropical-polar temperature difference, ocean-land temperature contrast, Asian, African and South (S.) American monsoon rains, and climate sensitivity. Our results indicate that although CO2 exerts a dominant control on most of the climatic features examined in this study, the orbital parameters also strongly influence important components of the ocean-atmosphere system in a greenhouse Earth. In our ensemble, atmospheric CO2 spans the range 280-3000 ppm, and this variation accounts for over 90 % of the effects on mean air temperature, southern winter high-latitude ocean-land temperature contrast and northern winter tropical-polar temperature difference. However, the variation of precession accounts for over 80 % of the influence of the forcing parameters on the Asian and African monsoon rainfall, and obliquity variation accounts for over 65 % of the effects on winter ocean-land temperature contrast in high northern latitudes and northern summer tropical-polar temperature difference. Our results indicate a bimodal climate sensitivity, with values of 4.36 and 2.54 °C, dependent on low or high states of atmospheric CO2 concentration, respectively, with a threshold at approximately 1000 ppm in this model, and due to a saturated vegetation-albedo feedback. Our method gives a quantitative ranking of the influence of each of the

  10. Early diversification trend and Asian origin for extent bat lineages.

    PubMed

    Yu, W; Wu, Y; Yang, G

    2014-10-01

    Bats are a unique mammalian group, which belong to one of the largest and most diverse mammalian radiations, but their early diversification is still poorly understood, and conflicting hypotheses have emerged regarding their biogeographic history. Understanding their diversification is crucial for untangling the enigmatic evolutionary history of bats. In this study, we elucidated the rate of diversification and the biogeographic history of extant bat lineages using genus-level chronograms. The results suggest that a rapid adaptive radiation persisted from the emergence of crown bats until the Early Eocene Climatic Optimum, whereas there was a major deceleration in diversification around 35-49 Ma. There was a positive association between changes in the palaeotemperature and the net diversification rate until 35 Ma, which suggests that the palaeotemperature may have played an important role in the regulation of ecological opportunities. By contrast, there were unexpectedly higher diversification rates around 25-35 Ma during a period characterized by intense and long-lasting global cooling, which implies that intrinsic innovations or adaptations may have released some lineages from the intense selective pressures associated with these severe conditions. Our reconstruction of the ancestral distribution suggests an Asian origin for bats, thereby indicating that the current panglobal but disjunct distribution pattern of extant bats may be related to events involving seriate cross-continental dispersal and local extinction, as well as the influence of geological events and the expansion and contraction of megathermal rainforests during the Tertiary. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  11. Coupling of Oceanic and Continental Crust During Eocene Eclogite-Facies Metamorphism: Evidence From the Monte Rosa Nappe, Western Alps, Italy

    NASA Astrophysics Data System (ADS)

    Lapen, T. J.; Johnson, C. M.; Baumgartner, L. P.; Skora, S.; Mahlen, N. J.; Beard, B. L.

    2006-12-01

    Subduction of continental crust to HP-UHP metamorphic conditions requires overcoming density contrasts that are unfavorable to deep burial, whereas exhumation of these rocks can be reasonably explained through buoyancy-assisted transport in the subduction channel to more shallow depths. In the western Alps, both continental and oceanic lithosphere has been subducted to eclogite-facies metamorphic conditions. The burial and exhumation histories of these sections of lithosphere bear directly on the dynamics of subduction and the stacking of units within the subduction channel. We address the burial history of the continental crust with high precision U-Pb rutile and Lu-Hf garnet geochronology of the eclogite-facies Monte Rosa nappe (MR), western Alps, Italy. U-Pb rutile ages from quartz-carbonate-white mica-rutile veins that are hosted within eclogite and schist of the MR, Gressoney Valley, Italy, indicate that it was at eclogite-facies metamorphic conditions at 42.6 +/- 0.6 Ma. The sample area (Indren glacier, Furgg zone; Dal Piaz, 2001) consists of eclogite boudins that are surrounded by micaceous schist. Associated with the eclogite and schist are quartz-carbonate-white mica-rutile veins that formed in tension cracks in the eclogite and along the contact between eclogite and surrounding schist. Intrusion of the veins occurred at eclogite-facies metamorphic conditions (480-570°C, >1.3-1.4 GPa) based on textural relations, oxygen isotope thermometry, and geothermobarometry. Lu-Hf geochronology of garnet from a chloritoid-talc-garnet-phengite-quartz-calcite-pyrite - chalcopyrite bearing boudin within talc-chloritoid whiteschists of the MR, Val d'Ayas, Italy (Chopin and Monie, 1984; Pawlig, 2001) yields an age of 40.54 +/- 0.36 Ma. The talc-chloritoid whiteschists from the area record pressures and temperatures of 1.6-2.4 GPa and 500-530°C (Chopin and Monie, 1984; Le Bayon et al., 2006) indicating near UHP metamorphic conditions. Based on the age, P-T, and textural

  12. Anthropoid humeri from the late Eocene of Egypt

    PubMed Central

    Seiffert, Erik R.; Simons, Elwyn L.; Fleagle, John G.

    2000-01-01

    A number of recent studies have, by necessity, placed a great deal of emphasis on the dental evidence for Paleogene anthropoid interrelationships, but cladistic analyses of these data have led to the erection of phylogenetic hypotheses that appear to be at odds with biogeographic and stratigraphic considerations. Additional morphological data from the cranium and postcranium of certain poorly understood Paleogene primates are clearly needed to help test whether such hypotheses are tenable. Here we describe humeri attributable to Proteopithecus sylviae and Catopithecus browni, two anthropoids from late Eocene sediments of the Fayum Depression in Egypt. Qualitative and morphometric analyses of these elements indicate that humeri of the oligopithecine Catopithecus are more similar to early Oligocene propliopithecines than they are to any other Paleogene anthropoid taxon, and that Proteopithecus exhibits humeral similarities to parapithecids that may be symplesiomorphies of extant (or “crown”) Anthropoidea. The humeral morphology of Catopithecus is consistent with certain narrowly distributed dental apomorphies—such as the loss of the upper and lower second premolar and the development of a honing blade for the upper canine on the lower third premolar—which suggest that oligopithecines constitute the sister group of a clade containing propliopithecines and Miocene-Recent catarrhines and are not most closely related to Proteopithecus as has recently been proposed. PMID:10963669

  13. Anthropoid humeri from the late Eocene of Egypt.

    PubMed

    Seiffert, E R; Simons, E L; Fleagle, J G

    2000-08-29

    A number of recent studies have, by necessity, placed a great deal of emphasis on the dental evidence for Paleogene anthropoid interrelationships, but cladistic analyses of these data have led to the erection of phylogenetic hypotheses that appear to be at odds with biogeographic and stratigraphic considerations. Additional morphological data from the cranium and postcranium of certain poorly understood Paleogene primates are clearly needed to help test whether such hypotheses are tenable. Here we describe humeri attributable to Proteopithecus sylviae and Catopithecus browni, two anthropoids from late Eocene sediments of the Fayum Depression in Egypt. Qualitative and morphometric analyses of these elements indicate that humeri of the oligopithecine Catopithecus are more similar to early Oligocene propliopithecines than they are to any other Paleogene anthropoid taxon, and that Proteopithecus exhibits humeral similarities to parapithecids that may be symplesiomorphies of extant (or "crown") Anthropoidea. The humeral morphology of Catopithecus is consistent with certain narrowly distributed dental apomorphies-such as the loss of the upper and lower second premolar and the development of a honing blade for the upper canine on the lower third premolar-which suggest that oligopithecines constitute the sister group of a clade containing propliopithecines and Miocene-Recent catarrhines and are not most closely related to Proteopithecus as has recently been proposed.

  14. Early Tertiary Exhumation, Erosion, and Sedimentation in the Central Andes, NW Argentina

    NASA Astrophysics Data System (ADS)

    Carrapa, B.; Decelles, P. G.; Gerhels, G.; Mortimer, E.; Strecker, M. R.

    2006-12-01

    Timing of deformation and resulting sedimentation patterns in the Altiplano-Puna Plateau-Eastern Cordillera of the southern Central Andes are the subject of ongoing controversial debate. In the Bolivian Altiplano, sedimentation into a foreland basin system commenced during the Paleocene. Farther south in the Puna and Eastern Cordillera of NW Argentina, a lack of data has precluded a similar interpretation. Early Tertiary non-marine sedimentary rocks are preserved within the present day Puna Plateau and Eastern Cordillera of NW Argentina. The Salar de Pastos Grandes basin in the Puna Plateau contains more than 2 km of Eocene alluvial and fluvial strata in the Geste Formation, deposited in close proximity to orogenic source terrains. Sandstone and conglomerate petrographic data document Ordovician quartzites and minor phyllites and schists as the main source rocks. Detrital zircon U-Pb ages from both the Geste Formation and from underlying Ordovician quartzite cluster in the 900-1200 Ma (Grenville) and late Precambrian-Cambrian (Panafrican) ranges. Sparse late Eocene (~37-34 Ma) grains are also present; their large size, euhedral shape, and decreasing mean ages upsection suggest that these grains are volcanogenic (i.e. ash fall contamination), derived from an inferred magmatic arc to the west. The Eocene ages corroborate mammalian paleontological dates, defining the approximate begin of deposition of the Geste Formation. Alternatively, these young zircons could be of plutonic origin; however, no Eocene plutons are present in the surrounding source rocks and this interpretation is not likely. From W to E, fluvial rocks of the Quebrada de los Colorados Formation show similar sedimentological features as those observed for the Geste Formation, suggesting a genetic link between the two. Detrital zircon U-Pb data show mainly Panafrican ages, with sparse ages in the 860-935 Ma range and a few mid-Proterozoic ages. More importantly, a significant number of late Eocene

  15. Climatic cycles recorded in the Middle Eocene hemipelagites from a Dinaric foreland basin of Istria (Croatia)

    NASA Astrophysics Data System (ADS)

    Lužar-Oberiter, Borna; Hochuli, Peter A.; Babić, Ljubomir; Glumac, Bosiljka; Tibljaš, Darko

    2010-06-01

    Middle Eocene hemipelagic marls from the Pazin-Trieste Basin, a foreland basin of the Croatian Dinarides, display repetitive alternations of two types of marls with different resistance to weathering. This study focuses on the chemical composition, stable isotopes, and palynomorph content of these marls in order to better understand the nature of their cyclic deposition and to identify possible paleoenvironmental drivers responsible for their formation. The less resistant marls (LRM) have consistently lower carbonate content, lower δ18O and δ13C values, and more abundant dinoflagellate cysts than the more resistant marls (MRM). We interpret these differences between the two marl types to be a result of climatic variations, likely related to Milankovitch oscillations. Periods with wetter climate, associated with increased continental runoff, detrital and nutrient influx produced the LRM. Higher nutrient supply sparked higher dinoflagellate productivity during these times, while reduced salinity and stratification of the water column may have hampered the productivity of calcareous nannoplankton and/or planktonic foraminifera. In contrast, the MRM formed during dryer periods which favoured higher carbonate accumulation rates. This study provides new information about the sedimentary record of short-scale climate variations reflected in wet-dry cycles during an overall warm, greenhouse Earth.

  16. The paleobiology of Amphipithecidae, South Asian late Eocene primates.

    PubMed

    Kay, Richard F; Schmitt, Daniel; Vinyard, Christopher J; Perry, Jonathan M G; Shigehara, Nobuo; Takai, Masanaru; Egi, Naoko

    2004-01-01

    Analysis of the teeth, orbital, and gnathic regions of the skull, and fragmentary postcranial bones provides evidence for reconstructing a behavioral profile of Amphipithecidae: Pondaungia, Amphipithecus, Myanmarpithecus (late middle Eocene, Myanmar) and Siamopithecus (late Eocene, Thailand). At 5-8 kg, Pondaungia, Amphipithecus, and Siamopithecus are perhaps the largest known Eocene primates. The dental and mandibular anatomy suggest that large-bodied amphipithecids were hard-object feeders. The shape of the mandibular corpus and stiffened symphysis suggest an ability to resist large internal loads during chewing and to recruit significant amounts of muscle forces from both the chewing and non-chewing sides of the jaw so as to increase bite force during mastication. The large spatulate upper central incisor of Pondaungia and projecting robust canines of all the larger amphipithecids suggest that incisal food preparation was important. The molars of Siamopithecus, Amphipithecus, and Pondaungia have weak shearing crests. This, and the thick molar enamel found in Pondaungia, suggests a diet of seeds and other hard objects low in fiber. In contrast, Myanmarpithecus was smaller, about 1-2 kg; its cheek teeth suggest a frugivorous diet and do not imply seed eating. Postcranial bones (humerus, ulna, and calcaneus) of a single large amphipithecid individual from Myanmar suggest an arboreal quadrupedal locomotor style like that of howler monkeys or lorises. The humeral head is rounded, proximally oriented, and the tuberosities are low indicating an extremely mobile glenohumeral joint. The great thickness of the midshaft cortical bone of the humerus implies enhanced ability to resist bending and torsion, as seen among slow moving primate quadrupeds. The elbow joint exhibits articular features for enhanced stability in habitually flexed positions, features also commonly found in slow moving arboreal quadrupeds. The short distal load arm of the calcaneus is consistent with

  17. Eocene Loranthaceae pollen pushes back divergence ages for major splits in the family

    PubMed Central

    Kapli, Paschalia; Hofmann, Christa-Charlotte

    2017-01-01

    Background We revisit the palaeopalynological record of Loranthaceae, using pollen ornamentation to discriminate lineages and to test molecular dating estimates for the diversification of major lineages. Methods Fossil Loranthaceae pollen from the Eocene and Oligocene are analysed and documented using scanning-electron microscopy. These fossils were associated with molecular-defined clades and used as minimum age constraints for Bayesian node dating using different topological scenarios. Results The fossil Loranthaceae pollen document the presence of at least one extant root-parasitic lineage (Nuytsieae) and two currently aerial parasitic lineages (Psittacanthinae and Loranthinae) by the end of the Eocene in the Northern Hemisphere. Phases of increased lineage diversification (late Eocene, middle Miocene) coincide with global warm phases. Discussion With the generation of molecular data becoming easier and less expensive every day, neontological research should re-focus on conserved morphologies that can be traced through the fossil record. The pollen, representing the male gametophytic generation of plants and often a taxonomic indicator, can be such a tracer. Analogously, palaeontological research should put more effort into diagnosing Cenozoic fossils with the aim of including them into modern systematic frameworks. PMID:28607837

  18. Late Eocene Hydrological Conditions on the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Feakins, S. J.; Deconto, R. M.; Warny, S.

    2013-12-01

    The late Eocene to Oligocene transition (EOT) witnessed a major ice advance on Antarctica. Little is known about hydrological conditions in the Antarctic Peninsula during the late Eocene prior to the major ice advance. Here we explore the hydrological conditions with proxy reconstructions from marine sediment core NBP0602A-3C, adjacent to the tip of the Antarctic Peninsula, with sediments dated to approximately 35.9 × 1.1 Ma providing a snapshot of conditions prior to the EOT. We combine plant leaf wax hydrogen isotopic evidence paired with previously-published evidence from pollen assemblages from the marine core, and compare to results of climate model experiments. The pollen from late Eocene sediments of NBP0602A-3C indicate a Nothofagidites (southern beech) dominated landscape. In the same sediments, leaf wax hydrogen isotope (δDwax) values average -202×7‰ (1σ, n=22) for the C28 n-alkanoic acid. Based on an estimated net fractionation of -100‰, these values suggest paleoprecipitation δD values on the order of -118×8‰. The similarity between Late Eocene precipitation isotopic reconstructions (with no ice on what was then an island) and in situ modern isotopic values (while ice-covered) is surprising as ice-free conditions should imply warmer temperatures which would normally imply more enriched isotopic values. Convergent isotopic compositions during demonstrably different environments require a dynamical test to evaluate this validity of this isotopic result. In order to test the isotopic response to an expanding Antarctic ice sheet across the EOT, we conducted experiments with an isotope-enabled GCM. We simulated conditions before, during, and after the transition by systematically decreasing carbon dioxide levels from 1000 to 560 ppm while increasing ice volume to represent an ice-free to fully glaciated continent. Model experiments predict changes in vegetation cover from mixed forest to tundra biomes, reductions in austral summer temperature of

  19. Upper Cretaceous and lower Eocene conglomerates of Western Transverse Ranges: evidence for tectonic rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, W.E.; Krause, R.G.F.

    1989-04-01

    Stratigraphic and paleomagnetic studies have suggested that the western Transverse Ranges (WTR) microplate is allochthonous, and may have experienced translational and rotational motions. Present paleocurrent directions from the Upper Cretaceous Jalama Formation of the Santa Ynez Mountains are north-directed; these forearc sediments (Great Valley sequence) contain magmatic arc-derived conglomerate clasts from the Peninsular Ranges in southern California. Paleocurrents in the lower Eocene Juncal and Cozy Dell Formations are south-directed. This juxtaposition is best explained by 90/degrees/ or more of clockwise rotation of the WTR microplate, so that Upper Cretaceous forearc sediments sourced from the Peninsular Ranges magmatic arc were depositedmore » by west-directed currents. Eocene sediments were derived from an uplifted portion of the western basin margin and deposited by east-directed currents. Franciscan olistoliths in the Upper Cretaceous sediments indicate deposition adjacent to an accretionary wedge; conglomeratic clasts recycled from the Upper Cretaceous sequence, and radiolarian cherts and ophiolitic boulders in the Eocene strata indicate derivation from an outer accretionary ridge.« less

  20. Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water

    PubMed Central

    Fahlke, Julia M.; Gingerich, Philip D.; Welsh, Robert C.; Wood, Aaron R.

    2011-01-01

    Eocene archaeocete whales gave rise to all modern toothed and baleen whales (Odontoceti and Mysticeti) during or near the Eocene-Oligocene transition. Odontocetes have asymmetrical skulls, with asymmetry linked to high-frequency sound production and echolocation. Mysticetes are generally assumed to have symmetrical skulls and lack high-frequency hearing. Here we show that protocetid and basilosaurid archaeocete skulls are distinctly and directionally asymmetrical. Archaeocete asymmetry involves curvature and axial torsion of the cranium, but no telescoping. Cranial asymmetry evolved in Eocene archaeocetes as part of a complex of traits linked to directional hearing (such as pan-bone thinning of the lower jaws, mandibular fat pads, and isolation of the ear region), probably enabling them to hear the higher sonic frequencies of sound-producing fish on which they preyed. Ultrasonic echolocation evolved in Oligocene odontocetes, enabling them to find silent prey. Asymmetry and much of the sonic-frequency range of directional hearing were lost in Oligocene mysticetes during the shift to low-frequency hearing and bulk-straining predation. PMID:21873217