Kermani, Bahram G
2016-07-01
Crystal Genetics, Inc. is an early-stage genetic test company, focused on achieving the highest possible clinical-grade accuracy and comprehensiveness for detecting germline (e.g., in hereditary cancer) and somatic (e.g., in early cancer detection) mutations. Crystal's mission is to significantly improve the health status of the population, by providing high accuracy, comprehensive, flexible and affordable genetic tests, primarily in cancer. Crystal's philosophy is that when it comes to detecting mutations that are strongly correlated with life-threatening diseases, the detection accuracy of every single mutation counts: a single false-positive error could cause severe anxiety for the patient. And, more importantly, a single false-negative error could potentially cost the patient's life. Crystal's objective is to eliminate both of these error types.
Douglas, Julie A.; Skol, Andrew D.; Boehnke, Michael
2002-01-01
Gene-mapping studies routinely rely on checking for Mendelian transmission of marker alleles in a pedigree, as a means of screening for genotyping errors and mutations, with the implicit assumption that, if a pedigree is consistent with Mendel’s laws of inheritance, then there are no genotyping errors. However, the occurrence of inheritance inconsistencies alone is an inadequate measure of the number of genotyping errors, since the rate of occurrence depends on the number and relationships of genotyped pedigree members, the type of errors, and the distribution of marker-allele frequencies. In this article, we calculate the expected probability of detection of a genotyping error or mutation as an inheritance inconsistency in nuclear-family data, as a function of both the number of genotyped parents and offspring and the marker-allele frequency distribution. Through computer simulation, we explore the sensitivity of our analytic calculations to the underlying error model. Under a random-allele–error model, we find that detection rates are 51%–77% for multiallelic markers and 13%–75% for biallelic markers; detection rates are generally lower when the error occurs in a parent than in an offspring, unless a large number of offspring are genotyped. Errors are especially difficult to detect for biallelic markers with equally frequent alleles, even when both parents are genotyped; in this case, the maximum detection rate is 34% for four-person nuclear families. Error detection in families in which parents are not genotyped is limited, even with multiallelic markers. Given these results, we recommend that additional error checking (e.g., on the basis of multipoint analysis) be performed, beyond routine checking for Mendelian consistency. Furthermore, our results permit assessment of the plausibility of an observed number of inheritance inconsistencies for a family, allowing the detection of likely pedigree—rather than genotyping—errors in the early stages of a genome scan. Such early assessments are valuable in either the targeting of families for resampling or discontinued genotyping. PMID:11791214
For biomonitoring efforts aimed at early detection of aquatic invasive species (AIS), the ability to detect rare individuals is key and requires accurate species level identification to maintain a low occurrence probability of non-detection errors (failure to detect a present spe...
For early detection biomonitoring of aquatic invasive species, sensitivity to rare individuals and accurate, high-resolution taxonomic classification are critical to minimize detection errors. Given the great expense and effort associated with morphological identification of many...
Syndromic surveillance for health information system failures: a feasibility study.
Ong, Mei-Sing; Magrabi, Farah; Coiera, Enrico
2013-05-01
To explore the applicability of a syndromic surveillance method to the early detection of health information technology (HIT) system failures. A syndromic surveillance system was developed to monitor a laboratory information system at a tertiary hospital. Four indices were monitored: (1) total laboratory records being created; (2) total records with missing results; (3) average serum potassium results; and (4) total duplicated tests on a patient. The goal was to detect HIT system failures causing: data loss at the record level; data loss at the field level; erroneous data; and unintended duplication of data. Time-series models of the indices were constructed, and statistical process control charts were used to detect unexpected behaviors. The ability of the models to detect HIT system failures was evaluated using simulated failures, each lasting for 24 h, with error rates ranging from 1% to 35%. In detecting data loss at the record level, the model achieved a sensitivity of 0.26 when the simulated error rate was 1%, while maintaining a specificity of 0.98. Detection performance improved with increasing error rates, achieving a perfect sensitivity when the error rate was 35%. In the detection of missing results, erroneous serum potassium results and unintended repetition of tests, perfect sensitivity was attained when the error rate was as small as 5%. Decreasing the error rate to 1% resulted in a drop in sensitivity to 0.65-0.85. Syndromic surveillance methods can potentially be applied to monitor HIT systems, to facilitate the early detection of failures.
For early detection biomonitoring of aquatic invasive species, sensitivity to rare individuals and accurate, high-resolution taxonomic classification are critical to minimize Type I and II detection errors. Given the great expense and effort associated with morphological identifi...
Syndromic surveillance for health information system failures: a feasibility study
Ong, Mei-Sing; Magrabi, Farah; Coiera, Enrico
2013-01-01
Objective To explore the applicability of a syndromic surveillance method to the early detection of health information technology (HIT) system failures. Methods A syndromic surveillance system was developed to monitor a laboratory information system at a tertiary hospital. Four indices were monitored: (1) total laboratory records being created; (2) total records with missing results; (3) average serum potassium results; and (4) total duplicated tests on a patient. The goal was to detect HIT system failures causing: data loss at the record level; data loss at the field level; erroneous data; and unintended duplication of data. Time-series models of the indices were constructed, and statistical process control charts were used to detect unexpected behaviors. The ability of the models to detect HIT system failures was evaluated using simulated failures, each lasting for 24 h, with error rates ranging from 1% to 35%. Results In detecting data loss at the record level, the model achieved a sensitivity of 0.26 when the simulated error rate was 1%, while maintaining a specificity of 0.98. Detection performance improved with increasing error rates, achieving a perfect sensitivity when the error rate was 35%. In the detection of missing results, erroneous serum potassium results and unintended repetition of tests, perfect sensitivity was attained when the error rate was as small as 5%. Decreasing the error rate to 1% resulted in a drop in sensitivity to 0.65–0.85. Conclusions Syndromic surveillance methods can potentially be applied to monitor HIT systems, to facilitate the early detection of failures. PMID:23184193
Cost-benefit analysis: newborn screening for inborn errors of metabolism in Lebanon.
Khneisser, I; Adib, S; Assaad, S; Megarbane, A; Karam, P
2015-12-01
Few countries in the Middle East-North Africa region have adopted national newborn screening for inborn errors of metabolism by tandem mass spectrometry (MS/MS). We aimed to evaluate the cost-benefit of newborn screening for such disorders in Lebanon, as a model for other developing countries in the region. Average costs of expected care for inborn errors of metabolism cases as a group, between ages 0 and 18, early and late diagnosed, were calculated from 2007 to 2013. The monetary value of early detection using MS/MS was compared with that of clinical "late detection", including cost of diagnosis and hospitalizations. During this period, 126000 newborns were screened. Incidence of detected cases was 1/1482, which can be explained by high consanguinity rates in Lebanon. A reduction by half of direct cost of care, reaching on average 31,631 USD per detected case was shown. This difference more than covers the expense of starting a newborn screening programme. Although this model does not take into consideration the indirect benefits of the better quality of life of those screened early, it can be argued that direct and indirect costs saved through early detection of these disorders are important enough to justify universal publicly-funded screening, especially in developing countries with high consanguinity rates, as shown through this data from Lebanon. © The Author(s) 2015.
ERIC Educational Resources Information Center
Vocat, Roland; Pourtois, Gilles; Vuilleumier, Patrik
2008-01-01
The detection of errors is known to be associated with two successive neurophysiological components in EEG, with an early time-course following motor execution: the error-related negativity (ERN/Ne) and late positivity (Pe). The exact cognitive and physiological processes contributing to these two EEG components, as well as their functional…
Online production validation in a HEP environment
NASA Astrophysics Data System (ADS)
Harenberg, T.; Kuhl, T.; Lang, N.; Mättig, P.; Sandhoff, M.; Schwanenberger, C.; Volkmer, F.
2017-03-01
In high energy physics (HEP) event simulations, petabytes of data are processed and stored requiring millions of CPU-years. This enormous demand for computing resources is handled by centers distributed worldwide, which form part of the LHC computing grid. The consumption of such an important amount of resources demands for an efficient production of simulation and for the early detection of potential errors. In this article we present a new monitoring framework for grid environments, which polls a measure of data quality during job execution. This online monitoring facilitates the early detection of configuration errors (specially in simulation parameters), and may thus contribute to significant savings in computing resources.
Extraction and Analysis of Display Data
NASA Technical Reports Server (NTRS)
Land, Chris; Moye, Kathryn
2008-01-01
The Display Audit Suite is an integrated package of software tools that partly automates the detection of Portable Computer System (PCS) Display errors. [PCS is a lap top computer used onboard the International Space Station (ISS).] The need for automation stems from the large quantity of PCS displays (6,000+, with 1,000,000+ lines of command and telemetry data). The Display Audit Suite includes data-extraction tools, automatic error detection tools, and database tools for generating analysis spread sheets. These spread sheets allow engineers to more easily identify many different kinds of possible errors. The Suite supports over 40 independent analyses, 16 NASA Tech Briefs, November 2008 and complements formal testing by being comprehensive (all displays can be checked) and by revealing errors that are difficult to detect via test. In addition, the Suite can be run early in the development cycle to find and correct errors in advance of testing.
Detection of layup errors in prepreg laminates using shear ultrasonic waves
NASA Astrophysics Data System (ADS)
Hsu, David K.; Fischer, Brent A.
1996-11-01
The highly anisotropic elastic properties of the plies in a composite laminate manufactured from unidirectional prepregs interact strongly with the polarization direction of shear ultrasonic waves propagating through its thickness. The received signals in a 'crossed polarizer' transmission configuration are particularly sensitive to ply orientation and layup sequence in a laminate. Such measurements can therefore serve as an NDE tool for detecting layup errors. For example, it was shown experimentally recently that the sensitivity for detecting the presence of misoriented plies is better than one ply out of a 48-ply laminate of graphite epoxy. A physical model based on the decomposition and recombination of the shear polarization vector has been constructed and used in the interpretation and prediction of test results. Since errors should be detected early in the manufacturing process, this work also addresses the inspection of 'green' composite laminates using electromagnetic acoustic transducers (EMAT). Preliminary results for ply error detection obtained with EMAT probes are described.
Detecting Careless Responses to Self-Reported Questionnaires
ERIC Educational Resources Information Center
Kountur, Ronny
2016-01-01
Problem Statement: The use of self-report questionnaires may lead to biases such as careless responses that distort the research outcomes. Early detection of careless responses in self-report questionnaires may reduce error, but little guidance exists in the literature regarding techniques for detecting such careless or random responses in…
Unal, Ozlem; Oztürk-Hişmi, Burcu; Coşkun, Turgay; Tokatlı, Ayşegül; Dursun, Ali; Sivri, Hatice Serap
2012-01-01
In many countries, neonatal screening programs have been unable to expand and have been limited to a few diseases. We highlight herein the opportunity available for the early detection of some inborn errors of metabolism (IEMs) in those countries in which newborn screening programs are limited. All the newborns that are referred to us for hyperphenylalaninemia are examined physically and their blood samples are checked by both high-performance liquid chromatography (HPLC) for blood phenylalanine levels and by amino acid analyzer for the measurement of blood amino acid concentrations. Seven patients who had been referred to our unit for hyperphenylalaninemia were eventually diagnosed with another IEM. A careful physical examination of the babies sent for positive screening test result combined with the utilization of low expense screening techniques at the experienced referring centers might facilitate otherwise missed opportunities for the early detection of some IEMs.
[New possibilities screening of refractive errors among children].
Ondrejková, M; Kyselová, P
2013-06-01
To establish early detection of refractive errors among children in Slovakia. Different screening methods have been evaluated and compared in this work. we have been working on a prospective study. Pre-school children in kindergardens in Central Slovakia were checked up between years 2009-2011. Effectiveness of various screening methods was compared within 2 groups, using test-type and Plusoptix Vision Screener. Parentęs of children positive to refractive errors were recommended to consult a paediatrician ophthalmologist. 3982 children were examined. As a result, 13-14.1% of children who have not been examinated by the specialist, were positive. 53.3% of them went to see the doctor afterwards. establishment of early refractive errors screening is an important method how to prevent strabismus and amblyopia. It is very important to improve parentęs knowledge about the risk of refractive errors and also to improve screening methods with collaboration with kindergarten teachers.
Validation, Edits, and Application Processing Phase II and Error-Prone Model Report.
ERIC Educational Resources Information Center
Gray, Susan; And Others
The impact of quality assurance procedures on the correct award of Basic Educational Opportunity Grants (BEOGs) for 1979-1980 was assessed, and a model for detecting error-prone applications early in processing was developed. The Bureau of Student Financial Aid introduced new comments into the edit system in 1979 and expanded the pre-established…
Neural evidence for enhanced error detection in major depressive disorder.
Chiu, Pearl H; Deldin, Patricia J
2007-04-01
Anomalies in error processing have been implicated in the etiology and maintenance of major depressive disorder. In particular, depressed individuals exhibit heightened sensitivity to error-related information and negative environmental cues, along with reduced responsivity to positive reinforcers. The authors examined the neural activation associated with error processing in individuals diagnosed with and without major depression and the sensitivity of these processes to modulation by monetary task contingencies. The error-related negativity and error-related positivity components of the event-related potential were used to characterize error monitoring in individuals with major depressive disorder and the degree to which these processes are sensitive to modulation by monetary reinforcement. Nondepressed comparison subjects (N=17) and depressed individuals (N=18) performed a flanker task under two external motivation conditions (i.e., monetary reward for correct responses and monetary loss for incorrect responses) and a nonmonetary condition. After each response, accuracy feedback was provided. The error-related negativity component assessed the degree of anomaly in initial error detection, and the error positivity component indexed recognition of errors. Across all conditions, the depressed participants exhibited greater amplitude of the error-related negativity component, relative to the comparison subjects, and equivalent error positivity amplitude. In addition, the two groups showed differential modulation by task incentives in both components. These data implicate exaggerated early error-detection processes in the etiology and maintenance of major depressive disorder. Such processes may then recruit excessive neural and cognitive resources that manifest as symptoms of depression.
Signature-forecasting and early outbreak detection system
Naumova, Elena N.; MacNeill, Ian B.
2008-01-01
SUMMARY Daily disease monitoring via a public health surveillance system provides valuable information on population risks. Efficient statistical tools for early detection of rapid changes in the disease incidence are a must for modern surveillance. The need for statistical tools for early detection of outbreaks that are not based on historical information is apparent. A system is discussed for monitoring cases of infections with a view to early detection of outbreaks and to forecasting the extent of detected outbreaks. We propose a set of adaptive algorithms for early outbreak detection that does not rely on extensive historical recording. We also include knowledge of infection disease epidemiology into forecasts. To demonstrate this system we use data from the largest water-borne outbreak of cryptosporidiosis, which occurred in Milwaukee in 1993. Historical data are smoothed using a loess-type smoother. Upon receipt of a new datum, the smoothing is updated and estimates are made of the first two derivatives of the smooth curve, and these are used for near-term forecasting. Recent data and the near-term forecasts are used to compute a color-coded warning index, which quantify the level of concern. The algorithms for computing the warning index have been designed to balance Type I errors (false prediction of an epidemic) and Type II errors (failure to correctly predict an epidemic). If the warning index signals a sufficiently high probability of an epidemic, then a forecast of the possible size of the outbreak is made. This longer term forecast is made by fitting a ‘signature’ curve to the available data. The effectiveness of the forecast depends upon the extent to which the signature curve captures the shape of outbreaks of the infection under consideration. PMID:18716671
Automatic detection of MLC relative position errors for VMAT using the EPID-based picket fence test
NASA Astrophysics Data System (ADS)
Christophides, Damianos; Davies, Alex; Fleckney, Mark
2016-12-01
Multi-leaf collimators (MLCs) ensure the accurate delivery of treatments requiring complex beam fluences like intensity modulated radiotherapy and volumetric modulated arc therapy. The purpose of this work is to automate the detection of MLC relative position errors ⩾0.5 mm using electronic portal imaging device-based picket fence tests and compare the results to the qualitative assessment currently in use. Picket fence tests with and without intentional MLC errors were measured weekly on three Varian linacs. The picket fence images analysed covered a time period ranging between 14-20 months depending on the linac. An algorithm was developed that calculated the MLC error for each leaf-pair present in the picket fence images. The baseline error distributions of each linac were characterised for an initial period of 6 months and compared with the intentional MLC errors using statistical metrics. The distributions of median and one-sample Kolmogorov-Smirnov test p-value exhibited no overlap between baseline and intentional errors and were used retrospectively to automatically detect MLC errors in routine clinical practice. Agreement was found between the MLC errors detected by the automatic method and the fault reports during clinical use, as well as interventions for MLC repair and calibration. In conclusion the method presented provides for full automation of MLC quality assurance, based on individual linac performance characteristics. The use of the automatic method has been shown to provide early warning for MLC errors that resulted in clinical downtime.
Linguistic and Literacy Predictors of Early Spelling in First and Second Language Learners
ERIC Educational Resources Information Center
Keilty, Megan; Harrison, Gina L.
2015-01-01
Error analyses using a multidimensional measure were conducted on the misspellings of Kindergarten children speaking English as a first (EL1) and English as a second language (ESL) in order to detect any differences in early spelling ability between language groups. Oral vocabulary, syntactic knowledge, phonological processing, letter/word…
Model Based Verification of Cyber Range Event Environments
2015-12-10
Model Based Verification of Cyber Range Event Environments Suresh K. Damodaran MIT Lincoln Laboratory 244 Wood St., Lexington, MA, USA...apply model based verification to cyber range event environment configurations, allowing for the early detection of errors in event environment...Environment Representation (CCER) ontology. We also provide an overview of a methodology to specify verification rules and the corresponding error
Hypoglycemia early alarm systems based on recursive autoregressive partial least squares models.
Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick
2013-01-01
Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. © 2012 Diabetes Technology Society.
Hypoglycemia Early Alarm Systems Based on Recursive Autoregressive Partial Least Squares Models
Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick
2013-01-01
Background Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. Methods A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Results Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. Conclusions The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. PMID:23439179
Oral precancerous lesions: Problems of early detection and oral cancer prevention
NASA Astrophysics Data System (ADS)
Gileva, Olga S.; Libik, Tatiana V.; Danilov, Konstantin V.
2016-08-01
The study presents the results of the research in the structure, local and systemic risk factors, peculiarities of the clinical manifestation, and quality of primary diagnosis of precancerous oral mucosa lesions (OMLs). In the study a wide range of OMLs and high (25.4%) proportion of oral precancerous lesions (OPLs) in their structure was indicated. The high percentage of different diagnostic errors and the lack of oncological awareness of dental practitioners, as well as the sharp necessity of inclusion of precancer/cancer early detection techniques into their daily practice were noted. The effectiveness of chemilumenescence system of early OPLs and oral cancer detection was demonstrated, the prospects of infrared thermography as a diagnostic tool were also discussed.
Jarvis, Stuart; Kovacs, Caroline; Briggs, Jim; Meredith, Paul; Schmidt, Paul E; Featherstone, Peter I; Prytherch, David R; Smith, Gary B
2015-08-01
Although the weightings to be summed in an early warning score (EWS) calculation are small, calculation and other errors occur frequently, potentially impacting on hospital efficiency and patient care. Use of a simpler EWS has the potential to reduce errors. We truncated 36 published 'standard' EWSs so that, for each component, only two scores were possible: 0 when the standard EWS scored 0 and 1 when the standard EWS scored greater than 0. Using 1564,153 vital signs observation sets from 68,576 patient care episodes, we compared the discrimination (measured using the area under the receiver operator characteristic curve--AUROC) of each standard EWS and its truncated 'binary' equivalent. The binary EWSs had lower AUROCs than the standard EWSs in most cases, although for some the difference was not significant. One system, the binary form of the National Early Warning System (NEWS), had significantly better discrimination than all standard EWSs, except for NEWS. Overall, Binary NEWS at a trigger value of 3 would detect as many adverse outcomes as are detected by NEWS using a trigger of 5, but would require a 15% higher triggering rate. The performance of Binary NEWS is only exceeded by that of standard NEWS. It may be that Binary NEWS, as a simplified system, can be used with fewer errors. However, its introduction could lead to significant increases in workload for ward and rapid response team staff. The balance between fewer errors and a potentially greater workload needs further investigation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Masked and unmasked error-related potentials during continuous control and feedback
NASA Astrophysics Data System (ADS)
Lopes Dias, Catarina; Sburlea, Andreea I.; Müller-Putz, Gernot R.
2018-06-01
The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well established in the brain–computer interface (BCI) field. However, the decoding of ErrPs in tasks with continuous feedback is still in its early stages. Objective. We developed a task in which subjects have continuous control of a cursor’s position by means of a joystick. The cursor’s position was shown to the participants in two different modalities of continuous feedback: normal and jittered. The jittered feedback was created to mimic the instability that could exist if participants controlled the trajectory directly with brain signals. Approach. This paper studies the electroencephalographic (EEG)—measurable signatures caused by a loss of control over the cursor’s trajectory, causing a target miss. Main results. In both feedback modalities, time-locked potentials revealed the typical frontal-central components of error-related potentials. Errors occurring during the jittered feedback (masked errors) were delayed in comparison to errors occurring during normal feedback (unmasked errors). Masked errors displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis allowed a good distinction between correct and error classes (average Cohen-, average TPR = 81.8% and average TNR = 96.4%). Time-locked classification analysis between masked error and unmasked error classes revealed results at chance level (average Cohen-, average TPR = 60.9% and average TNR = 58.3%). Afterwards, we performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 84.0% and in an average TPR of 64.9%. Significance. The time-locked classification results suggest that the masked and unmasked errors were indistinguishable in terms of classification. The asynchronous classification results suggest that the feedback modality did not hinder the asynchronous detection of ErrPs.
Zhang, Wei; Regterschot, G Ruben H; Wahle, Fabian; Geraedts, Hilde; Baldus, Heribert; Zijlstra, Wiebren
2014-01-01
Falls result in substantial disability, morbidity, and mortality among older people. Early detection of fall risks and timely intervention can prevent falls and injuries due to falls. Simple field tests, such as repeated chair rise, are used in clinical assessment of fall risks in older people. Development of on-body sensors introduces potential beneficial alternatives for traditional clinical methods. In this article, we present a pendant sensor based chair rise detection and analysis algorithm for fall risk assessment in older people. The recall and the precision of the transfer detection were 85% and 87% in standard protocol, and 61% and 89% in daily life activities. Estimation errors of chair rise performance indicators: duration, maximum acceleration, peak power and maximum jerk were tested in over 800 transfers. Median estimation error in transfer peak power ranged from 1.9% to 4.6% in various tests. Among all the performance indicators, maximum acceleration had the lowest median estimation error of 0% and duration had the highest median estimation error of 24% over all tests. The developed algorithm might be feasible for continuous fall risk assessment in older people.
Pokupec, Rajko; Mrazovac, Danijela; Popović-Suić, Smiljka; Mrazovac, Visnja; Kordić, Rajko; Petricek, Igor
2013-04-01
Early detection of a refractive error and its correction are extremely important for the prevention of amblyopia (poor vision). The golden standard in the detection of refractive errors is retinoscopy--a method where the pupils are dilated in order to exclude accomodation. This results in a more accurate measurement of a refractive error. Automatic computer refractometer is also in use. The study included 30 patients, 15 boys, 15 girls aged 4-16. The first examination was conducted with refractometer on narrow pupils. Retinoscopy, followed by another examination with refractometer was performed on pupils dilated with mydriatic drops administered 3 times. The results obtained with three methods were compared. They indicate that in narrow pupils the autorefractometer revealed an increased diopter value in nearsightedness (myopia), the minus overcorrection, whereas findings obtained with retinoscopy and autorefractometer in mydriasis cycloplegia, were much more accurate. The results were statistically processed, which confirmed the differences between obtained measurements. These findings are consistent with the results of studies conducted by other authors. Automatic refractometry on narrow pupils has proven to be a method for detection of refractive errors in children. However, the exact value of the refractive error is obtained only in mydriasis--with retinoscopy or an automatic refractometer on dilated pupils.
Comparison of algorithms for automatic border detection of melanoma in dermoscopy images
NASA Astrophysics Data System (ADS)
Srinivasa Raghavan, Sowmya; Kaur, Ravneet; LeAnder, Robert
2016-09-01
Melanoma is one of the most rapidly accelerating cancers in the world [1]. Early diagnosis is critical to an effective cure. We propose a new algorithm for more accurately detecting melanoma borders in dermoscopy images. Proper border detection requires eliminating occlusions like hair and bubbles by processing the original image. The preprocessing step involves transforming the RGB image to the CIE L*u*v* color space, in order to decouple brightness from color information, then increasing contrast, using contrast-limited adaptive histogram equalization (CLAHE), followed by artifacts removal using a Gaussian filter. After preprocessing, the Chen-Vese technique segments the preprocessed images to create a lesion mask which undergoes a morphological closing operation. Next, the largest central blob in the lesion is detected, after which, the blob is dilated to generate an image output mask. Finally, the automatically-generated mask is compared to the manual mask by calculating the XOR error [3]. Our border detection algorithm was developed using training and test sets of 30 and 20 images, respectively. This detection method was compared to the SRM method [4] by calculating the average XOR error for each of the two algorithms. Average error for test images was 0.10, using the new algorithm, and 0.99, using SRM method. In comparing the average error values produced by the two algorithms, it is evident that the average XOR error for our technique is lower than the SRM method, thereby implying that the new algorithm detects borders of melanomas more accurately than the SRM algorithm.
A Framework for Performing V&V within Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1996-01-01
Verification and validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In order to provide early detection of errors, V&V is conducted in parallel with system development, often beginning with the concept phase. In reuse-based software engineering, however, decisions on the requirements, design and even implementation of domain assets can be made prior to beginning development of a specific system. In this case, V&V must be performed during domain engineering in order to have an impact on system development. This paper describes a framework for performing V&V within architecture-centric, reuse-based software engineering. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.
Pupillometry: Cutting Edge Biometrics for Early Intervention in Increased Intracranial Pressure.
John, Jennilee St
2015-10-01
The pupillometer, a cutting-edge biometric device, is a valuable assessment tool that can aid in the early detection and prompt treatment of neurological abnormalities. Pupil assessment is a critical component of the neurological examination, and manual pupil assessment leaves much room for error. Automated pupillometry improves the quality and reliability of pupillary and neurological assessments, ultimately improving patient outcomes. Copyright 2015, SLACK Incorporated.
Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development
McCoy, Rajiv C.; Demko, Zachary P.; Ryan, Allison; Banjevic, Milena; Hill, Matthew; Sigurjonsson, Styrmir; Rabinowitz, Matthew; Petrov, Dmitri A.
2015-01-01
Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight into the cytogenetic mechanisms underlying their formation and the consequences for human fertility. PMID:26491874
What's New with Newborn Screening
ERIC Educational Resources Information Center
Exceptional Parent, 2008
2008-01-01
Newborn screening is the process of testing and screening newborns shortly after birth for certain, potentially dangerous, conditions and/or impairments--conditions that include everything from inborn errors of metabolism and other genetic disorders to hearing impairment. Early detection through newborn screening is paramount, often allowing the…
Yang, Eunjoo; Park, Hyun Woo; Choi, Yeon Hwa; Kim, Jusim; Munkhdalai, Lkhagvadorj; Musa, Ibrahim; Ryu, Keun Ho
2018-05-11
Early detection of infectious disease outbreaks is one of the important and significant issues in syndromic surveillance systems. It helps to provide a rapid epidemiological response and reduce morbidity and mortality. In order to upgrade the current system at the Korea Centers for Disease Control and Prevention (KCDC), a comparative study of state-of-the-art techniques is required. We compared four different temporal outbreak detection algorithms: the CUmulative SUM (CUSUM), the Early Aberration Reporting System (EARS), the autoregressive integrated moving average (ARIMA), and the Holt-Winters algorithm. The comparison was performed based on not only 42 different time series generated taking into account trends, seasonality, and randomly occurring outbreaks, but also real-world daily and weekly data related to diarrhea infection. The algorithms were evaluated using different metrics. These were namely, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), F1 score, symmetric mean absolute percent error (sMAPE), root-mean-square error (RMSE), and mean absolute deviation (MAD). Although the comparison results showed better performance for the EARS C3 method with respect to the other algorithms, despite the characteristics of the underlying time series data, Holt⁻Winters showed better performance when the baseline frequency and the dispersion parameter values were both less than 1.5 and 2, respectively.
Monitoring others' errors: The role of the motor system in early childhood and adulthood.
Meyer, Marlene; Braukmann, Ricarda; Stapel, Janny C; Bekkering, Harold; Hunnius, Sabine
2016-03-01
Previous research demonstrates that from early in life, our cortical sensorimotor areas are activated both when performing and when observing actions (mirroring). Recent findings suggest that the adult motor system is also involved in detecting others' rule violations. Yet, how this translates to everyday action errors (e.g., accidentally dropping something) and how error-sensitive motor activity for others' actions emerges are still unknown. In this study, we examined the role of the motor system in error monitoring. Participants observed successful and unsuccessful pincer grasp actions while their electroencephalography was registered. We tested infants (8- and 14-month-olds) at different stages of learning the pincer grasp and adults as advanced graspers. Power in Alpha- and Beta-frequencies was analysed to assess motor and visual processing. Adults showed enhanced motor activity when observing erroneous actions. However, neither 8- nor 14-month-olds displayed this error sensitivity, despite showing motor activity for both actions. All groups did show similar visual activity, that is more Alpha-suppression, when observing correct actions. Thus, while correct and erroneous actions were processed as visually distinct in all age groups, only the adults' motor system was sensitive to action correctness. Functionality of different brain oscillations in the development of error monitoring and mirroring is discussed. © 2015 The British Psychological Society.
Mino-León, Dolores; Reyes-Morales, Hortensia; Jasso, Luis; Douvoba, Svetlana Vladislavovna
2012-06-01
Inappropriate prescription is a relevant problem in primary health care settings in Mexico, with potentially harmful consequences for patients. To evaluate the effectiveness of incorporating a pharmacist into primary care health team to reduce prescription errors for patients with diabetes and/or hypertension. One Family Medicine Clinic from the Mexican Institute of Social Security in Mexico City. A "pharmacotherapy intervention" provided by pharmacists through a quasi experimental (before-after) design was carried out. Physicians who allowed access to their diabetes and/or hypertensive patients' medical records and prescriptions were included in the study. Prescription errors were classified as "filling", "clinical" or "both". Descriptive analysis, identification of potential drug-drug interactions (pD-DI), and comparison of the proportion of patients with prescriptions with errors detected "before" and "after" intervention were performed. Decrease in the proportion of patients who received prescriptions with errors after the intervention. Pharmacists detected at least one type of error in 79 out of 160 patients. Errors were "clinical", "both" and "filling" in 47, 21 and 11 of these patient's prescriptions respectively. Predominant errors were, in the subgroup of patient's prescriptions with "clinical" errors, pD-DI; in the subgroup of "both" errors, lack of information on dosing interval and pD-DI; and in the "filling" subgroup, lack of information on dosing interval. The pD-DI caused 50 % of the errors detected, from which 19 % were of major severity. The impact of the correction of errors post-intervention was observed in 19 % of patients who had erroneous prescriptions before the intervention of the pharmacist (49.3-30.3 %, p < 0.05). The impact of the intervention was relevant from a clinical point of view for the public health services in Mexico. The implementation of early warning systems of the most widely prescribed drugs is an alternative for reducing prescription errors and consequently the risks they may cause.
Kaplan, H S
2005-11-01
Safety and reliability in blood transfusion are not static, but are dynamic non-events. Since performance deviations continually occur in complex systems, their detection and correction must be accomplished over and over again. Non-conformance must be detected early enough to allow for recovery or mitigation. Near-miss events afford early detection of possible system weaknesses and provide an early chance at correction. National event reporting systems, both voluntary and involuntary, have begun to include near-miss reporting in their classification schemes, raising awareness for their detection. MERS-TM is a voluntary safety reporting initiative in transfusion. Currently 22 hospitals submit reports anonymously to a central database which supports analysis of a hospital's own data and that of an aggregate database. The system encourages reporting of near-miss events, where the patient is protected from receiving an unsuitable or incorrect blood component due to a planned or unplanned recovery step. MERS-TM data suggest approximately 90% of events are near-misses, with 10% caught after issue but before transfusion. Near-miss reporting may increase total reports ten-fold. The ratio of near-misses to events with harm is 339:1, consistent with other industries' ratio of 300:1, which has been proposed as a measure of reporting in event reporting systems. Use of a risk matrix and an event's relation to protective barriers allow prioritization of these events. Near-misses recovered by planned barriers occur ten times more frequently then unplanned recoveries. A bedside check of the patient's identity with that on the blood component is an essential, final barrier. How the typical two person check is performed, is critical. Even properly done, this check is ineffective against sampling and testing errors. Blood testing at bedside just prior to transfusion minimizes the risk of such upstream events. However, even with simple and well designed devices, training may be a critical issue. Sample errors account for more than half of reported events. The most dangerous miscollection is a blood sample passing acceptance with no previous patient results for comparison. Bar code labels or collection of a second sample may counter this upstream vulnerability. Further upstream barriers have been proposed to counter the precariousness of urgent blood sample collection in a changing unstable situation. One, a linking device, allows safer labeling of tubes away from the bedside, the second, a forcing function, prevents omission of critical patient identification steps. Errors in the blood bank itself account for 15% of errors with a high potential severity. In one such event, a component incorrectly issued, but safely detected prior to transfusion, focused attention on multitasking's contribution to laboratory error. In sum, use of near-miss information, by enhancing barriers supporting error prevention and mitigation, increases our capacity to get the right blood to the right patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattonen, Sarah A.; Baines Imaging Research Laboratory, London Regional Cancer Program, London, Ontario; Palma, David A., E-mail: david.palma@lhsc.on.ca
Purpose: Stereotactic ablative radiation therapy (SABR) is a guideline-specified treatment option for early-stage lung cancer. However, significant posttreatment fibrosis can occur and obfuscate the detection of local recurrence. The goal of this study was to assess physician ability to detect timely local recurrence and to compare physician performance with a radiomics tool. Methods and Materials: Posttreatment computed tomography (CT) scans (n=182) from 45 patients treated with SABR (15 with local recurrence matched to 30 with no local recurrence) were used to measure physician and radiomic performance in assessing response. Scans were individually scored by 3 thoracic radiation oncologists and 3more » thoracic radiologists, all of whom were blinded to clinical outcomes. Radiomic features were extracted from the same images. Performances of the physician assessors and the radiomics signature were compared. Results: When taking into account all CT scans during the whole follow-up period, median sensitivity for physician assessment of local recurrence was 83% (range, 67%-100%), and specificity was 75% (range, 67%-87%), with only moderate interobserver agreement (κ = 0.54) and a median time to detection of recurrence of 15.5 months. When determining the early prediction of recurrence within <6 months after SABR, physicians assessed the majority of images as benign injury/no recurrence, with a mean error of 35%, false positive rate (FPR) of 1%, and false negative rate (FNR) of 99%. At the same time point, a radiomic signature consisting of 5 image-appearance features demonstrated excellent discrimination, with an area under the receiver operating characteristic curve of 0.85, classification error of 24%, FPR of 24%, and FNR of 23%. Conclusions: These results suggest that radiomics can detect early changes associated with local recurrence that are not typically considered by physicians. This decision support system could potentially allow for early salvage therapy of patients with local recurrence after SABR.« less
Software Tools for Formal Specification and Verification of Distributed Real-Time Systems.
1997-09-30
set of software tools for specification and verification of distributed real time systems using formal methods. The task of this SBIR Phase II effort...to be used by designers of real - time systems for early detection of errors. The mathematical complexity of formal specification and verification has
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, CM; Baydush, AH; Nguyen, C
Purpose: To determine the effectiveness of SPC analysis for a model predictive maintenance process that uses accelerator generated parameter and performance data contained in trajectory log files. Methods: Each trajectory file is decoded and a total of 131 axes positions are recorded (collimator jaw position, gantry angle, each MLC, etc.). This raw data is processed and either axis positions are extracted at critical points during the delivery or positional change over time is used to determine axis velocity. The focus of our analysis is the accuracy, reproducibility and fidelity of each axis. A reference positional trace of the gantry andmore » each MLC is used as a motion baseline for cross correlation (CC) analysis. A total of 494 parameters (482 MLC related) were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and parameter/system specifications. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: TG-142 and published analysis of VMAT delivery accuracy. Results: All errors introduced were detected. Synthetic positional errors of 2mm for collimator jaw and MLC carriage exceeded the chart limits. Gantry speed and each MLC speed are analyzed at two different points in the delivery. Simulated Gantry speed error (0.2 deg/sec) and MLC speed error (0.1 cm/sec) exceeded the speed chart limits. Gantry position error of 0.2 deg was detected by the CC maximum value charts. The MLC position error of 0.1 cm was detected by the CC maximum value location charts for every MLC. Conclusion: SPC I/MR evaluation of trajectory log file parameters may be effective in providing an early warning of performance degradation or component failure for medical accelerator systems.« less
Rast, Philippe; Hofer, Scott M.
2014-01-01
We investigated the power to detect variances and covariances in rates of change in the context of existing longitudinal studies using linear bivariate growth curve models. Power was estimated by means of Monte Carlo simulations. Our findings show that typical longitudinal study designs have substantial power to detect both variances and covariances among rates of change in a variety of cognitive, physical functioning, and mental health outcomes. We performed simulations to investigate the interplay among number and spacing of occasions, total duration of the study, effect size, and error variance on power and required sample size. The relation between growth rate reliability (GRR) and effect size to the sample size required to detect power ≥ .80 was non-linear, with rapidly decreasing sample sizes needed as GRR increases. The results presented here stand in contrast to previous simulation results and recommendations (Hertzog, Lindenberger, Ghisletta, & von Oertzen, 2006; Hertzog, von Oertzen, Ghisletta, & Lindenberger, 2008; von Oertzen, Ghisletta, & Lindenberger, 2010), which are limited due to confounds between study length and number of waves, error variance with GCR, and parameter values which are largely out of bounds of actual study values. Power to detect change is generally low in the early phases (i.e. first years) of longitudinal studies but can substantially increase if the design is optimized. We recommend additional assessments, including embedded intensive measurement designs, to improve power in the early phases of long-term longitudinal studies. PMID:24219544
Working memory load impairs the evaluation of behavioral errors in the medial frontal cortex.
Maier, Martin E; Steinhauser, Marco
2017-10-01
Early error monitoring in the medial frontal cortex enables error detection and the evaluation of error significance, which helps prioritize adaptive control. This ability has been assumed to be independent from central capacity, a limited pool of resources assumed to be involved in cognitive control. The present study investigated whether error evaluation depends on central capacity by measuring the error-related negativity (Ne/ERN) in a flanker paradigm while working memory load was varied on two levels. We used a four-choice flanker paradigm in which participants had to classify targets while ignoring flankers. Errors could be due to responding either to the flankers (flanker errors) or to none of the stimulus elements (nonflanker errors). With low load, the Ne/ERN was larger for flanker errors than for nonflanker errors-an effect that has previously been interpreted as reflecting differential significance of these error types. With high load, no such effect of error type on the Ne/ERN was observable. Our findings suggest that working memory load does not impair the generation of an Ne/ERN per se but rather impairs the evaluation of error significance. They demonstrate that error monitoring is composed of capacity-dependent and capacity-independent mechanisms. © 2017 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Kallimani, Christina; Tripolitsiotis, Achilleas
2015-06-01
Rockfall incidents affect civil security and hamper the sustainable growth of hard to access mountainous areas due to casualties, injuries and infrastructure loss. Rockfall occurrences cannot be easily prevented, whereas previous studies for rockfall multiple sensor early detection systems have focused on large scale incidents. However, even a single rock may cause the loss of a human life along transportation routes thus, it is highly important to establish methods for the early detection of small-scale rockfall incidents. Terrestrial photogrammetric techniques are prone to a series of errors leading to false alarm incidents, including vegetation, wind, and non relevant change in the scene under consideration. In this study, photogrammetric monitoring of rockfall prone slopes is established and the resulting multi-temporal change imagery is processed in order to minimize false alarm incidents. Integration of remote sensing imagery analysis techniques is hereby applied to enhance early detection of a rockfall. Experimental data demonstrated that an operational system able to identify a 10-cm rock movement within a 10% false alarm rate is technically feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Saradwata; Johnson, Timothy D.; Ma, Bing
2012-07-01
Purpose: Assuming that early tumor volume change is a biomarker for response to therapy, accurate quantification of early volume changes could aid in adapting an individual patient's therapy and lead to shorter clinical trials. We investigated an image registration-based approach for tumor volume change quantification that may more reliably detect smaller changes that occur in shorter intervals than can be detected by existing algorithms. Methods and Materials: Variance and bias of the registration-based approach were evaluated using retrospective, in vivo, very-short-interval diffusion magnetic resonance imaging scans where true zero tumor volume change is unequivocally known and synthetic data, respectively. Themore » interval scans were nonlinearly registered using two similarity measures: mutual information (MI) and normalized cross-correlation (NCC). Results: The 95% confidence interval of the percentage volume change error was (-8.93% to 10.49%) for MI-based and (-7.69%, 8.83%) for NCC-based registrations. Linear mixed-effects models demonstrated that error in measuring volume change increased with increase in tumor volume and decreased with the increase in the tumor's normalized mutual information, even when NCC was the similarity measure being optimized during registration. The 95% confidence interval of the relative volume change error for the synthetic examinations with known changes over {+-}80% of reference tumor volume was (-3.02% to 3.86%). Statistically significant bias was not demonstrated. Conclusion: A low-noise, low-bias tumor volume change measurement algorithm using nonlinear registration is described. Errors in change measurement were a function of tumor volume and the normalized mutual information content of the tumor.« less
Early Error Detection: An Action-Research Experience Teaching Vector Calculus
ERIC Educational Resources Information Center
Añino, María Magdalena; Merino, Gabriela; Miyara, Alberto; Perassi, Marisol; Ravera, Emiliano; Pita, Gustavo; Waigandt, Diana
2014-01-01
This paper describes an action-research experience carried out with second year students at the School of Engineering of the National University of Entre Ríos, Argentina. Vector calculus students played an active role in their own learning process. They were required to present weekly reports, in both oral and written forms, on the topics studied,…
Deep learning classifier with optical coherence tomography images for early dental caries detection
NASA Astrophysics Data System (ADS)
Karimian, Nima; Salehi, Hassan S.; Mahdian, Mina; Alnajjar, Hisham; Tadinada, Aditya
2018-02-01
Dental caries is a microbial disease that results in localized dissolution of the mineral content of dental tissue. Despite considerable decline in the incidence of dental caries, it remains a major health problem in many societies. Early detection of incipient lesions at initial stages of demineralization can result in the implementation of non-surgical preventive approaches to reverse the demineralization process. In this paper, we present a novel approach combining deep convolutional neural networks (CNN) and optical coherence tomography (OCT) imaging modality for classification of human oral tissues to detect early dental caries. OCT images of oral tissues with various densities were input to a CNN classifier to determine variations in tissue densities resembling the demineralization process. The CNN automatically learns a hierarchy of increasingly complex features and a related classifier directly from training data sets. The initial CNN layer parameters were randomly selected. The training set is split into minibatches, with 10 OCT images per batch. Given a batch of training patches, the CNN employs two convolutional and pooling layers to extract features and then classify each patch based on the probabilities from the SoftMax classification layer (output-layer). Afterward, the CNN calculates the error between the classification result and the reference label, and then utilizes the backpropagation process to fine-tune all the layer parameters to minimize this error using batch gradient descent algorithm. We validated our proposed technique on ex-vivo OCT images of human oral tissues (enamel, cortical-bone, trabecular-bone, muscular-tissue, and fatty-tissue), which attested to effectiveness of our proposed method.
Leung, Ross Ka-Kit; Dong, Zhi Qiang; Sa, Fei; Chong, Cheong Meng; Lei, Si Wan; Tsui, Stephen Kwok-Wing; Lee, Simon Ming-Yuen
2014-02-01
Minor variants have significant implications in quasispecies evolution, early cancer detection and non-invasive fetal genotyping but their accurate detection by next-generation sequencing (NGS) is hampered by sequencing errors. We generated sequencing data from mixtures at predetermined ratios in order to provide insight into sequencing errors and variations that can arise for which simulation cannot be performed. The information also enables better parameterization in depth of coverage, read quality and heterogeneity, library preparation techniques, technical repeatability for mathematical modeling, theory development and simulation experimental design. We devised minor variant authentication rules that achieved 100% accuracy in both testing and validation experiments. The rules are free from tedious inspection of alignment accuracy, sequencing read quality or errors introduced by homopolymers. The authentication processes only require minor variants to: (1) have minimum depth of coverage larger than 30; (2) be reported by (a) four or more variant callers, or (b) DiBayes or LoFreq, plus SNVer (or BWA when no results are returned by SNVer), and with the interassay coefficient of variation (CV) no larger than 0.1. Quantification accuracy undermined by sequencing errors could neither be overcome by ultra-deep sequencing, nor recruiting more variant callers to reach a consensus, such that consistent underestimation and overestimation (i.e. low CV) were observed. To accommodate stochastic error and adjust the observed ratio within a specified accuracy, we presented a proof of concept for the use of a double calibration curve for quantification, which provides an important reference towards potential industrial-scale fabrication of calibrants for NGS.
Electrocortical measures of information processing biases in social anxiety disorder: A review.
Harrewijn, Anita; Schmidt, Louis A; Westenberg, P Michiel; Tang, Alva; van der Molen, Melle J W
2017-10-01
Social anxiety disorder (SAD) is characterized by information processing biases, however, their underlying neural mechanisms remain poorly understood. The goal of this review was to give a comprehensive overview of the most frequently studied EEG spectral and event-related potential (ERP) measures in social anxiety during rest, anticipation, stimulus processing, and recovery. A Web of Science search yielded 35 studies reporting on electrocortical measures in individuals with social anxiety or related constructs. Social anxiety was related to increased delta-beta cross-frequency correlation during anticipation and recovery, and information processing biases during early processing of faces (P1) and errors (error-related negativity). These electrocortical measures are discussed in relation to the persistent cycle of information processing biases maintaining SAD. Future research should further investigate the mechanisms of this persistent cycle and study the utility of electrocortical measures in early detection, prevention, treatment and endophenotype research. Copyright © 2017 Elsevier B.V. All rights reserved.
A laminar optical tomography system for the early cervical cancer diagnosis
NASA Astrophysics Data System (ADS)
Cui, Shanshan; Jia, Mengyu; Chen, Xueying; Meng, Wei; Gao, Feng; Zhao, Huijuan
2014-03-01
Laminar optical tomography (LOT) is a new mesoscopic functional optical imaging technique, which is an extension of a confocal microscope and diffuse optical tomography to acquire both the coaxial and off-axis scattered light at the same time. In this paper, a LOT system with a larger detection area aiming at the in vivo detection of early cervical cancer is developed. The field of view of our system is 10 mm x 10 mm. In order to improve the image quality of the system, two methods were performed: the correction of image distortion and the restriction of returning light. The performance of the system with aperture stop was assessed by liquid phantom experiments. Comparing with the Monte Carlo simulation, the measurement results show that the average relative errors of eight different source-detector distances corresponding to 4 source points are lower than the errors of the system taking the frame of objective lens as the aperture stop by 5.7%, 4.8%, 6.1%, 6.1% respectively. Moreover, the experiment based on the phantom with specified structure and optical parameters to simulate the cervix demonstrates that the system perform well for the cervix measurement.
R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope
2017-01-01
Rapid automatic detection of the fiducial points—namely, the P wave, QRS complex, and T wave—is necessary for early detection of cardiovascular diseases (CVDs). In this paper, we present an R peak detection method using the wavelet transform (WT) and a modified Shannon energy envelope (SEE) for rapid ECG analysis. The proposed WTSEE algorithm performs a wavelet transform to reduce the size and noise of ECG signals and creates SEE after first-order differentiation and amplitude normalization. Subsequently, the peak energy envelope (PEE) is extracted from the SEE. Then, R peaks are estimated from the PEE, and the estimated peaks are adjusted from the input ECG. Finally, the algorithm generates the final R features by validating R-R intervals and updating the extracted R peaks. The proposed R peak detection method was validated using 48 first-channel ECG records of the MIT-BIH arrhythmia database with a sensitivity of 99.93%, positive predictability of 99.91%, detection error rate of 0.16%, and accuracy of 99.84%. Considering the high detection accuracy and fast processing speed due to the wavelet transform applied before calculating SEE, the proposed method is highly effective for real-time applications in early detection of CVDs. PMID:29065613
R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope.
Park, Jeong-Seon; Lee, Sang-Woong; Park, Unsang
2017-01-01
Rapid automatic detection of the fiducial points-namely, the P wave, QRS complex, and T wave-is necessary for early detection of cardiovascular diseases (CVDs). In this paper, we present an R peak detection method using the wavelet transform (WT) and a modified Shannon energy envelope (SEE) for rapid ECG analysis. The proposed WTSEE algorithm performs a wavelet transform to reduce the size and noise of ECG signals and creates SEE after first-order differentiation and amplitude normalization. Subsequently, the peak energy envelope (PEE) is extracted from the SEE. Then, R peaks are estimated from the PEE, and the estimated peaks are adjusted from the input ECG. Finally, the algorithm generates the final R features by validating R-R intervals and updating the extracted R peaks. The proposed R peak detection method was validated using 48 first-channel ECG records of the MIT-BIH arrhythmia database with a sensitivity of 99.93%, positive predictability of 99.91%, detection error rate of 0.16%, and accuracy of 99.84%. Considering the high detection accuracy and fast processing speed due to the wavelet transform applied before calculating SEE, the proposed method is highly effective for real-time applications in early detection of CVDs.
Integrating automated structured analysis and design with Ada programming support environments
NASA Technical Reports Server (NTRS)
Hecht, Alan; Simmons, Andy
1986-01-01
Ada Programming Support Environments (APSE) include many powerful tools that address the implementation of Ada code. These tools do not address the entire software development process. Structured analysis is a methodology that addresses the creation of complete and accurate system specifications. Structured design takes a specification and derives a plan to decompose the system subcomponents, and provides heuristics to optimize the software design to minimize errors and maintenance. It can also produce the creation of useable modules. Studies have shown that most software errors result from poor system specifications, and that these errors also become more expensive to fix as the development process continues. Structured analysis and design help to uncover error in the early stages of development. The APSE tools help to insure that the code produced is correct, and aid in finding obscure coding errors. However, they do not have the capability to detect errors in specifications or to detect poor designs. An automated system for structured analysis and design TEAMWORK, which can be integrated with an APSE to support software systems development from specification through implementation is described. These tools completement each other to help developers improve quality and productivity, as well as to reduce development and maintenance costs. Complete system documentation and reusable code also resultss from the use of these tools. Integrating an APSE with automated tools for structured analysis and design provide capabilities and advantages beyond those realized with any of these systems used by themselves.
Effects of Listening Conditions, Error Types, and Ensemble Textures on Error Detection Skills
ERIC Educational Resources Information Center
Waggoner, Dori T.
2011-01-01
This study was designed with three main purposes: (a) to investigate the effects of two listening conditions on error detection accuracy, (b) to compare error detection responses for rhythm errors and pitch errors, and (c) to examine the influences of texture on error detection accuracy. Undergraduate music education students (N = 18) listened to…
A confirmation of the general relativistic prediction of the Lense-Thirring effect.
Ciufolini, I; Pavlis, E C
2004-10-21
An important early prediction of Einstein's general relativity was the advance of the perihelion of Mercury's orbit, whose measurement provided one of the classical tests of Einstein's theory. The advance of the orbital point-of-closest-approach also applies to a binary pulsar system and to an Earth-orbiting satellite. General relativity also predicts that the rotation of a body like Earth will drag the local inertial frames of reference around it, which will affect the orbit of a satellite. This Lense-Thirring effect has hitherto not been detected with high accuracy, but its detection with an error of about 1 per cent is the main goal of Gravity Probe B--an ongoing space mission using orbiting gyroscopes. Here we report a measurement of the Lense-Thirring effect on two Earth satellites: it is 99 +/- 5 per cent of the value predicted by general relativity; the uncertainty of this measurement includes all known random and systematic errors, but we allow for a total +/- 10 per cent uncertainty to include underestimated and unknown sources of error.
Deprivation amblyopia and congenital hereditary cataract.
Mansouri, Behzad; Stacy, Rebecca C; Kruger, Joshua; Cestari, Dean M
2013-01-01
Amblyopia is a neurodevelopmental disorder of vision associated with decreased visual acuity, poor or absent stereopsis, and suppression of information from one eye.(1,2) Amblyopia may be caused by strabismus (strabismic amblyopia), refractive error (anisometropic amblyopia), or deprivation from obstructed vision (deprivation amblyopia). 1 In the developed world, amblyopia is the most common cause of childhood visual impairment, 3 which reduces quality of life 4 and also almost doubles the lifetime risk of legal blindness.(5, 6) Successful treatment of amblyopia greatly depends on early detection and treatment of predisposing disorders such as congenital cataract, which is the most common cause of deprivational amblyopia. Understanding the genetic causes of congenital cataract leads to more effective screening tests, early detection and treatment of infants and children who are at high risk for hereditary congenital cataract.
Pavone, Enea Francesco; Tieri, Gaetano; Rizza, Giulia; Tidoni, Emmanuele; Grisoni, Luigi; Aglioti, Salvatore Maria
2016-01-13
Brain monitoring of errors in one's own and other's actions is crucial for a variety of processes, ranging from the fine-tuning of motor skill learning to important social functions, such as reading out and anticipating the intentions of others. Here, we combined immersive virtual reality and EEG recording to explore whether embodying the errors of an avatar by seeing it from a first-person perspective may activate the error monitoring system in the brain of an onlooker. We asked healthy participants to observe, from a first- or third-person perspective, an avatar performing a correct or an incorrect reach-to-grasp movement toward one of two virtual mugs placed on a table. At the end of each trial, participants reported verbally how much they embodied the avatar's arm. Ratings were maximal in first-person perspective, indicating that immersive virtual reality can be a powerful tool to induce embodiment of an artificial agent, even through mere visual perception and in the absence of any cross-modal boosting. Observation of erroneous grasping from a first-person perspective enhanced error-related negativity and medial-frontal theta power in the trials where human onlookers embodied the virtual character, hinting at the tight link between early, automatic coding of error detection and sense of embodiment. Error positivity was similar in 1PP and 3PP, suggesting that conscious coding of errors is similar for self and other. Thus, embodiment plays an important role in activating specific components of the action monitoring system when others' errors are coded as if they are one's own errors. Detecting errors in other's actions is crucial for social functions, such as reading out and anticipating the intentions of others. Using immersive virtual reality and EEG recording, we explored how the brain of an onlooker reacted to the errors of an avatar seen from a first-person perspective. We found that mere observation of erroneous actions enhances electrocortical markers of error detection in the trials where human onlookers embodied the virtual character. Thus, the cerebral system for action monitoring is maximally activated when others' errors are coded as if they are one's own errors. The results have important implications for understanding how the brain can control the external world and thus creating new brain-computer interfaces. Copyright © 2016 the authors 0270-6474/16/360268-12$15.00/0.
Dysfunctional error-related processing in female psychopathy
Steele, Vaughn R.; Edwards, Bethany G.; Bernat, Edward M.; Calhoun, Vince D.; Kiehl, Kent A.
2016-01-01
Neurocognitive studies of psychopathy have predominantly focused on male samples. Studies have shown that female psychopaths exhibit similar affective deficits as their male counterparts, but results are less consistent across cognitive domains including response modulation. As such, there may be potential gender differences in error-related processing in psychopathic personality. Here we investigate response-locked event-related potential (ERP) components [the error-related negativity (ERN/Ne) related to early error-detection processes and the error-related positivity (Pe) involved in later post-error processing] in a sample of incarcerated adult female offenders (n = 121) who performed a response inhibition Go/NoGo task. Psychopathy was assessed using the Hare Psychopathy Checklist-Revised (PCL-R). The ERN/Ne and Pe were analyzed with classic windowed ERP components and principal component analysis (PCA). Consistent with previous research performed in psychopathic males, female psychopaths exhibited specific deficiencies in the neural correlates of post-error processing (as indexed by reduced Pe amplitude) but not in error monitoring (as indexed by intact ERN/Ne amplitude). Specifically, psychopathic traits reflecting interpersonal and affective dysfunction remained significant predictors of both time-domain and PCA measures reflecting reduced Pe mean amplitude. This is the first evidence to suggest that incarcerated female psychopaths exhibit similar dysfunctional post-error processing as male psychopaths. PMID:26060326
A clinic-based study of refractive errors, strabismus, and amblyopia in pediatric age-group.
Al-Tamimi, Elham R; Shakeel, Ayisha; Yassin, Sanaa A; Ali, Syed I; Khan, Umar A
2015-01-01
The purpose of this cross-sectional observational study was to determine the distribution and patterns of refractive errors, strabismus, and amblyopia in children seen at a pediatric eye care. The study was conducted in a Private Hospital in Dammam, Kingdom of Saudi Arabia, from March to July 2013. During this period, a total of 1350 children, aged 1-15 years were seen at this Center's Pediatric Ophthalmology Unit. All the children underwent complete ophthalmic examination with cycloplegic refraction. Refractive errors accounted for 44.4% of the cases, the predominant refractive error being hypermetropia which represented 83%. Strabismus and amblyopia were present in 38% and 9.1% of children, respectively. In this clinic-based study, the focus was on the frequency of refractive errors, strabismus, and amblyopia which were considerably high. Hypermetropia was the predominant refractive error in contrast to other studies in which myopia was more common. This could be attributed to the criteria for sample selection since it was clinic-based rather than a population-based study. However, it is important to promote public education on the significance of early detection of refractive errors, and have periodic screening in schools.
Milekovic, Tomislav; Ball, Tonio; Schulze-Bonhage, Andreas; Aertsen, Ad; Mehring, Carsten
2013-01-01
Background Brain-machine interfaces (BMIs) can translate the neuronal activity underlying a user’s movement intention into movements of an artificial effector. In spite of continuous improvements, errors in movement decoding are still a major problem of current BMI systems. If the difference between the decoded and intended movements becomes noticeable, it may lead to an execution error. Outcome errors, where subjects fail to reach a certain movement goal, are also present during online BMI operation. Detecting such errors can be beneficial for BMI operation: (i) errors can be corrected online after being detected and (ii) adaptive BMI decoding algorithm can be updated to make fewer errors in the future. Methodology/Principal Findings Here, we show that error events can be detected from human electrocorticography (ECoG) during a continuous task with high precision, given a temporal tolerance of 300–400 milliseconds. We quantified the error detection accuracy and showed that, using only a small subset of 2×2 ECoG electrodes, 82% of detection information for outcome error and 74% of detection information for execution error available from all ECoG electrodes could be retained. Conclusions/Significance The error detection method presented here could be used to correct errors made during BMI operation or to adapt a BMI algorithm to make fewer errors in the future. Furthermore, our results indicate that smaller ECoG implant could be used for error detection. Reducing the size of an ECoG electrode implant used for BMI decoding and error detection could significantly reduce the medical risk of implantation. PMID:23383315
The role of the insula in intuitive expert bug detection in computer code: an fMRI study.
Castelhano, Joao; Duarte, Isabel C; Ferreira, Carlos; Duraes, Joao; Madeira, Henrique; Castelo-Branco, Miguel
2018-05-09
Software programming is a complex and relatively recent human activity, involving the integration of mathematical, recursive thinking and language processing. The neural correlates of this recent human activity are still poorly understood. Error monitoring during this type of task, requiring the integration of language, logical symbol manipulation and other mathematical skills, is particularly challenging. We therefore aimed to investigate the neural correlates of decision-making during source code understanding and mental manipulation in professional participants with high expertise. The present fMRI study directly addressed error monitoring during source code comprehension, expert bug detection and decision-making. We used C code, which triggers the same sort of processing irrespective of the native language of the programmer. We discovered a distinct role for the insula in bug monitoring and detection and a novel connectivity pattern that goes beyond the expected activation pattern evoked by source code understanding in semantic language and mathematical processing regions. Importantly, insula activity levels were critically related to the quality of error detection, involving intuition, as signalled by reported initial bug suspicion, prior to final decision and bug detection. Activity in this salience network (SN) region evoked by bug suspicion was predictive of bug detection precision, suggesting that it encodes the quality of the behavioral evidence. Connectivity analysis provided evidence for top-down circuit "reutilization" stemming from anterior cingulate cortex (BA32), a core region in the SN that evolved for complex error monitoring such as required for this type of recent human activity. Cingulate (BA32) and anterolateral (BA10) frontal regions causally modulated decision processes in the insula, which in turn was related to activity of math processing regions in early parietal cortex. In other words, earlier brain regions used during evolution for other functions seem to be reutilized in a top-down manner for a new complex function, in an analogous manner as described for other cultural creations such as reading and literacy.
Automation for Air Traffic Control: The Rise of a New Discipline
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Tobias, Leonard (Technical Monitor)
1997-01-01
The current debate over the concept of Free Flight has renewed interest in automated conflict detection and resolution in the enroute airspace. An essential requirement for effective conflict detection is accurate prediction of trajectories. Trajectory prediction is, however, an inexact process which accumulates errors that grow in proportion to the length of the prediction time interval. Using a model of prediction errors for the trajectory predictor incorporated in the Center-TRACON Automation System (CTAS), a computationally fast algorithm for computing conflict probability has been derived. Furthermore, a method of conflict resolution has been formulated that minimizes the average cost of resolution, when cost is defined as the increment in airline operating costs incurred in flying the resolution maneuver. The method optimizes the trade off between early resolution at lower maneuver costs but higher prediction error on the one hand and late resolution with higher maneuver costs but lower prediction errors on the other. The method determines both the time to initiate the resolution maneuver as well as the characteristics of the resolution trajectory so as to minimize the cost of the resolution. Several computational examples relevant to the design of a conflict probe that can support user-preferred trajectories in the enroute airspace will be presented.
Caca, Ihsan; Cingu, Abdullah Kursat; Sahin, Alparslan; Ari, Seyhmus; Dursun, Mehmet Emin; Dag, Umut; Balsak, Selahattin; Alakus, Fuat; Yavuz, Abdullah; Palanci, Yilmaz
2013-01-01
To investigate the prevalence of refractive errors and other eye diseases, incidence and types of amblyopia in school-aged children, and their relation to gender, age, parental education, and socioeconomic factors. A total of 21,062 children 6 to 14 years old were screened. The examination included visual acuity measurements and ocular motility evaluation. Autorefraction under cycloplegia and examination of the external eye, anterior segment, media, and fundus were performed. There were 11,118 females and 9,944 males. The average age was 10.56 ± 3.59 years. When all of the children were evaluated, 3.2% had myopia and 5.9% had hyperopia. Astigmatism 0.50 D or greater was present in 14.3% of children. Myopia was associated with older age, female gender, and higher parental education. Hyperopia was inversely proportional with older age. Spectacles were needed in 4,476 (22.7%) children with refractive errors, and 10.6% of children were unaware of their spectacle needs. Amblyopia was detected in 2.6% of all children. The most common causes of amblyopia were anisometropia (1.2%) and strabismus (0.9%). Visual impairment is a common disorder in school-aged children. Eye health screening programs are beneficial in early detection and proper treatment of refractive errors. Copyright 2013, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Merkord, C. L.; Liu, Y.; DeVos, M.; Wimberly, M. C.
2015-12-01
Malaria early detection and early warning systems are important tools for public health decision makers in regions where malaria transmission is seasonal and varies from year to year with fluctuations in rainfall and temperature. Here we present a new data-driven dynamic linear model based on the Kalman filter with time-varying coefficients that are used to identify malaria outbreaks as they occur (early detection) and predict the location and timing of future outbreaks (early warning). We fit linear models of malaria incidence with trend and Fourier form seasonal components using three years of weekly malaria case data from 30 districts in the Amhara Region of Ethiopia. We identified past outbreaks by comparing the modeled prediction envelopes with observed case data. Preliminary results demonstrated the potential for improved accuracy and timeliness over commonly-used methods in which thresholds are based on simpler summary statistics of historical data. Other benefits of the dynamic linear modeling approach include robustness to missing data and the ability to fit models with relatively few years of training data. To predict future outbreaks, we started with the early detection model for each district and added a regression component based on satellite-derived environmental predictor variables including precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and land surface temperature (LST) and spectral indices from the Moderate Resolution Imaging Spectroradiometer (MODIS). We included lagged environmental predictors in the regression component of the model, with lags chosen based on cross-correlation of the one-step-ahead forecast errors from the first model. Our results suggest that predictions of future malaria outbreaks can be improved by incorporating lagged environmental predictors.
Pediatric vision screening using binocular retinal birefringencr scanning
NASA Astrophysics Data System (ADS)
Nassif, Deborah S.; Gramatikov, Boris; Guyton, David L.; Hunter, David G.
2003-07-01
Amblyopia, a leading cause of vision loss in childhood, is responsive to treatment if detected early in life. Risk factors for amblyopia, such as refractive error and strabismus, may be difficult to identify clinically in young children. Our laboratory has developed retinal birefringence scanning (RBS), in which a small spot of polarized light is scanned in a circle on the retina, and the returning light is measured for changes in polarization caused by the pattern of birefringent fibers that comprise the fovea. Binocular RBS (BRBS) detects the fixation of both eyes simultaneously and thus screens for strabismus, one of the risk factors of amblyopia. We have also developed a technique to automatically detect when the eye is in focus without measuring refractive error. This focus detection system utilizes a bull's eye photodetector optically conjugate to a point fixation source. Reflected light is focused back to the point source by the optical system of the eye, and if the subject focuses on the fixation source, the returning light will be focused on the detector. We have constructed a hand-held prototype combining BRBS and focus detection measurements in one quick (< 0.5 second) and accurate (theoretically detecting +/-1 of misalignment) measurement. This approach has the potential to reliably identify children at risk for amblyopia.
Error-related brain activity and error awareness in an error classification paradigm.
Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E
2016-10-01
Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.
The effect of monetary punishment on error evaluation in a Go/No-go task.
Maruo, Yuya; Sommer, Werner; Masaki, Hiroaki
2017-10-01
Little is known about the effects of the motivational significance of errors in Go/No-go tasks. We investigated the impact of monetary punishment on the error-related negativity (ERN) and error positivity (Pe) for both overt errors and partial errors, that is, no-go trials without overt responses but with covert muscle activities. We compared high and low punishment conditions where errors were penalized with 50 or 5 yen, respectively, and a control condition without monetary consequences for errors. Because we hypothesized that the partial-error ERN might overlap with the no-go N2, we compared ERPs between correct rejections (i.e., successful no-go trials) and partial errors in no-go trials. We also expected that Pe amplitudes should increase with the severity of the penalty for errors. Mean error rates were significantly lower in the high punishment than in the control condition. Monetary punishment did not influence the overt-error ERN and partial-error ERN in no-go trials. The ERN in no-go trials did not differ between partial errors and overt errors; in addition, ERPs for correct rejections in no-go trials without partial errors were of the same size as in go-trial. Therefore the overt-error ERN and the partial-error ERN may share similar error monitoring processes. Monetary punishment increased Pe amplitudes for overt errors, suggesting enhanced error evaluation processes. For partial errors an early Pe was observed, presumably representing inhibition processes. Interestingly, even partial errors elicited the Pe, suggesting that covert erroneous activities could be detected in Go/No-go tasks. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Principal component analysis for the early detection of mastitis and lameness in dairy cows.
Miekley, Bettina; Traulsen, Imke; Krieter, Joachim
2013-08-01
This investigation analysed the applicability of principal component analysis (PCA), a latent variable method, for the early detection of mastitis and lameness. Data used were recorded on the Karkendamm dairy research farm between August 2008 and December 2010. For mastitis and lameness detection, data of 338 and 315 cows in their first 200 d in milk were analysed, respectively. Mastitis as well as lameness were specified according to veterinary treatments. Diseases were defined as disease blocks. The different definitions used (two for mastitis, three for lameness) varied solely in the sequence length of the blocks. Only the days before the treatment were included in the blocks. Milk electrical conductivity, milk yield and feeding patterns (feed intake, number of feeding visits and time at the trough) were used for recognition of mastitis. Pedometer activity and feeding patterns were utilised for lameness detection. To develop and verify the PCA model, the mastitis and the lameness datasets were divided into training and test datasets. PCA extracted uncorrelated principle components (PC) by linear transformations of the raw data so that the first few PCs captured most of the variations in the original dataset. For process monitoring and disease detection, these resulting PCs were applied to the Hotelling's T 2 chart and to the residual control chart. The results show that block sensitivity of mastitis detection ranged from 77·4 to 83·3%, whilst specificity was around 76·7%. The error rates were around 98·9%. For lameness detection, the block sensitivity ranged from 73·8 to 87·8% while the obtained specificities were between 54·8 and 61·9%. The error rates varied from 87·8 to 89·2%. In conclusion, PCA seems to be not yet transferable into practical usage. Results could probably be improved if different traits and more informative sensor data are included in the analysis.
Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.
2011-01-01
Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the double dissociation between comprehension and error-detection ability observed in the aphasic patients. We propose a new theory of speech-error detection which is instead based on the production process itself. The theory borrows from studies of forced-choice-response tasks the notion that error detection is accomplished by monitoring response conflict via a frontal brain structure, such as the anterior cingulate cortex. We adapt this idea to the two-step model of word production, and test the model-derived predictions on a sample of aphasic patients. Our results show a strong correlation between patients’ error-detection ability and the model’s characterization of their production skills, and no significant correlation between error detection and comprehension measures, thus supporting a production-based monitor, generally, and the implemented conflict-based monitor in particular. The successful application of the conflict-based theory to error-detection in linguistic, as well as non-linguistic domains points to a domain-general monitoring system. PMID:21652015
Resonant ultrasound spectroscopy and non-destructive testing
NASA Astrophysics Data System (ADS)
Migliori, A.; Darling, T. W.
The use of mechanical resonances to test properties of materials is perhaps older than the industrial revolution. Early documented cases of British railroad engineers tapping the wheels of a train and using the sound to detect cracks perhaps mark the first real use of resonances to test the integrity of high-performance alloys. Attempts were made in the following years to understand the resonances of solids mathematically, based on the shape and composition. But Nobel Laureate Lord Rayleigh best summarized the state of affairs in 1894, stating 'the problem has, for the most part, resisted attack'. More recently, modern computers and electronics have enabled Anderson and co-workers with their work on minerals, and our work at Los Alamos on new materials and manufactured components to advance the use of resonances to a precision non-destructive testing tool that makes anisotropic modulus measurements, defect detection and geometry error detection routine. The result is that resonances can achieve the highest absolute accuracy for any dynamic modulus measurement technique, can be used on the smallest samples, and can also enable detection of errors in certain classes of precision manufactured components faster and more accurately than any other technique.
ERIC Educational Resources Information Center
Hallin, Anna Eva; Reuterskiöld, Christina
2017-01-01
Purpose: The first aim of this study was to investigate if Swedish-speaking school-age children with language impairment (LI) show specific morphosyntactic vulnerabilities in error detection. The second aim was to investigate the effects of lexical frequency on error detection, an overlooked aspect of previous error detection studies. Method:…
Analysis of the impact of error detection on computer performance
NASA Technical Reports Server (NTRS)
Shin, K. C.; Lee, Y. H.
1983-01-01
Conventionally, reliability analyses either assume that a fault/error is detected immediately following its occurrence, or neglect damages caused by latent errors. Though unrealistic, this assumption was imposed in order to avoid the difficulty of determining the respective probabilities that a fault induces an error and the error is then detected in a random amount of time after its occurrence. As a remedy for this problem a model is proposed to analyze the impact of error detection on computer performance under moderate assumptions. Error latency, the time interval between occurrence and the moment of detection, is used to measure the effectiveness of a detection mechanism. This model is used to: (1) predict the probability of producing an unreliable result, and (2) estimate the loss of computation due to fault and/or error.
Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man.
Stöckler, S.; Isbrandt, D.; Hanefeld, F.; Schmidt, B.; von Figura, K.
1996-01-01
In two children with an accumulation of guanidinoacetate in brain and a deficiency of creatine in blood, a severe deficiency of guanidinoacetate methyltransferase (GAMT) activity was detected in the liver. Two mutant GAMT alleles were identified that carried a single base substitution within a 5' splice site or a 13-nt insertion and gave rise to four mutant transcripts. Three of the transcripts encode truncated polypeptides that lack a residue known to be critical for catalytic activity of GAMT. Deficiency of GAMT is the first inborn error of creatine metabolism. It causes a severe developmental delay and extrapyramidal symptoms in early infancy and is treatable by oral substitution with creatine. Images Figure 2 PMID:8651275
Early error detection: an action-research experience teaching vector calculus
NASA Astrophysics Data System (ADS)
Magdalena Añino, María; Merino, Gabriela; Miyara, Alberto; Perassi, Marisol; Ravera, Emiliano; Pita, Gustavo; Waigandt, Diana
2014-04-01
This paper describes an action-research experience carried out with second year students at the School of Engineering of the National University of Entre Ríos, Argentina. Vector calculus students played an active role in their own learning process. They were required to present weekly reports, in both oral and written forms, on the topics studied, instead of merely sitting and watching as the teacher solved problems on the blackboard. The students were also asked to perform computer assignments, and their learning process was continuously monitored. Among many benefits, this methodology has allowed students and teachers to identify errors and misconceptions that might have gone unnoticed under a more passive approach.
Ambient Assisted Living spaces validation by services and devices simulation.
Fernández-Llatas, Carlos; Mocholí, Juan Bautista; Sala, Pilar; Naranjo, Juan Carlos; Pileggi, Salvatore F; Guillén, Sergio; Traver, Vicente
2011-01-01
The design of Ambient Assisted Living (AAL) products is a very demanding challenge. AAL products creation is a complex iterative process which must accomplish exhaustive prerequisites about accessibility and usability. In this process the early detection of errors is crucial to create cost-effective systems. Computer-assisted tools can suppose a vital help to usability designers in order to avoid design errors. Specifically computer simulation of products in AAL environments can be used in all the design phases to support the validation. In this paper, a computer simulation tool for supporting usability designers in the creation of innovative AAL products is presented. This application will benefit their work saving time and improving the final system functionality.
Automatic-repeat-request error control schemes
NASA Technical Reports Server (NTRS)
Lin, S.; Costello, D. J., Jr.; Miller, M. J.
1983-01-01
Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed.
What errors do peer reviewers detect, and does training improve their ability to detect them?
Schroter, Sara; Black, Nick; Evans, Stephen; Godlee, Fiona; Osorio, Lyda; Smith, Richard
2008-10-01
To analyse data from a trial and report the frequencies with which major and minor errors are detected at a general medical journal, the types of errors missed and the impact of training on error detection. 607 peer reviewers at the BMJ were randomized to two intervention groups receiving different types of training (face-to-face training or a self-taught package) and a control group. Each reviewer was sent the same three test papers over the study period, each of which had nine major and five minor methodological errors inserted. BMJ peer reviewers. The quality of review, assessed using a validated instrument, and the number and type of errors detected before and after training. The number of major errors detected varied over the three papers. The interventions had small effects. At baseline (Paper 1) reviewers found an average of 2.58 of the nine major errors, with no notable difference between the groups. The mean number of errors reported was similar for the second and third papers, 2.71 and 3.0, respectively. Biased randomization was the error detected most frequently in all three papers, with over 60% of reviewers rejecting the papers identifying this error. Reviewers who did not reject the papers found fewer errors and the proportion finding biased randomization was less than 40% for each paper. Editors should not assume that reviewers will detect most major errors, particularly those concerned with the context of study. Short training packages have only a slight impact on improving error detection.
Attention and memory bias to facial emotions underlying negative symptoms of schizophrenia.
Jang, Seon-Kyeong; Park, Seon-Cheol; Lee, Seung-Hwan; Cho, Yang Seok; Choi, Kee-Hong
2016-01-01
This study assessed bias in selective attention to facial emotions in negative symptoms of schizophrenia and its influence on subsequent memory for facial emotions. Thirty people with schizophrenia who had high and low levels of negative symptoms (n = 15, respectively) and 21 healthy controls completed a visual probe detection task investigating selective attention bias (happy, sad, and angry faces randomly presented for 50, 500, or 1000 ms). A yes/no incidental facial memory task was then completed. Attention bias scores and recognition errors were calculated. Those with high negative symptoms exhibited reduced attention to emotional faces relative to neutral faces; those with low negative symptoms showed the opposite pattern when faces were presented for 500 ms regardless of the valence. Compared to healthy controls, those with high negative symptoms made more errors for happy faces in the memory task. Reduced attention to emotional faces in the probe detection task was significantly associated with less pleasure and motivation and more recognition errors for happy faces in schizophrenia group only. Attention bias away from emotional information relatively early in the attentional process and associated diminished positive memory may relate to pathological mechanisms for negative symptoms.
Driver landmark and traffic sign identification in early Alzheimer's disease.
Uc, E Y; Rizzo, M; Anderson, S W; Shi, Q; Dawson, J D
2005-06-01
To assess visual search and recognition of roadside targets and safety errors during a landmark and traffic sign identification task in drivers with Alzheimer's disease. 33 drivers with probable Alzheimer's disease of mild severity and 137 neurologically normal older adults underwent a battery of visual and cognitive tests and were asked to report detection of specific landmarks and traffic signs along a segment of an experimental drive. The drivers with mild Alzheimer's disease identified significantly fewer landmarks and traffic signs and made more at-fault safety errors during the task than control subjects. Roadside target identification performance and safety errors were predicted by scores on standardised tests of visual and cognitive function. Drivers with Alzheimer's disease are impaired in a task of visual search and recognition of roadside targets; the demands of these targets on visual perception, attention, executive functions, and memory probably increase the cognitive load, worsening driving safety.
Dynamic changes in brain activity during prism adaptation.
Luauté, Jacques; Schwartz, Sophie; Rossetti, Yves; Spiridon, Mona; Rode, Gilles; Boisson, Dominique; Vuilleumier, Patrik
2009-01-07
Prism adaptation does not only induce short-term sensorimotor plasticity, but also longer-term reorganization in the neural representation of space. We used event-related fMRI to study dynamic changes in brain activity during both early and prolonged exposure to visual prisms. Participants performed a pointing task before, during, and after prism exposure. Measures of trial-by-trial pointing errors and corrections allowed parametric analyses of brain activity as a function of performance. We show that during the earliest phase of prism exposure, anterior intraparietal sulcus was primarily implicated in error detection, whereas parieto-occipital sulcus was implicated in error correction. Cerebellum activity showed progressive increases during prism exposure, in accordance with a key role for spatial realignment. This time course further suggests that the cerebellum might promote neural changes in superior temporal cortex, which was selectively activated during the later phase of prism exposure and could mediate the effects of prism adaptation on cognitive spatial representations.
Bouhabel, Sarah; Kay-Rivest, Emily; Nhan, Carol; Bank, Ilana; Nugus, Peter; Fisher, Rachel; Nguyen, Lily Hp
2017-06-01
Otolaryngology-head and neck surgery (OTL-HNS) residents face a variety of difficult, high-stress situations, which may occur early in their training. Since these events occur infrequently, simulation-based learning has become an important part of residents' training and is already well established in fields such as anesthesia and emergency medicine. In the domain of OTL-HNS, it is gradually gaining in popularity. Crisis Resource Management (CRM), a program adapted from the aviation industry, aims to improve outcomes of crisis situations by attempting to mitigate human errors. Some examples of CRM principles include cultivating situational awareness; promoting proper use of available resources; and improving rapid decision making, particularly in high-acuity, low-frequency clinical situations. Our pilot project sought to integrate CRM principles into an airway simulation course for OTL-HNS residents, but most important, it evaluated whether learning objectives were met, through use of a novel error identification model.
Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.
2015-01-01
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200
Córcoles, A D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M
2015-04-29
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.
Integrated analysis of error detection and recovery
NASA Technical Reports Server (NTRS)
Shin, K. G.; Lee, Y. H.
1985-01-01
An integrated modeling and analysis of error detection and recovery is presented. When fault latency and/or error latency exist, the system may suffer from multiple faults or error propagations which seriously deteriorate the fault-tolerant capability. Several detection models that enable analysis of the effect of detection mechanisms on the subsequent error handling operations and the overall system reliability were developed. Following detection of the faulty unit and reconfiguration of the system, the contaminated processes or tasks have to be recovered. The strategies of error recovery employed depend on the detection mechanisms and the available redundancy. Several recovery methods including the rollback recovery are considered. The recovery overhead is evaluated as an index of the capabilities of the detection and reconfiguration mechanisms.
Early math and reading achievement are associated with the error positivity.
Kim, Matthew H; Grammer, Jennie K; Marulis, Loren M; Carrasco, Melisa; Morrison, Frederick J; Gehring, William J
2016-12-01
Executive functioning (EF) and motivation are associated with academic achievement and error-related ERPs. The present study explores whether early academic skills predict variability in the error-related negativity (ERN) and error positivity (Pe). Data from 113 three- to seven-year-old children in a Go/No-Go task revealed that stronger early reading and math skills predicted a larger Pe. Closer examination revealed that this relation was quadratic and significant for children performing at or near grade level, but not significant for above-average achievers. Early academics did not predict the ERN. These findings suggest that the Pe - which reflects individual differences in motivational processes as well as attention - may be associated with early academic achievement. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sensitivity in error detection of patient specific QA tools for IMRT plans
NASA Astrophysics Data System (ADS)
Lat, S. Z.; Suriyapee, S.; Sanghangthum, T.
2016-03-01
The high complexity of dose calculation in treatment planning and accurate delivery of IMRT plan need high precision of verification method. The purpose of this study is to investigate error detection capability of patient specific QA tools for IMRT plans. The two H&N and two prostate IMRT plans with MapCHECK2 and portal dosimetry QA tools were studied. Measurements were undertaken for original and modified plans with errors introduced. The intentional errors composed of prescribed dose (±2 to ±6%) and position shifting in X-axis and Y-axis (±1 to ±5mm). After measurement, gamma pass between original and modified plans were compared. The average gamma pass for original H&N and prostate plans were 98.3% and 100% for MapCHECK2 and 95.9% and 99.8% for portal dosimetry, respectively. In H&N plan, MapCHECK2 can detect position shift errors starting from 3mm while portal dosimetry can detect errors started from 2mm. Both devices showed similar sensitivity in detection of position shift error in prostate plan. For H&N plan, MapCHECK2 can detect dose errors starting at ±4%, whereas portal dosimetry can detect from ±2%. For prostate plan, both devices can identify dose errors starting from ±4%. Sensitivity of error detection depends on type of errors and plan complexity.
A Mechanism for Error Detection in Speeded Response Time Tasks
ERIC Educational Resources Information Center
Holroyd, Clay B.; Yeung, Nick; Coles, Michael G. H.; Cohen, Jonathan D.
2005-01-01
The concept of error detection plays a central role in theories of executive control. In this article, the authors present a mechanism that can rapidly detect errors in speeded response time tasks. This error monitor assigns values to the output of cognitive processes involved in stimulus categorization and response generation and detects errors…
Procedural error monitoring and smart checklists
NASA Technical Reports Server (NTRS)
Palmer, Everett
1990-01-01
Human beings make and usually detect errors routinely. The same mental processes that allow humans to cope with novel problems can also lead to error. Bill Rouse has argued that errors are not inherently bad but their consequences may be. He proposes the development of error-tolerant systems that detect errors and take steps to prevent the consequences of the error from occurring. Research should be done on self and automatic detection of random and unanticipated errors. For self detection, displays should be developed that make the consequences of errors immediately apparent. For example, electronic map displays graphically show the consequences of horizontal flight plan entry errors. Vertical profile displays should be developed to make apparent vertical flight planning errors. Other concepts such as energy circles could also help the crew detect gross flight planning errors. For automatic detection, systems should be developed that can track pilot activity, infer pilot intent and inform the crew of potential errors before their consequences are realized. Systems that perform a reasonableness check on flight plan modifications by checking route length and magnitude of course changes are simple examples. Another example would be a system that checked the aircraft's planned altitude against a data base of world terrain elevations. Information is given in viewgraph form.
ERIC Educational Resources Information Center
Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.
2011-01-01
Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the…
Latorre-Arteaga, Sergio; Gil-González, Diana; Enciso, Olga; Phelan, Aoife; García-Muñoz, Angel; Kohler, Johannes
2014-01-01
Refractive error is defined as the inability of the eye to bring parallel rays of light into focus on the retina, resulting in nearsightedness (myopia), farsightedness (Hyperopia) or astigmatism. Uncorrected refractive error in children is associated with increased morbidity and reduced educational opportunities. Vision screening (VS) is a method for identifying children with visual impairment or eye conditions likely to lead to visual impairment. To analyze the utility of vision screening conducted by teachers and to contribute to a better estimation of the prevalence of childhood refractive errors in Apurimac, Peru. Design : A pilot vision screening program in preschool (Group I) and elementary school children (Group II) was conducted with the participation of 26 trained teachers. Children whose visual acuity was<6/9 [20/30] (Group I) and ≤ 6/9 (Group II) in one or both eyes, measured with the Snellen Tumbling E chart at 6 m, were referred for a comprehensive eye exam. Specificity and positive predictive value to detect refractive error were calculated against clinical examination. Program assessment with participants was conducted to evaluate outcomes and procedures. A total sample of 364 children aged 3-11 were screened; 45 children were examined at Centro Oftalmológico Monseñor Enrique Pelach (COMEP) Eye Hospital. Prevalence of refractive error was 6.2% (Group I) and 6.9% (Group II); specificity of teacher vision screening was 95.8% and 93.0%, while positive predictive value was 59.1% and 47.8% for each group, respectively. Aspects highlighted to improve the program included extending training, increasing parental involvement, and helping referred children to attend the hospital. Prevalence of refractive error in children is significant in the region. Vision screening performed by trained teachers is a valid intervention for early detection of refractive error, including screening of preschool children. Program sustainability and improvements in education and quality of life resulting from childhood vision screening require further research.
Clover: Compiler directed lightweight soft error resilience
Liu, Qingrui; Lee, Dongyoon; Jung, Changhee; ...
2015-05-01
This paper presents Clover, a compiler directed soft error detection and recovery scheme for lightweight soft error resilience. The compiler carefully generates soft error tolerant code based on idem-potent processing without explicit checkpoint. During program execution, Clover relies on a small number of acoustic wave detectors deployed in the processor to identify soft errors by sensing the wave made by a particle strike. To cope with DUE (detected unrecoverable errors) caused by the sensing latency of error detection, Clover leverages a novel selective instruction duplication technique called tail-DMR (dual modular redundancy). Once a soft error is detected by either themore » sensor or the tail-DMR, Clover takes care of the error as in the case of exception handling. To recover from the error, Clover simply redirects program control to the beginning of the code region where the error is detected. Lastly, the experiment results demonstrate that the average runtime overhead is only 26%, which is a 75% reduction compared to that of the state-of-the-art soft error resilience technique.« less
Díaz Candamio, M J; Jha, S; Martel Villagrán, J
2018-04-21
Overdiagnosis, more than an error regarding the diagnosis, is an error regarding the prognosis. We cannot know what consequences some lesions that we detect by imaging would have on our patients' lives if they were left untreated. As long as it is not possible for imaging techniques to differentiate between lesions that will have an indolent course from those that will have an aggressive course, there will be overdiagnosis. Advanced imaging techniques, radiomics, and radiogenomics, together with artificial intelligence, promise advances in this sense. In the meantime, it is important that radiologists be careful to ensure that only strictly necessary imaging tests are done. Moreover, we need to participate, together with patients, in making multidisciplinary decisions about diagnosis and clinical management. Finally, of course, we need to continue to contribute to the technological and scientific advance of our profession, so that we can continue to improve the diagnosis and early detection of abnormalities, especially those that require treatment. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Impact of Measurement Error on Synchrophasor Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yilu; Gracia, Jose R.; Ewing, Paul D.
2015-07-01
Phasor measurement units (PMUs), a type of synchrophasor, are powerful diagnostic tools that can help avert catastrophic failures in the power grid. Because of this, PMU measurement errors are particularly worrisome. This report examines the internal and external factors contributing to PMU phase angle and frequency measurement errors and gives a reasonable explanation for them. It also analyzes the impact of those measurement errors on several synchrophasor applications: event location detection, oscillation detection, islanding detection, and dynamic line rating. The primary finding is that dynamic line rating is more likely to be influenced by measurement error. Other findings include themore » possibility of reporting nonoscillatory activity as an oscillation as the result of error, failing to detect oscillations submerged by error, and the unlikely impact of error on event location and islanding detection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almasi, Gheorghe; Blumrich, Matthias Augustin; Chen, Dong
Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored inmore » memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.« less
NASA Astrophysics Data System (ADS)
Xie, Jun; Ni, Sidao; Chu, Risheng; Xia, Yingjie
2018-01-01
Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 s (e.g. GSC in 1992), especially in early days of global seismic networks. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC, PAS and PFO in the TERRAscope network as an example, the 26 s PL signal can be easily observed in the ambient noise cross-correlation function between these stations and a remote station OBN with interstation distance about 9700 km. The travel-time variation of this 26 s signal in the ambient noise cross-correlation function is used to infer clock error. A drastic clock error is detected during June 1992 for station GSC, but not found for station PAS and PFO. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of 25 s. Averaged over the three stations, the accuracy of the ambient noise cross-correlation function method with the 26 s source is about 0.3-0.5 s. Using this PL source, the clock can be validated for historical records of sparsely distributed stations, where the usual ambient noise cross-correlation function of short-period (<20 s) ambient noise might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. Further studies are also needed to investigate whether the 26 s source moves spatially and its effects on clock drift detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopan, O; Kalet, A; Smith, W
2016-06-15
Purpose: A standard tool for ensuring the quality of radiation therapy treatments is the initial physics plan review. However, little is known about its performance in practice. The goal of this study is to measure the effectiveness of physics plan review by introducing simulated errors into “mock” treatment plans and measuring the performance of plan review by physicists. Methods: We generated six mock treatment plans containing multiple errors. These errors were based on incident learning system data both within the department and internationally (SAFRON). These errors were scored for severity and frequency. Those with the highest scores were included inmore » the simulations (13 errors total). Observer bias was minimized using a multiple co-correlated distractor approach. Eight physicists reviewed these plans for errors, with each physicist reviewing, on average, 3/6 plans. The confidence interval for the proportion of errors detected was computed using the Wilson score interval. Results: Simulated errors were detected in 65% of reviews [51–75%] (95% confidence interval [CI] in brackets). The following error scenarios had the highest detection rates: incorrect isocenter in DRRs/CBCT (91% [73–98%]) and a planned dose different from the prescribed dose (100% [61–100%]). Errors with low detection rates involved incorrect field parameters in record and verify system (38%, [18–61%]) and incorrect isocenter localization in planning system (29% [8–64%]). Though pre-treatment QA failure was reliably identified (100%), less than 20% of participants reported the error that caused the failure. Conclusion: This is one of the first quantitative studies of error detection. Although physics plan review is a key safety measure and can identify some errors with high fidelity, others errors are more challenging to detect. This data will guide future work on standardization and automation. Creating new checks or improving existing ones (i.e., via automation) will help in detecting those errors with low detection rates.« less
NASA Technical Reports Server (NTRS)
Buechler, W.; Tucker, A. G.
1981-01-01
Several methods were employed to detect both the occurrence and source of errors in the operational software of the AN/SLQ-32. A large embedded real time electronic warfare command and control system for the ROLM 1606 computer are presented. The ROLM computer provides information about invalid addressing, improper use of privileged instructions, stack overflows, and unimplemented instructions. Additionally, software techniques were developed to detect invalid jumps, indices out of range, infinte loops, stack underflows, and field size errors. Finally, data are saved to provide information about the status of the system when an error is detected. This information includes I/O buffers, interrupt counts, stack contents, and recently passed locations. The various errors detected, techniques to assist in debugging problems, and segment simulation on a nontarget computer are discussed. These error detection techniques were a major factor in the success of finding the primary cause of error in 98% of over 500 system dumps.
Thiboonboon, Kittiphong; Leelahavarong, Pattara; Wattanasirichaigoon, Duangrurdee; Vatanavicharn, Nithiwat; Wasant, Pornswan; Shotelersuk, Vorasuk; Pangkanon, Suthipong; Kuptanon, Chulaluck; Chaisomchit, Sumonta; Teerawattananon, Yot
2015-01-01
Inborn errors of metabolism (IEM) are a rare group of genetic diseases which can lead to several serious long-term complications in newborns. In order to address these issues as early as possible, a process called tandem mass spectrometry (MS/MS) can be used as it allows for rapid and simultaneous detection of the diseases. This analysis was performed to determine whether newborn screening by MS/MS is cost-effective in Thailand. A cost-utility analysis comprising a decision-tree and Markov model was used to estimate the cost in Thai baht (THB) and health outcomes in life-years (LYs) and quality-adjusted life year (QALYs) presented as an incremental cost-effectiveness ratio (ICER). The results were also adjusted to international dollars (I$) using purchasing power parities (PPP) (1 I$ = 17.79 THB for the year 2013). The comparisons were between 1) an expanded neonatal screening programme using MS/MS screening for six prioritised diseases: phenylketonuria (PKU); isovaleric acidemia (IVA); methylmalonic acidemia (MMA); propionic acidemia (PA); maple syrup urine disease (MSUD); and multiple carboxylase deficiency (MCD); and 2) the current practice that is existing PKU screening. A comparison of the outcome and cost of treatment before and after clinical presentations were also analysed to illustrate the potential benefit of early treatment for affected children. A budget impact analysis was conducted to illustrate the cost of implementing the programme for 10 years. The ICER of neonatal screening using MS/MS amounted to 1,043,331 THB per QALY gained (58,647 I$ per QALY gained). The potential benefits of early detection compared with late detection yielded significant results for PKU, IVA, MSUD, and MCD patients. The budget impact analysis indicated that the implementation cost of the programme was expected at approximately 2,700 million THB (152 million I$) over 10 years. At the current ceiling threshold, neonatal screening using MS/MS in the Thai context is not cost-effective. However, the treatment of patients who were detected early for PKU, IVA, MSUD, and MCD, are considered favourable. The budget impact analysis suggests that the implementation of the programme will incur considerable expenses under limited resources. A long-term epidemiological study on the incidence of IEM in Thailand is strongly recommended to ascertain the magnitude of problem.
Thiboonboon, Kittiphong; Leelahavarong, Pattara; Wattanasirichaigoon, Duangrurdee; Vatanavicharn, Nithiwat; Wasant, Pornswan; Shotelersuk, Vorasuk; Pangkanon, Suthipong; Kuptanon, Chulaluck; Chaisomchit, Sumonta; Teerawattananon, Yot
2015-01-01
Background Inborn errors of metabolism (IEM) are a rare group of genetic diseases which can lead to several serious long-term complications in newborns. In order to address these issues as early as possible, a process called tandem mass spectrometry (MS/MS) can be used as it allows for rapid and simultaneous detection of the diseases. This analysis was performed to determine whether newborn screening by MS/MS is cost-effective in Thailand. Method A cost-utility analysis comprising a decision-tree and Markov model was used to estimate the cost in Thai baht (THB) and health outcomes in life-years (LYs) and quality-adjusted life year (QALYs) presented as an incremental cost-effectiveness ratio (ICER). The results were also adjusted to international dollars (I$) using purchasing power parities (PPP) (1 I$ = 17.79 THB for the year 2013). The comparisons were between 1) an expanded neonatal screening programme using MS/MS screening for six prioritised diseases: phenylketonuria (PKU); isovaleric acidemia (IVA); methylmalonic acidemia (MMA); propionic acidemia (PA); maple syrup urine disease (MSUD); and multiple carboxylase deficiency (MCD); and 2) the current practice that is existing PKU screening. A comparison of the outcome and cost of treatment before and after clinical presentations were also analysed to illustrate the potential benefit of early treatment for affected children. A budget impact analysis was conducted to illustrate the cost of implementing the programme for 10 years. Results The ICER of neonatal screening using MS/MS amounted to 1,043,331 THB per QALY gained (58,647 I$ per QALY gained). The potential benefits of early detection compared with late detection yielded significant results for PKU, IVA, MSUD, and MCD patients. The budget impact analysis indicated that the implementation cost of the programme was expected at approximately 2,700 million THB (152 million I$) over 10 years. Conclusion At the current ceiling threshold, neonatal screening using MS/MS in the Thai context is not cost-effective. However, the treatment of patients who were detected early for PKU, IVA, MSUD, and MCD, are considered favourable. The budget impact analysis suggests that the implementation of the programme will incur considerable expenses under limited resources. A long-term epidemiological study on the incidence of IEM in Thailand is strongly recommended to ascertain the magnitude of problem. PMID:26258410
Permanence analysis of a concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Lin, S.; Kasami, T.
1983-01-01
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed.
Probability of undetected error after decoding for a concatenated coding scheme
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Lin, S.
1984-01-01
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for NASA telecommand system is analyzed.
Primordial Inflation Polarization Explorer: Status and Plans
NASA Technical Reports Server (NTRS)
Kogut, Alan
2009-01-01
The Primordial Inflation Polarization Explorer is a balloon-borne instrument to measure the polarization of the cosmic microwave background in order to detect the characteristic signature of gravity waves created during an inflationary epoch in the early universe. PIPER combines cold /I.G K\\ optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. I will discuss the current status and plans for the PIPER instrument.
NASA Astrophysics Data System (ADS)
Chen, Xueli; Liang, Jimin; Hu, Hao; Qu, Xiaochao; Yang, Defu; Chen, Duofang; Zhu, Shouping; Tian, Jie
2012-03-01
Gastric cancer is the second cause of cancer-related death in the world, and it remains difficult to cure because it has been in late-stage once that is found. Early gastric cancer detection becomes an effective approach to decrease the gastric cancer mortality. Bioluminescence tomography (BLT) has been applied to detect early liver cancer and prostate cancer metastasis. However, the gastric cancer commonly originates from the gastric mucosa and grows outwards. The bioluminescent light will pass through a non-scattering region constructed by gastric pouch when it transports in tissues. Thus, the current BLT reconstruction algorithms based on the approximation model of radiative transfer equation are not optimal to handle this problem. To address the gastric cancer specific problem, this paper presents a novel reconstruction algorithm that uses a hybrid light transport model to describe the bioluminescent light propagation in tissues. The radiosity theory integrated with the diffusion equation to form the hybrid light transport model is utilized to describe light propagation in the non-scattering region. After the finite element discretization, the hybrid light transport model is converted into a minimization problem which fuses an l1 norm based regularization term to reveal the sparsity of bioluminescent source distribution. The performance of the reconstruction algorithm is first demonstrated with a digital mouse based simulation with the reconstruction error less than 1mm. An in situ gastric cancer-bearing nude mouse based experiment is then conducted. The primary result reveals the ability of the novel BLT reconstruction algorithm in early gastric cancer detection.
Adetiba, Emmanuel; Olugbara, Oludayo O
2015-01-01
Lung cancer is one of the diseases responsible for a large number of cancer related death cases worldwide. The recommended standard for screening and early detection of lung cancer is the low dose computed tomography. However, many patients diagnosed die within one year, which makes it essential to find alternative approaches for screening and early detection of lung cancer. We present computational methods that can be implemented in a functional multi-genomic system for classification, screening and early detection of lung cancer victims. Samples of top ten biomarker genes previously reported to have the highest frequency of lung cancer mutations and sequences of normal biomarker genes were respectively collected from the COSMIC and NCBI databases to validate the computational methods. Experiments were performed based on the combinations of Z-curve and tetrahedron affine transforms, Histogram of Oriented Gradient (HOG), Multilayer perceptron and Gaussian Radial Basis Function (RBF) neural networks to obtain an appropriate combination of computational methods to achieve improved classification of lung cancer biomarker genes. Results show that a combination of affine transforms of Voss representation, HOG genomic features and Gaussian RBF neural network perceptibly improves classification accuracy, specificity and sensitivity of lung cancer biomarker genes as well as achieving low mean square error.
Passarge, Michelle; Fix, Michael K; Manser, Peter; Stampanoni, Marco F M; Siebers, Jeffrey V
2017-04-01
To develop a robust and efficient process that detects relevant dose errors (dose errors of ≥5%) in external beam radiation therapy and directly indicates the origin of the error. The process is illustrated in the context of electronic portal imaging device (EPID)-based angle-resolved volumetric-modulated arc therapy (VMAT) quality assurance (QA), particularly as would be implemented in a real-time monitoring program. A Swiss cheese error detection (SCED) method was created as a paradigm for a cine EPID-based during-treatment QA. For VMAT, the method compares a treatment plan-based reference set of EPID images with images acquired over each 2° gantry angle interval. The process utilizes a sequence of independent consecutively executed error detection tests: an aperture check that verifies in-field radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment check to examine if rotation, scaling, and translation are within tolerances; pixel intensity check containing the standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each check were determined. To test the SCED method, 12 different types of errors were selected to modify the original plan. A series of angle-resolved predicted EPID images were artificially generated for each test case, resulting in a sequence of precalculated frames for each modified treatment plan. The SCED method was applied multiple times for each test case to assess the ability to detect introduced plan variations. To compare the performance of the SCED process with that of a standard gamma analysis, both error detection methods were applied to the generated test cases with realistic noise variations. Averaged over ten test runs, 95.1% of all plan variations that resulted in relevant patient dose errors were detected within 2° and 100% within 14° (<4% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 89.1% were detected by the SCED method within 2°. Based on the type of check that detected the error, determination of error sources was achieved. With noise ranging from no random noise to four times the established noise value, the averaged relevant dose error detection rate of the SCED method was between 94.0% and 95.8% and that of gamma between 82.8% and 89.8%. An EPID-frame-based error detection process for VMAT deliveries was successfully designed and tested via simulations. The SCED method was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of relevant dose errors. Compared to a typical (3%, 3 mm) gamma analysis, the SCED method produced a higher detection rate for all introduced dose errors, identified errors in an earlier stage, displayed a higher robustness to noise variations, and indicated the error source. © 2017 American Association of Physicists in Medicine.
Camera, Stefano; Santos, Mário G; Ferreira, Pedro G; Ferramacho, Luís
2013-10-25
The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z=/~1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter f(NL), with an error close to σ(f(NL))~1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D; Dyer, B; Kumaran Nair, C
Purpose: The Integral Quality Monitor (IQM), developed by iRT Systems GmbH (Koblenz, Germany) is a large-area, linac-mounted ion chamber used to monitor photon fluence during patient treatment. Our previous work evaluated the change of the ion chamber’s response to deviations from static 1×1 cm2 and 10×10 cm2 photon beams and other characteristics integral to use in external beam detection. The aim of this work is to simulate two external beam radiation delivery errors, quantify the detection of simulated errors and evaluate the reduction in patient harm resulting from detection. Methods: Two well documented radiation oncology delivery errors were selected formore » simulation. The first error was recreated by modifying a wedged whole breast treatment, removing the physical wedge and calculating the planned dose with Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI). The second error was recreated by modifying a static-gantry IMRT pharyngeal tonsil plan to be delivered in 3 unmodulated fractions. A radiation oncologist evaluated the dose for simulated errors and predicted morbidity and mortality commiserate with the original reported toxicity, indicating that reported errors were approximately simulated. The ion chamber signal of unmodified treatments was compared to the simulated error signal and evaluated in Pinnacle TPS again with radiation oncologist prediction of simulated patient harm. Results: Previous work established that transmission detector system measurements are stable within 0.5% standard deviation (SD). Errors causing signal change greater than 20 SD (10%) were considered detected. The whole breast and pharyngeal tonsil IMRT simulated error increased signal by 215% and 969%, respectively, indicating error detection after the first fraction and IMRT segment, respectively. Conclusion: The transmission detector system demonstrated utility in detecting clinically significant errors and reducing patient toxicity/harm in simulated external beam delivery. Future work will evaluate detection of other smaller magnitude delivery errors.« less
MicroRNA Expression Profile Selection for Cancer Staging Classification Using Backpropagation
NASA Astrophysics Data System (ADS)
Anjarwati; Wibowo, Adi; Adhy, Satriyo; Kusumaningrum, Retno
2018-05-01
Ovarian cancer, breast cancer, and lung cancer are deadly diseases and require serious treatment. The cancers are among the fifth most common causes of cancer-induced deaths especially for woman. The high mortality rate of cancer is caused by the lack of effective strategies for early detection of the cancer, whereas if its detected in the early stages, the life survival of cancer patients will be 90%, otherwise the survival rate only 30% when the cancers detected on metastasis stages or cancer cells have spread from a primary site of cancer. MicroRNAs can be used as potential biomarkers for cancer due to their profile expression on the cancers. In this paper, we proposed the feature selection of microRNA expression profiles for classification of the cancers stages using Backpropagation Neural Network. The Cancer stages are classified into before metastasis and after metastasis. Several combinations of the microRNA expression profiles from medical references are compared to find the best features for the classification. The accuracy and the mean square errors are used as basis testing the comparison.
Effects of Contextual Sight-Singing and Aural Skills Training on Error-Detection Abilities.
ERIC Educational Resources Information Center
Sheldon, Deborah A.
1998-01-01
Examines the effects of contextual sight-singing and ear training on pitch and rhythm error detection abilities among undergraduate instrumental music education majors. Shows that additional training produced better error detection, particularly with rhythm errors and in one-part examples. Maintains that differences attributable to texture were…
Völker, Martin; Fiederer, Lukas D J; Berberich, Sofie; Hammer, Jiří; Behncke, Joos; Kršek, Pavel; Tomášek, Martin; Marusič, Petr; Reinacher, Peter C; Coenen, Volker A; Helias, Moritz; Schulze-Bonhage, Andreas; Burgard, Wolfram; Ball, Tonio
2018-06-01
Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Towards accurate radial velocities from early type spectra in the framework of an ESO key programme
NASA Astrophysics Data System (ADS)
Verschueren, Werner; David, M.; Hensberge, Herman
In order to elucidate the internal kinematics in very young stellar groups, a dedicated machinery was set up, which made it possible to proceed from actual observations to reductions and correlation analysis to the ultimate derivation of early-type stellar radial velocities (RVs) with the requisite precision. The following ingredients are found to be essential to obtain RVs of early-type stars at the 1-km/s level of precision: high-resolution, high-S/N spectra covering a large wavelength range; maximal reduction of observational errors and the use of optimal reduction procedures; the intelligent use of a versatile cross-correlation package; and comparison of velocities derived from different regions of the spectrum in order to detect systematic mismatches between object and template spectrum in some of the lines.
Bledsoe, Sarah; Van Buskirk, Alex; Falconer, R James; Hollon, Andrew; Hoebing, Wendy; Jokic, Sladan
2018-02-01
The effectiveness of barcode-assisted medication preparation (BCMP) technology on detecting oral liquid dose preparation errors. From June 1, 2013, through May 31, 2014, a total of 178,344 oral doses were processed at Children's Mercy, a 301-bed pediatric hospital, through an automated workflow management system. Doses containing errors detected by the system's barcode scanning system or classified as rejected by the pharmacist were further reviewed. Errors intercepted by the barcode-scanning system were classified as (1) expired product, (2) incorrect drug, (3) incorrect concentration, and (4) technological error. Pharmacist-rejected doses were categorized into 6 categories based on the root cause of the preparation error: (1) expired product, (2) incorrect concentration, (3) incorrect drug, (4) incorrect volume, (5) preparation error, and (6) other. Of the 178,344 doses examined, 3,812 (2.1%) errors were detected by either the barcode-assisted scanning system (1.8%, n = 3,291) or a pharmacist (0.3%, n = 521). The 3,291 errors prevented by the barcode-assisted system were classified most commonly as technological error and incorrect drug, followed by incorrect concentration and expired product. Errors detected by pharmacists were also analyzed. These 521 errors were most often classified as incorrect volume, preparation error, expired product, other, incorrect drug, and incorrect concentration. BCMP technology detected errors in 1.8% of pediatric oral liquid medication doses prepared in an automated workflow management system, with errors being most commonly attributed to technological problems or incorrect drugs. Pharmacists rejected an additional 0.3% of studied doses. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Lin, S.
1985-01-01
A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.
Form Overrides Meaning When Bilinguals Monitor for Errors
Ivanova, Iva; Ferreira, Victor S.; Gollan, Tamar H.
2016-01-01
Bilinguals rarely produce unintended language switches, which may in part be because switches are detected and corrected by an internal monitor. But are language switches easier or harder to detect than within-language semantic errors? To approximate internal monitoring, bilinguals listened (Experiment 1) or read aloud (Experiment 2) stories, and detected language switches (translation equivalents or semantically unrelated to expected words) and within-language errors (semantically related or unrelated to expected words). Bilinguals detected semantically related within-language errors most slowly and least accurately, language switches more quickly and accurately than within-language errors, and (in Experiment 2), translation equivalents as quickly and accurately as unrelated language switches. These results suggest that internal monitoring of form (which can detect mismatches in language membership) completes earlier than, and is independent of, monitoring of meaning. However, analysis of reading times prior to error detection revealed meaning violations to be more disruptive for processing than language violations. PMID:28649169
The Interplanetary Network II: 11 Months of Rapid, Precise GRB Localizations
NASA Astrophysics Data System (ADS)
Hurley, K.; Cline, T.; Mazets, E.; Golenetskii, S.; Trombka, J.; Feroci, M.; Kippen, R. M.; Barthelmy, S.; Frontera, F.; Guidorzi, C.; Montanari, E.
2000-10-01
Since December 1999 the 3rd Interplanetary Network has been producing small ( 10') error boxes at a rate of about one per week, and circulating them rapidly ( 24 h) via the GCN. As of June 2000, 24 such error boxes have been obtained; 18 of them have been searched in the radio and optical ranges for counterparts, resulting in four definite counterpart detections and three redshift determinations. We will review these results and explain the some of the lesser known IPN operations. In particular, we maintain an "early warning" list of potential observers with pagers and cell phones, and send messages to them to alert them to bursts for which error boxes will be obtained, allowing them to prepare for observations many hours before the complete spacecraft data are received and the GCN message is issued. As an interesting aside, now that the CGRO mission is terminated, the IPN consists entirely of non-NASA and/or non-astrophysics missions, specifically, Ulysses and Wind (Space Physics), NEAR (Planetary Physics), and BeppoSAX (ASI).
FMEA: a model for reducing medical errors.
Chiozza, Maria Laura; Ponzetti, Clemente
2009-06-01
Patient safety is a management issue, in view of the fact that clinical risk management has become an important part of hospital management. Failure Mode and Effect Analysis (FMEA) is a proactive technique for error detection and reduction, firstly introduced within the aerospace industry in the 1960s. Early applications in the health care industry dating back to the 1990s included critical systems in the development and manufacture of drugs and in the prevention of medication errors in hospitals. In 2008, the Technical Committee of the International Organization for Standardization (ISO), licensed a technical specification for medical laboratories suggesting FMEA as a method for prospective risk analysis of high-risk processes. Here we describe the main steps of the FMEA process and review data available on the application of this technique to laboratory medicine. A significant reduction of the risk priority number (RPN) was obtained when applying FMEA to blood cross-matching, to clinical chemistry analytes, as well as to point-of-care testing (POCT).
Westbrook, Johanna I.; Li, Ling; Lehnbom, Elin C.; Baysari, Melissa T.; Braithwaite, Jeffrey; Burke, Rosemary; Conn, Chris; Day, Richard O.
2015-01-01
Objectives To (i) compare medication errors identified at audit and observation with medication incident reports; (ii) identify differences between two hospitals in incident report frequency and medication error rates; (iii) identify prescribing error detection rates by staff. Design Audit of 3291patient records at two hospitals to identify prescribing errors and evidence of their detection by staff. Medication administration errors were identified from a direct observational study of 180 nurses administering 7451 medications. Severity of errors was classified. Those likely to lead to patient harm were categorized as ‘clinically important’. Setting Two major academic teaching hospitals in Sydney, Australia. Main Outcome Measures Rates of medication errors identified from audit and from direct observation were compared with reported medication incident reports. Results A total of 12 567 prescribing errors were identified at audit. Of these 1.2/1000 errors (95% CI: 0.6–1.8) had incident reports. Clinically important prescribing errors (n = 539) were detected by staff at a rate of 218.9/1000 (95% CI: 184.0–253.8), but only 13.0/1000 (95% CI: 3.4–22.5) were reported. 78.1% (n = 421) of clinically important prescribing errors were not detected. A total of 2043 drug administrations (27.4%; 95% CI: 26.4–28.4%) contained ≥1 errors; none had an incident report. Hospital A had a higher frequency of incident reports than Hospital B, but a lower rate of errors at audit. Conclusions Prescribing errors with the potential to cause harm frequently go undetected. Reported incidents do not reflect the profile of medication errors which occur in hospitals or the underlying rates. This demonstrates the inaccuracy of using incident frequency to compare patient risk or quality performance within or across hospitals. New approaches including data mining of electronic clinical information systems are required to support more effective medication error detection and mitigation. PMID:25583702
Local concurrent error detection and correction in data structures using virtual backpointers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.C.J.; Chen, P.P.; Fuchs, W.K.
1989-11-01
A new technique, based on virtual backpointers, is presented in this paper for local concurrent error detection and correction in linked data structures. Two new data structures utilizing virtual backpointers, the Virtual Double-Linked List and the B-Tree and Virtual Backpointers, are described. For these structures, double errors within a fixed-size checking window can be detected in constant time and single errors detected during forward moves can be corrected in constant time.
Kreilinger, Alex; Hiebel, Hannah; Müller-Putz, Gernot R
2016-03-01
This work aimed to find and evaluate a new method for detecting errors in continuous brain-computer interface (BCI) applications. Instead of classifying errors on a single-trial basis, the new method was based on multiple events (MEs) analysis to increase the accuracy of error detection. In a BCI-driven car game, based on motor imagery (MI), discrete events were triggered whenever subjects collided with coins and/or barriers. Coins counted as correct events, whereas barriers were errors. This new method, termed ME method, combined and averaged the classification results of single events (SEs) and determined the correctness of MI trials, which consisted of event sequences instead of SEs. The benefit of this method was evaluated in an offline simulation. In an online experiment, the new method was used to detect erroneous MI trials. Such MI trials were discarded and could be repeated by the users. We found that, even with low SE error potential (ErrP) detection rates, feasible accuracies can be achieved when combining MEs to distinguish erroneous from correct MI trials. Online, all subjects reached higher scores with error detection than without, at the cost of longer times needed for completing the game. Findings suggest that ErrP detection may become a reliable tool for monitoring continuous states in BCI applications when combining MEs. This paper demonstrates a novel technique for detecting errors in online continuous BCI applications, which yields promising results even with low single-trial detection rates.
Autoimmunity: a decision theory model.
Morris, J A
1987-01-01
Concepts from statistical decision theory were used to analyse the detection problem faced by the body's immune system in mounting immune responses to bacteria of the normal body flora. Given that these bacteria are potentially harmful, that there can be extensive cross reaction between bacterial antigens and host tissues, and that the decisions are made in uncertainty, there is a finite chance of error in immune response leading to autoimmune disease. A model of ageing in the immune system is proposed that is based on random decay in components of the decision process, leading to a steep age dependent increase in the probability of error. The age incidence of those autoimmune diseases which peak in early and middle life can be explained as the resultant of two processes: an exponentially falling curve of incidence of first contact with common bacteria, and a rapidly rising error function. Epidemiological data on the variation of incidence with social class, sibship order, climate and culture can be used to predict the likely site of carriage and mode of spread of the causative bacteria. Furthermore, those autoimmune diseases precipitated by common viral respiratory tract infections might represent reactions to nasopharyngeal bacterial overgrowth, and this theory can be tested using monoclonal antibodies to search the bacterial isolates for cross reacting antigens. If this model is correct then prevention of autoimmune disease by early exposure to low doses of bacteria might be possible. PMID:3818985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passarge, M; Fix, M K; Manser, P
Purpose: To create and test an accurate EPID-frame-based VMAT QA metric to detect gross dose errors in real-time and to provide information about the source of error. Methods: A Swiss cheese model was created for an EPID-based real-time QA process. The system compares a treatmentplan- based reference set of EPID images with images acquired over each 2° gantry angle interval. The metric utilizes a sequence of independent consecutively executed error detection Methods: a masking technique that verifies infield radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment to quantify rotation, scaling andmore » translation; standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each test were determined. For algorithm testing, twelve different types of errors were selected to modify the original plan. Corresponding predictions for each test case were generated, which included measurement-based noise. Each test case was run multiple times (with different noise per run) to assess the ability to detect introduced errors. Results: Averaged over five test runs, 99.1% of all plan variations that resulted in patient dose errors were detected within 2° and 100% within 4° (∼1% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 91.5% were detected by the system within 2°. Based on the type of method that detected the error, determination of error sources was achieved. Conclusion: An EPID-based during-treatment error detection system for VMAT deliveries was successfully designed and tested. The system utilizes a sequence of methods to identify and prevent gross treatment delivery errors. The system was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of errors in real-time and indicate the error source. J. V. Siebers receives funding support from Varian Medical Systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damato, AL; Bhagwat, MS; Buzurovic, I
Purpose: To investigate the use of a system using EM tracking, postprocessing and error-detection algorithms for measuring brachytherapy catheter locations and for detecting errors and resolving uncertainties in treatment-planning catheter digitization. Methods: An EM tracker was used to localize 13 catheters in a clinical surface applicator (A) and 15 catheters inserted into a phantom (B). Two pairs of catheters in (B) crossed paths at a distance <2 mm, producing an undistinguishable catheter artifact in that location. EM data was post-processed for noise reduction and reformatted to provide the dwell location configuration. CT-based digitization was automatically extracted from the brachytherapy planmore » DICOM files (CT). EM dwell digitization error was characterized in terms of the average and maximum distance between corresponding EM and CT dwells per catheter. The error detection rate (detected errors / all errors) was calculated for 3 types of errors: swap of two catheter numbers; incorrect catheter number identification superior to the closest position between two catheters (mix); and catheter-tip shift. Results: The averages ± 1 standard deviation of the average and maximum registration error per catheter were 1.9±0.7 mm and 3.0±1.1 mm for (A) and 1.6±0.6 mm and 2.7±0.8 mm for (B). The error detection rate was 100% (A and B) for swap errors, mix errors, and shift >4.5 mm (A) and >5.5 mm (B); errors were detected for shifts on average >2.0 mm (A) and >2.4 mm (B). Both mix errors associated with undistinguishable catheter artifacts were detected and at least one of the involved catheters was identified. Conclusion: We demonstrated the use of an EM tracking system for localization of brachytherapy catheters, detection of digitization errors and resolution of undistinguishable catheter artifacts. Automatic digitization may be possible with a registration between the imaging and the EM frame of reference. Research funded by the Kaye Family Award 2012.« less
Errors, error detection, error correction and hippocampal-region damage: data and theories.
MacKay, Donald G; Johnson, Laura W
2013-11-01
This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.
McClintock, Brett T.; Bailey, Larissa L.; Pollock, Kenneth H.; Simons, Theodore R.
2010-01-01
The recent surge in the development and application of species occurrence models has been associated with an acknowledgment among ecologists that species are detected imperfectly due to observation error. Standard models now allow unbiased estimation of occupancy probability when false negative detections occur, but this is conditional on no false positive detections and sufficient incorporation of explanatory variables for the false negative detection process. These assumptions are likely reasonable in many circumstances, but there is mounting evidence that false positive errors and detection probability heterogeneity may be much more prevalent in studies relying on auditory cues for species detection (e.g., songbird or calling amphibian surveys). We used field survey data from a simulated calling anuran system of known occupancy state to investigate the biases induced by these errors in dynamic models of species occurrence. Despite the participation of expert observers in simplified field conditions, both false positive errors and site detection probability heterogeneity were extensive for most species in the survey. We found that even low levels of false positive errors, constituting as little as 1% of all detections, can cause severe overestimation of site occupancy, colonization, and local extinction probabilities. Further, unmodeled detection probability heterogeneity induced substantial underestimation of occupancy and overestimation of colonization and local extinction probabilities. Completely spurious relationships between species occurrence and explanatory variables were also found. Such misleading inferences would likely have deleterious implications for conservation and management programs. We contend that all forms of observation error, including false positive errors and heterogeneous detection probabilities, must be incorporated into the estimation framework to facilitate reliable inferences about occupancy and its associated vital rate parameters.
PRESAGE: Protecting Structured Address Generation against Soft Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation (to index large arrays) have not been widely researched. We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGE is that any addressmore » computation scheme that flows an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Enabling the flow of errors allows one to situate detectors at loop exit points, and helps turn silent corruptions into easily detectable error situations. Our experiments using PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less
PRESAGE: Protecting Structured Address Generation against Soft Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation have not been widely researched (especially in the context of indexing large arrays). We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGEmore » is that any address computation scheme that propagates an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Ensuring the propagation of errors allows one to place detectors at loop exit points and helps turn silent corruptions into easily detectable error situations. Our experiments using the PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less
Potter, Beth K; Chakraborty, Pranesh; Kronick, Jonathan B; Wilson, Kumanan; Coyle, Doug; Feigenbaum, Annette; Geraghty, Michael T; Karaceper, Maria D; Little, Julian; Mhanni, Aizeddin; Mitchell, John J; Siriwardena, Komudi; Wilson, Brenda J; Syrowatka, Ania
2013-06-01
Across all areas of health care, decision makers are in pursuit of what Berwick and colleagues have called the "triple aim": improving patient experiences with care, improving health outcomes, and managing health system impacts. This is challenging in a rare disease context, as exemplified by inborn errors of metabolism. There is a need for evaluative outcomes research to support effective and appropriate care for inborn errors of metabolism. We suggest that such research should consider interventions at both the level of the health system (e.g., early detection through newborn screening, programs to provide access to treatments) and the level of individual patient care (e.g., orphan drugs, medical foods). We have developed a practice-based evidence framework to guide outcomes research for inborn errors of metabolism. Focusing on outcomes across the triple aim, this framework integrates three priority themes: tailoring care in the context of clinical heterogeneity; a shift from "urgent care" to "opportunity for improvement"; and the need to evaluate the comparative effectiveness of emerging and established therapies. Guided by the framework, a new Canadian research network has been established to generate knowledge that will inform the design and delivery of health services for patients with inborn errors of metabolism and other rare diseases.
A Dual Frequency Carrier Phase Error Difference Checking Algorithm for the GNSS Compass.
Liu, Shuo; Zhang, Lei; Li, Jian
2016-11-24
The performance of the Global Navigation Satellite System (GNSS) compass is related to the quality of carrier phase measurement. How to process the carrier phase error properly is important to improve the GNSS compass accuracy. In this work, we propose a dual frequency carrier phase error difference checking algorithm for the GNSS compass. The algorithm aims at eliminating large carrier phase error in dual frequency double differenced carrier phase measurement according to the error difference between two frequencies. The advantage of the proposed algorithm is that it does not need additional environment information and has a good performance on multiple large errors compared with previous research. The core of the proposed algorithm is removing the geographical distance from the dual frequency carrier phase measurement, then the carrier phase error is separated and detectable. We generate the Double Differenced Geometry-Free (DDGF) measurement according to the characteristic that the different frequency carrier phase measurements contain the same geometrical distance. Then, we propose the DDGF detection to detect the large carrier phase error difference between two frequencies. The theoretical performance of the proposed DDGF detection is analyzed. An open sky test, a manmade multipath test and an urban vehicle test were carried out to evaluate the performance of the proposed algorithm. The result shows that the proposed DDGF detection is able to detect large error in dual frequency carrier phase measurement by checking the error difference between two frequencies. After the DDGF detection, the accuracy of the baseline vector is improved in the GNSS compass.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Kasami, T.; Fujiwara, T.; Lin, S.
1986-01-01
In this paper, a concatenated coding scheme for error control in data communications is presented and analyzed. In this scheme, the inner code is used for both error correction and detection; however, the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error (or decoding error) of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughput efficiency of the proposed error control scheme incorporated with a selective-repeat ARQ retransmission strategy is also analyzed. Three specific examples are presented. One of the examples is proposed for error control in the NASA Telecommand System.
Self-checking self-repairing computer nodes using the mirror processor
NASA Technical Reports Server (NTRS)
Tamir, Yuval
1992-01-01
Circuitry added to fault-tolerant systems for concurrent error deduction usually reduces performance. Using a technique called micro rollback, it is possible to eliminate most of the performance penalty of concurrent error detection. Error detection is performed in parallel with intermodule communication, and erroneous state changes are later undone. The author reports on the design and implementation of a VLSI RISC microprocessor, called the Mirror Processor (MP), which is capable of micro rollback. In order to achieve concurrent error detection, two MP chips operate in lockstep, comparing external signals and a signature of internal signals every clock cycle. If a mismatch is detected, both processors roll back to the beginning of the cycle when the error occurred. In some cases the erroneous state is corrected by copying a value from the fault-free processor to the faulty processor. The architecture, microarchitecture, and VLSI implementation of the MP, emphasizing its error-detection, error-recovery, and self-diagnosis capabilities, are described.
Differential detection in quadrature-quadrature phase shift keying (Q2PSK) systems
NASA Astrophysics Data System (ADS)
El-Ghandour, Osama M.; Saha, Debabrata
1991-05-01
A generalized quadrature-quadrature phase shift keying (Q2PSK) signaling format is considered for differential encoding and differential detection. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. Symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/N0. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK. When the error is due to AWGN, the ratio of double error rate to single error rate can be very high, and the ratio may approach zero at high SNR. To improve error rate, differential detection through maximum-likelihood decoding based on multiple or N symbol observations is considered. If N and SNR are large this decoding gives a 3-dB advantage in error rate over conventional N = 2 differential detection, fully recovering the energy loss (as compared to coherent detection) if the observation is extended to a large number of symbol durations.
Local concurrent error detection and correction in data structures using virtual backpointers
NASA Technical Reports Server (NTRS)
Li, C. C.; Chen, P. P.; Fuchs, W. K.
1987-01-01
A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data structures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared databased of Virtual Double Linked Lists.
Local concurrent error detection and correction in data structures using virtual backpointers
NASA Technical Reports Server (NTRS)
Li, Chung-Chi Jim; Chen, Paul Peichuan; Fuchs, W. Kent
1989-01-01
A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data strutures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared database of Virtual Double Linked Lists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, A; Nyflot, M; Sponseller, P
2014-06-01
Purpose: Radiation treatment planning involves a complex workflow that can make safety improvement efforts challenging. This study utilizes an incident reporting system to identify detection points of near-miss errors, in order to guide our departmental safety improvement efforts. Previous studies have examined where errors arise, but not where they are detected or their patterns. Methods: 1377 incidents were analyzed from a departmental nearmiss error reporting system from 3/2012–10/2013. All incidents were prospectively reviewed weekly by a multi-disciplinary team, and assigned a near-miss severity score ranging from 0–4 reflecting potential harm (no harm to critical). A 98-step consensus workflow was usedmore » to determine origination and detection points of near-miss errors, categorized into 7 major steps (patient assessment/orders, simulation, contouring/treatment planning, pre-treatment plan checks, therapist/on-treatment review, post-treatment checks, and equipment issues). Categories were compared using ANOVA. Results: In the 7-step workflow, 23% of near-miss errors were detected within the same step in the workflow, while an additional 37% were detected by the next step in the workflow, and 23% were detected two steps downstream. Errors detected further from origination were more severe (p<.001; Figure 1). The most common source of near-miss errors was treatment planning/contouring, with 476 near misses (35%). Of those 476, only 72(15%) were found before leaving treatment planning, 213(45%) were found at physics plan checks, and 191(40%) were caught at the therapist pre-treatment chart review or on portal imaging. Errors that passed through physics plan checks and were detected by therapists were more severe than other errors originating in contouring/treatment planning (1.81 vs 1.33, p<0.001). Conclusion: Errors caught by radiation treatment therapists tend to be more severe than errors caught earlier in the workflow, highlighting the importance of safety checks in dosimetry and physics. We are utilizing our findings to improve manual and automated checklists for dosimetry and physics.« less
Latorre-Arteaga, Sergio; Gil-González, Diana; Enciso, Olga; Phelan, Aoife; García-Muñoz, Ángel; Kohler, Johannes
2014-01-01
Background Refractive error is defined as the inability of the eye to bring parallel rays of light into focus on the retina, resulting in nearsightedness (myopia), farsightedness (Hyperopia) or astigmatism. Uncorrected refractive error in children is associated with increased morbidity and reduced educational opportunities. Vision screening (VS) is a method for identifying children with visual impairment or eye conditions likely to lead to visual impairment. Objective To analyze the utility of vision screening conducted by teachers and to contribute to a better estimation of the prevalence of childhood refractive errors in Apurimac, Peru. Design A pilot vision screening program in preschool (Group I) and elementary school children (Group II) was conducted with the participation of 26 trained teachers. Children whose visual acuity was<6/9 [20/30] (Group I) and≤6/9 (Group II) in one or both eyes, measured with the Snellen Tumbling E chart at 6 m, were referred for a comprehensive eye exam. Specificity and positive predictive value to detect refractive error were calculated against clinical examination. Program assessment with participants was conducted to evaluate outcomes and procedures. Results A total sample of 364 children aged 3–11 were screened; 45 children were examined at Centro Oftalmológico Monseñor Enrique Pelach (COMEP) Eye Hospital. Prevalence of refractive error was 6.2% (Group I) and 6.9% (Group II); specificity of teacher vision screening was 95.8% and 93.0%, while positive predictive value was 59.1% and 47.8% for each group, respectively. Aspects highlighted to improve the program included extending training, increasing parental involvement, and helping referred children to attend the hospital. Conclusion Prevalence of refractive error in children is significant in the region. Vision screening performed by trained teachers is a valid intervention for early detection of refractive error, including screening of preschool children. Program sustainability and improvements in education and quality of life resulting from childhood vision screening require further research. PMID:24560253
Dispersal without errors: symmetrical ears tune into the right frequency for survival.
Gagliano, Monica; Depczynski, Martial; Simpson, Stephen D; Moore, James A Y
2008-03-07
Vertebrate animals localize sounds by comparing differences in the acoustic signal between the two ears and, accordingly, ear structures such as the otoliths of fishes are expected to develop symmetrically. Sound recently emerged as a leading candidate cue for reef fish larvae navigating from open waters back to the reef. Clearly, the integrity of the auditory organ has a direct bearing on what and how fish larvae hear. Yet, the link between otolith symmetry and effective navigation has never been investigated in fishes. We tested whether otolith asymmetry influenced the ability of returning larvae to detect and successfully recruit to favourable reef habitats. Our results suggest that larvae with asymmetrical otoliths not only encountered greater difficulties in detecting suitable settlement habitats, but may also suffer significantly higher rates of mortality. Further, we found that otolith asymmetries arising early in the embryonic stage were not corrected by any compensational growth mechanism during the larval stage. Because these errors persist and phenotypic selection penalizes asymmetrical individuals, asymmetry is likely to play an important role in shaping wild fish populations.
A patient with an inborn error of vitamin B12 metabolism (cblF) detected by newborn screening.
Armour, Christine M; Brebner, Alison; Watkins, David; Geraghty, Michael T; Chan, Alicia; Rosenblatt, David S
2013-07-01
A neonate, who was found to have an elevated C3/C2 ratio and minimally elevated propionylcarnitine on newborn screening, was subsequently identified as having the rare cblF inborn error of vitamin B12 (cobalamin) metabolism. This disorder is characterized by the retention of unmetabolized cobalamin in lysosomes such that it is not readily available for cellular metabolism. Although cultured fibroblasts from the patient did not show the expected functional abnormalities of the cobalamin-dependent enzymes, methylmalonyl-CoA mutase and methionine synthase, they did show reduced synthesis of the active cobalamin cofactors adenosylcobalamin and methylcobalamin. Mutation analysis of LMBRD1 established that the patient had the cblF disorder. Treatment was initiated promptly, and the patient showed a robust response to regular injections of cyanocobalamin, and she was later switched to hydroxocobalamin. Currently, at 3 years of age, the child is clinically well, with appropriate development. Adjusted newborn screening cutoffs in Ontario allowed detection of a deficiency that might not have otherwise been identified, allowing early treatment and perhaps preventing the adverse sequelae seen in some untreated patients.
Error-Related Psychophysiology and Negative Affect
ERIC Educational Resources Information Center
Hajcak, G.; McDonald, N.; Simons, R.F.
2004-01-01
The error-related negativity (ERN/Ne) and error positivity (Pe) have been associated with error detection and response monitoring. More recently, heart rate (HR) and skin conductance (SC) have also been shown to be sensitive to the internal detection of errors. An enhanced ERN has consistently been observed in anxious subjects and there is some…
Cipresso, Pietro; Albani, Giovanni; Serino, Silvia; Pedroli, Elisa; Pallavicini, Federica; Mauro, Alessandro; Riva, Giuseppe
2014-01-01
Introduction: Several recent studies have pointed out that early impairment of executive functions (EFs) in Parkinson’s Disease (PD) may be a crucial marker to detect patients at risk for developing dementia. The main objective of this study was to compare the performances of PD patients with mild cognitive impairment (PD-MCI) with PD patients with normal cognition (PD-NC) and a control group (CG) using a traditional assessment of EFs and the Virtual Multiple Errands Test (VMET), a virtual reality (VR)-based tool. In order to understand which subcomponents of EFs are early impaired, this experimental study aimed to investigate specifically which instrument best discriminates among these three groups. Materials and methods: The study included three groups of 15 individuals each (for a total of 45 participants): 15 PD-NC; 15 PD-MCI, and 15 cognitively healthy individuals (CG). To assess the global neuropsychological functioning and the EFs, several tests (including the Mini Mental State Examination (MMSE), Clock Drawing Test, and Tower of London test) were administered to the participants. The VMET was used for a more ecologically valid neuropsychological evaluation of EFs. Results: Findings revealed significant differences in the VMET scores between the PD-NC patients vs. the controls. In particular, patients made more errors in the tasks of the VMET, and showed a poorer ability to use effective strategies to complete the tasks. This VMET result seems to be more sensitive in the early detection of executive deficits because these two groups did not differ in the traditional assessment of EFs (neuropsychological battery). Conclusion: This study offers initial evidence that a more ecologically valid evaluation of EFs is more likely to lead to detection of subtle executive deficits. PMID:25538578
Cipresso, Pietro; Albani, Giovanni; Serino, Silvia; Pedroli, Elisa; Pallavicini, Federica; Mauro, Alessandro; Riva, Giuseppe
2014-01-01
Several recent studies have pointed out that early impairment of executive functions (EFs) in Parkinson's Disease (PD) may be a crucial marker to detect patients at risk for developing dementia. The main objective of this study was to compare the performances of PD patients with mild cognitive impairment (PD-MCI) with PD patients with normal cognition (PD-NC) and a control group (CG) using a traditional assessment of EFs and the Virtual Multiple Errands Test (VMET), a virtual reality (VR)-based tool. In order to understand which subcomponents of EFs are early impaired, this experimental study aimed to investigate specifically which instrument best discriminates among these three groups. The study included three groups of 15 individuals each (for a total of 45 participants): 15 PD-NC; 15 PD-MCI, and 15 cognitively healthy individuals (CG). To assess the global neuropsychological functioning and the EFs, several tests (including the Mini Mental State Examination (MMSE), Clock Drawing Test, and Tower of London test) were administered to the participants. The VMET was used for a more ecologically valid neuropsychological evaluation of EFs. Findings revealed significant differences in the VMET scores between the PD-NC patients vs. the controls. In particular, patients made more errors in the tasks of the VMET, and showed a poorer ability to use effective strategies to complete the tasks. This VMET result seems to be more sensitive in the early detection of executive deficits because these two groups did not differ in the traditional assessment of EFs (neuropsychological battery). This study offers initial evidence that a more ecologically valid evaluation of EFs is more likely to lead to detection of subtle executive deficits.
Application of multispectral reflectance for early detection of tomato disease
NASA Astrophysics Data System (ADS)
Xu, Huirong; Zhu, Shengpan; Ying, Yibin; Jiang, Huanyu
2006-10-01
Automatic diagnosis of plant disease is important for plant management and environmental preservation in the future. The objective of this study is to use multispectral reflectance measurements to make an early discrimination between the healthy and infected plants by the strain of tobacco mosaic virus (TMV-U1) infection. There were reflectance changes in the visible (VIS) and near infrared spectroscopy (NIR) between the healthy and infected plants. Discriminant models were developed using discriminant partial least squares (DPLS) and Mahalanobis distance (MD). The DPLS models had a root mean square error of calibration (RMSEC) of 0.397 and correlation coefficient (r) of 0.59 and the MD model correctly classified 86.7% healthy plants and up to 91.7% infected plants.
Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Bornstein, Benjamin; Granat, Robert; Tang, Benyang; Turmon, Michael
2009-01-01
Spacecraft processors and memory are subjected to high radiation doses and therefore employ radiation-hardened components. However, these components are orders of magnitude more expensive than typical desktop components, and they lag years behind in terms of speed and size. We have integrated algorithm-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors, which ultimately may permit the use of spacecraft memory that need not be fully hardened, reducing cost and increasing capability at the same time. We have also developed a lightweight software radiation simulator, BITFLIPS, that permits evaluation of error detection strategies in a controlled fashion, including the specification of the radiation rate and selective exposure of individual data structures. Using BITFLIPS, we evaluated our error detection methods when using a support vector machine to analyze data collected by the Mars Odyssey spacecraft. We found ABFT error detection for matrix multiplication is very successful, while error detection for Gaussian kernel computation still has room for improvement.
NASA Astrophysics Data System (ADS)
Kurihara, Yosuke; Watanabe, Kajiro; Kobayashi, Kazuyuki; Tanaka, Tanaka
Sleep disorders disturb the recovery from mental and physical fatigues, one of the functions of the sleep. The majority of those who with the disorders are suffering from Sleep Apnea Syndrome (SAS). Continuous Hypoxia during sleep due to SAS cause Circulatory Disturbances, such as hypertension and ischemic heart disease, and Malfunction of Autonomic Nervous System, and other severe complications, often times bringing the suffers to death. In order to prevent these from happening, it is important to detect the SAS in its early stage by monitoring the daily respirations during sleep, and to provide appropriate treatments at medical institutions. In this paper, the Pneumatic Method to detect the Apnea period during sleep is proposed. Pneumatic method can measure heartbeat and respiration signal. Respiration signal can be considered as noise against heartbeat signal, and the decrease in the respiration signal due to Apnea increases the Average Mutual Information of heartbeat. The result of scaling analysis of the average mutual information is defined as threshold to detect the apnea period. The root mean square error between the lengths of Apnea measured by Strain Gauge using for reference and those measured by using the proposed method was 3.1 seconds. And, error of the number of apnea times judged by doctor and proposal method in OSAS patients was 3.3 times.
Diagnostic Error in Stroke-Reasons and Proposed Solutions.
Bakradze, Ekaterina; Liberman, Ava L
2018-02-13
We discuss the frequency of stroke misdiagnosis and identify subgroups of stroke at high risk for specific diagnostic errors. In addition, we review common reasons for misdiagnosis and propose solutions to decrease error. According to a recent report by the National Academy of Medicine, most people in the USA are likely to experience a diagnostic error during their lifetimes. Nearly half of such errors result in serious disability and death. Stroke misdiagnosis is a major health care concern, with initial misdiagnosis estimated to occur in 9% of all stroke patients in the emergency setting. Under- or missed diagnosis (false negative) of stroke can result in adverse patient outcomes due to the preclusion of acute treatments and failure to initiate secondary prevention strategies. On the other hand, the overdiagnosis of stroke can result in inappropriate treatment, delayed identification of actual underlying disease, and increased health care costs. Young patients, women, minorities, and patients presenting with non-specific, transient, or posterior circulation stroke symptoms are at increased risk of misdiagnosis. Strategies to decrease diagnostic error in stroke have largely focused on early stroke detection via bedside examination strategies and a clinical decision rules. Targeted interventions to improve the diagnostic accuracy of stroke diagnosis among high-risk groups as well as symptom-specific clinical decision supports are needed. There are a number of open questions in the study of stroke misdiagnosis. To improve patient outcomes, existing strategies to improve stroke diagnostic accuracy should be more broadly adopted and novel interventions devised and tested to reduce diagnostic errors.
Risk factors for near-miss events and safety incidents in pediatric radiation therapy.
Baig, Nimrah; Wang, Jiangxia; Elnahal, Shereef; McNutt, Todd; Wright, Jean; DeWeese, Theodore; Terezakis, Stephanie
2018-05-01
Factors contributing to safety- or quality-related incidents (e.g. variances) in children are unknown. We identified clinical and RT treatment variables associated with risk for variances in a pediatric cohort. Using our institution's incident learning system, 81 patients age ≤21 years old who experienced variances were compared to 191 pediatric patients without variances. Clinical and RT treatment variables were evaluated as potential predictors for variances using univariate and multivariate analyses. Variances were primarily documentation errors (n = 46, 57%) and were most commonly detected during treatment planning (n = 14, 21%). Treatment planning errors constituted the majority (n = 16 out of 29, 55%) of near-misses and safety incidents (NMSI), which excludes workflow incidents. Therapists reported the majority of variances (n = 50, 62%). Physician cross-coverage (OR = 2.1, 95% CI = 1.04-4.38) and 3D conformal RT (OR = 2.3, 95% CI = 1.11-4.69) increased variance risk. Conversely, age >14 years (OR = 0.5, 95% CI = 0.28-0.88) and diagnosis of abdominal tumor (OR = 0.2, 95% CI = 0.04-0.59) decreased variance risk. Variances in children occurred in early treatment phases, but were detected at later workflow stages. Quality measures should be implemented during early treatment phases with a focus on younger children and those cared for by cross-covering physicians. Copyright © 2018 Elsevier B.V. All rights reserved.
An advanced SEU tolerant latch based on error detection
NASA Astrophysics Data System (ADS)
Xu, Hui; Zhu, Jianwei; Lu, Xiaoping; Li, Jingzhao
2018-05-01
This paper proposes a latch that can mitigate SEUs via an error detection circuit. The error detection circuit is hardened by a C-element and a stacked PMOS. In the hold state, a particle strikes the latch or the error detection circuit may cause a fault logic state of the circuit. The error detection circuit can detect the upset node in the latch and the fault output will be corrected. The upset node in the error detection circuit can be corrected by the C-element. The power dissipation and propagation delay of the proposed latch are analyzed by HSPICE simulations. The proposed latch consumes about 77.5% less energy and 33.1% less propagation delay than the triple modular redundancy (TMR) latch. Simulation results demonstrate that the proposed latch can mitigate SEU effectively. Project supported by the National Natural Science Foundation of China (Nos. 61404001, 61306046), the Anhui Province University Natural Science Research Major Project (No. KJ2014ZD12), the Huainan Science and Technology Program (No. 2013A4011), and the National Natural Science Foundation of China (No. 61371025).
[Detection and classification of medication errors at Joan XXIII University Hospital].
Jornet Montaña, S; Canadell Vilarrasa, L; Calabuig Mũoz, M; Riera Sendra, G; Vuelta Arce, M; Bardají Ruiz, A; Gallart Mora, M J
2004-01-01
Medication errors are multifactorial and multidisciplinary, and may originate in processes such as drug prescription, transcription, dispensation, preparation and administration. The goal of this work was to measure the incidence of detectable medication errors that arise within a unit dose drug distribution and control system, from drug prescription to drug administration, by means of an observational method confined to the Pharmacy Department, as well as a voluntary, anonymous report system. The acceptance of this voluntary report system's implementation was also assessed. A prospective descriptive study was conducted. Data collection was performed at the Pharmacy Department from a review of prescribed medical orders, a review of pharmaceutical transcriptions, a review of dispensed medication and a review of medication returned in unit dose medication carts. A voluntary, anonymous report system centralized in the Pharmacy Department was also set up to detect medication errors. Prescription errors were the most frequent (1.12%), closely followed by dispensation errors (1.04%). Transcription errors (0.42%) and administration errors (0.69%) had the lowest overall incidence. Voluntary report involved only 4.25% of all detected errors, whereas unit dose medication cart review contributed the most to error detection. Recognizing the incidence and types of medication errors that occur in a health-care setting allows us to analyze their causes and effect changes in different stages of the process in order to ensure maximal patient safety.
Fault-tolerant quantum error detection.
Linke, Norbert M; Gutierrez, Mauricio; Landsman, Kevin A; Figgatt, Caroline; Debnath, Shantanu; Brown, Kenneth R; Monroe, Christopher
2017-10-01
Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical state itself through direct measurement. We show the encoding and syndrome measurement of a fault-tolerantly prepared logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates and experimental calibration errors.
Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument
NASA Astrophysics Data System (ADS)
Trahan, Alexis C.; Belian, Anthony P.; Swinhoe, Martyn T.; Menlove, Howard O.; Flaska, Marek; Pozzi, Sara A.
2017-07-01
The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) Project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: 1) verify the initial enrichment, burnup, and cooling time of facility declaration; 2) detect the diversion or replacement of pins; 3) estimate the plutonium mass; 4) estimate decay heat; and 5) determine the reactivity of spent fuel assemblies. The differential die-away self-interrogation (DDSI) instrument is one instrument that was assessed for years regarding its feasibility for robust, timely verification of spent fuel assemblies. The instrument was recently built and was tested using fresh fuel assemblies in a variety of configurations, including varying enrichment, neutron absorber content, and symmetry. The early die-away method, a multiplication determination method developed in simulation space, was successfully tested on the fresh fuel assembly data and determined multiplication with a root-mean-square (RMS) error of 2.9%. The experimental results were compared with MCNP simulations of the instrument as well. Low multiplication assemblies had agreement with an average RMS error of 0.2% in the singles count rate (i.e., total neutrons detected per second) and 3.4% in the doubles count rates (i.e., neutrons detected in coincidence per second). High-multiplication assemblies had agreement with an average RMS error of 4.1% in the singles and 13.3% in the doubles count rates.
Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahan, Alexis C.; Belian, Anthony P.; Swinhoe, Martyn T.
The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) Project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. Thus the NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: 1) verify the initial enrichment, burnup, and cooling time of facility declaration; 2) detect the diversion or replacement of pins; 3) estimate the plutonium mass; 4) estimate decay heat; and 5) determine the reactivity of spent fuel assemblies. The differential die-away self-interrogation (DDSI) instrument is one instrumentmore » that was assessed for years regarding its feasibility for robust, timely verification of spent fuel assemblies. The instrument was recently built and was tested using fresh fuel assemblies in a variety of configurations, including varying enrichment, neutron absorber content, and symmetry. The early die-away method, a multiplication determination method developed in simulation space, was successfully tested on the fresh fuel assembly data and determined multiplication with a root-mean-square (RMS) error of 2.9%. The experimental results were compared with MCNP simulations of the instrument as well. Low multiplication assemblies had agreement with an average RMS error of 0.2% in the singles count rate (i.e., total neutrons detected per second) and 3.4% in the doubles count rates (i.e., neutrons detected in coincidence per second). High-multiplication assemblies had agreement with an average RMS error of 4.1% in the singles and 13.3% in the doubles count rates.« less
Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument
Trahan, Alexis C.; Belian, Anthony P.; Swinhoe, Martyn T.; ...
2017-01-05
The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) Project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. Thus the NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: 1) verify the initial enrichment, burnup, and cooling time of facility declaration; 2) detect the diversion or replacement of pins; 3) estimate the plutonium mass; 4) estimate decay heat; and 5) determine the reactivity of spent fuel assemblies. The differential die-away self-interrogation (DDSI) instrument is one instrumentmore » that was assessed for years regarding its feasibility for robust, timely verification of spent fuel assemblies. The instrument was recently built and was tested using fresh fuel assemblies in a variety of configurations, including varying enrichment, neutron absorber content, and symmetry. The early die-away method, a multiplication determination method developed in simulation space, was successfully tested on the fresh fuel assembly data and determined multiplication with a root-mean-square (RMS) error of 2.9%. The experimental results were compared with MCNP simulations of the instrument as well. Low multiplication assemblies had agreement with an average RMS error of 0.2% in the singles count rate (i.e., total neutrons detected per second) and 3.4% in the doubles count rates (i.e., neutrons detected in coincidence per second). High-multiplication assemblies had agreement with an average RMS error of 4.1% in the singles and 13.3% in the doubles count rates.« less
Design of the Detector II: A CMOS Gate Array for the Study of Concurrent Error Detection Techniques.
1987-07-01
detection schemes and temporary failures. The circuit consists- or of six different adders with concurrent error detection schemes . The error detection... schemes are - simple duplication, duplication with functional dual implementation, duplication with different &I [] .6implementations, two-rail encoding...THE SYSTEM. .. .... ...... ...... ...... 5 7. DESIGN OF CED SCHEMES .. ... ...... ...... ........ 7 7.1 Simple Duplication
NASA Astrophysics Data System (ADS)
Heckman, S.
2015-12-01
Modern lightning locating systems (LLS) provide real-time monitoring and early warning of lightningactivities. In addition, LLS provide valuable data for statistical analysis in lightning research. It isimportant to know the performance of such LLS. In the present study, the performance of the EarthNetworks Total Lightning Network (ENTLN) is studied using rocket-triggered lightning data acquired atthe International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida.In the present study, 18 flashes triggered at ICLRT in 2014 were analyzed and they comprise of 78negative cloud-to-ground return strokes. The geometric mean, median, minimum, and maximum for thepeak currents of the 78 return strokes are 13.4 kA, 13.6 kA, 3.7 kA, and 38.4 kA, respectively. The peakcurrents represent typical subsequent return strokes in natural cloud-to-ground lightning.Earth Networks has developed a new data processor to improve the performance of their network. Inthis study, results are presented for the ENTLN data using the old processor (originally reported in 2014)and the ENTLN data simulated using the new processor. The flash detection efficiency, stroke detectionefficiency, percentage of misclassification, median location error, median peak current estimation error,and median absolute peak current estimation error for the originally reported data from old processorare 100%, 94%, 49%, 271 m, 5%, and 13%, respectively, and those for the simulated data using the newprocessor are 100%, 99%, 9%, 280 m, 11%, and 15%, respectively. The use of new processor resulted inhigher stroke detection efficiency and lower percentage of misclassification. It is worth noting that theslight differences in median location error, median peak current estimation error, and median absolutepeak current estimation error for the two processors are due to the fact that the new processordetected more number of return strokes than the old processor.
Automated Identification of Abnormal Adult EEGs
López, S.; Suarez, G.; Jungreis, D.; Obeid, I.; Picone, J.
2016-01-01
The interpretation of electroencephalograms (EEGs) is a process that is still dependent on the subjective analysis of the examiners. Though interrater agreement on critical events such as seizures is high, it is much lower on subtler events (e.g., when there are benign variants). The process used by an expert to interpret an EEG is quite subjective and hard to replicate by machine. The performance of machine learning technology is far from human performance. We have been developing an interpretation system, AutoEEG, with a goal of exceeding human performance on this task. In this work, we are focusing on one of the early decisions made in this process – whether an EEG is normal or abnormal. We explore two baseline classification algorithms: k-Nearest Neighbor (kNN) and Random Forest Ensemble Learning (RF). A subset of the TUH EEG Corpus was used to evaluate performance. Principal Components Analysis (PCA) was used to reduce the dimensionality of the data. kNN achieved a 41.8% detection error rate while RF achieved an error rate of 31.7%. These error rates are significantly lower than those obtained by random guessing based on priors (49.5%). The majority of the errors were related to misclassification of normal EEGs. PMID:27195311
Horowitz-Kraus, Tzipi
2016-05-01
The error-detection mechanism aids in preventing error repetition during a given task. Electroencephalography demonstrates that error detection involves two event-related potential components: error-related and correct-response negativities (ERN and CRN, respectively). Dyslexia is characterized by slow, inaccurate reading. In particular, individuals with dyslexia have a less active error-detection mechanism during reading than typical readers. In the current study, we examined whether a reading training programme could improve the ability to recognize words automatically (lexical representations) in adults with dyslexia, thereby resulting in more efficient error detection during reading. Behavioural and electrophysiological measures were obtained using a lexical decision task before and after participants trained with the reading acceleration programme. ERN amplitudes were smaller in individuals with dyslexia than in typical readers before training but increased following training, as did behavioural reading scores. Differences between the pre-training and post-training ERN and CRN components were larger in individuals with dyslexia than in typical readers. Also, the error-detection mechanism as represented by the ERN/CRN complex might serve as a biomarker for dyslexia and be used to evaluate the effectiveness of reading intervention programmes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Olson, Eric J.
2013-06-11
An apparatus, program product, and method that run an algorithm on a hardware based processor, generate a hardware error as a result of running the algorithm, generate an algorithm output for the algorithm, compare the algorithm output to another output for the algorithm, and detect the hardware error from the comparison. The algorithm is designed to cause the hardware based processor to heat to a degree that increases the likelihood of hardware errors to manifest, and the hardware error is observable in the algorithm output. As such, electronic components may be sufficiently heated and/or sufficiently stressed to create better conditions for generating hardware errors, and the output of the algorithm may be compared at the end of the run to detect a hardware error that occurred anywhere during the run that may otherwise not be detected by traditional methodologies (e.g., due to cooling, insufficient heat and/or stress, etc.).
Improvement of a picking algorithm real-time P-wave detection by kurtosis
NASA Astrophysics Data System (ADS)
Ishida, H.; Yamada, M.
2016-12-01
Earthquake early warning (EEW) requires fast and accurate P-wave detection. The current EEW system in Japan uses the STA/LTAalgorithm (Allen, 1978) to detect P-wave arrival.However, some stations did not trigger during the 2011 Great Tohoku Earthquake due to the emergent onset. In addition, accuracy of the P-wave detection is very important: on August 1, 2016, the EEW issued a false alarm with M9 in Tokyo region due to a thunder noise.To solve these problems, we use a P-wave detection method using kurtosis statistics. It detects the change of statistic distribution of the waveform amplitude. This method was recently developed (Saragiotis et al., 2002) and used for off-line analysis such as making seismic catalogs. To apply this method for EEW, we need to remove an acausal calculation and enable a real-time processing. Here, we propose a real-time P-wave detection method using kurtosis statistics with a noise filter.To avoid false triggering by a noise, we incorporated a simple filter to classify seismic signal and noise. Following Kong et al. (2016), we used the interquartilerange and zero cross rate for the classification. The interquartile range is an amplitude measure that is equal to the middle 50% of amplitude in a certain time window. The zero cross rate is a simple frequency measure that counts the number of times that the signal crosses baseline zero. A discriminant function including these measures was constructed by the linear discriminant analysis.To test this kurtosis method, we used strong motion records for 62 earthquakes between April, 2005 and July, 2015, which recorded the seismic intensity greater equal to 6 lower in the JMA intensity scale. The records with hypocentral distance < 200km were used for the analysis. An attached figure shows the error of P-wave detection speed for STA/LTA and kurtosis methods against manual picks. It shows that the median error is 0.13 sec and 0.035 sec for STA/LTA and kurtosis method. The kurtosis method tends to be more sensitive to small changes in amplitude.Our approach will contribute to improve the accuracy of source location determination of earthquakes and improve the shaking intensity estimation for an earthquake early warning.
An improved PCA method with application to boiler leak detection.
Sun, Xi; Marquez, Horacio J; Chen, Tongwen; Riaz, Muhammad
2005-07-01
Principal component analysis (PCA) is a popular fault detection technique. It has been widely used in process industries, especially in the chemical industry. In industrial applications, achieving a sensitive system capable of detecting incipient faults, which maintains the false alarm rate to a minimum, is a crucial issue. Although a lot of research has been focused on these issues for PCA-based fault detection and diagnosis methods, sensitivity of the fault detection scheme versus false alarm rate continues to be an important issue. In this paper, an improved PCA method is proposed to address this problem. In this method, a new data preprocessing scheme and a new fault detection scheme designed for Hotelling's T2 as well as the squared prediction error are developed. A dynamic PCA model is also developed for boiler leak detection. This new method is applied to boiler water/steam leak detection with real data from Syncrude Canada's utility plant in Fort McMurray, Canada. Our results demonstrate that the proposed method can effectively reduce false alarm rate, provide effective and correct leak alarms, and give early warning to operators.
Westbrook, Johanna I; Li, Ling; Lehnbom, Elin C; Baysari, Melissa T; Braithwaite, Jeffrey; Burke, Rosemary; Conn, Chris; Day, Richard O
2015-02-01
To (i) compare medication errors identified at audit and observation with medication incident reports; (ii) identify differences between two hospitals in incident report frequency and medication error rates; (iii) identify prescribing error detection rates by staff. Audit of 3291 patient records at two hospitals to identify prescribing errors and evidence of their detection by staff. Medication administration errors were identified from a direct observational study of 180 nurses administering 7451 medications. Severity of errors was classified. Those likely to lead to patient harm were categorized as 'clinically important'. Two major academic teaching hospitals in Sydney, Australia. Rates of medication errors identified from audit and from direct observation were compared with reported medication incident reports. A total of 12 567 prescribing errors were identified at audit. Of these 1.2/1000 errors (95% CI: 0.6-1.8) had incident reports. Clinically important prescribing errors (n = 539) were detected by staff at a rate of 218.9/1000 (95% CI: 184.0-253.8), but only 13.0/1000 (95% CI: 3.4-22.5) were reported. 78.1% (n = 421) of clinically important prescribing errors were not detected. A total of 2043 drug administrations (27.4%; 95% CI: 26.4-28.4%) contained ≥ 1 errors; none had an incident report. Hospital A had a higher frequency of incident reports than Hospital B, but a lower rate of errors at audit. Prescribing errors with the potential to cause harm frequently go undetected. Reported incidents do not reflect the profile of medication errors which occur in hospitals or the underlying rates. This demonstrates the inaccuracy of using incident frequency to compare patient risk or quality performance within or across hospitals. New approaches including data mining of electronic clinical information systems are required to support more effective medication error detection and mitigation. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care.
Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.
Cruz, Aniana; Pires, Gabriel; Nunes, Urbano J
2018-01-01
Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a very limited application in daily real-world tasks. This paper proposes a P300-based BCI speller combined with a double error-related potential (ErrP) detection to automatically correct erroneous decisions. This novel approach introduces a second error detection to infer whether wrong automatic correction also elicits a second ErrP. Thus, two single-trial responses, instead of one, contribute to the final selection, improving the reliability of error detection. Moreover, to increase error detection, the evoked potential detected as target by the P300 classifier is combined with the evoked error potential at a feature-level. Discriminable error and positive potentials (response to correct feedback) were clearly identified. The proposed approach was tested on nine healthy participants and one tetraplegic participant. The online average accuracy for the first and second ErrPs were 88.4% and 84.8%, respectively. With automatic correction, we achieved an improvement around 5% achieving 89.9% in spelling accuracy for an effective 2.92 symbols/min. The proposed approach revealed that double ErrP detection can improve the reliability and speed of BCI systems.
Experimental investigation of observation error in anuran call surveys
McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R.
2010-01-01
Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presenceabsence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5 of all positive detections, with individual observers exhibiting false-positive rates between 0.5 and 14. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys. ?? 2010 The Wildlife Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damato, Antonio L., E-mail: adamato@lroc.harvard.edu; Viswanathan, Akila N.; Don, Sarah M.
2014-10-15
Purpose: To investigate the use of a system using electromagnetic tracking (EMT), post-processing and an error-detection algorithm for detecting errors and resolving uncertainties in high-dose-rate brachytherapy catheter digitization for treatment planning. Methods: EMT was used to localize 15 catheters inserted into a phantom using a stepwise acquisition technique. Five distinct acquisition experiments were performed. Noise associated with the acquisition was calculated. The dwell location configuration was extracted from the EMT data. A CT scan of the phantom was performed, and five distinct catheter digitization sessions were performed. No a priori registration of the CT scan coordinate system with the EMTmore » coordinate system was performed. CT-based digitization was automatically extracted from the brachytherapy plan DICOM files (CT), and rigid registration was performed between EMT and CT dwell positions. EMT registration error was characterized in terms of the mean and maximum distance between corresponding EMT and CT dwell positions per catheter. An algorithm for error detection and identification was presented. Three types of errors were systematically simulated: swap of two catheter numbers, partial swap of catheter number identification for parts of the catheters (mix), and catheter-tip shift. Error-detection sensitivity (number of simulated scenarios correctly identified as containing an error/number of simulated scenarios containing an error) and specificity (number of scenarios correctly identified as not containing errors/number of correct scenarios) were calculated. Catheter identification sensitivity (number of catheters correctly identified as erroneous across all scenarios/number of erroneous catheters across all scenarios) and specificity (number of catheters correctly identified as correct across all scenarios/number of correct catheters across all scenarios) were calculated. The mean detected and identified shift was calculated. Results: The maximum noise ±1 standard deviation associated with the EMT acquisitions was 1.0 ± 0.1 mm, and the mean noise was 0.6 ± 0.1 mm. Registration of all the EMT and CT dwell positions was associated with a mean catheter error of 0.6 ± 0.2 mm, a maximum catheter error of 0.9 ± 0.4 mm, a mean dwell error of 1.0 ± 0.3 mm, and a maximum dwell error of 1.3 ± 0.7 mm. Error detection and catheter identification sensitivity and specificity of 100% were observed for swap, mix and shift (≥2.6 mm for error detection; ≥2.7 mm for catheter identification) errors. A mean detected shift of 1.8 ± 0.4 mm and a mean identified shift of 1.9 ± 0.4 mm were observed. Conclusions: Registration of the EMT dwell positions to the CT dwell positions was possible with a residual mean error per catheter of 0.6 ± 0.2 mm and a maximum error for any dwell of 1.3 ± 0.7 mm. These low residual registration errors show that quality assurance of the general characteristics of the catheters and of possible errors affecting one specific dwell position is possible. The sensitivity and specificity of the catheter digitization verification algorithm was 100% for swap and mix errors and for shifts ≥2.6 mm. On average, shifts ≥1.8 mm were detected, and shifts ≥1.9 mm were detected and identified.« less
Register file soft error recovery
Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.
2013-10-15
Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.
NASA Technical Reports Server (NTRS)
Bernacki, Bruce E.; Mansuripur, M.
1992-01-01
A commonly used tracking method on pre-grooved magneto-optical (MO) media is the push-pull technique, and the astigmatic method is a popular focus-error detection approach. These two methods are analyzed using DIFFRACT, a general-purpose scalar diffraction modeling program, to observe the effects on the error signals due to focusing lens misalignment, Seidel aberrations, and optical crosstalk (feedthrough) between the focusing and tracking servos. Using the results of the astigmatic/push-pull system as a basis for comparison, a novel focus/track-error detection technique that utilizes a ring toric lens is evaluated as well as the obscuration method (focus error detection only).
Error detection and correction unit with built-in self-test capability for spacecraft applications
NASA Technical Reports Server (NTRS)
Timoc, Constantin
1990-01-01
The objective of this project was to research and develop a 32-bit single chip Error Detection and Correction unit capable of correcting all single bit errors and detecting all double bit errors in the memory systems of a spacecraft. We designed the 32-bit EDAC (Error Detection and Correction unit) based on a modified Hamming code and according to the design specifications and performance requirements. We constructed a laboratory prototype (breadboard) which was converted into a fault simulator. The correctness of the design was verified on the breadboard using an exhaustive set of test cases. A logic diagram of the EDAC was delivered to JPL Section 514 on 4 Oct. 1988.
Shaw, M; Singh, S
2015-04-01
Diagnostic error has implications for both clinical outcome and resource utilisation, and may often be traced to impaired data gathering, processing or synthesis because of the influence of cognitive bias. Factors inherent to the intensive/acute care environment afford multiple additional opportunities for such errors to occur. This article illustrates many of these with reference to a case encountered on our intensive care unit. Strategies to improve completeness of data gathering, processing and synthesis in the acute care environment are critically appraised in the context of early detection and amelioration of cognitive bias. These include reflection, targeted simulation training and the integration of social media and IT based aids in complex diagnostic processes. A framework which can be quickly and easily employed in a variety of clinical environments is then presented. © 2015 John Wiley & Sons Ltd.
Sensor Failure Detection of FASSIP System using Principal Component Analysis
NASA Astrophysics Data System (ADS)
Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina
2018-02-01
In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.
Probabilistic peak detection in CE-LIF for STR DNA typing.
Woldegebriel, Michael; van Asten, Arian; Kloosterman, Ate; Vivó-Truyols, Gabriel
2017-07-01
In this work, we present a novel probabilistic peak detection algorithm based on a Bayesian framework for forensic DNA analysis. The proposed method aims at an exhaustive use of raw electropherogram data from a laser-induced fluorescence multi-CE system. As the raw data are informative up to a single data point, the conventional threshold-based approaches discard relevant forensic information early in the data analysis pipeline. Our proposed method assigns a posterior probability reflecting the data point's relevance with respect to peak detection criteria. Peaks of low intensity generated from a truly existing allele can thus constitute evidential value instead of fully discarding them and contemplating a potential allele drop-out. This way of working utilizes the information available within each individual data point and thus avoids making early (binary) decisions on the data analysis that can lead to error propagation. The proposed method was tested and compared to the application of a set threshold as is current practice in forensic STR DNA profiling. The new method was found to yield a significant improvement in the number of alleles identified, regardless of the peak heights and deviation from Gaussian shape. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Kongwen; Hu, Baoxin; Robinson, Justin
2014-01-01
The emerald ash borer (EAB) poses a significant economic and environmental threat to ash trees in southern Ontario, Canada, and the northern states of the USA. It is critical that effective technologies are urgently developed to detect, monitor, and control the spread of EAB. This paper presents a methodology using multisourced data to predict potential infestations of EAB in the town of Oakville, Ontario, Canada. The information combined in this study includes remotely sensed data, such as high spatial resolution aerial imagery, commercial ground and airborne hyperspectral data, and Google Earth imagery, in addition to nonremotely sensed data, such as archived paper maps and documents. This wide range of data provides extensive information that can be used for early detection of EAB, yet their effective employment and use remain a significant challenge. A prediction function was developed to estimate the EAB infestation states of individual ash trees using three major attributes: leaf chlorophyll content, tree crown spatial pattern, and prior knowledge. Comparison between these predicted values and a ground-based survey demonstrated an overall accuracy of 62.5%, with 22.5% omission and 18.5% commission errors.
ERIC Educational Resources Information Center
Abedi, Razie; Latifi, Mehdi; Moinzadeh, Ahmad
2010-01-01
This study tries to answer some ever-existent questions in writing fields regarding approaching the most effective ways to give feedback to students' errors in writing by comparing the effect of error correction and error detection on the improvement of students' writing ability. In order to achieve this goal, 60 pre-intermediate English learners…
Fault-tolerant quantum error detection
Linke, Norbert M.; Gutierrez, Mauricio; Landsman, Kevin A.; Figgatt, Caroline; Debnath, Shantanu; Brown, Kenneth R.; Monroe, Christopher
2017-01-01
Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical state itself through direct measurement. We show the encoding and syndrome measurement of a fault-tolerantly prepared logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates and experimental calibration errors. PMID:29062889
Error-Analysis for Correctness, Effectiveness, and Composing Procedure.
ERIC Educational Resources Information Center
Ewald, Helen Rothschild
The assumptions underpinning grammatical mistakes can often be detected by looking for patterns of errors in a student's work. Assumptions that negatively influence rhetorical effectiveness can similarly be detected through error analysis. On a smaller scale, error analysis can also reveal assumptions affecting rhetorical choice. Snags in the…
Design decisions from the history of the EUVE science payload
NASA Technical Reports Server (NTRS)
Marchant, W.
1993-01-01
Some of the design issues that arose during the development of the EUVE science payload and solutions to the problems involved are examined. In particular, attention is given to the use of parallel and serial busses, the selection of the the ROM approach for software storage and execution, implementation of memory error detection and correction, and the selection of command structures. The early design decisions paid off in the timely delivery of the scientific payload and in the successful completion of the survey phase of the EUVE science mission.
Design decisions from the history of the EUVE science payload
NASA Astrophysics Data System (ADS)
Marchant, W.
1993-09-01
Some of the design issues that arose during the development of the EUVE science payload and solutions to the problems involved are examined. In particular, attention is given to the use of parallel and serial busses, the selection of the the ROM approach for software storage and execution, implementation of memory error detection and correction, and the selection of command structures. The early design decisions paid off in the timely delivery of the scientific payload and in the successful completion of the survey phase of the EUVE science mission.
TU-G-BRD-08: In-Vivo EPID Dosimetry: Quantifying the Detectability of Four Classes of Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, E; Phillips, M; Bojechko, C
Purpose: EPID dosimetry is an emerging method for treatment verification and QA. Given that the in-vivo EPID technique is in clinical use at some centers, we investigate the sensitivity and specificity for detecting different classes of errors. We assess the impact of these errors using dose volume histogram endpoints. Though data exist for EPID dosimetry performed pre-treatment, this is the first study quantifying its effectiveness when used during patient treatment (in-vivo). Methods: We analyzed 17 patients; EPID images of the exit dose were acquired and used to reconstruct the planar dose at isocenter. This dose was compared to the TPSmore » dose using a 3%/3mm gamma criteria. To simulate errors, modifications were made to treatment plans using four possible classes of error: 1) patient misalignment, 2) changes in patient body habitus, 3) machine output changes and 4) MLC misalignments. Each error was applied with varying magnitudes. To assess the detectability of the error, the area under a ROC curve (AUC) was analyzed. The AUC was compared to changes in D99 of the PTV introduced by the simulated error. Results: For systematic changes in the MLC leaves, changes in the machine output and patient habitus, the AUC varied from 0.78–0.97 scaling with the magnitude of the error. The optimal gamma threshold as determined by the ROC curve varied between 84–92%. There was little diagnostic power in detecting random MLC leaf errors and patient shifts (AUC 0.52–0.74). Some errors with weak detectability had large changes in D99. Conclusion: These data demonstrate the ability of EPID-based in-vivo dosimetry in detecting variations in patient habitus and errors related to machine parameters such as systematic MLC misalignments and machine output changes. There was no correlation found between the detectability of the error using the gamma pass rate, ROC analysis and the impact on the dose volume histogram. Funded by grant R18HS022244 from AHRQ.« less
Cognitive functions and cerebral oxygenation changes during acute and prolonged hypoxic exposure.
Davranche, Karen; Casini, Laurence; Arnal, Pierrick J; Rupp, Thomas; Perrey, Stéphane; Verges, Samuel
2016-10-01
The present study aimed to assess specific cognitive processes (cognitive control and time perception) and hemodynamic correlates using functional near-infrared spectroscopy (fNIRS) during acute and prolonged high-altitude exposure. Eleven male subjects were transported via helicopter and dropped at 14 272 ft (4 350 meters) of altitude where they stayed for 4 days. Cognitive tasks, involving a conflict task and temporal bisection task, were performed at sea level the week before ascending to high altitude, the day of arrival (D0), the second (D2) and fourth (D4) day at high altitude. Cortical hemodynamic changes in the prefrontal cortex (PFC) area were monitored with fNIRS at rest and during the conflict task. Results showed that high altitude impacts information processing in terms of speed and accuracy. In the early hours of exposure (D0), participants displayed slower reaction times (RT) and decision errors were twice as high. While error rate for simple spontaneous responses remained twice that at sea level, the slow-down of RT was not detectable after 2 days at high-altitude. The larger fNIRS responses from D0 to D2 suggest that higher prefrontal activity partially counteracted cognitive performance decrements. Cognitive control, assessed through the build-up of a top-down response suppression mechanism, the early automatic response activation and the post-error adjustment were not impacted by hypoxia. However, during prolonged hypoxic exposure the temporal judgments were underestimated suggesting a slowdown of the internal clock. A decrease in cortical arousal level induced by hypoxia could consistently explain both the slowdown of the internal clock and the persistence of a higher number of errors after several days of exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Latent error detection: A golden two hours for detection.
Saward, Justin R E; Stanton, Neville A
2017-03-01
Undetected error in safety critical contexts generates a latent condition that can contribute to a future safety failure. The detection of latent errors post-task completion is observed in naval air engineers using a diary to record work-related latent error detection (LED) events. A systems view is combined with multi-process theories to explore sociotechnical factors associated with LED. Perception of cues in different environments facilitates successful LED, for which the deliberate review of past tasks within two hours of the error occurring and whilst remaining in the same or similar sociotechnical environment to that which the error occurred appears most effective. Identified ergonomic interventions offer potential mitigation for latent errors; particularly in simple everyday habitual tasks. It is thought safety critical organisations should look to engineer further resilience through the application of LED techniques that engage with system cues across the entire sociotechnical environment, rather than relying on consistent human performance. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Error Detection/Correction in Collaborative Writing
ERIC Educational Resources Information Center
Pilotti, Maura; Chodorow, Martin
2009-01-01
In the present study, we examined error detection/correction during collaborative writing. Subjects were asked to identify and correct errors in two contexts: a passage written by the subject (familiar text) and a passage written by a person other than the subject (unfamiliar text). A computer program inserted errors in function words prior to the…
ERIC Educational Resources Information Center
Lu, Hui-Chuan; Chu, Yu-Hsin; Chang, Cheng-Yu
2013-01-01
Compared with English learners, Spanish learners have fewer resources for automatic error detection and revision and following the current integrative Computer Assisted Language Learning (CALL), we combined corpus-based approach and CALL to create the System of Error Detection and Revision Suggestion (SEDRS) for learning Spanish. Through…
Computer-Assisted Detection of 90% of EFL Student Errors
ERIC Educational Resources Information Center
Harvey-Scholes, Calum
2018-01-01
Software can facilitate English as a Foreign Language (EFL) students' self-correction of their free-form writing by detecting errors; this article examines the proportion of errors which software can detect. A corpus of 13,644 words of written English was created, comprising 90 compositions written by Spanish-speaking students at levels A2-B2…
NASA Astrophysics Data System (ADS)
Xie, J.; Ni, S.; Chu, R.; Xia, Y.
2017-12-01
Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 second, especially in early days of global seismic network. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC/TS in southern California, USA as an example, the 26 s PL signal can be easily observed in the ambient Noise Cross-correlation Function (NCF) between GSC/TS and a remote station. The variation of travel-time of this 26 s signal in the NCF is used to infer clock error. A drastic clock error is detected during June, 1992. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of ±25 s. Using 26 s PL source, the clock can be validated for historical records of sparsely distributed stations, where usual NCF of short period microseism (<20 s) might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. The location change of the 26 s PL source may influence the measured clock drift, using regional stations with stable clock, we estimate the possible location change of the source.
Detection and avoidance of errors in computer software
NASA Technical Reports Server (NTRS)
Kinsler, Les
1989-01-01
The acceptance test errors of a computer software project to determine if the errors could be detected or avoided in earlier phases of development. GROAGSS (Gamma Ray Observatory Attitude Ground Support System) was selected as the software project to be examined. The development of the software followed the standard Flight Dynamics Software Development methods. GROAGSS was developed between August 1985 and April 1989. The project is approximately 250,000 lines of code of which approximately 43,000 lines are reused from previous projects. GROAGSS had a total of 1715 Change Report Forms (CRFs) submitted during the entire development and testing. These changes contained 936 errors. Of these 936 errors, 374 were found during the acceptance testing. These acceptance test errors were first categorized into methods of avoidance including: more clearly written requirements; detail review; code reading; structural unit testing; and functional system integration testing. The errors were later broken down in terms of effort to detect and correct, class of error, and probability that the prescribed detection method would be successful. These determinations were based on Software Engineering Laboratory (SEL) documents and interviews with the project programmers. A summary of the results of the categorizations is presented. The number of programming errors at the beginning of acceptance testing can be significantly reduced. The results of the existing development methodology are examined for ways of improvements. A basis is provided for the definition is a new development/testing paradigm. Monitoring of the new scheme will objectively determine its effectiveness on avoiding and detecting errors.
Feuerstein, Marco; Reichl, Tobias; Vogel, Jakob; Traub, Joerg; Navab, Nassir
2009-06-01
Electromagnetic tracking is currently one of the most promising means of localizing flexible endoscopic instruments such as flexible laparoscopic ultrasound transducers. However, electromagnetic tracking is also susceptible to interference from ferromagnetic material, which distorts the magnetic field and leads to tracking errors. This paper presents new methods for real-time online detection and reduction of dynamic electromagnetic tracking errors when localizing a flexible laparoscopic ultrasound transducer. We use a hybrid tracking setup to combine optical tracking of the transducer shaft and electromagnetic tracking of the flexible transducer tip. A novel approach of modeling the poses of the transducer tip in relation to the transducer shaft allows us to reliably detect and significantly reduce electromagnetic tracking errors. For detecting errors of more than 5 mm, we achieved a sensitivity and specificity of 91% and 93%, respectively. Initial 3-D rms error of 6.91 mm were reduced to 3.15 mm.
New double-byte error-correcting codes for memory systems
NASA Technical Reports Server (NTRS)
Feng, Gui-Liang; Wu, Xinen; Rao, T. R. N.
1996-01-01
Error-correcting or error-detecting codes have been used in the computer industry to increase reliability, reduce service costs, and maintain data integrity. The single-byte error-correcting and double-byte error-detecting (SbEC-DbED) codes have been successfully used in computer memory subsystems. There are many methods to construct double-byte error-correcting (DBEC) codes. In the present paper we construct a class of double-byte error-correcting codes, which are more efficient than those known to be optimum, and a decoding procedure for our codes is also considered.
Detecting and Characterizing Semantic Inconsistencies in Ported Code
NASA Technical Reports Server (NTRS)
Ray, Baishakhi; Kim, Miryung; Person,Suzette; Rungta, Neha
2013-01-01
Adding similar features and bug fixes often requires porting program patches from reference implementations and adapting them to target implementations. Porting errors may result from faulty adaptations or inconsistent updates. This paper investigates (1) the types of porting errors found in practice, and (2) how to detect and characterize potential porting errors. Analyzing version histories, we define five categories of porting errors, including incorrect control- and data-flow, code redundancy, inconsistent identifier renamings, etc. Leveraging this categorization, we design a static control- and data-dependence analysis technique, SPA, to detect and characterize porting inconsistencies. Our evaluation on code from four open-source projects shows that SPA can detect porting inconsistencies with 65% to 73% precision and 90% recall, and identify inconsistency types with 58% to 63% precision and 92% to 100% recall. In a comparison with two existing error detection tools, SPA improves precision by 14 to 17 percentage points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuangrod, T; Simpson, J; Greer, P
Purpose: A real-time patient treatment delivery verification system using EPID (Watchdog) has been developed as an advanced patient safety tool. In a pilot study data was acquired for 119 prostate and head and neck (HN) IMRT patient deliveries to generate body-site specific action limits using statistical process control. The purpose of this study is to determine the sensitivity of Watchdog to detect clinically significant errors during treatment delivery. Methods: Watchdog utilizes a physics-based model to generate a series of predicted transit cine EPID images as a reference data set, and compares these in real-time to measured transit cine-EPID images acquiredmore » during treatment using chi comparison (4%, 4mm criteria) after the initial 2s of treatment to allow for dose ramp-up. Four study cases were used; dosimetric (monitor unit) errors in prostate (7 fields) and HN (9 fields) IMRT treatments of (5%, 7%, 10%) and positioning (systematic displacement) errors in the same treatments of (5mm, 7mm, 10mm). These errors were introduced by modifying the patient CT scan and re-calculating the predicted EPID data set. The error embedded predicted EPID data sets were compared to the measured EPID data acquired during patient treatment. The treatment delivery percentage (measured from 2s) where Watchdog detected the error was determined. Results: Watchdog detected all simulated errors for all fields during delivery. The dosimetric errors were detected at average treatment delivery percentage of (4%, 0%, 0%) and (7%, 0%, 0%) for prostate and HN respectively. For patient positional errors, the average treatment delivery percentage was (52%, 43%, 25%) and (39%, 16%, 6%). Conclusion: These results suggest that Watchdog can detect significant dosimetric and positioning errors in prostate and HN IMRT treatments in real-time allowing for treatment interruption. Displacements of the patient require longer to detect however incorrect body site or very large geographic misses will be detected rapidly.« less
The Watchdog Task: Concurrent error detection using assertions
NASA Technical Reports Server (NTRS)
Ersoz, A.; Andrews, D. M.; Mccluskey, E. J.
1985-01-01
The Watchdog Task, a software abstraction of the Watchdog-processor, is shown to be a powerful error detection tool with a great deal of flexibility and the advantages of watchdog techniques. A Watchdog Task system in Ada is presented; issues of recovery, latency, efficiency (communication) and preprocessing are discussed. Different applications, one of which is error detection on a single processor, are examined.
A Review of Research on Error Detection. Technical Report No. 540.
ERIC Educational Resources Information Center
Meyer, Linda A.
A review was conducted of the research on error detection studies completed with children, adolescents, and young adults to determine at what age children begin to detect errors in texts. The studies were grouped according to the subjects' ages. The focus of the review was on the following aspects of each study: the hypothesis that guided the…
Huff, Mark J; Umanath, Sharda
2018-06-01
In 2 experiments, we assessed age-related suggestibility to additive and contradictory misinformation (i.e., remembering of false details from an external source). After reading a fictional story, participants answered questions containing misleading details that were either additive (misleading details that supplemented an original event) or contradictory (errors that changed original details). On a final test, suggestibility was greater for additive than contradictory misinformation, and older adults endorsed fewer false contradictory details than younger adults. To mitigate suggestibility in Experiment 2, participants were warned about potential errors, instructed to detect errors, or instructed to detect errors after exposure to examples of additive and contradictory details. Again, suggestibility to additive misinformation was greater than contradictory, and older adults endorsed less contradictory misinformation. Only after detection instructions with misinformation examples were younger adults able to reduce contradictory misinformation effects and reduced these effects to the level of older adults. Additive misinformation however, was immune to all warning and detection instructions. Thus, older adults were less susceptible to contradictory misinformation errors, and younger adults could match this misinformation rate when warning/detection instructions were strong. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Automated Detection of Diabetic Retinopathy using Deep Learning.
Lam, Carson; Yi, Darvin; Guo, Margaret; Lindsey, Tony
2018-01-01
Diabetic retinopathy is a leading cause of blindness among working-age adults. Early detection of this condition is critical for good prognosis. In this paper, we demonstrate the use of convolutional neural networks (CNNs) on color fundus images for the recognition task of diabetic retinopathy staging. Our network models achieved test metric performance comparable to baseline literature results, with validation sensitivity of 95%. We additionally explored multinomial classification models, and demonstrate that errors primarily occur in the misclassification of mild disease as normal due to the CNNs inability to detect subtle disease features. We discovered that preprocessing with contrast limited adaptive histogram equalization and ensuring dataset fidelity by expert verification of class labels improves recognition of subtle features. Transfer learning on pretrained GoogLeNet and AlexNet models from ImageNet improved peak test set accuracies to 74.5%, 68.8%, and 57.2% on 2-ary, 3-ary, and 4-ary classification models, respectively.
Automatic detection and decoding of honey bee waggle dances.
Wario, Fernando; Wild, Benjamin; Rojas, Raúl; Landgraf, Tim
2017-01-01
The waggle dance is one of the most popular examples of animal communication. Forager bees direct their nestmates to profitable resources via a complex motor display. Essentially, the dance encodes the polar coordinates to the resource in the field. Unemployed foragers follow the dancer's movements and then search for the advertised spots in the field. Throughout the last decades, biologists have employed different techniques to measure key characteristics of the waggle dance and decode the information it conveys. Early techniques involved the use of protractors and stopwatches to measure the dance orientation and duration directly from the observation hive. Recent approaches employ digital video recordings and manual measurements on screen. However, manual approaches are very time-consuming. Most studies, therefore, regard only small numbers of animals in short periods of time. We have developed a system capable of automatically detecting, decoding and mapping communication dances in real-time. In this paper, we describe our recording setup, the image processing steps performed for dance detection and decoding and an algorithm to map dances to the field. The proposed system performs with a detection accuracy of 90.07%. The decoded waggle orientation has an average error of -2.92° (± 7.37°), well within the range of human error. To evaluate and exemplify the system's performance, a group of bees was trained to an artificial feeder, and all dances in the colony were automatically detected, decoded and mapped. The system presented here is the first of this kind made publicly available, including source code and hardware specifications. We hope this will foster quantitative analyses of the honey bee waggle dance.
Bias in the Wagner-Nelson estimate of the fraction of drug absorbed.
Wang, Yibin; Nedelman, Jerry
2002-04-01
To examine and quantify bias in the Wagner-Nelson estimate of the fraction of drug absorbed resulting from the estimation error of the elimination rate constant (k), measurement error of the drug concentration, and the truncation error in the area under the curve. Bias in the Wagner-Nelson estimate was derived as a function of post-dosing time (t), k, ratio of absorption rate constant to k (r), and the coefficient of variation for estimates of k (CVk), or CV% for the observed concentration, by assuming a one-compartment model and using an independent estimate of k. The derived functions were used for evaluating the bias with r = 0.5, 3, or 6; k = 0.1 or 0.2; CV, = 0.2 or 0.4; and CV, =0.2 or 0.4; for t = 0 to 30 or 60. Estimation error of k resulted in an upward bias in the Wagner-Nelson estimate that could lead to the estimate of the fraction absorbed being greater than unity. The bias resulting from the estimation error of k inflates the fraction of absorption vs. time profiles mainly in the early post-dosing period. The magnitude of the bias in the Wagner-Nelson estimate resulting from estimation error of k was mainly determined by CV,. The bias in the Wagner-Nelson estimate resulting from to estimation error in k can be dramatically reduced by use of the mean of several independent estimates of k, as in studies for development of an in vivo-in vitro correlation. The truncation error in the area under the curve can introduce a negative bias in the Wagner-Nelson estimate. This can partially offset the bias resulting from estimation error of k in the early post-dosing period. Measurement error of concentration does not introduce bias in the Wagner-Nelson estimate. Estimation error of k results in an upward bias in the Wagner-Nelson estimate, mainly in the early drug absorption phase. The truncation error in AUC can result in a downward bias, which may partially offset the upward bias due to estimation error of k in the early absorption phase. Measurement error of concentration does not introduce bias. The joint effect of estimation error of k and truncation error in AUC can result in a non-monotonic fraction-of-drug-absorbed-vs-time profile. However, only estimation error of k can lead to the Wagner-Nelson estimate of fraction of drug absorbed greater than unity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Sheng; Berrocal, Eduardo; Cappello, Franck
The silent data corruption (SDC) problem is attracting more and more attentions because it is expected to have a great impact on exascale HPC applications. SDC faults are hazardous in that they pass unnoticed by hardware and can lead to wrong computation results. In this work, we formulate SDC detection as a runtime one-step-ahead prediction method, leveraging multiple linear prediction methods in order to improve the detection results. The contributions are twofold: (1) we propose an error feedback control model that can reduce the prediction errors for different linear prediction methods, and (2) we propose a spatial-data-based even-sampling method tomore » minimize the detection overheads (including memory and computation cost). We implement our algorithms in the fault tolerance interface, a fault tolerance library with multiple checkpoint levels, such that users can conveniently protect their HPC applications against both SDC errors and fail-stop errors. We evaluate our approach by using large-scale traces from well-known, large-scale HPC applications, as well as by running those HPC applications on a real cluster environment. Experiments show that our error feedback control model can improve detection sensitivity by 34-189% for bit-flip memory errors injected with the bit positions in the range [20,30], without any degradation on detection accuracy. Furthermore, memory size can be reduced by 33% with our spatial-data even-sampling method, with only a slight and graceful degradation in the detection sensitivity.« less
Linger, Michele L; Ray, Glen E; Zachar, Peter; Underhill, Andrea T; LoBello, Steven G
2007-10-01
Studies of graduate students learning to administer the Wechsler scales have generally shown that training is not associated with the development of scoring proficiency. Many studies report on the reduction of aggregated administration and scoring errors, a strategy that does not highlight the reduction of errors on subtests identified as most prone to error. This study evaluated the development of scoring proficiency specifically on the Wechsler (WISC-IV and WAIS-III) Vocabulary, Comprehension, and Similarities subtests during training by comparing a set of 'early test administrations' to 'later test administrations.' Twelve graduate students enrolled in an intelligence-testing course participated in the study. Scoring errors (e.g., incorrect point assignment) were evaluated on the students' actual practice administration test protocols. Errors on all three subtests declined significantly when scoring errors on 'early' sets of Wechsler scales were compared to those made on 'later' sets. However, correcting these subtest scoring errors did not cause significant changes in subtest scaled scores. Implications for clinical instruction and future research are discussed.
Repeat-aware modeling and correction of short read errors.
Yang, Xiao; Aluru, Srinivas; Dorman, Karin S
2011-02-15
High-throughput short read sequencing is revolutionizing genomics and systems biology research by enabling cost-effective deep coverage sequencing of genomes and transcriptomes. Error detection and correction are crucial to many short read sequencing applications including de novo genome sequencing, genome resequencing, and digital gene expression analysis. Short read error detection is typically carried out by counting the observed frequencies of kmers in reads and validating those with frequencies exceeding a threshold. In case of genomes with high repeat content, an erroneous kmer may be frequently observed if it has few nucleotide differences with valid kmers with multiple occurrences in the genome. Error detection and correction were mostly applied to genomes with low repeat content and this remains a challenging problem for genomes with high repeat content. We develop a statistical model and a computational method for error detection and correction in the presence of genomic repeats. We propose a method to infer genomic frequencies of kmers from their observed frequencies by analyzing the misread relationships among observed kmers. We also propose a method to estimate the threshold useful for validating kmers whose estimated genomic frequency exceeds the threshold. We demonstrate that superior error detection is achieved using these methods. Furthermore, we break away from the common assumption of uniformly distributed errors within a read, and provide a framework to model position-dependent error occurrence frequencies common to many short read platforms. Lastly, we achieve better error correction in genomes with high repeat content. The software is implemented in C++ and is freely available under GNU GPL3 license and Boost Software V1.0 license at "http://aluru-sun.ece.iastate.edu/doku.php?id = redeem". We introduce a statistical framework to model sequencing errors in next-generation reads, which led to promising results in detecting and correcting errors for genomes with high repeat content.
Predictive Coding or Evidence Accumulation? False Inference and Neuronal Fluctuations
Friston, Karl J.; Kleinschmidt, Andreas
2010-01-01
Perceptual decisions can be made when sensory input affords an inference about what generated that input. Here, we report findings from two independent perceptual experiments conducted during functional magnetic resonance imaging (fMRI) with a sparse event-related design. The first experiment, in the visual modality, involved forced-choice discrimination of coherence in random dot kinematograms that contained either subliminal or periliminal motion coherence. The second experiment, in the auditory domain, involved free response detection of (non-semantic) near-threshold acoustic stimuli. We analysed fluctuations in ongoing neural activity, as indexed by fMRI, and found that neuronal activity in sensory areas (extrastriate visual and early auditory cortex) biases perceptual decisions towards correct inference and not towards a specific percept. Hits (detection of near-threshold stimuli) were preceded by significantly higher activity than both misses of identical stimuli or false alarms, in which percepts arise in the absence of appropriate sensory input. In accord with predictive coding models and the free-energy principle, this observation suggests that cortical activity in sensory brain areas reflects the precision of prediction errors and not just the sensory evidence or prediction errors per se. PMID:20369004
Is airport baggage inspection just another medical image?
NASA Astrophysics Data System (ADS)
Gale, Alastair G.; Mugglestone, Mark D.; Purdy, Kevin J.; McClumpha, A.
2000-04-01
A similar inspection situation to medical imaging appears to be that of the airport security screener who examines X-ray images of passenger baggage. There is, however, little research overlap between the two areas. Studies of observer performance in examining medical images have led to a conceptual model which has been used successfully to understand diagnostic errors and develop appropriate training strategies. The model stresses three processes of; visual search, detection of potential targets, and interpretation of these areas; with most errors being due to the latter two factors. An initial study is reported on baggage inspection, using several brief image presentations, to examine the applicability of such a medical model to this domain. The task selected was the identification of potential Improvised Explosive Devices (IEDs). Specifically investigated was the visual search behavior of inspectors. It was found that IEDs could be identified in a very brief image presentation, with increased presentation time this performance improved. Participants fixated on IEDs very early on and sometimes concentrated wholly on this part of the baggage display. When IEDs were missed this was mainly due to interpretative factors rather than visual search or IED detection. It is argued that the observer model can be applied successfully to this scenario.
Using video recording to identify management errors in pediatric trauma resuscitation.
Oakley, Ed; Stocker, Sergio; Staubli, Georg; Young, Simon
2006-03-01
To determine the ability of video recording to identify management errors in trauma resuscitation and to compare this method with medical record review. The resuscitation of children who presented to the emergency department of the Royal Children's Hospital between February 19, 2001, and August 18, 2002, for whom the trauma team was activated was video recorded. The tapes were analyzed, and management was compared with Advanced Trauma Life Support guidelines. Deviations from these guidelines were recorded as errors. Fifty video recordings were analyzed independently by 2 reviewers. Medical record review was undertaken for a cohort of the most seriously injured patients, and errors were identified. The errors detected with the 2 methods were compared. Ninety resuscitations were video recorded and analyzed. An average of 5.9 errors per resuscitation was identified with this method (range: 1-12 errors). Twenty-five children (28%) had an injury severity score of >11; there was an average of 2.16 errors per patient in this group. Only 10 (20%) of these errors were detected in the medical record review. Medical record review detected an additional 8 errors that were not evident on the video recordings. Concordance between independent reviewers was high, with 93% agreement. Video recording is more effective than medical record review in detecting management errors in pediatric trauma resuscitation. Management errors in pediatric trauma resuscitation are common and often involve basic resuscitation principles. Resuscitation of the most seriously injured children was associated with fewer errors. Video recording is a useful adjunct to trauma resuscitation auditing.
Simultaneous message framing and error detection
NASA Technical Reports Server (NTRS)
Frey, A. H., Jr.
1968-01-01
Circuitry simultaneously inserts message framing information and detects noise errors in binary code data transmissions. Separate message groups are framed without requiring both framing bits and error-checking bits, and predetermined message sequence are separated from other message sequences without being hampered by intervening noise.
Multi-bits error detection and fast recovery in RISC cores
NASA Astrophysics Data System (ADS)
Jing, Wang; Xing, Yang; Yuanfu, Zhao; Weigong, Zhang; Jiao, Shen; Keni, Qiu
2015-11-01
The particles-induced soft errors are a major threat to the reliability of microprocessors. Even worse, multi-bits upsets (MBUs) are ever-increased due to the rapidly shrinking feature size of the IC on a chip. Several architecture-level mechanisms have been proposed to protect microprocessors from soft errors, such as dual and triple modular redundancies (DMR and TMR). However, most of them are inefficient to combat the growing multi-bits errors or cannot well balance the critical paths delay, area and power penalty. This paper proposes a novel architecture, self-recovery dual-pipeline (SRDP), to effectively provide soft error detection and recovery with low cost for general RISC structures. We focus on the following three aspects. First, an advanced DMR pipeline is devised to detect soft error, especially MBU. Second, SEU/MBU errors can be located by enhancing self-checking logic into pipelines stage registers. Third, a recovery scheme is proposed with a recovery cost of 1 or 5 clock cycles. Our evaluation of a prototype implementation exhibits that the SRDP can successfully detect particle-induced soft errors up to 100% and recovery is nearly 95%, the other 5% will inter a specific trap.
(abstract) Mission Operations and Control Assurance: Flight Operations Quality Improvements
NASA Technical Reports Server (NTRS)
Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Witkowski, Mona M.
1993-01-01
Mission Operations and Command Assurance (MO&CA), a recent addition to flight operations teams at JPL. provides a system level function to instill quality in mission operations. MO&CA's primary goal at JPL is to help improve the operational reliability for projects during flight. MO&CA tasks include early detection and correction of process design and procedural deficiencies within projects. Early detection and correction are essential during development of operational procedures and training of operational teams. MO&CA's effort focuses directly on reducing the probability of radiating incorrect commands to a spacecraft. Over the last seven years at JPL, MO&CA has become a valuable asset to JPL flight projects. JPL flight projects have benefited significantly from MO&CA's efforts to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit directly from previous and ongoing experience. Since MO&CA, like Total Quality Management (TQM), focuses on continuous improvement of processes and elimination of rework, we recommend that this effort be continued on NASA flight projects.
Challenges and progress in making DNA-based AIS early ...
The ability of DNA barcoding to find additional species in hard-to-sample locations or hard-to-identify samples is well established. Nevertheless, adoption of DNA barcoding into regular monitoring programs has been slow, in part due to issues of standardization and interpretation that need resolving. In this presentation, we describe our progress towards incorporating DNA-based identification into broad-spectrum aquatic invasive species early-detection monitoring in the Laurentian Great Lakes. Our work uses community biodiversity information as the basis for evaluating survey performance for various taxonomic groups. Issues we are tackling in bringing DNA-based data to bear on AIS monitoring design include: 1) Standardizing methodology and work flow from field collection and sample handling through bioinformatics post-processing; 2) Determining detection sensitivity and accounting for inter-species differences in DNA amplification and primer affinity; 3) Differentiating sequencing and barcoding errors from legitimate new finds when range and natural history information is limited; and 4) Accounting for the different nature of morphology- vs. DNA-based biodiversity information in subsequent analysis (e.g., via species accumulation curves, multi-metric indices). not applicable
A fatal outcome after unintentional overdosing of rivastigmine patches.
Lövborg, Henrik; Jönsson, Anna K; Hägg, Staffan
2012-02-01
Rivastigmine is an acetylcholine esterase inhibitor used in the treatment of dementia. Patches with rivastigmine for transdermal delivery have been used to increase compliance and to reduce side effects. We describe an 87-year old male with dementia treated with multiple rivastigmine patches (Exelon 9,5 mg/24 h) who developed nausea, vomiting and renal failure with disturbed electrolytes resulting in death. The symptoms occurred after six rivastigmine patches had concomitantly been erroneously applied by health care personnel on two consecutive days. The terminal cause of death was considered to be uremia from an acute tubular necrosis that was assessed as a result of dehydration through vomiting. The rivastigmine intoxication was assessed as having caused or contributed to the dehydrated condition. The medication error occurred at least partly due to ambiguous labeling. The clinical signs were not initially recognized as adverse effects of rivastigmine. The presented case is a description of a rivastigmine overdose due to a medication error involving patches. This case indicates the importance of clear and unambiguous instructions to avoid administration errors with patches and to be vigilant to adverse drug reactions for early detection and correction of drug administration errors. In particular, instructions clearly indicating that only one patch should be applied at a time are important.
Observer detection of image degradation caused by irreversible data compression processes
NASA Astrophysics Data System (ADS)
Chen, Ji; Flynn, Michael J.; Gross, Barry; Spizarny, David
1991-05-01
Irreversible data compression methods have been proposed to reduce the data storage and communication requirements of digital imaging systems. In general, the error produced by compression increases as an algorithm''s compression ratio is increased. We have studied the relationship between compression ratios and the detection of induced error using radiologic observers. The nature of the errors was characterized by calculating the power spectrum of the difference image. In contrast with studies designed to test whether detected errors alter diagnostic decisions, this study was designed to test whether observers could detect the induced error. A paired-film observer study was designed to test whether induced errors were detected. The study was conducted with chest radiographs selected and ranked for subtle evidence of interstitial disease, pulmonary nodules, or pneumothoraces. Images were digitized at 86 microns (4K X 5K) and 2K X 2K regions were extracted. A full-frame discrete cosine transform method was used to compress images at ratios varying between 6:1 and 60:1. The decompressed images were reprinted next to the original images in a randomized order with a laser film printer. The use of a film digitizer and a film printer which can reproduce all of the contrast and detail in the original radiograph makes the results of this study insensitive to instrument performance and primarily dependent on radiographic image quality. The results of this study define conditions for which errors associated with irreversible compression cannot be detected by radiologic observers. The results indicate that an observer can detect the errors introduced by this compression algorithm for compression ratios of 10:1 (1.2 bits/pixel) or higher.
Assessing reanalysis quality with early sounders Nimbus-4 IRIS (1970) and Nimbus-6 HIRS (1975)
NASA Astrophysics Data System (ADS)
Poli, Paul; Brunel, Pascal
2018-07-01
This paper revisits the data collected by early sounders Nimbus-4 IRIS (1970) and Nimbus-6 HIRS (1975), after recovery of ageing tapes by NASA GES DISC. New quality controls are proposed to screen out erroneous or suspicious mission data, based on instrument health status data records and other inspection of the data. Radiative transfer coefficients are derived for the fast computation of clear-sky radiative transfer simulations. Atmospheric profiles from ERA-40 and ERA-20C reanalyses are used in input. These spatio-temporally complete datasets are interpolated to each sounding location, using the closest estimate in time. A modern cloud detection method derived for current hyperspectral sounders is applied to IRIS and yields maps of cloud cover that are in line with current knowledge of cloud climatology. For clear scenes, the standard deviation of brightness temperature differences between IRIS observations and simulations from ERA-20C is around 1 K for the lower-peaking temperature channels of the 15 μm CO2 band, and lower than 1 K for simulations from ERA-40. The IRIS and HIRS instrumental data records are projected in a common sub-space to alleviate issues with different field-of-view resolutions and spectral resolutions. A proxy cloud detection scheme screens out clouds in the same manner in both data records. Considering the month of August, common to both missions, a detailed analysis of the departures from observations suggests that ERA-40 suffers from spurious tropospheric warming, possibly caused by changes in the observation input during the 1970s including a known error in ERA-40 radiance assimilation bias correction. This result, confirmed by considering a climate model integration, demonstrates that it is possible to exploit early sounder data records to derive detailed insight from reanalyses, such as attempting to qualify separately random and systematic errors in reanalyses, even at times when few other independent observation data are available.
Error detection and reduction in blood banking.
Motschman, T L; Moore, S B
1996-12-01
Error management plays a major role in facility process improvement efforts. By detecting and reducing errors, quality and, therefore, patient care improve. It begins with a strong organizational foundation of management attitude with clear, consistent employee direction and appropriate physical facilities. Clearly defined critical processes, critical activities, and SOPs act as the framework for operations as well as active quality monitoring. To assure that personnel can detect an report errors they must be trained in both operational duties and error management practices. Use of simulated/intentional errors and incorporation of error detection into competency assessment keeps employees practiced, confident, and diminishes fear of the unknown. Personnel can clearly see that errors are indeed used as opportunities for process improvement and not for punishment. The facility must have a clearly defined and consistently used definition for reportable errors. Reportable errors should include those errors with potentially harmful outcomes as well as those errors that are "upstream," and thus further away from the outcome. A well-written error report consists of who, what, when, where, why/how, and follow-up to the error. Before correction can occur, an investigation to determine the underlying cause of the error should be undertaken. Obviously, the best corrective action is prevention. Correction can occur at five different levels; however, only three of these levels are directed at prevention. Prevention requires a method to collect and analyze data concerning errors. In the authors' facility a functional error classification method and a quality system-based classification have been useful. An active method to search for problems uncovers them further upstream, before they can have disastrous outcomes. In the continual quest for improving processes, an error management program is itself a process that needs improvement, and we must strive to always close the circle of quality assurance. Ultimately, the goal of better patient care will be the reward.
Vuk, Tomislav; Barišić, Marijan; Očić, Tihomir; Mihaljević, Ivanka; Šarlija, Dorotea; Jukić, Irena
2012-01-01
Background. Continuous and efficient error management, including procedures from error detection to their resolution and prevention, is an important part of quality management in blood establishments. At the Croatian Institute of Transfusion Medicine (CITM), error management has been systematically performed since 2003. Materials and methods. Data derived from error management at the CITM during an 8-year period (2003–2010) formed the basis of this study. Throughout the study period, errors were reported to the Department of Quality Assurance. In addition to surveys and the necessary corrective activities, errors were analysed and classified according to the Medical Event Reporting System for Transfusion Medicine (MERS-TM). Results. During the study period, a total of 2,068 errors were recorded, including 1,778 (86.0%) in blood bank activities and 290 (14.0%) in blood transfusion services. As many as 1,744 (84.3%) errors were detected before issue of the product or service. Among the 324 errors identified upon release from the CITM, 163 (50.3%) errors were detected by customers and reported as complaints. In only five cases was an error detected after blood product transfusion however without any harmful consequences for the patients. All errors were, therefore, evaluated as “near miss” and “no harm” events. Fifty-two (2.5%) errors were evaluated as high-risk events. With regards to blood bank activities, the highest proportion of errors occurred in the processes of labelling (27.1%) and blood collection (23.7%). With regards to blood transfusion services, errors related to blood product issuing prevailed (24.5%). Conclusion. This study shows that comprehensive management of errors, including near miss errors, can generate data on the functioning of transfusion services, which is a precondition for implementation of efficient corrective and preventive actions that will ensure further improvement of the quality and safety of transfusion treatment. PMID:22395352
Transient Faults in Computer Systems
NASA Technical Reports Server (NTRS)
Masson, Gerald M.
1993-01-01
A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.
BREAST: a novel method to improve the diagnostic efficacy of mammography
NASA Astrophysics Data System (ADS)
Brennan, P. C.; Tapia, K.; Ryan, J.; Lee, W.
2013-03-01
High quality breast imaging and accurate image assessment are critical to the early diagnoses, treatment and management of women with breast cancer. Breast Screen Reader Assessment Strategy (BREAST) provides a platform, accessible by researchers and clinicians world-wide, which will contain image data bases, algorithms to assess reader performance and on-line systems for image evaluation. The platform will contribute to the diagnostic efficacy of breast imaging in Australia and beyond on two fronts: reducing errors in mammography, and transforming our assessment of novel technologies and techniques. Mammography is the primary diagnostic tool for detecting breast cancer with over 800,000 women X-rayed each year in Australia, however, it fails to detect 30% of breast cancers with a number of missed cancers being visible on the image [1-6]. BREAST will monitor the mistakes, identify reasons for mammographic errors, and facilitate innovative solutions to reduce error rates. The BREAST platform has the potential to enable expert assessment of breast imaging innovations, anywhere in the world where experts or innovations are located. Currently, innovations are often being assessed by limited numbers of individuals who happen to be geographically located close to the innovation, resulting in equivocal studies with low statistical power. BREAST will transform this current paradigm by enabling large numbers of experts to assess any new method or technology using our embedded evaluation methods. We are confident that this world-first system will play an important part in the future efficacy of breast imaging.
Imaging-based quantification of hepatic fat: methods and clinical applications.
Ma, Xiaozhou; Holalkere, Nagaraj-Setty; Kambadakone R, Avinash; Mino-Kenudson, Mari; Hahn, Peter F; Sahani, Dushyant V
2009-01-01
Fatty liver disease comprises a spectrum of conditions (simple hepatic steatosis, steatohepatitis with inflammatory changes, and end-stage liver disease with fibrosis and cirrhosis). Hepatic steatosis is often associated with diabetes and obesity and may be secondary to alcohol and drug use, toxins, viral infections, and metabolic diseases. Detection and quantification of liver fat have many clinical applications, and early recognition is crucial to institute appropriate management and prevent progression. Histopathologic analysis is the reference standard to detect and quantify fat in the liver, but results are vulnerable to sampling error. Moreover, it can cause morbidity and complications and cannot be repeated often enough to monitor treatment response. Imaging can be repeated regularly and allows assessment of the entire liver, thus avoiding sampling error. Selection of appropriate imaging methods demands understanding of their advantages and limitations and the suitable clinical setting. Ultrasonography is effective for detecting moderate or severe fatty infiltration but is limited by lack of interobserver reliability and intraobserver reproducibility. Computed tomography allows quantitative and qualitative evaluation and is generally highly accurate and reliable; however, the results may be confounded by hepatic parenchymal changes due to cirrhosis or depositional diseases. Magnetic resonance (MR) imaging with appropriate sequences (eg, chemical shift techniques) has similarly high sensitivity, and MR spectroscopy provides unique advantages for some applications. However, both are expensive and too complex to be used to monitor steatosis. (c) RSNA, 2009.
Insar Unwrapping Error Correction Based on Quasi-Accurate Detection of Gross Errors (quad)
NASA Astrophysics Data System (ADS)
Kang, Y.; Zhao, C. Y.; Zhang, Q.; Yang, C. S.
2018-04-01
Unwrapping error is a common error in the InSAR processing, which will seriously degrade the accuracy of the monitoring results. Based on a gross error correction method, Quasi-accurate detection (QUAD), the method for unwrapping errors automatic correction is established in this paper. This method identifies and corrects the unwrapping errors by establishing a functional model between the true errors and interferograms. The basic principle and processing steps are presented. Then this method is compared with the L1-norm method with simulated data. Results show that both methods can effectively suppress the unwrapping error when the ratio of the unwrapping errors is low, and the two methods can complement each other when the ratio of the unwrapping errors is relatively high. At last the real SAR data is tested for the phase unwrapping error correction. Results show that this new method can correct the phase unwrapping errors successfully in the practical application.
A circadian rhythm in skill-based errors in aviation maintenance.
Hobbs, Alan; Williamson, Ann; Van Dongen, Hans P A
2010-07-01
In workplaces where activity continues around the clock, human error has been observed to exhibit a circadian rhythm, with a characteristic peak in the early hours of the morning. Errors are commonly distinguished by the nature of the underlying cognitive failure, particularly the level of intentionality involved in the erroneous action. The Skill-Rule-Knowledge (SRK) framework of Rasmussen is used widely in the study of industrial errors and accidents. The SRK framework describes three fundamental types of error, according to whether behavior is under the control of practiced sensori-motor skill routines with minimal conscious awareness; is guided by implicit or explicit rules or expertise; or where the planning of actions requires the conscious application of domain knowledge. Up to now, examinations of circadian patterns of industrial errors have not distinguished between different types of error. Consequently, it is not clear whether all types of error exhibit the same circadian rhythm. A survey was distributed to aircraft maintenance personnel in Australia. Personnel were invited to anonymously report a safety incident and were prompted to describe, in detail, the human involvement (if any) that contributed to it. A total of 402 airline maintenance personnel reported an incident, providing 369 descriptions of human error in which the time of the incident was reported and sufficient detail was available to analyze the error. Errors were categorized using a modified version of the SRK framework, in which errors are categorized as skill-based, rule-based, or knowledge-based, or as procedure violations. An independent check confirmed that the SRK framework had been applied with sufficient consistency and reliability. Skill-based errors were the most common form of error, followed by procedure violations, rule-based errors, and knowledge-based errors. The frequency of errors was adjusted for the estimated proportion of workers present at work/each hour of the day, and the 24 h pattern of each error type was examined. Skill-based errors exhibited a significant circadian rhythm, being most prevalent in the early hours of the morning. Variation in the frequency of rule-based errors, knowledge-based errors, and procedure violations over the 24 h did not reach statistical significance. The results suggest that during the early hours of the morning, maintenance technicians are at heightened risk of "absent minded" errors involving failures to execute action plans as intended.
Is there any electrophysiological evidence for subliminal error processing?
Shalgi, Shani; Deouell, Leon Y
2013-08-29
The role of error awareness in executive control and modification of behavior is not fully understood. In line with many recent studies showing that conscious awareness is unnecessary for numerous high-level processes such as strategic adjustments and decision making, it was suggested that error detection can also take place unconsciously. The Error Negativity (Ne) component, long established as a robust error-related component that differentiates between correct responses and errors, was a fine candidate to test this notion: if an Ne is elicited also by errors which are not consciously detected, it would imply a subliminal process involved in error monitoring that does not necessarily lead to conscious awareness of the error. Indeed, for the past decade, the repeated finding of a similar Ne for errors which became aware and errors that did not achieve awareness, compared to the smaller negativity elicited by correct responses (Correct Response Negativity; CRN), has lent the Ne the prestigious status of an index of subliminal error processing. However, there were several notable exceptions to these findings. The study in the focus of this review (Shalgi and Deouell, 2012) sheds new light on both types of previous results. We found that error detection as reflected by the Ne is correlated with subjective awareness: when awareness (or more importantly lack thereof) is more strictly determined using the wagering paradigm, no Ne is elicited without awareness. This result effectively resolves the issue of why there are many conflicting findings regarding the Ne and error awareness. The average Ne amplitude appears to be influenced by individual criteria for error reporting and therefore, studies containing different mixtures of participants who are more confident of their own performance or less confident, or paradigms that either encourage or don't encourage reporting low confidence errors will show different results. Based on this evidence, it is no longer possible to unquestioningly uphold the notion that the amplitude of the Ne is unrelated to subjective awareness, and therefore, that errors are detected without conscious awareness.
Activity Tracking for Pilot Error Detection from Flight Data
NASA Technical Reports Server (NTRS)
Callantine, Todd J.; Ashford, Rose (Technical Monitor)
2002-01-01
This report presents an application of activity tracking for pilot error detection from flight data, and describes issues surrounding such an application. It first describes the Crew Activity Tracking System (CATS), in-flight data collected from the NASA Langley Boeing 757 Airborne Research Integrated Experiment System aircraft, and a model of B757 flight crew activities. It then presents an example of CATS detecting actual in-flight crew errors.
Improving Dual-Task Control With a Posture-Second Strategy in Early-Stage Parkinson Disease.
Huang, Cheng-Ya; Chen, Yu-An; Hwang, Ing-Shiou; Wu, Ruey-Meei
2018-03-31
To examine the task prioritization effects on postural-suprapostural dual-task performance in patients with early-stage Parkinson disease (PD) without clinically observed postural symptoms. Cross-sectional study. Participants performed a force-matching task while standing on a mobile platform, and were instructed to focus their attention on either the postural task (posture-first strategy) or the force-matching task (posture-second strategy). University research laboratory. Individuals (N=16) with early-stage PD who had no clinically observed postural symptoms. Not applicable. Dual-task change (DTC; percent change between single-task and dual-task performance) of posture error, posture approximate entropy (ApEn), force error, and reaction time (RT). Positive DTC values indicate higher postural error, posture ApEn, force error, and force RT during dual-task conditions compared with single-task conditions. Compared with the posture-first strategy, the posture-second strategy was associated with smaller DTC of posture error and force error, and greater DTC of posture ApEn. In contrast, greater DTC of force RT was observed under the posture-second strategy. Contrary to typical recommendations, our results suggest that the posture-second strategy may be an effective dual-task strategy in patients with early-stage PD who have no clinically observed postural symptoms in order to reduce the negative effect of dual tasking on performance and facilitate postural automaticity. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Early Warning System of Flood Disaster Based on Ultrasonic Sensors and Wireless Technology
NASA Astrophysics Data System (ADS)
Indrasari, W.; Iswanto, B. H.; Andayani, M.
2018-04-01
A flood disaster provides considerable losses to the people who live around the river. To mitigate losses of material due to flood disaster required an early warning system of flood disaster. For that reason, it necessary to design a system that provide alert to the people prior the flood disaster. And this paper describes development of a device for early detection system of flood disasters. This device consists of two ultrasonic sensors as a water level detector, and a water flow sensor as a water flow velocity sensor. The wireless technology and GSM is used as an information medium. The system is designed based on water level conditions in the Katulampa Dam, Bogor. Characterization of water level detector showed that the device effectively works in a range of water level of 14-250 cm, with a maximum relative error of 4.3%. Meanwhile the wireless works properly as far as 75 m, and the SMS transmission time is 8.20 second.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Zwan, B; Central Coast Cancer Centre, Gosford, NSW; Colvill, E
2016-06-15
Purpose: The added complexity of the real-time adaptive multi-leaf collimator (MLC) tracking increases the likelihood of undetected MLC delivery errors. In this work we develop and test a system for real-time delivery verification and error detection for MLC tracking radiotherapy using an electronic portal imaging device (EPID). Methods: The delivery verification system relies on acquisition and real-time analysis of transit EPID image frames acquired at 8.41 fps. In-house software was developed to extract the MLC positions from each image frame. Three comparison metrics were used to verify the MLC positions in real-time: (1) field size, (2) field location and, (3)more » field shape. The delivery verification system was tested for 8 VMAT MLC tracking deliveries (4 prostate and 4 lung) where real patient target motion was reproduced using a Hexamotion motion stage and a Calypso system. Sensitivity and detection delay was quantified for various types of MLC and system errors. Results: For both the prostate and lung test deliveries the MLC-defined field size was measured with an accuracy of 1.25 cm{sup 2} (1 SD). The field location was measured with an accuracy of 0.6 mm and 0.8 mm (1 SD) for lung and prostate respectively. Field location errors (i.e. tracking in wrong direction) with a magnitude of 3 mm were detected within 0.4 s of occurrence in the X direction and 0.8 s in the Y direction. Systematic MLC gap errors were detected as small as 3 mm. The method was not found to be sensitive to random MLC errors and individual MLC calibration errors up to 5 mm. Conclusion: EPID imaging may be used for independent real-time verification of MLC trajectories during MLC tracking deliveries. Thresholds have been determined for error detection and the system has been shown to be sensitive to a range of delivery errors.« less
Auray-Blais, Christiane; Maranda, Bruno; Lavoie, Pamela
2014-09-25
Creatine synthesis and transport disorders, Triple H syndrome and ornithine transcarbamylase deficiency are treatable inborn errors of metabolism. Early screening of patients was found to be beneficial. Mass spectrometry analysis of specific urinary biomarkers might lead to early detection and treatment in the neonatal period. We developed a high-throughput mass spectrometry methodology applicable to newborn screening using dried urine on filter paper for these aforementioned diseases. A high-throughput methodology was devised for the simultaneous analysis of creatine, guanidineacetic acid, orotic acid, uracil, creatinine and respective internal standards, using both positive and negative electrospray ionization modes, depending on the compound. The precision and accuracy varied by <15%. Stability during storage at different temperatures was confirmed for three weeks. The limits of detection and quantification for each biomarker varied from 0.3 to 6.3 μmol/l and from 1.0 to 20.9 μmol/l, respectively. Analyses of urine specimens from affected patients revealed abnormal results. Targeted biomarkers in urine were detected in the first weeks of life. This rapid, simple and robust liquid chromatography/tandem mass spectrometry methodology is an efficient tool applicable to urine screening for inherited disorders by biochemical laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.
Diagnosis of secondary amyloidosis in alkaptonuria.
Millucci, Lia; Ghezzi, Lorenzo; Bernardini, Giulia; Braconi, Daniela; Lupetti, Pietro; Perfetto, Federico; Orlandini, Maurizio; Santucci, Annalisa
2014-09-26
Alkaptonuria (AKU) is an inborn error of catabolism due to a deficient activity of homogentisate 1,2-dioxygenase. Patients suffer from a severe arthropathy, cardiovascular and kidney disease but other organs are affected, too. We found secondary amyloidosis as a life-threatening complication in AKU, thus opening new perspectives for its treatment. We proved that methotrexate and anti-oxidants have an excellent efficacy to inhibit the production of amyloid in AKU model chondrocytes. Owing to the progressive and intractable condition, it seems important to detect amyloid deposits at an early phase in AKU and the choice of specimens for a correct diagnosis is crucial. Ten AKU subjects were examined for amyloidosis; abdominal fat pad aspirates, labial salivary gland, cartilage and synovia specimens were analysed by CR, Th-T, IF, TEM. Amyloid was detected in only one abdominal fat pad specimen. However, all subjects demonstrated amyloid deposition in salivary glands and in other organ biopsies, indicating salivary gland as the ideal specimen for early amyloid detection in AKU. This is, at the best of our knowledge, the first report providing correct indications on the diagnosis of amyloidosis in AKU, thus offering the possibility of treatment of such co-morbidity to AKU patients. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_185.
Prescribing Errors Involving Medication Dosage Forms
Lesar, Timothy S
2002-01-01
CONTEXT Prescribing errors involving medication dose formulations have been reported to occur frequently in hospitals. No systematic evaluations of the characteristics of errors related to medication dosage formulation have been performed. OBJECTIVE To quantify the characteristics, frequency, and potential adverse patient effects of prescribing errors involving medication dosage forms . DESIGN Evaluation of all detected medication prescribing errors involving or related to medication dosage forms in a 631-bed tertiary care teaching hospital. MAIN OUTCOME MEASURES Type, frequency, and potential for adverse effects of prescribing errors involving or related to medication dosage forms. RESULTS A total of 1,115 clinically significant prescribing errors involving medication dosage forms were detected during the 60-month study period. The annual number of detected errors increased throughout the study period. Detailed analysis of the 402 errors detected during the last 16 months of the study demonstrated the most common errors to be: failure to specify controlled release formulation (total of 280 cases; 69.7%) both when prescribing using the brand name (148 cases; 36.8%) and when prescribing using the generic name (132 cases; 32.8%); and prescribing controlled delivery formulations to be administered per tube (48 cases; 11.9%). The potential for adverse patient outcome was rated as potentially “fatal or severe” in 3 cases (0.7%), and “serious” in 49 cases (12.2%). Errors most commonly involved cardiovascular agents (208 cases; 51.7%). CONCLUSIONS Hospitalized patients are at risk for adverse outcomes due to prescribing errors related to inappropriate use of medication dosage forms. This information should be considered in the development of strategies to prevent adverse patient outcomes resulting from such errors. PMID:12213138
Detecting and Characterizing Semantic Inconsistencies in Ported Code
NASA Technical Reports Server (NTRS)
Ray, Baishakhi; Kim, Miryung; Person, Suzette J.; Rungta, Neha
2013-01-01
Adding similar features and bug fixes often requires porting program patches from reference implementations and adapting them to target implementations. Porting errors may result from faulty adaptations or inconsistent updates. This paper investigates (I) the types of porting errors found in practice, and (2) how to detect and characterize potential porting errors. Analyzing version histories, we define five categories of porting errors, including incorrect control- and data-flow, code redundancy, inconsistent identifier renamings, etc. Leveraging this categorization, we design a static control- and data-dependence analysis technique, SPA, to detect and characterize porting inconsistencies. Our evaluation on code from four open-source projects shows thai SPA can dell-oct porting inconsistencies with 65% to 73% precision and 90% recall, and identify inconsistency types with 58% to 63% precision and 92% to 100% recall. In a comparison with two existing error detection tools, SPA improves precision by 14 to 17 percentage points
Statistical approaches to account for false-positive errors in environmental DNA samples.
Lahoz-Monfort, José J; Guillera-Arroita, Gurutzeta; Tingley, Reid
2016-05-01
Environmental DNA (eDNA) sampling is prone to both false-positive and false-negative errors. We review statistical methods to account for such errors in the analysis of eDNA data and use simulations to compare the performance of different modelling approaches. Our simulations illustrate that even low false-positive rates can produce biased estimates of occupancy and detectability. We further show that removing or classifying single PCR detections in an ad hoc manner under the suspicion that such records represent false positives, as sometimes advocated in the eDNA literature, also results in biased estimation of occupancy, detectability and false-positive rates. We advocate alternative approaches to account for false-positive errors that rely on prior information, or the collection of ancillary detection data at a subset of sites using a sampling method that is not prone to false-positive errors. We illustrate the advantages of these approaches over ad hoc classifications of detections and provide practical advice and code for fitting these models in maximum likelihood and Bayesian frameworks. Given the severe bias induced by false-negative and false-positive errors, the methods presented here should be more routinely adopted in eDNA studies. © 2015 John Wiley & Sons Ltd.
Feng, Jianyuan; Turksoy, Kamuran; Samadi, Sediqeh; Hajizadeh, Iman; Littlejohn, Elizabeth; Cinar, Ali
2017-12-01
Supervision and control systems rely on signals from sensors to receive information to monitor the operation of a system and adjust manipulated variables to achieve the control objective. However, sensor performance is often limited by their working conditions and sensors may also be subjected to interference by other devices. Many different types of sensor errors such as outliers, missing values, drifts and corruption with noise may occur during process operation. A hybrid online sensor error detection and functional redundancy system is developed to detect errors in online signals, and replace erroneous or missing values detected with model-based estimates. The proposed hybrid system relies on two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least squares (LW-PLS) regression model, which leverage the advantages of automatic measurement error elimination with ORKF and data-driven prediction with LW-PLS. The system includes a nominal angle analysis (NAA) method to distinguish between signal faults and large changes in sensor values caused by real dynamic changes in process operation. The performance of the system is illustrated with clinical data continuous glucose monitoring (CGM) sensors from people with type 1 diabetes. More than 50,000 CGM sensor errors were added to original CGM signals from 25 clinical experiments, then the performance of error detection and functional redundancy algorithms were analyzed. The results indicate that the proposed system can successfully detect most of the erroneous signals and substitute them with reasonable estimated values computed by functional redundancy system.
Error field measurement, correction and heat flux balancing on Wendelstein 7-X
Lazerson, Samuel A.; Otte, Matthias; Jakubowski, Marcin; ...
2017-03-10
The measurement and correction of error fields in Wendelstein 7-X (W7-X) is critical to long pulse high beta operation, as small error fields may cause overloading of divertor plates in some configurations. Accordingly, as part of a broad collaborative effort, the detection and correction of error fields on the W7-X experiment has been performed using the trim coil system in conjunction with the flux surface mapping diagnostic and high resolution infrared camera. In the early commissioning phase of the experiment, the trim coils were used to open an n/m = 1/2 island chain in a specially designed magnetic configuration. Themore » flux surfacing mapping diagnostic was then able to directly image the magnetic topology of the experiment, allowing the inference of a small similar to 4 cm intrinsic island chain. The suspected main sources of the error field, slight misalignment and deformations of the superconducting coils, are then confirmed through experimental modeling using the detailed measurements of the coil positions. Observations of the limiters temperatures in module 5 shows a clear dependence of the limiter heat flux pattern as the perturbing fields are rotated. Plasma experiments without applied correcting fields show a significant asymmetry in neutral pressure (centered in module 4) and light emission (visible, H-alpha, CII, and CIII). Such pressure asymmetry is associated with plasma-wall (limiter) interaction asymmetries between the modules. Application of trim coil fields with n = 1 waveform correct the imbalance. Confirmation of the error fields allows the assessment of magnetic fields which resonate with the n/m = 5/5 island chain.« less
Coding for reliable satellite communications
NASA Technical Reports Server (NTRS)
Gaarder, N. T.; Lin, S.
1986-01-01
This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks.
Design and scheduling for periodic concurrent error detection and recovery in processor arrays
NASA Technical Reports Server (NTRS)
Wang, Yi-Min; Chung, Pi-Yu; Fuchs, W. Kent
1992-01-01
Periodic application of time-redundant error checking provides the trade-off between error detection latency and performance degradation. The goal is to achieve high error coverage while satisfying performance requirements. We derive the optimal scheduling of checking patterns in order to uniformly distribute the available checking capability and maximize the error coverage. Synchronous buffering designs using data forwarding and dynamic reconfiguration are described. Efficient single-cycle diagnosis is implemented by error pattern analysis and direct-mapped recovery cache. A rollback recovery scheme using start-up control for local recovery is also presented.
NASA Astrophysics Data System (ADS)
Welcome, Menizibeya O.; Dane, Şenol; Mastorakis, Nikos E.; Pereverzev, Vladimir A.
2017-12-01
The term "metaplasticity" is a recent one, which means plasticity of synaptic plasticity. Correspondingly, neurometaplasticity simply means plasticity of neuroplasticity, indicating that a previous plastic event determines the current plasticity of neurons. Emerging studies suggest that neurometaplasticity underlie many neural activities and neurobehavioral disorders. In our previous work, we indicated that glucoallostasis is essential for the control of plasticity of the neural network that control error commission, detection and correction. Here we review recent works, which suggest that task precision depends on the modulatory effects of neuroplasticity on the neural networks of error commission, detection, and correction. Furthermore, we discuss neurometaplasticity and its role in error commission, detection, and correction.
Behera, B; Mathur, P; Gupta, B
2010-01-01
The purpose of this study was to ascertain if the simple practice of Gram stain, acridine orange stain and direct sensitivity determination of positive blood culture bottles could be used to guide early and appropriate treatment in trauma patients with clinical suspicion of sepsis. The study also aimed to evaluate the error in interpreting antimicrobial sensitivity by direct method when compared to standard method and find out if specific antibiotic-organism combination had more discrepancies. Findings from consecutive episodes of blood stream infection at an Apex Trauma centre over a 12-month period are summarized. A total of 509 consecutive positive blood cultures were subjected to Gram staining. AO staining was done in BacT/ALERT-positive Gram-stain negative blood cultures. Direct sensitivity was performed from 369 blood culture broths, showing single type of growth in Gram and acridine orange staining. Results of direct sensitivity were compared to conventional sensitivity for errors. No 'very major' discrepancy was found in this study. About 5.2 and 1.8% minor error rates were noted in gram-positive and gram-negative bacteria, respectively, while comparing the two methods. Most of the discrepancies in gram-negative bacteria were noted in beta lactam - beta lactamase inhibitor combinations. Direct sensitivity testing was not reliable for reporting of methicillin and vancomycin resistance in Staphylococci. Gram stain result together with direct sensitivity testing is required for optimizing initial antimicrobial therapy in trauma patients with clinical suspicion of sepsis. Gram staining and AO staining proved particularly helpful in the early detection of candidaemia.
On-orbit observations of single event upset in Harris HM-6508 1K RAMs, reissue A
NASA Astrophysics Data System (ADS)
Blake, J. B.; Mandel, R.
1987-02-01
The Harris HM-6508 1K x 1 RAMs are part of a subsystem of a satellite in a low, polar orbit. The memory module, used in the subsystem containing the RAMs, consists of three printed circuit cards, with each card containing eight 2K byte memory hybrids, for a total of 48K bytes. Each memory hybrid contains 16 HM-6508 RAM chips. On a regular basis all but 256 bytes of the 48K bytes are examined for bit errors. Two different techniques were used for detecting bit errors. The first technique, a memory check sum, was capable of automatically detecting all single bit and some double bit errors which occurred within a page of memory. A memory page consists of 256 bytes. Memory check sum tests are performed approximately every 90 minutes. To detect a multiple error or to determine the exact location of the bit error within the page the entire contents of the memory is dumped and compared to the load file. Memory dumps are normally performed once a month, or immediately after the check sum routine detects an error. Once the exact location of the error is found, the correct value is reloaded into memory. After the memory is reloaded, the contents of the memory location in question is verified in order to determine if the error was a soft error generated by an SEU or a hard error generated by a part failure or cosmic-ray induced latchup.
Astigmatism and early academic readiness in preschool children.
Orlansky, Gale; Wilmer, Jeremy; Taub, Marc B; Rutner, Daniella; Ciner, Elise; Gryczynski, Jan
2015-03-01
This study investigated the relationship between uncorrected astigmatism and early academic readiness in at-risk preschool-aged children. A vision screening and academic records review were performed on 122 three- to five-year-old children enrolled in the Philadelphia Head Start program. Vision screening results were related to two measures of early academic readiness, the teacher-reported Work Sampling System (WSS) and the parent-reported Ages and Stages Questionnaire (ASQ). Both measures assess multiple developmental and skill domains thought to be related to academic readiness. Children with astigmatism (defined as >|-0.25| in either eye) were compared with children who had no astigmatism. Associations between astigmatism and specific subscales of the WSS and ASQ were examined using parametric and nonparametric bivariate statistics and regression analyses controlling for age and spherical refractive error. Presence of astigmatism was negatively associated with multiple domains of academic readiness. Children with astigmatism had significantly lower mean scores on Personal and Social Development, Language and Literacy, and Physical Development domains of the WSS, and on Personal/Social, Communication, and Fine Motor domains of the ASQ. These differences between children with astigmatism and children with no astigmatism persisted after statistically adjusting for age and magnitude of spherical refractive error. Nonparametric tests corroborated these findings for the Language and Literacy and Physical Health and Development domains of the WSS and the Communication domain of the ASQ. The presence of astigmatism detected in a screening setting was associated with a pattern of reduced academic readiness in multiple developmental and educational domains among at-risk preschool-aged children. This study may help to establish the role of early vision screenings, comprehensive vision examinations, and the need for refractive correction to improve academic success in preschool children.
Comparison of two algorithms in the automatic segmentation of blood vessels in fundus images
NASA Astrophysics Data System (ADS)
LeAnder, Robert; Chowdary, Myneni Sushma; Mokkapati, Swapnasri; Umbaugh, Scott E.
2008-03-01
Effective timing and treatment are critical to saving the sight of patients with diabetes. Lack of screening, as well as a shortage of ophthalmologists, help contribute to approximately 8,000 cases per year of people who lose their sight to diabetic retinopathy, the leading cause of new cases of blindness [1] [2]. Timely treatment for diabetic retinopathy prevents severe vision loss in over 50% of eyes tested [1]. Fundus images can provide information for detecting and monitoring eye-related diseases, like diabetic retinopathy, which if detected early, may help prevent vision loss. Damaged blood vessels can indicate the presence of diabetic retinopathy [9]. So, early detection of damaged vessels in retinal images can provide valuable information about the presence of disease, thereby helping to prevent vision loss. Purpose: The purpose of this study was to compare the effectiveness of two blood vessel segmentation algorithms. Methods: Fifteen fundus images from the STARE database were used to develop two algorithms using the CVIPtools software environment. Another set of fifteen images were derived from the first fifteen and contained ophthalmologists' hand-drawn tracings over the retinal vessels. The ophthalmologists' tracings were used as the "gold standard" for perfect segmentation and compared with the segmented images that were output by the two algorithms. Comparisons between the segmented and the hand-drawn images were made using Pratt's Figure of Merit (FOM), Signal-to-Noise Ratio (SNR) and Root Mean Square (RMS) Error. Results: Algorithm 2 has an FOM that is 10% higher than Algorithm 1. Algorithm 2 has a 6%-higher SNR than Algorithm 1. Algorithm 2 has only 1.3% more RMS error than Algorithm 1. Conclusions: Algorithm 1 extracted most of the blood vessels with some missing intersections and bifurcations. Algorithm 2 extracted all the major blood vessels, but eradicated some vessels as well. Algorithm 2 outperformed Algorithm 1 in terms of visual clarity, FOM and SNR. The performances of these algorithms show that they have an appreciable amount of potential in helping ophthalmologists detect the severity of eye-related diseases and prevent vision loss.
Relationship auditing of the FMA ontology
Gu, Huanying (Helen); Wei, Duo; Mejino, Jose L.V.; Elhanan, Gai
2010-01-01
The Foundational Model of Anatomy (FMA) ontology is a domain reference ontology based on a disciplined modeling approach. Due to its large size, semantic complexity and manual data entry process, errors and inconsistencies are unavoidable and might remain within the FMA structure without detection. In this paper, we present computable methods to highlight candidate concepts for various relationship assignment errors. The process starts with locating structures formed by transitive structural relationships (part_of, tributary_of, branch_of) and examine their assignments in the context of the IS-A hierarchy. The algorithms were designed to detect five major categories of possible incorrect relationship assignments: circular, mutually exclusive, redundant, inconsistent, and missed entries. A domain expert reviewed samples of these presumptive errors to confirm the findings. Seven thousand and fifty-two presumptive errors were detected, the largest proportion related to part_of relationship assignments. The results highlight the fact that errors are unavoidable in complex ontologies and that well designed algorithms can help domain experts to focus on concepts with high likelihood of errors and maximize their effort to ensure consistency and reliability. In the future similar methods might be integrated with data entry processes to offer real-time error detection. PMID:19475727
Integrated Sachs-Wolfe map reconstruction in the presence of systematic errors
NASA Astrophysics Data System (ADS)
Weaverdyck, Noah; Muir, Jessica; Huterer, Dragan
2018-02-01
The decay of gravitational potentials in the presence of dark energy leads to an additional, late-time contribution to anisotropies in the cosmic microwave background (CMB) at large angular scales. The imprint of this so-called integrated Sachs-Wolfe (ISW) effect to the CMB angular power spectrum has been detected and studied in detail, but reconstructing its spatial contributions to the CMB map, which would offer the tantalizing possibility of separating the early- from the late-time contributions to CMB temperature fluctuations, is more challenging. Here, we study the technique for reconstructing the ISW map based on information from galaxy surveys and focus in particular on how its accuracy is impacted by the presence of photometric calibration errors in input galaxy maps, which were previously found to be a dominant contaminant for ISW signal estimation. We find that both including tomographic information from a single survey and using data from multiple, complementary galaxy surveys improve the reconstruction by mitigating the impact of spurious power contributions from calibration errors. A high-fidelity reconstruction further requires one to account for the contribution of calibration errors to the observed galaxy power spectrum in the model used to construct the ISW estimator. We find that if the photometric calibration errors in galaxy surveys can be independently controlled at the level required to obtain unbiased dark energy constraints, then it is possible to reconstruct ISW maps with excellent accuracy using a combination of maps from two galaxy surveys with properties similar to Euclid and SPHEREx.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hsin-Chen; Tan, Jun; Dolly, Steven
2015-02-15
Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy basedmore » on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets were separately employed to test the effectiveness of the proposed contouring error detection strategy. Results: An evaluation tool was implemented to illustrate how the proposed strategy automatically detects the radiation therapy contouring errors for a given patient and provides 3D graphical visualization of error detection results as well. The contouring error detection results were achieved with an average sensitivity of 0.954/0.906 and an average specificity of 0.901/0.909 on the centroid/volume related contouring errors of all the tested samples. As for the detection results on structural shape related contouring errors, an average sensitivity of 0.816 and an average specificity of 0.94 on all the tested samples were obtained. The promising results indicated the feasibility of the proposed strategy for the detection of contouring errors with low false detection rate. Conclusions: The proposed strategy can reliably identify contouring errors based upon inter- and intrastructural constraints derived from clinically approved contours. It holds great potential for improving the radiation therapy workflow. ROC and box plot analyses allow for analytically tuning of the system parameters to satisfy clinical requirements. Future work will focus on the improvement of strategy reliability by utilizing more training sets and additional geometric attribute constraints.« less
Comparison of direct and heterodyne detection optical intersatellite communication links
NASA Technical Reports Server (NTRS)
Chen, C. C.; Gardner, C. S.
1987-01-01
The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2016-06-15
Radiation treatment consists of a chain of events influenced by the quality of machine operation, beam data commissioning, machine calibration, patient specific data, simulation, treatment planning, imaging and treatment delivery. There is always a chance that the clinical medical physicist may make or fail to detect an error in one of the events that may impact on the patient’s treatment. In the clinical scenario, errors may be systematic and, without peer review, may have a low detectability because they are not part of routine QA procedures. During treatment, there might be errors on machine that needs attention. External reviews ofmore » some of the treatment delivery components by independent reviewers, like IROC, can detect errors, but may not be timely. The goal of this session is to help junior clinical physicists identify potential errors as well as the approach of quality assurance to perform a root cause analysis to find and eliminate an error and to continually monitor for errors. A compilation of potential errors will be presented by examples of the thought process required to spot the error and determine the root cause. Examples may include unusual machine operation, erratic electrometer reading, consistent lower electron output, variation in photon output, body parts inadvertently left in beam, unusual treatment plan, poor normalization, hot spots etc. Awareness of the possibility and detection of error in any link of the treatment process chain will help improve the safe and accurate delivery of radiation to patients. Four experts will discuss how to identify errors in four areas of clinical treatment. D. Followill, NIH grant CA 180803.« less
TH-B-BRC-01: How to Identify and Resolve Potential Clinical Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, I.
2016-06-15
Radiation treatment consists of a chain of events influenced by the quality of machine operation, beam data commissioning, machine calibration, patient specific data, simulation, treatment planning, imaging and treatment delivery. There is always a chance that the clinical medical physicist may make or fail to detect an error in one of the events that may impact on the patient’s treatment. In the clinical scenario, errors may be systematic and, without peer review, may have a low detectability because they are not part of routine QA procedures. During treatment, there might be errors on machine that needs attention. External reviews ofmore » some of the treatment delivery components by independent reviewers, like IROC, can detect errors, but may not be timely. The goal of this session is to help junior clinical physicists identify potential errors as well as the approach of quality assurance to perform a root cause analysis to find and eliminate an error and to continually monitor for errors. A compilation of potential errors will be presented by examples of the thought process required to spot the error and determine the root cause. Examples may include unusual machine operation, erratic electrometer reading, consistent lower electron output, variation in photon output, body parts inadvertently left in beam, unusual treatment plan, poor normalization, hot spots etc. Awareness of the possibility and detection of error in any link of the treatment process chain will help improve the safe and accurate delivery of radiation to patients. Four experts will discuss how to identify errors in four areas of clinical treatment. D. Followill, NIH grant CA 180803.« less
Automatic detection and decoding of honey bee waggle dances
Wild, Benjamin; Rojas, Raúl; Landgraf, Tim
2017-01-01
The waggle dance is one of the most popular examples of animal communication. Forager bees direct their nestmates to profitable resources via a complex motor display. Essentially, the dance encodes the polar coordinates to the resource in the field. Unemployed foragers follow the dancer’s movements and then search for the advertised spots in the field. Throughout the last decades, biologists have employed different techniques to measure key characteristics of the waggle dance and decode the information it conveys. Early techniques involved the use of protractors and stopwatches to measure the dance orientation and duration directly from the observation hive. Recent approaches employ digital video recordings and manual measurements on screen. However, manual approaches are very time-consuming. Most studies, therefore, regard only small numbers of animals in short periods of time. We have developed a system capable of automatically detecting, decoding and mapping communication dances in real-time. In this paper, we describe our recording setup, the image processing steps performed for dance detection and decoding and an algorithm to map dances to the field. The proposed system performs with a detection accuracy of 90.07%. The decoded waggle orientation has an average error of -2.92° (± 7.37°), well within the range of human error. To evaluate and exemplify the system’s performance, a group of bees was trained to an artificial feeder, and all dances in the colony were automatically detected, decoded and mapped. The system presented here is the first of this kind made publicly available, including source code and hardware specifications. We hope this will foster quantitative analyses of the honey bee waggle dance. PMID:29236712
Detecting and correcting hard errors in a memory array
Kalamatianos, John; John, Johnsy Kanjirapallil; Gelinas, Robert; Sridharan, Vilas K.; Nevius, Phillip E.
2015-11-19
Hard errors in the memory array can be detected and corrected in real-time using reusable entries in an error status buffer. Data may be rewritten to a portion of a memory array and a register in response to a first error in data read from the portion of the memory array. The rewritten data may then be written from the register to an entry of an error status buffer in response to the rewritten data read from the register differing from the rewritten data read from the portion of the memory array.
The use of self checks and voting in software error detection - An empirical study
NASA Technical Reports Server (NTRS)
Leveson, Nancy G.; Cha, Stephen S.; Knight, John C.; Shimeall, Timothy J.
1990-01-01
The results of an empirical study of software error detection using self checks and N-version voting are presented. Working independently, each of 24 programmers first prepared a set of self checks using just the requirements specification of an aerospace application, and then each added self checks to an existing implementation of that specification. The modified programs were executed to measure the error-detection performance of the checks and to compare this with error detection using simple voting among multiple versions. The analysis of the checks revealed that there are great differences in the ability of individual programmers to design effective checks. It was found that some checks that might have been effective failed to detect an error because they were badly placed, and there were numerous instances of checks signaling nonexistent errors. In general, specification-based checks alone were not as effective as specification-based checks combined with code-based checks. Self checks made it possible to identify faults that had not been detected previously by voting 28 versions of the program over a million randomly generated inputs. This appeared to result from the fact that the self checks could examine the internal state of the executing program, whereas voting examines only final results of computations. If internal states had to be identical in N-version voting systems, then there would be no reason to write multiple versions.
Hakkarainen, Elina; Pirilä, Silja; Kaartinen, Jukka; van der Meere, Jaap J
2013-06-01
This study evaluated the brain activation state during error making in youth with mild spastic cerebral palsy and a peer control group while carrying out a stimulus recognition task. The key question was whether patients were detecting their own errors and subsequently improving their performance in a future trial. Findings indicated that error responses of the group with cerebral palsy were associated with weak motor preparation, as indexed by the amplitude of the late contingent negative variation. However, patients were detecting their errors as indexed by the amplitude of the response-locked negativity and thus improved their performance in a future trial. Findings suggest that the consequence of error making on future performance is intact in a sample of youth with mild spastic cerebral palsy. Because the study group is small, the present findings need replication using a larger sample.
Cotter, Christopher; Turcotte, Julie Catherine; Crawford, Bruce; Sharp, Gregory; Mah'D, Mufeed
2015-01-01
This work aims at three goals: first, to define a set of statistical parameters and plan structures for a 3D pretreatment thoracic and prostate intensity‐modulated radiation therapy (IMRT) quality assurance (QA) protocol; secondly, to test if the 3D QA protocol is able to detect certain clinical errors; and third, to compare the 3D QA method with QA performed with single ion chamber and 2D gamma test in detecting those errors. The 3D QA protocol measurements were performed on 13 prostate and 25 thoracic IMRT patients using IBA's COMPASS system. For each treatment planning structure included in the protocol, the following statistical parameters were evaluated: average absolute dose difference (AADD), percent structure volume with absolute dose difference greater than 6% (ADD6), and 3D gamma test. To test the 3D QA protocol error sensitivity, two prostate and two thoracic step‐and‐shoot IMRT patients were investigated. Errors introduced to each of the treatment plans included energy switched from 6 MV to 10 MV, multileaf collimator (MLC) leaf errors, linac jaws errors, monitor unit (MU) errors, MLC and gantry angle errors, and detector shift errors. QA was performed on each plan using a single ion chamber and 2D array of ion chambers for 2D and 3D QA. Based on the measurements performed, we established a uniform set of tolerance levels to determine if QA passes for each IMRT treatment plan structure: maximum allowed AADD is 6%; maximum 4% of any structure volume can be with ADD6 greater than 6%, and maximum 4% of any structure volume may fail 3D gamma test with test parameters 3%/3 mm DTA. Out of the three QA methods tested the single ion chamber performed the worst by detecting 4 out of 18 introduced errors, 2D QA detected 11 out of 18 errors, and 3D QA detected 14 out of 18 errors. PACS number: 87.56.Fc PMID:26699299
Coherent detection of position errors in inter-satellite laser communications
NASA Astrophysics Data System (ADS)
Xu, Nan; Liu, Liren; Liu, De'an; Sun, Jianfeng; Luan, Zhu
2007-09-01
Due to the improved receiver sensitivity and wavelength selectivity, coherent detection became an attractive alternative to direct detection in inter-satellite laser communications. A novel method to coherent detection of position errors information is proposed. Coherent communication system generally consists of receive telescope, local oscillator, optical hybrid, photoelectric detector and optical phase lock loop (OPLL). Based on the system composing, this method adds CCD and computer as position error detector. CCD captures interference pattern while detection of transmission data from the transmitter laser. After processed and analyzed by computer, target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signal of PAT subsystem drive the receiver telescope to keep tracking to the target. Theoretical deviation and analysis is presented. The application extends to coherent laser rang finder, in which object distance and position information can be obtained simultaneously.
ERIC Educational Resources Information Center
Pankow, Lena; Kaiser, Gabriele; Busse, Andreas; König, Johannes; Blömeke, Sigrid; Hoth, Jessica; Döhrmann, Martina
2016-01-01
The paper presents results from a computer-based assessment in which 171 early career mathematics teachers from Germany were asked to anticipate typical student errors on a given mathematical topic and identify them under time constraints. Fast and accurate perception and knowledge-based judgments are widely accepted characteristics of teacher…
NASA Astrophysics Data System (ADS)
Zhang, Wenzeng; Chen, Nian; Wang, Bin; Cao, Yipeng
2005-01-01
Rocket engine is a hard-core part of aerospace transportation and thrusting system, whose research and development is very important in national defense, aviation and aerospace. A novel vision sensor is developed, which can be used for error detecting in arc length control and seam tracking in precise pulse TIG welding of the extending part of the rocket engine jet tube. The vision sensor has many advantages, such as imaging with high quality, compactness and multiple functions. The optics design, mechanism design and circuit design of the vision sensor have been described in detail. Utilizing the mirror imaging of Tungsten electrode in the weld pool, a novel method is proposed to detect the arc length and seam tracking error of Tungsten electrode to the center line of joint seam from a single weld image. A calculating model of the method is proposed according to the relation of the Tungsten electrode, weld pool, the mirror of Tungsten electrode in weld pool and joint seam. The new methodologies are given to detect the arc length and seam tracking error. Through analyzing the results of the experiments, a system error modifying method based on a linear function is developed to improve the detecting precise of arc length and seam tracking error. Experimental results show that the final precision of the system reaches 0.1 mm in detecting the arc length and the seam tracking error of Tungsten electrode to the center line of joint seam.
Is there any electrophysiological evidence for subliminal error processing?
Shalgi, Shani; Deouell, Leon Y.
2013-01-01
The role of error awareness in executive control and modification of behavior is not fully understood. In line with many recent studies showing that conscious awareness is unnecessary for numerous high-level processes such as strategic adjustments and decision making, it was suggested that error detection can also take place unconsciously. The Error Negativity (Ne) component, long established as a robust error-related component that differentiates between correct responses and errors, was a fine candidate to test this notion: if an Ne is elicited also by errors which are not consciously detected, it would imply a subliminal process involved in error monitoring that does not necessarily lead to conscious awareness of the error. Indeed, for the past decade, the repeated finding of a similar Ne for errors which became aware and errors that did not achieve awareness, compared to the smaller negativity elicited by correct responses (Correct Response Negativity; CRN), has lent the Ne the prestigious status of an index of subliminal error processing. However, there were several notable exceptions to these findings. The study in the focus of this review (Shalgi and Deouell, 2012) sheds new light on both types of previous results. We found that error detection as reflected by the Ne is correlated with subjective awareness: when awareness (or more importantly lack thereof) is more strictly determined using the wagering paradigm, no Ne is elicited without awareness. This result effectively resolves the issue of why there are many conflicting findings regarding the Ne and error awareness. The average Ne amplitude appears to be influenced by individual criteria for error reporting and therefore, studies containing different mixtures of participants who are more confident of their own performance or less confident, or paradigms that either encourage or don't encourage reporting low confidence errors will show different results. Based on this evidence, it is no longer possible to unquestioningly uphold the notion that the amplitude of the Ne is unrelated to subjective awareness, and therefore, that errors are detected without conscious awareness. PMID:24009548
Magnetic-field sensing with quantum error detection under the effect of energy relaxation
NASA Astrophysics Data System (ADS)
Matsuzaki, Yuichiro; Benjamin, Simon
2017-03-01
A solid state spin is an attractive system with which to realize an ultrasensitive magnetic field sensor. A spin superposition state will acquire a phase induced by the target field, and we can estimate the field strength from this phase. Recent studies have aimed at improving sensitivity through the use of quantum error correction (QEC) to detect and correct any bit-flip errors that may occur during the sensing period. Here we investigate the performance of a two-qubit sensor employing QEC and under the effect of energy relaxation. Surprisingly, we find that the standard QEC technique to detect and recover from an error does not improve the sensitivity compared with the single-qubit sensors. This is a consequence of the fact that the energy relaxation induces both a phase-flip and a bit-flip noise where the former noise cannot be distinguished from the relative phase induced from the target fields. However, we have found that we can improve the sensitivity if we adopt postselection to discard the state when error is detected. Even when quantum error detection is moderately noisy, and allowing for the cost of the postselection technique, we find that this two-qubit system shows an advantage in sensing over a single qubit in the same conditions.
Behrens, T; Bonberg, N; Casjens, S; Pesch, B; Brüning, T
2014-01-01
Technical advances to analyze biological markers have generated a plethora of promising new marker candidates for early detection of cancer. However, in subsequent analyses only few could be successfully validated as being predictive, clinically useful, or effective. This failure is partially due to rapid publication of results that were detected in early stages of biomarker research. Methodological considerations are a major concern when carrying out molecular epidemiological studies of diagnostic markers to avoid errors that increase the potential for bias. Although guidelines for conducting studies and reporting of results have been published to improve the quality of marker studies, their planning and execution still need to be improved. We will discuss different sources of bias in study design, handling of specimens, and statistical analysis to illustrate possible pitfalls associated with marker research, and present legal, ethical, and technical considerations associated with storage and handling of specimens. This article presents a guide to epidemiological standards in marker research using bladder cancer as an example. Because of the possibility to detect early cancer stages due to leakage of molecular markers from the target organ or exfoliation of tumor cells into the urine, bladder cancer is particularly useful to study diagnostic markers. To improve the overall quality of marker research, future developments should focus on networks of studies and tissue banks according to uniform legal, ethical, methodological, and technical standards. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. © 2013.
Caffeine enhances real-world language processing: evidence from a proofreading task.
Brunyé, Tad T; Mahoney, Caroline R; Rapp, David N; Ditman, Tali; Taylor, Holly A
2012-03-01
Caffeine has become the most prevalently consumed psychostimulant in the world, but its influences on daily real-world functioning are relatively unknown. The present work investigated the effects of caffeine (0 mg, 100 mg, 200 mg, 400 mg) on a commonplace language task that required readers to identify and correct 4 error types in extended discourse: simple local errors (misspelling 1- to 2-syllable words), complex local errors (misspelling 3- to 5-syllable words), simple global errors (incorrect homophones), and complex global errors (incorrect subject-verb agreement and verb tense). In 2 placebo-controlled, double-blind studies using repeated-measures designs, we found higher detection and repair rates for complex global errors, asymptoting at 200 mg in low consumers (Experiment 1) and peaking at 400 mg in high consumers (Experiment 2). In both cases, covariate analyses demonstrated that arousal state mediated the relationship between caffeine consumption and the detection and repair of complex global errors. Detection and repair rates for the other 3 error types were not affected by caffeine consumption. Taken together, we demonstrate that caffeine has differential effects on error detection and repair as a function of dose and error type, and this relationship is closely tied to caffeine's effects on subjective arousal state. These results support the notion that central nervous system stimulants may enhance global processing of language-based materials and suggest that such effects may originate in caffeine-related right hemisphere brain processes. Implications for understanding the relationships between caffeine consumption and real-world cognitive functioning are discussed. PsycINFO Database Record (c) 2012 APA, all rights reserved.
On the sensitivity of TG-119 and IROC credentialing to TPS commissioning errors.
McVicker, Drew; Yin, Fang-Fang; Adamson, Justus D
2016-01-08
We investigate the sensitivity of IMRT commissioning using the TG-119 C-shape phantom and credentialing with the IROC head and neck phantom to treatment planning system commissioning errors. We introduced errors into the various aspects of the commissioning process for a 6X photon energy modeled using the analytical anisotropic algorithm within a commercial treatment planning system. Errors were implemented into the various components of the dose calculation algorithm including primary photons, secondary photons, electron contamination, and MLC parameters. For each error we evaluated the probability that it could be committed unknowingly during the dose algorithm commissioning stage, and the probability of it being identified during the verification stage. The clinical impact of each commissioning error was evaluated using representative IMRT plans including low and intermediate risk prostate, head and neck, mesothelioma, and scalp; the sensitivity of the TG-119 and IROC phantoms was evaluated by comparing dosimetric changes to the dose planes where film measurements occur and change in point doses where dosimeter measurements occur. No commissioning errors were found to have both a low probability of detection and high clinical severity. When errors do occur, the IROC credentialing and TG 119 commissioning criteria are generally effective at detecting them; however, for the IROC phantom, OAR point-dose measurements are the most sensitive despite being currently excluded from IROC analysis. Point-dose measurements with an absolute dose constraint were the most effective at detecting errors, while film analysis using a gamma comparison and the IROC film distance to agreement criteria were less effective at detecting the specific commissioning errors implemented here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jing, E-mail: jing.zhang2@duke.edu; Ghate, Sujata V.; Yoon, Sora C.
Purpose: Mammography is the most widely accepted and utilized screening modality for early breast cancer detection. Providing high quality mammography education to radiology trainees is essential, since excellent interpretation skills are needed to ensure the highest benefit of screening mammography for patients. The authors have previously proposed a computer-aided education system based on trainee models. Those models relate human-assessed image characteristics to trainee error. In this study, the authors propose to build trainee models that utilize features automatically extracted from images using computer vision algorithms to predict likelihood of missing each mass by the trainee. This computer vision-based approach tomore » trainee modeling will allow for automatically searching large databases of mammograms in order to identify challenging cases for each trainee. Methods: The authors’ algorithm for predicting the likelihood of missing a mass consists of three steps. First, a mammogram is segmented into air, pectoral muscle, fatty tissue, dense tissue, and mass using automated segmentation algorithms. Second, 43 features are extracted using computer vision algorithms for each abnormality identified by experts. Third, error-making models (classifiers) are applied to predict the likelihood of trainees missing the abnormality based on the extracted features. The models are developed individually for each trainee using his/her previous reading data. The authors evaluated the predictive performance of the proposed algorithm using data from a reader study in which 10 subjects (7 residents and 3 novices) and 3 experts read 100 mammographic cases. Receiver operating characteristic (ROC) methodology was applied for the evaluation. Results: The average area under the ROC curve (AUC) of the error-making models for the task of predicting which masses will be detected and which will be missed was 0.607 (95% CI,0.564-0.650). This value was statistically significantly different from 0.5 (p < 0.0001). For the 7 residents only, the AUC performance of the models was 0.590 (95% CI,0.537-0.642) and was also significantly higher than 0.5 (p = 0.0009). Therefore, generally the authors’ models were able to predict which masses were detected and which were missed better than chance. Conclusions: The authors proposed an algorithm that was able to predict which masses will be detected and which will be missed by each individual trainee. This confirms existence of error-making patterns in the detection of masses among radiology trainees. Furthermore, the proposed methodology will allow for the optimized selection of difficult cases for the trainees in an automatic and efficient manner.« less
Impulsivity modulates performance under response uncertainty in a reaching task.
Tzagarakis, C; Pellizzer, G; Rogers, R D
2013-03-01
We sought to explore the interaction of the impulsivity trait with response uncertainty. To this end, we used a reaching task (Pellizzer and Hedges in Exp Brain Res 150:276-289, 2003) where a motor response direction was cued at different levels of uncertainty (1 cue, i.e., no uncertainty, 2 cues or 3 cues). Data from 95 healthy adults (54 F, 41 M) were analysed. Impulsivity was measured using the Barratt Impulsiveness Scale version 11 (BIS-11). Behavioral variables recorded were reaction time (RT), errors of commission (referred to as 'early errors') and errors of precision. Data analysis employed generalised linear mixed models and generalised additive mixed models. For the early errors, there was an interaction of impulsivity with uncertainty and gender, with increased errors for high impulsivity in the one-cue condition for women and the three-cue condition for men. There was no effect of impulsivity on precision errors or RT. However, the analysis of the effect of RT and impulsivity on precision errors showed a different pattern for high versus low impulsives in the high uncertainty (3 cue) condition. In addition, there was a significant early error speed-accuracy trade-off for women, primarily in low uncertainty and a 'reverse' speed-accuracy trade-off for men in high uncertainty. These results extend those of past studies of impulsivity which help define it as a behavioural trait that modulates speed versus accuracy response styles depending on environmental constraints and highlight once more the importance of gender in the interplay of personality and behaviour.
Efficient detection of dangling pointer error for C/C++ programs
NASA Astrophysics Data System (ADS)
Zhang, Wenzhe
2017-08-01
Dangling pointer error is pervasive in C/C++ programs and it is very hard to detect. This paper introduces an efficient detector to detect dangling pointer error in C/C++ programs. By selectively leave some memory accesses unmonitored, our method could reduce the memory monitoring overhead and thus achieves better performance over previous methods. Experiments show that our method could achieve an average speed up of 9% over previous compiler instrumentation based method and more than 50% over previous page protection based method.
Method and apparatus for detecting timing errors in a system oscillator
Gliebe, Ronald J.; Kramer, William R.
1993-01-01
A method of detecting timing errors in a system oscillator for an electronic device, such as a power supply, includes the step of comparing a system oscillator signal with a delayed generated signal and generating a signal representative of the timing error when the system oscillator signal is not identical to the delayed signal. An LED indicates to an operator that a timing error has occurred. A hardware circuit implements the above-identified method.
Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros
2013-01-01
Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors. PMID:24688709
Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros
2013-01-01
Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors.
Detecting genotyping errors and describing black bear movement in northern Idaho
Michael K. Schwartz; Samuel A. Cushman; Kevin S. McKelvey; Jim Hayden; Cory Engkjer
2006-01-01
Non-invasive genetic sampling has become a favored tool to enumerate wildlife. Genetic errors, caused by poor quality samples, can lead to substantial biases in numerical estimates of individuals. We demonstrate how the computer program DROPOUT can detect amplification errors (false alleles and allelic dropout) in a black bear (Ursus americanus) dataset collected in...
SU-C-BRD-03: Analysis of Accelerator Generated Text Logs for Preemptive Maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, CM; Baydush, AH; Nguyen, C
2014-06-15
Purpose: To develop a model to analyze medical accelerator generated parameter and performance data that will provide an early warning of performance degradation and impending component failure. Methods: A robust 6 MV VMAT quality assurance treatment delivery was used to test the constancy of accelerator performance. The generated text log files were decoded and analyzed using statistical process control (SPC) methodology. The text file data is a single snapshot of energy specific and overall systems parameters. A total of 36 system parameters were monitored which include RF generation, electron gun control, energy control, beam uniformity control, DC voltage generation, andmore » cooling systems. The parameters were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and the parameter/system specification. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: the value of 1 standard deviation from the mean operating parameter of 483 TB systems, a small fraction (≤ 5%) of the operating range, or a fraction of the minor fault deviation. Results: There were 34 parameters in which synthetic errors were introduced. There were 2 parameters (radial position steering coil, and positive 24V DC) in which the errors did not exceed the limit of the I/MR chart. The I chart limit was exceeded for all of the remaining parameters (94.2%). The MR chart limit was exceeded in 29 of the 32 parameters (85.3%) in which the I chart limit was exceeded. Conclusion: Statistical process control I/MR evaluation of text log file parameters may be effective in providing an early warning of performance degradation or component failure for digital medical accelerator systems. Research is Supported by Varian Medical Systems, Inc.« less
MO-FG-202-06: Improving the Performance of Gamma Analysis QA with Radiomics- Based Image Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, L; Nyflot, M; Ford, E
2016-06-15
Purpose: The use of gamma analysis for IMRT quality assurance has well-known limitations. Traditionally, a simple thresholding technique is used to evaluated passing criteria. However, like any image the gamma distribution is rich in information which thresholding mostly discards. We therefore propose a novel method of analyzing gamma images that uses quantitative image features borrowed from radiomics, with the goal of improving error detection. Methods: 368 gamma images were generated from 184 clinical IMRT beams. For each beam the dose to a phantom was measured with EPID dosimetry and compared to the TPS dose calculated with and without normally distributedmore » (2mm sigma) errors in MLC positions. The magnitude of 17 intensity histogram and size-zone radiomic features were derived from each image. The features that differed most significantly between image sets were determined with ROC analysis. A linear machine-learning model was trained on these features to classify images as with or without errors on 180 gamma images.The model was then applied to an independent validation set of 188 additional gamma distributions, half with and half without errors. Results: The most significant features for detecting errors were histogram kurtosis (p=0.007) and three size-zone metrics (p<1e-6 for each). The sizezone metrics detected clusters of high gamma-value pixels under mispositioned MLCs. The model applied to the validation set had an AUC of 0.8, compared to 0.56 for traditional gamma analysis with the decision threshold restricted to 98% or less. Conclusion: A radiomics-based image analysis method was developed that is more effective in detecting error than traditional gamma analysis. Though the pilot study here considers only MLC position errors, radiomics-based methods for other error types are being developed, which may provide better error detection and useful information on the source of detected errors. This work was partially supported by a grant from the Agency for Healthcare Research and Quality, grant number R18 HS022244-01.« less
Corrections of clinical chemistry test results in a laboratory information system.
Wang, Sihe; Ho, Virginia
2004-08-01
The recently released reports by the Institute of Medicine, To Err Is Human and Patient Safety, have received national attention because of their focus on the problem of medical errors. Although a small number of studies have reported on errors in general clinical laboratories, there are, to our knowledge, no reported studies that focus on errors in pediatric clinical laboratory testing. To characterize the errors that have caused corrections to have to be made in pediatric clinical chemistry results in the laboratory information system, Misys. To provide initial data on the errors detected in pediatric clinical chemistry laboratories in order to improve patient safety in pediatric health care. All clinical chemistry staff members were informed of the study and were requested to report in writing when a correction was made in the laboratory information system, Misys. Errors were detected either by the clinicians (the results did not fit the patients' clinical conditions) or by the laboratory technologists (the results were double-checked, and the worksheets were carefully examined twice a day). No incident that was discovered before or during the final validation was included. On each Monday of the study, we generated a report from Misys that listed all of the corrections made during the previous week. We then categorized the corrections according to the types and stages of the incidents that led to the corrections. A total of 187 incidents were detected during the 10-month study, representing a 0.26% error detection rate per requisition. The distribution of the detected incidents included 31 (17%) preanalytic incidents, 46 (25%) analytic incidents, and 110 (59%) postanalytic incidents. The errors related to noninterfaced tests accounted for 50% of the total incidents and for 37% of the affected tests and orderable panels, while the noninterfaced tests and panels accounted for 17% of the total test volume in our laboratory. This pilot study provided the rate and categories of errors detected in a pediatric clinical chemistry laboratory based on the corrections of results in the laboratory information system. A direct interface of the instruments to the laboratory information system showed that it had favorable effects on reducing laboratory errors.
Increased error-related thalamic activity during early compared to late cocaine abstinence.
Li, Chiang-Shan R; Luo, Xi; Sinha, Rajita; Rounsaville, Bruce J; Carroll, Kathleen M; Malison, Robert T; Ding, Yu-Shin; Zhang, Sheng; Ide, Jaime S
2010-06-01
Altered cognitive control is implicated in the shaping of cocaine dependence. One of the key component processes of cognitive control is error monitoring. Our previous imaging work highlighted greater activity in distinct cortical and subcortical regions including the dorsal anterior cingulate cortex (dACC), thalamus and insula when participants committed an error during the stop signal task (Li et al., 2008b). Importantly, dACC, thalamic and insular activity has been associated with drug craving. One hypothesis is that the intense interoceptive activity during craving prevents these cerebral structures from adequately registering error and/or monitoring performance. Alternatively, the dACC, thalamus and insula show abnormally heightened responses to performance errors, suggesting that excessive responses to salient stimuli such as drug cues could precipitate craving. The two hypotheses would each predict decreased and increased activity during stop error (SE) as compared to stop success (SS) trials in the SST. Here we showed that cocaine dependent patients (PCD) experienced greater subjective feeling of loss of control and cocaine craving during early (average of day 6) compared to late (average of day 18) abstinence. Furthermore, compared to PCD during late abstinence, PCD scanned during early abstinence showed increased thalamic as well as insular but not dACC responses to errors (SE>SS). These findings support the hypothesis that heightened thalamic reactivity to salient stimuli co-occur with cocaine craving and loss of self control. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Discovery, Progenitor and Early Evolution of a Stripped Envelope Supernova iPTF13bvn
NASA Astrophysics Data System (ADS)
Cao, Yi; Kasliwal, Mansi M.; Arcavi, Iair; Horesh, Assaf; Hancock, Paul; Valenti, Stefano; Cenko, S. Bradley; Kulkarni, S. R.; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O.; Sand, David; Yaron, Ofer; Graham, Melissa; Silverman, Jeffrey M.; Wheeler, J. Craig; Marion, G. H.; Walker, Emma S.; Mazzali, Paolo; Howell, D. Andrew; Li, K. L.; Kong, A. K. H.; Bloom, Joshua S.; Nugent, Peter E.; Surace, Jason; Masci, Frank; Carpenter, John; Degenaar, Nathalie; Gelino, Christopher R.
2013-09-01
The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an MB luminosity of -5.52 ± 0.39 mag and a B - I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×1012 g cm-1. Assuming a wind velocity of 103 km s-1, we derive a progenitor mass-loss rate of 3 × 10-5 M ⊙ yr-1. Our observations, taken as a whole, are consistent with a Wolf-Rayet progenitor of the supernova iPTF13bvn.
Ultrahigh-resolution endoscopic optical coherence tomography
NASA Astrophysics Data System (ADS)
Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Macos; Koski, Amanda; Schmitt, Joseph M.; Fujimoto, James G.
2005-01-01
Early detection of gastrointestinal cancer is essential for the patient treatment and medical care. Endoscopically guided biopsy is currently the gold standard for the diagnosis of early esophageal cancer, but can suffer from high false negative rates due to sampling errors. Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10 - 15 m for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 m), using a portable, broadband, Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, gastro-esophageal junction and colon on animal model display tissue microstructures and architectural details at high resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using standard endoscope. OCT images of normal esophagus, Barrett's esophagus, and esophageal cancers are demonstrated with distinct features. The ability of high resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo would facilitate the development of OCT as a potential imaging modality for early detection of neoplastic changes.
European Neolithic societies showed early warning signals of population collapse.
Downey, Sean S; Haas, W Randall; Shennan, Stephen J
2016-08-30
Ecosystems on the verge of major reorganization-regime shift-may exhibit declining resilience, which can be detected using a collection of generic statistical tests known as early warning signals (EWSs). This study explores whether EWSs anticipated human population collapse during the European Neolithic. It analyzes recent reconstructions of European Neolithic (8-4 kya) population trends that reveal regime shifts from a period of rapid growth following the introduction of agriculture to a period of instability and collapse. We find statistical support for EWSs in advance of population collapse. Seven of nine regional datasets exhibit increasing autocorrelation and variance leading up to collapse, suggesting that these societies began to recover from perturbation more slowly as resilience declined. We derive EWS statistics from a prehistoric population proxy based on summed archaeological radiocarbon date probability densities. We use simulation to validate our methods and show that sampling biases, atmospheric effects, radiocarbon calibration error, and taphonomic processes are unlikely to explain the observed EWS patterns. The implications of these results for understanding the dynamics of Neolithic ecosystems are discussed, and we present a general framework for analyzing societal regime shifts using EWS at large spatial and temporal scales. We suggest that our findings are consistent with an adaptive cycling model that highlights both the vulnerability and resilience of early European populations. We close by discussing the implications of the detection of EWS in human systems for archaeology and sustainability science.
Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T
2016-02-01
The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.
Yunus, Zabedah Md; Rahman, Salina Abdul; Choy, Yew Sing; Keng, Wee Teik; Ngu, Lock Hock
2016-09-01
The aim of this study was to determine the feasibility of performing newborn screening (NBS) of inborn errors of metabolism (IEMs) using tandem mass spectrometry (TMS) and the impact on its detection rate in Malaysia. During the study period between June 2006 and December 2008, 30,247 newborns from 11 major public hospitals in Malaysia were screened for 27 inborn errors of amino acid, organic acid and fatty acid metabolism by TMS. Dried blood spot (DBS) samples were collected between 24 h and 7 days with parental consent. Samples with abnormal results were repeated and the babies were recalled to confirm the diagnosis with follow-up testing. Cut-off values for amino acids and acylcarnitines were established. Eight newborns were confirmed to have IEM: two newborns with Maple syrup urine disease (MSUD), two with methylmalonic aciduria (MMA) one with ethylmalonic aciduria, two with argininosuccinic aciduria and one with isovaleric aciduria. Diagnosis was missed in two newborns. The detection rate of IEMs in this study was one in 2916 newborns. The sensitivity and specificity of TMS were 80% and 99%, respectively. IEMs are common in Malaysia. NBS of IEMs by TMS is a valuable preventive strategy by enabling the diagnosis and early treatment of IEM before the onset of symptoms aiming at prevention of mental retardation and physical handicap. A number of shortcomings warrant further solution so that in near future NBS for IEMs will become a standard of care for all babies in Malaysia in tandem with the developed world.
SU-E-T-392: Evaluation of Ion Chamber/film and Log File Based QA to Detect Delivery Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, C; Mason, B; Kirsner, S
2015-06-15
Purpose: Ion chamber and film (ICAF) is a method used to verify patient dose prior to treatment. More recently, log file based QA has been shown as an alternative for measurement based QA. In this study, we delivered VMAT plans with and without errors to determine if ICAF and/or log file based QA was able to detect the errors. Methods: Using two VMAT patients, the original treatment plan plus 7 additional plans with delivery errors introduced were generated and delivered. The erroneous plans had gantry, collimator, MLC, gantry and collimator, collimator and MLC, MLC and gantry, and gantry, collimator, andmore » MLC errors. The gantry and collimator errors were off by 4{sup 0} for one of the two arcs. The MLC error introduced was one in which the opening aperture didn’t move throughout the delivery of the field. For each delivery, an ICAF measurement was made as well as a dose comparison based upon log files. Passing criteria to evaluate the plans were ion chamber less and 5% and film 90% of pixels pass the 3mm/3% gamma analysis(GA). For log file analysis 90% of voxels pass the 3mm/3% 3D GA and beam parameters match what was in the plan. Results: Two original plans were delivered and passed both ICAF and log file base QA. Both ICAF and log file QA met the dosimetry criteria on 4 of the 12 erroneous cases analyzed (2 cases were not analyzed). For the log file analysis, all 12 erroneous plans alerted a mismatch in delivery versus what was planned. The 8 plans that didn’t meet criteria all had MLC errors. Conclusion: Our study demonstrates that log file based pre-treatment QA was able to detect small errors that may not be detected using an ICAF and both methods of were able to detect larger delivery errors.« less
How do Community Pharmacies Recover from E-prescription Errors?
Odukoya, Olufunmilola K.; Stone, Jamie A.; Chui, Michelle A.
2014-01-01
Background The use of e-prescribing is increasing annually, with over 788 million e-prescriptions received in US pharmacies in 2012. Approximately 9% of e-prescriptions have medication errors. Objective To describe the process used by community pharmacy staff to detect, explain, and correct e-prescription errors. Methods The error recovery conceptual framework was employed for data collection and analysis. 13 pharmacists and 14 technicians from five community pharmacies in Wisconsin participated in the study. A combination of data collection methods were utilized, including direct observations, interviews, and focus groups. The transcription and content analysis of recordings were guided by the three-step error recovery model. Results Most of the e-prescription errors were detected during the entering of information into the pharmacy system. These errors were detected by both pharmacists and technicians using a variety of strategies which included: (1) performing double checks of e-prescription information; (2) printing the e-prescription to paper and confirming the information on the computer screen with information from the paper printout; and (3) using colored pens to highlight important information. Strategies used for explaining errors included: (1) careful review of patient’ medication history; (2) pharmacist consultation with patients; (3) consultation with another pharmacy team member; and (4) use of online resources. In order to correct e-prescription errors, participants made educated guesses of the prescriber’s intent or contacted the prescriber via telephone or fax. When e-prescription errors were encountered in the community pharmacies, the primary goal of participants was to get the order right for patients by verifying the prescriber’s intent. Conclusion Pharmacists and technicians play an important role in preventing e-prescription errors through the detection of errors and the verification of prescribers’ intent. Future studies are needed to examine factors that facilitate or hinder recovery from e-prescription errors. PMID:24373898
Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment
NASA Technical Reports Server (NTRS)
Prive, N. C.; Errico, Ronald M.
2015-01-01
The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.
MPI Runtime Error Detection with MUST: Advances in Deadlock Detection
Hilbrich, Tobias; Protze, Joachim; Schulz, Martin; ...
2013-01-01
The widely used Message Passing Interface (MPI) is complex and rich. As a result, application developers require automated tools to avoid and to detect MPI programming errors. We present the Marmot Umpire Scalable Tool (MUST) that detects such errors with significantly increased scalability. We present improvements to our graph-based deadlock detection approach for MPI, which cover future MPI extensions. Our enhancements also check complex MPI constructs that no previous graph-based detection approach handled correctly. Finally, we present optimizations for the processing of MPI operations that reduce runtime deadlock detection overheads. Existing approaches often require ( p ) analysis time permore » MPI operation, for p processes. We empirically observe that our improvements lead to sub-linear or better analysis time per operation for a wide range of real world applications.« less
Artificial neural networks in mammography interpretation and diagnostic decision making.
Ayer, Turgay; Chen, Qiushi; Burnside, Elizabeth S
2013-01-01
Screening mammography is the most effective means for early detection of breast cancer. Although general rules for discriminating malignant and benign lesions exist, radiologists are unable to perfectly detect and classify all lesions as malignant and benign, for many reasons which include, but are not limited to, overlap of features that distinguish malignancy, difficulty in estimating disease risk, and variability in recommended management. When predictive variables are numerous and interact, ad hoc decision making strategies based on experience and memory may lead to systematic errors and variability in practice. The integration of computer models to help radiologists increase the accuracy of mammography examinations in diagnostic decision making has gained increasing attention in the last two decades. In this study, we provide an overview of one of the most commonly used models, artificial neural networks (ANNs), in mammography interpretation and diagnostic decision making and discuss important features in mammography interpretation. We conclude by discussing several common limitations of existing research on ANN-based detection and diagnostic models and provide possible future research directions.
Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting
NASA Technical Reports Server (NTRS)
Deng, Robert H.; Costello, Daniel J., Jr.
1987-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.
Adaboost multi-view face detection based on YCgCr skin color model
NASA Astrophysics Data System (ADS)
Lan, Qi; Xu, Zhiyong
2016-09-01
Traditional Adaboost face detection algorithm uses Haar-like features training face classifiers, whose detection error rate is low in the face region. While under the complex background, the classifiers will make wrong detection easily to the background regions with the similar faces gray level distribution, which leads to the error detection rate of traditional Adaboost algorithm is high. As one of the most important features of a face, skin in YCgCr color space has good clustering. We can fast exclude the non-face areas through the skin color model. Therefore, combining with the advantages of the Adaboost algorithm and skin color detection algorithm, this paper proposes Adaboost face detection algorithm method that bases on YCgCr skin color model. Experiments show that, compared with traditional algorithm, the method we proposed has improved significantly in the detection accuracy and errors.
van Elk, Michiel; Bousardt, Roel; Bekkering, Harold; van Schie, Hein T
2012-01-01
Detecting errors in other's actions is of pivotal importance for joint action, competitive behavior and observational learning. Although many studies have focused on the neural mechanisms involved in detecting low-level errors, relatively little is known about error-detection in everyday situations. The present study aimed to identify the functional and neural mechanisms whereby we understand the correctness of other's actions involving well-known objects (e.g. pouring coffee in a cup). Participants observed action sequences in which the correctness of the object grasped and the grip applied to a pair of objects were independently manipulated. Observation of object violations (e.g. grasping the empty cup instead of the coffee pot) resulted in a stronger P3-effect than observation of grip errors (e.g. grasping the coffee pot at the upper part instead of the handle), likely reflecting a reorienting response, directing attention to the relevant location. Following the P3-effect, a parietal slow wave positivity was observed that persisted for grip-errors, likely reflecting the detection of an incorrect hand-object interaction. These findings provide new insight in the functional significance of the neurophysiological markers associated with the observation of incorrect actions and suggest that the P3-effect and the subsequent parietal slow wave positivity may reflect the detection of errors at different levels in the action hierarchy. Thereby this study elucidates the cognitive processes that support the detection of action violations in the selection of objects and grips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojahn, Christopher K.
2015-10-20
This HDL code (hereafter referred to as "software") implements circuitry in Xilinx Virtex-5QV Field Programmable Gate Array (FPGA) hardware. This software allows the device to self-check the consistency of its own configuration memory for radiation-induced errors. The software then provides the capability to correct any single-bit errors detected in the memory using the device's inherent circuitry, or reload corrupted memory frames when larger errors occur that cannot be corrected with the device's built-in error correction and detection scheme.
Relationship between Brazilian airline pilot errors and time of day.
de Mello, M T; Esteves, A M; Pires, M L N; Santos, D C; Bittencourt, L R A; Silva, R S; Tufik, S
2008-12-01
Flight safety is one of the most important and frequently discussed issues in aviation. Recent accident inquiries have raised questions as to how the work of flight crews is organized and the extent to which these conditions may have been contributing factors to accidents. Fatigue is based on physiologic limitations, which are reflected in performance deficits. The purpose of the present study was to provide an analysis of the periods of the day in which pilots working for a commercial airline presented major errors. Errors made by 515 captains and 472 co-pilots were analyzed using data from flight operation quality assurance systems. To analyze the times of day (shifts) during which incidents occurred, we divided the light-dark cycle (24:00) in four periods: morning, afternoon, night, and early morning. The differences of risk during the day were reported as the ratio of morning to afternoon, morning to night and morning to early morning error rates. For the purposes of this research, level 3 events alone were taken into account, since these were the most serious in which company operational limits were exceeded or when established procedures were not followed. According to airline flight schedules, 35% of flights take place in the morning period, 32% in the afternoon, 26% at night, and 7% in the early morning. Data showed that the risk of errors increased by almost 50% in the early morning relative to the morning period (ratio of 1:1.46). For the period of the afternoon, the ratio was 1:1.04 and for the night a ratio of 1:1.05 was found. These results showed that the period of the early morning represented a greater risk of attention problems and fatigue.
Detection and Correction of Silent Data Corruption for Large-Scale High-Performance Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiala, David J; Mueller, Frank; Engelmann, Christian
Faults have become the norm rather than the exception for high-end computing on clusters with 10s/100s of thousands of cores. Exacerbating this situation, some of these faults remain undetected, manifesting themselves as silent errors that corrupt memory while applications continue to operate and report incorrect results. This paper studies the potential for redundancy to both detect and correct soft errors in MPI message-passing applications. Our study investigates the challenges inherent to detecting soft errors within MPI application while providing transparent MPI redundancy. By assuming a model wherein corruption in application data manifests itself by producing differing MPI message data betweenmore » replicas, we study the best suited protocols for detecting and correcting MPI data that is the result of corruption. To experimentally validate our proposed detection and correction protocols, we introduce RedMPI, an MPI library which resides in the MPI profiling layer. RedMPI is capable of both online detection and correction of soft errors that occur in MPI applications without requiring any modifications to the application source by utilizing either double or triple redundancy. Our results indicate that our most efficient consistency protocol can successfully protect applications experiencing even high rates of silent data corruption with runtime overheads between 0% and 30% as compared to unprotected applications without redundancy. Using our fault injector within RedMPI, we observe that even a single soft error can have profound effects on running applications, causing a cascading pattern of corruption in most cases causes that spreads to all other processes. RedMPI's protection has been shown to successfully mitigate the effects of soft errors while allowing applications to complete with correct results even in the face of errors.« less
The Role of Clinical Proteomics, Lipidomics, and Genomics in the Diagnosis of Alzheimer's Disease.
Martins, Ian James
2016-03-31
The early diagnosis of Alzheimer's disease (AD) has become important to the reversal and treatment of neurodegeneration, which may be relevant to premature brain aging that is associated with chronic disease progression. Clinical proteomics allows the detection of various proteins in fluids such as the urine, plasma, and cerebrospinal fluid for the diagnosis of AD. Interest in lipidomics has accelerated with plasma testing for various lipid biomarkers that may with clinical proteomics provide a more reproducible diagnosis for early brain aging that is connected to other chronic diseases. The combination of proteomics with lipidomics may decrease the biological variability between studies and provide reproducible results that detect a community's susceptibility to AD. The diagnosis of chronic disease associated with AD that now involves genomics may provide increased sensitivity to avoid inadvertent errors related to plasma versus cerebrospinal fluid testing by proteomics and lipidomics that identify new disease biomarkers in body fluids, cells, and tissues. The diagnosis of AD by various plasma biomarkers with clinical proteomics may now require the involvement of lipidomics and genomics to provide interpretation of proteomic results from various laboratories around the world.
Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group
NASA Astrophysics Data System (ADS)
Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael
2018-06-01
We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.
ERIC Educational Resources Information Center
Sherwood, David E.
2010-01-01
According to closed-loop accounts of motor control, movement errors are detected by comparing sensory feedback to an acquired reference state. Differences between the reference state and the movement-produced feedback results in an error signal that serves as a basis for a correction. The main question addressed in the current study was how…
Lahat, Ayelet; Lamm, Connie; Chronis-Tuscano, Andrea; Pine, Daniel S.; Henderson, Heather A.; Fox, Nathan A.
2014-01-01
Objective Behavioral inhibition (BI) is an early childhood temperament characterized by fearful responses to novelty and avoidance of social interactions. During adolescence, a subset of children with stable childhood BI develop social anxiety disorder and concurrently exhibit increased error monitoring. The current study examines whether increased error monitoring in seven-year-old behaviorally inhibited children prospectively predicts risk for symptoms of social phobia at age 9. Method Two hundred and ninety one children were characterized on BI at 24 and 36 months of age. Children were seen again at 7 years of age, where they performed a Flanker task, and event-related-potential (ERP) indices of response monitoring were generated. At age 9, self- and maternal-report of social phobia symptoms were obtained. Results Children high in BI, compared to those low in BI, displayed increased error monitoring at age 7, as indexed by larger (i.e., more negative) error-related negativity (ERN) amplitudes. Additionally, early BI was related to later childhood social phobia symptoms at age 9 among children with a large difference in amplitude between ERN and correct-response negativity (CRN) at age 7. Conclusions Heightened error monitoring predicts risk for later social phobia symptoms in children with high BI. Research assessing response monitoring in children with BI may refine our understanding of the mechanisms underlying risk for later anxiety disorders and inform prevention efforts. PMID:24655654
NASA Astrophysics Data System (ADS)
Graus, Matthew S.; Neumann, Aaron K.; Timlin, Jerilyn A.
2017-01-01
Fungi in the Candida genus are the most common fungal pathogens. They not only cause high morbidity and mortality but can also cost billions of dollars in healthcare. To alleviate this burden, early and accurate identification of Candida species is necessary. However, standard identification procedures can take days and have a large false negative error. The method described in this study takes advantage of hyperspectral confocal fluorescence microscopy, which enables the capability to quickly and accurately identify and characterize the unique autofluorescence spectra from different Candida species with up to 84% accuracy when grown in conditions that closely mimic physiological conditions.
''Virtual Welding,'' a new aid for teaching Manufacturing Process Engineering
NASA Astrophysics Data System (ADS)
Portela, José M.; Huerta, María M.; Pastor, Andrés; Álvarez, Miguel; Sánchez-Carrilero, Manuel
2009-11-01
Overcrowding in the classroom is a serious problem in universities, particularly in specialties that require a certain type of teaching practice. These practices often require expenditure on consumables and a space large enough to hold the necessary materials and the materials that have already been used. Apart from the budget, another problem concerns the attention paid to each student. The use of simulation systems in the early learning stages of the welding technique can prove very beneficial thanks to error detection functions installed in the system, which provide the student with feedbach during the execution of the practice session, and the significant savings in both consumables and energy.
Physics and Control of Locked Modes in the DIII-D Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volpe, Francesco
This Final Technical Report summarizes an investigation, carried out under the auspices of the DOE Early Career Award, of the physics and control of non-rotating magnetic islands (“locked modes”) in tokamak plasmas. Locked modes are one of the main causes of disruptions in present tokamaks, and could be an even bigger concern in ITER, due to its relatively high beta (favoring the formation of Neoclassical Tearing Mode islands) and low rotation (favoring locking). For these reasons, this research had the goal of studying and learning how to control locked modes in the DIII-D National Fusion Facility under ITER-relevant conditions ofmore » high pressure and low rotation. Major results included: the first full suppression of locked modes and avoidance of the associated disruptions; the demonstration of error field detection from the interaction between locked modes, applied rotating fields and intrinsic errors; the analysis of a vast database of disruptive locked modes, which led to criteria for disruption prediction and avoidance.« less
NASA Technical Reports Server (NTRS)
Kaaret, P.; Piraino, S.; Halpern, Jules P.; Eracleous, M.; Oliversen, Ronald (Technical Monitor)
2001-01-01
We have discovered an X-ray source, SAX J0635+0533, with a hard spectrum within the error box of the GeV gamma-ray source in Monoceros, 2EG J0635+0521. The unabsorbed flux from the source is 1.2 x 10(exp -11) ergs /sq cm s in the 2-10 keV band. The X-ray spectrum is consistent with a simple power-law model with absorption. The photon index is 1.50 +/- 0.08, and we detect emission out to 40 keV. Optical observations identify a counterpart with a V magnitude of 12.8. The counterpart has broad emission lines and the colors of an early B-type star. If the identification of the X-ray/optical source with the gamma-ray source is correct, then the source would be a gamma-ray-emitting X-ray binary.
b matrix errors in echo planar diffusion tensor imaging
Boujraf, Saïd; Luypaert, Robert; Osteaux, Michel
2001-01-01
Diffusion‐weighted magnetic resonance imaging (DW‐MRI) is a recognized tool for early detection of infarction of the human brain. DW‐MRI uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive parameters that reflect the translational mobility of the water molecules in tissues. If diffusion‐weighted images with different values of b matrix are acquired during one individual investigation, it is possible to calculate apparent diffusion coefficient maps that are the elements of the diffusion tensor. The diffusion tensor elements represent the apparent diffusion coefficient of protons of water molecules in each pixel in the corresponding sample. The relation between signal intensity in the diffusion‐weighted images, diffusion tensor, and b matrix is derived from the Bloch equations. Our goal is to establish the magnitude of the error made in the calculation of the elements of the diffusion tensor when the imaging gradients are ignored. PACS number(s): 87.57. –s, 87.61.–c PMID:11602015
Tallot, Lucille; Diaz-Mataix, Lorenzo; Perry, Rosemarie E.; Wood, Kira; LeDoux, Joseph E.; Mouly, Anne-Marie; Sullivan, Regina M.; Doyère, Valérie
2017-01-01
The updating of a memory is triggered whenever it is reactivated and a mismatch from what is expected (i.e., prediction error) is detected, a process that can be unraveled through the memory's sensitivity to protein synthesis inhibitors (i.e., reconsolidation). As noted in previous studies, in Pavlovian threat/aversive conditioning in adult rats, prediction error detection and its associated protein synthesis-dependent reconsolidation can be triggered by reactivating the memory with the conditioned stimulus (CS), but without the unconditioned stimulus (US), or by presenting a CS–US pairing with a different CS–US interval than during the initial learning. Whether similar mechanisms underlie memory updating in the young is not known. Using similar paradigms with rapamycin (an mTORC1 inhibitor), we show that preweaning rats (PN18–20) do form a long-term memory of the CS–US interval, and detect a 10-sec versus 30-sec temporal prediction error. However, the resulting updating/reconsolidation processes become adult-like after adolescence (PN30–40). Our results thus show that while temporal prediction error detection exists in preweaning rats, specific infant-type mechanisms are at play for associative learning and memory. PMID:28202715
Bottoms, Hayden C; Eslick, Andrea N; Marsh, Elizabeth J
2010-08-01
Although contradictions with stored knowledge are common in daily life, people often fail to notice them. For example, in the Moses illusion, participants fail to notice errors in questions such as "How many animals of each kind did Moses take on the Ark?" despite later showing knowledge that the Biblical reference is to Noah, not Moses. We examined whether error prevalence affected participants' ability to detect distortions in questions, and whether this in turn had memorial consequences. Many of the errors were overlooked, but participants were better able to catch them when they were more common. More generally, the failure to detect errors had negative memorial consequences, increasing the likelihood that the errors were used to answer later general knowledge questions. Methodological implications of this finding are discussed, as it suggests that typical analyses likely underestimate the size of the Moses illusion. Overall, answering distorted questions can yield errors in the knowledge base; most importantly, prior knowledge does not protect against these negative memorial consequences.
Prevalence and pattern of prescription errors in a Nigerian kidney hospital.
Babatunde, Kehinde M; Akinbodewa, Akinwumi A; Akinboye, Ayodele O; Adejumo, Ademola O
2016-12-01
To determine (i) the prevalence and pattern of prescription errors in our Centre and, (ii) appraise pharmacists' intervention and correction of identified prescription errors. A descriptive, single blinded cross-sectional study. Kidney Care Centre is a public Specialist hospital. The monthly patient load averages 60 General Out-patient cases and 17.4 in-patients. A total of 31 medical doctors (comprising of 2 Consultant Nephrologists, 15 Medical Officers, 14 House Officers), 40 nurses and 24 ward assistants participated in the study. One pharmacist runs the daily call schedule. Prescribers were blinded to the study. Prescriptions containing only galenicals were excluded. An error detection mechanism was set up to identify and correct prescription errors. Life-threatening prescriptions were discussed with the Quality Assurance Team of the Centre who conveyed such errors to the prescriber without revealing the on-going study. Prevalence of prescription errors, pattern of prescription errors, pharmacist's intervention. A total of 2,660 (75.0%) combined prescription errors were found to have one form of error or the other; illegitimacy 1,388 (52.18%), omission 1,221(45.90%), wrong dose 51(1.92%) and no error of style was detected. Life-threatening errors were low (1.1-2.2%). Errors were found more commonly among junior doctors and non-medical doctors. Only 56 (1.6%) of the errors were detected and corrected during the process of dispensing. Prescription errors related to illegitimacy and omissions were highly prevalent. There is a need to improve on patient-to-healthcare giver ratio. A medication quality assurance unit is needed in our hospitals. No financial support was received by any of the authors for this study.
Nikolic, Mark I; Sarter, Nadine B
2007-08-01
To examine operator strategies for diagnosing and recovering from errors and disturbances as well as the impact of automation design and time pressure on these processes. Considerable efforts have been directed at error prevention through training and design. However, because errors cannot be eliminated completely, their detection, diagnosis, and recovery must also be supported. Research has focused almost exclusively on error detection. Little is known about error diagnosis and recovery, especially in the context of event-driven tasks and domains. With a confederate pilot, 12 airline pilots flew a 1-hr simulator scenario that involved three challenging automation-related tasks and events that were likely to produce erroneous actions or assessments. Behavioral data were compared with a canonical path to examine pilots' error and disturbance management strategies. Debriefings were conducted to probe pilots' system knowledge. Pilots seldom followed the canonical path to cope with the scenario events. Detection of a disturbance was often delayed. Diagnostic episodes were rare because of pilots' knowledge gaps and time criticality. In many cases, generic inefficient recovery strategies were observed, and pilots relied on high levels of automation to manage the consequences of an error. Our findings describe and explain the nature and shortcomings of pilots' error management activities. They highlight the need for improved automation training and design to achieve more timely detection, accurate explanation, and effective recovery from errors and disturbances. Our findings can inform the design of tools and techniques that support disturbance management in various complex, event-driven environments.
He, Jianbo; Li, Jijie; Huang, Zhongwen; Zhao, Tuanjie; Xing, Guangnan; Gai, Junyi; Guan, Rongzhan
2015-01-01
Experimental error control is very important in quantitative trait locus (QTL) mapping. Although numerous statistical methods have been developed for QTL mapping, a QTL detection model based on an appropriate experimental design that emphasizes error control has not been developed. Lattice design is very suitable for experiments with large sample sizes, which is usually required for accurate mapping of quantitative traits. However, the lack of a QTL mapping method based on lattice design dictates that the arithmetic mean or adjusted mean of each line of observations in the lattice design had to be used as a response variable, resulting in low QTL detection power. As an improvement, we developed a QTL mapping method termed composite interval mapping based on lattice design (CIMLD). In the lattice design, experimental errors are decomposed into random errors and block-within-replication errors. Four levels of block-within-replication errors were simulated to show the power of QTL detection under different error controls. The simulation results showed that the arithmetic mean method, which is equivalent to a method under random complete block design (RCBD), was very sensitive to the size of the block variance and with the increase of block variance, the power of QTL detection decreased from 51.3% to 9.4%. In contrast to the RCBD method, the power of CIMLD and the adjusted mean method did not change for different block variances. The CIMLD method showed 1.2- to 7.6-fold higher power of QTL detection than the arithmetic or adjusted mean methods. Our proposed method was applied to real soybean (Glycine max) data as an example and 10 QTLs for biomass were identified that explained 65.87% of the phenotypic variation, while only three and two QTLs were identified by arithmetic and adjusted mean methods, respectively.
Tridandapani, Srini; Ramamurthy, Senthil; Provenzale, James; Obuchowski, Nancy A; Evanoff, Michael G; Bhatti, Pamela
2014-08-01
To evaluate whether the presence of facial photographs obtained at the point-of-care of portable radiography leads to increased detection of wrong-patient errors. In this institutional review board-approved study, 166 radiograph-photograph combinations were obtained from 30 patients. Consecutive radiographs from the same patients resulted in 83 unique pairs (ie, a new radiograph and prior, comparison radiograph) for interpretation. To simulate wrong-patient errors, mismatched pairs were generated by pairing radiographs from different patients chosen randomly from the sample. Ninety radiologists each interpreted a unique randomly chosen set of 10 radiographic pairs, containing up to 10% mismatches (ie, error pairs). Radiologists were randomly assigned to interpret radiographs with or without photographs. The number of mismatches was identified, and interpretation times were recorded. Ninety radiologists with 21 ± 10 (mean ± standard deviation) years of experience were recruited to participate in this observer study. With the introduction of photographs, the proportion of errors detected increased from 31% (9 of 29) to 77% (23 of 30; P = .006). The odds ratio for detection of error with photographs to detection without photographs was 7.3 (95% confidence interval: 2.29-23.18). Observer qualifications, training, or practice in cardiothoracic radiology did not influence sensitivity for error detection. There is no significant difference in interpretation time for studies without photographs and those with photographs (60 ± 22 vs. 61 ± 25 seconds; P = .77). In this observer study, facial photographs obtained simultaneously with portable chest radiographs increased the identification of any wrong-patient errors, without substantial increase in interpretation time. This technique offers a potential means to increase patient safety through correct patient identification. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chida, Y.; Takagawa, T.
2017-12-01
The observation data of GPS buoys which are installed in the offshore of Japan are used for monitoring not only waves but also tsunamis in Japan. The real-time data was successfully used to upgrade the tsunami warnings just after the 2011 Tohoku earthquake. Huge tsunamis can be easily detected because the signal-noise ratio is high enough, but moderate tsunami is not. GPS data sometimes include the error waveforms like tsunamis because of changing accuracy by the number and the position of GPS satellites. To distinguish the true tsunami waveforms from pseudo-tsunami ones is important for tsunami detection. In this research, a method to reduce misdetections of tsunami in the observation data of GPS buoys and to increase the efficiency of tsunami detection was developed.Firstly, the error waveforms were extracted by using the indexes of position dilution of precision, reliability of GPS satellite positioning and satellite number for calculation. Then, the output from this procedure was used for the Continuous Wavelet Transform (CWT) to analyze the time-frequency characteristics of error waveforms and real tsunami waveforms.We found that the error waveforms tended to appear when the accuracy of GPS buoys positioning was low. By extracting these waveforms, it was possible to decrease about 43% error waveforms without the reduction of the tsunami detection rate. Moreover, we found that the amplitudes of power spectra obtained from the error waveforms and real tsunamis were similar in the component of long period (4-65 minutes), on the other hand, the amplitude in the component of short period (< 1 minute) obtained from the error waveforms was significantly larger than that of the real tsunami waveforms. By thresholding of the short-period component, further extraction of error waveforms became possible without a significant reduction of tsunami detection rate.
Driving in Early-Stage Alzheimer's Disease: An Integrative Review of the Literature.
Davis, Rebecca L; Ohman, Jennifer M
2017-03-01
One of the most difficult decisions for individuals with Alzheimer's disease (AD) is when to stop driving. Because driving is a fundamental activity linked to socialization, independent functioning, and well-being, making the decision to stop driving is not easy. Cognitive decline in older adults can lead to getting lost while driving, difficulty detecting and avoiding hazards, as well as increased errors while driving due to compromised judgment and difficulty in making decisions. The purpose of the current literature review was to synthesize evidence regarding how individuals with early-stage AD, their families, and providers make determinations about driving safety, interventions to increase driving safety, and methods to assist cessation and coping for individuals with early-stage AD. The evidence shows that changes in driving ability start early and progress throughout the trajectory of AD. Some individuals with mild cognitive impairment or early-stage AD may be safe to drive for a period of time. Support groups aimed at helping with the transition have been shown to be helpful for individuals who stop driving. Research and practice must support interventions to help individuals maintain safety while driving, as well as cope with driving cessation. [Res Gerontol Nurs. 2017; 10(2):86-100.]. Copyright 2016, SLACK Incorporated.
Moriano, Javier; Rodríguez, Francisco Javier; Martín, Pedro; Jiménez, Jose Antonio; Vuksanovic, Branislav
2016-01-01
In recent years, Secondary Substations (SSs) are being provided with equipment that allows their full management. This is particularly useful not only for monitoring and planning purposes but also for detecting erroneous measurements, which could negatively affect the performance of the SS. On the other hand, load forecasting is extremely important since they help electricity companies to make crucial decisions regarding purchasing and generating electric power, load switching, and infrastructure development. In this regard, Short Term Load Forecasting (STLF) allows the electric power load to be predicted over an interval ranging from one hour to one week. However, important issues concerning error detection by employing STLF has not been specifically addressed until now. This paper proposes a novel STLF-based approach to the detection of gain and offset errors introduced by the measurement equipment. The implemented system has been tested against real power load data provided by electricity suppliers. Different gain and offset error levels are successfully detected. PMID:26771613
Metacognition and proofreading: the roles of aging, motivation, and interest.
Hargis, Mary B; Yue, Carole L; Kerr, Tyson; Ikeda, Kenji; Murayama, Kou; Castel, Alan D
2017-03-01
The current study examined younger and older adults' error detection accuracy, prediction calibration, and postdiction calibration on a proofreading task, to determine if age-related differences would be present in this type of common error detection task. Participants were given text passages, and were first asked to predict the percentage of errors they would detect in the passage. They then read the passage and circled errors (which varied in complexity and locality), and made postdictions regarding their performance, before repeating this with another passage and answering a comprehension test of both passages. There were no age-related differences in error detection accuracy, text comprehension, or metacognitive calibration, though participants in both age groups were overconfident overall in their metacognitive judgments. Both groups gave similar ratings of motivation to complete the task. The older adults rated the passages as more interesting than younger adults did, although this level of interest did not appear to influence error-detection performance. The age equivalence in both proofreading ability and calibration suggests that the ability to proofread text passages and the associated metacognitive monitoring used in judging one's own performance are maintained in aging. These age-related similarities persisted when younger adults completed the proofreading tasks on a computer screen, rather than with paper and pencil. The findings provide novel insights regarding the influence that cognitive aging may have on metacognitive accuracy and text processing in an everyday task.
A tsunami early warning system for the coastal area modeling
NASA Astrophysics Data System (ADS)
Soebroto, Arief Andy; Sunaryo, Suhartanto, Ery
2015-04-01
The tsunami disaster is a potential disaster in the territory of Indonesia. Indonesia is an archipelago country and close to the ocean deep. The tsunami occurred in Aceh province in 2004. Early prevention efforts have been carried out. One of them is making "tsunami buoy" which has been developed by BPPT. The tool puts sensors on the ocean floor near the coast to detect earthquakes on the ocean floor. Detection results are transmitted via satellite by a transmitter placed floating on the sea surface. The tool will cost billions of dollars for each system. Another constraint was the transmitter theft "tsunami buoy" in the absence of guard. In this study of the system has a transmission system using radio frequency and focused on coastal areas where costs are cheaper, so that it can be applied at many beaches in Indonesia are potentially affected by the tsunami. The monitoring system sends the detection results to the warning system using a radio frequency with a capability within 3 Km. Test results on the sub module sensor monitoring system generates an error of 0.63% was taken 10% showed a good quality sensing. The test results of data transmission from the transceiver of monitoring system to the receiver of warning system produces 100% successful delivery and reception of data. The test results on the whole system to function 100% properly.
Mapping DNA polymerase errors by single-molecule sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David F.; Lu, Jenny; Chang, Seungwoo
Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less
Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.
Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing
2016-01-01
The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.
Mapping DNA polymerase errors by single-molecule sequencing
Lee, David F.; Lu, Jenny; Chang, Seungwoo; ...
2016-05-16
Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less
Evidence for aversive withdrawal response to own errors.
Hochman, Eldad Yitzhak; Milman, Valery; Tal, Liron
2017-10-01
Recent model suggests that error detection gives rise to defensive motivation prompting protective behavior. Models of active avoidance behavior predict it should grow larger with threat imminence and avoidance. We hypothesized that in a task requiring left or right key strikes, error detection would drive an avoidance reflex manifested by rapid withdrawal of an erring finger growing larger with threat imminence and avoidance. In experiment 1, three groups differing by error-related threat imminence and avoidance performed a flanker task requiring left or right force sensitive-key strikes. As predicted, errors were followed by rapid force release growing faster with threat imminence and opportunity to evade threat. In experiment 2, we established a link between error key release time (KRT) and the subjective sense of inner-threat. In a simultaneous, multiple regression analysis of three error-related compensatory mechanisms (error KRT, flanker effect, error correction RT), only error KRT was significantly associated with increased compulsive checking tendencies. We propose that error response withdrawal reflects an error-withdrawal reflex. Copyright © 2017 Elsevier B.V. All rights reserved.
Validation Relaxation: A Quality Assurance Strategy for Electronic Data Collection
Gordon, Nicholas; Griffiths, Thomas; Kraemer, John D; Siedner, Mark J
2017-01-01
Background The use of mobile devices for data collection in developing world settings is becoming increasingly common and may offer advantages in data collection quality and efficiency relative to paper-based methods. However, mobile data collection systems can hamper many standard quality assurance techniques due to the lack of a hardcopy backup of data. Consequently, mobile health data collection platforms have the potential to generate datasets that appear valid, but are susceptible to unidentified database design flaws, areas of miscomprehension by enumerators, and data recording errors. Objective We describe the design and evaluation of a strategy for estimating data error rates and assessing enumerator performance during electronic data collection, which we term “validation relaxation.” Validation relaxation involves the intentional omission of data validation features for select questions to allow for data recording errors to be committed, detected, and monitored. Methods We analyzed data collected during a cluster sample population survey in rural Liberia using an electronic data collection system (Open Data Kit). We first developed a classification scheme for types of detectable errors and validation alterations required to detect them. We then implemented the following validation relaxation techniques to enable data error conduct and detection: intentional redundancy, removal of “required” constraint, and illogical response combinations. This allowed for up to 11 identifiable errors to be made per survey. The error rate was defined as the total number of errors committed divided by the number of potential errors. We summarized crude error rates and estimated changes in error rates over time for both individuals and the entire program using logistic regression. Results The aggregate error rate was 1.60% (125/7817). Error rates did not differ significantly between enumerators (P=.51), but decreased for the cohort with increasing days of application use, from 2.3% at survey start (95% CI 1.8%-2.8%) to 0.6% at day 45 (95% CI 0.3%-0.9%; OR=0.969; P<.001). The highest error rate (84/618, 13.6%) occurred for an intentional redundancy question for a birthdate field, which was repeated in separate sections of the survey. We found low error rates (0.0% to 3.1%) for all other possible errors. Conclusions A strategy of removing validation rules on electronic data capture platforms can be used to create a set of detectable data errors, which can subsequently be used to assess group and individual enumerator error rates, their trends over time, and categories of data collection that require further training or additional quality control measures. This strategy may be particularly useful for identifying individual enumerators or systematic data errors that are responsive to enumerator training and is best applied to questions for which errors cannot be prevented through training or software design alone. Validation relaxation should be considered as a component of a holistic data quality assurance strategy. PMID:28821474
Validation Relaxation: A Quality Assurance Strategy for Electronic Data Collection.
Kenny, Avi; Gordon, Nicholas; Griffiths, Thomas; Kraemer, John D; Siedner, Mark J
2017-08-18
The use of mobile devices for data collection in developing world settings is becoming increasingly common and may offer advantages in data collection quality and efficiency relative to paper-based methods. However, mobile data collection systems can hamper many standard quality assurance techniques due to the lack of a hardcopy backup of data. Consequently, mobile health data collection platforms have the potential to generate datasets that appear valid, but are susceptible to unidentified database design flaws, areas of miscomprehension by enumerators, and data recording errors. We describe the design and evaluation of a strategy for estimating data error rates and assessing enumerator performance during electronic data collection, which we term "validation relaxation." Validation relaxation involves the intentional omission of data validation features for select questions to allow for data recording errors to be committed, detected, and monitored. We analyzed data collected during a cluster sample population survey in rural Liberia using an electronic data collection system (Open Data Kit). We first developed a classification scheme for types of detectable errors and validation alterations required to detect them. We then implemented the following validation relaxation techniques to enable data error conduct and detection: intentional redundancy, removal of "required" constraint, and illogical response combinations. This allowed for up to 11 identifiable errors to be made per survey. The error rate was defined as the total number of errors committed divided by the number of potential errors. We summarized crude error rates and estimated changes in error rates over time for both individuals and the entire program using logistic regression. The aggregate error rate was 1.60% (125/7817). Error rates did not differ significantly between enumerators (P=.51), but decreased for the cohort with increasing days of application use, from 2.3% at survey start (95% CI 1.8%-2.8%) to 0.6% at day 45 (95% CI 0.3%-0.9%; OR=0.969; P<.001). The highest error rate (84/618, 13.6%) occurred for an intentional redundancy question for a birthdate field, which was repeated in separate sections of the survey. We found low error rates (0.0% to 3.1%) for all other possible errors. A strategy of removing validation rules on electronic data capture platforms can be used to create a set of detectable data errors, which can subsequently be used to assess group and individual enumerator error rates, their trends over time, and categories of data collection that require further training or additional quality control measures. This strategy may be particularly useful for identifying individual enumerators or systematic data errors that are responsive to enumerator training and is best applied to questions for which errors cannot be prevented through training or software design alone. Validation relaxation should be considered as a component of a holistic data quality assurance strategy. ©Avi Kenny, Nicholas Gordon, Thomas Griffiths, John D Kraemer, Mark J Siedner. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.08.2017.
Error Detection and Correction in Spelling.
ERIC Educational Resources Information Center
Lydiatt, Steve
1984-01-01
Teachers can discover students' means of dealing with spelling as a problem through investigations of their error detection and correction skills. Approaches for measuring sensitivity and bias are described, as are means of developing appropriate instructional activities. (CL)
A median filter approach for correcting errors in a vector field
NASA Technical Reports Server (NTRS)
Schultz, H.
1985-01-01
Techniques are presented for detecting and correcting errors in a vector field. These methods employ median filters which are frequently used in image processing to enhance edges and remove noise. A detailed example is given for wind field maps produced by a spaceborne scatterometer. The error detection and replacement algorithm was tested with simulation data from the NASA Scatterometer (NSCAT) project.
Ding, Yi; Peng, Kai; Yu, Miao; Lu, Lei; Zhao, Kun
2017-08-01
The performance of the two selected spatial frequency phase unwrapping methods is limited by a phase error bound beyond which errors will occur in the fringe order leading to a significant error in the recovered absolute phase map. In this paper, we propose a method to detect and correct the wrong fringe orders. Two constraints are introduced during the fringe order determination of two selected spatial frequency phase unwrapping methods. A strategy to detect and correct the wrong fringe orders is also described. Compared with the existing methods, we do not need to estimate the threshold associated with absolute phase values to determine the fringe order error, thus making it more reliable and avoiding the procedure of search in detecting and correcting successive fringe order errors. The effectiveness of the proposed method is validated by the experimental results.
Online Deviation Detection for Medical Processes
Christov, Stefan C.; Avrunin, George S.; Clarke, Lori A.
2014-01-01
Human errors are a major concern in many medical processes. To help address this problem, we are investigating an approach for automatically detecting when performers of a medical process deviate from the acceptable ways of performing that process as specified by a detailed process model. Such deviations could represent errors and, thus, detecting and reporting deviations as they occur could help catch errors before harm is done. In this paper, we identify important issues related to the feasibility of the proposed approach and empirically evaluate the approach for two medical procedures, chemotherapy and blood transfusion. For the evaluation, we use the process models to generate sample process executions that we then seed with synthetic errors. The process models describe the coordination of activities of different process performers in normal, as well as in exceptional situations. The evaluation results suggest that the proposed approach could be applied in clinical settings to help catch errors before harm is done. PMID:25954343
Using failure mode and effects analysis to improve the safety of neonatal parenteral nutrition.
Arenas Villafranca, Jose Javier; Gómez Sánchez, Araceli; Nieto Guindo, Miriam; Faus Felipe, Vicente
2014-07-15
Failure mode and effects analysis (FMEA) was used to identify potential errors and to enable the implementation of measures to improve the safety of neonatal parenteral nutrition (PN). FMEA was used to analyze the preparation and dispensing of neonatal PN from the perspective of the pharmacy service in a general hospital. A process diagram was drafted, illustrating the different phases of the neonatal PN process. Next, the failures that could occur in each of these phases were compiled and cataloged, and a questionnaire was developed in which respondents were asked to rate the following aspects of each error: incidence, detectability, and severity. The highest scoring failures were considered high risk and identified as priority areas for improvements to be made. The evaluation process detected a total of 82 possible failures. Among the phases with the highest number of possible errors were transcription of the medical order, formulation of the PN, and preparation of material for the formulation. After the classification of these 82 possible failures and of their relative importance, a checklist was developed to achieve greater control in the error-detection process. FMEA demonstrated that use of the checklist reduced the level of risk and improved the detectability of errors. FMEA was useful for detecting medication errors in the PN preparation process and enabling corrective measures to be taken. A checklist was developed to reduce errors in the most critical aspects of the process. Copyright © 2014 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
The most common mistakes on dermatoscopy of melanocytic lesions
Kamińska-Winciorek, Grażyna
2015-01-01
Dermatoscopy is a method of in vivo evaluation of the structures within the epidermis and dermis. Currently, it may be the most precise pre-surgical method of diagnosing melanocytic lesions. Diagnostic errors may result in unnecessary removal of benign lesions or what is even worse, they can cause early and very early melanomas to be overlooked. Errors in assessment of dermatoscopy can be divided into those arising from failure to maintain proper test procedures (procedural and technical errors) and knowledge based mistakes related to the lack of sufficient familiarity and experience in dermatoscopy. The article discusses the most common mistakes made by beginner or inexperienced dermatoscopists. PMID:25821425
Quantum-state anomaly detection for arbitrary errors using a machine-learning technique
NASA Astrophysics Data System (ADS)
Hara, Satoshi; Ono, Takafumi; Okamoto, Ryo; Washio, Takashi; Takeuchi, Shigeki
2016-10-01
The accurate detection of small deviations in given density matrice is important for quantum information processing, which is a difficult task because of the intrinsic fluctuation in density matrices reconstructed using a limited number of experiments. We previously proposed a method for decoherence error detection using a machine-learning technique [S. Hara, T. Ono, R. Okamoto, T. Washio, and S. Takeuchi, Phys. Rev. A 89, 022104 (2014), 10.1103/PhysRevA.89.022104]. However, the previous method is not valid when the errors are just changes in phase. Here, we propose a method that is valid for arbitrary errors in density matrices. The performance of the proposed method is verified using both numerical simulation data and real experimental data.
System of error detection in the manufacture of garments using artificial vision
NASA Astrophysics Data System (ADS)
Moreno, J. J.; Aguila, A.; Partida, E.; Martinez, C. L.; Morales, O.; Tejeida, R.
2017-12-01
A computer vision system is implemented to detect errors in the cutting stage within the manufacturing process of garments in the textile industry. It provides solution to errors within the process that cannot be easily detected by any employee, in addition to significantly increase the speed of quality review. In the textile industry as in many others, quality control is required in manufactured products and this has been carried out manually by means of visual inspection by employees over the years. For this reason, the objective of this project is to design a quality control system using computer vision to identify errors in the cutting stage within the garment manufacturing process to increase the productivity of textile processes by reducing costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk; Tanderup, Kari, E-mail: karitand@rm.dk
Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusivemore » dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was sufficiently symmetric with respect to error and no-error source position constellations. The AEDA was able to correctly identify all false errors represented by mispositioned dosimeters contrary to an error detection algorithm relying on the original reconstruction. Conclusions: The study demonstrates that the AEDA error identification during HDR/PDR BT relies on a stable dosimeter position rather than on an accurate dosimeter reconstruction, and the AEDA’s capacity to distinguish between true and false error scenarios. The study further shows that the AEDA can offer guidance in decision making in the event of potential errors detected with real-timein vivo point dosimetry.« less
Improved astigmatic focus error detection method
NASA Technical Reports Server (NTRS)
Bernacki, Bruce E.
1992-01-01
All easy-to-implement focus- and track-error detection methods presently used in magneto-optical (MO) disk drives using pre-grooved media suffer from a side effect known as feedthrough. Feedthrough is the unwanted focus error signal (FES) produced when the optical head is seeking a new track, and light refracted from the pre-grooved disk produces an erroneous FES. Some focus and track-error detection methods are more resistant to feedthrough, but tend to be complicated and/or difficult to keep in alignment as a result of environmental insults. The astigmatic focus/push-pull tracking method is an elegant, easy-to-align focus- and track-error detection method. Unfortunately, it is also highly susceptible to feedthrough when astigmatism is present, with the worst effects caused by astigmatism oriented such that the tangential and sagittal foci are at 45 deg to the track direction. This disclosure outlines a method to nearly completely eliminate the worst-case form of feedthrough due to astigmatism oriented 45 deg to the track direction. Feedthrough due to other primary aberrations is not improved, but performance is identical to the unimproved astigmatic method.
van Elk, Michiel; Bousardt, Roel; Bekkering, Harold; van Schie, Hein T.
2012-01-01
Detecting errors in other’s actions is of pivotal importance for joint action, competitive behavior and observational learning. Although many studies have focused on the neural mechanisms involved in detecting low-level errors, relatively little is known about error-detection in everyday situations. The present study aimed to identify the functional and neural mechanisms whereby we understand the correctness of other’s actions involving well-known objects (e.g. pouring coffee in a cup). Participants observed action sequences in which the correctness of the object grasped and the grip applied to a pair of objects were independently manipulated. Observation of object violations (e.g. grasping the empty cup instead of the coffee pot) resulted in a stronger P3-effect than observation of grip errors (e.g. grasping the coffee pot at the upper part instead of the handle), likely reflecting a reorienting response, directing attention to the relevant location. Following the P3-effect, a parietal slow wave positivity was observed that persisted for grip-errors, likely reflecting the detection of an incorrect hand-object interaction. These findings provide new insight in the functional significance of the neurophysiological markers associated with the observation of incorrect actions and suggest that the P3-effect and the subsequent parietal slow wave positivity may reflect the detection of errors at different levels in the action hierarchy. Thereby this study elucidates the cognitive processes that support the detection of action violations in the selection of objects and grips. PMID:22606261
Method for Real-Time Model Based Structural Anomaly Detection
NASA Technical Reports Server (NTRS)
Urnes, James M., Sr. (Inventor); Smith, Timothy A. (Inventor); Reichenbach, Eric Y. (Inventor)
2015-01-01
A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.
Modeling of a bubble-memory organization with self-checking translators to achieve high reliability.
NASA Technical Reports Server (NTRS)
Bouricius, W. G.; Carter, W. C.; Hsieh, E. P.; Wadia, A. B.; Jessep, D. C., Jr.
1973-01-01
Study of the design and modeling of a highly reliable bubble-memory system that has the capabilities of: (1) correcting a single 16-adjacent bit-group error resulting from failures in a single basic storage module (BSM), and (2) detecting with a probability greater than 0.99 any double errors resulting from failures in BSM's. The results of the study justify the design philosophy adopted of employing memory data encoding and a translator to correct single group errors and detect double group errors to enhance the overall system reliability.
NASA Technical Reports Server (NTRS)
Campbell, J. W. (Editor)
1981-01-01
The detection of anthropogenic disturbances in the Earth's ozone layer was studied. Two topics were addressed: (1) the level at which a trend in total ozoning is detected by existing data sources; and (2) empirical evidence in the prediction of the depletion in total ozone. Error sources are identified. The predictability of climatological series, whether empirical models can be trusted, and how errors in the Dobson total ozone data impact trend detectability, are discussed.
Improved Conflict Detection for Reducing Operational Errors in Air Traffic Control
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Erzberger, Hainz
2003-01-01
An operational error is an incident in which an air traffic controller allows the separation between two aircraft to fall below the minimum separation standard. The rates of such errors in the US have increased significantly over the past few years. This paper proposes new detection methods that can help correct this trend by improving on the performance of Conflict Alert, the existing software in the Host Computer System that is intended to detect and warn controllers of imminent conflicts. In addition to the usual trajectory based on the flight plan, a "dead-reckoning" trajectory (current velocity projection) is also generated for each aircraft and checked for conflicts. Filters for reducing common types of false alerts were implemented. The new detection methods were tested in three different ways. First, a simple flightpath command language was developed t o generate precisely controlled encounters for the purpose of testing the detection software. Second, written reports and tracking data were obtained for actual operational errors that occurred in the field, and these were "replayed" to test the new detection algorithms. Finally, the detection methods were used to shadow live traffic, and performance was analysed, particularly with regard to the false-alert rate. The results indicate that the new detection methods can provide timely warnings of imminent conflicts more consistently than Conflict Alert.
Christofidis, Melany J; Hill, Andrew; Horswill, Mark S; Watson, Marcus O
2016-01-01
To systematically evaluate the impact of several design features on chart-users' detection of patient deterioration on observation charts with early-warning scoring-systems. Research has shown that observation chart design affects the speed and accuracy with which abnormal observations are detected. However, little is known about the contribution of individual design features to these effects. A 2 × 2 × 2 × 2 mixed factorial design, with data-recording format (drawn dots vs. written numbers), scoring-system integration (integrated colour-based system vs. non-integrated tabular system) and scoring-row placement (grouped vs. separate) varied within-participants and scores (present vs. absent) varied between-participants by random assignment. 205 novice chart-users, tested between March 2011-March 2014, completed 64 trials where they saw real patient data presented on an observation chart. Each participant saw eight cases (four containing abnormal observations) on each of eight designs (which represented a factorial combination of the within-participants variables). On each trial, they assessed whether any of the observations were physiologically abnormal, or whether all observations were normal. Response times and error rates were recorded for each design. Participants responded faster (scores present and absent) and made fewer errors (scores absent) using drawn-dot (vs. written-number) observations and an integrated colour-based (vs. non-integrated tabular) scoring-system. Participants responded faster using grouped (vs. separate) scoring-rows when scores were absent, but separate scoring-rows when scores were present. Our findings suggest that several individual design features can affect novice chart-users' ability to detect patient deterioration. More broadly, the study further demonstrates the need to evaluate chart designs empirically. © 2015 John Wiley & Sons Ltd.
Investigation report: H Reactor mischarging incident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinther, A.P.
1964-05-01
All cold reactor start-up procedures require the vertical safety rods (VSR) to be withdrawn in pairs with specific waiting periods between each pair withdrawal. This rod withdrawal procedure will assure an early and safe detection of reactor criticality should reactor reactivity conditions be different than predicted so that proper corrective actions can be taken. During the paired VSR removal of H reactor on April 17, 1964, while preparing for reactor start-up, an extremely low level rising period was detected with six VSR's still in the reactor. The withdrawn VSR's were promptly re-inserted. During the next several days other process difficultiesmore » were encountered. H Processing personnel began investigating the possibility that a number of process tubes might have been mischarged; one shift's charging effort appeared to be suspect as longitudinal peaking appeared nearly twice as severe as normal in the distorted region. Following verification of a charging error in the suspect group of 171 tubes, that group of tubes was discharged and recharged with the proper charge make-up. On April 24, during VSR removal for start-up, low level criticality was detected with three VSR's still in the unit. The VSR's were re-inserted and Operational Physics analysis requested. Following installation of additional poisoning, the Operational Physics analysis uncovered a reactivity prediction error related to the prior operation with the skewed flux distribution. However, in this case, as on April 17, the procedural paired VSR withdrawal provided safe detection of the criticality condition in adequate time to take prompt corrective action. A successful reactor start-up was then achieved later on April 24, and reactor operation has been normal since that time. 4 figs.« less
Liese, Jan; Winter, Karsten; Glass, Änne; Bertolini, Julia; Kämmerer, Peer Wolfgang; Frerich, Bernhard; Schiefke, Ingolf; Remmerbach, Torsten W
2017-11-01
Uncertainties in detection of oral epithelial dysplasia (OED) frequently result from sampling error especially in inflammatory oral lesions. Endomicroscopy allows non-invasive, "en face" imaging of upper oral epithelium, but parameters of OED are unknown. Mucosal nuclei were imaged in 34 toluidine blue-stained oral lesions with a commercial endomicroscopy. Histopathological diagnosis showed four biopsies in "dys-/neoplastic," 23 in "inflammatory," and seven in "others" disease groups. Strength of different assessment strategies of nuclear scoring, nuclear count, and automated nuclear analysis were measured by area under ROC curve (AUC) to identify histopathological "dys-/neoplastic" group. Nuclear objects from automated image analysis were visually corrected. Best-performing parameters of nuclear-to-image ratios were the count of large nuclei (AUC=0.986) and 6-nearest neighborhood relation (AUC=0.896), and best parameters of nuclear polymorphism were the count of atypical nuclei (AUC=0.996) and compactness of nuclei (AUC=0.922). Excluding low-grade OED, nuclear scoring and count reached 100% sensitivity and 98% specificity for detection of dys-/neoplastic lesions. In automated analysis, combination of parameters enhanced diagnostic strength. Sensitivity of 100% and specificity of 87% were seen for distances of 6-nearest neighbors and aspect ratios even in uncorrected objects. Correction improved measures of nuclear polymorphism only. The hue of background color was stronger than nuclear density (AUC=0.779 vs 0.687) to detect dys-/neoplastic group indicating that macroscopic aspect is biased. Nuclear-to-image ratios are applicable for automated optical in vivo diagnostics for oral potentially malignant disorders. Nuclear endomicroscopy may promote non-invasive, early detection of dys-/neoplastic lesions by reducing sampling error. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Error-Detecting Identification Codes for Algebra Students.
ERIC Educational Resources Information Center
Sutherland, David C.
1990-01-01
Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)
Error control for reliable digital data transmission and storage systems
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Deng, R. H.
1985-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code.
AfterQC: automatic filtering, trimming, error removing and quality control for fastq data.
Chen, Shifu; Huang, Tanxiao; Zhou, Yanqing; Han, Yue; Xu, Mingyan; Gu, Jia
2017-03-14
Some applications, especially those clinical applications requiring high accuracy of sequencing data, usually have to face the troubles caused by unavoidable sequencing errors. Several tools have been proposed to profile the sequencing quality, but few of them can quantify or correct the sequencing errors. This unmet requirement motivated us to develop AfterQC, a tool with functions to profile sequencing errors and correct most of them, plus highly automated quality control and data filtering features. Different from most tools, AfterQC analyses the overlapping of paired sequences for pair-end sequencing data. Based on overlapping analysis, AfterQC can detect and cut adapters, and furthermore it gives a novel function to correct wrong bases in the overlapping regions. Another new feature is to detect and visualise sequencing bubbles, which can be commonly found on the flowcell lanes and may raise sequencing errors. Besides normal per cycle quality and base content plotting, AfterQC also provides features like polyX (a long sub-sequence of a same base X) filtering, automatic trimming and K-MER based strand bias profiling. For each single or pair of FastQ files, AfterQC filters out bad reads, detects and eliminates sequencer's bubble effects, trims reads at front and tail, detects the sequencing errors and corrects part of them, and finally outputs clean data and generates HTML reports with interactive figures. AfterQC can run in batch mode with multiprocess support, it can run with a single FastQ file, a single pair of FastQ files (for pair-end sequencing), or a folder for all included FastQ files to be processed automatically. Based on overlapping analysis, AfterQC can estimate the sequencing error rate and profile the error transform distribution. The results of our error profiling tests show that the error distribution is highly platform dependent. Much more than just another new quality control (QC) tool, AfterQC is able to perform quality control, data filtering, error profiling and base correction automatically. Experimental results show that AfterQC can help to eliminate the sequencing errors for pair-end sequencing data to provide much cleaner outputs, and consequently help to reduce the false-positive variants, especially for the low-frequency somatic mutations. While providing rich configurable options, AfterQC can detect and set all the options automatically and require no argument in most cases.
Terkola, R; Czejka, M; Bérubé, J
2017-08-01
Medication errors are a significant cause of morbidity and mortality especially with antineoplastic drugs, owing to their narrow therapeutic index. Gravimetric workflow software systems have the potential to reduce volumetric errors during intravenous antineoplastic drug preparation which may occur when verification is reliant on visual inspection. Our aim was to detect medication errors with possible critical therapeutic impact as determined by the rate of prevented medication errors in chemotherapy compounding after implementation of gravimetric measurement. A large-scale, retrospective analysis of data was carried out, related to medication errors identified during preparation of antineoplastic drugs in 10 pharmacy services ("centres") in five European countries following the introduction of an intravenous workflow software gravimetric system. Errors were defined as errors in dose volumes outside tolerance levels, identified during weighing stages of preparation of chemotherapy solutions which would not otherwise have been detected by conventional visual inspection. The gravimetric system detected that 7.89% of the 759 060 doses of antineoplastic drugs prepared at participating centres between July 2011 and October 2015 had error levels outside the accepted tolerance range set by individual centres, and prevented these doses from reaching patients. The proportion of antineoplastic preparations with deviations >10% ranged from 0.49% to 5.04% across sites, with a mean of 2.25%. The proportion of preparations with deviations >20% ranged from 0.21% to 1.27% across sites, with a mean of 0.71%. There was considerable variation in error levels for different antineoplastic agents. Introduction of a gravimetric preparation system for antineoplastic agents detected and prevented dosing errors which would not have been recognized with traditional methods and could have resulted in toxicity or suboptimal therapeutic outcomes for patients undergoing anticancer treatment. © 2017 The Authors. Journal of Clinical Pharmacy and Therapeutics Published by John Wiley & Sons Ltd.
Age-related variation in genetic control of height growth in Douglas-fir.
Namkoong, G; Usanis, R A; Silen, R R
1972-01-01
The development of genetic variances in height growth of Douglas-fir over a 53-year period is analyzed and found to fall into three periods. In the juvenile period, variances in environmental error increase logarithmically, genetic variance within populations exists at moderate levels, and variance among populations is low but increasing. In the early reproductive period, the response to environmental sources of error variance is restricted, genetic variance within populations disappears, and populational differences strongly emerge but do not increase as expected. In the later period, environmental error again increases rapidly, but genetic variance within populations does not reappear and population differences are maintained at about the same level as established in the early reproductive period. The change between the juvenile and early reproductive periods is perhaps associated with the onset of ecological dominance and significant allocations of energy to reproduction.
Teerawattananon, Kanlaya; Myint, Chaw-Yin; Wongkittirux, Kwanjai; Teerawattananon, Yot; Chinkulkitnivat, Bunyong; Orprayoon, Surapong; Kusakul, Suwat; Tengtrisorn, Supaporn; Jenchitr, Watanee
2014-01-01
As part of the development of a system for the screening of refractive error in Thai children, this study describes the accuracy and feasibility of establishing a program conducted by teachers. To assess the accuracy and feasibility of screening by teachers. A cross-sectional descriptive and analytical study was conducted in 17 schools in four provinces representing four geographic regions in Thailand. A two-staged cluster sampling was employed to compare the detection rate of refractive error among eligible students between trained teachers and health professionals. Serial focus group discussions were held for teachers and parents in order to understand their attitude towards refractive error screening at schools and the potential success factors and barriers. The detection rate of refractive error screening by teachers among pre-primary school children is relatively low (21%) for mild visual impairment but higher for moderate visual impairment (44%). The detection rate for primary school children is high for both levels of visual impairment (52% for mild and 74% for moderate). The focus group discussions reveal that both teachers and parents would benefit from further education regarding refractive errors and that the vast majority of teachers are willing to conduct a school-based screening program. Refractive error screening by health professionals in pre-primary and primary school children is not currently implemented in Thailand due to resource limitations. However, evidence suggests that a refractive error screening program conducted in schools by teachers in the country is reasonable and feasible because the detection and treatment of refractive error in very young generations is important and the screening program can be implemented and conducted with relatively low costs.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Lin, S.
1985-01-01
A concatenated coding scheme for error control in data communications is analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. The probability of undetected error of the above error control scheme is derived and upper bounded. Two specific exmaples are analyzed. In the first example, the inner code is a distance-4 shortened Hamming code with generator polynomial (X+1)(X(6)+X+1) = X(7)+X(6)+X(2)+1 and the outer code is a distance-4 shortened Hamming code with generator polynomial (X+1)X(15+X(14)+X(13)+X(12)+X(4)+X(3)+X(2)+X+1) = X(16)+X(12)+X(5)+1 which is the X.25 standard for packet-switched data network. This example is proposed for error control on NASA telecommand links. In the second example, the inner code is the same as that in the first example but the outer code is a shortened Reed-Solomon code with symbols from GF(2(8)) and generator polynomial (X+1)(X+alpha) where alpha is a primitive element in GF(z(8)).
Ruiz, María Herrojo; Strübing, Felix; Jabusch, Hans-Christian; Altenmüller, Eckart
2011-04-15
Skilled performance requires the ability to monitor ongoing behavior, detect errors in advance and modify the performance accordingly. The acquisition of fast predictive mechanisms might be possible due to the extensive training characterizing expertise performance. Recent EEG studies on piano performance reported a negative event-related potential (ERP) triggered in the ACC 70 ms before performance errors (pitch errors due to incorrect keypress). This ERP component, termed pre-error related negativity (pre-ERN), was assumed to reflect processes of error detection in advance. However, some questions remained to be addressed: (i) Does the electrophysiological marker prior to errors reflect an error signal itself or is it related instead to the implementation of control mechanisms? (ii) Does the posterior frontomedial cortex (pFMC, including ACC) interact with other brain regions to implement control adjustments following motor prediction of an upcoming error? (iii) Can we gain insight into the electrophysiological correlates of error prediction and control by assessing the local neuronal synchronization and phase interaction among neuronal populations? (iv) Finally, are error detection and control mechanisms defective in pianists with musician's dystonia (MD), a focal task-specific dystonia resulting from dysfunction of the basal ganglia-thalamic-frontal circuits? Consequently, we investigated the EEG oscillatory and phase synchronization correlates of error detection and control during piano performances in healthy pianists and in a group of pianists with MD. In healthy pianists, the main outcomes were increased pre-error theta and beta band oscillations over the pFMC and 13-15 Hz phase synchronization, between the pFMC and the right lateral prefrontal cortex, which predicted corrective mechanisms. In MD patients, the pattern of phase synchronization appeared in a different frequency band (6-8 Hz) and correlated with the severity of the disorder. The present findings shed new light on the neural mechanisms, which might implement motor prediction by means of forward control processes, as they function in healthy pianists and in their altered form in patients with MD. Copyright © 2010 Elsevier Inc. All rights reserved.
A two-factor error model for quantitative steganalysis
NASA Astrophysics Data System (ADS)
Böhme, Rainer; Ker, Andrew D.
2006-02-01
Quantitative steganalysis refers to the exercise not only of detecting the presence of hidden stego messages in carrier objects, but also of estimating the secret message length. This problem is well studied, with many detectors proposed but only a sparse analysis of errors in the estimators. A deep understanding of the error model, however, is a fundamental requirement for the assessment and comparison of different detection methods. This paper presents a rationale for a two-factor model for sources of error in quantitative steganalysis, and shows evidence from a dedicated large-scale nested experimental set-up with a total of more than 200 million attacks. Apart from general findings about the distribution functions found in both classes of errors, their respective weight is determined, and implications for statistical hypothesis tests in benchmarking scenarios or regression analyses are demonstrated. The results are based on a rigorous comparison of five different detection methods under many different external conditions, such as size of the carrier, previous JPEG compression, and colour channel selection. We include analyses demonstrating the effects of local variance and cover saturation on the different sources of error, as well as presenting the case for a relative bias model for between-image error.
Lahat, Ayelet; Lamm, Connie; Chronis-Tuscano, Andrea; Pine, Daniel S; Henderson, Heather A; Fox, Nathan A
2014-04-01
Behavioral inhibition (BI) is an early childhood temperament characterized by fearful responses to novelty and avoidance of social interactions. During adolescence, a subset of children with stable childhood BI develop social anxiety disorder and concurrently exhibit increased error monitoring. The current study examines whether increased error monitoring in 7-year-old, behaviorally inhibited children prospectively predicts risk for symptoms of social phobia at age 9 years. A total of 291 children were characterized on BI at 24 and 36 months of age. Children were seen again at 7 years of age, when they performed a Flanker task, and event-related potential (ERP) indices of response monitoring were generated. At age 9, self- and maternal-report of social phobia symptoms were obtained. Children high in BI, compared to those low in BI, displayed increased error monitoring at age 7, as indexed by larger (i.e., more negative) error-related negativity (ERN) amplitudes. In addition, early BI was related to later childhood social phobia symptoms at age 9 among children with a large difference in amplitude between ERN and correct-response negativity (CRN) at age 7. Heightened error monitoring predicts risk for later social phobia symptoms in children with high BI. Research assessing response monitoring in children with BI may refine our understanding of the mechanisms underlying risk for later anxiety disorders and inform prevention efforts. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. All rights reserved.
Threshold detection in an on-off binary communications channel with atmospheric scintillation
NASA Technical Reports Server (NTRS)
Webb, W. E.; Marino, J. T., Jr.
1974-01-01
The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-emperical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. Bit error probabilities for non-optimum threshold detection system were also investigated.
Threshold detection in an on-off binary communications channel with atmospheric scintillation
NASA Technical Reports Server (NTRS)
Webb, W. E.
1975-01-01
The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-empirical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. The bit error probabilities for nonoptimum threshold detection systems were also investigated.
Detecting Silent Data Corruption for Extreme-Scale Applications through Data Mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bautista-Gomez, Leonardo; Cappello, Franck
Supercomputers allow scientists to study natural phenomena by means of computer simulations. Next-generation machines are expected to have more components and, at the same time, consume several times less energy per operation. These trends are pushing supercomputer construction to the limits of miniaturization and energy-saving strategies. Consequently, the number of soft errors is expected to increase dramatically in the coming years. While mechanisms are in place to correct or at least detect some soft errors, a significant percentage of those errors pass unnoticed by the hardware. Such silent errors are extremely damaging because they can make applications silently produce wrongmore » results. In this work we propose a technique that leverages certain properties of high-performance computing applications in order to detect silent errors at the application level. Our technique detects corruption solely based on the behavior of the application datasets and is completely application-agnostic. We propose multiple corruption detectors, and we couple them to work together in a fashion transparent to the user. We demonstrate that this strategy can detect the majority of the corruptions, while incurring negligible overhead. We show that with the help of these detectors, applications can have up to 80% of coverage against data corruption.« less
Mészáros, Norbert; Major, Tibor; Stelczer, Gábor; Zaka, Zoltán; Mózsa, Emõke; Fodor, János; Polgár, Csaba
2015-06-01
The purpose of the study was to implement accelerated partial breast irradiation (APBI) by means of image-guided intensity-modulated radiotherapy (IG-IMRT) following breast-conserving surgery (BCS) for low-risk early invasive breast cancer. Between July 2011 and March 2014, 60 patients with low-risk early invasive (St I-II) breast cancer who underwent BCS were enrolled in our phase II prospective study. Postoperative APBI was given by means of step and shoot IG-IMRT using 4 to 5 fields to a total dose of 36.9 Gy (9×4.1 Gy) using a twice-a-day fractionation. Before each fraction, series of CT images were taken from the region of the target volume using a kV CT on-rail mounted in the treatment room. An image fusion software was used for automatic image registration of the planning and verification CT images. Patient set-up errors were detected in three directions (LAT, LONG, VERT), and inaccuracies were adjusted by automatic movements of the treatment table. Breast cancer related events, acute and late toxicities, and cosmetic results were registered and analysed. At a median follow-up of 24 months (range 12-44) neither locoregional nor distant failure was observed. Grade 1 (G1), G2 erythema, G1 oedema, and G1 and G2 pain occurred in 21 (35%), 2 (3.3%), 23 (38.3%), 6 (10%) and 2 (3.3%) patients, respectively. No G3-4 acute side effects were detected. Among late radiation side effects G1 pigmentation, G1 fibrosis, and G1 fat necrosis occurred in 5 (8.3%), 7 (11.7%), and 2 (3.3%) patients, respectively. No ≥G2 late toxicity was detected. Excellent and good cosmetic outcome was detected in 45 (75%) and 15 (25%) patients. IG-IMRT is a reproducible and feasible technique for the delivery of APBI following conservative surgery for the treatment of low-risk, early-stage invasive breast carcinoma. Preliminary results are promising, early radiation side effects are minimal, and cosmetic results are excellent.
Increased instrument intelligence--can it reduce laboratory error?
Jekelis, Albert W
2005-01-01
Recent literature has focused on the reduction of laboratory errors and the potential impact on patient management. This study assessed the intelligent, automated preanalytical process-control abilities in newer generation analyzers as compared with older analyzers and the impact on error reduction. Three generations of immuno-chemistry analyzers were challenged with pooled human serum samples for a 3-week period. One of the three analyzers had an intelligent process of fluidics checks, including bubble detection. Bubbles can cause erroneous results due to incomplete sample aspiration. This variable was chosen because it is the most easily controlled sample defect that can be introduced. Traditionally, lab technicians have had to visually inspect each sample for the presence of bubbles. This is time consuming and introduces the possibility of human error. Instruments with bubble detection may be able to eliminate the human factor and reduce errors associated with the presence of bubbles. Specific samples were vortexed daily to introduce a visible quantity of bubbles, then immediately placed in the daily run. Errors were defined as a reported result greater than three standard deviations below the mean and associated with incomplete sample aspiration of the analyte of the individual analyzer Three standard deviations represented the target limits of proficiency testing. The results of the assays were examined for accuracy and precision. Efficiency, measured as process throughput, was also measured to associate a cost factor and potential impact of the error detection on the overall process. The analyzer performance stratified according to their level of internal process control The older analyzers without bubble detection reported 23 erred results. The newest analyzer with bubble detection reported one specimen incorrectly. The precision and accuracy of the nonvortexed specimens were excellent and acceptable for all three analyzers. No errors were found in the nonvortexed specimens. There were no significant differences in overall process time for any of the analyzers when tests were arranged in an optimal configuration. The analyzer with advanced fluidic intelligence demostrated the greatest ability to appropriately deal with an incomplete aspiration by not processing and reporting a result for the sample. This study suggests that preanalytical process-control capabilities could reduce errors. By association, it implies that similar intelligent process controls could favorably impact the error rate and, in the case of this instrument, do it without negatively impacting process throughput. Other improvements may be realized as a result of having an intelligent error-detection process including further reduction in misreported results, fewer repeats, less operator intervention, and less reagent waste.
Location precision analysis of stereo thermal anti-sniper detection system
NASA Astrophysics Data System (ADS)
He, Yuqing; Lu, Ya; Zhang, Xiaoyan; Jin, Weiqi
2012-06-01
Anti-sniper detection devices are the urgent requirement in modern warfare. The precision of the anti-sniper detection system is especially important. This paper discusses the location precision analysis of the anti-sniper detection system based on the dual-thermal imaging system. It mainly discusses the following two aspects which produce the error: the digital quantitative effects of the camera; effect of estimating the coordinate of bullet trajectory according to the infrared images in the process of image matching. The formula of the error analysis is deduced according to the method of stereovision model and digital quantitative effects of the camera. From this, we can get the relationship of the detecting accuracy corresponding to the system's parameters. The analysis in this paper provides the theory basis for the error compensation algorithms which are put forward to improve the accuracy of 3D reconstruction of the bullet trajectory in the anti-sniper detection devices.
Entanglement-enhanced Neyman-Pearson target detection using quantum illumination
NASA Astrophysics Data System (ADS)
Zhuang, Quntao; Zhang, Zheshen; Shapiro, Jeffrey H.
2017-08-01
Quantum illumination (QI) provides entanglement-based target detection---in an entanglement-breaking environment---whose performance is significantly better than that of optimum classical-illumination target detection. QI's performance advantage was established in a Bayesian setting with the target presumed equally likely to be absent or present and error probability employed as the performance metric. Radar theory, however, eschews that Bayesian approach, preferring the Neyman-Pearson performance criterion to avoid the difficulties of accurately assigning prior probabilities to target absence and presence and appropriate costs to false-alarm and miss errors. We have recently reported an architecture---based on sum-frequency generation (SFG) and feedforward (FF) processing---for minimum error-probability QI target detection with arbitrary prior probabilities for target absence and presence. In this paper, we use our results for FF-SFG reception to determine the receiver operating characteristic---detection probability versus false-alarm probability---for optimum QI target detection under the Neyman-Pearson criterion.
Flavour and identification threshold detection overview of Slovak adepts for certified testing.
Vietoris, VladimIr; Barborova, Petra; Jancovicova, Jana; Eliasova, Lucia; Karvaj, Marian
2016-07-01
During certification process of sensory assessors of Slovak certification body we obtained results for basic taste thresholds and lifestyle habits. 500 adult people were screened during experiment with food industry background. For analysis of basic and non basic tastes, we used standardized procedure of ISO 8586-1:1993. In flavour test experiment, group of (26-35 y.o) produced the lowest error ratio (1.438), highest is (56+ y.o.) group with result (2.0). Average error value based on gender for women was (1.510) in comparison to men (1.477). People with allergies have the average error ratio (1.437) in comparison to people without allergies (1.511). Non-smokers produced less errors (1.484) against the smokers (1.576). Another flavour threshold identification test detected differences among age groups (by age are values increased). The highest number of errors made by men in metallic taste was (24%) the same as made by women (22%). Higher error ratio made by men occurred in salty taste (19%) against women (10%). Analysis detected some differences between allergic/non-allergic, smokers/non-smokers groups.
Aggressive periodontitis: case definition and diagnostic criteria.
Albandar, Jasim M
2014-06-01
Aggressive periodontitis is a destructive disease characterized by the following: the involvement of multiple teeth with a distinctive pattern of periodontal tissue loss; a high rate of disease progression; an early age of onset; and the absence of systemic diseases. In some patients periodontal tissue loss may commence before puberty, whereas in most patients the age of onset is during or somewhat after the circumpubertal period. Besides infection with specific microorganisms, a host predisposition seems to play a key role in the pathogenesis of aggressive periodontitis, as evidenced by the familial aggregation of the disease. In this article we review the historical background of the diagnostic criteria of aggressive periodontitis, present a contemporary case definition and describe the clinical parameters of the disease. At present, the diagnosis of aggressive periodontitis is achieved using case history, clinical examination and radiographic evaluation. The data gathered using these methods are prone to relatively high measurement errors. Besides, this diagnostic approach measures past disease history and may not reliably measure existing disease activity or accurately predict future tissue loss. A diagnosis is often made years after the onset of the disease, partly because current assessment methods detect established disease more readily and reliably than they detect incipient or initial lesions where the tissue loss is minimal and usually below the detection threshold of present examination methods. Future advancements in understanding the pathogenesis of this disease may contribute to an earlier diagnosis. Insofar, future case definitions may involve the identification of key etiologic and risk factors, combined with high-precision methodologies that enable the early detection of initial lesions. This may significantly enhance the predictive value of these tests and detect cases of aggressive periodontitis before significant tissue loss develops. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Influence of incident angle on the decoding in laser polarization encoding guidance
NASA Astrophysics Data System (ADS)
Zhou, Muchun; Chen, Yanru; Zhao, Qi; Xin, Yu; Wen, Hongyuan
2009-07-01
Dynamic detection of polarization states is very important for laser polarization coding guidance systems. In this paper, a set of dynamic polarization decoding and detection system used in laser polarization coding guidance was designed. Detection process of the normal incident polarized light is analyzed with Jones Matrix; the system can effectively detect changes in polarization. Influence of non-normal incident light on performance of polarization decoding and detection system is studied; analysis showed that changes in incident angle will have a negative impact on measure results, the non-normal incident influence is mainly caused by second-order birefringence and polarization sensitivity effect generated in the phase delay and beam splitter prism. Combined with Fresnel formula, decoding errors of linearly polarized light, elliptically polarized light and circularly polarized light with different incident angles into the detector are calculated respectively, the results show that the decoding errors increase with increase of incident angle. Decoding errors have relations with geometry parameters, material refractive index of wave plate, polarization beam splitting prism. Decoding error can be reduced by using thin low-order wave-plate. Simulation of detection of polarized light with different incident angle confirmed the corresponding conclusions.
Annotation of Korean Learner Corpora for Particle Error Detection
ERIC Educational Resources Information Center
Lee, Sun-Hee; Jang, Seok Bae; Seo, Sang-Kyu
2009-01-01
In this study, we focus on particle errors and discuss an annotation scheme for Korean learner corpora that can be used to extract heuristic patterns of particle errors efficiently. We investigate different properties of particle errors so that they can be later used to identify learner errors automatically, and we provide resourceful annotation…
Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection.
Jalalian, Afsaneh; Mashohor, Syamsiah; Mahmud, Rozi; Karasfi, Babak; Saripan, M Iqbal B; Ramli, Abdul Rahman B
2017-01-01
Breast cancer is the most prevalent cancer that affects women all over the world. Early detection and treatment of breast cancer could decline the mortality rate. Some issues such as technical reasons, which related to imaging quality and human error, increase misdiagnosis of breast cancer by radiologists. Computer-aided detection systems (CADs) are developed to overcome these restrictions and have been studied in many imaging modalities for breast cancer detection in recent years. The CAD systems improve radiologists' performance in finding and discriminating between the normal and abnormal tissues. These procedures are performed only as a double reader but the absolute decisions are still made by the radiologist. In this study, the recent CAD systems for breast cancer detection on different modalities such as mammography, ultrasound, MRI, and biopsy histopathological images are introduced. The foundation of CAD systems generally consist of four stages: Pre-processing, Segmentation, Feature extraction, and Classification. The approaches which applied to design different stages of CAD system are summarised. Advantages and disadvantages of different segmentation, feature extraction and classification techniques are listed. In addition, the impact of imbalanced datasets in classification outcomes and appropriate methods to solve these issues are discussed. As well as, performance evaluation metrics for various stages of breast cancer detection CAD systems are reviewed.
Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection
Jalalian, Afsaneh; Mashohor, Syamsiah; Mahmud, Rozi; Karasfi, Babak; Saripan, M. Iqbal B.; Ramli, Abdul Rahman B.
2017-01-01
Breast cancer is the most prevalent cancer that affects women all over the world. Early detection and treatment of breast cancer could decline the mortality rate. Some issues such as technical reasons, which related to imaging quality and human error, increase misdiagnosis of breast cancer by radiologists. Computer-aided detection systems (CADs) are developed to overcome these restrictions and have been studied in many imaging modalities for breast cancer detection in recent years. The CAD systems improve radiologists' performance in finding and discriminating between the normal and abnormal tissues. These procedures are performed only as a double reader but the absolute decisions are still made by the radiologist. In this study, the recent CAD systems for breast cancer detection on different modalities such as mammography, ultrasound, MRI, and biopsy histopathological images are introduced. The foundation of CAD systems generally consist of four stages: Pre-processing, Segmentation, Feature extraction, and Classification. The approaches which applied to design different stages of CAD system are summarised. Advantages and disadvantages of different segmentation, feature extraction and classification techniques are listed. In addition, the impact of imbalanced datasets in classification outcomes and appropriate methods to solve these issues are discussed. As well as, performance evaluation metrics for various stages of breast cancer detection CAD systems are reviewed. PMID:28435432
Algorithms for the detection of chewing behavior in dietary monitoring applications
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Helal, Abdelsalam; Mendez-Vasquez, Andres
2009-08-01
The detection of food consumption is key to the implementation of successful behavior modification in support of dietary monitoring and therapy, for example, during the course of controlling obesity, diabetes, or cardiovascular disease. Since the vast majority of humans consume food via mastication (chewing), we have designed an algorithm that automatically detects chewing behaviors in surveillance video of a person eating. Our algorithm first detects the mouth region, then computes the spatiotemporal frequency spectrum of a small perioral region (including the mouth). Spectral data are analyzed to determine the presence of periodic motion that characterizes chewing. A classifier is then applied to discriminate different types of chewing behaviors. Our algorithm was tested on seven volunteers, whose behaviors included chewing with mouth open, chewing with mouth closed, talking, static face presentation (control case), and moving face presentation. Early test results show that the chewing behaviors induce a temporal frequency peak at 0.5Hz to 2.5Hz, which is readily detected using a distance-based classifier. Computational cost is analyzed for implementation on embedded processing nodes, for example, in a healthcare sensor network. Complexity analysis emphasizes the relationship between the work and space estimates of the algorithm, and its estimated error. It is shown that chewing detection is possible within a computationally efficient, accurate, and subject-independent framework.
Lyons-Weiler, James; Pelikan, Richard; Zeh, Herbert J; Whitcomb, David C; Malehorn, David E; Bigbee, William L; Hauskrecht, Milos
2005-01-01
Peptide profiles generated using SELDI/MALDI time of flight mass spectrometry provide a promising source of patient-specific information with high potential impact on the early detection and classification of cancer and other diseases. The new profiling technology comes, however, with numerous challenges and concerns. Particularly important are concerns of reproducibility of classification results and their significance. In this work we describe a computational validation framework, called PACE (Permutation-Achieved Classification Error), that lets us assess, for a given classification model, the significance of the Achieved Classification Error (ACE) on the profile data. The framework compares the performance statistic of the classifier on true data samples and checks if these are consistent with the behavior of the classifier on the same data with randomly reassigned class labels. A statistically significant ACE increases our belief that a discriminative signal was found in the data. The advantage of PACE analysis is that it can be easily combined with any classification model and is relatively easy to interpret. PACE analysis does not protect researchers against confounding in the experimental design, or other sources of systematic or random error. We use PACE analysis to assess significance of classification results we have achieved on a number of published data sets. The results show that many of these datasets indeed possess a signal that leads to a statistically significant ACE.
Judging the judges' performance in rhythmic gymnastics.
Flessas, Konstantinos; Mylonas, Dimitris; Panagiotaropoulou, Georgia; Tsopani, Despina; Korda, Alexandrea; Siettos, Constantinos; Di Cagno, Alessandra; Evdokimidis, Ioannis; Smyrnis, Nikolaos
2015-03-01
Rhythmic gymnastics (RG) is an aesthetic event balancing between art and sport that also has a performance rating system (Code of Points) given by the International Gymnastics Federation. It is one of the sports in which competition results greatly depend on the judges' evaluation. In the current study, we explored the judges' performance in a five-gymnast ensemble routine. An expert-novice paradigm (10 international-level, 10 national-level, and 10 novice-level judges) was implemented under a fully simulated procedure of judgment in a five-gymnast ensemble routine of RG using two videos of routines performed by the Greek national team of RG. Simultaneous recordings of two-dimensional eye movements were taken during the judgment procedure to assess the percentage of time spent by each judge viewing the videos and fixation performance of each judge when an error in gymnast performance had occurred. All judge level groups had very modest performance of error recognition on gymnasts' routines, and the best international judges reported approximately 40% of true errors. Novice judges spent significantly more time viewing the videos compared with national and international judges and spent significantly more time fixating detected errors than the other two groups. National judges were the only group that made efficient use of fixation to detect errors. The fact that international-level judges outperformed both other groups, while not relying on visual fixation to detect errors, suggests that these experienced judges probably make use of other cognitive strategies, increasing their overall error detection efficiency, which was, however, still far below optimum.
Quantitative evaluation of patient-specific quality assurance using online dosimetry system
NASA Astrophysics Data System (ADS)
Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk
2018-01-01
In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).
Tomography of a displacement photon counter for discrimination of single-rail optical qubits
NASA Astrophysics Data System (ADS)
Izumi, Shuro; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.
2018-04-01
We investigate the performance of a detection strategy composed of a displacement operation and a photon counter, which is known as a beneficial tool in optical coherent communications, to the quantum state discrimination of the two superpositions of vacuum and single photon states corresponding to the {\\hat{σ }}x eigenstates in the single-rail encoding of photonic qubits. We experimentally characterize the detection strategy in vacuum-single photon two-dimensional space using quantum detector tomography and evaluate the achievable discrimination error probability from the reconstructed measurement operators. We furthermore derive the minimum error rate obtainable with Gaussian transformations and homodyne detection. Our proof-of-principle experiment shows that the proposed scheme can achieve a discrimination error surpassing homodyne detection.
System reliability and recovery.
DOT National Transportation Integrated Search
1971-06-01
The paper exhibits a variety of reliability techniques applicable to future ATC data processing systems. Presently envisioned schemes for error detection, error interrupt and error analysis are considered, along with methods of retry, reconfiguration...
European Neolithic societies showed early warning signals of population collapse
Downey, Sean S.; Haas, W. Randall; Shennan, Stephen J.
2016-01-01
Ecosystems on the verge of major reorganization—regime shift—may exhibit declining resilience, which can be detected using a collection of generic statistical tests known as early warning signals (EWSs). This study explores whether EWSs anticipated human population collapse during the European Neolithic. It analyzes recent reconstructions of European Neolithic (8–4 kya) population trends that reveal regime shifts from a period of rapid growth following the introduction of agriculture to a period of instability and collapse. We find statistical support for EWSs in advance of population collapse. Seven of nine regional datasets exhibit increasing autocorrelation and variance leading up to collapse, suggesting that these societies began to recover from perturbation more slowly as resilience declined. We derive EWS statistics from a prehistoric population proxy based on summed archaeological radiocarbon date probability densities. We use simulation to validate our methods and show that sampling biases, atmospheric effects, radiocarbon calibration error, and taphonomic processes are unlikely to explain the observed EWS patterns. The implications of these results for understanding the dynamics of Neolithic ecosystems are discussed, and we present a general framework for analyzing societal regime shifts using EWS at large spatial and temporal scales. We suggest that our findings are consistent with an adaptive cycling model that highlights both the vulnerability and resilience of early European populations. We close by discussing the implications of the detection of EWS in human systems for archaeology and sustainability science. PMID:27573833
Updating expected action outcome in the medial frontal cortex involves an evaluation of error type.
Maier, Martin E; Steinhauser, Marco
2013-10-02
Forming expectations about the outcome of an action is an important prerequisite for action control and reinforcement learning in the human brain. The medial frontal cortex (MFC) has been shown to play an important role in the representation of outcome expectations, particularly when an update of expected outcome becomes necessary because an error is detected. However, error detection alone is not always sufficient to compute expected outcome because errors can occur in various ways and different types of errors may be associated with different outcomes. In the present study, we therefore investigate whether updating expected outcome in the human MFC is based on an evaluation of error type. Our approach was to consider an electrophysiological correlate of MFC activity on errors, the error-related negativity (Ne/ERN), in a task in which two types of errors could occur. Because the two error types were associated with different amounts of monetary loss, updating expected outcomes on error trials required an evaluation of error type. Our data revealed a pattern of Ne/ERN amplitudes that closely mirrored the amount of monetary loss associated with each error type, suggesting that outcome expectations are updated based on an evaluation of error type. We propose that this is achieved by a proactive evaluation process that anticipates error types by continuously monitoring error sources or by dynamically representing possible response-outcome relations.
Differential Characteristics Based Iterative Multiuser Detection for Wireless Sensor Networks
Chen, Xiaoguang; Jiang, Xu; Wu, Zhilu; Zhuang, Shufeng
2017-01-01
High throughput, low latency and reliable communication has always been a hot topic for wireless sensor networks (WSNs) in various applications. Multiuser detection is widely used to suppress the bad effect of multiple access interference in WSNs. In this paper, a novel multiuser detection method based on differential characteristics is proposed to suppress multiple access interference. The proposed iterative receive method consists of three stages. Firstly, a differential characteristics function is presented based on the optimal multiuser detection decision function; then on the basis of differential characteristics, a preliminary threshold detection is utilized to find the potential wrongly received bits; after that an error bit corrector is employed to correct the wrong bits. In order to further lower the bit error ratio (BER), the differential characteristics calculation, threshold detection and error bit correction process described above are iteratively executed. Simulation results show that after only a few iterations the proposed multiuser detection method can achieve satisfactory BER performance. Besides, BER and near far resistance performance are much better than traditional suboptimal multiuser detection methods. Furthermore, the proposed iterative multiuser detection method also has a large system capacity. PMID:28212328
SU-F-T-310: Does a Head-Mounted Ionization Chamber Detect IMRT Errors?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wegener, S; Herzog, B; Sauer, O
2016-06-15
Purpose: The conventional plan verification strategy is delivering a plan to a QA-phantom before the first treatment. Monitoring each fraction of the patient treatment in real-time would improve patient safety. We evaluated how well a new detector, the IQM (iRT Systems, Germany), is capable of detecting errors we induced into IMRT plans of three different treatment regions. Results were compared to an established phantom. Methods: Clinical plans of a brain, prostate and head-and-neck patient were modified in the Pinnacle planning system, such that they resulted in either several percent lower prescribed doses to the target volume or several percent highermore » doses to relevant organs at risk. Unaltered plans were measured on three days, modified plans once, each with the IQM at an Elekta Synergy with an Agility MLC. All plans were also measured with the ArcCHECK with the cavity plug and a PTW semiflex 31010 ionization chamber inserted. Measurements were evaluated with SNC patient software. Results: Repeated IQM measurements of the original plans were reproducible, such that a 1% deviation from the mean as warning and 3% as action level as suggested by the manufacturer seemed reasonable. The IQM detected most of the simulated errors including wrong energy, a faulty leaf, wrong trial exported and a 2 mm shift of one leaf bank. Detection limits were reached for two plans - a 2 mm field position error and a leaf bank offset combined with an MU change. ArcCHECK evaluation according to our current standards also left undetected errors. Ionization chamber evaluation alone would leave most errors undetected. Conclusion: The IQM detected most errors and performed as well as currently established phantoms with the advantage that it can be used throughout the whole treatment. Drawback is that it does not indicate the source of the error.« less
Friedman, Lee; Rigas, Ioannis; Abdulin, Evgeny; Komogortsev, Oleg V
2018-05-15
Nystrӧm and Holmqvist have published a method for the classification of eye movements during reading (ONH) (Nyström & Holmqvist, 2010). When we applied this algorithm to our data, the results were not satisfactory, so we modified the algorithm (now the MNH) to better classify our data. The changes included: (1) reducing the amount of signal filtering, (2) excluding a new type of noise, (3) removing several adaptive thresholds and replacing them with fixed thresholds, (4) changing the way that the start and end of each saccade was determined, (5) employing a new algorithm for detecting PSOs, and (6) allowing a fixation period to either begin or end with noise. A new method for the evaluation of classification algorithms is presented. It was designed to provide comprehensive feedback to an algorithm developer, in a time-efficient manner, about the types and numbers of classification errors that an algorithm produces. This evaluation was conducted by three expert raters independently, across 20 randomly chosen recordings, each classified by both algorithms. The MNH made many fewer errors in determining when saccades start and end, and it also detected some fixations and saccades that the ONH did not. The MNH fails to detect very small saccades. We also evaluated two additional algorithms: the EyeLink Parser and a more current, machine-learning-based algorithm. The EyeLink Parser tended to find more saccades that ended too early than did the other methods, and we found numerous problems with the output of the machine-learning-based algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graus, Matthew S.; Neumann, Aaron K.; Timlin, Jerilyn A.
Fungi in the Candida genus are the most common fungal pathogens. They not only cause high morbidity and mortality but can also cost billions of dollars in healthcare. To alleviate this burden, early and accurate identification of Candida species is necessary. However, standard identification procedures can take days and have a large false negative error. The method described in this study takes advantage of hyperspectral confocal fluorescence microscopy, which enables the capability to quickly and accurately identify and characterize the unique autofluorescence spectra from different Candida species with up to 84% accuracy when grown in conditions that closely mimic physiologicalmore » conditions.« less
Waveguide Modulator for Interference Tolerant Functional Near Infrared Spectrometer (fNIRS)
NASA Technical Reports Server (NTRS)
Walton, Joanne; Tin, Padetha; Mackey, Jeffrey
2017-01-01
Many crew-related errors in aviation and astronautics are caused by hazardous cognitive states including overstress, disengagement, high fatigue and ineffective crew coordination. Safety can be improved by monitoring and predicting these cognitive states in a non-intrusive manner and designing mitigation strategies. Measuring hemoglobin concentration changes in the brain with functional Near Infrared Spectroscopy is a promising technique for monitoring cognitive state and optimizing human performance during both space and aviation operations. A compact, wearable fNIRS system would provide an innovative early warning system during long duration missions to detect and prevent vigilance decrements in pilots and astronauts. This effort focused on developing a waveguide modulator for use in a fNIRS system.
Graus, Matthew S.; Neumann, Aaron K.; Timlin, Jerilyn A.
2017-01-05
Fungi in the Candida genus are the most common fungal pathogens. They not only cause high morbidity and mortality but can also cost billions of dollars in healthcare. To alleviate this burden, early and accurate identification of Candida species is necessary. However, standard identification procedures can take days and have a large false negative error. The method described in this study takes advantage of hyperspectral confocal fluorescence microscopy, which enables the capability to quickly and accurately identify and characterize the unique autofluorescence spectra from different Candida species with up to 84% accuracy when grown in conditions that closely mimic physiologicalmore » conditions.« less
Verification and Validation of Autonomy Software at NASA
NASA Technical Reports Server (NTRS)
Pecheur, Charles
2000-01-01
Autonomous software holds the promise of new operation possibilities, easier design and development and lower operating costs. However, as those system close control loops and arbitrate resources on board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques and concrete experiments at NASA.
Verification and Validation of Autonomy Software at NASA
NASA Technical Reports Server (NTRS)
Pecheur, Charles
2000-01-01
Autonomous software holds the promise of new operation possibilities, easier design and development, and lower operating costs. However, as those system close control loops and arbitrate resources on-board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques, and concrete experiments at NASA.
‘Why should I care?’ Challenging free will attenuates neural reaction to errors
Pourtois, Gilles; Brass, Marcel
2015-01-01
Whether human beings have free will has been a philosophical question for centuries. The debate about free will has recently entered the public arena through mass media and newspaper articles commenting on scientific findings that leave little to no room for free will. Previous research has shown that encouraging such a deterministic perspective influences behavior, namely by promoting cursory and antisocial behavior. Here we propose that such behavioral changes may, at least partly, stem from a more basic neurocognitive process related to response monitoring, namely a reduced error detection mechanism. Our results show that the error-related negativity, a neural marker of error detection, was reduced in individuals led to disbelieve in free will. This finding shows that reducing the belief in free will has a specific impact on error detection mechanisms. More generally, it suggests that abstract beliefs about intentional control can influence basic and automatic processes related to action control. PMID:24795441
Michael, Claire W; Naik, Kalyani; McVicker, Michael
2013-05-01
We developed a value stream map (VSM) of the Papanicolaou test procedure to identify opportunities to reduce waste and errors, created a new VSM, and implemented a new process emphasizing Lean tools. Preimplementation data revealed the following: (1) processing time (PT) for 1,140 samples averaged 54 hours; (2) 27 accessioning errors were detected on review of 357 random requisitions (7.6%); (3) 5 of the 20,060 tests had labeling errors that had gone undetected in the processing stage. Four were detected later during specimen processing but 1 reached the reporting stage. Postimplementation data were as follows: (1) PT for 1,355 samples averaged 31 hours; (2) 17 accessioning errors were detected on review of 385 random requisitions (4.4%); and (3) no labeling errors were undetected. Our results demonstrate that implementation of Lean methods, such as first-in first-out processes and minimizing batch size by staff actively participating in the improvement process, allows for higher quality, greater patient safety, and improved efficiency.
NASA Astrophysics Data System (ADS)
Prufrock, Kristen A.; López-Torres, Sergi; Silcox, Mary T.; Boyer, Doug M.
2016-06-01
Dental topographic metrics provide quantitative, biologically meaningful data on the three-dimensional (3D) form of teeth. In this study, three dental topographic metrics (Dirichlet normal energy (DNE), relief index (RFI), and orientation patch count rotated (OPCR)) are used to evaluate the presence of dietary niche overlap between North American plesiadapoid primates (Plesiadapidae, Carpolestidae, and Saxonellidae) and early rodents. Calculation of these metrics requires researchers to modify the 3D surface models of the teeth by cropping them to a region of interest and/or orienting them. The current study therefore also examines the error introduced by cropping and orientation, and evaluates the contribution of these metrics to the niche overlap hypothesis. Our results indicate that cropping creates significantly more variation in RFI than DNE. Furthermore, orientation is an even larger source of variation in the calculation of RFI than cropping. Orientation does not strongly influence OPCR values. However, none of these sources of error are significant enough to undermine the extent to which these metrics can speak to the niche overlap hypothesis. The DNE and RFI results suggest that carpolestids and saxonellids had very different molar morphologies from early rodents, and thus these groups were not adapted to consume the same resources. Some plesiadapids show similar levels of occlusal curvature, relief, and complexity to early rodents. The plesiadapid Chiromyoides, which has distinctively low cusps and weak shearing crest development, has molars that are the most rodent-like of all taxa compared. This suggests that Chiromyoides had a dietary niche that overlapped with early rodents and would have been the most likely to be competing over food resources. Results from the plesiadapoid-rodent dental topographic analysis highlight the utility of DNE for detecting more fine-scaled differences in occlusal surface morphology than OPCR, whereas RFI provided valuable data on the degree to which teeth were high crowned.
Identifying medication error chains from critical incident reports: a new analytic approach.
Huckels-Baumgart, Saskia; Manser, Tanja
2014-10-01
Research into the distribution of medication errors usually focuses on isolated stages within the medication use process. Our study aimed to provide a novel process-oriented approach to medication incident analysis focusing on medication error chains. Our study was conducted across a 900-bed teaching hospital in Switzerland. All reported 1,591 medication errors 2009-2012 were categorized using the Medication Error Index NCC MERP and the WHO Classification for Patient Safety Methodology. In order to identify medication error chains, each reported medication incident was allocated to the relevant stage of the hospital medication use process. Only 25.8% of the reported medication errors were detected before they propagated through the medication use process. The majority of medication errors (74.2%) formed an error chain encompassing two or more stages. The most frequent error chain comprised preparation up to and including medication administration (45.2%). "Non-consideration of documentation/prescribing" during the drug preparation was the most frequent contributor for "wrong dose" during the administration of medication. Medication error chains provide important insights for detecting and stopping medication errors before they reach the patient. Existing and new safety barriers need to be extended to interrupt error chains and to improve patient safety. © 2014, The American College of Clinical Pharmacology.
Chambert, Thierry A.; Waddle, J. Hardin; Miller, David A.W.; Walls, Susan; Nichols, James D.
2018-01-01
The development and use of automated species-detection technologies, such as acoustic recorders, for monitoring wildlife are rapidly expanding. Automated classification algorithms provide a cost- and time-effective means to process information-rich data, but often at the cost of additional detection errors. Appropriate methods are necessary to analyse such data while dealing with the different types of detection errors.We developed a hierarchical modelling framework for estimating species occupancy from automated species-detection data. We explore design and optimization of data post-processing procedures to account for detection errors and generate accurate estimates. Our proposed method accounts for both imperfect detection and false positive errors and utilizes information about both occurrence and abundance of detections to improve estimation.Using simulations, we show that our method provides much more accurate estimates than models ignoring the abundance of detections. The same findings are reached when we apply the methods to two real datasets on North American frogs surveyed with acoustic recorders.When false positives occur, estimator accuracy can be improved when a subset of detections produced by the classification algorithm is post-validated by a human observer. We use simulations to investigate the relationship between accuracy and effort spent on post-validation, and found that very accurate occupancy estimates can be obtained with as little as 1% of data being validated.Automated monitoring of wildlife provides opportunity and challenges. Our methods for analysing automated species-detection data help to meet key challenges unique to these data and will prove useful for many wildlife monitoring programs.
Steward, Christine D.; Stocker, Sheila A.; Swenson, Jana M.; O’Hara, Caroline M.; Edwards, Jonathan R.; Gaynes, Robert P.; McGowan, John E.; Tenover, Fred C.
1999-01-01
Fluoroquinolone resistance appears to be increasing in many species of bacteria, particularly in those causing nosocomial infections. However, the accuracy of some antimicrobial susceptibility testing methods for detecting fluoroquinolone resistance remains uncertain. Therefore, we compared the accuracy of the results of agar dilution, disk diffusion, MicroScan Walk Away Neg Combo 15 conventional panels, and Vitek GNS-F7 cards to the accuracy of the results of the broth microdilution reference method for detection of ciprofloxacin and ofloxacin resistance in 195 clinical isolates of the family Enterobacteriaceae collected from six U.S. hospitals for a national surveillance project (Project ICARE [Intensive Care Antimicrobial Resistance Epidemiology]). For ciprofloxacin, very major error rates were 0% (disk diffusion and MicroScan), 0.9% (agar dilution), and 2.7% (Vitek), while major error rates ranged from 0% (agar dilution) to 3.7% (MicroScan and Vitek). Minor error rates ranged from 12.3% (agar dilution) to 20.5% (MicroScan). For ofloxacin, no very major errors were observed, and major errors were noted only with MicroScan (3.7% major error rate). Minor error rates ranged from 8.2% (agar dilution) to 18.5% (Vitek). Minor errors for all methods were substantially reduced when results with MICs within ±1 dilution of the broth microdilution reference MIC were excluded from analysis. However, the high number of minor errors by all test systems remains a concern. PMID:9986809
Patient identification errors: the detective in the laboratory.
Salinas, Maria; López-Garrigós, Maite; Lillo, Rosa; Gutiérrez, Mercedes; Lugo, Javier; Leiva-Salinas, Carlos
2013-11-01
The eradication of errors regarding patients' identification is one of the main goals for safety improvement. As clinical laboratory intervenes in 70% of clinical decisions, laboratory safety is crucial in patient safety. We studied the number of Laboratory Information System (LIS) demographic data errors registered in our laboratory during one year. The laboratory attends a variety of inpatients and outpatients. The demographic data of outpatients is registered in the LIS, when they present to the laboratory front desk. The requests from the primary care centers (PCC) are made electronically by the general practitioner. A manual step is always done at the PCC to conciliate the patient identification number in the electronic request with the one in the LIS. Manual registration is done through hospital information system demographic data capture when patient's medical record number is registered in LIS. Laboratory report is always sent out electronically to the patient's electronic medical record. Daily, every demographic data in LIS is manually compared to the request form to detect potential errors. Fewer errors were committed when electronic order was used. There was great error variability between PCC when using the electronic order. LIS demographic data manual registration errors depended on patient origin and test requesting method. Even when using the electronic approach, errors were detected. There was a great variability between PCC even when using this electronic modality; this suggests that the number of errors is still dependent on the personnel in charge of the technology. © 2013.
Formal Verification of Safety Buffers for Sate-Based Conflict Detection and Resolution
NASA Technical Reports Server (NTRS)
Herencia-Zapana, Heber; Jeannin, Jean-Baptiste; Munoz, Cesar A.
2010-01-01
The information provided by global positioning systems is never totally exact, and there are always errors when measuring position and velocity of moving objects such as aircraft. This paper studies the effects of these errors in the actual separation of aircraft in the context of state-based conflict detection and resolution. Assuming that the state information is uncertain but that bounds on the errors are known, this paper provides an analytical definition of a safety buffer and sufficient conditions under which this buffer guarantees that actual conflicts are detected and solved. The results are presented as theorems, which were formally proven using a mechanical theorem prover.
Prevention of medication errors: detection and audit.
Montesi, Germana; Lechi, Alessandro
2009-06-01
1. Medication errors have important implications for patient safety, and their identification is a main target in improving clinical practice errors, in order to prevent adverse events. 2. Error detection is the first crucial step. Approaches to this are likely to be different in research and routine care, and the most suitable must be chosen according to the setting. 3. The major methods for detecting medication errors and associated adverse drug-related events are chart review, computerized monitoring, administrative databases, and claims data, using direct observation, incident reporting, and patient monitoring. All of these methods have both advantages and limitations. 4. Reporting discloses medication errors, can trigger warnings, and encourages the diffusion of a culture of safe practice. Combining and comparing data from various and encourages the diffusion of a culture of safe practice sources increases the reliability of the system. 5. Error prevention can be planned by means of retroactive and proactive tools, such as audit and Failure Mode, Effect, and Criticality Analysis (FMECA). Audit is also an educational activity, which promotes high-quality care; it should be carried out regularly. In an audit cycle we can compare what is actually done against reference standards and put in place corrective actions to improve the performances of individuals and systems. 6. Patient safety must be the first aim in every setting, in order to build safer systems, learning from errors and reducing the human and fiscal costs.
Systems and methods for data quality control and cleansing
Wenzel, Michael; Boettcher, Andrew; Drees, Kirk; Kummer, James
2016-05-31
A method for detecting and cleansing suspect building automation system data is shown and described. The method includes using processing electronics to automatically determine which of a plurality of error detectors and which of a plurality of data cleansers to use with building automation system data. The method further includes using processing electronics to automatically detect errors in the data and cleanse the data using a subset of the error detectors and a subset of the cleansers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, T; Kumaraswamy, L
Purpose: Detection of treatment delivery errors is important in radiation therapy. However, accurate quantification of delivery errors is also of great importance. This study aims to evaluate the 3DVH software’s ability to accurately quantify delivery errors. Methods: Three VMAT plans (prostate, H&N and brain) were randomly chosen for this study. First, we evaluated whether delivery errors could be detected by gamma evaluation. Conventional per-beam IMRT QA was performed with the ArcCHECK diode detector for the original plans and for the following modified plans: (1) induced dose difference error up to ±4.0% and (2) control point (CP) deletion (3 to 10more » CPs were deleted) (3) gantry angle shift error (3 degree uniformly shift). 2D and 3D gamma evaluation were performed for all plans through SNC Patient and 3DVH, respectively. Subsequently, we investigated the accuracy of 3DVH analysis for all cases. This part evaluated, using the Eclipse TPS plans as standard, whether 3DVH accurately can model the changes in clinically relevant metrics caused by the delivery errors. Results: 2D evaluation seemed to be more sensitive to delivery errors. The average differences between ECLIPSE predicted and 3DVH results for each pair of specific DVH constraints were within 2% for all three types of error-induced treatment plans, illustrating the fact that 3DVH is fairly accurate in quantifying the delivery errors. Another interesting observation was that even though the gamma pass rates for the error plans are high, the DVHs showed significant differences between original plan and error-induced plans in both Eclipse and 3DVH analysis. Conclusion: The 3DVH software is shown to accurately quantify the error in delivered dose based on clinically relevant DVH metrics, where a conventional gamma based pre-treatment QA might not necessarily detect.« less
Error field detection in DIII-D by magnetic steering of locked modes
Shiraki, Daisuke; La Haye, Robert J.; Logan, Nikolas C.; ...
2014-02-20
Optimal correction coil currents for the n = 1 intrinsic error field of the DIII-D tokamak are inferred by applying a rotating external magnetic perturbation to steer the phase of a saturated locked mode with poloidal/toroidal mode number m/n = 2/1. The error field is detected non-disruptively in a single discharge, based on the toroidal torque balance of the resonant surface, which is assumed to be dominated by the balance of resonant electromagnetic torques. This is equivalent to the island being locked at all times to the resonant 2/1 component of the total of the applied and intrinsic error fields,more » such that the deviation of the locked mode phase from the applied field phase depends on the existing error field. The optimal set of correction coil currents is determined to be those currents which best cancels the torque from the error field, based on fitting of the torque balance model. The toroidal electromagnetic torques are calculated from experimental data using a simplified approach incorporating realistic DIII-D geometry, and including the effect of the plasma response on island torque balance based on the ideal plasma response to external fields. This method of error field detection is demonstrated in DIII-D discharges, and the results are compared with those based on the onset of low-density locked modes in ohmic plasmas. Furthermore, this magnetic steering technique presents an efficient approach to error field detection and is a promising method for ITER, particularly during initial operation when the lack of auxiliary heating systems makes established techniques based on rotation or plasma amplification unsuitable.« less
Dehghan, Ashraf; Abumasoudi, Rouhollah Sheikh; Ehsanpour, Soheila
2016-01-01
Infertility and errors in the process of its treatment have a negative impact on infertile couples. The present study was aimed to identify and assess the common errors in the reception process by applying the approach of "failure modes and effects analysis" (FMEA). In this descriptive cross-sectional study, the admission process of fertility and infertility center of Isfahan was selected for evaluation of its errors based on the team members' decision. At first, the admission process was charted through observations and interviewing employees, holding multiple panels, and using FMEA worksheet, which has been used in many researches all over the world and also in Iran. Its validity was evaluated through content and face validity, and its reliability was evaluated through reviewing and confirmation of the obtained information by the FMEA team, and eventually possible errors, causes, and three indicators of severity of effect, probability of occurrence, and probability of detection were determined and corrective actions were proposed. Data analysis was determined by the number of risk priority (RPN) which is calculated by multiplying the severity of effect, probability of occurrence, and probability of detection. Twenty-five errors with RPN ≥ 125 was detected through the admission process, in which six cases of error had high priority in terms of severity and occurrence probability and were identified as high-risk errors. The team-oriented method of FMEA could be useful for assessment of errors and also to reduce the occurrence probability of errors.
Dehghan, Ashraf; Abumasoudi, Rouhollah Sheikh; Ehsanpour, Soheila
2016-01-01
Background: Infertility and errors in the process of its treatment have a negative impact on infertile couples. The present study was aimed to identify and assess the common errors in the reception process by applying the approach of “failure modes and effects analysis” (FMEA). Materials and Methods: In this descriptive cross-sectional study, the admission process of fertility and infertility center of Isfahan was selected for evaluation of its errors based on the team members’ decision. At first, the admission process was charted through observations and interviewing employees, holding multiple panels, and using FMEA worksheet, which has been used in many researches all over the world and also in Iran. Its validity was evaluated through content and face validity, and its reliability was evaluated through reviewing and confirmation of the obtained information by the FMEA team, and eventually possible errors, causes, and three indicators of severity of effect, probability of occurrence, and probability of detection were determined and corrective actions were proposed. Data analysis was determined by the number of risk priority (RPN) which is calculated by multiplying the severity of effect, probability of occurrence, and probability of detection. Results: Twenty-five errors with RPN ≥ 125 was detected through the admission process, in which six cases of error had high priority in terms of severity and occurrence probability and were identified as high-risk errors. Conclusions: The team-oriented method of FMEA could be useful for assessment of errors and also to reduce the occurrence probability of errors. PMID:28194208
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, P; Olaciregui-Ruiz, I; Mijnheer, B
2016-06-15
Purpose: To investigate the sensitivity of an EPID-based 3D dose verification system to detect delivery errors in VMAT treatments. Methods: For this study 41 EPID-reconstructed 3D in vivo dose distributions of 15 different VMAT plans (H&N, lung, prostate and rectum) were selected. To simulate the effect of delivery errors, their TPS plans were modified by: 1) scaling of the monitor units by ±3% and ±6% and 2) systematic shifting of leaf bank positions by ±1mm, ±2mm and ±5mm. The 3D in vivo dose distributions where then compared to the unmodified and modified treatment plans. To determine the detectability of themore » various delivery errors, we made use of a receiver operator characteristic (ROC) methodology. True positive and false positive rates were calculated as a function of the γ-parameters γmean, γ1% (near-maximum γ) and the PTV dose parameter ΔD{sub 50} (i.e. D{sub 50}(EPID)-D{sub 50}(TPS)). The ROC curve is constructed by plotting the true positive rate vs. the false positive rate. The area under the ROC curve (AUC) then serves as a measure of the performance of the EPID dosimetry system in detecting a particular error; an ideal system has AUC=1. Results: The AUC ranges for the machine output errors and systematic leaf position errors were [0.64 – 0.93] and [0.48 – 0.92] respectively using γmean, [0.57 – 0.79] and [0.46 – 0.85] using γ1% and [0.61 – 0.77] and [ 0.48 – 0.62] using ΔD{sub 50}. Conclusion: For the verification of VMAT deliveries, the parameter γmean is the best discriminator for the detection of systematic leaf position errors and monitor unit scaling errors. Compared to γmean and γ1%, the parameter ΔD{sub 50} performs worse as a discriminator in all cases.« less
A Case for Soft Error Detection and Correction in Computational Chemistry.
van Dam, Hubertus J J; Vishnu, Abhinav; de Jong, Wibe A
2013-09-10
High performance computing platforms are expected to deliver 10(18) floating operations per second by the year 2022 through the deployment of millions of cores. Even if every core is highly reliable the sheer number of them will mean that the mean time between failures will become so short that most application runs will suffer at least one fault. In particular soft errors caused by intermittent incorrect behavior of the hardware are a concern as they lead to silent data corruption. In this paper we investigate the impact of soft errors on optimization algorithms using Hartree-Fock as a particular example. Optimization algorithms iteratively reduce the error in the initial guess to reach the intended solution. Therefore they may intuitively appear to be resilient to soft errors. Our results show that this is true for soft errors of small magnitudes but not for large errors. We suggest error detection and correction mechanisms for different classes of data structures. The results obtained with these mechanisms indicate that we can correct more than 95% of the soft errors at moderate increases in the computational cost.
Technology and medication errors: impact in nursing homes.
Baril, Chantal; Gascon, Viviane; St-Pierre, Liette; Lagacé, Denis
2014-01-01
The purpose of this paper is to study a medication distribution technology's (MDT) impact on medication errors reported in public nursing homes in Québec Province. The work was carried out in six nursing homes (800 patients). Medication error data were collected from nursing staff through a voluntary reporting process before and after MDT was implemented. The errors were analysed using: totals errors; medication error type; severity and patient consequences. A statistical analysis verified whether there was a significant difference between the variables before and after introducing MDT. The results show that the MDT detected medication errors. The authors' analysis also indicates that errors are detected more rapidly resulting in less severe consequences for patients. MDT is a step towards safer and more efficient medication processes. Our findings should convince healthcare administrators to implement technology such as electronic prescriber or bar code medication administration systems to improve medication processes and to provide better healthcare to patients. Few studies have been carried out in long-term healthcare facilities such as nursing homes. The authors' study extends what is known about MDT's impact on medication errors in nursing homes.
Real-time line-width measurements: a new feature for reticle inspection systems
NASA Astrophysics Data System (ADS)
Eran, Yair; Greenberg, Gad; Joseph, Amnon; Lustig, Cornel; Mizrahi, Eyal
1997-07-01
The significance of line width control in mask production has become greater with the lessening of defect size. There are two conventional methods used for controlling line widths dimensions which employed in the manufacturing of masks for sub micron devices. These two methods are the critical dimensions (CD) measurement and the detection of edge defects. Achieving reliable and accurate control of line width errors is one of the most challenging tasks in mask production. Neither of the two methods cited above (namely CD measurement and the detection of edge defects) guarantees the detection of line width errors with good sensitivity over the whole mask area. This stems from the fact that CD measurement provides only statistical data on the mask features whereas applying edge defect detection method checks defects on each edge by itself, and does not supply information on the combined result of error detection on two adjacent edges. For example, a combination of a small edge defect together with a CD non- uniformity which are both within the allowed tolerance, may yield a significant line width error, which will not be detected using the conventional methods (see figure 1). A new approach for the detection of line width errors which overcomes this difficulty is presented. Based on this approach, a new sensitive line width error detector was developed and added to Orbot's RT-8000 die-to-database reticle inspection system. This innovative detector operates continuously during the mask inspection process and scans (inspects) the entire area of the reticle for line width errors. The detection is based on a comparison of measured line width that are taken on both the design database and the scanned image of the reticle. In section 2, the motivation for developing this new detector is presented. The section covers an analysis of various defect types, which are difficult to detect using conventional edge detection methods or, alternatively, CD measurements. In section 3, the basic concept of the new approach is introduced together with a description of the new detector and its characteristics. In section 4, the calibration process that took place in order to achieve reliable and repeatable line width measurements is presented. The description of an experiments conducted in order to evaluate the sensitivity of the new detector is given in section 5, followed by a report of the results of this evaluation. The conclusions are presented in section 6.
Seligman, Sarah C; Giovannetti, Tania; Sestito, John; Libon, David J
2014-01-01
Mild functional difficulties have been associated with early cognitive decline in older adults and increased risk for conversion to dementia in mild cognitive impairment, but our understanding of this decline has been limited by a dearth of objective methods. This study evaluated the reliability and validity of a new system to code subtle errors on an established performance-based measure of everyday action and described preliminary findings within the context of a theoretical model of action disruption. Here 45 older adults completed the Naturalistic Action Test (NAT) and neuropsychological measures. NAT performance was coded for overt errors, and subtle action difficulties were scored using a novel coding system. An inter-rater reliability coefficient was calculated. Validity of the coding system was assessed using a repeated-measures ANOVA with NAT task (simple versus complex) and error type (overt versus subtle) as within-group factors. Correlation/regression analyses were conducted among overt NAT errors, subtle NAT errors, and neuropsychological variables. The coding of subtle action errors was reliable and valid, and episodic memory breakdown predicted subtle action disruption. Results suggest that the NAT can be useful in objectively assessing subtle functional decline. Treatments targeting episodic memory may be most effective in addressing early functional impairment in older age.
A novel color vision test for detection of diabetic macular edema.
Shin, Young Joo; Park, Kyu Hyung; Hwang, Jeong-Min; Wee, Won Ryang; Lee, Jin Hak; Lee, In Bum; Hyon, Joon Young
2014-01-02
To determine the sensitivity of the Seoul National University (SNU) computerized color vision test for detecting diabetic macular edema. From May to September 2003, a total of 73 eyes of 73 patients with diabetes mellitus were examined using the SNU computerized color vision test and optical coherence tomography (OCT). Color deficiency was quantified as the total error score on the SNU test and as error scores for each of four color quadrants corresponding to yellows (Q1), greens (Q2), blues (Q3), and reds (Q4). SNU error scores were assessed as a function of OCT foveal thickness and total macular volume (TMV). The error scores in Q1, Q2, Q3, and Q4 measured by the SNU color vision test increased with foveal thickness (P < 0.05), whereas they were not correlated with TMV. Total error scores, the summation of Q1 and Q3, the summation of Q2 and Q4, and blue-yellow (B-Y) error scores were significantly correlated with foveal thickness (P < 0.05), but not with TMV. The observed correlation between SNU color test error scores and foveal thickness indicates that the SNU test may be useful for detection and monitoring of diabetic macular edema.
Experimental investigation of false positive errors in auditory species occurrence surveys
Miller, David A.W.; Weir, Linda A.; McClintock, Brett T.; Grant, Evan H. Campbell; Bailey, Larissa L.; Simons, Theodore R.
2012-01-01
False positive errors are a significant component of many ecological data sets, which in combination with false negative errors, can lead to severe biases in conclusions about ecological systems. We present results of a field experiment where observers recorded observations for known combinations of electronically broadcast calling anurans under conditions mimicking field surveys to determine species occurrence. Our objectives were to characterize false positive error probabilities for auditory methods based on a large number of observers, to determine if targeted instruction could be used to reduce false positive error rates, and to establish useful predictors of among-observer and among-species differences in error rates. We recruited 31 observers, ranging in abilities from novice to expert, that recorded detections for 12 species during 180 calling trials (66,960 total observations). All observers made multiple false positive errors and on average 8.1% of recorded detections in the experiment were false positive errors. Additional instruction had only minor effects on error rates. After instruction, false positive error probabilities decreased by 16% for treatment individuals compared to controls with broad confidence interval overlap of 0 (95% CI: -46 to 30%). This coincided with an increase in false negative errors due to the treatment (26%; -3 to 61%). Differences among observers in false positive and in false negative error rates were best predicted by scores from an online test and a self-assessment of observer ability completed prior to the field experiment. In contrast, years of experience conducting call surveys was a weak predictor of error rates. False positive errors were also more common for species that were played more frequently, but were not related to the dominant spectral frequency of the call. Our results corroborate other work that demonstrates false positives are a significant component of species occurrence data collected by auditory methods. Instructing observers to only report detections they are completely certain are correct is not sufficient to eliminate errors. As a result, analytical methods that account for false positive errors will be needed, and independent testing of observer ability is a useful predictor for among-observer variation in observation error rates.
Comparing different models of the development of verb inflection in early child Spanish.
Aguado-Orea, Javier; Pine, Julian M
2015-01-01
How children acquire knowledge of verb inflection is a long-standing question in language acquisition research. In the present study, we test the predictions of some current constructivist and generativist accounts of the development of verb inflection by focusing on data from two Spanish-speaking children between the ages of 2;0 and 2;6. The constructivist claim that children's early knowledge of verb inflection is only partially productive is tested by comparing the average number of different inflections per verb in matched samples of child and adult speech. The generativist claim that children's early use of verb inflection is essentially error-free is tested by investigating the rate at which the children made subject-verb agreement errors in different parts of the present tense paradigm. Our results show: 1) that, although even adults' use of verb inflection in Spanish tends to look somewhat lexically restricted, both children's use of verb inflection was significantly less flexible than that of their caregivers, and 2) that, although the rate at which the two children produced subject-verb agreement errors in their speech was very low, this overall error rate hid a consistent pattern of error in which error rates were substantially higher in low frequency than in high frequency contexts, and substantially higher for low frequency than for high frequency verbs. These results undermine the claim that children's use of verb inflection is fully productive from the earliest observable stages, and are consistent with the constructivist claim that knowledge of verb inflection develops only gradually.
Preventability of early vs. late readmissions in an academic medical center
Graham, Kelly L.; Dike, Ogechi; Doctoroff, Lauren; Jupiter, Marisa; Vanka, Anita
2017-01-01
Background It is unclear if the 30-day unplanned hospital readmission rate is a plausible accountability metric. Objective Compare preventability of hospital readmissions, between an early period [0–7 days post-discharge] and a late period [8–30 days post-discharge]. Compare causes of readmission, and frequency of markers of clinical instability 24h prior to discharge between early and late readmissions. Design, setting, patients 120 patient readmissions in an academic medical center between 1/1/2009-12/31/2010 Measures Sum-score based on a standard algorithm that assesses preventability of each readmission based on blinded hospitalist review; average causation score for seven types of adverse events; rates of markers of clinical instability within 24h prior to discharge. Results Readmissions were significantly more preventable in the early compared to the late period [median preventability sum score 8.5 vs. 8.0, p = 0.03]. There were significantly more management errors as causative events for the readmission in the early compared to the late period [mean causation score [scale 1–6, 6 most causal] 2.0 vs. 1.5, p = 0.04], and these errors were significantly more preventable in the early compared to the late period [mean preventability score 1.9 vs 1.5, p = 0.03]. Patients readmitted in the early period were significantly more likely to have mental status changes documented 24h prior to hospital discharge than patients readmitted in the late period [12% vs. 0%, p = 0.01]. Conclusions Readmissions occurring in the early period were significantly more preventable. Early readmissions were associated with more management errors, and mental status changes 24h prior to discharge. Seven-day readmissions may be a better accountability measure. PMID:28622384
Abdelaziz, Omar; Attia, Hussein
2016-01-01
Living-donor liver transplantation has provided a solution to the severe lack of cadaver grafts for the replacement of liver afflicted with end-stage cirrhosis, fulminant disease, or inborn errors of metabolism. Vascular complications remain the most serious complications and a common cause for graft failure after hepatic transplantation. Doppler ultrasound remains the primary radiological imaging modality for the diagnosis of such complications. This article presents a brief review of intra- and post-operative living donor liver transplantation anatomy and a synopsis of the role of ultrasonography and color Doppler in evaluating the graft vascular haemodynamics both during surgery and post-operatively in accurately defining the early vascular complications. Intra-operative ultrasonography of the liver graft provides the surgeon with useful real-time diagnostic and staging information that may result in an alteration in the planned surgical approach and corrections of surgical complications during the procedure of vascular anastomoses. The relevant intra-operative anatomy and the spectrum of normal and abnormal findings are described. Ultrasonography and color Doppler also provides the clinicians and surgeons early post-operative potential developmental complications that may occur during hospital stay. Early detection and thus early problem solving can make the difference between graft survival and failure. PMID:27468207
NASA Technical Reports Server (NTRS)
Weinstein, Bernice
1999-01-01
A strategy for detecting control law calculation errors in critical flight control computers during laboratory validation testing is presented. This paper addresses Part I of the detection strategy which involves the use of modeling of the aircraft control laws and the design of Kalman filters to predict the correct control commands. Part II of the strategy which involves the use of the predicted control commands to detect control command errors is presented in the companion paper.
An Instantaneous Low-Cost Point-of-Care Anemia Detection Device
Punter-Villagrasa, Jaime; Cid, Joan; Páez-Avilés, Cristina; Rodríguez-Villarreal, Ivón; Juanola-Feliu, Esteve; Colomer-Farrarons, Jordi; Miribel-Català, Pere Ll.
2015-01-01
We present a small, compact and portable device for point-of-care instantaneous early detection of anemia. The method used is based on direct hematocrit measurement from whole blood samples by means of impedance analysis. This device consists of a custom electronic instrumentation and a plug-and-play disposable sensor. The designed electronics rely on straightforward standards for low power consumption, resulting in a robust and low consumption device making it completely mobile with a long battery life. Another approach could be powering the system based on other solutions like indoor solar cells, or applying energy-harvesting solutions in order to remove the batteries. The sensing system is based on a disposable low-cost label-free three gold electrode commercial sensor for 50 μL blood samples. The device capability for anemia detection has been validated through 24 blood samples, obtained from four hospitalized patients at Hospital Clínic. As a result, the response, effectiveness and robustness of the portable point-of-care device to detect anemia has been proved with an accuracy error of 2.83% and a mean coefficient of variation of 2.57% without any particular case above 5%. PMID:25690552
Software error data collection and categorization
NASA Technical Reports Server (NTRS)
Ostrand, T. J.; Weyuker, E. J.
1982-01-01
Software errors detected during development of an interactive special purpose editor system were studied. This product was followed during nine months of coding, unit testing, function testing, and system testing. A new error categorization scheme was developed.
Improved Snow Mapping Accuracy with Revised MODIS Snow Algorithm
NASA Technical Reports Server (NTRS)
Riggs, George; Hall, Dorothy K.
2012-01-01
The MODIS snow cover products have been used in over 225 published studies. From those reports, and our ongoing analysis, we have learned about the accuracy and errors in the snow products. Revisions have been made in the algorithms to improve the accuracy of snow cover detection in Collection 6 (C6), the next processing/reprocessing of the MODIS data archive planned to start in September 2012. Our objective in the C6 revision of the MODIS snow-cover algorithms and products is to maximize the capability to detect snow cover while minimizing snow detection errors of commission and omission. While the basic snow detection algorithm will not change, new screens will be applied to alleviate snow detection commission and omission errors, and only the fractional snow cover (FSC) will be output (the binary snow cover area (SCA) map will no longer be included).
Errors in Bibliographic Citations: A Continuing Problem.
ERIC Educational Resources Information Center
Sweetland, James H.
1989-01-01
Summarizes studies examining citation errors and illustrates errors resulting from a lack of standardization, misunderstanding of foreign languages, failure to examine the document cited, and general lack of training in citation norms. It is argued that the failure to detect and correct citation errors is due to diffusion of responsibility in the…
Periodic Application of Concurrent Error Detection in Processor Array Architectures. PhD. Thesis -
NASA Technical Reports Server (NTRS)
Chen, Paul Peichuan
1993-01-01
Processor arrays can provide an attractive architecture for some applications. Featuring modularity, regular interconnection and high parallelism, such arrays are well-suited for VLSI/WSI implementations, and applications with high computational requirements, such as real-time signal processing. Preserving the integrity of results can be of paramount importance for certain applications. In these cases, fault tolerance should be used to ensure reliable delivery of a system's service. One aspect of fault tolerance is the detection of errors caused by faults. Concurrent error detection (CED) techniques offer the advantage that transient and intermittent faults may be detected with greater probability than with off-line diagnostic tests. Applying time-redundant CED techniques can reduce hardware redundancy costs. However, most time-redundant CED techniques degrade a system's performance.
Simulating Photo-Refraction Images of Keratoconus and Near-Sightedness Eyes
NASA Astrophysics Data System (ADS)
Baker, Kevin; Lewis, James W. L.; Chen, Ying-Ling
2004-11-01
Keratoconus is an abnormal condition of the eye resulting from cone-shaped features on the cornea that degrade the quality of vision. These corneal features result from thinning and subsequent bulging due to intraocular pressure. The abnormal corneal curvature increases the refractive power asymmetrically and can be misdiagnosed by examiners as astigmatism and nearsightedness. Since corrective treatment is possible, early detection of this condition is desirable. Photo-refraction (PR) detects the retinal irradiance reflected from a single light source and is an inexpensive method used to identify refractive errors. For near- (far-) sighted eye, a crescent appears on the same (opposite) side of the light source. The capability of a PR device to detect keratoconus and to differentiate this condition from myopia was investigated. Using a commercial optical program, synthetic eye models were constructed for both near-sighted and keratoconus eyes. PR images of various eye conditions were calculated. The keratoconus cone shapes were modeled with typical published cone locations and sizes. The results indicate significant differences between the images of keratoconus and near-sighted eyes.
Vu, Anh Phuong; Nguyen, Thi Ngan; Do, Thi Trang; Doan, Thu Ha; Ha, Tran Hung; Ta, Thi Thao; Nguyen, Hung Long; Hauser, Peter C; Nguyen, Thi Anh Huong; Mai, Thanh Duc
2017-08-15
The employment of a purpose-made capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C 4 D) as a simple and cost-effective solution for clinical screening of paraquat in plasma samples for early-stage diagnosis of acute herbicide poisoning is reported. Paraquat was determined using an electrolyte composed of 10mM histidine adjusted to pH 4 with acetic acid. A detection limit of 0.5mg/L was achieved. Good agreement between results from CE-C 4 D and the confirmation method (HPLC-UV) was obtained, with relative errors for the two pairs of data better than 20% for 31 samples taken from paraquat-intoxicated patients. The results were used by medical doctors for identification and prognosis of acute paraquat poisoning cases. The objective of the work is the deployment of the developed approach in rural areas in Vietnam as a low-cost solution to reduce the mortality rate due to accidental or suicidal ingestion of paraquat. Copyright © 2017. Published by Elsevier B.V.
Lee, Chia-Yen; Wang, Hao-Jen; Lai, Jhih-Hao; Chang, Yeun-Chung; Huang, Chiun-Sheng
2017-01-01
Long-term comparisons of infrared image can facilitate the assessment of breast cancer tissue growth and early tumor detection, in which longitudinal infrared image registration is a necessary step. However, it is hard to keep markers attached on a body surface for weeks, and rather difficult to detect anatomic fiducial markers and match them in the infrared image during registration process. The proposed study, automatic longitudinal infrared registration algorithm, develops an automatic vascular intersection detection method and establishes feature descriptors by shape context to achieve robust matching, as well as to obtain control points for the deformation model. In addition, competitive winner-guided mechanism is developed for optimal corresponding. The proposed algorithm is evaluated in two ways. Results show that the algorithm can quickly lead to accurate image registration and that the effectiveness is superior to manual registration with a mean error being 0.91 pixels. These findings demonstrate that the proposed registration algorithm is reasonably accurate and provide a novel method of extracting a greater amount of useful data from infrared images. PMID:28145474
Development of an Early Warning Fire Detection System using Correlation Spectroscopy
NASA Technical Reports Server (NTRS)
Goswami, K.; Voevodkin, G.; Rubstov, V.; Lieberman, R.; Piltch, N.
2001-01-01
Combustion byproducts are numerous. A few examples of the gaseous byproducts include carbon dioxide, carbon monoxide, hydrogen chloride, hydrogen cyanide and ammonia. For detecting these chemical species, classic absorption spectroscopy has been used for many decades, but the sensitivity of steady-state methods is often unsuitable for the detection of trace compounds at the low levels (parts per million to parts per billion) appropriate for scientific purposes. This is particularly so for monitoring equipment, which must be compact and cost-effective, and which is often subjected to shock, vibration, and other environmental effects that can severely degrade the performance of high-sensitivity spectrometers in an aircraft. Steady-state techniques also suffer from a lack of specificity; the deconvolution of the spectra of complex mixtures is a laborious and error prone process. These problems are exacerbated in remote fiber-optic monitoring where, for practical reasons, the fundamental absorbance region of the spectrum (often between 3 and 8 microns) is inaccessible, and the low-strength, closely spaced, near-infrared overtone absorbance bands must be used. We circumvented these challenges by employing correlation spectroscopy, a variation of modulation spectroscopy.
Smartphone-based analysis of biochemical tests for health monitoring support at home.
Velikova, Marina; Smeets, Ruben L; van Scheltinga, Josien Terwisscha; Lucas, Peter J F; Spaanderman, Marc
2014-09-01
In the context of home-based healthcare monitoring systems, it is desirable that the results obtained from biochemical tests - tests of various body fluids such as blood and urine - are objective and automatically generated to reduce the number of man-made errors. The authors present the StripTest reader - an innovative smartphone-based interpreter of biochemical tests based on paper-based strip colour using image processing techniques. The working principles of the reader include image acquisition of the colour strip pads using the camera phone, analysing the images within the phone and comparing them with reference colours provided by the manufacturer to obtain the test result. The detection of kidney damage was used as a scenario to illustrate the application of, and test, the StripTest reader. An extensive evaluation using laboratory and human urine samples demonstrates the reader's accuracy and precision of detection, indicating the successful development of a cheap, mobile and smart reader for home-monitoring of kidney functioning, which can facilitate the early detection of health problems and a timely treatment intervention.
Error Detection Processes during Observational Learning
ERIC Educational Resources Information Center
Badets, Arnaud; Blandin, Yannick; Wright, David L.; Shea, Charles H.
2006-01-01
The purpose of this experiment was to determine whether a faded knowledge of results (KR) frequency during observation of a model's performance enhanced error detection capabilities. During the observation phase, participants observed a model performing a timing task and received KR about the model's performance on each trial or on one of two…
Ristić-Djurović, Jasna L; Ćirković, Saša; Mladenović, Pavle; Romčević, Nebojša; Trbovich, Alexander M
2018-04-01
A rough estimate indicated that use of samples of size not larger than ten is not uncommon in biomedical research and that many of such studies are limited to strong effects due to sample sizes smaller than six. For data collected from biomedical experiments it is also often unknown if mathematical requirements incorporated in the sample comparison methods are satisfied. Computer simulated experiments were used to examine performance of methods for qualitative sample comparison and its dependence on the effectiveness of exposure, effect intensity, distribution of studied parameter values in the population, and sample size. The Type I and Type II errors, their average, as well as the maximal errors were considered. The sample size 9 and the t-test method with p = 5% ensured error smaller than 5% even for weak effects. For sample sizes 6-8 the same method enabled detection of weak effects with errors smaller than 20%. If the sample sizes were 3-5, weak effects could not be detected with an acceptable error; however, the smallest maximal error in the most general case that includes weak effects is granted by the standard error of the mean method. The increase of sample size from 5 to 9 led to seven times more accurate detection of weak effects. Strong effects were detected regardless of the sample size and method used. The minimal recommended sample size for biomedical experiments is 9. Use of smaller sizes and the method of their comparison should be justified by the objective of the experiment. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Qi; Melton, Kristin; Lingren, Todd; Kirkendall, Eric S; Hall, Eric; Zhai, Haijun; Ni, Yizhao; Kaiser, Megan; Stoutenborough, Laura; Solti, Imre
2014-01-01
Although electronic health records (EHRs) have the potential to provide a foundation for quality and safety algorithms, few studies have measured their impact on automated adverse event (AE) and medical error (ME) detection within the neonatal intensive care unit (NICU) environment. This paper presents two phenotyping AE and ME detection algorithms (ie, IV infiltrations, narcotic medication oversedation and dosing errors) and describes manual annotation of airway management and medication/fluid AEs from NICU EHRs. From 753 NICU patient EHRs from 2011, we developed two automatic AE/ME detection algorithms, and manually annotated 11 classes of AEs in 3263 clinical notes. Performance of the automatic AE/ME detection algorithms was compared to trigger tool and voluntary incident reporting results. AEs in clinical notes were double annotated and consensus achieved under neonatologist supervision. Sensitivity, positive predictive value (PPV), and specificity are reported. Twelve severe IV infiltrates were detected. The algorithm identified one more infiltrate than the trigger tool and eight more than incident reporting. One narcotic oversedation was detected demonstrating 100% agreement with the trigger tool. Additionally, 17 narcotic medication MEs were detected, an increase of 16 cases over voluntary incident reporting. Automated AE/ME detection algorithms provide higher sensitivity and PPV than currently used trigger tools or voluntary incident-reporting systems, including identification of potential dosing and frequency errors that current methods are unequipped to detect. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Permanent-File-Validation Utility Computer Program
NASA Technical Reports Server (NTRS)
Derry, Stephen D.
1988-01-01
Errors in files detected and corrected during operation. Permanent File Validation (PFVAL) utility computer program provides CDC CYBER NOS sites with mechanism to verify integrity of permanent file base. Locates and identifies permanent file errors in Mass Storage Table (MST) and Track Reservation Table (TRT), in permanent file catalog entries (PFC's) in permit sectors, and in disk sector linkage. All detected errors written to listing file and system and job day files. Program operates by reading system tables , catalog track, permit sectors, and disk linkage bytes to vaidate expected and actual file linkages. Used extensively to identify and locate errors in permanent files and enable online correction, reducing computer-system downtime.
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Hammer, John M.; Wan, C. Yoon; Vasandani, Vijay
1987-01-01
The current research is focused on detection of human error and protection from its consequences. A program for monitoring pilot error by comparing pilot actions to a script was described. It dealt primarily with routine errors (slips) that occurred during checklist activity. The model to which operator actions were compared was a script. Current research is an extension along these two dimensions. The ORS fault detection aid uses a sophisticated device model rather than a script. The newer initiative, the model-based and constraint-based warning system, uses an even more sophisticated device model and is to prevent all types of error, not just slips or bad decision.
ERIC Educational Resources Information Center
Gauderat-Bagault, Laurence; Lehalle, Henri
Children, ages 5 to 8 years (n=71), were required to listen and detect errors out of a partly wrong sequence of tape-recorded French number words from 1 to 100. Children (from several schools near Montpellier, France) were from preschool, grade 1, and grade 2. Results show that wrong syntactic rules were better detected than omissions, whereas…
Scoring systems for the Clock Drawing Test: A historical review
Spenciere, Bárbara; Alves, Heloisa; Charchat-Fichman, Helenice
2017-01-01
The Clock Drawing Test (CDT) is a simple neuropsychological screening instrument that is well accepted by patients and has solid psychometric properties. Several different CDT scoring methods have been developed, but no consensus has been reached regarding which scoring method is the most accurate. This article reviews the literature on these scoring systems and the changes they have undergone over the years. Historically, different types of scoring systems emerged. Initially, the focus was on screening for dementia, and the methods were both quantitative and semi-quantitative. Later, the need for an early diagnosis called for a scoring system that can detect subtle errors, especially those related to executive function. Therefore, qualitative analyses began to be used for both differential and early diagnoses of dementia. A widely used qualitative method was proposed by Rouleau et al. (1992). Tracing the historical path of these scoring methods is important for developing additional scoring systems and furthering dementia prevention research. PMID:29213488
Saito, Masahide; Sano, Naoki; Shibata, Yuki; Kuriyama, Kengo; Komiyama, Takafumi; Marino, Kan; Aoki, Shinichi; Ashizawa, Kazunari; Yoshizawa, Kazuya; Onishi, Hiroshi
2018-05-01
The purpose of this study was to compare the MLC error sensitivity of various measurement devices for VMAT pre-treatment quality assurance (QA). This study used four QA devices (Scandidos Delta4, PTW 2D-array, iRT systems IQM, and PTW Farmer chamber). Nine retrospective VMAT plans were used and nine MLC error plans were generated for all nine original VMAT plans. The IQM and Farmer chamber were evaluated using the cumulative signal difference between the baseline and error-induced measurements. In addition, to investigate the sensitivity of the Delta4 device and the 2D-array, global gamma analysis (1%/1, 2%/2, and 3%/3 mm), dose difference (1%, 2%, and 3%) were used between the baseline and error-induced measurements. Some deviations of the MLC error sensitivity for the evaluation metrics and MLC error ranges were observed. For the two ionization devices, the sensitivity of the IQM was significantly better than that of the Farmer chamber (P < 0.01) while both devices had good linearly correlation between the cumulative signal difference and the magnitude of MLC errors. The pass rates decreased as the magnitude of the MLC error increased for both Delta4 and 2D-array. However, the small MLC error for small aperture sizes, such as for lung SBRT, could not be detected using the loosest gamma criteria (3%/3 mm). Our results indicate that DD could be more useful than gamma analysis for daily MLC QA, and that a large-area ionization chamber has a greater advantage for detecting systematic MLC error because of the large sensitive volume, while the other devices could not detect this error for some cases with a small range of MLC error. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Predicted Errors In Children's Early Sentence Comprehension
Gertner, Yael; Fisher, Cynthia
2012-01-01
Children use syntax to interpret sentences and learn verbs; this is syntactic bootstrapping. The structure-mapping account of early syntactic bootstrapping proposes that a partial representation of sentence structure, the set of nouns occurring with the verb, guides initial interpretation and provides an abstract format for new learning. This account predicts early successes, but also telltale errors: Toddlers should be unable to tell transitive sentences from other sentences containing two nouns. In testing this prediction, we capitalized on evidence that 21-month-olds use what they have learned about noun order in English sentences to understand new transitive verbs. In two experiments, 21-month-olds applied this noun-order knowledge to two-noun intransitive sentences, mistakenly assigning different interpretations to “The boy and the girl are gorping!” and “The girl and the boy are gorping!”. This suggests that toddlers exploit partial representations of sentence structure to guide sentence interpretation; these sparse representations are useful, but error-prone. PMID:22525312
SU-E-T-484: In Vivo Dosimetry Tolerances in External Beam Fast Neutron Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, L; Gopan, O
Purpose: Optical stimulated luminescence (OSL) dosimetry with Landauer Al2O3:C nanodots was developed at our institution as a passive in vivo dosimetry (IVD) system for patients treated with fast neutron therapy. The purpose of this study was to establish clinically relevant tolerance limits for detecting treatment errors requiring further investigation. Methods: Tolerance levels were estimated by conducting a series of IVD expected dose calculations for square field sizes ranging between 2.8 and 28.8 cm. For each field size evaluated, doses were calculated for open and internal wedged fields with angles of 30°, 45°, or 60°. Theoretical errors were computed for variationsmore » of incorrect beam configurations. Dose errors, defined as the percent difference from the expected dose calculation, were measured with groups of three nanodots placed in a 30 x 30 cm solid water phantom, at beam isocenter (150 cm SAD, 1.7 cm Dmax). The tolerances were applied to IVD patient measurements. Results: The overall accuracy of the nanodot measurements is 2–3% for open fields. Measurement errors agreed with calculated errors to within 3%. Theoretical estimates of dosimetric errors showed that IVD measurements with OSL nanodots will detect the absence of an internal wedge or a wrong wedge angle. Incorrect nanodot placement on a wedged field is more likely to be caught if the offset is in the direction of the “toe” of the wedge where the dose difference in percentage is about 12%. Errors caused by an incorrect flattening filter size produced a 2% measurement error that is not detectable by IVD measurement alone. Conclusion: IVD with nanodots will detect treatment errors associated with the incorrect implementation of the internal wedge. The results of this study will streamline the physicists’ investigations in determining the root cause of an IVD reading that is out of normally accepted tolerances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McVicker, A; Oldham, M; Yin, F
2014-06-15
Purpose: To test the ability of the TG-119 commissioning process and RPC credentialing to detect errors in the commissioning process for a commercial Treatment Planning System (TPS). Methods: We introduced commissioning errors into the commissioning process for the Anisotropic Analytical Algorithm (AAA) within the Eclipse TPS. We included errors in Dosimetric Leaf Gap (DLG), electron contamination, flattening filter material, and beam profile measurement with an inappropriately large farmer chamber (simulated using sliding window smoothing of profiles). We then evaluated the clinical impact of these errors on clinical intensity modulated radiation therapy (IMRT) plans (head and neck, low and intermediate riskmore » prostate, mesothelioma, and scalp) by looking at PTV D99, and mean and max OAR dose. Finally, for errors with substantial clinical impact we determined sensitivity of the RPC IMRT film analysis at the midpoint between PTV and OAR using a 4mm distance to agreement metric, and of a 7% TLD dose comparison. We also determined sensitivity of the 3 dose planes of the TG-119 C-shape IMRT phantom using gamma criteria of 3% 3mm. Results: The largest clinical impact came from large changes in the DLG with a change of 1mm resulting in up to a 5% change in the primary PTV D99. This resulted in a discrepancy in the RPC TLDs in the PTVs and OARs of 7.1% and 13.6% respectively, which would have resulted in detection. While use of incorrect flattening filter caused only subtle errors (<1%) in clinical plans, the effect was most pronounced for the RPC TLDs in the OARs (>6%). Conclusion: The AAA commissioning process within the Eclipse TPS is surprisingly robust to user error. When errors do occur, the RPC and TG-119 commissioning credentialing criteria are effective at detecting them; however OAR TLDs are the most sensitive despite the RPC currently excluding them from analysis.« less
Development of a smartphone-based pulse oximeter with adaptive SNR/power balancing.
Phelps, Tom; Haowei Jiang; Hall, Drew A
2017-07-01
Millions worldwide suffer from diseases that exhibit early warnings signs that can be detected by standard clinical-grade diagnostic tools. Unfortunately, such tools are often prohibitively expensive to the developing world leading to inadequate healthcare and high mortality rates. To address this problem, a smartphone-based pulse oximeter is presented that interfaces with the phone through the audio jack, enabling point-of-care measurements of heart rate (HR) and oxygen saturation (SpO 2 ). The device is designed to utilize existing phone resources (e.g., the processor, battery, and memory) resulting in a more portable and inexpensive diagnostic tool than standalone equivalents. By adaptively tuning the LED driving signal, the device is less dependent on phone-specific audio jack properties than prior audio jack-based work making it universally compatible with all smartphones. We demonstrate that the pulse oximeter can adaptively optimize the signal-to-noise ratio (SNR) within the power constraints of a mobile phone (<; 10mW) while maintaining high accuracy (HR error <; 3.4% and SpO 2 error <; 3.7%) against a clinical grade instrument.
NASA Technical Reports Server (NTRS)
Long, Junsheng
1994-01-01
This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel and distributed systems. The approach uses replicated tasks executing on different processors for forwared recovery and checkpoint comparison for error detection. To reduce overall redundancy, this approach employs a lower static redundancy in the common error-free situation to detect error than the standard N Module Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses some extra redundancy for recovery. To reduce the run-time recovery overhead, look-ahead processes are used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct look-ahead processes without rollback of the whole system. Both analytical and experimental evaluation have shown that this strategy can provide a nearly error-free execution time even under faults with a lower average redundancy than NMR.
Frimpong, Joseph Asamoah; Park, Meeyoung Mattie; Amo-Addae, Maame Pokuah; Adewuyi, Peter Adebayo; Nagbe, Thomas Knue
2017-01-01
An essential component of a public health surveillance system is its ability to detect priority diseases which fall within the mandate of public health officials at all levels. Early detection, reporting and response to public health events help to reduce the burden of mortality and morbidity on communities. Analysis of reliable surveillance data provides relevant information which can enable implementation of timely and appropriate public health interventions. To ensure that a resilient system is in place, the World Health Organization (WHO) has provided guidelines for detection, reporting and response to public health events in the Integrated Disease Surveillance and Response (IDSR) strategy. This case study provides training on detection, reporting and analysis of priority diseases for routine public health surveillance in Liberia and highlights potential errors and challenges which can hinder effective surveillance. Table-top exercises and group discussion lead participants through a simulated verification and analyses of summary case reports in the role of the District Surveillance Officer. This case study is intended for public health training in a classroom setting and can be accomplished within 2 hours 30 minutes. The target audience include residents in Frontline Epidemiology Training Programs (FETP-Frontline), Field Epidemiology and Laboratory Training Programs (FELTPs), and others who are interested in this topic.
Error Estimation of Pathfinder Version 5.3 SST Level 3C Using Three-way Error Analysis
NASA Astrophysics Data System (ADS)
Saha, K.; Dash, P.; Zhao, X.; Zhang, H. M.
2017-12-01
One of the essential climate variables for monitoring as well as detecting and attributing climate change, is Sea Surface Temperature (SST). A long-term record of global SSTs are available with observations obtained from ships in the early days to the more modern observation based on in-situ as well as space-based sensors (satellite/aircraft). There are inaccuracies associated with satellite derived SSTs which can be attributed to the errors associated with spacecraft navigation, sensor calibrations, sensor noise, retrieval algorithms, and leakages due to residual clouds. Thus it is important to estimate accurate errors in satellite derived SST products to have desired results in its applications.Generally for validation purposes satellite derived SST products are compared against the in-situ SSTs which have inaccuracies due to spatio/temporal inhomogeneity between in-situ and satellite measurements. A standard deviation in their difference fields usually have contributions from both satellite as well as the in-situ measurements. A real validation of any geophysical variable must require the knowledge of the "true" value of the said variable. Therefore a one-to-one comparison of satellite based SST with in-situ data does not truly provide us the real error in the satellite SST and there will be ambiguity due to errors in the in-situ measurements and their collocation differences. A Triple collocation (TC) or three-way error analysis using 3 mutually independent error-prone measurements, can be used to estimate root-mean square error (RMSE) associated with each of the measurements with high level of accuracy without treating any one system a perfectly-observed "truth". In this study we are estimating the absolute random errors associated with Pathfinder Version 5.3 Level-3C SST product Climate Data record. Along with the in-situ SST data, the third source of dataset used for this analysis is the AATSR reprocessing of climate (ARC) dataset for the corresponding period. All three SST observations are collocated, and statistics of difference between each pair is estimated. Instead of using a traditional TC analysis we have implemented the Extended Triple Collocation (ETC) approach to estimate the correlation coefficient of each measurement system w.r.t. the unknown target variable along with their RMSE.
Refractive error characteristics of early and advanced presbyopic individuals.
DOT National Transportation Integrated Search
1977-07-01
The frequency and distribution of ocular refractive errors among middle-aged and older people were obtained from a nonclinical population holding a variety of blue-collar, clerical, and technical jobs. The 422 individuals ranged in age from 35 to 69 ...
A data-driven modeling approach to stochastic computation for low-energy biomedical devices.
Lee, Kyong Ho; Jang, Kuk Jin; Shoeb, Ali; Verma, Naveen
2011-01-01
Low-power devices that can detect clinically relevant correlations in physiologically-complex patient signals can enable systems capable of closed-loop response (e.g., controlled actuation of therapeutic stimulators, continuous recording of disease states, etc.). In ultra-low-power platforms, however, hardware error sources are becoming increasingly limiting. In this paper, we present how data-driven methods, which allow us to accurately model physiological signals, also allow us to effectively model and overcome prominent hardware error sources with nearly no additional overhead. Two applications, EEG-based seizure detection and ECG-based arrhythmia-beat classification, are synthesized to a logic-gate implementation, and two prominent error sources are introduced: (1) SRAM bit-cell errors and (2) logic-gate switching errors ('stuck-at' faults). Using patient data from the CHB-MIT and MIT-BIH databases, performance similar to error-free hardware is achieved even for very high fault rates (up to 0.5 for SRAMs and 7 × 10(-2) for logic) that cause computational bit error rates as high as 50%.
3D non-rigid surface-based MR-TRUS registration for image-guided prostate biopsy
NASA Astrophysics Data System (ADS)
Sun, Yue; Qiu, Wu; Romagnoli, Cesare; Fenster, Aaron
2014-03-01
Two dimensional (2D) transrectal ultrasound (TRUS) guided prostate biopsy is the standard approach for definitive diagnosis of prostate cancer (PCa). However, due to the lack of image contrast of prostate tumors needed to clearly visualize early-stage PCa, prostate biopsy often results in false negatives, requiring repeat biopsies. Magnetic Resonance Imaging (MRI) has been considered to be a promising imaging modality for noninvasive identification of PCa, since it can provide a high sensitivity and specificity for the detection of early stage PCa. Our main objective is to develop and validate a registration method of 3D MR-TRUS images, allowing generation of volumetric 3D maps of targets identified in 3D MR images to be biopsied using 3D TRUS images. Our registration method first makes use of an initial rigid registration of 3D MR images to 3D TRUS images using 6 manually placed approximately corresponding landmarks in each image. Following the manual initialization, two prostate surfaces are segmented from 3D MR and TRUS images and then non-rigidly registered using a thin-plate spline (TPS) algorithm. The registration accuracy was evaluated using 4 patient images by measuring target registration error (TRE) of manually identified corresponding intrinsic fiducials (calcifications and/or cysts) in the prostates. Experimental results show that the proposed method yielded an overall mean TRE of 2.05 mm, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm.
Daverio, Marco; Fino, Giuliana; Luca, Brugnaro; Zaggia, Cristina; Pettenazzo, Andrea; Parpaiola, Antonella; Lago, Paola; Amigoni, Angela
2015-12-01
Errors in are estimated to occur with an incidence of 3.7-16.6% in hospitalized patients. The application of systems for detection of adverse events is becoming a widespread reality in healthcare. Incident reporting (IR) and failure mode and effective analysis (FMEA) are strategies widely used to detect errors, but no studies have combined them in the setting of a pediatric intensive care unit (PICU). The aim of our study was to describe the trend of IR in a PICU and evaluate the effect of FMEA application on the number and severity of the errors detected. With this prospective observational study, we evaluated the frequency IR documented in standard IR forms completed from January 2009 to December 2012 in the PICU of Woman's and Child's Health Department of Padova. On the basis of their severity, errors were classified as: without outcome (55%), with minor outcome (16%), with moderate outcome (10%), and with major outcome (3%); 16% of reported incidents were 'near misses'. We compared the data before and after the introduction of FMEA. Sixty-nine errors were registered, 59 (86%) concerning drug therapy (83% during prescription). Compared to 2009-2010, in 2011-2012, we noted an increase of reported errors (43 vs 26) with a reduction of their severity (21% vs 8% 'near misses' and 65% vs 38% errors with no outcome). With the introduction of FMEA, we obtained an increased awareness in error reporting. Application of these systems will improve the quality of healthcare services. © 2015 John Wiley & Sons Ltd.
2012-01-01
Background Presented is the method “Detection and Outline Error Estimates” (DOEE) for assessing rater agreement in the delineation of multiple sclerosis (MS) lesions. The DOEE method divides operator or rater assessment into two parts: 1) Detection Error (DE) -- rater agreement in detecting the same regions to mark, and 2) Outline Error (OE) -- agreement of the raters in outlining of the same lesion. Methods DE, OE and Similarity Index (SI) values were calculated for two raters tested on a set of 17 fluid-attenuated inversion-recovery (FLAIR) images of patients with MS. DE, OE, and SI values were tested for dependence with mean total area (MTA) of the raters' Region of Interests (ROIs). Results When correlated with MTA, neither DE (ρ = .056, p=.83) nor the ratio of OE to MTA (ρ = .23, p=.37), referred to as Outline Error Rate (OER), exhibited significant correlation. In contrast, SI is found to be strongly correlated with MTA (ρ = .75, p < .001). Furthermore, DE and OER values can be used to model the variation in SI with MTA. Conclusions The DE and OER indices are proposed as a better method than SI for comparing rater agreement of ROIs, which also provide specific information for raters to improve their agreement. PMID:22812697
Acoustic Evidence for Phonologically Mismatched Speech Errors
ERIC Educational Resources Information Center
Gormley, Andrea
2015-01-01
Speech errors are generally said to accommodate to their new phonological context. This accommodation has been validated by several transcription studies. The transcription methodology is not the best choice for detecting errors at this level, however, as this type of error can be difficult to perceive. This paper presents an acoustic analysis of…
Fostering the Intelligent Novice: Learning from Errors with Metacognitive Tutoring
ERIC Educational Resources Information Center
Mathan, Santosh A.; Koedinger, Kenneth R.
2005-01-01
This article explores 2 important aspects of metacognition: (a) how students monitor their ongoing performance to detect and correct errors and (b) how students reflect on those errors to learn from them. Although many instructional theories have advocated providing students with immediate feedback on errors, some researchers have argued that…
Measurement Error and Equating Error in Power Analysis
ERIC Educational Resources Information Center
Phillips, Gary W.; Jiang, Tao
2016-01-01
Power analysis is a fundamental prerequisite for conducting scientific research. Without power analysis the researcher has no way of knowing whether the sample size is large enough to detect the effect he or she is looking for. This paper demonstrates how psychometric factors such as measurement error and equating error affect the power of…
The Neural Basis of Error Detection: Conflict Monitoring and the Error-Related Negativity
ERIC Educational Resources Information Center
Yeung, Nick; Botvinick, Matthew M.; Cohen, Jonathan D.
2004-01-01
According to a recent theory, anterior cingulate cortex is sensitive to response conflict, the coactivation of mutually incompatible responses. The present research develops this theory to provide a new account of the error-related negativity (ERN), a scalp potential observed following errors. Connectionist simulations of response conflict in an…
Near Misses in Financial Trading: Skills for Capturing and Averting Error.
Leaver, Meghan; Griffiths, Alex; Reader, Tom
2018-05-01
The aims of this study were (a) to determine whether near-miss incidents in financial trading contain information on the operator skills and systems that detect and prevent near misses and the patterns and trends revealed by these data and (b) to explore if particular operator skills and systems are found as important for avoiding particular types of error on the trading floor. In this study, we examine a cohort of near-miss incidents collected from a financial trading organization using the Financial Incident Analysis System and report on the nontechnical skills and systems that are used to detect and prevent error in this domain. One thousand near-miss incidents are analyzed using distribution, mean, chi-square, and associative analysis to describe the data; reliability is provided. Slips/lapses (52%) and human-computer interface problems (21%) often occur alone and are the main contributors to error causation, whereas the prevention of error is largely a result of teamwork (65%) and situation awareness (46%) skills. No matter the cause of error, situation awareness and teamwork skills are used most often to detect and prevent the error. Situation awareness and teamwork skills appear universally important as a "last line" of defense for capturing error, and data from incident-monitoring systems can be analyzed in a fashion more consistent with a "Safety-II" approach. This research provides data for ameliorating risk within financial trading organizations, with implications for future risk management programs and regulation.
Field evaluation of distance-estimation error during wetland-dependent bird surveys
Nadeau, Christopher P.; Conway, Courtney J.
2012-01-01
Context: The most common methods to estimate detection probability during avian point-count surveys involve recording a distance between the survey point and individual birds detected during the survey period. Accurately measuring or estimating distance is an important assumption of these methods; however, this assumption is rarely tested in the context of aural avian point-count surveys. Aims: We expand on recent bird-simulation studies to document the error associated with estimating distance to calling birds in a wetland ecosystem. Methods: We used two approaches to estimate the error associated with five surveyor's distance estimates between the survey point and calling birds, and to determine the factors that affect a surveyor's ability to estimate distance. Key results: We observed biased and imprecise distance estimates when estimating distance to simulated birds in a point-count scenario (x̄error = -9 m, s.d.error = 47 m) and when estimating distances to real birds during field trials (x̄error = 39 m, s.d.error = 79 m). The amount of bias and precision in distance estimates differed among surveyors; surveyors with more training and experience were less biased and more precise when estimating distance to both real and simulated birds. Three environmental factors were important in explaining the error associated with distance estimates, including the measured distance from the bird to the surveyor, the volume of the call and the species of bird. Surveyors tended to make large overestimations to birds close to the survey point, which is an especially serious error in distance sampling. Conclusions: Our results suggest that distance-estimation error is prevalent, but surveyor training may be the easiest way to reduce distance-estimation error. Implications: The present study has demonstrated how relatively simple field trials can be used to estimate the error associated with distance estimates used to estimate detection probability during avian point-count surveys. Evaluating distance-estimation errors will allow investigators to better evaluate the accuracy of avian density and trend estimates. Moreover, investigators who evaluate distance-estimation errors could employ recently developed models to incorporate distance-estimation error into analyses. We encourage further development of such models, including the inclusion of such models into distance-analysis software.
Niikura, Ryota; Nagata, Naoyoshi; Yamada, Atsuo; Doyama, Hisashi; Shiratori, Yasutoshi; Nishida, Tsutomu; Kiyotoki, Shu; Yada, Tomoyuki; Fujita, Tomoki; Sumiyoshi, Tetsuya; Hasatani, Kenkei; Mikami, Tatsuya; Honda, Tetsuro; Mabe, Katsuhiro; Hara, Kazuo; Yamamoto, Katsumi; Takeda, Mariko; Takata, Munenori; Tanaka, Mototsugu; Shinozaki, Tomohiro; Fujishiro, Mitsuhiro; Koike, Kazuhiko
2018-04-03
The clinical benefit of early colonoscopy within 24 h of arrival in patients with severe acute lower gastrointestinal bleeding (ALGIB) remains controversial. This trial will compare early colonoscopy (performed within 24 h) versus elective colonoscopy (performed between 24 and 96 h) to examine the identification rate of stigmata of recent hemorrhage (SRH) in ALGIB patients. We hypothesize that, compared with elective colonoscopy, early colonoscopy increases the identification of SRH and subsequently improves clinical outcomes. This trial is an investigator-initiated, multicenter, randomized, open-label, parallel-group trial examining the superiority of early colonoscopy over elective colonoscopy (standard therapy) in ALGIB patients. The primary outcome measure is the identification of SRH. Secondary outcomes include 30-day rebleeding, success of endoscopic treatment, need for additional endoscopic examination, need for interventional radiology, need for surgery, need for transfusion during hospitalization, length of stay, 30-day thrombotic events, 30-day mortality, preparation-related adverse events, and colonoscopy-related adverse events. The sample size will enable detection of a 9% SRH rate in elective colonoscopy patients and a SRH rate of ≥ 26% in early colonoscopy patients with a risk of type I error of 5% and a power of 80%. This trial will provide high-quality data on the benefits and risks of early colonoscopy in ALGIB patients. UMIN-CTR Identifier, UMIN000021129 . Registered on 21 February 2016; ClinicalTrials.gov Identifier, NCT03098173 . Registered on 24 March 2017.
WE-D-BRA-04: Online 3D EPID-Based Dose Verification for Optimum Patient Safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreeuw, H; Rozendaal, R; Olaciregui-Ruiz, I
2015-06-15
Purpose: To develop an online 3D dose verification tool based on EPID transit dosimetry to ensure optimum patient safety in radiotherapy treatments. Methods: A new software package was developed which processes EPID portal images online using a back-projection algorithm for the 3D dose reconstruction. The package processes portal images faster than the acquisition rate of the portal imager (∼ 2.5 fps). After a portal image is acquired, the software seeks for “hot spots” in the reconstructed 3D dose distribution. A hot spot is in this study defined as a 4 cm{sup 3} cube where the average cumulative reconstructed dose exceedsmore » the average total planned dose by at least 20% and 50 cGy. If a hot spot is detected, an alert is generated resulting in a linac halt. The software has been tested by irradiating an Alderson phantom after introducing various types of serious delivery errors. Results: In our first experiment the Alderson phantom was irradiated with two arcs from a 6 MV VMAT H&N treatment having a large leaf position error or a large monitor unit error. For both arcs and both errors the linac was halted before dose delivery was completed. When no error was introduced, the linac was not halted. The complete processing of a single portal frame, including hot spot detection, takes about 220 ms on a dual hexacore Intel Xeon 25 X5650 CPU at 2.66 GHz. Conclusion: A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for various kinds of gross delivery errors. The detection of hot spots was proven to be effective for the timely detection of these errors. Current work is focused on hot spot detection criteria for various treatment sites and the introduction of a clinical pilot program with online verification of hypo-fractionated (lung) treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, S
2015-06-15
Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignmentmore » of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic errors using routine measurement of electron beam energy constancy.« less
NASA Astrophysics Data System (ADS)
Poluyan, A. Y.; Fugarov, D. D.; Purchina, O. A.; Nesterchuk, V. V.; Smirnova, O. V.; Petrenkova, S. B.
2018-05-01
To date, the problems associated with the detection of errors in digital equipment (DE) systems for the automation of explosive objects of the oil and gas complex are extremely actual. Especially this problem is actual for facilities where a violation of the accuracy of the DE will inevitably lead to man-made disasters and essential material damage, at such facilities, the diagnostics of the accuracy of the DE operation is one of the main elements of the industrial safety management system. In the work, the solution of the problem of selecting the optimal variant of the errors detection system of errors detection by a validation criterion. Known methods for solving these problems have an exponential valuation of labor intensity. Thus, with a view to reduce time for solving the problem, a validation criterion is compiled as an adaptive bionic algorithm. Bionic algorithms (BA) have proven effective in solving optimization problems. The advantages of bionic search include adaptability, learning ability, parallelism, the ability to build hybrid systems based on combining. [1].
NASA Astrophysics Data System (ADS)
He, Xiaojun; Ma, Haotong; Luo, Chuanxin
2016-10-01
The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.
Narayan, Sreenath; Kalhan, Satish C.; Wilson, David L.
2012-01-01
I.Abstract Purpose To reduce swaps in fat-water separation methods, a particular issue on 7T small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Materials and Methods Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Results Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Conclusion Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. PMID:23023815
Narayan, Sreenath; Kalhan, Satish C; Wilson, David L
2013-05-01
To reduce swaps in fat-water separation methods, a particular issue on 7 Tesla (T) small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. Copyright © 2012 Wiley Periodicals, Inc.
Otitis Media in Early Childhood and Its Relationship to Later Phonological Development.
ERIC Educational Resources Information Center
Roberts, Joanne Erwick; And Others
1988-01-01
Examination of 55 socioeconomically disadvantaged children found no significant relationship between otitis media in early childhood and number of common phonological processes or consonants in error used during preschool years. However, otitis media in early childhood was associated with total number of phonological processes used by children…
Gauvin, Hanna S; De Baene, Wouter; Brass, Marcel; Hartsuiker, Robert J
2016-02-01
To minimize the number of errors in speech, and thereby facilitate communication, speech is monitored before articulation. It is, however, unclear at which level during speech production monitoring takes place, and what mechanisms are used to detect and correct errors. The present study investigated whether internal verbal monitoring takes place through the speech perception system, as proposed by perception-based theories of speech monitoring, or whether mechanisms independent of perception are applied, as proposed by production-based theories of speech monitoring. With the use of fMRI during a tongue twister task we observed that error detection in internal speech during noise-masked overt speech production and error detection in speech perception both recruit the same neural network, which includes pre-supplementary motor area (pre-SMA), dorsal anterior cingulate cortex (dACC), anterior insula (AI), and inferior frontal gyrus (IFG). Although production and perception recruit similar areas, as proposed by perception-based accounts, we did not find activation in superior temporal areas (which are typically associated with speech perception) during internal speech monitoring in speech production as hypothesized by these accounts. On the contrary, results are highly compatible with a domain general approach to speech monitoring, by which internal speech monitoring takes place through detection of conflict between response options, which is subsequently resolved by a domain general executive center (e.g., the ACC). Copyright © 2015 Elsevier Inc. All rights reserved.
The detection error of thermal test low-frequency cable based on M sequence correlation algorithm
NASA Astrophysics Data System (ADS)
Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin
2018-04-01
The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.
Using EHR Data to Detect Prescribing Errors in Rapidly Discontinued Medication Orders.
Burlison, Jonathan D; McDaniel, Robert B; Baker, Donald K; Hasan, Murad; Robertson, Jennifer J; Howard, Scott C; Hoffman, James M
2018-01-01
Previous research developed a new method for locating prescribing errors in rapidly discontinued electronic medication orders. Although effective, the prospective design of that research hinders its feasibility for regular use. Our objectives were to assess a method to retrospectively detect prescribing errors, to characterize the identified errors, and to identify potential improvement opportunities. Electronically submitted medication orders from 28 randomly selected days that were discontinued within 120 minutes of submission were reviewed and categorized as most likely errors, nonerrors, or not enough information to determine status. Identified errors were evaluated by amount of time elapsed from original submission to discontinuation, error type, staff position, and potential clinical significance. Pearson's chi-square test was used to compare rates of errors across prescriber types. In all, 147 errors were identified in 305 medication orders. The method was most effective for orders that were discontinued within 90 minutes. Duplicate orders were most common; physicians in training had the highest error rate ( p < 0.001), and 24 errors were potentially clinically significant. None of the errors were voluntarily reported. It is possible to identify prescribing errors in rapidly discontinued medication orders by using retrospective methods that do not require interrupting prescribers to discuss order details. Future research could validate our methods in different clinical settings. Regular use of this measure could help determine the causes of prescribing errors, track performance, and identify and evaluate interventions to improve prescribing systems and processes. Schattauer GmbH Stuttgart.
NASA Astrophysics Data System (ADS)
Cong, Wang; Xu, Lingdi; Li, Ang
2017-10-01
Large aspheric surface which have the deviation with spherical surface are being used widely in various of optical systems. Compared with spherical surface, Large aspheric surfaces have lots of advantages, such as improving image quality, correcting aberration, expanding field of view, increasing the effective distance and make the optical system compact, lightweight. Especially, with the rapid development of space optics, space sensor resolution is required higher and viewing angle is requred larger. Aspheric surface will become one of the essential components in the optical system. After finishing Aspheric coarse Grinding surface profile error is about Tens of microns[1].In order to achieve the final requirement of surface accuracy,the aspheric surface must be quickly modified, high precision testing is the basement of rapid convergence of the surface error . There many methods on aspheric surface detection[2], Geometric ray detection, hartmann detection, ronchi text, knifeedge method, direct profile test, interferometry, while all of them have their disadvantage[6]. In recent years the measure of the aspheric surface become one of the import factors which are restricting the aspheric surface processing development. A two meter caliber industrial CMM coordinate measuring machine is avaiable, but it has many drawbacks such as large detection error and low repeatability precision in the measurement of aspheric surface coarse grinding , which seriously affects the convergence efficiency during the aspherical mirror processing. To solve those problems, this paper presents an effective error control, calibration and removal method by calibration mirror position of the real-time monitoring and other effective means of error control, calibration and removal by probe correction and the measurement mode selection method to measure the point distribution program development. This method verified by real engineer examples, this method increases the original industrial-grade coordinate system nominal measurement accuracy PV value of 7 microns to 4microns, Which effectively improves the grinding efficiency of aspheric mirrors and verifies the correctness of the method. This paper also investigates the error detection and operation control method, the error calibration of the CMM and the random error calibration of the CMM .
Improving patient safety through quality assurance.
Raab, Stephen S
2006-05-01
Anatomic pathology laboratories use several quality assurance tools to detect errors and to improve patient safety. To review some of the anatomic pathology laboratory patient safety quality assurance practices. Different standards and measures in anatomic pathology quality assurance and patient safety were reviewed. Frequency of anatomic pathology laboratory error, variability in the use of specific quality assurance practices, and use of data for error reduction initiatives. Anatomic pathology error frequencies vary according to the detection method used. Based on secondary review, a College of American Pathologists Q-Probes study showed that the mean laboratory error frequency was 6.7%. A College of American Pathologists Q-Tracks study measuring frozen section discrepancy found that laboratories improved the longer they monitored and shared data. There is a lack of standardization across laboratories even for governmentally mandated quality assurance practices, such as cytologic-histologic correlation. The National Institutes of Health funded a consortium of laboratories to benchmark laboratory error frequencies, perform root cause analysis, and design error reduction initiatives, using quality assurance data. Based on the cytologic-histologic correlation process, these laboratories found an aggregate nongynecologic error frequency of 10.8%. Based on gynecologic error data, the laboratory at my institution used Toyota production system processes to lower gynecologic error frequencies and to improve Papanicolaou test metrics. Laboratory quality assurance practices have been used to track error rates, and laboratories are starting to use these data for error reduction initiatives.
Exploring Spanish health social media for detecting drug effects.
Segura-Bedmar, Isabel; Martínez, Paloma; Revert, Ricardo; Moreno-Schneider, Julián
2015-01-01
Adverse Drug reactions (ADR) cause a high number of deaths among hospitalized patients in developed countries. Major drug agencies have devoted a great interest in the early detection of ADRs due to their high incidence and increasing health care costs. Reporting systems are available in order for both healthcare professionals and patients to alert about possible ADRs. However, several studies have shown that these adverse events are underestimated. Our hypothesis is that health social networks could be a significant information source for the early detection of ADRs as well as of new drug indications. In this work we present a system for detecting drug effects (which include both adverse drug reactions as well as drug indications) from user posts extracted from a Spanish health forum. Texts were processed using MeaningCloud, a multilingual text analysis engine, to identify drugs and effects. In addition, we developed the first Spanish database storing drugs as well as their effects automatically built from drug package inserts gathered from online websites. We then applied a distant-supervision method using the database on a collection of 84,000 messages in order to extract the relations between drugs and their effects. To classify the relation instances, we used a kernel method based only on shallow linguistic information of the sentences. Regarding Relation Extraction of drugs and their effects, the distant supervision approach achieved a recall of 0.59 and a precision of 0.48. The task of extracting relations between drugs and their effects from social media is a complex challenge due to the characteristics of social media texts. These texts, typically posts or tweets, usually contain many grammatical errors and spelling mistakes. Moreover, patients use lay terminology to refer to diseases, symptoms and indications that is not usually included in lexical resources in languages other than English.
König, H H; Barry, J C; Leidl, R; Zrenner, E
2000-04-01
Orthoptic screening in the kindergarten is one option to improve early detection of amblyopia in children aged 3 years. The purpose of this study was to analyse the cost-effectiveness of such a screening programme in Germany. Based on data from the literature and own experience gained from orthoptic screening in kindergarten a decision-analytic model was developed. According to the model, all children in kindergarten, aged 3 years, who had not been treated for amblyopia before, were subjected to an orthoptic examination. Non-cooperative children were reexamined in kindergarten after one year. Children with positive test results were examined by an ophthalmologist for diagnosis. Effects were measured by the number of newly diagnosed cases of amblyopia, non-obvious strabismus and amblyogenic refractive errors. Direct costs were estimated from a third-party payer perspective. The influence of uncertain model parameters was tested by sensitivity analysis. In the base analysis the cost per orthoptic screening test was DM 15.39. Examination by an ophthalmologist cost DM 71.20. The total cost of the screening programme in all German kindergartens was DM 6.1 million. With a 1.5% age-specific prevalence of undiagnosed cases, a sensitivity of 95% and a specificity of 98%, a total of 4,261 new cases would be detected. The cost-effectiveness ratio was DM 1,421 per case detected. Sensitivity analysis showed considerable influence of prevalence and specificity on the cost-effectiveness ratio. It was more cost-effective to re-screen non-cooperative children in kindergarten than to have them examined by an ophthalmologist straight-away. The decision-analytic model showed stable results which may serve as a basis for discussion on the implementation of orthoptic screening and for planning a field study.
Bayesian network models for error detection in radiotherapy plans
NASA Astrophysics Data System (ADS)
Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.
2015-04-01
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
Quantifying seining detection probability for fishes of Great Plains sand‐bed rivers
Mollenhauer, Robert; Logue, Daniel R.; Brewer, Shannon K.
2018-01-01
Species detection error (i.e., imperfect and variable detection probability) is an essential consideration when investigators map distributions and interpret habitat associations. When fish detection error that is due to highly variable instream environments needs to be addressed, sand‐bed streams of the Great Plains represent a unique challenge. We quantified seining detection probability for diminutive Great Plains fishes across a range of sampling conditions in two sand‐bed rivers in Oklahoma. Imperfect detection resulted in underestimates of species occurrence using naïve estimates, particularly for less common fishes. Seining detection probability also varied among fishes and across sampling conditions. We observed a quadratic relationship between water depth and detection probability, in which the exact nature of the relationship was species‐specific and dependent on water clarity. Similarly, the direction of the relationship between water clarity and detection probability was species‐specific and dependent on differences in water depth. The relationship between water temperature and detection probability was also species dependent, where both the magnitude and direction of the relationship varied among fishes. We showed how ignoring detection error confounded an underlying relationship between species occurrence and water depth. Despite imperfect and heterogeneous detection, our results support that determining species absence can be accomplished with two to six spatially replicated seine hauls per 200‐m reach under average sampling conditions; however, required effort would be higher under certain conditions. Detection probability was low for the Arkansas River Shiner Notropis girardi, which is federally listed as threatened, and more than 10 seine hauls per 200‐m reach would be required to assess presence across sampling conditions. Our model allows scientists to estimate sampling effort to confidently assess species occurrence, which maximizes the use of available resources. Increased implementation of approaches that consider detection error promote ecological advancements and conservation and management decisions that are better informed.
A citizen science approach to optimising computer aided detection (CAD) in mammography
NASA Astrophysics Data System (ADS)
Ionescu, Georgia V.; Harkness, Elaine F.; Hulleman, Johan; Astley, Susan M.
2018-03-01
Computer aided detection (CAD) systems assist medical experts during image interpretation. In mammography, CAD systems prompt suspicious regions which help medical experts to detect early signs of cancer. This is a challenging task and prompts may appear in regions that are actually normal, whilst genuine cancers may be missed. The effect prompting has on readers performance is not fully known. In order to explore the effects of prompting errors, we have created an online game (Bat Hunt), designed for non-experts, that mirrors mammographic CAD. This allows us to explore a wider parameter space. Users are required to detect bats in images of flocks of birds, with image difficulty matched to the proportions of screening mammograms in different BI-RADS density categories. Twelve prompted conditions were investigated, along with unprompted detection. On average, players achieved a sensitivity of 0.33 for unprompted detection, and sensitivities of 0.75, 0.83, and 0.92 respectively for 70%, 80%, and 90% of targets prompted, regardless of CAD specificity. False prompts distract players from finding unprompted targets if they appear in the same image. Player performance decreases when the number of false prompts increases, and increases proportionally with prompting sensitivity. Median lowest d' was for unprompted condition (1.08) and the highest for sensitivity 90% and 0.5 false prompts per image (d'=4.48).
Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.
NASA Astrophysics Data System (ADS)
Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin
1998-11-01
Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.
“So Big”: The Development of Body Self-awareness in Toddlers
Brownell, Celia A.; Zerwas, Stephanie; Ramani, Geetha B.
2012-01-01
Early development of body self-awareness was examined in 57 children at 18, 22, or 26 months of age, using tasks designed to require objective representation of one’s own body. All children made at least one body representation error, with approximately 2.5 errors per task on average. Errors declined with age. Children’s performance on comparison tasks that required them to reason about the relative size of objects and about objects as obstacles, without considering their own bodies, was unrelated to performance on the body awareness tasks. Thus, the ability to represent and reflect on one’s own body explicitly and objectively may be a unique dimension of early development, a distinct component of objective self-awareness which emerges in this age period. PMID:17883440
Errors in radiation oncology: A study in pathways and dosimetric impact
Drzymala, Robert E.; Purdy, James A.; Michalski, Jeff
2005-01-01
As complexity for treating patients increases, so does the risk of error. Some publications have suggested that record and verify (R&V) systems may contribute in propagating errors. Direct data transfer has the potential to eliminate most, but not all, errors. And although the dosimetric consequences may be obvious in some cases, a detailed study does not exist. In this effort, we examined potential errors in terms of scenarios, pathways of occurrence, and dosimetry. Our goal was to prioritize error prevention according to likelihood of event and dosimetric impact. For conventional photon treatments, we investigated errors of incorrect source‐to‐surface distance (SSD), energy, omitted wedge (physical, dynamic, or universal) or compensating filter, incorrect wedge or compensating filter orientation, improper rotational rate for arc therapy, and geometrical misses due to incorrect gantry, collimator or table angle, reversed field settings, and setup errors. For electron beam therapy, errors investigated included incorrect energy, incorrect SSD, along with geometric misses. For special procedures we examined errors for total body irradiation (TBI, incorrect field size, dose rate, treatment distance) and LINAC radiosurgery (incorrect collimation setting, incorrect rotational parameters). Likelihood of error was determined and subsequently rated according to our history of detecting such errors. Dosimetric evaluation was conducted by using dosimetric data, treatment plans, or measurements. We found geometric misses to have the highest error probability. They most often occurred due to improper setup via coordinate shift errors or incorrect field shaping. The dosimetric impact is unique for each case and depends on the proportion of fields in error and volume mistreated. These errors were short‐lived due to rapid detection via port films. The most significant dosimetric error was related to a reversed wedge direction. This may occur due to incorrect collimator angle or wedge orientation. For parallel‐opposed 60° wedge fields, this error could be as high as 80% to a point off‐axis. Other examples of dosimetric impact included the following: SSD, ~2%/cm for photons or electrons; photon energy (6 MV vs. 18 MV), on average 16% depending on depth, electron energy, ~0.5cm of depth coverage per MeV (mega‐electron volt). Of these examples, incorrect distances were most likely but rapidly detected by in vivo dosimetry. Errors were categorized by occurrence rate, methods and timing of detection, longevity, and dosimetric impact. Solutions were devised according to these criteria. To date, no one has studied the dosimetric impact of global errors in radiation oncology. Although there is heightened awareness that with increased use of ancillary devices and automation, there must be a parallel increase in quality check systems and processes, errors do and will continue to occur. This study has helped us identify and prioritize potential errors in our clinic according to frequency and dosimetric impact. For example, to reduce the use of an incorrect wedge direction, our clinic employs off‐axis in vivo dosimetry. To avoid a treatment distance setup error, we use both vertical table settings and optical distance indicator (ODI) values to properly set up fields. As R&V systems become more automated, more accurate and efficient data transfer will occur. This will require further analysis. Finally, we have begun examining potential intensity‐modulated radiation therapy (IMRT) errors according to the same criteria. PACS numbers: 87.53.Xd, 87.53.St PMID:16143793
Volatile Organic Analyzer (VOA) in 2006: Repair, Revalidation, and Restart of Elektron Even
NASA Technical Reports Server (NTRS)
Limero, Thomas
2007-01-01
The Volatile Organic Analyzer (VOA) had been providing valuable data on trace contaminants in the atmosphere of the International Space Station (ISS) from January 2002 through May 2003. Component temperature errors, detected by the VOA s software, shut down the unit in May 2003, but in early 2005 on orbit diagnostics verified fuse failures had disabled both VOA channels. An in-flight maintenance (IFM) session in December 2005 returned the VOA to an operational mode by January 2006. This paper will present the on-orbit data from 2006 that were used to revalidate the VOA, and provide an overview of the VOA s contributions during the Elecktron contingency event that occurred on ISS in September 2006.
A fault-tolerant information processing concept for space vehicles.
NASA Technical Reports Server (NTRS)
Hopkins, A. L., Jr.
1971-01-01
A distributed fault-tolerant information processing system is proposed, comprising a central multiprocessor, dedicated local processors, and multiplexed input-output buses connecting them together. The processors in the multiprocessor are duplicated for error detection, which is felt to be less expensive than using coded redundancy of comparable effectiveness. Error recovery is made possible by a triplicated scratchpad memory in each processor. The main multiprocessor memory uses replicated memory for error detection and correction. Local processors use any of three conventional redundancy techniques: voting, duplex pairs with backup, and duplex pairs in independent subsystems.
Outcome Assessments and Cost Avoidance of an Oral Chemotherapy Management Clinic.
Wong, Siu-Fun; Bounthavong, Mark; Nguyen, Cham P; Chen, Timothy
2016-03-01
Increasing use of oral chemotherapy drugs increases the challenges for drug and patient management. An oral chemotherapy management clinic was developed to provide patients with oral chemotherapy management, concurrent medication (CM) education, and symptom management services. This evaluation aims to measure the need and effectiveness of this practice model due to scarce published data. This is a case series report of all patients referred to the oral chemotherapy management clinic. Data collected included patient demographics, depression scores, CMs, and types of intervention, including detection and management outcomes collected at baseline, 3-day, 7-day, and 3-month follow-ups. Persistence rate was monitored. Secondary analysis assessed potential cost avoidance. A total of 86 evaluated patients (32 men and 54 women, mean age of 63.4 years) did not show a high risk for medication nonadherence. The 3 most common cancer diagnoses were rectal, pancreatic, and breast, with capecitabine most prescribed. Patients had an average of 13.7 CMs. A total of 125 interventions (detection and management of adverse drug event detection, compliance, drug interactions, medication error, and symptom management) occurred in 201 visits, with more than 75% of interventions occurring within the first 14 days. A persistence rate was observed in 78% of 41 evaluable patients. The total estimated annual cost avoidance per 1.0 full time employee (FTE) was $125,761.93. This evaluation demonstrated the need for additional support for patients receiving oral chemotherapy within standard of care medical service. A comprehensive oral chemotherapy management referral service can optimize patient care delivery via early interventions for adverse drug events, drug interactions, and medication errors up to 3 months after initiation of treatment. Copyright © 2016 by the National Comprehensive Cancer Network.
NASA Astrophysics Data System (ADS)
Zhao, Chaoying; Zhang, Qin; He, Yang; Peng, Jianbing; Yang, Chengsheng; Kang, Ya
2016-04-01
Small baseline subsets interferometric synthetic aperture radar technique is analyzed to detect and monitor the loess landslide in the southern bank of the Jinghe River, Shaanxi province, China. Aiming to achieve the accurate preslide time-series deformation results over small spatial scale and abrupt temporal deformation loess landslide, digital elevation model error, coherence threshold for phase unwrapping, and quality of unwrapping interferograms must be carefully checked in advance. In this experience, land subsidence accompanying a landslide with the distance <1 km is obtained, which gives a sound precursor for small-scale loess landslide detection. Moreover, the longer and continuous land subsidence has been monitored while deformation starting point for the landslide is successfully inverted, which is key to monitoring the similar loess landslide. In addition, the accelerated landslide deformation from one to two months before the landslide can provide a critical clue to early warning of this kind of landslide.
Visual Scanning: Comparisons Between Student and Instructor Pilots. Final Report.
ERIC Educational Resources Information Center
DeMaio, Joseph; And Others
The performance of instructor pilots and student pilots was compared in two visual scanning tasks. In the first task both groups were shown slides of T-37 instrument displays in which errors were to be detected. Instructor pilots detected errors faster and with greater accuracy than student pilots, thus providing evidence for the validity of the…
Code of Federal Regulations, 2011 CFR
2011-04-01
... to the nearest field office of the Board. That office inspects the applications to detect errors and..., the claimant executes a registration and claim for unemployment insurance benefits (Form UI-3). In... openings, detecting errors and omissions, and noting items requiring investigation. The claim is then...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopan, O; Novak, A; Zeng, J
Purpose: Physics pre-treatment plan review is crucial to safe radiation oncology treatments. Studies show that most errors originate in treatment planning, which underscores the importance of physics plan review. As a QA measure the physics review is of fundamental importance and is central to the profession of medical physics. However, little is known about its effectiveness. More hard data are needed. The purpose of this study was to quantify the effectiveness of physics review with the goal of improving it. Methods: This study analyzed 315 “potentially serious” near-miss incidents within an institutional incident learning system collected over a two-year period.more » 139 of these originated prior to physics review and were found at the review or after. Incidents were classified as events that: 1)were detected by physics review, 2)could have been detected (but were not), and 3)could not have been detected. Category 1 and 2 events were classified by which specific check (within physics review) detected or could have detected the event. Results: Of the 139 analyzed events, 73/139 (53%) were detected or could have been detected by the physics review; although, 42/73 (58%) were not actually detected. 45/73 (62%) errors originated in treatment planning, making physics review the first step in the workflow that could detect the error. Two specific physics checks were particularly effective (combined effectiveness of >20%): verifying DRRs (8/73) and verifying isocenter (7/73). Software-based plan checking systems were evaluated and found to have potential effectiveness of 40%. Given current data structures, software implementations of some tests such as isocenter verification check would be challenging. Conclusion: Physics plan review is a key safety measure and can detect majority of reported events. However, a majority of events that potentially could have been detected were NOT detected in this study, indicating the need to improve the performance of physics review.« less
[Remote system of natural gas leakage based on multi-wavelength characteristics spectrum analysis].
Li, Jing; Lu, Xu-Tao; Yang, Ze-Hui
2014-05-01
In order to be able to quickly, to a wide range of natural gas pipeline leakage monitoring, the remote detection system for concentration of methane gas was designed based on static Fourier transform interferometer. The system used infrared light, which the center wavelength was calibrated to absorption peaks of methane molecules, to irradiated tested area, and then got the interference fringes by converging collimation system and interference module. Finally, the system calculated the concentration-path-length product in tested area by multi-wavelength characteristics spectrum analysis algorithm, furthermore the inversion of the corresponding concentration of methane. By HITRAN spectrum database, Selected wavelength position of 1. 65 microm as the main characteristic absorption peaks, thereby using 1. 65 pm DFB laser as the light source. In order to improve the detection accuracy and stability without increasing the hardware configuration of the system, solved absorbance ratio by the auxiliary wave-length, and then get concentration-path-length product of measured gas by the method of the calculation proportion of multi-wavelength characteristics. The measurement error from external disturbance is caused by this innovative approach, and it is more similar to a differential measurement. It will eliminate errors in the process of solving the ratio of multi-wavelength characteristics, and can improve accuracy and stability of the system. The infrared absorption spectrum of methane is constant, the ratio of absorbance of any two wavelengths by methane is also constant. The error coefficients produced by the system is the same when it received the same external interference, so the measured noise of the system can be effectively reduced by the ratio method. Experimental tested standards methane gas tank with leaking rate constant. Using the tested data of PN1000 type portable methane detector as the standard data, and were compared to the tested data of the system, while tested distance of the system were 100, 200 and 500 m. Experimental results show that the methane concentration detected value was stable after a certain time leakage, the concentration-path-length product value of the system was stable. For detection distance of 100 m, the detection error of the concentration-path-length product was less than 1. 0%. With increasing distance from tested area, the detection error is increased correspondingly. When the distance was 500 m, the detection error was less than 4. 5%. In short, the detected error of the system is less than 5. 0% after the gas leakage stable, to meet the requirements of the field of natural gas leakage remote sensing.
Runtime Verification in Context : Can Optimizing Error Detection Improve Fault Diagnosis
NASA Technical Reports Server (NTRS)
Dwyer, Matthew B.; Purandare, Rahul; Person, Suzette
2010-01-01
Runtime verification has primarily been developed and evaluated as a means of enriching the software testing process. While many researchers have pointed to its potential applicability in online approaches to software fault tolerance, there has been a dearth of work exploring the details of how that might be accomplished. In this paper, we describe how a component-oriented approach to software health management exposes the connections between program execution, error detection, fault diagnosis, and recovery. We identify both research challenges and opportunities in exploiting those connections. Specifically, we describe how recent approaches to reducing the overhead of runtime monitoring aimed at error detection might be adapted to reduce the overhead and improve the effectiveness of fault diagnosis.
Di, Huige; Zhang, Zhanfei; Hua, Hangbo; Zhang, Jiaqi; Hua, Dengxin; Wang, Yufeng; He, Tingyao
2017-03-06
Accurate aerosol optical properties could be obtained via the high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress the Rayleigh or Mie scattering in lidar return signals. The ability of the filter to suppress Rayleigh or Mie scattering is critical for HSRL. Meanwhile, it is impossible to increase the rejection of the filter without limitation. How to optimize the spectral discriminator and select the appropriate suppression rate of the signal is important to us. The HSRL technology was thoroughly studied based on error propagation. Error analyses and sensitivity studies were carried out on the transmittance characteristics of the spectral discriminator. Moreover, ratwo different spectroscopic methods for HSRL were described and compared: one is to suppress the Mie scattering; the other is to suppress the Rayleigh scattering. The corresponding HSRLs were simulated and analyzed. The results show that excessive suppression of Rayleigh scattering or Mie scattering in a high-spectral channel is not necessary if the transmittance of the spectral filter for molecular and aerosol scattering signals can be well characterized. When the ratio of transmittance of the spectral filter for aerosol scattering and molecular scattering is less than 0.1 or greater than 10, the detection error does not change much with its value. This conclusion implies that we have more choices for the high-spectral discriminator in HSRL. Moreover, the detection errors of HSRL regarding the two spectroscopic methods vary greatly with the atmospheric backscattering ratio. To reduce the detection error, it is necessary to choose a reasonable spectroscopic method. The detection method of suppressing the Rayleigh signal and extracting the Mie signal can achieve less error in a clear atmosphere, while the method of suppressing the Mie signal and extracting the Rayleigh signal can achieve less error in a polluted atmosphere.
Bultena, Sybrine; Danielmeier, Claudia; Bekkering, Harold; Lemhöfer, Kristin
2017-01-01
Humans monitor their behavior to optimize performance, which presumably relies on stable representations of correct responses. During second language (L2) learning, however, stable representations have yet to be formed while knowledge of the first language (L1) can interfere with learning, which in some cases results in persistent errors. In order to examine how correct L2 representations are stabilized, this study examined performance monitoring in the learning process of second language learners for a feature that conflicts with their first language. Using EEG, we investigated if L2 learners in a feedback-guided word gender assignment task showed signs of error detection in the form of an error-related negativity (ERN) before and after receiving feedback, and how feedback is processed. The results indicated that initially, response-locked negativities for correct (CRN) and incorrect (ERN) responses were of similar size, showing a lack of internal error detection when L2 representations are unstable. As behavioral performance improved following feedback, the ERN became larger than the CRN, pointing to the first signs of successful error detection. Additionally, we observed a second negativity following the ERN/CRN components, the amplitude of which followed a similar pattern as the previous negativities. Feedback-locked data indicated robust FRN and P300 effects in response to negative feedback across different rounds, demonstrating that feedback remained important in order to update memory representations during learning. We thus show that initially, L2 representations may often not be stable enough to warrant successful error monitoring, but can be stabilized through repeated feedback, which means that the brain is able to overcome L1 interference, and can learn to detect errors internally after a short training session. The results contribute a different perspective to the discussion on changes in ERN and FRN components in relation to learning, by extending the investigation of these effects to the language learning domain. Furthermore, these findings provide a further characterization of the online learning process of L2 learners.
A Decision Theoretic Approach to Evaluate Radiation Detection Algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobles, Mallory A.; Sego, Landon H.; Cooley, Scott K.
2013-07-01
There are a variety of sensor systems deployed at U.S. border crossings and ports of entry that scan for illicit nuclear material. In this work, we develop a framework for comparing the performance of detection algorithms that interpret the output of these scans and determine when secondary screening is needed. We optimize each algorithm to minimize its risk, or expected loss. We measure an algorithm’s risk by considering its performance over a sample, the probability distribution of threat sources, and the consequence of detection errors. While it is common to optimize algorithms by fixing one error rate and minimizing another,more » our framework allows one to simultaneously consider multiple types of detection errors. Our framework is flexible and easily adapted to many different assumptions regarding the probability of a vehicle containing illicit material, and the relative consequences of a false positive and false negative errors. Our methods can therefore inform decision makers of the algorithm family and parameter values which best reduce the threat from illicit nuclear material, given their understanding of the environment at any point in time. To illustrate the applicability of our methods, in this paper, we compare the risk from two families of detection algorithms and discuss the policy implications of our results.« less
A multi points ultrasonic detection method for material flow of belt conveyor
NASA Astrophysics Data System (ADS)
Zhang, Li; He, Rongjun
2018-03-01
For big detection error of single point ultrasonic ranging technology used in material flow detection of belt conveyor when coal distributes unevenly or is large, a material flow detection method of belt conveyor is designed based on multi points ultrasonic counter ranging technology. The method can calculate approximate sectional area of material by locating multi points on surfaces of material and belt, in order to get material flow according to running speed of belt conveyor. The test results show that the method has smaller detection error than single point ultrasonic ranging technology under the condition of big coal with uneven distribution.
Commers, Tessa; Swindells, Susan; Sayles, Harlan; Gross, Alan E; Devetten, Marcel; Sandkovsky, Uriel
2014-01-01
Errors in prescribing antiretroviral therapy (ART) often occur with the hospitalization of HIV-infected patients. The rapid identification and prevention of errors may reduce patient harm and healthcare-associated costs. A retrospective review of hospitalized HIV-infected patients was carried out between 1 January 2009 and 31 December 2011. Errors were documented as omission, underdose, overdose, duplicate therapy, incorrect scheduling and/or incorrect therapy. The time to error correction was recorded. Relative risks (RRs) were computed to evaluate patient characteristics and error rates. A total of 289 medication errors were identified in 146/416 admissions (35%). The most common was drug omission (69%). At an error rate of 31%, nucleoside reverse transcriptase inhibitors were associated with an increased risk of error when compared with protease inhibitors (RR 1.32; 95% CI 1.04-1.69) and co-formulated drugs (RR 1.59; 95% CI 1.19-2.09). Of the errors, 31% were corrected within the first 24 h, but over half (55%) were never remedied. Admissions with an omission error were 7.4 times more likely to have all errors corrected within 24 h than were admissions without an omission. Drug interactions with ART were detected on 51 occasions. For the study population (n = 177), an increased risk of admission error was observed for black (43%) compared with white (28%) individuals (RR 1.53; 95% CI 1.16-2.03) but no significant differences were observed between white patients and other minorities or between men and women. Errors in inpatient ART were common, and the majority were never detected. The most common errors involved omission of medication, and nucleoside reverse transcriptase inhibitors had the highest rate of prescribing error. Interventions to prevent and correct errors are urgently needed.
Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN
NASA Astrophysics Data System (ADS)
Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.
2016-12-01
In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.
A novel approach for pilot error detection using Dynamic Bayesian Networks.
Saada, Mohamad; Meng, Qinggang; Huang, Tingwen
2014-06-01
In the last decade Dynamic Bayesian Networks (DBNs) have become one type of the most attractive probabilistic modelling framework extensions of Bayesian Networks (BNs) for working under uncertainties from a temporal perspective. Despite this popularity not many researchers have attempted to study the use of these networks in anomaly detection or the implications of data anomalies on the outcome of such models. An abnormal change in the modelled environment's data at a given time, will cause a trailing chain effect on data of all related environment variables in current and consecutive time slices. Albeit this effect fades with time, it still can have an ill effect on the outcome of such models. In this paper we propose an algorithm for pilot error detection, using DBNs as the modelling framework for learning and detecting anomalous data. We base our experiments on the actions of an aircraft pilot, and a flight simulator is created for running the experiments. The proposed anomaly detection algorithm has achieved good results in detecting pilot errors and effects on the whole system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bojechko, Casey; Phillps, Mark; Kalet, Alan
Purpose: Complex treatments in radiation therapy require robust verification in order to prevent errors that can adversely affect the patient. For this purpose, the authors estimate the effectiveness of detecting errors with a “defense in depth” system composed of electronic portal imaging device (EPID) based dosimetry and a software-based system composed of rules-based and Bayesian network verifications. Methods: The authors analyzed incidents with a high potential severity score, scored as a 3 or 4 on a 4 point scale, recorded in an in-house voluntary incident reporting system, collected from February 2012 to August 2014. The incidents were categorized into differentmore » failure modes. The detectability, defined as the number of incidents that are detectable divided total number of incidents, was calculated for each failure mode. Results: In total, 343 incidents were used in this study. Of the incidents 67% were related to photon external beam therapy (EBRT). The majority of the EBRT incidents were related to patient positioning and only a small number of these could be detected by EPID dosimetry when performed prior to treatment (6%). A large fraction could be detected by in vivo dosimetry performed during the first fraction (74%). Rules-based and Bayesian network verifications were found to be complimentary to EPID dosimetry, able to detect errors related to patient prescriptions and documentation, and errors unrelated to photon EBRT. Combining all of the verification steps together, 91% of all EBRT incidents could be detected. Conclusions: This study shows that the defense in depth system is potentially able to detect a large majority of incidents. The most effective EPID-based dosimetry verification is in vivo measurements during the first fraction and is complemented by rules-based and Bayesian network plan checking.« less
Augmenting intracortical brain-machine interface with neurally driven error detectors
NASA Astrophysics Data System (ADS)
Even-Chen, Nir; Stavisky, Sergey D.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.
2017-12-01
Objective. Making mistakes is inevitable, but identifying them allows us to correct or adapt our behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors that need to be explicitly corrected by the user, thereby consuming time and thus hindering performance. We hypothesized that neural correlates of the user perceiving the mistake could be used by the BMI to automatically correct errors. However, it was unknown whether intracortical outcome error signals were present in the premotor and primary motor cortices, brain regions successfully used for intracortical BMIs. Approach. We report here for the first time a putative outcome error signal in spiking activity within these cortices when rhesus macaques performed an intracortical BMI computer cursor task. Main results. We decoded BMI trial outcomes shortly after and even before a trial ended with 96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-its-kind intracortical BMI error ‘detect-and-act’ system that attempts to automatically ‘undo’ or ‘prevent’ mistakes. The detect-and-act system works independently and in parallel to a kinematic BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including a state-of-the-art decoder (ReFIT-KF). Significance. Detecting errors in real-time from the same brain regions that are commonly used to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to people with paralysis.
Bier, Nathalie; Van Der Linden, Martial; Gagnon, Lise; Desrosiers, Johanne; Adam, Stephane; Louveaux, Stephanie; Saint-Mleux, Julie
2008-06-01
This study compared the efficacy of five learning methods in the acquisition of face-name associations in early dementia of Alzheimer type (AD). The contribution of error production and implicit memory to the efficacy of each method was also examined. Fifteen participants with early AD and 15 matched controls were exposed to five learning methods: spaced retrieval, vanishing cues, errorless, and two trial-and-error methods, one with explicit and one with implicit memory task instructions. Under each method, participants had to learn a list of five face-name associations, followed by free recall, cued recall and recognition. Delayed recall was also assessed. For AD, results showed that all methods were efficient but there were no significant differences between them. The number of errors produced during the learning phases varied between the five methods but did not influence learning. There were no significant differences between implicit and explicit memory task instructions on test performances. For the control group, there were no differences between the five methods. Finally, no significant correlations were found between the performance of the AD participants in free recall and their cognitive profile, but generally, the best performers had better remaining episodic memory. Also, case study analyses showed that spaced retrieval was the method for which the greatest number of participants (four) obtained results as good as the controls. This study suggests that the five methods are effective for new learning of face-name associations in AD. It appears that early AD patients can learn, even in the context of error production and explicit memory conditions.
Canty, Allana L; Neumann, David L; Shum, David H K
2017-12-01
Individuals with schizophrenia often demonstrate theory of mind (ToM) impairment relative to healthy adults. However, the exact nature of this impairment (first- vs. second-order ToM and cognitive vs. affective ToM) and the extent to which ToM abilities deteriorate with illness chronicity is unclear. Furthermore, little is known about the relationships between clinical symptoms and ToM error types (overmentalising, reduced mentalising and no ToM) in early and chronic schizophrenia. This study examined the nature and types of ToM impairment in individuals with early ( n = 26) and chronic schizophrenia ( n = 32) using a novel virtual reality task. Clinical participants and demographically-matched controls were administered the Virtual Assessment of Mentalising Ability, which provides indices of first- and second-order cognitive and affective ToM, and quantifies three different types of mentalising errors (viz., overmentalising, reduced mentalising, and no ToM). Individuals with early schizophrenia performed significantly poorer than healthy controls on first-order affective and second-order cognitive and affective ToM, but significantly higher than individuals with chronic schizophrenia on all ToM subscales. Whereas a lack of mental state concept was associated with negative symptoms, overmentalising was associated with positive symptoms. These findings suggest that ToM abilities selectively deteriorate with illness chronicity and error types are related to these individuals' presenting symptomology. An implication of the findings is that social-cognitive interventions for schizophrenia need to consider the nature, time course and symptomatology of the presenting patient.
Error image aware content restoration
NASA Astrophysics Data System (ADS)
Choi, Sungwoo; Lee, Moonsik; Jung, Byunghee
2015-12-01
As the resolution of TV significantly increased, content consumers have become increasingly sensitive to the subtlest defect in TV contents. This rising standard in quality demanded by consumers has posed a new challenge in today's context where the tape-based process has transitioned to the file-based process: the transition necessitated digitalizing old archives, a process which inevitably produces errors such as disordered pixel blocks, scattered white noise, or totally missing pixels. Unsurprisingly, detecting and fixing such errors require a substantial amount of time and human labor to meet the standard demanded by today's consumers. In this paper, we introduce a novel, automated error restoration algorithm which can be applied to different types of classic errors by utilizing adjacent images while preserving the undamaged parts of an error image as much as possible. We tested our method to error images detected from our quality check system in KBS(Korean Broadcasting System) video archive. We are also implementing the algorithm as a plugin of well-known NLE(Non-linear editing system), which is a familiar tool for quality control agent.
Automated Detection and Annotation of Disturbance in Eastern Forests
NASA Astrophysics Data System (ADS)
Hughes, M. J.; Chen, G.; Hayes, D. J.
2013-12-01
Forest disturbances represent an important component of the terrestrial carbon budget. To generate spatially-explicit estimates of disturbance and regrowth, we developed an automated system to detect and characterize forest change in the eastern United States at 30 m resolution from a 28-year Landsat Thematic Mapper time-series (1984-2011). Forest changes are labeled as 'disturbances' or 'regrowth', assigned to a severity class, and attributed to a disturbance type: either fire, insects, harvest, or 'unknown'. The system generates cloud-free summertime composite images for each year from multiple summer scenes and calculates vegetation indices from these composites. Patches of similar terrain on the landscape are identified by segmenting the Normalized Burn Ratio image. The spatial variance within each patch, which has been found to be a good indicator of diffuse disturbances such as forest insect damage, is then calculated for each index, creating an additional set of indexes. To identify vegetation change and quantify its degree, the derivative through time is calculated for each index using total variance regularization to account for noise and create a piecewise-linear trend. These indexes and their derivatives detect areas of disturbance and regrowth and are also used as inputs into a neural network that classifies the disturbance type/agent. Disturbance and disease information from the US Forest Service Aerial Detection Surveys (ADS) geodatabase and disturbed plots from the US Forest Service Forest Inventory and Analysis (FIA) database provided training data for the neural network. Although there have been recent advances in discriminating between disturbance types in boreal forests, due to the larger number of forest species and cosmopolitan nature of overstory communities in eastern forests, separation remains difficult. The ADS database, derived from sketch maps and later digitized, commonly designates a single large area encompassing many smaller effected areas as disturbed, overestimating disturbance and creating ambiguity in the neural network. Even so, total classification error in a neighboring testing region is 22%. Most error comes labeling disturbances that are unknown in the training data as a known disturbance type. Confusion within known disturbance types is low, with 7% misclassification error for southern pine beetle, and 11% misclassification error for fire, which is likely due to over-estimates of disturbance extent in ADS polygons. Additionally, we used the Terrestrial Ecosystem Model (TEM) to quantify the carbon flux associated with a subset of selected disturbances of different severity and type. Early results show that combined disturbances resulted in a net carbon source of 1.27 kg/m2 between 1981 and 2010, which is about 8% of the total carbon storage in forests. This carbon loss offset much of the carbon sink effects resulting from elevated atmospheric CO2 and nitrogen deposition.
Choose and choose again: appearance-reality errors, pragmatics and logical ability.
Deák, Gedeon O; Enright, Brian
2006-05-01
In the Appearance/Reality (AR) task some 3- and 4-year-old children make perseverative errors: they choose the same word for the appearance and the function of a deceptive object. Are these errors specific to the AR task, or signs of a general question-answering problem? Preschoolers completed five tasks: AR; simple successive forced-choice question pairs (QP); flexible naming of objects (FN); working memory (WM) span; and indeterminacy detection (ID). AR errors correlated with QP errors. Insensitivity to indeterminacy predicted perseveration in both tasks. Neither WM span nor flexible naming predicted other measures. Age predicted sensitivity to indeterminacy. These findings suggest that AR tests measure a pragmatic understanding; specifically, different questions about a topic usually call for different answers. This understanding is related to the ability to detect indeterminacy of each question in a series. AR errors are unrelated to the ability to represent an object as belonging to multiple categories, to working memory span, or to inhibiting previously activated words.
Generalized site occupancy models allowing for false positive and false negative errors
Royle, J. Andrew; Link, W.A.
2006-01-01
Site occupancy models have been developed that allow for imperfect species detection or ?false negative? observations. Such models have become widely adopted in surveys of many taxa. The most fundamental assumption underlying these models is that ?false positive? errors are not possible. That is, one cannot detect a species where it does not occur. However, such errors are possible in many sampling situations for a number of reasons, and even low false positive error rates can induce extreme bias in estimates of site occupancy when they are not accounted for. In this paper, we develop a model for site occupancy that allows for both false negative and false positive error rates. This model can be represented as a two-component finite mixture model and can be easily fitted using freely available software. We provide an analysis of avian survey data using the proposed model and present results of a brief simulation study evaluating the performance of the maximum-likelihood estimator and the naive estimator in the presence of false positive errors.
Tests for detecting overdispersion in models with measurement error in covariates.
Yang, Yingsi; Wong, Man Yu
2015-11-30
Measurement error in covariates can affect the accuracy in count data modeling and analysis. In overdispersion identification, the true mean-variance relationship can be obscured under the influence of measurement error in covariates. In this paper, we propose three tests for detecting overdispersion when covariates are measured with error: a modified score test and two score tests based on the proposed approximate likelihood and quasi-likelihood, respectively. The proposed approximate likelihood is derived under the classical measurement error model, and the resulting approximate maximum likelihood estimator is shown to have superior efficiency. Simulation results also show that the score test based on approximate likelihood outperforms the test based on quasi-likelihood and other alternatives in terms of empirical power. By analyzing a real dataset containing the health-related quality-of-life measurements of a particular group of patients, we demonstrate the importance of the proposed methods by showing that the analyses with and without measurement error correction yield significantly different results. Copyright © 2015 John Wiley & Sons, Ltd.
Spatial heterogeneity of type I error for local cluster detection tests
2014-01-01
Background Just as power, type I error of cluster detection tests (CDTs) should be spatially assessed. Indeed, CDTs’ type I error and power have both a spatial component as CDTs both detect and locate clusters. In the case of type I error, the spatial distribution of wrongly detected clusters (WDCs) can be particularly affected by edge effect. This simulation study aims to describe the spatial distribution of WDCs and to confirm and quantify the presence of edge effect. Methods A simulation of 40 000 datasets has been performed under the null hypothesis of risk homogeneity. The simulation design used realistic parameters from survey data on birth defects, and in particular, two baseline risks. The simulated datasets were analyzed using the Kulldorff’s spatial scan as a commonly used test whose behavior is otherwise well known. To describe the spatial distribution of type I error, we defined the participation rate for each spatial unit of the region. We used this indicator in a new statistical test proposed to confirm, as well as quantify, the edge effect. Results The predefined type I error of 5% was respected for both baseline risks. Results showed strong edge effect in participation rates, with a descending gradient from center to edge, and WDCs more often centrally situated. Conclusions In routine analysis of real data, clusters on the edge of the region should be carefully considered as they rarely occur when there is no cluster. Further work is needed to combine results from power studies with this work in order to optimize CDTs performance. PMID:24885343
Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya
2015-08-01
Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Altitude deviations: Breakdowns of an error-tolerant system
NASA Technical Reports Server (NTRS)
Palmer, Everett A.; Hutchins, Edwin L.; Ritter, Richard D.; Vancleemput, Inge
1993-01-01
Pilot reports of aviation incidents to the Aviation Safety Reporting System (ASRS) provide a window on the problems occurring in today's airline cockpits. The narratives of 10 pilot reports of errors made in the automation-assisted altitude-change task are used to illustrate some of the issues of pilots interacting with automatic systems. These narratives are then used to construct a description of the cockpit as an information processing system. The analysis concentrates on the error-tolerant properties of the system and on how breakdowns can occasionally occur. An error-tolerant system can detect and correct its internal processing errors. The cockpit system consists of two or three pilots supported by autoflight, flight-management, and alerting systems. These humans and machines have distributed access to clearance information and perform redundant processing of information. Errors can be detected as deviations from either expected behavior or as deviations from expected information. Breakdowns in this system can occur when the checking and cross-checking tasks that give the system its error-tolerant properties are not performed because of distractions or other task demands. Recommendations based on the analysis for improving the error tolerance of the cockpit system are given.
The next organizational challenge: finding and addressing diagnostic error.
Graber, Mark L; Trowbridge, Robert; Myers, Jennifer S; Umscheid, Craig A; Strull, William; Kanter, Michael H
2014-03-01
Although health care organizations (HCOs) are intensely focused on improving the safety of health care, efforts to date have almost exclusively targeted treatment-related issues. The literature confirms that the approaches HCOs use to identify adverse medical events are not effective in finding diagnostic errors, so the initial challenge is to identify cases of diagnostic error. WHY HEALTH CARE ORGANIZATIONS NEED TO GET INVOLVED: HCOs are preoccupied with many quality- and safety-related operational and clinical issues, including performance measures. The case for paying attention to diagnostic errors, however, is based on the following four points: (1) diagnostic errors are common and harmful, (2) high-quality health care requires high-quality diagnosis, (3) diagnostic errors are costly, and (4) HCOs are well positioned to lead the way in reducing diagnostic error. FINDING DIAGNOSTIC ERRORS: Current approaches to identifying diagnostic errors, such as occurrence screens, incident reports, autopsy, and peer review, were not designed to detect diagnostic issues (or problems of omission in general) and/or rely on voluntary reporting. The realization that the existing tools are inadequate has spurred efforts to identify novel tools that could be used to discover diagnostic errors or breakdowns in the diagnostic process that are associated with errors. New approaches--Maine Medical Center's case-finding of diagnostic errors by facilitating direct reports from physicians and Kaiser Permanente's electronic health record--based reports that detect process breakdowns in the followup of abnormal findings--are described in case studies. By raising awareness and implementing targeted programs that address diagnostic error, HCOs may begin to play an important role in addressing the problem of diagnostic error.
Gençay, R; Qi, M
2001-01-01
We study the effectiveness of cross validation, Bayesian regularization, early stopping, and bagging to mitigate overfitting and improving generalization for pricing and hedging derivative securities with daily S&P 500 index daily call options from January 1988 to December 1993. Our results indicate that Bayesian regularization can generate significantly smaller pricing and delta-hedging errors than the baseline neural-network (NN) model and the Black-Scholes model for some years. While early stopping does not affect the pricing errors, it significantly reduces the hedging error (HE) in four of the six years we investigated. Although computationally most demanding, bagging seems to provide the most accurate pricing and delta hedging. Furthermore, the standard deviation of the MSPE of bagging is far less than that of the baseline model in all six years, and the standard deviation of the average HE of bagging is far less than that of the baseline model in five out of six years. We conclude that they be used at least in cases when no appropriate hints are available.
Ultra-deep mutant spectrum profiling: improving sequencing accuracy using overlapping read pairs.
Chen-Harris, Haiyin; Borucki, Monica K; Torres, Clinton; Slezak, Tom R; Allen, Jonathan E
2013-02-12
High throughput sequencing is beginning to make a transformative impact in the area of viral evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations, particularly those that exist at low frequencies, from sequencing errors. We demonstrate that overlapping read pairs (ORP) -- generated by combining short fragment sequencing libraries and longer sequencing reads -- significantly reduce sequencing error rates and improve rare variant detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels (<0.05%). Our rare variant detection strategies have important implications beyond viral evolution and can be applied to any basic and clinical research area that requires the identification of rare mutations.
Decoy-state quantum key distribution with more than three types of photon intensity pulses
NASA Astrophysics Data System (ADS)
Chau, H. F.
2018-04-01
The decoy-state method closes source security loopholes in quantum key distribution (QKD) using a laser source. In this method, accurate estimates of the detection rates of vacuum and single-photon events plus the error rate of single-photon events are needed to give a good enough lower bound of the secret key rate. Nonetheless, the current estimation method for these detection and error rates, which uses three types of photon intensities, is accurate up to about 1 % relative error. Here I report an experimentally feasible way that greatly improves these estimates and hence increases the one-way key rate of the BB84 QKD protocol with unbiased bases selection by at least 20% on average in realistic settings. The major tricks are the use of more than three types of photon intensities plus the fact that estimating bounds of the above detection and error rates is numerically stable, although these bounds are related to the inversion of a high condition number matrix.
Effect of nonideal square-law detection on static calibration in noise-injection radiometers
NASA Technical Reports Server (NTRS)
Hearn, C. P.
1984-01-01
The effect of nonideal square-law detection on the static calibration for a class of Dicke radiometers is examined. It is shown that fourth-order curvature in the detection characteristic adds a nonlinear term to the linear calibration relationship normally ascribed to noise-injection, balanced Dicke radiometers. The minimum error, based on an optimum straight-line fit to the calibration curve, is derived in terms of the power series coefficients describing the input-output characteristics of the detector. These coefficients can be determined by simple measurements, and detection nonlinearity is, therefore, quantitatively related to radiometric measurement error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, R; Kamima, T; Tachibana, H
2016-06-15
Purpose: To investigate the effect of the trajectory files from linear accelerator for Clarkson-based independent dose verification in IMRT and VMAT plans. Methods: A CT-based independent dose verification software (Simple MU Analysis: SMU, Triangle Products, Japan) with a Clarksonbased algorithm was modified to calculate dose using the trajectory log files. Eclipse with the three techniques of step and shoot (SS), sliding window (SW) and Rapid Arc (RA) was used as treatment planning system (TPS). In this study, clinically approved IMRT and VMAT plans for prostate and head and neck (HN) at two institutions were retrospectively analyzed to assess the dosemore » deviation between DICOM-RT plan (PL) and trajectory log file (TJ). An additional analysis was performed to evaluate MLC error detection capability of SMU when the trajectory log files was modified by adding systematic errors (0.2, 0.5, 1.0 mm) and random errors (5, 10, 30 mm) to actual MLC position. Results: The dose deviations for prostate and HN in the two sites were 0.0% and 0.0% in SS, 0.1±0.0%, 0.1±0.1% in SW and 0.6±0.5%, 0.7±0.9% in RA, respectively. The MLC error detection capability shows the plans for HN IMRT were the most sensitive and 0.2 mm of systematic error affected 0.7% dose deviation on average. Effect of the MLC random error did not affect dose error. Conclusion: The use of trajectory log files including actual information of MLC location, gantry angle, etc should be more effective for an independent verification. The tolerance level for the secondary check using the trajectory file may be similar to that of the verification using DICOM-RT plan file. From the view of the resolution of MLC positional error detection, the secondary check could detect the MLC position error corresponding to the treatment sites and techniques. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less
Subthreshold muscle twitches dissociate oscillatory neural signatures of conflicts from errors.
Cohen, Michael X; van Gaal, Simon
2014-02-01
We investigated the neural systems underlying conflict detection and error monitoring during rapid online error correction/monitoring mechanisms. We combined data from four separate cognitive tasks and 64 subjects in which EEG and EMG (muscle activity from the thumb used to respond) were recorded. In typical neuroscience experiments, behavioral responses are classified as "error" or "correct"; however, closer inspection of our data revealed that correct responses were often accompanied by "partial errors" - a muscle twitch of the incorrect hand ("mixed correct trials," ~13% of the trials). We found that these muscle twitches dissociated conflicts from errors in time-frequency domain analyses of EEG data. In particular, both mixed-correct trials and full error trials were associated with enhanced theta-band power (4-9Hz) compared to correct trials. However, full errors were additionally associated with power and frontal-parietal synchrony in the delta band. Single-trial robust multiple regression analyses revealed a significant modulation of theta power as a function of partial error correction time, thus linking trial-to-trial fluctuations in power to conflict. Furthermore, single-trial correlation analyses revealed a qualitative dissociation between conflict and error processing, such that mixed correct trials were associated with positive theta-RT correlations whereas full error trials were associated with negative delta-RT correlations. These findings shed new light on the local and global network mechanisms of conflict monitoring and error detection, and their relationship to online action adjustment. © 2013.
Rademaker, Rosanne L; van de Ven, Vincent G; Tong, Frank; Sack, Alexander T
2017-01-01
Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.
van de Ven, Vincent G.; Tong, Frank; Sack, Alexander T.
2017-01-01
Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise. PMID:28384347
Symbolic Analysis of Concurrent Programs with Polymorphism
NASA Technical Reports Server (NTRS)
Rungta, Neha Shyam
2010-01-01
The current trend of multi-core and multi-processor computing is causing a paradigm shift from inherently sequential to highly concurrent and parallel applications. Certain thread interleavings, data input values, or combinations of both often cause errors in the system. Systematic verification techniques such as explicit state model checking and symbolic execution are extensively used to detect errors in such systems [7, 9]. Explicit state model checking enumerates possible thread schedules and input data values of a program in order to check for errors [3, 9]. To partially mitigate the state space explosion from data input values, symbolic execution techniques substitute data input values with symbolic values [5, 7, 6]. Explicit state model checking and symbolic execution techniques used in conjunction with exhaustive search techniques such as depth-first search are unable to detect errors in medium to large-sized concurrent programs because the number of behaviors caused by data and thread non-determinism is extremely large. We present an overview of abstraction-guided symbolic execution for concurrent programs that detects errors manifested by a combination of thread schedules and data values [8]. The technique generates a set of key program locations relevant in testing the reachability of the target locations. The symbolic execution is then guided along these locations in an attempt to generate a feasible execution path to the error state. This allows the execution to focus in parts of the behavior space more likely to contain an error.
Hough transform for clustered microcalcifications detection in full-field digital mammograms
NASA Astrophysics Data System (ADS)
Fanizzi, A.; Basile, T. M. A.; Losurdo, L.; Amoroso, N.; Bellotti, R.; Bottigli, U.; Dentamaro, R.; Didonna, V.; Fausto, A.; Massafra, R.; Moschetta, M.; Tamborra, P.; Tangaro, S.; La Forgia, D.
2017-09-01
Many screening programs use mammography as principal diagnostic tool for detecting breast cancer at a very early stage. Despite the efficacy of the mammograms in highlighting breast diseases, the detection of some lesions is still doubtless for radiologists. In particular, the extremely minute and elongated salt-like particles of microcalcifications are sometimes no larger than 0.1 mm and represent approximately half of all cancer detected by means of mammograms. Hence the need for automatic tools able to support radiologists in their work. Here, we propose a computer assisted diagnostic tool to support radiologists in identifying microcalcifications in full (native) digital mammographic images. The proposed CAD system consists of a pre-processing step, that improves contrast and reduces noise by applying Sobel edge detection algorithm and Gaussian filter, followed by a microcalcification detection step performed by exploiting the circular Hough transform. The procedure performance was tested on 200 images coming from the Breast Cancer Digital Repository (BCDR), a publicly available database. The automatically detected clusters of microcalcifications were evaluated by skilled radiologists which asses the validity of the correctly identified regions of interest as well as the system error in case of missed clustered microcalcifications. The system performance was evaluated in terms of Sensitivity and False Positives per images (FPi) rate resulting comparable to the state-of-art approaches. The proposed model was able to accurately predict the microcalcification clusters obtaining performances (sensibility = 91.78% and FPi rate = 3.99) which favorably compare to other state-of-the-art approaches.
NASA Astrophysics Data System (ADS)
Dammak, Salma; Palma, David; Mattonen, Sarah; Senan, Suresh; Ward, Aaron D.
2018-02-01
Stereotactic ablative radiotherapy (SABR) is the standard treatment recommendation for Stage I non-small cell lung cancer (NSCLC) patients who are inoperable or who refuse surgery. This option is well tolerated by even unfit patients and has a low recurrence risk post-treatment. However, SABR induces changes in the lung parenchyma that can appear similar to those of recurrence, and the difference between the two at an early follow-up time point is not easily distinguishable for an expert physician. We hypothesized that a radiomics signature derived from standard-of-care computed tomography (CT) imaging can detect cancer recurrence within six months of SABR treatment. This study reports on the design phase of our work, with external validation planned in future work. In this study, we performed cross-validation experiments with four feature selection approaches and seven classifiers on an 81-patient data set. We extracted 104 radiomics features from the consolidative and the peri-consolidative regions on the follow-up CT scans. The best results were achieved using the sum of estimated Mahalanobis distances (Maha) for supervised forward feature selection and a trainable automatic radial basis support vector classifier (RBSVC). This system produced an area under the receiver operating characteristic curve (AUC) of 0.84, an error rate of 16.4%, a false negative rate of 12.7%, and a false positive rate of 20.0% for leaveone patient out cross-validation. This suggests that once validated on an external data set, radiomics could reliably detect post-SABR recurrence and form the basis of a tool assisting physicians in making salvage treatment decisions.
The Early Detection of the Emerald Ash Borer (EAB) Using Advanced Geospacial Technologies
NASA Astrophysics Data System (ADS)
Hu, B.; Li, J.; Wang, J.; Hall, B.
2014-11-01
The objectives of this study were to exploit Light Detection And Ranging (LiDAR) and very high spatial resolution (VHR) data and their synergy with hyperspectral imagery in the early detection of the EAB presence in trees within urban areas and to develop a framework to combine information extracted from multiple data sources. To achieve these, an object-oriented framework was developed to combine information derived from available data sets to characterize ash trees. Within this framework, individual trees were first extracted and then classified into different species based on their spectral information derived from hyperspectral imagery, spatial information from VHR imagery, and for each ash tree its health state and EAB infestation stage were determined based on hyperspectral imagery. The developed framework and methods were demonstrated to be effective according to the results obtained on two study sites in the city of Toronto, Ontario Canada. The individual tree delineation method provided satisfactory results with an overall accuracy of 78 % and 19 % commission and 23 % omission errors when used on the combined very high-spatial resolution imagery and LiDAR data. In terms of the identification of ash trees, given sufficient representative training data, our classification model was able to predict tree species with above 75 % overall accuracy, and mis-classification occurred mainly between ash and maple trees. The hypothesis that a strong correlation exists between general tree stress and EAB infestation was confirmed. Vegetation indices sensitive to leaf chlorophyll content derived from hyperspectral imagery can be used to predict the EAB infestation levels for each ash tree.
Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery
NASA Astrophysics Data System (ADS)
Gao, Junfeng; Liao, Wenzhi; Nuyttens, David; Lootens, Peter; Vangeyte, Jürgen; Pižurica, Aleksandra; He, Yong; Pieters, Jan G.
2018-05-01
The developments in the use of unmanned aerial vehicles (UAVs) and advanced imaging sensors provide new opportunities for ultra-high resolution (e.g., less than a 10 cm ground sampling distance (GSD)) crop field monitoring and mapping in precision agriculture applications. In this study, we developed a strategy for inter- and intra-row weed detection in early season maize fields from aerial visual imagery. More specifically, the Hough transform algorithm (HT) was applied to the orthomosaicked images for inter-row weed detection. A semi-automatic Object-Based Image Analysis (OBIA) procedure was developed with Random Forests (RF) combined with feature selection techniques to classify soil, weeds and maize. Furthermore, the two binary weed masks generated from HT and OBIA were fused for accurate binary weed image. The developed RF classifier was evaluated by 5-fold cross validation, and it obtained an overall accuracy of 0.945, and Kappa value of 0.912. Finally, the relationship of detected weeds and their ground truth densities was quantified by a fitted linear model with a coefficient of determination of 0.895 and a root mean square error of 0.026. Besides, the importance of input features was evaluated, and it was found that the ratio of vegetation length and width was the most significant feature for the classification model. Overall, our approach can yield a satisfactory weed map, and we expect that the obtained accurate and timely weed map from UAV imagery will be applicable to realize site-specific weed management (SSWM) in early season crop fields for reducing spraying non-selective herbicides and costs.
Monitoring robot actions for error detection and recovery
NASA Technical Reports Server (NTRS)
Gini, M.; Smith, R.
1987-01-01
Reliability is a serious problem in computer controlled robot systems. Although robots serve successfully in relatively simple applications such as painting and spot welding, their potential in areas such as automated assembly is hampered by programming problems. A program for assembling parts may be logically correct, execute correctly on a simulator, and even execute correctly on a robot most of the time, yet still fail unexpectedly in the face of real world uncertainties. Recovery from such errors is far more complicated than recovery from simple controller errors, since even expected errors can often manifest themselves in unexpected ways. Here, a novel approach is presented for improving robot reliability. Instead of anticipating errors, researchers use knowledge-based programming techniques so that the robot can autonomously exploit knowledge about its task and environment to detect and recover from failures. They describe preliminary experiment of a system that they designed and constructed.
Text familiarity, word frequency, and sentential constraints in error detection.
Pilotti, Maura; Chodorow, Martin; Schauss, Frances
2009-12-01
The present study examines whether the frequency of an error-bearing word and its predictability, arising from sentential constraints and text familiarity, either independently or jointly, would impair error detection by making proofreading driven by top-down processes. Prior to a proofreading task, participants were asked to read, copy, memorize, or paraphrase sentences, half of which contained errors. These tasks represented a continuum of progressively more demanding and time-consuming activities, which were thought to lead to comparable increases in text familiarity and thus predictability. Proofreading times were unaffected by whether the sentences had been encountered earlier. Proofreading was slower and less accurate for high-frequency words and for highly constrained sentences. Prior memorization produced divergent effects on accuracy depending on sentential constraints. The latter finding suggested that a substantial level of predictability, such as that produced by memorizing highly constrained sentences, can increase the probability of overlooking errors.
NASA Astrophysics Data System (ADS)
Lohrmann, Carol A.
1990-03-01
Interoperability of commercial Land Mobile Radios (LMR) and the military's tactical LMR is highly desirable if the U.S. government is to respond effectively in a national emergency or in a joint military operation. This ability to talk securely and immediately across agency and military service boundaries is often overlooked. One way to ensure interoperability is to develop and promote Federal communication standards (FS). This thesis surveys one area of the proposed FS 1024 for LMRs; namely, the error detection and correction (EDAC) of the message indicator (MI) bits used for cryptographic synchronization. Several EDAC codes are examined (Hamming, Quadratic Residue, hard decision Golay and soft decision Golay), tested on three FORTRAN programmed channel simulations (INMARSAT, Gaussian and constant burst width), compared and analyzed (based on bit error rates and percent of error-free super-frame runs) so that a best code can be recommended. Out of the four codes under study, the soft decision Golay code (24,12) is evaluated to be the best. This finding is based on the code's ability to detect and correct errors as well as the relative ease of implementation of the algorithm.
An approach to develop an algorithm to detect the climbing height in radial-axial ring rolling
NASA Astrophysics Data System (ADS)
Husmann, Simon; Hohmann, Magnus; Kuhlenkötter, Bernd
2017-10-01
Radial-axial ring rolling is the mainly used forming process to produce seamless rings, which are applied in miscellaneous industries like the energy sector, the aerospace technology or in the automotive industry. Due to the simultaneously forming in two opposite rolling gaps and the fact that ring rolling is a mass forming process, different errors could occur during the rolling process. Ring climbing is one of the most occurring process errors leading to a distortion of the ring's cross section and a deformation of the rings geometry. The conventional sensors of a radial-axial rolling machine could not detect this error. Therefore, it is a common strategy to roll a slightly bigger ring, so that random occurring process errors could be reduce afterwards by removing the additional material. The LPS installed an image processing system to the radial rolling gap of their ring rolling machine to enable the recognition and measurement of climbing rings and by this, to reduce the additional material. This paper presents the algorithm which enables the image processing system to detect the error of a climbing ring and ensures comparable reliable results for the measurement of the climbing height of the rings.
Using medication list--problem list mismatches as markers of potential error.
Carpenter, James D.; Gorman, Paul N.
2002-01-01
The goal of this project was to specify and develop an algorithm that will check for drug and problem list mismatches in an electronic medical record (EMR). The algorithm is based on the premise that a patient's problem list and medication list should agree, and a mismatch may indicate medication error. Successful development of this algorithm could mean detection of some errors, such as medication orders entered into a wrong patient record, or drug therapy omissions, that are not otherwise detected via automated means. Additionally, mismatches may identify opportunities to improve problem list integrity. To assess the concept's feasibility, this study compared medications listed in a pharmacy information system with findings in an online nursing adult admission assessment, serving as a proxy for the problem list. Where drug and problem list mismatches were discovered, examination of the patient record confirmed the mismatch, and identified any potential causes. Evaluation of the algorithm in diabetes treatment indicates that it successfully detects both potential medication error and opportunities to improve problem list completeness. This algorithm, once fully developed and deployed, could prove a valuable way to improve the patient problem list, and could decrease the risk of medication error. PMID:12463796
ERIC Educational Resources Information Center
Zamora, Ángela; Suárez, José Manuel; Ardura, Diego
2018-01-01
The authors' objective was to study the role of error detection and retroactive self-regulation as determinants of performance in secondary education students. A total of 198 students participated in the quasiexperimental study, which involved a control group and two experimental groups. This enabled the authors to analyze the effects of both…
A representation for error detection and recovery in robot task plans
NASA Technical Reports Server (NTRS)
Lyons, D. M.; Vijaykumar, R.; Venkataraman, S. T.
1990-01-01
A general definition is given of the problem of error detection and recovery in robot assembly systems, and a general representation is developed for dealing with the problem. This invariant representation involves a monitoring process which is concurrent, with one monitor per task plan. A plan hierarchy is discussed, showing how diagnosis and recovery can be handled using the representation.
The Effect of Piano Playing on Preservice Teachers' Ability to Detect Errors in a Choral Score
ERIC Educational Resources Information Center
Napoles, Jessica; Babb, Sandra L.; Bowers, Judy; Hankle, Steven; Zrust, Adam
2017-01-01
The purpose of this study was to examine and empirically test the pedagogical claim that playing the piano while listening to choral singers impedes error detection ability. In a within-subjects design, participants (N = 55 preservice teachers) either listened to four excerpts of choral hymns or played a single part (soprano/bass) on the piano…
Fault-Tolerant Computing: An Overview
1991-06-01
Addison Wesley:, Reading, MA) 1984. [8] J. Wakerly , Error Detecting Codes, Self-Checking Circuits and Applications , (Elsevier North Holland, Inc.- New York... applicable to bit-sliced organi- zations of hardware. In the first time step, the normal computation is performed on the operands and the results...for error detection and fault tolerance in parallel processor systems while perform- ing specific computation-intensive applications [111. Contrary to
Error-correcting codes in computer arithmetic.
NASA Technical Reports Server (NTRS)
Massey, J. L.; Garcia, O. N.
1972-01-01
Summary of the most important results so far obtained in the theory of coding for the correction and detection of errors in computer arithmetic. Attempts to satisfy the stringent reliability demands upon the arithmetic unit are considered, and special attention is given to attempts to incorporate redundancy into the numbers themselves which are being processed so that erroneous results can be detected and corrected.
ERIC Educational Resources Information Center
Tallot, Lucille; Diaz-Mataix, Lorenzo; Perry, Rosemarie E.; Wood, Kira; LeDoux, Joseph E.; Mouly, Anne-Marie; Sullivan, Regina M.; Doyère, Valérie
2017-01-01
The updating of a memory is triggered whenever it is reactivated and a mismatch from what is expected (i.e., prediction error) is detected, a process that can be unraveled through the memory's sensitivity to protein synthesis inhibitors (i.e., reconsolidation). As noted in previous studies, in Pavlovian threat/aversive conditioning in adult rats,…
Action errors, error management, and learning in organizations.
Frese, Michael; Keith, Nina
2015-01-03
Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.
Bayesian lead time estimation for the Johns Hopkins Lung Project data.
Jang, Hyejeong; Kim, Seongho; Wu, Dongfeng
2013-09-01
Lung cancer screening using X-rays has been controversial for many years. A major concern is whether lung cancer screening really brings any survival benefits, which depends on effective treatment after early detection. The problem was analyzed from a different point of view and estimates were presented of the projected lead time for participants in a lung cancer screening program using the Johns Hopkins Lung Project (JHLP) data. The newly developed method of lead time estimation was applied where the lifetime T was treated as a random variable rather than a fixed value, resulting in the number of future screenings for a given individual is a random variable. Using the actuarial life table available from the United States Social Security Administration, the lifetime distribution was first obtained, then the lead time distribution was projected using the JHLP data. The data analysis with the JHLP data shows that, for a male heavy smoker with initial screening ages at 50, 60, and 70, the probability of no-early-detection with semiannual screens will be 32.16%, 32.45%, and 33.17%, respectively; while the mean lead time is 1.36, 1.33 and 1.23 years. The probability of no-early-detection increases monotonically when the screening interval increases, and it increases slightly as the initial age increases for the same screening interval. The mean lead time and its standard error decrease when the screening interval increases for all age groups, and both decrease when initial age increases with the same screening interval. The overall mean lead time estimated with a random lifetime T is slightly less than that with a fixed value of T. This result is hoped to be of benefit to improve current screening programs. Copyright © 2013 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.
Design of temperature detection device for drum of belt conveyor
NASA Astrophysics Data System (ADS)
Zhang, Li; He, Rongjun
2018-03-01
For difficult wiring and big measuring error existed in the traditional temperature detection method for drum of belt conveyor, a temperature detection device for drum of belt conveyor based on Radio Frequency(RF) communication is designed. In the device, detection terminal can collect temperature data through tire pressure sensor chip SP370 which integrates temperature detection and RF emission. The receiving terminal which is composed of RF receiver chip and microcontroller receives the temperature data and sends it to Controller Area Network(CAN) bus. The test results show that the device meets requirements of field application with measuring error ±3.73 ° and single button battery can provide continuous current for the detection terminal over 1.5 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Charlene; Wiseman, Howard; Jacobs, Kurt
2004-08-01
It was shown by Ahn, Wiseman, and Milburn [Phys. Rev. A 67, 052310 (2003)] that feedback control could be used as a quantum error correction process for errors induced by weak continuous measurement, given one perfectly measured error channel per qubit. Here we point out that this method can be easily extended to an arbitrary number of error channels per qubit. We show that the feedback protocols generated by our method encode n-2 logical qubits in n physical qubits, thus requiring just one more physical qubit than in the previous case.
New decoding methods of interleaved burst error-correcting codes
NASA Astrophysics Data System (ADS)
Nakano, Y.; Kasahara, M.; Namekawa, T.
1983-04-01
A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.
Absorbance and fluorometric sensing with capillary wells microplates.
Tan, Han Yen; Cheong, Brandon Huey-Ping; Neild, Adrian; Liew, Oi Wah; Ng, Tuck Wah
2010-12-01
Detection and readout from small volume assays in microplates are a challenge. The capillary wells microplate approach [Ng et al., Appl. Phys. Lett. 93, 174105 (2008)] offers strong advantages in small liquid volume management. An adapted design is described and shown here to be able to detect, in a nonimaging manner, fluorescence and absorbance assays minus the error often associated with meniscus forming at the air-liquid interface. The presence of bubbles in liquid samples residing in microplate wells can cause inaccuracies. Pipetting errors, if not adequately managed, can result in misleading data and wrong interpretations of assay results; particularly in the context of high throughput screening. We show that the adapted design is also able to detect for bubbles and pipetting errors during actual assay runs to ensure accuracy in screening.