Sample records for early estrogen prevention

  1. Environmental estrogens alter early development in Xenopus laevis.

    PubMed

    Bevan, Cassandra L; Porter, Donna M; Prasad, Anita; Howard, Marthe J; Henderson, Leslie P

    2003-04-01

    A growing number of environmental toxicants found in pesticides, herbicides, and industrial solvents are believed to have deleterious effects on development by disrupting hormone-sensitive processes. We exposed Xenopus laevis embryos at early gastrula to the commonly encountered environmental estrogens nonylphenol, octylphenol, and methoxychlor, the antiandrogen, p,p-DDE, or the synthetic androgen, 17 alpha-methyltestosterone at concentrations ranging from 10 nM to 10 microM and examined them at tailbud stages (approximately 48 hr of treatment). Exposure to the three environmental estrogens, as well as to the natural estrogen 17 beta-estradiol, increased mortality, induced morphologic deformations, increased apoptosis, and altered the deposition and differentiation of neural crest-derived melanocytes in tailbud stage embryos. Although neural crest-derived melanocytes were markedly altered in embryos treated with estrogenic toxicants, expression of the early neural crest maker Xslug, a factor that regulates both the induction and subsequent migration of neural crest cells, was not affected, suggesting that the disruption induced by these compounds with respect to melanocyte development may occur at later stages of their differentiation. Co-incubation of embryos with the pure antiestrogen ICI 182,780 blocked the ability of nonylphenol to induce abnormalities in body shape and in melanocyte differentiation but did not block the effects of methoxychlor. Our data indicate not only that acute exposure to these environmental estrogens induces deleterious effects on early vertebrate development but also that different environmental estrogens may alter the fate of a specific cell type via different mechanisms. Finally, our data suggest that the differentiation of neural crest-derived melanocytes may be particularly sensitive to the disruptive actions of these ubiquitous chemical contaminants.

  2. Ezetimibe prevents the formation of estrogen-induced cholesterol gallstones in mice

    PubMed Central

    de Bari, Ornella; Wang, Helen H.; Portincasa, Piero; Paik, Chang-Nyol; Liu, Min; Wang, David Q.-H.

    2014-01-01

    Background Estrogen is an important risk factor for cholesterol cholelithiasis not only in women of childbearing age taking oral contraceptives and postmenopausal women undergoing hormone replacement therapy, but also in male patients receiving estrogen therapy for prostatic cancer. In women, hormonal changes occurring during pregnancy markedly increase the risk of developing gallstones. We investigated whether the potent cholesterol absorption inhibitor ezetimibe could prevent the formation of estrogen-induced cholesterol gallstones in mice. Design Following ovariectomy, female AKR mice were implanted subcutaneously with pellets releasing 17β-estradiol at 6 μg/day and fed a lithogenic diet supplemented with ezetimibe in doses of 0 or 8 mg/kg/day for 8 weeks. Cholesterol crystallization and gallstone prevalence, lipid concentrations and composition in bile, and biliary lipid output were analyzed by physical-chemical methods. Intestinal cholesterol absorption efficiency was determined by fecal dual-isotope ratio methods. Results Ezetimibe inhibited intestinal cholesterol absorption, while significantly reducing hepatic secretion of biliary cholesterol. Consequently, bile was desaturated through the formation of numerous unsaturated micelles and gallstones were prevented by ezetimibe in mice exposed to high doses of estrogen and fed the lithogenic diet. Ezetimibe did not influence mRNA levels of the classical estrogen receptors α (ERα) and ERβ, as well as a novel estrogen receptor the G protein-coupled receptor 30 (GPR30) in the liver. Conclusions Ezetimibe protects against the estrogen-mediated lithogenic actions on gallstone formation in mice. Our finding may provide an efficacious novel strategy for the prevention of cholesterol gallstones in high-risk subjects, especially those exposed to high levels of estrogen. PMID:25303682

  3. Estrogen Receptor-α in the Medial Amygdala Prevents Stress-Induced Elevations in Blood Pressure in Females.

    PubMed

    Hinton, Antentor Othrell; He, Yanlin; Xia, Yan; Xu, Pingwen; Yang, Yongjie; Saito, Kenji; Wang, Chunmei; Yan, Xiaofeng; Shu, Gang; Henderson, Alexander; Clegg, Deborah J; Khan, Sohaib A; Reynolds, Corey; Wu, Qi; Tong, Qingchun; Xu, Yong

    2016-06-01

    Psychological stress contributes to the development of hypertension in humans. The ovarian hormone, estrogen, has been shown to prevent stress-induced pressor responses in females by unknown mechanisms. Here, we showed that the antihypertensive effects of estrogen during stress were blunted in female mice lacking estrogen receptor-α in the brain medial amygdala. Deletion of estrogen receptor-α in medial amygdala neurons also resulted in increased excitability of these neurons, associated with elevated ionotropic glutamate receptor expression. We further demonstrated that selective activation of medial amygdala neurons mimicked effects of stress to increase blood pressure in mice. Together, our results support a model where estrogen acts on estrogen receptor-α expressed by medial amygdala neurons to prevent stress-induced activation of these neurons, and therefore prevents pressor responses to stress. © 2016 American Heart Association, Inc.

  4. The selective estrogen receptor modulators in breast cancer prevention.

    PubMed

    Li, Fangxuan; Dou, Jinli; Wei, Lijuan; Li, Shixia; Liu, Juntian

    2016-05-01

    Persistently increased blood levels of estrogens are associated with an increased risk of breast cancer. Selective estrogen receptor modulators (SERMs) are a class of compounds that act on the estrogen receptor (ER). Several clinical trials have demonstrated the effectiveness of its prophylactic administration. Incidence of invasive ER-positive breast cancer was reduced by SERMs treatment, especially for those women with high risk of developing breast cancer. In this study, we reviewed the clinical application of SERMs in breast cancer prevention. To date, four prospective randomized clinical trials had been performed to test the efficacy of tamoxifen for this purpose. Concerning on the benefit and cost of tamoxifen, various studies from different countries demonstrated that chemoprevention with tamoxifen seemed to be cost-effective for women with a high risk of invasive breast cancer. Based above, tamoxifen was approved for breast cancer prevention by the US Food and Drug Administration in 1998. Raloxifene was also approved for postmenopausal women in 2007 for breast cancer prevention which reduces the risk of invasive breast cancer with a lower risk of unwanted stimulation of endometrium. Thus, raloxifene is considered to have a better clinical possesses as prophylactic agent. Several other agents, such as arzoxifene and lasofoxifene, are currently being investigated in clinic. The American Society of Clinical Oncology and National Comprehensive Cancer Network had published guidelines on breast cancer chemoprevention by SERMs. However, use of tamoxifen and raloxifene for primary breast cancer prevention was still low. A broader educational effort is needed to alert women and primary care physicians that SERMs are available to reduce breast cancer risk.

  5. EF24 prevents rotenone-induced estrogenic status alteration in breast cancer.

    PubMed

    Roy, Debarshi; Kabiraj, Parijat; Pal, Rituraj

    2014-04-01

    Protein disulfide isomerase (PDI), an important endoplasmic reticulum-resident oxidoreductase chaperone can bind to estrogens as well as intact with its receptor proteins [i.e. estrogen receptors (ER) α and β]. It has been postulated that PDI also acts as an intracellular 17β-estradiol (E2)-binding protein that transports and accumulates E2 in live cells. Drop in E2 level promotes dissociation of E2 from PDI and released in cytosol; the released E2 can augment estrogen receptor-mediated transcriptional activity and mitogenic action in cultured cells by modulating the ERβ/ERα ratio. In this study, we observed rotenone-induced damage to PDI leads to significant increase in ERβ/ERα ratio by down-regulating ERα and up-regulating ERβ. We demonstrated that nitrosative stress induced disruption of the cellular estrogenic status can be prevented through diphenyl difluoroketone (EF24, curcumin analog) intervention by protecting PDI from reactive oxygen species (ROS)-induced damage. Together, our study suggests that both PDI and EF24 can play a vital role in maintaining cellular estrogenic homeostasis. © 2013 International Federation for Cell Biology.

  6. Estrogen-Induced Depurination of DNA: A Novel Target for Breast Cancer Prevention

    DTIC Science & Technology

    2006-05-01

    of Dietary N- Acetylcysteine on Neonatal Initiation of Uterine Adenocarcinomas in Female CD-1 mice by Catechol Estrogens To begin to study the...ability of selected natural compounds to prevent estrogen-initiated cancers, we planned to study the effect of N- acetylcysteine (NAcCys) on the initiation...Jankowiak, R. Development of monoclonal antibodies to 4-hydroxyestrogen-2-N- acetylcysteine conjugates: Immunoaffinity and spectroscopic studies

  7. Estrogen

    MedlinePlus

    ... life', the end of monthly menstrual periods). Some brands of estrogen are also used to treat vaginal ... prevent osteoporosis should consider a different treatment. Some brands of estrogen are also to relieve symptoms of ...

  8. Effects of transdermal estrogen replacement therapy on cardiovascular risk factors.

    PubMed

    Menon, Dileep V; Vongpatanasin, Wanpen

    2006-01-01

    key enzymes involved in plaque disruption, while transdermal estrogen does not have these adverse effects.Whether the advantages of transdermal estrogen with regards to these risk factors will translate into improved clinical outcomes remains to be determined. Two ongoing clinical trials, KEEPS (Kronos Early Estrogen Prevention Study) and ELITE (Early versus Late Intervention Trial with Estradiol) are likely to provide invaluable information regarding the role of oral versus transdermal estrogen in younger postmenopausal women.

  9. Downregulation of GLUT4 contributes to effective intervention of estrogen receptor-negative/HER2-overexpressing early stage breast disease progression by lapatinib

    PubMed Central

    Acharya, Sunil; Xu, Jia; Wang, Xiao; Jain, Shalini; Wang, Hai; Zhang, Qingling; Chang, Chia-Chi; Bower, Joseph; Arun, Banu; Seewaldt, Victoria; Yu, Dihua

    2016-01-01

    Tamoxifen and aromatase inhibitors (AIs) have shown efficacy in prevention of estrogen receptor-positive (ER+) breast cancer; however, there exists no proven prevention strategy for estrogen receptor-negative (ER-) breast cancer. Up to 40% of ER- breast cancers have human epidermal growth factor receptor 2 overexpression (HER2+), suggesting HER2 signaling might be a good target for chemoprevention for certain ER- breast cancers. Here, we tested the feasibility of the HER2-targeting agent lapatinib in prevention and/or early intervention of an ER-/HER2+ early-stage breast disease model. We found that lapatinib treatment forestalled the progression of atypical ductal hyperplasia (ADH)-like acini to ductal carcinoma in situ (DCIS)-like acini in ER-/HER2+ human mammary epithelial cells (HMECs) in 3D culture. Mechanistically, we found that inhibition of HER2/Akt signaling by lapatinib led to downregulation of GLUT4 and a reduced glucose uptake in HER2-overexpressing cells, resulting in decreased proliferation and increased apoptosis of these cells in 3D culture. Additionally, our data suggest that HER2-driven glycolytic metabolic dysregulation in ER-/HER2+ HMECs might promote early-stage breast disease progression, which can be reversed by lapatinib treatment. Furthermore, low-dose lapatinib treatment, starting at the early stages of mammary grand transformation in the MMTV-neu* mouse model, significantly delayed mammary tumor initiation and progression, extended tumor-free survival, which corresponded to effective inhibition of HER2/Akt signaling and downregulation of GLUT4 in vivo. Taken together, our results indicate that lapatinib, through its inhibition of key signaling pathways and tumor-promoting metabolic events, is a promising agent for the prevention/early intervention of ER-/HER2+ breast cancer progression. PMID:27293993

  10. Estrogen receptor-a in the medial amygdala prevents stress-induced elevations in blood pressure in females

    USDA-ARS?s Scientific Manuscript database

    Psychological stress contributes to the development of hypertension in humans. The ovarian hormone, estrogen, has been shown to prevent stress-induced pressor responses in females by unknown mechanisms. Here, we showed that the antihypertensive effects of estrogen during stress were blunted in femal...

  11. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  13. Estrogenic Compounds, Estrogen Receptors and Vascular Cell Signaling in the Aging Blood Vessels

    PubMed Central

    Smiley, Dia A.; Khalil, Raouf A.

    2010-01-01

    The cardiovascular benefits of menopausal hormone therapy (MHT) remain controversial. The earlier clinical observations that cardiovascular disease (CVD) was less common in MHT users compared to non-users suggested cardiovascular benefits of MHT. Also, experimental studies have identified estrogen receptors ERα, ERβ and GPR30, which mediate genomic or non-genomic effects in vascular endothelium, smooth muscle, and extracellular matrix (ECM). However, data from randomized clinical trials (RCTs), most notably the Women's Health Initiative (WHI) study, have challenged the cardiovascular benefits and highlighted adverse cardiovascular events with MHT. The discrepancies have been attributed to the design of RCTs, the subjects' advanced age and preexisting CVD, and the form of estrogen used. The discrepancies may also stem from age-related changes in vascular ER amount, distribution, integrity, and post-receptor signaling pathways as well as structural changes in the vasculature. Age-related changes in other sex hormones such as testosterone may also alter the hormonal environment and influence the cardiovascular effects of estrogen. Investigating the chemical properties, structure-activity relationship and pharmacology of natural and synthetic estrogens should improve the effectiveness of conventional MHT. Further characterization of phytoestrogens, selective estrogen-receptor modulators (SERMs), and specific ER agonists may provide substitutes to conventional MHT. Conditions with excess or low estrogen levels such as polycystic ovary syndrome (PCOS) and Turner syndrome may provide insight into the development and regulation of ER and the mechanisms of aberrant estrogen-ER interactions. The lessons learned from previous RCTs have led to more directed studies such as the Kronos Early Estrogen Prevention Study (KEEPS). Careful design of experimental models and RCTs, coupled with the development of specific ER modulators, hold the promise of improving the actions of

  14. Decreased serum estrogen improves fat graft retention by enhancing early macrophage infiltration and inducing adipocyte hypertrophy.

    PubMed

    Mok, Hsiaopei; Feng, Jingwei; Hu, Wansheng; Wang, Jing; Cai, Junrong; Lu, Feng

    2018-06-18

    Fat grafting is a commonly used procedure; however, the mechanisms that regulate graft outcomes are not clear. Estrogen has been associated with vascularization, inflammation and fat metabolism, yet its role in fat grafting is unclear. Mice were implanted with 17β-estradiol pellets (high estrogen, HE), underwent ovariectomy (low estrogen level, OVX) or sham surgery (normal estrogen level, CON). 45 days later, inguinal fat of mice was autografted subcutaneously. At 1, 2, 4, and 12 weeks post-transplantation, grafts were dissected, weighed, and assessed for histology, angiogenesis and inflammation level. Serum estrogen level correlated to estrogen manipulation. 12 weeks after autografting, the retention rate was significantly higher in the OVX (79% ± 30%) than in the HE (16% ± 8%) and CON (35% ± 13%) groups. OVX-grafts had the least necrosis and most hypertrophic fat. OVX recruited the most pro-inflammatory macrophages and demonstrated a faster dead tissue removal process, however a higher fibrogenic tendency was found in this group. HE grafts had the most Sca1+ local stem cells and CD31  +  capillary content; however, with a low level of acute inflammation and insufficient adipokine PPAR-γ expression, their retention rate was impaired. Elevated serum estrogen increased stem cell density and early vascularization; however, by inhibiting the early inflammation, it resulted in delayed necrotic tissue removal and finally led to impaired adipose restoration. A low estrogen level induced favorable inflammation status and adipocyte hypertrophy to improve fat graft retention, but a continuing decreased estrogen level led to fat graft fibrosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Pharmacology of conjugated equine estrogens: efficacy, safety and mechanism of action.

    PubMed

    Bhavnani, Bhagu R; Stanczyk, Frank Z

    2014-07-01

    Oral conjugated equine estrogens (CEE) are the most used estrogen formulation for postmenopausal hormone therapy either alone or in combination with a progestin. CEE is most commonly used for the management of early menopausal symptoms such as hot flashes, vaginitis, insomnia, and mood disturbances. Additionally, if used at the start of the menopausal phase (age 50-59 years), CEE prevents osteoporosis and may in some women reduce the risk of cardiovascular disease (CVD) and Alzheimer's disease (AD). There appears to be a common mechanism through which estrogens can protect against CVD and AD. CEE is a natural formulation of an extract prepared from pregnant mares' urine. The product monogram lists the presence of only 10 estrogens consisting of the classical estrogens, estrone and 17β-estradiol, and a group of unique ring B unsaturated estrogens such as equilin and equilenin. The ring B unsaturated estrogens are formed by an alternate steroidogenic pathway in which cholesterol is not an obligatory intermediate. Both the route of administration and structure of these estrogens play a role in the overall pharmacology of CEE. In contrast to 17β-estradiol, ring B unsaturated estrogens express their biological effects mainly mediated by the estrogen receptor β and not the estrogen receptor α. All estrogen components of CEE are antioxidants, and some ring B unsaturated estrogens have several fold greater antioxidant activity than estrone and 17β-estradiol. The cardioprotective and neuroprotective effects of CEE appear to be, to some extent, due to its ability to prevent the formation of oxidized LDL and HDL, and by inhibiting or modulating some of the key proteases involved in programmed cell death (apoptosis) induced by the excess neurotransmitter glutamate and other neurotoxins. Selective combinations of ring B unsaturated estrogens have the potential of being developed as novel therapeutic agents for the prevention of cardiovascular disease and Alzheimer

  16. Estrogen and Osteoporosis.

    ERIC Educational Resources Information Center

    Lindsay, Robert

    1987-01-01

    This article reviews the use of estrogen in the prevention and treatment of osteoporosis. Dosage levels, interactions with other factors, side effects, and the mechanism of estrogen action are discussed. (Author/MT)

  17. Circulating microparticles and endogenous estrogen in newly menopausal women

    PubMed Central

    Jayachandran, M.; Litwiller, R. D.; Owen, W. G.; Miller, V. M.

    2011-01-01

    Background Estrogen modulates antithrombotic characteristics of the vascular endothelium and the interaction of blood elements with the vascular surface. A marker of these modulatory activities is formation of cell-specific microparticles. This study examined the relationship between blood-borne microparticles and endogenous estrogen at menopause. Methods Platelet activation and plasma microparticles were characterized from women being screened (n = 146) for the Kronos Early Estrogen Prevention Study. Women were grouped according to serum estrogen (< 20 pg/ml; low estrogen, n = 21 or > 40 pg/ml; high estrogen, n = 11). Results Age, body mass index, blood pressure and blood chemistries were the same in both groups. No woman was hypertensive, diabetic or a current smoker. Platelet counts, basal and activated expression of P-selectin on platelet membranes were the same, but activated expression of glycoprotein IIb/IIIa was greater in the high-estrogen group. Numbers of endothelium-, platelet-, monocyte- and granulocyte-derived microparticles were greater in the low-estrogen group. Of the total numbers of microparticles, those positive for phosphatidylserine and tissue factor were also greater in the low-estrogen group. Conclusion These results suggest that, with declines in endogenous estrogen at menopause, numbers of procoagulant microparticles increase and thus may provide a means to explore mechanisms for cardiovascular risk development in newly menopausal women. PMID:19051075

  18. Ritonavir binds to and downregulates estrogen receptors: molecular mechanism of promoting early atherosclerosis.

    PubMed

    Xiang, Jin; Wang, Ying; Su, Ke; Liu, Min; Hu, Peng-Chao; Ma, Tian; Li, Jia-Xi; Wei, Lei; Zheng, Zhongliang; Yang, Fang

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Long-term effects of early life exposure to environmental estrogens on ovarian function: Role of epigenetics

    PubMed Central

    Cruz, Gonzalo; Foster, Warren; Paredes, Alfonso; Yi, Kun Don; Uzumcu, Mehmet

    2014-01-01

    Estrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is thought that developmental exposure to environmental estrogens can disrupt neural and reproductive tract development potentially resulting in long-term alterations in neurobehavior and reproductive function. Many chemicals have been shown to have estrogenic activity whereas others affect estrogen production and turnover resulting in disruption of estrogen signaling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on estrogen sensitive target tissues. Hence, alternative mechanisms are thought to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including estrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying disruption of ovarian follicular development. In addition, we discuss how exposure to environmental estrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology. PMID:25040227

  20. Response of adult mouse uterus to early disruption of estrogen receptor-alpha signaling is influenced by Krüppel-like factor 9

    USDA-ARS?s Scientific Manuscript database

    Inappropriate early exposure of the hormone-responsive uterus to estrogenic compounds is associated with increased risk for adult reproductive diseases including endometrial cancers. While the dysregulation of estrogen receptor-alpha (ESR1) signaling is a well-acknowledged early event in tumor initi...

  1. Epidemiology of estrogen and dementia in women with Down syndrome.

    PubMed

    Schupf, Nicole; Lee, Joseph H; Pang, Deborah; Zigman, Warren B; Tycko, Benjamin; Krinsky-McHale, Sharon; Silverman, Wayne

    2018-01-01

    Several lines of investigation have shown a protective role for estrogen in Alzheimer's disease through a number of biological actions. This review examines studies of the role of estrogen-related factors in age at onset and risk for Alzheimer's disease in women with Down syndrome, a population at high risk for early onset of dementia. The studies are consistent in showing that early age at menopause and that low levels of endogenous bioavailable estradiol in postmenopausal women with Down syndrome are associated with earlier age at onset and overall risk for dementia. Polymorphisms in genes associated with estrogen receptor activity and in genes for estrogen biosynthesis affecting endogenous estrogen are related to age at onset and cumulative incidence of dementia, and may serve as biomarkers of risk. To date, no clinical trials of estrogen or hormone replacement therapy (ERT/HRT) have been published for women with Down syndrome. While findings from clinical trials of ERT or HRT for dementia have generally been negative among women in the neurotypical population, the short interval between menopause and onset of cognitive decline, together with a more positive balance between potential benefits and risks, suggests an opportunity to evaluate the efficacy of ERT/HRT for delaying or preventing dementia in this high risk population, although questions concerning the optimal formulation and timing of the hormone therapy are not yet resolved. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Estrogen-withdrawal migraine. I. Duration of exposure required and attempted prophylaxis by premenstrual estrogen administration.

    PubMed

    Somerville, B W

    1975-03-01

    The minimum exposure to estrogen required to cause estrogen-withdrawal migraine has been studied by giving long-acting estradiol valerate to four women and short-acting estradiol benzoate to two women. It was found that several days of exposure to high estrogen levels were needed to cause migraine on estrogen withdrawal. Oral administration of estrogen supplements in the form of estradiol valerate or as conjugated equine estrogens during the premenstrual phase in four women did not significantly affect plasma levels of estradiol, nor was it effective in preventing menstrual migraine.

  3. Early-life estrogen exposure and uterine pathogenesis: ?A model for gene-environment interactions

    EPA Science Inventory

    Aberrant cellular differentiation early in life can contribute to increased cancer risk later in life. In a classic model of this effect, female mice exposed on postnatal day (PND) 1-5 to the synthetic estrogen diethylstilbestrol (DES) have a high incidence of uterine carcinoma. ...

  4. Targeting Aberrant p70S6K Activation for Estrogen Receptor-Negative Breast Cancer Prevention.

    PubMed

    Wang, Xiao; Yao, Jun; Wang, Jinyang; Zhang, Qingling; Brady, Samuel W; Arun, Banu; Seewaldt, Victoria L; Yu, Dihua

    2017-11-01

    The prevention of estrogen receptor-negative (ER-) breast cancer remains a major challenge in the cancer prevention field, although antiestrogen and aromatase inhibitors have shown adequate efficacy in preventing estrogen receptor-positive (ER + ) breast cancer. Lack of commonly expressed, druggable targets is a major obstacle for meeting this challenge. Previously, we detected the activation of Akt signaling pathway in atypical hyperplasic early-stage lesions of patients. In the current study, we found that Akt and the downstream 70 kDa ribosomal protein S6 kinase (p70S6K) signaling pathway was highly activated in ER - premalignant breast lesions and ER - breast cancer. In addition, p70S6K activation induced transformation of ER - human mammary epithelial cells (hMEC). Therefore, we explored the potential of targeting Akt/p70S6K in the p70S6K activated, ER - hMEC models and mouse mammary tumor models for the prevention of ER - breast cancer. We found that a clinically applicable Akt/p70S6K dual inhibitor, LY2780301, drastically decreased proliferation of hMECs with ErbB2-induced p70S6K activation via Cyclin B1 inhibition and cell-cycle blockade at G 0 -G 1 phase, while it did not significantly reverse the abnormal acinar morphology of these hMECs. In addition, a brief treatment of LY2780301 in MMTV- neu mice that developed atypical hyperplasia (ADH) and mammary intraepithelial neoplasia (MIN) lesions with activated p70S6K was sufficient to suppress S6 phosphorylation and decrease cell proliferation in hyperplasic MECs. In summary, targeting the aberrant Akt/p70S6K activation in ER - hMEC models in vitro and in the MMTV- neu transgenic mouse model in vivo effectively inhibited Akt/S6K signaling and reduced proliferation of hMECs in vitro and ADH/MIN lesions in vivo , indicating its potential in prevention of p70S6K activated ER - breast cancer. Cancer Prev Res; 10(11); 641-50. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Estrogen supports urothelial defense mechanisms.

    PubMed

    Lüthje, Petra; Brauner, Hanna; Ramos, Nubia L; Ovregaard, Amanda; Gläser, Regine; Hirschberg, Angelica Lindén; Aspenström, Pontus; Brauner, Annelie

    2013-06-19

    Epidemiological data imply a role of estrogen in the pathogenesis of urinary tract infections (UTIs), although the underlying mechanisms are not well understood. However, it is thought that estrogen supplementation after menopause decreases the risk of recurrent infections. We sought to investigate the influence of estrogen on host-pathogen interactions and the consequences for UTI pathogenesis. We analyzed urothelial cells from menstruating and postmenopausal women before and after a 2-week period of estrogen supplementation, and also studied the influence of estradiol during Escherichia coli UTI in a mouse infection model. Important findings were confirmed in two human urothelial cell lines. We identified two epithelial defense mechanisms modulated by estrogen. Estrogen induced the expression of antimicrobial peptides, thereby enhancing the antimicrobial capacity of the urothelium and restricting bacterial multiplication. In addition, estrogen promoted the expression and redistribution of cell-cell contact-associated proteins, thereby strengthening the epithelial integrity and preventing excessive loss of superficial cells during infection. These two effects together may prevent bacteria from reaching deeper layers of the urinary tract epithelium and developing reservoirs that can serve as a source for recurrent infections. Thus, this study presents some underlying mechanisms for the beneficial effect of estradiol after menopause and supports the application of estrogen in postmenopausal women suffering from recurrent UTI.

  6. Estrogen regulates histone deacetylases to prevent cardiac hypertrophy

    PubMed Central

    Pedram, Ali; Razandi, Mahnaz; Narayanan, Ramesh; Dalton, James T.; McKinsey, Timothy A.; Levin, Ellis R.

    2013-01-01

    The development and progression of cardiac hypertrophy often leads to heart failure and death, and important modulators of hypertrophy include the histone deacetylase proteins (HDACs). Estrogen inhibits cardiac hypertrophy and progression in animal models and humans. We therefore investigated the influence of 17-β-estradiol on the production, localization, and functions of prohypertrophic (class I) and antihypertrophic (class II) HDACs in cultured neonatal rat cardiomyocytes. 17-β-Estradiol or estrogen receptor β agonists dipropylnitrile and β-LGND2 comparably suppressed angiotensin II–induced HDAC2 (class I) production, HDAC-activating phosphorylation, and the resulting prohypertrophic mRNA expression. In contrast, estrogenic compounds derepressed the opposite effects of angiotensin II on the same parameters for HDAC4 and 5 (class II), resulting in retention of these deacetylases in the nucleus to inhibit hypertrophic gene expression. Key aspects were confirmed in vivo from the hearts of wild-type but not estrogen receptor β (ERβ) gene–deleted mice administered angiotensin II and estrogenic compounds. Our results identify a novel dual regulation of cardiomyocyte HDACs, shown here for the antihypertrophic sex steroid acting at ERβ. This mechanism potentially supports using ERβ agonists as HDAC modulators to treat cardiac disease. PMID:24152730

  7. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Jin; Wang, Ying; Su, Ke

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist formore » E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.« less

  8. Prevention of mammary carcinogenesis by short-term estrogen and progestin treatments

    PubMed Central

    Rajkumar, Lakshmanaswamy; Guzman, Raphael C; Yang, Jason; Thordarson, Gudmundur; Talamantes, Frank; Nandi, Satyabrata

    2004-01-01

    Introduction Women who have undergone a full-term pregnancy before the age of 20 have one-half the risk of developing breast cancer compared with women who have never gone through a full-term pregnancy. This protective effect is observed universally among women of all ethnic groups. Parity in rats and mice also protects them against chemically induced mammary carcinogenesis. Methods Seven-week-old virgin Lewis rats were given N-methyl-N-nitrosourea. Two weeks later the rats were treated with natural or synthetic estrogens and progestins for 7–21 days by subcutaneous implantation of silastic capsules. Results In our current experiment, we demonstrate that short-term sustained exposure to natural or synthetic estrogens along with progestins is effective in preventing mammary carcinogenesis in rats. Treatment with 30 mg estriol plus 30 mg progesterone for 3 weeks significantly reduced the incidence of mammary cancer. Short-term exposure to ethynyl estradiol plus megesterol acetate or norethindrone was effective in decreasing the incidence of mammary cancers. Tamoxifen plus progesterone treatment for 3 weeks was able to confer only a transient protection from mammary carcinogenesis, while 2-methoxy estradiol plus progesterone was effective in conferring protection against mammary cancers. Conclusions The data obtained in the present study demonstrate that, in nulliparous rats, long-term protection against mammary carcinogenesis can be achieved by short-term treatments with natural or synthetic estrogen and progesterone combinations. PMID:14680498

  9. Short-term exposure to pregnancy levels of estrogen prevents mammary carcinogenesis

    PubMed Central

    Rajkumar, Lakshmanaswamy; Guzman, Raphael C.; Yang, Jason; Thordarson, Gudmundur; Talamantes, Frank; Nandi, Satyabrata

    2001-01-01

    It is well established that pregnancy early in life reduces the risk of breast cancer in women and that this effect is universal. This phenomenon of parity protection against mammary cancer is also observed in rodents. Earlier studies have demonstrated that short-term administration of estradiol (E) in combination with progesterone mimics the protective effect of parity in rats. In this study, the lowest effective E dosage for preventing mammary cancer was determined. Rats were injected with N-methyl-N-nitrosourea at 7 weeks of age; 2 weeks later, the rats were subjected to sustained treatment with 20 μg, 100 μg, 200 μg, or 30 mg of E in silastic capsules for 3 weeks. Treatments with 100 μg, 200 μg, and 30 mg of E resulted in serum levels of E equivalent to those of pregnancy and were highly effective in preventing mammary cancer. E treatment (20 μg) did not result in pregnancy levels of E and was not effective in reducing the mammary cancer incidence. In another set of experiments, we determined the effect of different durations of E with or without progesterone treatments on mammary carcinogenesis. These experiments indicate that a period as short as one-third the period of gestation is sufficient to induce protection against mammary carcinogenesis. The pioneering aspect of our study in contrast to long-term estrogen exposure, which is thought to increase the risk of breast cancer, is that short-term sustained treatments with pregnancy levels of E can induce protection against frank mammary cancer. PMID:11573010

  10. The effect of grape seed extract on estrogen levels of postmenopausal women: a pilot study.

    PubMed

    Wahner-Roedler, Dietlind L; Bauer, Brent A; Loehrer, Laura L; Cha, Stephen S; Hoskin, Tanya L; Olson, Janet E

    2014-06-01

    The role of estrogens in breast cancer (BC) development is widely accepted, leading to the development of selective estrogen receptor modulators and aromatase inhibitors for BC treatment and prevention. However, because of potential adverse effects, healthy women with high risk of BC are hesitant to take them. Preliminary evidence from animal studies shows that grapes may have an aromatase-inhibiting effect, decreasing estrogen synthesis and increasing androgen precursors. We conducted a randomized, double-blind, dose-finding early-phase trial on the effect of grape seed extract (GSE) on estrogen levels. Postmenopausal women who met study inclusion criteria (N = 46) were randomly assigned to daily GSE at a dose of 200, 400, 600, or 800 mg for 12 weeks. Primary outcome was change in plasma levels of estrogen conjugates from baseline to 12 weeks posttreatment. Thirty-nine participants (84.8%) completed the study. GSE in the 4 daily doses did not significantly decrease estrogen or increase androgen precursors.

  11. Estrogen treatment up-regulates female genes but does not suppress all early testicular markers during rainbow trout male-to-female gonadal transdifferentiation.

    PubMed

    Vizziano-Cantonnet, Denise; Baron, Daniel; Mahè, Sophie; Cauty, Chantal; Fostier, Alexis; Guiguen, Yann

    2008-11-01

    In non-mammalian vertebrates, estrogens are key players in ovarian differentiation, but the mechanisms by which they act remain poorly understood. The present study on rainbow trout was designed to investigate whether estrogens trigger the female pathway by activating a group of early female genes (i.e. cyp19a1, foxl2a, foxl2b, fst, bmp4, and fshb) and by repressing early testicular markers (i.e. dmrt1, nr0b1, sox9a1 and sox9a2). Feminization was induced in genetically all-male populations using 17alpha-ethynylestradiol (EE2, 20 mg/kg of food during 2 months). The expression profiles of 100 candidate genes were obtained by real-time RT-PCR and 45 expression profiles displayed a significant differential expression between control populations (males and females) and EE2-treated populations. These expression profiles were grouped in five temporally correlated expression clusters. The estrogen treatment induced most of the early ovarian differentiation genes (foxl2a, foxl2b, fst, bmp4, and fshb) and in particular foxl2a, which was strongly and quickly up-regulated. Simultaneously, Leydig cell genes, involved in androgen synthesis, as well as some Sertoli cell markers (amh, sox9a2) were strongly repressed. However, in contrast to our initial hypothesis, some genes considered as essential for mammalian and fish testis differentiation were not suppressed during the early process of estrogen-induced feminization (dmrt1, nr0b1, sox9a1 and pax2a) and some were even strongly up-regulated (nr0b1, sox9a1and pax2a). In conclusion, estrogens trigger male-to-female transdifferentiation by up-regulating most ovarian specific genes and this up-regulation appears to be crucial for an effective feminization, but estrogens do not concomitantly down-regulate all the testicular differentiation markers.

  12. Self-Reported Menopausal Symptoms, Coronary Artery Calcification and Carotid Intima-Media Thickness in Recently Menopausal Women Screened for the Kronos Early Estrogen Prevention Study (KEEPS)

    PubMed Central

    Wolff, Erin Foran; He, Yunxiao; Black, Dennis M.; Brinton, Eliot A.; Budoff, Mathew J.; Cedars, Marcelle I.; Hodis, Howard N.; Lobo, Rogerio A.; Manson, JoAnn E.; Merriam, George R.; Miller, Virginia M.; Naftolin, Fredrick; Pal, Lubna; Santoro, Nanette; Zhang, Heping; Harman, S. Mitchell; Taylor, Hugh S.

    2012-01-01

    Objective To determine whether self-reported menopausal symptoms are associated with measures of subclinical atherosclerosis. Setting Multi-center, randomized controlled trial. Patients Recently menopausal women (n=868) screened for the Kronos Early Estrogen Prevention Study (KEEPS). Design Cross sectional analysis. Interventions None Main Outcome Measures Baseline menopausal symptoms (hot flashes, dyspareunia, vaginal dryness, night sweats, palpitations, mood swings, depression, insomnia, irritability), serum estradiol (E2) levels and measures of atherosclerosis were assessed. Atherosclerosis was quantified using Coronary Artery Calcium (CAC) Agatston scores (n=771) and Carotid Intima-Media Thickness (CIMT). Logistic regression model of menopausal symptoms and E2 was used to predict CAC. Linear regression model of menopausal symptoms and E2 was used to predict CIMT. Correlation between length of time in menopause with menopausal symptoms, estradiol (E2), CAC, and CIMT were assessed. Results In early menopausal women screened for KEEPS, neither E2 nor climacteric symptoms predicted the extent of subclinical atherosclerosis. Palpitations (p=0.09) and depression (p=0.07) approached significance as predictors of CAC. Other symptoms of insomnia, irritability, dyspareunia, hot flashes, mood swings, night sweats, and vaginal dryness were not associated with CAC. Women with significantly elevated CAC scores were excluded from further participation in KEEPS; in women meeting inclusion criteria, neither baseline menopausal symptoms nor E2 predicted CIMT. Years since menopause onset correlated with CIMT, dyspareunia, vaginal dryness and E2. Conclusions Self-reported symptoms in recently menopausal women are not strong predictors of subclinical atherosclerosis. Continued follow-up of this population will be performed to determine if baseline or persistent symptoms in the early menopause are associated with progression of cardiovascular disease. PMID:23312232

  13. Triple-negative breast cancer risk in women is defined by the defect of estrogen signaling: preventive and therapeutic implications

    PubMed Central

    Suba, Zsuzsanna

    2014-01-01

    Epidemiologic studies strongly support that triple-negative breast cancers (TNBCs) may be distinct entities as compared with estrogen receptor (ER)+ tumors, suggesting that the etiologic factors, clinical characteristics, and therapeutic possibilities may vary by molecular subtypes. Many investigations propose that reproductive factors and exogenous hormone use differently or even quite inversely affect the risk of TNBCs and ER+ cancers. Controversies concerning the exact role of even the same risk factor in TNBC development justify that the biological mechanisms behind the initiation of both TNBCs and non-TNBCs are completely obscure. To arrive at a comprehensive understanding of the etiology of different breast cancer subtypes, we should also reconsider our traditional concepts and beliefs regarding cancer risk factors. Malignancies are multicausal, but the disturbance of proper estrogen signaling seems to be a crucial risk factor for the development of mammary cancers. The grade of defect in metabolic and hormonal equilibrium is directly associated with TNBC risk for women during their whole life. Inverse impact of menopausal status or parity on the development of ER+ and ER− breast cancers may not be possible; these controversial results derive from the misinterpretation of percentage-based statistical evaluations. Exogenous or parity-associated excessive estrogen supply is suppressive against breast cancer, though the lower the ER expression of tumors, the weaker the anticancer capacity. In women, the most important preventive strategy against breast cancers – included TNBCs – is the strict control and maintenance of hormonal equilibrium from early adolescence through the whole lifetime, particularly during the periods of great hormonal changes. PMID:24482576

  14. Low-dose estrogen therapy for prevention of osteoporosis: working our way back to monotherapy.

    PubMed

    Richman, Susan; Edusa, Valentine; Fadiel, Ahmed; Naftolin, Frederick

    2006-01-01

    The risks of low bone mineral density, osteoporosis and fractures, are major concerns in postmenopausal women. Although postmenopausal hormone therapy is effective for reducing these risks, safety issues have been raised by the results of studies such as the Women's Health Initiative. Although there are scientifically valid reasons to be wary of the general applicability of the Women's Health Initiative findings, the study has underscored the continuing need for research into new forms of menopausal hormone therapy. Low-dose transdermal estrogen monotherapy can preserve bone density while relieving vasomotor symptoms. Transdermal administration may offer advantages, including lack of first-pass liver metabolism, which permits the use of lower doses and avoids a negative impact on the lipid profile. Moreover, a recently published 2-year study of ultra-low-dose transdermal estrogen monotherapy in an older population similar to that of the WHI reported significant increases in bone mineral density, accompanied by significant reductions in markers of bone turnover, with no increased risk of endometrial hyperplasia or other side effects. Additional studies are warranted to shed further light on the possible benefits of low-dose estrogen monotherapy for the prevention of bone loss in postmenopausal women.

  15. Estrogen replacement therapy, Alzheimer's disease, and mild cognitive impairment.

    PubMed

    Mulnard, Ruth A; Corrada, Marìa M; Kawas, Claudia H

    2004-09-01

    This article highlights the latest findings regarding estrogen replacement therapy in the treatment and prevention of Alzheimer's disease (AD) and mild cognitive impairment in women. Despite considerable evidence from observational studies, recent randomized clinical trials of conjugated equine estrogens, alone and in combination with progestin, have shown no benefit for either the treatment of established AD or for the short-term prevention of AD, mild cognitive impairment, or cognitive decline. Based on the evidence, there is no role at present for estrogen replacement therapy in the treatment or prevention of AD or cognitive decline, despite intriguing results from the laboratory and from observational studies. However, numerous questions remain about the biologic effects of estrogens on brain structure and function. Additional basic and clinical investigations are necessary to examine different forms and dosages of estrogens, other populations, and the relevance of timing and duration of exposure.

  16. The G protein-coupled estrogen receptor (GPER/GPR30) may serve as a prognostic marker in early-stage cervical cancer.

    PubMed

    Friese, Klaus; Kost, Bernd; Vattai, Aurelia; Marmé, Frederik; Kuhn, Christina; Mahner, Sven; Dannecker, Christian; Jeschke, Udo; Heublein, Sabine

    2018-01-01

    were detected. Finally, immunopositivity of GPER cyt was predictive for favourable overall as well as recurrence-free survival in cervical cancer of early stage (FIGO I). This retrospective study reports GPER cyt to be associated with improved overall and recurrence-free survival in early-stage cervical cancer. Further investigations are needed thus to determine whether this observation may be of clinical impact. Interestingly, Raloxifene-a GPER-activating selective estrogen receptor modulator-has recently been demonstrated to be preventive for cervical cancer relapse in mice. Whether this effect is only reliant on raloxifene blocking ERα or may also be related to activation of GPER remains to be determined.

  17. Endogenous and Exogenous Estrogen, Cognitive Function and Dementia in Postmenopausal Women: Evidence from Epidemiologic Studies and Clinical Trials

    PubMed Central

    Laughlin, Gail A.

    2009-01-01

    There are more than 200 published scientific papers showing that estrogen has favorable effects on brain tissue and physiology in cell culture and animal models including nonhuman primates. The biological plausibility for a neuroprotective estrogen effect is overwhelming. However, most studies of endogenous estrogen and cognitive decline or dementia fail to show protection, and some suggest harm. Failure to find any consistent association might reflect the limitations of a single time of estrogen assay or poor assay sensitivity. More than half of the observational studies of hormone therapy suggest benefit. Nearly all long term clinical trials fail to show benefit and the longer trials tend to show harm. Failure to adequately adjust for self-selection of healthier and wealthier women and publication bias could account for some, or all, of the protective effect attributed to estrogen in observational studies. Overall, the evidence does not convincingly support the prescription of early or late postmenopausal estrogen therapy to preserve cognitive function or prevent dementia. PMID:19401958

  18. Distinct Signaling Pathways Mediate Stimulation of Cell Cycle Progression and Prevention of Apoptotic Cell Death by Estrogen in Rat Pituitary Tumor PR1 Cells

    PubMed Central

    Caporali, Simona; Imai, Manami; Altucci, Lucia; Cancemi, Massimo; Caristi, Silvana; Cicatiello, Luigi; Matarese, Filomena; Penta, Roberta; Sarkar, Dipak K.; Bresciani, Francesco; Weisz, Alessandro

    2003-01-01

    Estrogens control cell growth and viability in target cells via an interplay of genomic and extragenomic pathways not yet elucidated. Here, we show evidence that cell proliferation and survival are differentially regulated by estrogen in rat pituitary tumor PR1 cells. Pico- to femtomolar concentrations of 17β-estradiol (E2) are sufficient to foster PR1 cell proliferation, whereas nanomolar concentrations of the same are needed to prevent cell death that occurs at a high rate in these cells in the absence of hormone. Activation of endogenous (PRL) or transfected estrogen-responsive genes occurs at the same, higher concentrations of E2 required to promote cell survival, whereas stimulation of cyclin D3 expression and DNA synthesis occur at lower E2 concentrations. Similarly, the pure antiestrogen ICI 182,780 inhibits estrogen response element-dependent trans-activation and cell death more effectively than cyclin-cdk activity, G1-S transition, or DNA synthesis rate. In antiestrogen-treated and/or estrogen-deprived cells, death is due predominantly to apoptosis. Estrogen-induced cell survival, but not E2-dependent cell cycle progression, can be prevented by an inhibitor of c-Src kinase or by blockade of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathway. These data indicate the coexistence of two distinguishable estrogen signaling pathways in PR1 cells, characterized by different functions and sensitivity to hormones and antihormones. PMID:12960425

  19. Estrogen and Cytochrome P450 1B1 Contribute to Both Early- and Late-Stage Head and Neck Carcinogenesis

    PubMed Central

    Shatalova, Ekaterina G.; Klein-Szanto, Andres J.P.; Devarajan, Karthik; Cukierman, Edna; Clapper, Margie L.

    2010-01-01

    Squamous cell carcinoma of the head and neck (HNSCC) is the sixth most common type of cancer in the U.S. The goal of this study was to evaluate the contribution of estrogens to the development of HNSCCs. Various cell lines derived from early- and late-stage head and neck lesions were used to: characterize the expression of estrogen synthesis and metabolism genes, including cytochrome P450 (CYP)1B1, examine the effect of estrogen on gene expression and evaluate the role of CYP1B1 and/or estrogen in cell motility, proliferation and apoptosis. Estrogen metabolism genes (CYP1B1, CYP1A1, catechol-o-methyltransferase, UDP-glucuronosyltransferase 1A1, and glutathione-S-transferase P1) and estrogen receptor (ER)β were expressed in cell lines derived from both premalignant (MSK-Leuk1) and malignant (HNSCC) lesions. Exposure to estrogen induced CYP1B1 2.3 to 3.6 fold relative to vehicle-treated controls (P=0.0004) in MSK-Leuk1 cells but not in HNSCC cells. CYP1B1 knockdown by shRNA reduced the migration and proliferation of MSK-Leuk1 cells by 57% and 45%, respectively. Exposure of MSK-Leuk1 cells to estrogen inhibited apoptosis by 26%, while supplementation with the antiestrogen fulvestrant restored estrogen-dependent apoptosis. Representation of the estrogen pathway in human head and neck tissues from 128 patients was examined using tissue microarrays. The majority of the samples exhibited immunohistochemical staining for ERβ (91.9%), CYP1B1 (99.4%) and 17β-estradiol (88.4%). CYP1B1 and ERβ were elevated in HNSCCs relative to normal epithelium (P=0.024 and 0.008, respectively). These data provide novel insight into the mechanisms underlying head and neck carcinogenesis and facilitate the identification new targets for chemopreventive intervention. PMID:21205741

  20. Selective estrogen receptor modulation in pancreatic β-cells and the prevention of type 2 diabetes.

    PubMed

    Tiano, Joseph; Mauvais-Jarvis, Franck

    2012-01-01

    We recently showed that the female hormone 17β-estradiol (E2) protects against β-cell failure in rodent models of type 2 diabetes (T2D) by suppressing islet fatty acids and glycerolipids synthesis, thus preventing lipotoxic β-cell failure. E2 anti-lipogenic actions were recapitulated by pharmacological activation of the estrogen receptor (ER)α, ERβ and the G-protein coupled ER (GPER) in cultured rodent and human β-cells. In vivo, in mouse islets, ERα activation inhibited β-cell lipogenesis by suppressing fatty acid synthase expression (and activity) via an extranuclear, estrogen response element (ERE)-independent pathway requiring the signal transducer and activator of transcription 3. Here, we show that in INS-1 insulin-secreting cells, the selective ER modulator (SERM), Raloxifene, behaves both as ER antagonist with regard to nuclear ERE-dependent actions and as an ER agonist with regard to suppressing triglyceride accumulation. This additional finding opens the perspective that SERMs harboring ER agonistic activity in β-cells could have application in postmenopausal prevention of T2D. Additional studies using novel generation SERMs are needed to address this issue.

  1. Effects of hormones on skin wrinkles and rigidity vary by race/ethnicity: four-year follow-up from the ancillary skin study of the Kronos Early Estrogen Prevention Study.

    PubMed

    Owen, Carter M; Pal, Lubna; Mumford, Sunni L; Freeman, Ruth; Isaac, Barbara; McDonald, Linda; Santoro, Nanette; Taylor, Hugh S; Wolff, Erin F

    2016-10-01

    To measure skin wrinkles and rigidity in menopausal women of varying race/ethnicity with or without hormone therapy (HT) for up to four years. Randomized, double-blind, placebo-controlled trial. Academic medical centers. Women (42-58 years of age) within 36 months of last menstrual period and enrolled in the Kronos Early Estrogen Prevention Study (KEEPS). Treatment with 0.45 mg oral conjugated equine estrogens (CEE), transdermal E 2 (50 μg/d) with micronized P (200 mg daily), or placebo for 4 years. Skin wrinkles were assessed at 11 locations on the face and neck, and skin rigidity was assessed at the forehead and cheek at baseline and yearly for 4 years. Neither total wrinkle score nor total rigidity score was significantly different at baseline or over the 4-year follow-up among patients randomized to CEE, E 2 , or placebo. Skin wrinkle and rigidity scores were primarily affected by race/ethnicity, with scores being significantly different between races for almost all of the wrinkle parameters and for all of the rigidity measures. There was no association between race and response to HT for total wrinkle or rigidity scores. Black women had the lowest wrinkle scores compared with white women across all 4 years. In general, skin rigidity decreased in all groups over time, but black women had significantly reduced total facial rigidity compared with white women after 4 years. Race is the strongest predictor of the advancement of skin aging in the 4 years following menopause. HT does not appear to affect skin wrinkles or rigidity at most facial locations. NCT00154180. Published by Elsevier Inc.

  2. VASCULAR ACTIONS OF ESTROGENS: FUNCTIONAL IMPLICATIONS

    PubMed Central

    Miller, Virginia M.; Duckles, Sue P.

    2009-01-01

    The impact of estrogen exposure in preventing or treating cardiovascular disease is controversial. But it is clear that estrogen has important effects on vascular physiology and pathophysiology, with potential therapeutic implications. Therefore, it is the goal of this review to summarize, using an integrated approach, current knowledge of the vascular effects of estrogen, both in humans and in experimental animals. Aspects of estrogen synthesis and receptors, as well as general mechanisms of estrogenic action are reviewed with an emphasis on issues particularly relevant to the vascular system. Recent understanding of the impact of estrogen on mitochondrial function suggests that the longer lifespan of women compared to men may depend in part on the ability of estrogen to decrease production of reactive oxygen species in mitochondria. Mechanisms by which estrogen increases endothelial vasodilator function, promotes angiogenesis and modulates autonomic function are summarized. Key aspects of the relevant pathophysiology of inflammation, atherosclerosis, stroke, migraine and thrombosis are reviewed concerning current knowledge of estrogenic effects. A number of emerging concepts are addressed throughout. These include the importance of estrogenic formulation and route of administration and the impact of genetic polymorphisms, either in estrogen receptors or in enzymes responsible for estrogen metabolism, on responsiveness to hormone treatment. The importance of local metabolism of estrogenic precursors and the impact of timing for initiation of treatment and its duration are also considered. While consensus opinions are emphasized, controversial views are presented in order to stimulate future research. PMID:18579753

  3. The New Biology of Estrogen-induced Apoptosis Applied to Treat and Prevent Breast Cancer

    PubMed Central

    Jordan, V Craig

    2014-01-01

    The successful use of high dose synthetic estrogens to treat post-menopausal metastatic breast cancer, is the first effective “chemical therapy” proven in clinical trial to treat any cancer. This review documents the clinical use of estrogen for breast cancer treatment or estrogen replacement therapy (ERT) for postmenopausal hysterectomized women which can either result in breast cancer cell growth or breast cancer regression. This has remained a paradox since the 1950s until the discovery of the new biology of estrogen induced apoptosis at the end of the 20th century. The key to triggering apoptosis with estrogen is the selection of breast cancer cell populations that are resistant to long term estrogen deprivation. However, through trial and error estrogen independent growth occurs. At the cellular level, estrogen induced apoptosis is dependent upon the presence of the estrogen receptor (ER) which can be blocked by non-steroidal or steroidal anti-estrogens. The shape of an estrogenic ligand programs the conformation of the ER complex which in turn can modulate estrogen induced apoptosis: class I planar estrogens (eg: estradiol) trigger apoptosis after 24 hours whereas class II angular estrogens (eg: bisphenol triphenylethylene) delay the process until after 72 hours. This contrasts with paclitaxel that causes G2 blockade with immediate apoptosis. The process is complete within 24 hours. Estrogen induced apoptosis is modulated by glucocorticoids and cSrc inhibitors but the target mechanism for estrogen action is genomic and not through a non-genomic pathway. The process is step wise through the creation of endoplasmic reticulum stress and, inflammatory responses that then initiate an unfolded protein response. This in turn initiates apoptosis through the intrinsic pathway (mitochondrial) with subsequent recruitment of the extrinsic pathway (death receptor) to complete the process. The symmetry of the clinical and laboratory studies now permits the creation of

  4. [Equine estrogens vs. esterified estrogens in the climacteric and menopause. The controversy arrives in Mexico].

    PubMed

    Velasco-Murillo, V

    2001-01-01

    It exists controversies about if the effects and benefits of the esterified estrogens could be similar to those informed for equines, because its chemical composition and bioavailability are different. Esterified estrogens has not delta 8,9 dehydroestrone, and its absorption and level of maximum plasmatic concentrations are reached very fast. In United States of America and another countries, esterified estrogens has been marketed and using for treatment of climacteric syndrome and prevention of postmenopausal osteoporosis, based on the pharmacopoiea of that country, but the Food and Drug administration (FDA) has not yet authorized up today, a generic version of conjugated estrogens. In Instituto Mexicano del Seguro Social (IMSS) and another institutions of health sector in Mexico, starting in year 2000, it has been used esterified estrogens for medical treatment of climacteric and menopausal conditions. For this reason, in this paper we revised the most recent information about pharmacology, chemical composition, clinical use and costs of the conjugated estrogens with the purpose to guide the decisions to purchase this kind of drugs in Mexican heath institutions.

  5. Estrogens in Male Physiology.

    PubMed

    Cooke, Paul S; Nanjappa, Manjunatha K; Ko, CheMyong; Prins, Gail S; Hess, Rex A

    2017-07-01

    Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues. Copyright © 2017 the American Physiological Society.

  6. Estrogens, Neuroinflammation, and Neurodegeneration

    PubMed Central

    Villa, Alessandro; Vegeto, Elisabetta; Poletti, Angelo

    2016-01-01

    Inflammatory activation of microglia is a hallmark of several disorders of the central nervous system. In addition to protecting the brain against inflammatory insults, microglia are neuroprotective and play a significant role in maintaining neuronal connectivity, but the prolongation of an inflammatory status may limit the beneficial functions of these immune cells. The finding that estrogen receptors are present in monocyte-derived cells and that estrogens prevent and control the inflammatory response raise the question of the role that this sex steroid plays in the manifestation and progression of pathologies that have a clear sex difference in prevalence, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. The present review aims to provide a critical review of the current literature on the actions of estrogen in microglia and on the involvement of estrogen receptors in the manifestation of selected neurological disorders. This current understanding highlights a research area that should be expanded to identify appropriate replacement therapies to slow the progression of such diseases. PMID:27196727

  7. Role of dietary bioactive natural products in estrogen receptor-positive breast cancer

    PubMed Central

    Bak, Min Ji; Das Gupta, Soumyasri; Wahler, Joseph; Suh, Nanjoo

    2016-01-01

    Estrogen receptor (ER)-positive breast cancer, including luminal-A and -B, is the most common type of breast cancer. Extended exposure to estrogen is associated with an increased risk of breast cancer. Both ER-dependent and ER-independent mechanisms have been implicated in estrogen-mediated carcinogenesis. The ER-dependent pathway involves cell growth and proliferation triggered by the binding of estrogen to the ER. The ER-independent mechanisms depend on the metabolism of estrogen to generate genotoxic metabolites, free radicals and reactive oxygen species to induce breast cancer. A better understanding of the mechanisms that drive ER-positive breast cancer will help optimize targeted approaches to prevent or treat breast cancer. A growing emphasis is being placed on alternative medicine and dietary approaches toward the prevention and treatment of breast cancer. Many natural products and bioactive compounds found in foods have been shown to inhibit breast carcinogenesis via inhibition of estrogen induced oxidative stress as well as ER signaling. This review summarizes the role of bioactive natural products that are involved in the prevention and treatment of estrogen-related and ER-positive breast cancer. PMID:27016037

  8. Exercise, Eating, Estrogen, and Osteoporosis.

    ERIC Educational Resources Information Center

    Brown, Jim

    1986-01-01

    Osteoporosis affects millions of people, especially women. Three methods for preventing or managing osteoporosis are recommended: (1) exercise; (2) increased calcium intake; and (3) estrogen replacement therapy. (CB)

  9. Estrogenicity of parabens revisited: impact of parabens on early pregnancy and an uterotrophic assay in mice.

    PubMed

    Shaw, Jordan; deCatanzaro, Denys

    2009-07-01

    Parabens, a class of preservatives routinely added to cosmetics, pharmaceuticals, and foods, have estrogenic properties. Given that intrauterine implantation of fertilized ova in inseminated females can be disrupted by minute levels of exogenous estrogens, we assessed the impact of parabens upon early gestation. In Experiment 1, butylparaben was administered subcutaneously in several doses ranging from 0.05 to 35 mg/animal/day to inseminated CF-1 mice on days 1-4 of pregnancy. Butylparaben exposure did not affect litter size, the number of pups born, postnatal day 3 litter weights, or the number of pups surviving to postnatal day 5. In contrast, administration of 500 ng/animal/day 17beta-estradiol terminated all pregnancies. In Experiment 2, propylparaben was subcutaneously administered to inseminated CF-1 mice on gestational days 1-4. Dams were sacrificed on gestation day 6 and the number of implantation sites was counted. Propylparaben had no impact on the number of implantation sites observed. Since Experiments 1 and 2 did not yield the anticipated results, an uterotrophic assay was conducted in Experiment 3 to re-evaluate the in vivo estrogenicity of parabens. Ovariectomized CF-1 and CD-1 mice were administered butylparaben in doses ranging from 0.735 to 35 mg per animal for three consecutive days. Mice were sacrificed on the fourth day, and uterine mass was recorded. There was no effect of butylparaben on uterine wet or dry mass at any dose in either strain. In contrast, administration of 17beta-estradiol consistently increased uterine mass in both strains. These data indicate that the estrogen-sensitive period of implantation is not vulnerable to paraben exposure, and that the in vivo estrogenicity of parabens may not be as potent as previously reported.

  10. Impact of smoking on estrogenic efficacy.

    PubMed

    Ruan, X; Mueck, A O

    2015-02-01

    Depending on the type, duration and intensity of cigarette smoking, the efficacy of endogenous and exogenous estrogen can be reduced or completely cancelled. Not only does smoking diminish the beneficial effects of estrogen on hot flushes and urogenital symptoms and its positive effects on lipid metabolism, but smoking also can reduce estrogen's ability to prevent osteoporosis and perhaps also cardiovascular diseases. This is mainly caused by dose-dependent elevated hepatic clearance, partially in conjunction with lower estrogen levels, and has been demonstrated so far only with oral estrogen applications. Compensation for the failure of therapeutic action should not be made by increasing the dose in smokers since this might result in the production of potentially mutagenic estrogen metabolites associated with a higher risk of breast cancer. Since the favorable effects of estrogens seem to be not lost in smokers when estrogens are applied transdermally, this route should be preferred in smokers. The most important conclusion from the data presented is that the effects of smoking are very complex and dependent on a multiplicity of factors, so that different types of clinically relevant negative effects must be expected. Women who continue to smoke despite all warnings should be informed that smoking, in addition to all its other negative effects, can also jeopardize the success of hormone replacement therapy.

  11. Repeat polymorphisms in estrogen metabolism genes and prostate cancer risk: results from the Prostate Cancer Prevention Trial

    PubMed Central

    Tang, Li; Yao, Song; Till, Cathee; Goodman, Phyllis J.; Tangen, Catherine M.; Wu, Yue; Kristal, Alan R.; Platz, Elizabeth A.; Neuhouser, Marian L.; Stanczyk, Frank Z.; Reichardt, Juergen K.V.; Santella, Regina M.; Hsing, Ann; Hoque, Ashraful; Lippman, Scott M.; Thompson, Ian M.; Ambrosone, Christine B.

    2011-01-01

    The etiology of prostate cancer remains elusive, although steroid hormones probably play a role. Considering the carcinogenic potential of estrogen metabolites as well as altered intraprostatic estrogen biosynthesis during the development of prostate cancer, we investigated associations between repeat polymorphisms of three key estrogen-related genes (CYP11A1, CYP19A1, UGT1A1) and risk of prostate cancer in the Prostate Cancer Prevention Trial (PCPT), designed to test finasteride versus placebo as a chemoprevention agent. Using data and specimens from 1154 cases and 1351 controls who were frequency matched on age, family history of prostate cancer and PCPT treatment arm, we used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) separately in the placebo and finasteride arms. Among men in the placebo arm, CYP19A1 7/8 genotype carriers had a significantly higher risk of prostate cancer compared with those with the 7/7 genotype (OR = 1.70, 95% CI = 1.16–2.5), regardless of Gleason grade. This genotype was also associated with elevated serum estrogen levels. For the (TA)n repeat polymorphism in UGT1A1, the heterozygous short (<7 repeats)/long (≥7 repeats) genotype was significantly associated with the risk of low-grade prostate cancer (OR = 1.34, 95% CI = 1.05–1.70) compared with the short/short genotype. No significant association was found with CYP11A1. These associations were not observed among men in the finasteride arm. The results indicate that repeat polymorphisms in genes involved in estrogen biosynthesis and metabolism may influence risk of prostate cancer but that their effects may be modified by factors altering hormone metabolism, such as finasteride treatment. PMID:21771722

  12. Modulation of pain by estrogens.

    PubMed

    Craft, Rebecca M

    2007-11-01

    It has become increasingly apparent that women suffer a disproportionate amount of pain during their lifetime compared to men. Over the past 15 years, a growing number of studies have suggested a variety of causes for this sex difference, from cellular to psychosocial levels of analysis. From a biological perspective, sexual differentiation of pain appears to occur similarly to sexual differentiation of other phenomena: it results in large part from organizational and activational effects of gonadal steroid hormones. The focus of this review is the activational effects of a single group of ovarian hormones, the estrogens, on pain in humans and animals. The effects of estrogens (estradiol being the most commonly examined) on experimentally induced acute pain vs. clinical pain are summarized. For clinical pain, the review is limited to a few syndromes for which there is considerable evidence for estrogenic involvement: migraine, temporomandibular disorder (TMD) and arthritis. Because estrogens can modulate the function of the nervous, immune, skeletal, and cardiovascular systems, estrogenic modulation of pain is an exceedingly complex, multi-faceted phenomenon, with estrogens producing both pro- and antinociceptive effects that depend on the extent to which each of these systems of the body is involved in a particular type of pain. Forging a more complete understanding of the myriad ways that estrogens can ameliorate vs. facilitate pain will enable us to better prevent and treat pain in both women and men.

  13. Estrogen action and prostate cancer

    PubMed Central

    Nelles, Jason L; Hu, Wen-Yang; Prins, Gail S

    2011-01-01

    Early work on the hormonal basis of prostate cancer focused on the role of androgens, but more recently estrogens have been implicated as potential agents in the development and progression of prostate cancer. In this article, we review the epidemiological, laboratory and clinical evidence that estrogen may play a causative role in human prostate cancer, as well as rodent and grafted in vivo models. We then review recent literature highlighting potential mechanisms by which estrogen may contribute to prostate cancer, including estrogenic imprinting and epigenetic modifications, direct genotoxicity, hyperprolactinemia, inflammation and immunologic changes, and receptor-mediated actions. We discuss the work performed so far separating the actions of the different known estrogen receptors (ERs), ERα and ERβ, as well as G-protein-coupled receptor 30 and their specific roles in prostate disease. Finally, we predict that future work in this field will involve more investigations into epigenetic changes, experiments using new models of hormonal dysregulation in developing human prostate tissue, and continued delineation of the roles of the different ER subtypes, as well as their downstream signaling pathways that may serve as therapeutic targets. PMID:21765856

  14. Bone marrow oxytocin mediates the anabolic action of estrogen on the skeleton

    USDA-ARS?s Scientific Manuscript database

    Estrogen withdrawal in women due to natural or artificial menopause is followed by rapid bone loss, osteoporosis, and a high fracture risk. Replacement with estrogen prevents this bone loss and reduces the risk of fracture. Estrogen uses two mechanisms to exert this effect: it inhibits bone resorpti...

  15. Importance of Extranuclear Estrogen Receptor-α and Membrane G Protein–Coupled Estrogen Receptor in Pancreatic Islet Survival

    PubMed Central

    Liu, Suhuan; Le May, Cedric; Wong, Winifred P.S.; Ward, Robert D.; Clegg, Deborah J.; Marcelli, Marco; Korach, Kenneth S.; Mauvais-Jarvis, Franck

    2009-01-01

    OBJECTIVE We showed that 17β-estradiol (E2) favors pancreatic β-cell survival via the estrogen receptor-α (ERα) in mice. E2 activates nuclear estrogen receptors via an estrogen response element (ERE). E2 also activates nongenomic signals via an extranuclear form of ERα and the G protein–coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. RESEARCH DESIGN AND METHODS We used mice and islets deficient in estrogen receptor-α (αERKO−/−), estrogen receptor-β (βERKO−/−), estrogen receptor-α and estrogen receptor-β (αβERKO−/−), and GPER (GPERKO−/−); a mouse lacking ERα binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. RESULTS We show that ERα protection of islet survival is ERE independent and that E2 favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERβ plays a minor cytoprotective role compared to ERα. Accordingly, βERKO−/− mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERα and ERβ in mice does not synergize to provoke islet apoptosis. In αβERKO−/− mice and their islets, E2 partially prevents apoptosis suggesting that an alternative pathway compensates for ERα/ERβ deficiency. We find that E2 protection of islet survival is reproduced by a membrane-impermeant E2 formulation and a selective GPER agonist. Accordingly, GPERKO−/− mice are susceptible to streptozotocin-induced insulin deficiency. CONCLUSIONS E2 protects β-cell survival through ERα and ERβ via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in β-cells and identifies GPER as a target to protect islet survival. PMID:19587358

  16. Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival.

    PubMed

    Liu, Suhuan; Le May, Cedric; Wong, Winifred P S; Ward, Robert D; Clegg, Deborah J; Marcelli, Marco; Korach, Kenneth S; Mauvais-Jarvis, Franck

    2009-10-01

    We showed that 17beta-estradiol (E(2)) favors pancreatic beta-cell survival via the estrogen receptor-alpha (ERalpha) in mice. E(2) activates nuclear estrogen receptors via an estrogen response element (ERE). E(2) also activates nongenomic signals via an extranuclear form of ERalpha and the G protein-coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. We used mice and islets deficient in estrogen receptor-alpha (alphaERKO(-/-)), estrogen receptor-beta (betaERKO(-/-)), estrogen receptor-alpha and estrogen receptor-beta (alphabetaERKO(-/-)), and GPER (GPERKO(-/-)); a mouse lacking ERalpha binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. We show that ERalpha protection of islet survival is ERE independent and that E(2) favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERbeta plays a minor cytoprotective role compared to ERalpha. Accordingly, betaERKO(-/-) mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERalpha and ERbeta in mice does not synergize to provoke islet apoptosis. In alphabetaERKO(-/-) mice and their islets, E(2) partially prevents apoptosis suggesting that an alternative pathway compensates for ERalpha/ERbeta deficiency. We find that E(2) protection of islet survival is reproduced by a membrane-impermeant E(2) formulation and a selective GPER agonist. Accordingly, GPERKO(-/-) mice are susceptible to streptozotocin-induced insulin deficiency. E(2) protects beta-cell survival through ERalpha and ERbeta via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in beta-cells and identifies GPER as a target to protect islet survival.

  17. Longitudinal changes in menopausal symptoms comparing women randomized to low-dose oral conjugated estrogens or transdermal estradiol plus micronized progesterone versus placebo: the Kronos Early Estrogen Prevention Study.

    PubMed

    Santoro, Nanette; Allshouse, Amanda; Neal-Perry, Genevieve; Pal, Lubna; Lobo, Rogerio A; Naftolin, Frederick; Black, Dennis M; Brinton, Eliot A; Budoff, Matthew J; Cedars, Marcelle I; Dowling, N Maritza; Dunn, Mary; Gleason, Carey E; Hodis, Howard N; Isaac, Barbara; Magnani, Maureen; Manson, JoAnn E; Miller, Virginia M; Taylor, Hugh S; Wharton, Whitney; Wolff, Erin; Zepeda, Viola; Harman, S Mitchell

    2017-03-01

    The objective of the present study was to compare the efficacy of two forms of menopausal hormone therapy in alleviating vasomotor symptoms, insomnia, and irritability in early postmenopausal women during 4 years. A total of 727 women, aged 42 to 58, within 3 years of their final menstrual period, were randomized to receive oral conjugated estrogens (o-CEE) 0.45 mg (n = 230) or transdermal estradiol (t-E2) 50 μg (n = 225; both with micronized progesterone 200 mg for 12 d each mo), or placebos (PBOs; n = 275). Menopausal symptoms were recorded at screening and at 6, 12, 24, 36, and 48 months postrandomization. Differences in proportions of women with symptoms at baseline and at each follow-up time point were compared by treatment arm using exact χ tests in an intent-to-treat analysis. Differences in treatment effect by race/ethnicity and body mass index were tested using generalized linear mixed effects modeling. Moderate to severe hot flashes (from 44% at baseline to 28.3% for PBO, 7.4% for t-E2, and 4.2% for o-CEE) and night sweats (from 35% at baseline to 19% for PBO, 5.3% for t-E2, and 4.7% for o-CEE) were reduced significantly by 6 months in women randomized to either active hormone compared with PBO (P < 0.001 for both symptoms), with no significant differences between the active treatment arms. Insomnia and irritability decreased from baseline to 6 months postrandomization in all groups. There was an intermittent reduction in insomnia in both active treatment arms versus PBO, with o-CEE being more effective than PBO at 36 and 48 months (P = 0.002 and 0.05) and t-E2 being more effective than PBO at 48 months (P = 0.004). Neither hormone treatment significantly affected irritability compared with PBO. Symptom relief for active treatment versus PBO was not significantly modified by body mass index or race/ethnicity. Recently postmenopausal women had similar and substantial reductions in hot flashes and night sweats with lower

  18. Estrogen prevents bone loss through transforming growth factor β signaling in T cells

    PubMed Central

    Gao, Yuhao; Qian, Wei-Ping; Dark, Kimberly; Toraldo, Gianluca; Lin, Angela S. P.; Guldberg, Robert E.; Flavell, Richard A.; Weitzmann, M. Neale; Pacifici, Roberto

    2004-01-01

    Estrogen (E) deficiency leads to an expansion of the pool of tumor necrosis factor (TNF)-producing T cells through an IFN-γ-dependent pathway that results in increased levels of the osteoclastogenic cytokine TNF in the bone marrow. Disregulated IFN-γ production is instrumental for the bone loss induced by ovariectomy (ovx), but the responsible mechanism is unknown. We now show that mice with T cell-specific blockade of type β transforming growth factor (TGFβ) signaling are completely insensitive to the bone-sparing effect of E. This phenotype results from a failure of E to repress IFN-γ production, which, in turn, leads to increased T cell activation and T cell TNF production. Furthermore, ovx blunts TGFβ levels in the bone marrow, and overexpression of TGFβ in vivo prevents ovx-induced bone loss. These findings demonstrate that E prevents bone loss through a TGFβ-dependent mechanism, and that TGFβ signaling in T cells preserves bone homeostasis by blunting T cell activation. Thus, stimulation of TGFβ production in the bone marrow is a critical “upstream” mechanism by which E prevents bone loss, and enhancement of TGFβ levels in vivo may constitute a previously undescribed therapeutic approach for preventing bone loss. PMID:15531637

  19. Estrogen in cardiovascular disease during systemic lupus erythematosus.

    PubMed

    Gilbert, Emily L; Ryan, Michael J

    2014-12-01

    Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against cardiovascular risk factors in

  20. Estrogen in Cardiovascular Disease during Systemic Lupus Erythematosus

    PubMed Central

    Gilbert, Emily L.; Ryan, Michael J.

    2015-01-01

    Purpose Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. Methods PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. Findings The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against

  1. Involvement of epidermal growth factor receptor signaling in estrogen inhibition of oocyte maturation mediated through the G protein-coupled estrogen receptor (Gper) in zebrafish (Danio rerio).

    PubMed

    Peyton, Candace; Thomas, Peter

    2011-07-01

    Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression.

  2. Early intervention with an estrogen receptor β-selective phytoestrogenic formulation prolongs survival, improves spatial recognition memory, and slows progression of amyloid pathology in a female mouse model of Alzheimer's disease.

    PubMed

    Zhao, Liqin; Mao, Zisu; Chen, Shuhua; Schneider, Lon S; Brinton, Roberta D

    2013-01-01

    Our recent developments have yielded a novel phytoestrogenic formulation, referred to as the phyto-β-SERM formulation, which exhibits an 83-fold binding selectivity for the estrogen receptor subtype β (ERβ) over ERα. Earlier studies indicate that the phyto-β-SERM formulation is neuroprotective and promotes estrogenic mechanisms in the brain while devoid of feminizing activity in the periphery. Further investigation in a mouse model of human menopause indicates that chronic exposure to the phyto-β-SERM formulation at a clinically relevant dosage prevents/alleviates menopause-related climacteric symptoms. This study assessed the efficacy, in an early intervention paradigm, of the phyto-β-SERM formulation in the regulation of early stages of physical and neurological changes associated with Alzheimer's disease (AD) in a female triple transgenic mouse model of AD. Results demonstrated that, when initiated prior to the appearance of AD pathology, a 9-month dietary supplementation with the phyto-β-SERM formulation promoted physical health, prolonged survival, improved spatial recognition memory, and attenuated amyloid-β deposition and plaque formation in the brains of treated AD mice. In comparison, dietary supplementation of a commercial soy extract preparation showed no effect on cognitive measures, although it appeared to have a positive impact on amyloid pathology. In overall agreement with the behavioral and histological outcomes, results from a gene expression profiling analysis offered insights on the underlying molecular mechanisms associated with the two dietary treatments. In particular, the data suggests that there may be a crosstalk between ERβ and glycogen synthase kinase 3 signaling pathways that could play a role in conferring ERβ-mediated neuroprotection against AD. Taken together, these results support the therapeutic potential of the phyto-β-SERM formulation for prevention and/or early intervention of AD, and warrants further investigations

  3. Tissue-Specific Effects of Loss of Estrogen during Menopause and Aging.

    PubMed

    Wend, Korinna; Wend, Peter; Krum, Susan A

    2012-01-01

    The roles of estrogens have been best studied in the breast, breast cancers, and in the female reproductive tract. However, estrogens have important functions in almost every tissue in the body. Recent clinical trials such as the Women's Health Initiative have highlighted both the importance of estrogens and how little we know about the molecular mechanism of estrogens in these other tissues. In this review, we illustrate the diverse functions of estrogens in the bone, adipose tissue, skin, hair, brain, skeletal muscle and cardiovascular system, and how the loss of estrogens during aging affects these tissues. Early transcriptional targets of estrogen are reviewed in each tissue. We also describe the tissue-specific effects of selective estrogen receptor modulators (SERMs) used for the treatment of breast cancers and postmenopausal symptoms.

  4. Female Mice Avoid Male Odor from the Same Strain via the Vomeronasal System in an Estrogen-Dependent Manner.

    PubMed

    Yano, Saori; Sakamoto, Kentaro Q; Habara, Yoshiaki

    2015-11-01

    Inbreeding avoidance is essential to providing offspring with genetic diversity. Females' mate choice is more crucial than males' for successful reproduction because of the high cost of producing gametes and limited chances to mate. However, the mechanism of female inbreeding avoidance is still unclear. To elucidate the mechanism underlying inbreeding avoidance by females, we conducted Y-maze behavioral assays using BALB/c and C57BL/6 female mice. In both strains, the avoidance of male urine from the same strain was lower in the low estrogen phase than in the high estrogen phase. The estrous cycle-dependent avoidance was completely prevented by vomeronasal organ (VNO) removal. To assess the regulation of the vomeronasal system by estrogen, the neural excitability was evaluated by immunohistochemistry of the immediate early gene products. Although estrogen did not affect neural excitability in the VNO, estrogen enhanced the neural excitability of the mitral cell layer in the AOB induced by urine from the cognate males. These results suggest that female mice avoid odor from genetically similar males in an estrogen-dependent manner via the vomeronasal system and the excitability of the mitral cells in the AOB is presumed to be regulated by estrogen. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Window Of Opportunity: Estrogen As A Treatment For Ischemic Stroke✰

    PubMed Central

    Liu, Ran; Yang, Shao-Hua

    2013-01-01

    The neuroprotection research in the last 2 decades has witnessed a growing interest in the functions of estrogens as neuroprotectants against neurodegenerative diseases including stroke. The neuroprotective action of estrogens has been well demonstrated in both in vitro and in vivo models of ischemic stroke. However, the major conducted clinical trials so far have raised concern for the protective effect of estrogen replacement therapy in postmenopausal women. The discrepancy could be partly due to the mistranslation between the experimental stroke research and clinical trials. While predominant experimental studies tested the protective action of estrogens on ischemic stroke using acute treatment paradigm, the clinical trials have mainly focused on the effect of estrogen replacement therapy on the primary and secondary stroke prevention which has not been adequately addressed in the experimental stroke study. Although the major conducted clinical trials have indicated that estrogen replacement therapy has an adverse effect and raise concern for long term estrogen replacement therapy for stroke prevention, these are not appropriate for assessing the potential effects of acute estrogen treatment on stroke protection. The well established action of estrogen in the neurovascular unit and its potential interaction with recombinant tissue plasminogen activator (rtPA) makes it a candidate for the combined therapy with rtPA for the acute treatment of ischemic stroke. On the other hand, the “critical period” and newly emerged “biomarkers window” hypotheses have indicated that many clinical relevant factors have been underestimated in the experimental ischemic stroke research. The development and application of ischemic stroke models that replicate the clinical condition is essential for further evaluation of acute estrogen treatment on ischemic stroke which might provide critical information for future clinical trials. PMID:23340160

  6. Effects of oral versus transdermal menopausal hormone treatments on self-reported sleep domains and their association with vasomotor symptoms in recently menopausal women enrolled in the Kronos Early Estrogen Prevention Study (KEEPS)

    PubMed Central

    Cintron, Dahima; Lahr, Brian D.; Bailey, Kent R.; Santoro, Nanette; Lloyd, Robin; Manson, JoAnn E.; Neal-Perry, Genevieve; Pal, Lubna; Taylor, Hugh S.; Wharton, Whitney; Naftolin, Fredrick; Harman, S. Mitchell; Miller, Virginia M.

    2018-01-01

    Abstract Objective: This study determined whether two different formulations of hormone therapy (HT): oral conjugated equine estrogens (o-CEE; 0.45 mg/d, n = 209), transdermal 17β-estradiol (t-E2; 50 μg/d, n = 201) plus cyclic progesterone (Prometrium, 200 mg) or placebo (PBO, n = 243) affected sleep domains in participants of the Kronos Early Estrogen Prevention Study. Methods: Participants completed the Pittsburgh Sleep Quality Index at baseline and during the intervention at 6, 18, 36, and 48 months. Global sleep quality and individual sleep domain scores were compared between treatments using analysis of covariance, and correlated with vasomotor symptom (VMS) scores using Spearman correlation coefficients. Results: Global Pittsburgh Sleep Quality Index scores (mean 6.3; 24% with score >8) were similar across groups at baseline and were reduced (improved sleep quality) by both HT (average change −1.27 [o-CEE] and −1.32 [t-E2]) when compared with PBO (−0.60; P = 0.001 [o-CEE vs PBO] and P = 0.002 [t-E2 vs PBO]). Domain scores for sleep satisfaction and latency improved with both HT. The domain score for sleep disturbances improved more with t-E2 than o-CEE or PBO. Global sleep scores significantly correlated with VMS severity (rs = 0.170, P < 0.001 for hot flashes; rs = 0.177, P < 0.001 for night sweats). Change in scores for all domains except sleep latency and sleep efficiency correlated with change in severity of VMS. Conclusions: Poor sleep quality is common in recently menopausal women. Sleep quality improved with both HT formulations. The relationship of VMS with domains of sleep suggests that assessing severity of symptoms and domains of sleep may help direct therapy to improve sleep for postmenopausal women. PMID:28832429

  7. Effects of oral versus transdermal menopausal hormone treatments on self-reported sleep domains and their association with vasomotor symptoms in recently menopausal women enrolled in the Kronos Early Estrogen Prevention Study (KEEPS).

    PubMed

    Cintron, Dahima; Lahr, Brian D; Bailey, Kent R; Santoro, Nanette; Lloyd, Robin; Manson, JoAnn E; Neal-Perry, Genevieve; Pal, Lubna; Taylor, Hugh S; Wharton, Whitney; Naftolin, Fredrick; Harman, S Mitchell; Miller, Virginia M

    2018-02-01

    This study determined whether two different formulations of hormone therapy (HT): oral conjugated equine estrogens (o-CEE; 0.45 mg/d, n = 209), transdermal 17β-estradiol (t-E2; 50 μg/d, n = 201) plus cyclic progesterone (Prometrium, 200 mg) or placebo (PBO, n = 243) affected sleep domains in participants of the Kronos Early Estrogen Prevention Study. Participants completed the Pittsburgh Sleep Quality Index at baseline and during the intervention at 6, 18, 36, and 48 months. Global sleep quality and individual sleep domain scores were compared between treatments using analysis of covariance, and correlated with vasomotor symptom (VMS) scores using Spearman correlation coefficients. Global Pittsburgh Sleep Quality Index scores (mean 6.3; 24% with score >8) were similar across groups at baseline and were reduced (improved sleep quality) by both HT (average change -1.27 [o-CEE] and -1.32 [t-E2]) when compared with PBO (-0.60; P = 0.001 [o-CEE vs PBO] and P = 0.002 [t-E2 vs PBO]). Domain scores for sleep satisfaction and latency improved with both HT. The domain score for sleep disturbances improved more with t-E2 than o-CEE or PBO. Global sleep scores significantly correlated with VMS severity (rs = 0.170, P < 0.001 for hot flashes; rs = 0.177, P < 0.001 for night sweats). Change in scores for all domains except sleep latency and sleep efficiency correlated with change in severity of VMS. Poor sleep quality is common in recently menopausal women. Sleep quality improved with both HT formulations. The relationship of VMS with domains of sleep suggests that assessing severity of symptoms and domains of sleep may help direct therapy to improve sleep for postmenopausal women.

  8. Involvement of Epidermal Growth Factor Receptor Signaling in Estrogen Inhibition of Oocyte Maturation Mediated Through the G Protein-Coupled Estrogen Receptor (Gper) in Zebrafish (Danio rerio)1

    PubMed Central

    Peyton, Candace; Thomas, Peter

    2011-01-01

    Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression. PMID:21349822

  9. The estrogen-related receptors (ERRs): potential targets against bone loss.

    PubMed

    Zhang, Ling; Wong, Jiemin; Vanacker, Jean-Marc

    2016-10-01

    Bone loss and the resulting skeletal fragility is induced by several pathological or natural conditions, the most prominent of which being aging as well as the decreased levels of circulating estrogens in post-menopause females. To date, most treatments against bone loss aim at preventing excess bone resorption. We here summarize data indicating that the estrogen-related receptors (ERRs) α and γ prevent bone formation. Inhibiting these receptors may thus constitute an anabolic approach by increasing bone formation.

  10. Steroid receptor coactivator-1 mediates estrogenic actions to prevent body weight gain in female mice

    USDA-ARS?s Scientific Manuscript database

    Estrogen receptor-alpha (ERalpha) expressed by hypothalamic proopiomelanocortin and steroidogenic factor-1 neurons largely mediates the antiobesity effects of estrogens in females. However, the critical molecular events that are coupled to ERalpha and mediate estrogenic effects on energy balance rem...

  11. Longitudinal Changes in Menopausal Symptoms Comparing Women Randomized to Low-Dose Oral Conjugated Estrogens or Transdermal Estradiol Plus Micronized Progesterone Versus Placebo: the Kronos Early Estrogen Prevention Study (KEEPS)

    PubMed Central

    Santoro, Nanette; Allshouse, Amanda; Neal-Perry, Genevieve; Pal, Lubna; Lobo, Rogerio A.; Naftolin, Frederick; Black, Dennis M.; Brinton, Eliot A.; Budoff, Matthew J.; Cedars, Marcelle I.; Dowling, N. Maritza; Dunn, Mary; Gleason, Carey E.; Hodis, Howard N.; Isaac, Barbara; Magnani, Maureen; Manson, JoAnn E.; Miller, Virginia M.; Taylor, Hugh S.; Wharton, Whitney; Wolff, Erin; Zepeda, Viola; Harman, S. Mitchell

    2016-01-01

    Objective To compare the efficacy of two forms of menopausal hormone therapy in alleviating vasomotor symptoms, insomnia, and irritability in early menopausal women over four years. Methods 727 women, aged 42–58, within three years of their final menstrual period were randomized to receive oral conjugated estrogens (o-CEE) 0.45 mg (n=230) or transdermal estradiol (t-E2) 50mcg (n=225; both with micronized progesterone 200mg for 12 days each month), or placebos (PBO; n=275). Menopausal symptoms were recorded at screening and at 6, 12, 24, 36 and 48 months post-randomization. Differences in proportions of women with symptoms at baseline and at each followup timepoint were compared by treatment arm using exact chi-square tests in an intent-to-treat (ITT) analysis. Differences in treatment effect by race/ethnicity and body mass index (BMI) were tested using generalized linear mixed effects modeling. Results Moderate-to-severe hot flashes (from 44% at baseline to 28.3% for PBO, 7.4% for t-E2 and 4.2% for o-CEE) and night sweats (from 35% at baseline to 19% for PBO, 5.3% for t-E2 and 4.7% for o-CEE) were reduced significantly by 6 months in women randomized to either active hormone compared to PBO (P<0.001 for both symptoms), with no significant differences between the active treatment arms. Insomnia and irritability decreased from baseline to 6 months post randomization in all groups. There was an intermittent reduction in insomnia in both active treatment arms vs PBO, with o-CEE more effective than PBO at 36 and 48 months (p=0.002mad 0.05) and t-E2 more effective than PBO at 48 months (p=0.004). Neither hormone treatment significantly affected irritability compared to PBO. Symptom relief for active treatment vs PBO was not significantly modified by BMI or race/ethnicity. Conclusions Recently-menopausal women had similar and substantial reductions in hot flashes and night sweats with lower than conventional doses of oral or transdermal estrogen. These reductions were

  12. Removal of estrogens and estrogenicity through drinking water treatment.

    PubMed

    Schenck, Kathleen; Rosenblum, Laura; Wiese, Thomas E; Wymer, Larry; Dugan, Nicholas; Williams, Daniel; Mash, Heath; Merriman, Betty; Speth, Thomas

    2012-03-01

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drinking waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conventional drinking water treatment using a natural water. Bench-scale studies utilizing chlorine, alum coagulation, ferric chloride coagulation, and powdered activated carbon (PAC) were conducted using Ohio River water spiked with three estrogens, 17β-estradiol, 17α-ethynylestradiol, and estriol. Treatment of the estrogens with chlorine, either alone or with coagulant, resulted in approximately 98% reductions in the concentrations of the parent estrogens, accompanied by formation of by-products. The MVLN reporter gene and MCF-7 cell proliferation assays were used to characterize the estrogenic activity of the water before and after treatment. The observed estrogenic activities of the chlorinated samples showed that estrogenicity of the water was reduced commensurate with removal of the parent estrogen. Therefore, the estrogen chlorination by-products did not contribute appreciably to the estrogenic activity of the water. Coagulation alone did not result in significant removals of the estrogens. However, addition of PAC, at a typical drinking water plant dose, resulted in removals ranging from approximately 20 to 80%.

  13. Effects of the conjugated equine estrogen/bazedoxifene tissue-selective estrogen complex (TSEC) on mammary gland and breast cancer in mice.

    PubMed

    Song, Yan; Santen, Richard J; Wang, Ji-ping; Yue, Wei

    2012-12-01

    A tissue-selective estrogen complex (TSEC), combining a selective estrogen receptor modulator, bazedoxifene (BZA), with conjugated equine estrogen (CEE), represents a novel strategy of menopausal hormone therapy without involving a progestin. We hypothesized that the antiestrogenic properties of BZA can also block the estrogenic effects of CEE on breast tissue and thereby prevent breast cancer in women. To test our hypothesis, the effects of estradiol (E(2)), CEE, and BZA on mammary gland and breast cancer xenografts were assessed in mouse models. In immature castrate mice, BZA completely blocked CEE- or E(2)-stimulated ductal and terminal end bud growth of mammary gland as well as estrogen-responsive gene expression. As a positive control, E(2) stimulated tumor growth in nude mice bearing MCF-7 xenografts. This effect was completely blocked by BZA as were E(2)-stimulated expression of PR, pS2 (trefoil factor 1), cMyc, and AREG; the enhancement of Ki67 and proliferating cell nuclear antigen (PCNA); and the antiapoptotic effect. CEE was much less potent than E(2) in stimulating Ki67, reducing apoptosis, and stimulating gene expression, but all effects were blocked by BZA. Unexpectedly, CEE alone, even at high doses, did not stimulate tumor growth. As confirmation of its absorption and deconjugation, CEE caused a 6-fold increase in uterine weight and stimulation of gene expression. These data support our hypothesis that the net effect of the CEE/BZA TSEC is to block estrogen action in benign and malignant breast tissue. These findings provide a rationale for a clinical study to determine whether this TSEC prevents breast cancer in women.

  14. Vascular Effects of Estrogenic Menopausal Hormone Therapy

    PubMed Central

    Reslan, Ossama M.; Khalil, Raouf A.

    2011-01-01

    Cardiovascular disease (CVD) is more common in men and postmenopausal women (Post-MW) than premenopausal women (Pre-MW). Despite recent advances in preventive measures, the incidence of CVD in women has shown a rise that matched the increase in the Post-MW population. The increased incidence of CVD in Post-MW has been related to the decline in estrogen levels, and hence suggested vascular benefits of endogenous estrogen. Experimental studies have identified estrogen receptor ERα, ERβ and a novel estrogen binding membrane protein GPR30 (GPER) in blood vessels of humans and experimental animals. The interaction of estrogen with vascular ERs mediates both genomic and non-genomic effects. Estrogen promotes endothelium-dependent relaxation by increasing nitric oxide, prostacyclin, and hyperpolarizing factor. Estrogen also inhibits the mechanisms of vascular smooth muscle (VSM) contraction including [Ca2+]i, protein kinase C and Rho-kinase. Additional effects of estrogen on the vascular cytoskeleton, extracellular matrix, lipid profile and the vascular inflammatory response have been reported. In addition to the experimental evidence in animal models and vascular cells, initial observational studies in women using menopausal hormonal therapy (MHT) have suggested that estrogen may protect against CVD. However, randomized clinical trials (RCTs) such as the Heart and Estrogen/progestin Replacement Study (HERS) and the Women’s Health Initiative (WHI), which examined the effects of conjugated equine estrogens (CEE) in older women with established CVD (HERS) or without overt CVD (WHI), failed to demonstrate protective vascular effects of estrogen treatment. Despite the initial set-back from the results of MHT RCTs, growing evidence now supports the ‘timing hypothesis’, which suggests that MHT could increase the risk of CVD if started late after menopause, but may produce beneficial cardiovascular effects in younger women during the perimenopausal period. The choice of

  15. Aging, Estrogens, and Episodic Memory in Women

    PubMed Central

    Henderson, Victor W.

    2009-01-01

    Objective To review the relation in midlife and beyond between estrogen exposures and episodic memory in women. Background Episodic memory performance declines with usual aging, and impairments in episodic memory often portend the development of Alzheimer's disease. In the laboratory, estradiol influences hippocampal function and animal learning. However, it is controversial whether estrogens affect memory after a woman's reproductive years. Method Focused literature review, including a summary of a systematic search of clinical trials of estrogens in which outcomes included an objective measure of episodic memory. Results The natural menopause transition is not associated with objective changes in episodic memory. Strong clinical trial evidence indicates that initiating estrogen-containing hormone therapy after about age 60 years does not benefit episodic memory. Clinical trial findings in middle-age women before age 60 are limited by smaller sample sizes and shorter treatment durations, but these also do not indicate substantial memory effects. Limited short-term evidence, however, suggests that estrogens may improve verbal memory after surgical menopause. Although hormone therapy initiation in old age increases dementia risk, observational studies raise the question of an early critical window during which midlife estrogen therapy reduces late-life Alzheimer's disease. However, almost no data address whether midlife estrogen therapy affects episodic memory in old age. Conclusions Episodic memory is not substantially impacted by the natural menopause transition or improved by use of estrogen-containing hormone therapy after age 60. Further research is needed to determine whether outcomes differ after surgical menopause or whether episodic memory later in life is modified by midlife estrogenic exposures. PMID:19996872

  16. Estrogen-associated severe hypertriglyceridemia with pancreatitis.

    PubMed

    Aljenedil, Sumayah; Hegele, Robert A; Genest, Jacques; Awan, Zuhier

    Estrogen, whether therapeutic or physiologic, can cause hypertriglyceridemia. Hypertriglyceridemia-induced pancreatitis is a rare complication. We report 2 women who developed estrogen-associated severe hypertriglyceridemia with pancreatitis. The first patient developed pancreatitis secondary to hypertriglyceridemia associated with in vitro fertilization cycles. Marked reduction in her triglyceride was achieved with dietary restrictions and fibrate. The second patient developed pancreatitis secondary to hypertriglyceridemia during her pregnancies. She was noncompliant with the treatment; therefore, her triglyceride remained high after delivery. In both patients, no hypertriglyceridemia-associated genes mutations were identified, although the second patient had strong polygenic susceptibility to hypertriglyceridemia. Estrogen-induced severe hypertriglyceridemia with pancreatitis can be a life-threatening condition. Screening in high-risk patients is crucial to prevent subsequent complications. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  17. A crucial role for thiol antioxidants in estrogen-deficiency bone loss

    PubMed Central

    Lean, Jenny M.; Davies, Julie T.; Fuller, Karen; Jagger, Christopher J.; Kirstein, Barrie; Partington, Geoffrey A.; Urry, Zoë L.; Chambers, Timothy J.

    2003-01-01

    The mechanisms through which estrogen prevents bone loss are uncertain. Elsewhere, estrogen exerts beneficial actions by suppression of reactive oxygen species (ROS). ROS stimulate osteoclasts, the cells that resorb bone. Thus, estrogen might prevent bone loss by enhancing oxidant defenses in bone. We found that glutathione and thioredoxin, the major thiol antioxidants, and glutathione and thioredoxin reductases, the enzymes responsible for maintaining them in a reduced state, fell substantially in rodent bone marrow after ovariectomy and were rapidly normalized by exogenous 17-β estradiol. Moreover, administration of N-acetyl cysteine (NAC) or ascorbate, antioxidants that increase tissue glutathione levels, abolished ovariectomy-induced bone loss, while L-buthionine-(S,R)-sulphoximine (BSO), a specific inhibitor of glutathione synthesis, caused substantial bone loss. The 17-β estradiol increased glutathione and glutathione and thioredoxin reductases in osteoclast-like cells in vitro. Furthermore, in vitro NAC prevented osteoclast formation and NF-κB activation. BSO and hydrogen peroxide did the opposite. Expression of TNF-α, a target for NF-κB and a cytokine strongly implicated in estrogen-deficiency bone loss, was suppressed in osteoclasts by 17-β estradiol and NAC. These observations strongly suggest that estrogen deficiency causes bone loss by lowering thiol antioxidants in osteoclasts. This directly sensitizes osteoclasts to osteoclastogenic signals and entrains ROS-enhanced expression of cytokines that promote osteoclastic bone resorption. PMID:12975476

  18. Inhibition of Estrogen-Induced Growth of Breast Cancer by Targeting Mitochondria Oxidants

    DTIC Science & Technology

    2010-04-01

    acetylcysteine (NAC) and ebselen], inhibits estrogen induced expression of cell cycle genes as well as prevention of estrogen-induced growth of malignant breast...have completed proposed research in the original First Task (i) both antioxidants, N- acetylcysteine and ebselen, overexpression of ROS lowering genes...bioassay to test whether estrogen-induced conversion of normal cells to transformed cells is inhibited by treatment with N- acetylcysteine and

  19. The Estrogen Receptor-α in Osteoclasts Mediates the Protective Effects of Estrogens on Cancellous But Not Cortical Bone

    PubMed Central

    Martin-Millan, Marta; Almeida, Maria; Ambrogini, Elena; Han, Li; Zhao, Haibo; Weinstein, Robert S.; Jilka, Robert L.; O'Brien, Charles A.; Manolagas, Stavros C.

    2010-01-01

    Estrogens attenuate osteoclastogenesis and stimulate osteoclast apoptosis, but the molecular mechanism and contribution of these effects to the overall antiosteoporotic efficacy of estrogens remain controversial. We selectively deleted the estrogen receptor (ER)α from the monocyte/macrophage cell lineage in mice (ERαLysM−/−) and found a 2-fold increase in osteoclast progenitors in the marrow and the number of osteoclasts in cancellous bone, along with a decrease in cancellous bone mass. After loss of estrogens these mice failed to exhibit the expected increase in osteoclast progenitors, the number of osteoclasts in bone, and further loss of cancellous bone. However, they lost cortical bone indistinguishably from their littermate controls. Mature osteoclasts from ERαLysM−/− were resistant to the proapoptotic effect of 17β-estradiol. Nonetheless, the effects of estrogens on osteoclasts were unhindered in mice bearing an ERα knock-in mutation that prevented binding to DNA. Moreover, a polymeric form of estrogen that is not capable of stimulating the nuclear-initiated actions of ERα was as effective as 17β-estradiol in inducing osteoclast apoptosis in cells with the wild-type ERα. We conclude that estrogens attenuate osteoclast generation and life span via cell autonomous effects mediated by DNA-binding-independent actions of ERα. Elimination of these effects is sufficient for loss of bone in the cancellous compartment in which complete perforation of trabeculae by osteoclastic resorption precludes subsequent refilling of the cavities by the bone-forming osteoblasts. However, additional effects of estrogens on osteoblasts, osteocytes, and perhaps other cell types are required for their protective effects on the cortical compartment, which constitutes 80% of the skeleton. PMID:20053716

  20. Circulatory Estrogen Level Protects Against Breast Cancer in Obese Women

    PubMed Central

    Suba, Zsuzsanna

    2013-01-01

    Literary data suggest apparently ambiguous interaction between menopausal status and obesity-associated breast cancer risk based on the principle of the carcinogenic capacity of estrogen. Before menopause, breast cancer incidence is relatively low and adiposity is erroneously regarded as a protective factor against this tumor conferred by the obesity associated defective estrogen-synthesis. By contrast, in postmenopausal cases, obesity presents a strong risk factor for breast cancer being mistakenly attributed to the presumed excessive estrogen-production of their adipose-tissue mass. Obesity is associated with dysmetabolism and endangers the healthy equilibrium of sexual hormone-production and regular menstrual cycles in women, which are the prerequisites not only for reproductive capacity but also for somatic health. At the same time, literary data support that anovulatory infertility is a very strong risk for breast cancer in young women either with or without obesity. In the majority of premenopausal women, obesity associated insulin resistance is moderate and may be counteracted by their preserved circulatory estrogen level. Consequently, it is not obesity but rather the still sufficient estrogen-level, which may be protective against breast cancer in young adult females. In obese older women, never using hormone replacement therapy (HRT) the breast cancer risk is high, which is associated with their continuous estrogen loss and increasing insulin-resistance. By contrast, obese postmenopausal women using HRT, have a decreased risk for breast cancer as the protective effect of estrogen-substitution may counteract to their obesity associated systemic alterations. The revealed inverse correlation between circulatory estrogen-level and breast cancer risk in obese women should advance our understanding of breast cancer etiology and promotes primary prevention measures. New patents recommend various methods for the prevention and treatment of obesity

  1. Exposure to Zearalenone During Early Pregnancy Causes Estrogenic Multitoxic Effects in Mice.

    PubMed

    Kunishige, Kohji; Kawate, Noritoshi; Inaba, Toshio; Tamada, Hiromichi

    2017-03-01

    Although zearalenone (ZEN; Sigma Chemicals, St Louis, Missouri) is a well-known mycotoxin with estrogenic activity, the toxic effects of ZEN during pregnancy are unknown. This study compared the effects of daily subcutaneous injections of ZEN (2, 4, or 8 mg/kg) with those of 17β-estradiol (E2; [Sigma Chemicals] 0.8, 1.6, or 3.2 μg/kg) in mice. Injections were administered on gestational days (GDs) 1 to 5, the period including implantation which is sensitive to hormonal balance. The effects of ZEN or E2 were evaluated by comparing the number of live fetuses, their weight, and absorbed conceptuses on GD 18, with those in vehicle-treated controls. In addition, implantation, embryos in the oviducts and those in uteri without implantation sites were investigated on GD 5. In mice treated with the highest dose of ZEN or E2, decidual responses and plasma progesterone concentrations were measured on GDs 5 and 6, respectively, and delayed implantation was investigated on GDs 9 and 14. The results showed that treatment with ZEN, in a manner similar to that seen for E2, led to obstruction of essential processes for establishing and maintaining pregnancy, such as embryo migration from oviducts to uteri, the decidual response, and activation of luteal function. Zearalenone also induced delayed implantation and loss of conceptuses and at low doses caused a retarded growth of the fetuses after normal implantation. It was therefore concluded that ZEN causes multiple estrogenic toxic actions when administered during early pregnancy in mice.

  2. Estrogen modulates sexually dimorphic contextual fear extinction in rats through estrogen receptor beta.

    PubMed

    Chang, Yao-Ju; Yang, Chih-Hao; Liang, Ying-Ching; Yeh, Che-Ming; Huang, Chiung-Chun; Hsu, Kuei-Sen

    2009-11-01

    Females and males are different in brain and behavior. These sex differences occur early during development due to a combination of genetic and hormonal factors and continue throughout the lifespan. Previous studies revealed that male rats exhibited significantly higher levels of contextual fear memory than female rats. However, it remains unknown whether a sex difference exists in the contextual fear extinction. To address this issue, male, normally cycling female, and ovariectomized (OVX) female Sprague-Dawley rats were subjected to contextual fear conditioning and extinction trials. Here we report that although male rats exhibited higher levels of freezing than cycling female rats after contextual fear conditioning, female rats subjected to conditioning in the proestrus and estrus stage exhibited an enhancement of fear extinction than male rats. An estrogen receptor (ER) beta agonist diarylpropionitrile but not an ERalpha agonist propyl-pyrazole-triol administration also enhanced extinction of contextual fear in OVX female rats, suggesting that estrogen-mediated facilitation of extinction involves the activation of ERbeta. Intrahippocampal injection of estradiol or diarylpropionitrile before extinction training in OVX female rats remarkably reduced the levels of freezing response during extinction trials. In addition, the locomotion or anxiety state of female rats does not vary across the ovarian cycle. These results reveal a crucial role for estrogen in mediating sexually dimorphic contextual fear extinction, and that estrogen-mediated enhancement of fear extinction involves the activation of ERbeta.

  3. Preventing growth in amphetamine use: long-term effects of the Midwestern Prevention Project (MPP) from early adolescence to early adulthood.

    PubMed

    Riggs, Nathaniel R; Chou, Chih-Ping; Pentz, Mary Ann

    2009-10-01

    The aim of the current study was to examine the long-term effect of an early adolescent substance abuse prevention program on trajectories and initiation of amphetamine use into early adulthood. Eight middle schools were assigned randomly to a program or control condition. The randomized controlled trial followed participants through 15 waves of data, from ages 11-28 years. This longitudinal study design includes four separate periods of development from early adolescence to early adulthood. The intervention took place in middle schools. A total of 1002 adolescents from one large mid-western US city were the participants in the study. The intervention was a multi-component community-based program delivered in early adolescence with a primary emphasis on tobacco, alcohol and marijuana use. At each wave of data collection participants completed a self-report survey that included questions about life-time amphetamine use. Compared to a control group, participants in the Midwestern Prevention Project (MPP) intervention condition had reduced growth (slope) in amphetamine use in emerging adulthood, a lower amphetamine use intercept at the commencement of the early adulthood and delayed amphetamine use initiation. The pattern of results suggests that the program worked first to prevent amphetamine use, and then to maintain the preventive effect into adulthood. Study findings suggest that early adolescent substance use prevention programs that focus initially on the 'gateway' drugs have utility for long-term prevention of amphetamine use. © 2009 The Authors. Journal compilation © 2009 Society for the Study of Addiction.

  4. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review.

    PubMed

    Jameera Begam, A; Jubie, S; Nanjan, M J

    2017-04-01

    Estrogens display intriguing tissue selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer. There are also strong evidences to show that both endogenous and exogenous estrogens are involved in the pathogenesis of breast cancer. Tamoxifen has been the only drug of choice for more than 30years to treat patients with estrogen related (ER) positive breast tumors. There is a need therefore, for identifying newer, potential and novel candidates for breast cancer. Keeping this in view, the present review focuses on selective estrogen receptor modulators and estrogen antagonists such as sulfatase and aromatase inhibitors involved in breast cancer therapy. A succinct and critical overview of the structure of estrogen receptors, their signaling and involvement in breast carcinogenesis are herein described. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis

    PubMed Central

    Clegg, Deborah J.; Hevener, Andrea L.

    2013-01-01

    Estrogens play a fundamental role in the physiology of the reproductive, cardiovascular, skeletal, and central nervous systems. In this report, we review the literature in both rodents and humans on the role of estrogens and their receptors in the control of energy homeostasis and glucose metabolism in health and metabolic diseases. Estrogen actions in hypothalamic nuclei differentially control food intake, energy expenditure, and white adipose tissue distribution. Estrogen actions in skeletal muscle, liver, adipose tissue, and immune cells are involved in insulin sensitivity as well as prevention of lipid accumulation and inflammation. Estrogen actions in pancreatic islet β-cells also regulate insulin secretion, nutrient homeostasis, and survival. Estrogen deficiency promotes metabolic dysfunction predisposing to obesity, the metabolic syndrome, and type 2 diabetes. We also discuss the effect of selective estrogen receptor modulators on metabolic disorders. PMID:23460719

  6. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  7. Dissociated overexpression of cathepsin D and estrogen receptor alpha in preinvasive mammary tumors.

    PubMed

    Roger, P; Daures, J P; Maudelonde, T; Pignodel, C; Gleizes, M; Chapelle, J; Marty-Double, C; Baldet, P; Mares, P; Laffargue, F; Rochefort, H

    2000-05-01

    The role of estrogen as a promoter agent of sporadic breast cancer has been considered by assaying, in benign breast disease (BBD) and in situ carcinomas (CIS), 2 markers, the estrogen receptor alpha (ERalpha) and cathepsin D (cath-D) involved in estrogen action on mammary tissue. ERalpha and cath-D were assayed by quantitative immunohistochemistry using an image analyzer in 170 lesions of varying histological risk (94 BBD and 76 CIS), and in "normal" glands close to these lesions. The ERalpha level increased significantly in proliferative BBD with atypia (P < .001), in non-high-grade CIS (P < .001), and in adjacent "normal" glands. ERalpha level was decreased in high-grade ductal CIS (DCIS) and also in adjacent "normal" glands. Cath-D level increased in ductal proliferative BBD (P < or = .01) and in high-grade DCIS (P < or = .003), but not in the other lesions. After menopause, ERalpha level was increased (P = .012) but not cath-D level. According to Mac Neman test, the high-grade DCIS were predominantly ERalpha negative and cath-D positive (P = .0017), and the other CIS were predominantly ERalpha positive and cath-D negative (P = .0002). The 2 markers are overexpressed early in premalignant lesions, but independently. This dissociation suggests a branched model of mammary carcinogenesis involving 1 estrogen-independent pathway with high cath-D and low ERalpha levels (including high-grade DCIS) and 1 estrogen-dependent pathway, with high ERalpha level (including proliferative BBD with atypia and low-grade DCIS). We propose that ERalpha-negative breast cancers may develop directly from high-grade DCIS and that ERalpha assay in preinvasive lesions should be considered in prevention trials with antiestrogens.

  8. Estrogen stimulated migration and invasion of estrogen receptor-negative breast cancer cells involves an ezrin-dependent crosstalk between G protein-coupled receptor 30 and estrogen receptor beta signaling.

    PubMed

    Zhou, Kewen; Sun, Peng; Zhang, Yaxing; You, Xinchao; Li, Ping; Wang, Tinghuai

    2016-07-01

    Estrogen mediates important cellular activities in estrogen receptor negative (ER-) breast cancer cells via membrane associated G protein-coupled receptor 30 (GPR30). However, the biological role and mechanism of estrogen action on cell motility and invasion in this aggressive kind of tumors remains poorly understood. We showed here that treatment with 17β-estradiol (E2) in ER-negative cancer cells resulted in ezrin-dependent cytoskeleton rearrangement and elicited a stimulatory effect on cell migration and invasion. Mechanistically, E2 induced ezrin activation was mediated by distinct mechanisms in different cell contexts. In SK-BR-3 cells with a high GPR30/ERβ ratio, silencing of GPR30 was able to abolish E2 induced ERK1/2, AKT phosphorylation and ezrin activation, whereas in MDA-MB-231 cells with low GPR30/ERβ ratio, E2 stimulated ezrin activation was mediated by the ERβ/PI3K/AKT signaling pathway. Importantly, we showed that activation of GPR30 signaling significantly prevents ERβ activation induced ezrin phosphorylation, cell migration and invasion, indicating an antagonist effect between GPR30 and ERβ signaling in MDA-MB-231 cells. These findings highlight the important interplay between different estrogen receptors in estrogen induced cell motility and invasiveness in ER-negative breast cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Recurrence of Cervical Cancer in Mice after Selective Estrogen Receptor Modulator Therapy

    PubMed Central

    Spurgeon, Megan E.; Chung, Sang-Hyuk; Lambert, Paul F.

    2015-01-01

    Estrogen and its nuclear receptor, estrogen receptor α, are necessary cofactors in the initiation and multistage progression of carcinogenesis in the K14E6/E7 transgenic mouse model of human papillomavirus–associated cervical cancer. Recently, our laboratory reported that raloxifene, a selective estrogen receptor modulator, promoted regression of high-grade dysplasia and cancer that arose in the cervix of K14E6/E7 transgenic mice treated long-term with estrogen. Herein, we evaluated the recurrence of cervical cancer after raloxifene therapy in our preclinical model of human papillomavirus–associated cervical carcinogenesis. We observed recurrence of cervical cancer in mice re-exposed to estrogen after raloxifene treatment, despite evidence suggesting the antagonistic effects of raloxifene persisted in the reproductive tract after treatment had ceased. We also observed recurrence of neoplastic disease in mice that were not retreated with exogenous estrogen, although the severity of disease was less. Recurrent neoplastic disease and cancers retained functional estrogen receptor α and responded to retreatment with raloxifene. Moreover, continuous treatment of mice with raloxifene prevented the emergence of recurrent disease seen in mice in which raloxifene was discontinued. These data suggest that cervical cancer cells are not completely eradicated by raloxifene and rapidly expand if raloxifene treatment is ceased. These findings indicate that a prolonged treatment period with raloxifene might be required to prevent recurrence of neoplastic disease and lower reproductive tract cancers. PMID:24418098

  10. Estrogens and Coronary Artery Disease: New Clinical Perspectives.

    PubMed

    Meyer, M R; Barton, M

    2016-01-01

    In premenopausal women, endogenous estrogens are associated with reduced prevalence of arterial hypertension, coronary artery disease, myocardial infarction, and stroke. Clinical trials conducted in the 1990s such as HERS, WHI, and WISDOM have shown that postmenopausal treatment with horse hormone mixtures (so-called conjugated equine estrogens) and synthetic progestins adversely affects female cardiovascular health. Our understanding of rapid (nongenomic) and chronic (genomic) estrogen signaling has since advanced considerably, including identification of a new G protein-coupled estrogen receptor (GPER), which like the "classical" receptors ERα and ERβ is highly abundant in the cardiovascular system. Here, we discuss the role of estrogen receptors in the pathogenesis of coronary artery disease and review natural and synthetic ligands of estrogen receptors as well as their effects in physiology, on cardiovascular risk factors, and atherosclerotic vascular disease. Data from preclinical and clinical studies using nonselective compounds activating GPER, which include selective estrogen receptor modulators such as tamoxifen or raloxifene, selective estrogen receptor downregulators such as Faslodex™ (fulvestrant/ICI 182,780), vitamin B3 (niacin), green tea catechins, and soy flavonoids such as genistein or resveratrol, strongly suggest that activation of GPER may afford therapeutic benefit for primary and secondary prevention in patients with or at risk for coronary artery disease. Evidence from preclinical studies suggest similar efficacy profiles for selective small molecule GPER agonists such as G-1 which are devoid of uterotrophic activity. Further clinical research in this area is warranted to provide opportunities for future cardiovascular drug development. © 2016 Elsevier Inc. All rights reserved.

  11. Early Estrogen Action: Stimulation of the Metabolism of High Molecular Weight and Ribosomal RNAs

    PubMed Central

    Luck, Dennis N.; Hamilton, Terrell H.

    1972-01-01

    Samples of RNA, isolated from uteri of ovariectomized adult rats treated with estrogen, have been analyzed on sucrose gradients. Treatment with estrogen either for 20 min or 2 hr increased the specific activity of all classes of uterine RNA, but produced no significant alteration in the distribution of radioactivity in the gradients, when animals received [3H]uridine intraperitoneally 15 min before they were killed. After labeling periods of 30 min, 1 hr, or 2 hr, however, the RNAs isolated from animals treated with estrogen had a smaller percentage of rapidly sedimenting (faster than 28S) species of RNA than did RNA from animals not treated with the hormone. The decreased percentage of high molecular weight RNA correlated with increases in both the specific activity of 28S and 18S RNA and the concentration of RNA in the whole organ. The labeled RNA of high molecular weight was also demonstrated, by the use of actinomycin D in vivo, to have a more rapid turnover rate in the estrogen-stimulated uterus. Our results indicate that estrogen increases not only the rate of synthesis of ribosomal RNA in the uterus of the ovariectomized adult rat, but also the rate or efficiency of processing of precursor RNA species of high molecular weight. PMID:4500546

  12. Characterization and Consequences of Estrogen Receptor Exon Five Deletion.

    DTIC Science & Technology

    1998-08-01

    and ending with ovulation), and the luteal or secretory phase (beginning with ovulation and ending with the onset of menses) (7). Early in the...7), the primary site of both progesterone and estrogen biosynthesis during the luteal phase 3 (estrogen production remains elevated through most of...the luteal phase, 250ug/day, and progesterone production peaks in the mid- luteal phase, 10-40mg/day) (7). If implantation does not occur gonadotropin

  13. Alternative Dosing of Exemestane Before Surgery in Treating Postmenopausal Patients With Stage 0-II Estrogen Positive Breast Cancer | Division of Cancer Prevention

    Cancer.gov

    This randomized phase IIb trial studies how well alternative dosing of exemestane before surgery works in treating in postmenopausal patients with stage 0-II estrogen positive breast cancer. Chemoprevention is the use of drugs to keep breast cancer from forming or coming back. The use of exemestane may treat early stage (stage 0-II) breast cancer. Comparing the exemestane

  14. Estrogen receptor β-selective phytoestrogenic formulation prevents physical and neurological changes in a preclinical model of human menopause.

    PubMed

    Zhao, Liqin; Mao, Zisu; Schneider, Lon S; Brinton, Roberta D

    2011-10-01

    As an alternative to estrogen therapy, the efficacy of an estrogen receptor β-selective phytoestrogenic (phyto-β-SERM) formulation to regulate climacteric symptoms and decline in brain responses associated with ovarian hormone loss in menopause was assessed. A phyto-β-SERM formulation-containing diet was compared with a commercial soy extract diet and a phytoestrogen-free base/control diet in an ovariectomized (OVX) mouse model of human menopause. Two treatment studies were conducted: (1) a 2-month study assessed the effects of experimental diets on tail skin temperature as a model of menopausal hot flashes, and (2) a 9-month study assessed the long-term impact of the diets on overall health, hair thinning/loss, spatial working memory, and associated protein expression in the hippocampus. The phyto-β-SERM diet prevented OVX-induced menopause-like changes including the rise in skin temperature, hair thinning/loss, deficit in spatial memory function, and reversed OVX-induced decline in the expression of hippocampal proteins involved in neural plasticity and β-amyloid degradation/clearance. The soy extract diet had no effect or exacerbated OVX-induced changes. Overall, the phyto-β-SERM diet induced physical and neurological responses comparable with ovary-intact mice, suggesting the therapeutic potential of the phyto-β-SERM formulation for the prevention/alleviation of climacteric symptoms and decline in brain responses induced by ovarian hormone loss, which provides the basis for further work in postmenopausal women.

  15. Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPAR-γ

    PubMed Central

    Lee, Hong Jin; Ju, Jihyeung; Paul, Shiby; So, Jae-Young; DeCastro, Andrew; Smolarek, Amanda; Lee, Mao-Jung; Yang, Chung S.; Newmark, Harold L.; Suh, Nanjoo

    2009-01-01

    Purpose Tocopherols are lipophilic antioxidants present in vegetable oils. Although the antioxidant and anticancer activities of α-tocopherol (vitamin E) have been studied for decades, recent intervention studies with α-tocopherol have been negative for protection from cancer in humans. The tocopherols consist of 4 isoforms, α, β, γ, and δ variants, and recent attention is being made to other isoforms. In the present study, we investigated the inhibitory effect of a tocopherol mixture rich in γ- and δ-tocopherols against mammary tumorigenesis. Experimental Design Female Sprague Dawley rats were treated with N-methyl-N-nitrosourea (NMU), and then fed diets containing 0.1%, 0.3%, or 0.5% mixed tocopherols rich in γ- and δ-tocopherols for 9 weeks. Tumor burden and multiplicity were determined, and the levels of markers of inflammation, proliferation and apoptosis were evaluated in the serum and in mammary tumors. The regulation of nuclear receptor signaling by tocopherols was studied in mammary tumors and in breast cancer cells. Results Dietary administration of 0.1%, 0.3%, or 0.5% mixed tocopherols suppressed mammary tumor growth by 38%, 50%, or 80%, respectively. Tumor multiplicity was also significantly reduced in all three mixed tocopherol groups. Mixed tocopherols increased the expression of p21, p27, caspase-3 and peroxisome proliferator activated receptor-γ (PPAR-γ), and inhibited AKT and estrogen signaling in mammary tumors. Our mechanistic study found that γ- and δ-tocopherols, but not α-tocopherol, activated PPAR-γ and antagonized estrogen action in breast cancer. Conclusion The results suggest that γ- and δ-tocopherols may be effective agents for the prevention of breast cancer. PMID:19509159

  16. Reduction of estrogen-induced transformation of mouse mammary epithelial cells by N-acetylcysteine

    PubMed Central

    Venugopal, Divya; Zahid, Muhammad; Mailander, Paula C; Meza, Jane L.; Rogan, Eleanor G.; Cavalieri, Ercole L.; Chakravarti, Dhrubajyoti

    2009-01-01

    A growing number of studies indicate that breast cancer initiation is related to abnormal estrogen oxidation to form an excess of estrogen-3,4-quinones, which react with DNA to form depurinating adducts and induce mutations. This mechanism is often called estrogen genotoxicity. 4-catechol estrogens, precursors of the estrogen-3,4-quinones, were previously shown to account for most of the transforming and tumorigenic activity. We examined whether estrogen-induced transformation can be reduced by inhibiting the oxidation of a 4-catechol estrogen to its quinone. We demonstrate that E6 cells (a normal mouse epithelial cell line) can be transformed by a single treatment with a catechol estrogen or its quinone. The transforming activities of 4-hydroxyestradiol and estradiol-3,4-quinone were comparable. N-acetylcysteine, a common antioxidant, inhibited the oxidation of 4-hydroxyestradiol to the quinone and consequent formation of DNA adducts. It also drastically reduced estrogen-induced transformation of E6 cells. These results strongly implicate estrogen genotoxicity in mammary cell transformation. Since N-acetylcysteine is well-tolerated in clinical studies, it may be a promising candidate for breast cancer prevention. PMID:18226522

  17. Removal of Estrogens and Estrogenicity through Drinking Water Treatment

    EPA Science Inventory

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drining waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conven...

  18. Eriosema laurentii De Wild (Leguminosae) methanol extract has estrogenic properties and prevents menopausal symptoms in ovariectomized Wistar rats.

    PubMed

    Ateba, Sylvin Benjamin; Njamen, Dieudonné; Medjakovic, Svjetlana; Hobiger, Stefanie; Mbanya, Jean Claude; Jungbauer, Alois; Krenn, Liselotte

    2013-10-28

    Eriosema laurentii De Wild (Leguminosae) is a medicinal plant used in West and Central Africa for different diseases. In Cameroon, this plant is used as a treatment for infertility, and various gynecological and menopausal complaints. However, despite this use as a natural remedy, the biological activity of Eriosema laurentii has not been studied until now. In order to determine the potential use of this plant in gynecological conditions/disorders, we evaluated the estrogenic properties of a methanol extract of its aerial parts and its ability to prevent different menopausal health problems induced by bilateral oophorectomy. Two approaches were used. In vitro, recombinant yeast systems were applied, featuring either the respective human receptors (ERα, AR, and PR) or into chromosome III integrated human aryl hydrocarbon receptor (AhR) and the respective reporter plasmid. In vivo, the investigation was carried out using the 3 days uterotrophic assay and 9 weeks oral treatment in ovariectomized rats. The results showed that the methanol extract of the aerial parts of Eriosema laurentii transactivated the estrogen receptor-α and displayed AhR agonistic activity but was neither androgenic nor progesteronic. In rats, the extract did not induce endometrium proliferation either in the 3-day or the 9-week treatment regimens, but induced vaginal stratification and cornification, prevented loss of femur bone mass, increased high density lipoprotein cholesterol (HDL-C), and reduced total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), TC/HDL-C ratio, LDL-C/HDL-C ratio and the atherogenic index of plasma (AIP). These results suggest that the methanol extract of the aerial parts of Eriosema laurentii does not seem to have an undesirable influence on the endometrium but might prevent vaginal dryness and bone mass loss and improve the lipid profile. © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. A Suppressive Antagonism Evidences Progesterone and Estrogen Receptor Pathway Interaction with Concomitant Regulation of Hand2, Bmp2 and ERK during Early Decidualization

    PubMed Central

    Mestre-Citrinovitz, Ana C.; Kleff, Veronika; Vallejo, Griselda

    2015-01-01

    Progesterone receptor and estrogen receptor participate in growth and differentiation of the different rat decidual regions. Steroid hormone receptor antagonists were used to study steroid regulation of decidualization. Here we describe a suppressive interaction between progesterone receptor (onapristone) and estrogen receptor (ICI182780) antagonists and their relation to a rescue phenomenon with concomitant regulation of Hand2, Bmp2 and p-ERK1/2 during the early decidualization steps. Phenotypes of decidua development produced by antagonist treatments were characterized by morphology, proliferation, differentiation, angiogenesis and expression of signaling molecules. We found that suppression of progesterone receptor activity by onapristone treatment resulted in resorption of the implantation sites with concomitant decrease in progesterone and estrogen receptors, PCNA, KI67 antigen, DESMIN, CCND3, CX43, Prl8a2, and signaling players such as transcription factor Hand2, Bmp2 mRNAs and p-ERK1/2. Moreover, FGF-2 and Vegfa increased as a consequence of onapristone treatment. Implantation sites from antagonist of estrogen receptor treated rats developed all decidual regions, but showed an anomalous blood vessel formation at the mesometrial part of the decidua. The deleterious effect of onapristone was partially counteracted by the impairment of estrogen receptor activity with rescue of expression levels of hormone steroid receptors, proliferation and differentiation markers, and the induction of a probably compensatory increase in signaling molecules Hand2, Bmp2 and ERK1/2 activation compared to oil treated controls. This novel drug interaction during decidualization could be applied to pathological endometrial cell proliferation processes to improve therapies using steroid hormone receptor targets. PMID:25897495

  20. Estrogen: A master regulator of bioenergetic systems in the brain and body

    PubMed Central

    Rettberg, Jamaica R; Yao, Jia; Brinton, Roberta Diaz

    2014-01-01

    Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer’s disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions. PMID:23994581

  1. Estrogen and the aging brain: an elixir for the weary cortical network.

    PubMed

    Dumitriu, Dani; Rapp, Peter R; McEwen, Bruce S; Morrison, John H

    2010-08-01

    The surprising discovery in 1990 that estrogen modulates hippocampal structural plasticity launched a whole new field of scientific inquiry. Over the past two decades, estrogen-induced spinogenesis has been described in several brain areas involved in cognition in a number of species, in both sexes and on multiple time scales. Exploration into the interaction between estrogen and aging has illuminated some of the hormone's neuroprotective effects, most notably on age-related cognitive decline in nonhuman primates. Although there is still much to be learned about the mechanisms by which estrogen exerts its actions, key components of the signal transduction pathways are beginning to be elucidated and nongenomic actions via membrane bound estrogen receptors are of particular interest. Future studies are focused on identifying the most clinically relevant hormone treatment, as well as the potential identification of new therapeutics that can prevent or reverse age-related cognitive impairment by intercepting specific signal transduction pathways initiated by estrogen.

  2. Estrogen: a master regulator of bioenergetic systems in the brain and body.

    PubMed

    Rettberg, Jamaica R; Yao, Jia; Brinton, Roberta Diaz

    2014-01-01

    Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer's disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    PubMed

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  4. Estrogenic Mechanisms and Cardiac Responses Following Early Life Exposure to Bisphenol A (BPA) and Its Metabolite 4-Methyl-2,4-bis( p-hydroxyphenyl)pent-1-ene (MBP) in Zebrafish.

    PubMed

    Moreman, John; Takesono, Aya; Trznadel, Maciej; Winter, Matthew J; Perry, Alexis; Wood, Mark E; Rogers, Nicola J; Kudoh, Tetsuhiro; Tyler, Charles R

    2018-06-05

    Environmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA. We investigated the estrogenic effects and estrogen receptor signaling pathway(s) of BPA and MBP following early life exposure using a transgenic, estrogen responsive (ERE-TG) zebrafish and a targeted morpholino approach to knockdown the three fish estrogen receptor (ER) subtypes. The functional consequences of BPA exposure on the cardiovascular system of zebrafish larvae were also examined. The heart atrioventricular valves and the bulbus arteriosus were primary target tissues for both BPA and MBP in the ERE-TG zebrafish, and MBP was approximately 1000-fold more potent than BPA as an estrogen in these tissues. Estrogen receptor knockdown with morpholinos indicated that the estrogenic responses in the heart for both BPA and MBP were mediated via an estrogen receptor 1 (esr1) dependent pathway. At the highest BPA concentration tested (2500 μg/L), alterations in the atrial:ventricular beat ratio indicated a functional impact on the heart of 5 days post fertilization (dpf) larvae, and there was also a significantly reduced heart rate in these larvae at 14 dpf. Our findings indicate that some of the reported adverse effects on heart function associated with BPA exposure (in mammals) may act through an estrogenic mechanism, but that fish are unlikely to be susceptible to adverse effects on heart development for environmentally relevant exposures.

  5. Exercise and Estrogen in Women's Health: Getting a Clearer Picture.

    ERIC Educational Resources Information Center

    Munnings, Frances

    1988-01-01

    This article surveys recent research on how and when exercise or estrogen therapy should be used to treat or prevent athletic amenorrhea, osteoporosis, cancer, and heart disease. The suspected causes of each disease are discussed and the benefits and dangers of each form of treatment/prevention are weighed. (JL)

  6. Estrogens prevent metabolic dysfunctions induced by circadian disruptions in female mice

    USDA-ARS?s Scientific Manuscript database

    Circadian disruption has become a significant factor contributing to the epidemics of obesity and insulin resistance. However, interventions to treat metabolic dysfunctions induced by circadian disruptions are limited. The ovarian hormone, estrogen, produces important antiobesity and antidiabetic ef...

  7. Estrogen Degraders and Estrogen Degradation Pathway Identified in an Activated Sludge.

    PubMed

    Chen, Yi-Lung; Fu, Han-Yi; Lee, Tzong-Huei; Shih, Chao-Jen; Huang, Lina; Wang, Yu-Sheng; Ismail, Wael; Chiang, Yin-Ru

    2018-05-15

    The environmental release and fate of estrogens are becoming an increasing public concern. Bacterial degradation has been considered the main process for eliminating estrogens from wastewater treatment plants. Various bacterial isolates are reportedly capable of aerobic estrogen degradation, and several estrogen degradation pathways have been proposed in proteobacteria and actinobacteria. However, the ecophysiological relevance of estrogen-degrading bacteria in the environment is unclear. In this study, we investigated the estrogen degradation pathway and corresponding degraders in activated sludge collected from the Dihua Sewage Treatment Plant, Taipei, Taiwan. Cultivation-dependent and cultivation-independent methods were used to assess estrogen biodegradation in the collected activated sludge. Estrogen metabolite profile analysis revealed the production of pyridinestrone acid and two A/B-ring cleavage products in activated sludge incubated with estrone (1 mM), which are characteristic of the 4,5- seco pathway. PCR-based functional assays detected sequences closely related to alphaproteobacterial oecC , a key gene of the 4,5- seco pathway. Metagenomic analysis suggested that Novosphingobium spp. are major estrogen degraders in estrone-amended activated sludge. Novosphingobium sp. strain SLCC, an estrone-degrading alphaproteobacterium, was isolated from the examined activated sludge. The general physiology and metabolism of this strain were characterized. Pyridinestrone acid and the A/B-ring cleavage products were detected in estrone-grown strain SLCC cultures. The production of pyridinestrone acid was also observed during the aerobic incubation of strain SLCC with 3.7 nM (1 μg/liter) estrone. This concentration is close to that detected in many natural and engineered aquatic ecosystems. The presented data suggest the ecophysiological relevance of Novosphingobium spp. in activated sludge. IMPORTANCE Estrogens, which persistently contaminate surface water

  8. Is Estrogen a Therapeutic Target for Glaucoma?

    PubMed Central

    Dewundara, Samantha; Wiggs, Janey; Sullivan, David A.; Pasquale, Louis R.

    2016-01-01

    estrogen regulation, are associated with glaucoma. Conclusions Increasing evidence suggests that lifetime exposure to estrogen may alter the pathogenesis of glaucoma. Estrogen exposure may have a neuroprotective effect on the progression of POAG but further studies need to confirm this finding. The role of sex-specific preventive and therapeutic treatment may be on the horizon. PMID:26959139

  9. Estrogenic and anti-estrogenic activity of 23 commercial textile dyes.

    PubMed

    Bazin, Ingrid; Ibn Hadj Hassine, Aziza; Haj Hamouda, Yosra; Mnif, Wissem; Bartegi, Ahgleb; Lopez-Ferber, Miguel; De Waard, Michel; Gonzalez, Catherine

    2012-11-01

    The presence of dyes in wastewater effluent of textile industry is well documented. In contrast, the endocrine disrupting effects of these dyes and wastewater effluent have been poorly investigated. Herein, we studied twenty-three commercial dyes, usually used in the textile industry, and extracts of blue jean textile wastewater samples were evaluated for their agonistic and antagonistic estrogen activity. Total estrogenic and anti-estrogenic activities were measured using the Yeast Estrogen Screen bioassay (YES) that evaluates estrogen receptor binding-dependent transcriptional and translational activities. The estrogenic potencies of the dyes and wastewater samples were evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. The dose-dependent anti-estrogenic activities of the dyes and wastewater samples were normalized to the known antagonistic effect of 4-hydroxytamoxifen (4-OHT) on the induction of the lac Z reporter gene by E2. About half azo textile dyes have anti-estrogenic activity with the most active being Blue HFRL. Most azo dyes however have no or weak estrogenic activity. E2/dye or E2/waste water ER competitive binding assays show activity of Blue HFRL, benzopurpurine 4B, Everzol Navy Blue FBN, direct red 89 BNL 200% and waste water samples indicating a mechanism of action common to E2. Our results indicate that several textile dyes are potential endocrine disrupting agents. The presence of some of these dyes in textile industry wastewater may thus impact the aquatic ecosystem. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Estrogens and aging skin.

    PubMed

    Thornton, M Julie

    2013-04-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity. Its protective function becomes compromised and aging is associated with impaired wound healing, hair loss, pigmentary changes and skin cancer.   Skin aging can be significantly delayed by the administration of estrogen. This paper reviews estrogen effects on human skin and the mechanisms by which estrogens can alleviate the changes due to aging. The relevance of estrogen replacement, selective estrogen receptor modulators (SERMs) and phytoestrogens as therapies for diminishing skin aging is highlighted. Understanding estrogen signaling in skin will provide a basis for interventions in aging pathologies.

  11. Estrogen-Induced Developmental Disorders of the Rat Penis Involve Both Estrogen Receptor (ESR)- and Androgen Receptor (AR)-Mediated Pathways1

    PubMed Central

    Goyal, H.O.; Braden, T.D.; Williams, C.S.; Williams, J.W.

    2009-01-01

    This study tested the hypothesis that the estrogen receptor (ESR) pathway, androgen receptor (AR) pathway, or both mediate estrogen-induced developmental penile disorders. Rat pups received diethylstilbestrol (DES), with or without the ESR antagonist ICI 182,780 (ICI) or the AR agonist dihydrotestosterone (DHT) or testosterone (T), from Postnatal Days 1 to 6. Testicular T concentration, penile morphology and morphometry, and/or fertility was determined at age 7, 28, or 150 days. DES treatment alone caused 90% reduction in the neonatal intratesticular T surge; this reduction was prevented by ICI coadministration, but not by DHT or T coadministration. Unlike the T surge, coadministration of ICI and coadministration of DHT or T mitigated penile deformities and loss of fertility. Generally, ICI, DHT, or T treatment alone did not alter penile morphology; however, fertility was 20% that of controls in ICI-treated rats vs. 70%–90% in DHT- or T-treated rats. The lower fertility in the rats treated with ICI alone could be due to altered sexual behavior, as these males did not deposit vaginal plugs. In conclusion, observations that both an ESR antagonist and AR agonists prevent penile deformities and infertility suggest that both pathways are involved in estrogen-induced penile disorders. Observations that coadministration of ICI, but not DHT or T, prevents the DES-induced reduction in the neonatal T surge suggest that, although ICI exerts its mitigating effect both at the level of Leydig cells and penile stromal cells, DHT and T do so only at the level of stromal cells. PMID:19420389

  12. Unique roles of estrogen-dependent Pten control in epithelial cell homeostasis of mouse vagina.

    PubMed

    Miyagawa, S; Sato, M; Sudo, T; Yamada, G; Iguchi, T

    2015-02-19

    Numerous studies support a role of phosphatase and tensin homolog deleted from chromosome 10 (Pten) as a tumor suppressor gene that controls epithelial cell homeostasis to prevent tumor formation. Mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen and provides a unique model for analyzing homeostasis of stratified squamous epithelia. We analyzed vaginal epithelium-specific Pten conditional knockout (CKO) mice to provide new insights into Pten/phosphoinositide-3-kinase (PI3K)/Akt function. The vaginal epithelium of ovariectomized (OVX) mice (control) was composed of 1-2 layers of cuboidal cells, whereas OVX CKO mice exhibited epithelial hyperplasia in the suprabasal cells with increased cell mass and mucin production. This is possibly due to misactivation of mammalian target of rapamycin and mitogen-activated protein kinase. Intriguingly, estrogen administration to OVX Pten CKO mice induced stratification and keratinized differentiation in the vaginal epithelium, as in estrogen-treated controls. We found that Pten is exclusively expressed in the suprabasal cells in the absence of estrogens, whereas estrogen administration induced Pten expression in the basal cells. This suggests that Pten acts to prevent excessive cell proliferation as in the case of other squamous tissues. Thus, Pten exhibits a dual role on the control of vaginal homeostasis, depending on whether estrogens are present or absent. Our results provide new insights into how Pten functions in tissue homeostasis.

  13. Targeted estrogen delivery reverses the metabolic syndrome

    PubMed Central

    Finan, Brian; Yang, Bin; Ottaway, Nickki; Stemmer, Kerstin; Müller, Timo D; Yi, Chun-Xia; Habegger, Kirk; Schriever, Sonja C; García-Cáceres, Cristina; Kabra, Dhiraj G; Hembree, Jazzminn; Holland, Jenna; Raver, Christine; Seeley, Randy J; Hans, Wolfgang; Irmler, Martin; Beckers, Johannes; de Angelis, Martin Hrabě; Tiano, Joseph P; Mauvais-Jarvis, Franck; Perez-Tilve, Diego; Pfluger, Paul; Zhang, Lianshan; Gelfanov, Vasily; DiMarchi, Richard D; Tschöp, Matthias H

    2013-01-01

    We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1–targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1–estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases. PMID:23142820

  14. Prevention and treatment of postmenopausal osteoporosis

    PubMed Central

    Gallagher, J Christopher; Tella, Sri Harsha

    2014-01-01

    In the beginning, that is from the 1960's, when a link between menopause and osteoporosis was first identified; estrogen treatment was the standard for preventing bone loss, however there was no fracture data, even though it was thought to be effective. This continued until the Women's Health Initiative (WHI) study in 2001 that published data on 6 years of treatment with hormone therapy that showed an increase in heart attacks and breast cancer. Even though the risks were small, 1 per 1500 users annually, patients were worried and there was a large drop off in estrogen use. In later analyses the WHI study showed that estrogen reduced fractures and actually prevented heart attacks in the 50-60 year age group. Estrogen alone appeared to be safer to use than estrogen + the progestin medroxyprogesterone acetate and actually reduced breast cancer. PMID:24176761

  15. G protein-coupled estrogen receptor 1 (GPER, GPR 30) in normal human endometrium and early pregnancy decidua.

    PubMed

    Kolkova, Z; Noskova, V; Ehinger, A; Hansson, S; Casslén, B

    2010-10-01

    The recently identified trans-membrane G protein-coupled estrogen receptor 1 (GPER, GPR30) has been implicated in rapid non-genomic effects of estrogens. This focuses on expression and localization of GPER mRNA and protein in normal cyclic endometrium and early pregnancy decidua. Real-time PCR, western blotting, in situ hybridization and immuno-histochemistry were used. Endometrial expression of GPER mRNA was lower in the secretory phase than in the proliferative phase, and even lower in the decidua. The expression pattern was similar to that of ERα mRNA, but different from that of ERβ mRNA. Western blot detected GPER protein as a 54 kDa band in all endometrial and decidual samples. In contrast to the mRNA, GPER protein did not show cyclic variations. Apparently, a lower amount of mRNA is sufficient to maintain protein levels in the secretory phase. GPER mRNA was predominantly localized in the epithelium of mid- and late-proliferative phase endometrium, whereas expression in early proliferative and secretory glands could not be distinguished from the diffuse stromal signal, which was present throughout the cycle. Immuno-staining for GPER was stronger in glandular and luminal epithelium than in the stroma throughout the cycle. The cyclic variations of GPER mRNA obviously relate to strong epithelial expression in the proliferative phase, and the expression pattern suggests regulation by ovarian steroids. GPER protein is present in endometrial tissue throughout the cycle, and the epithelial localization suggests potential functions during sperm migration at mid-cycle, as well as decidualization and blastocyst implantation in the mid-secretory phase.

  16. Early Childhood Violence Prevention. ERIC Digest.

    ERIC Educational Resources Information Center

    Massey, Marilyn S.

    Noting that all Americans are stakeholders in the quest to prevent violence in the critical early years, this Digest focuses on preventing violence in children's lives and suggests ways caregivers, parents, and teachers can reduce the damaging effects of violence. Even before a child is born, violence can have a profound effect upon its life.…

  17. Estrogen receptor (ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of estrogen receptor-positive breast cancer.

    PubMed

    Kim, Chungyeul; Tang, Gong; Pogue-Geile, Katherine L; Costantino, Joseph P; Baehner, Frederick L; Baker, Joffre; Cronin, Maureen T; Watson, Drew; Shak, Steven; Bohn, Olga L; Fumagalli, Debora; Taniyama, Yusuke; Lee, Ahwon; Reilly, Megan L; Vogel, Victor G; McCaskill-Stevens, Worta; Ford, Leslie G; Geyer, Charles E; Wickerham, D Lawrence; Wolmark, Norman; Paik, Soonmyung

    2011-11-01

    Several mechanisms have been proposed to explain tamoxifen resistance of estrogen receptor (ER) -positive tumors, but a clinically useful explanation for such resistance has not been described. Because the ER is the treatment target for tamoxifen, a linear association between ER expression levels and the degree of benefit from tamoxifen might be expected. However, such an association has never been demonstrated with conventional clinical ER assays, and the ER is currently used clinically as a dichotomous marker. We used gene expression profiling and ER protein assays to help elucidate molecular mechanism(s) responsible for tamoxifen resistance in breast tumors. We performed gene expression profiling of paraffin-embedded tumors from National Surgical Adjuvant Breast and Bowel Project (NSABP) trials that tested the worth of tamoxifen as an adjuvant systemic therapy (B-14) and as a preventive agent (P-1). This was a retrospective subset analysis based on available materials. In B-14, ESR1 was the strongest linear predictor of tamoxifen benefit among 16 genes examined, including PGR and ERBB2. On the basis of these data, we hypothesized that, in the P-1 trial, a lower level of ESR1 mRNA in the tamoxifen arm was the main difference between the two study arms. Only ESR1 was downregulated by more than two-fold in ER-positive cancer events in the tamoxifen arm (P < .001). Tamoxifen did not prevent ER-positive tumors with low levels of ESR1 expression. These data suggest that low-level expression of ESR1 is a determinant of tamoxifen resistance in ER-positive breast cancer. Strategies should be developed to identify, treat, and prevent such tumors.

  18. Suppression of elevated cartilage turnover in postmenopausal women and in ovariectomized rats by estrogen and a selective estrogen-receptor modulator (SERM).

    PubMed

    Christgau, Stephan; Tankó, László B; Cloos, Paul A C; Mouritzen, Ulrik; Christiansen, Claus; Delaissé, Jean-Marie; Høegh-Andersen, Pernille

    2004-01-01

    Several observational studies indicate that estrogen deficiency increases the incidence of osteoarthritis in postmenopausal women. To validate this observation, we investigated the effects of ovariectomy (OVX) on cartilage erosion in rats using histology and an established bio-assay of cartilage-specific collagen type II degradation products (CTX-II). Furthermore, we investigated whether estrogen and levormeloxifene, a selective estrogen-receptor modulator (SERM), can prevent the OVX-induced changes in cartilage degradation. The clinical relevance was assessed in postmenopausal women by measuring the changes in CTX-II during 12-month treatment with levormeloxifene versus placebo. Sixty 6-month-old rats were divided in five groups. One group was subjected to sham and the others to OVX, followed by treatment with vehicle alone, estradiol or 0.2 mg/kg/day or 5 mg/kg/day of levormeloxifene. The rats were treated for 9 weeks with biweekly blood and urine sampling for measurement of bone resorption and cartilage turnover. After study termination, hind knees were removed for histological analysis of erosions. The effect of levormeloxifene in post-menopausal women was assessed by measuring CTX-II in samples from 301 women who were participating in a phase II study of this SERM. OVX rats showed significant increases in the urinary excretion of CTX-II. After 9 weeks this was manifested as increased surface erosion of knee articular cartilage compared with sham-operated rats. Treatment with estrogen or levormeloxifene prevented the OVX-induced changes. There was a significant correlation between the 4-week changes in CTX-II and cartilage erosion at week 9 (r = 0.64, P < 0.001). In postmenopausal women treated with levormeloxifene, the urinary excretion of CTX-II was decreased by approximately 50% and restored CTX-II levels to the premenopausal range. This study is the first to demonstrate that a SERM suppresses cartilage degradation in both rodents and humans, suggesting

  19. The anticancer estrogen receptor antagonist tamoxifen impairs consolidation of inhibitory avoidance memory through estrogen receptor alpha.

    PubMed

    Lichtenfels, Martina; Dornelles, Arethuza da Silva; Petry, Fernanda Dos Santos; Blank, Martina; de Farias, Caroline Brunetto; Roesler, Rafael; Schwartsmann, Gilberto

    2017-11-01

    Over two-thirds of women with breast cancer have positive tumors for hormone receptors, and these patients undergo treatment with endocrine therapy, tamoxifen being the most widely used agent. Despite being very effective in breast cancer treatment, tamoxifen is associated with side effects that include cognitive impairments. However, the specific aspects and mechanisms underlying these impairments remain to be characterized. Here, we have investigated the effects of tamoxifen and interaction with estrogen receptors on formation of memory for inhibitory avoidance conditioning in female rats. In the first experiment, Wistar female rats received a single oral dose of tamoxifen (1, 3, or 10 mg/kg) or saline by gavage immediately after training and were tested for memory consolidation 24 h after training. In the second experiment, rats received a single dose of 1 mg/kg tamoxifen or saline by gavage 3 h after training and were tested 24 h after training for memory consolidation. In the third experiment, rats received a subcutaneous injection with estrogen receptor α agonist or estrogen receptor beta agonist 30 min before the training. After training, rats received a single oral dose of tamoxifen 1 mg/kg or saline and were tested 24 h after training. In the fourth experiment, rats were trained and tested 24 h later. Immediately after test, rats received a single dose of tamoxifen (1 mg/kg) or saline by gavage and were given four additional daily test trials followed by a re-instatement. Tamoxifen at 1 mg/kg impaired memory consolidation when given immediately after training and the estrogen receptor alpha agonist improved the tamoxifen-related memory impairment. Moreover, tamoxifen impairs memory consolidation of the test. These findings indicate that estrogen receptors regulate the early phase of memory consolidation and the effects of tamoxifen on memory consolidation.

  20. Membrane estrogen receptors - is it an alternative way of estrogen action?

    PubMed

    Soltysik, K; Czekaj, P

    2013-04-01

    The functions of estrogens are relatively well known, however the molecular mechanism of their action is not clear. The classical pathway of estrogen action is dependent on ERα and ERβ which act as transcription factors. The effects of this pathway occur within hours or days. In addition, so-called, non-classical mechanism of steroid action dependent on membrane estrogen receptors (mER) was described. In this mechanism the effects of estrogen action are observed in a much shorter time. Here we review the structure and cellular localization of mER, molecular basis of non-classical mER action, physiological role of mER as well as implications of mER action for cancer biology. Finally, some concerns about the new estrogen receptor - GPER and candidates for estrogen receptors - ER-X and ERx, are briefly discussed. It seems that mER is a complex containing signal proteins (signalosome), as IGF receptor, EGF receptor, Ras protein, adaptor protein Shc, non-receptor kinase c-Src and PI-3K, what rationalizes production of second messengers. Some features of membrane receptors are almost identical if compared to nuclear receptors. Probably, membrane and nuclear estrogen receptors are not separate units, but rather the components of a complex mechanism in which they both cooperate with each other. We conclude that the image of the estrogen receptor as a simple transcription factor is a far-reaching simplification. A better understanding of the mechanisms of estrogen action will help us to design more effective drugs affecting signal pathways depending on both membrane and nuclear receptors.

  1. Prevention of ER-Negative Breast Cancer

    PubMed Central

    Li, Yuxin

    2014-01-01

    The successful demonstration that the selective estrogen receptor modulators (SERMs) tamoxifen and raloxifene reduce the risk of breast cancer has stimulated great interest in using drugs to prevent breast cancer in high-risk women. In addition, recent results from breast cancer treatment trials suggest that aromatase inhibitors may be even more effective at preventing breast cancer than are SERMs. However, while SERMs and aromatase inhibitors do prevent the development of many estrogen-receptor (ER)-positive breast cancers, these drugs do not prevent the development of ER-negative breast cancer. Thus, there is an urgent need to identify agents that can prevent ER-negative breast cancer. We have studied the cancer preventative activity of several classes of drugs for their ability to prevent ER-negative breast cancer in preclinical models. Results from these studies demonstrate that rexinoids (analogs of retinoids that bind and activate RXR receptors), tyrosine kinase inhibitors (such as EGFR inhibitors and dual kinase inhibitors that block EGFR and HER2/neu signaling), and cyclo-oxygenase 2 (COX-2) inhibitors all prevent ER-negative breast cancer in transgenic mice that develop ER-negative breast cancer. Other promising agents now under investigation include vitamin D and vitamin D analogs, drugs that activate PPAR-gamma nuclear receptors, and statins. Many of these agents are now being tested in early phase cancer prevention clinical trials to determine whether they will show activity in breast tissue and whether they are safe for use in high-risk women without breast cancer. The current status of these studies will be reviewed. It is anticipated that in the future, drugs that effectively prevent ER-negative breast cancer will be used in combination with hormonal agents such SERMs or aromatase inhibitors to prevent all forms of breast cancer. PMID:19213564

  2. Prevention of overweight and obesity in early life.

    PubMed

    Lanigan, Julie

    2018-05-29

    Childhood obesity is a serious challenge for public health. The problem begins early with most excess childhood weight gained before starting school. In 2016, the WHO estimated that 41 million children under 5 were overweight or obese. Once established, obesity is difficult to reverse, likely to persist into adult life and is associated with increased risk of CVD, type 2 diabetes and certain cancers. Preventing obesity is therefore of high importance. However, its development is multi-factorial and prevention is a complex challenge. Modifiable lifestyle behaviours such as diet and physical activity are the most well-known determinants of obesity. More recently, early-life factors have emerged as key influencers of obesity in childhood. Understanding risk factors and how they interact is important to inform interventions that aim to prevent obesity in early childhood. Available evidence supports multi-component interventions as effective in obesity prevention. However, relatively few interventions are available in the UK and only one, TrimTots, has been evaluated in randomised controlled trials and shown to be effective at reducing obesity risk in preschool children (age 1-5 years). BMI was lower in children immediately after completing TrimTots compared with waiting list controls and this effect was sustained at long-term follow-up, 2 years after completion. Developing and evaluating complex interventions for obesity prevention is a challenge for clinicians and researchers. In addition, parents encounter barriers engaging with interventions. This review considers early-life risk factors for obesity, highlights evidence for preventative interventions and discusses barriers and facilitators to their success.

  3. Estrogen protection against EAE modulates the microbiota and mucosal-associated regulatory cells.

    PubMed

    Benedek, Gil; Zhang, Jun; Nguyen, Ha; Kent, Gail; Seifert, Hilary A; Davin, Sean; Stauffer, Patrick; Vandenbark, Arthur A; Karstens, Lisa; Asquith, Mark; Offner, Halina

    2017-09-15

    Sex hormones promote immunoregulatory effects on multiple sclerosis. In the current study we evaluated the composition of the gut microbiota and the mucosal-associated regulatory cells in estrogen or sham treated female mice before and after autoimmune encephalomyelitis (EAE) induction. Treatment with pregnancy levels of estrogen induces changes in the composition and diversity of gut microbiota. Additionally, estrogen prevents EAE-associated changes in the gut microbiota and might promote the enrichment of bacteria that are associated with immune regulation. Our results point to a possible cross-talk between the sex hormones and the gut microbiota, which could promote neuroprotection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Early Prevention of Childhood Disability in Developing Countries.

    ERIC Educational Resources Information Center

    Simeonsson, Rune J.

    1991-01-01

    This paper presents a disability prevention framework for community-based rehabilitation services, by conceptualizing early intervention in terms of primary, secondary, and tertiary levels of prevention. The framework views prevention as the effort to reduce a disability's expression, duration, or extended impact. (Author/JDD)

  5. Estrogen reduces endoplasmic reticulum stress to protect against glucotoxicity induced-pancreatic β-cell death.

    PubMed

    Kooptiwut, Suwattanee; Mahawong, Pitchnischa; Hanchang, Wanthanee; Semprasert, Namoiy; Kaewin, Suchada; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-Thai

    2014-01-01

    Estrogen can improve glucose homeostasis not only in diabetic rodents but also in humans. However, the molecular mechanism by which estrogen prevents pancreatic β-cell death remains unclear. To investigate this issue, INS-1 cells, a rat insulinoma cell line, were cultured in medium with either 11.1mM or 40mM glucose in the presence or the absence of estrogen. Estrogen significantly reduced apoptotic β-cell death by decreasing nitrogen-induced oxidative stress and the expression of the ER stress markers GRP 78, ATF6, P-PERK, PERK, uXBP1, sXBP1, and CHOP in INS-1 cells after prolonged culture in medium with 40mM glucose. In contrast, estrogen increased the expression of survival proteins, including sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA-2), Bcl-2, and P-p38, in INS-1 cells after prolonged culture in medium with 40mM glucose. The cytoprotective effect of estrogen was attenuated by addition of the estrogen receptor (ERα and ERβ) antagonist ICI 182,780 and the estrogen membrane receptor inhibitor G15. We showed that estrogen decreases not only oxidative stress but also ER stress to protect against 40mM glucose-induced pancreatic β-cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Aberrant estrogen regulation of PEMT results in choline deficiency-associated liver dysfunction.

    PubMed

    Resseguie, Mary E; da Costa, Kerry-Ann; Galanko, Joseph A; Patel, Mukund; Davis, Ian J; Zeisel, Steven H

    2011-01-14

    When dietary choline is restricted, most men and postmenopausal women develop multiorgan dysfunction marked by hepatic steatosis (choline deficiency syndrome (CDS)). However, a significant subset of premenopausal women is protected from CDS. Because hepatic PEMT (phosphatidylethanolamine N-methyltransferase) catalyzes de novo biosynthesis of choline and this gene is under estrogenic control, we hypothesized that there are SNPs in PEMT that disrupt the hormonal regulation of PEMT and thereby put women at risk for CDS. In this study, we performed transcript-specific gene expression analysis, which revealed that estrogen regulates PEMT in an isoform-specific fashion. Locus-wide SNP analysis identified a risk-associated haplotype that was selectively associated with loss of hormonal activation. Chromatin immunoprecipitation, analyzed by locus-wide microarray studies, comprehensively identified regions of estrogen receptor binding in PEMT. The polymorphism (rs12325817) most highly linked with the development of CDS (p < 0.00006) was located within 1 kb of the critical estrogen response element. The risk allele failed to bind either the estrogen receptor or the pioneer factor FOXA1. These data demonstrate that allele-specific ablation of estrogen receptor-DNA interaction in the PEMT locus prevents hormone-inducible PEMT expression, conferring risk of CDS in women.

  7. The genetics of response to estrogen treatment

    PubMed Central

    Langdahl, Bente L

    2009-01-01

    It has been demonstrated that the response to estrogen treatment in postmenopausal women shows considerable variability. It has been speculated that this at least partly could be determined by heritable factors. The most obvious genes to investigate in this context are the estrogen receptor genes. It has been demonstrated that women with short alleles of the TA-repeat polymorphism in the estrogen receptor α gene respond to hormone treatment with greater increases in bone mass at the lumbar spine. Also the two polymorphisms in the first intron of the same gene have been found to be associated with the response to estrogen. Several studies have found that women carrying the Pand the X-alleles respond to hormone therapy with greater increases in bone mass and sustain fewer fractures. Polymorphisms in the collagen type Iα1 have been found to influence BMD. Conflicting results have been obtained with respect to the influence of these genetic variants on postmenopausal bone loss and response to hormone treatment. Furthermore, two polymorphisms in the promoter of the transforming growth factor β gene and one polymorphism in the first exon of the osteoprotegerin gene have been demonstrated to interact with the response to hormone treatment in early postmenopausal women. The above mentioned results are obtained from relatively small studies and needs confirmation before the information can be used in the clinic. PMID:22461097

  8. Estrogen Receptor (ESR1) mRNA Expression and Benefit From Tamoxifen in the Treatment and Prevention of Estrogen Receptor–Positive Breast Cancer

    PubMed Central

    Kim, Chungyeul; Tang, Gong; Pogue-Geile, Katherine L.; Costantino, Joseph P.; Baehner, Frederick L.; Baker, Joffre; Cronin, Maureen T.; Watson, Drew; Shak, Steven; Bohn, Olga L.; Fumagalli, Debora; Taniyama, Yusuke; Lee, Ahwon; Reilly, Megan L.; Vogel, Victor G.; McCaskill-Stevens, Worta; Ford, Leslie G.; Geyer, Charles E.; Wickerham, D. Lawrence; Wolmark, Norman; Paik, Soonmyung

    2011-01-01

    Purpose Several mechanisms have been proposed to explain tamoxifen resistance of estrogen receptor (ER) –positive tumors, but a clinically useful explanation for such resistance has not been described. Because the ER is the treatment target for tamoxifen, a linear association between ER expression levels and the degree of benefit from tamoxifen might be expected. However, such an association has never been demonstrated with conventional clinical ER assays, and the ER is currently used clinically as a dichotomous marker. We used gene expression profiling and ER protein assays to help elucidate molecular mechanism(s) responsible for tamoxifen resistance in breast tumors. Patients and Methods We performed gene expression profiling of paraffin-embedded tumors from National Surgical Adjuvant Breast and Bowel Project (NSABP) trials that tested the worth of tamoxifen as an adjuvant systemic therapy (B-14) and as a preventive agent (P-1). This was a retrospective subset analysis based on available materials. Results In B-14, ESR1 was the strongest linear predictor of tamoxifen benefit among 16 genes examined, including PGR and ERBB2. On the basis of these data, we hypothesized that, in the P-1 trial, a lower level of ESR1 mRNA in the tamoxifen arm was the main difference between the two study arms. Only ESR1 was downregulated by more than two-fold in ER-positive cancer events in the tamoxifen arm (P < .001). Tamoxifen did not prevent ER-positive tumors with low levels of ESR1 expression. Conclusion These data suggest that low-level expression of ESR1 is a determinant of tamoxifen resistance in ER-positive breast cancer. Strategies should be developed to identify, treat, and prevent such tumors. PMID:21947828

  9. Estrogen receptor-β in mitochondria: implications for mitochondrial bioenergetics and tumorigenesis.

    PubMed

    Liao, Tien-Ling; Tzeng, Chii-Ruey; Yu, Chao-Lan; Wang, Yi-Pei; Kao, Shu-Huei

    2015-09-01

    Estrogen enhances mitochondrial function by enhancing mitochondrial biogenesis and sustaining mitochondrial energy-transducing capacity. Shifts in mitochondrial bioenergetic pathways from oxidative phosphorylation to glycolysis have been hypothesized to be involved in estrogen-induced tumorigenesis. Studies have shown that mitochondria are an important target of estrogen. Estrogen receptor-β (ERβ) has been shown to localize to mitochondria in a ligand-dependent or -independent manner and can affect mitochondrial bioenergetics and anti-apoptotic signaling. However, the functional role of mitochondrial ERβ in tumorigenesis remains unclear. Clinical studies of ERβ-related tumorigenesis have shown that ERβ stimulates mitochondrial metabolism to meet the high energy demands of processes such as cell proliferation, cell survival, and transformation. Thus, in elucidating the precise role of mitochondrial ERβ in cell transformation and tumorigenesis, it will be particularly valuable to explore new approaches for the development of medical treatments targeting mitochondrial ERβ-mediated mitochondrial function and preventing apoptosis. © 2015 New York Academy of Sciences.

  10. Estrogen plus Progestin and Risk of Benign Proliferative Breast Disease

    PubMed Central

    Rohan, Thomas E; Negassa, Abdissa; Chlebowski, Rowan T; Lasser, Norman L.; McTiernan, Anne; Schenken, Robert S.; Ginsberg, Mindy; Wassertheil-Smoller, Sylvia; Page, David L.

    2008-01-01

    Women with benign proliferative breast disease are at increased risk of subsequent breast cancer. Estrogens and progesterone exert proliferative effects on mammary epithelium and combined hormone replacement therapy has been associated with increased breast cancer risk. We tested the effect of conjugated equine estrogen plus progestin on risk of benign proliferative breast disease in the Women's Health Initiative (WHI) randomized controlled trial. In the WHI trial of estrogen plus progestin, 16608 postmenopausal women were randomly assigned either to 0.625 mg/d of conjugated equine estrogen plus 2.5 mg/d of medroxyprogesterone acetate or to placebo. Baseline and annual breast exams and mammograms were required. The trial was terminated early (average follow-up, 5.5 years). We identified women who had had a biopsy for benign breast disease and subjected histologic sections from the biopsies to standardized review. Overall, 178 incident cases of benign proliferative breast disease were ascertained in the estrogen plus progestin group and 99 in the placebo group. Use of estrogen plus progestin was associated with a 74% increase in risk of benign proliferative breast disease (hazard ratio 1.74, 95% CI 1.35-2.25). For benign proliferative breast disease without atypia the hazard ratio was 2.00 (95% CI 1.50-2.66), while for atypical hyperplasia it was 0.76 (95% CI 0.38-1.52). Risk varied little by levels of baseline characteristics. The results of this study suggest that use of estrogen plus progestin may increase the risk of benign proliferative breast disease. PMID:18725513

  11. [The new concept of osteoporosis. Early diagnosis, prevention and therapy are possible today].

    PubMed

    Hesch, R D; Harms, H; Rittinghaus, E F; Brabant, G

    1990-04-15

    A paradigma of osteoporosis pathology is discussed, at the center of which is the hormone-related disturbance of the osteoblast/osteoclast functional unit. A liberal replacement of estrogen-gestagen in post-menopausal women is advocated. Early diagnosis with the aid of quantitative computed tomography makes it possible to establish the indication for timely hormonal treatment in the future, which can result in a measureable increase in bone mass. Late therapy, that is, treatment initiated after the occurrence of fractures, has proven largely ineffective.

  12. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a

    PubMed Central

    Seredynski, Aurore L.; Balthazart, Jacques; Ball, Gregory F.

    2015-01-01

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER–mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. SIGNIFICANCE STATEMENT The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  13. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.

    PubMed

    Seredynski, Aurore L; Balthazart, Jacques; Ball, Gregory F; Cornil, Charlotte A

    2015-09-23

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  14. Estrogens and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, J.A.; Newbold, R.R.

    1987-11-01

    The normal development of the genital organs of mammals, including humans, is under hormonal control. A role for the female sex hormone estrogen in this process is still unclear. However, exposure of experimental animals or humans to the potent exogenous estrogen, diethylstilbestrol (DES), results in persistent differentiation effects. Since many chemicals in the environment are weakly estrogenic, the possibility of hormonally altered differentiation must be considered.

  15. Estrogen Receptor-α Correlates with Higher Fungal Cell Number in Oral Paracoccidioidomycosis in Women.

    PubMed

    Caixeta, Clenivaldo Alves; de Carli, Marina Lara; Ribeiro Júnior, Noé Vital; Sperandio, Felipe Fornias; Nonogaki, Suely; Nogueira, Denismar Alves; Pereira, Alessandro Antônio Costa; Hanemann, João Adolfo Costa

    2018-05-23

    Paracoccidioidomycosis is a neglected tropical fungal infection with great predilection for adult men, indicating the participation of female hormone estrogen in preventing paracoccidioidomycosis development in women. Estrogen has an immunologic effect leading to polarization toward the Th2 immune response, which favors the disease evolution. To evaluate estrogen and progesterone receptors in oral paracoccidioidomycosis lesions and to verify any association with tissue fungi counting in women and men. Thirty-two cases of chronic oral paracoccidioidomycosis were included. Immunohistochemical analyses for anti-estrogen receptor-α, anti-progesterone receptor and anti-Paracoccidioides brasiliensis antibodies were performed. The differences between women and men and the relations among the immunomarkers for each gender were also evaluated. A significant positive correlation was observed between estrogen receptor-α and the amount of fungi in women. In addition, estrogen receptor-α was mildly expressed in the inflammatory cells of female patients, while progesterone receptor was expressed in both genders, with similar expression between women and men. Moreover, fungi counting revealed no differences between genders. Estrogen receptor-α was expressed only in women and showed a positive correlation with the amount of fungi in oral paracoccidioidomycosis, while progesterone receptor was observed in both genders and exhibited no correlation with estrogen receptor-α or fungi counting.

  16. Bazedoxifene/conjugated estrogens for managing the burden of estrogen deficiency symptoms.

    PubMed

    Mirkin, Sebastian; Ryan, Kelly A; Chandran, Arthi B; Komm, Barry S

    2014-01-01

    The bothersome vasomotor and vaginal symptoms and bone loss that accompany the menopausal transition are associated with significant direct costs due to physician visits and medication, as well as indirect costs from reduced health-related quality of life (HRQoL) and work productivity. With life expectancies increasing, the number of postmenopausal women is also increasing, and more women are remaining in the workforce. These factors have led to an increased burden of menopausal symptoms on healthcare systems. Hormone therapy (HT) has been shown to effectively reduce menopausal symptoms and significantly increase quality-adjusted life years in postmenopausal women, particularly in women experiencing severe symptoms. However, many women discontinue use of HT before their symptoms have dissipated due to safety and tolerability concerns. The tissue selective estrogen complex (TSEC) that pairs bazedoxifene (BZA) with conjugated estrogens (CE) has been developed to provide relief of menopausal symptoms and prevent bone loss without stimulating the breast or endometrium, and to have improved tolerability compared with HT. In this context, BZA 20mg/CE 0.45 and 0.625 mg were shown to prevent bone loss and effectively treat menopausal symptoms in postmenopausal women with an intact uterus, while also demonstrating a favorable safety/tolerability profile. BZA 20mg/CE 0.45 and 0.625 mg were further associated with clinically significant improvements in HRQoL, sleep, and treatment satisfaction. Taken together, the reduction in menopausal symptoms, improvement in HRQoL, and favorable safety/tolerability profile associated with BZA/CE suggest that it is a cost-effective alternative to HT for managing the burden of menopausal symptoms. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol-A) exposure

    PubMed Central

    Jorgensen, Elisa M.; Alderman, Myles H.; Taylor, Hugh S.

    2016-01-01

    Bisphenol-A (BPA) is an environmentally ubiquitous estrogen-like endocrine-disrupting compound. Exposure to BPA in utero has been linked to female reproductive disorders, including endometrial hyperplasia and breast cancer. Estrogens are an etiological factor in many of these conditions. We sought to determine whether in utero exposure to BPA altered the global CpG methylation pattern of the uterine genome, subsequent gene expression, and estrogen response. Pregnant mice were exposed to an environmentally relevant dose of BPA or DMSO control. Uterine DNA and RNA were examined by using methylated DNA immunoprecipitation methylation microarray, expression microarray, and quantitative PCR. In utero BPA exposure altered the global CpG methylation profile of the uterine genome and subsequent gene expression. The effect on gene expression was not apparent until sexual maturation, which suggested that estrogen response was the primary alteration. Indeed, prenatal BPA exposure preferentially altered adult estrogen-responsive gene expression. Changes in estrogen response were accompanied by altered methylation that preferentially affected estrogen receptor-α (ERα)–binding genes. The majority of genes that demonstrated both altered expression and ERα binding had decreased methylation. BPA selectively altered the normal developmental programming of estrogen-responsive genes via modification of the genes that bind ERα. Gene–environment interactions driven by early life xenoestrogen exposure likely contributes to increased risk of estrogen-related disease in adults.—Jorgensen, E. M., Alderman, M. H., III, Taylor, H. S. Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol-A) exposure. PMID:27312807

  18. Developmental Exposure to Estrogen Alters Differentiation and Epigenetic Programming in a Human Fetal Prostate Xenograft Model

    PubMed Central

    Saffarini, Camelia M.; McDonnell-Clark, Elizabeth V.; Amin, Ali; Huse, Susan M.; Boekelheide, Kim

    2015-01-01

    Prostate cancer is the most frequent non-cutaneous malignancy in men. There is strong evidence in rodents that neonatal estrogen exposure plays a role in the development of this disease. However, there is little information regarding the effects of estrogen in human fetal prostate tissue. This study explored early life estrogen exposure, with and without a secondary estrogen and testosterone treatment in a human fetal prostate xenograft model. Histopathological lesions, proliferation, and serum hormone levels were evaluated at 7, 30, 90, and 200-day time-points after xenografting. The expression of 40 key genes involved in prostatic glandular and stromal growth, cell-cycle progression, apoptosis, hormone receptors and tumor suppressors was evaluated using a custom PCR array. Epigenome-wide analysis of DNA methylation was performed on whole tissue, and laser capture-microdissection (LCM) isolated epithelial and stromal compartments of 200-day prostate xenografts. Combined initial plus secondary estrogenic exposures had the most severe tissue changes as revealed by the presence of hyperplastic glands at day 200. Gene expression changes corresponded with the cellular events in the KEGG prostate cancer pathway, indicating that initial plus secondary exposure to estrogen altered the PI3K-Akt signaling pathway, ultimately resulting in apoptosis inhibition and an increase in cell cycle progression. DNA methylation revealed that differentially methylated CpG sites significantly predominate in the stromal compartment as a result of estrogen-treatment, thereby providing new targets for future investigation. By using human fetal prostate tissue and eliminating the need for species extrapolation, this study provides novel insights into the gene expression and epigenetic effects related to prostate carcinogenesis following early life estrogen exposure. PMID:25799167

  19. Estrogenic activity of natural and synthetic estrogens in human breast cancer cells in culture.

    PubMed Central

    Zava, D T; Blen, M; Duwe, G

    1997-01-01

    We investigated the estrogenic activity of various environmental pollutants (xenobiotics), in particular the xenoestrogen o,p-DDT, and compared their effects with those of endogenous estrogens, phytoestrogens, and mycoestrogens on estrogen receptor binding capacity, induction of estrogen end products, and activation of cell proliferation in estrogen-sensitive human breast cancer cells in monolayer culture. We also quantified the levels of phytoestrogens in extracts of some common foods, herbs, and spices and in human saliva following consumption of a high phytoestrogen food source (soy milk) to compare phytoestrogen abundance and bioavailability relative to the reported xenoestrogen burden in humans. Results show that natural endogenous estrogens, phytoestrogens, mycoestrogens, and xenoestrogens bind estrogen receptor (ER) in intact cells, but demonstrate marked differences in their ability to induce end products of estrogen action and to regulate cell proliferation. All of the different classes of estrogens stimulated cell proliferation at concentrations that half-saturated ER, but only some classes were able to induce estrogen-regulated end products. Genistein, a common phytoestrogen found in soy foods, differed from the xenoestrogen DDT in its effects on cell proliferation and ability to induce estrogen-regulated end products. Moreover, we found that many of the foods, herbs, and spices commonly consumed by humans contain significant amounts of phytoestrogens, and consumption of soy milk, a phytoestrogen-rich food, markedly increases the levels of phytoestrogens in saliva. In conclusion, our in vitro results predict that a diet high in phytoestrogens would significantly reduce the binding of weak xenoestrogens to ER in target tissues in vivo. PMID:9168008

  20. G Protein-Coupled Estrogen Receptor-Selective Ligands Modulate Endometrial Tumor Growth

    PubMed Central

    Petrie, Whitney K.; Dennis, Megan K.; Dai, Donghai; Arterburn, Jeffrey B.; Smith, Harriet O.; Hathaway, Helen J.; Prossnitz, Eric R.

    2013-01-01

    Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the “ERα-selective” agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of “ER-targeted” therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth. PMID:24379833

  1. G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth.

    PubMed

    Petrie, Whitney K; Dennis, Megan K; Hu, Chelin; Dai, Donghai; Arterburn, Jeffrey B; Smith, Harriet O; Hathaway, Helen J; Prossnitz, Eric R

    2013-01-01

    Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the "ERα-selective" agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of "ER-targeted" therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth.

  2. Estrogen for Alzheimer's disease in women: randomized, double-blind, placebo-controlled trial.

    PubMed

    Henderson, V W; Paganini-Hill, A; Miller, B L; Elble, R J; Reyes, P F; Shoupe, D; McCleary, C A; Klein, R A; Hake, A M; Farlow, M R

    2000-01-25

    AD, the most prevalent cause of dementia, affects twice as many women as men. Therapeutic options are limited, but results of prior studies support the hypothesis that estrogen treatment may improve symptoms of women with this disorder. Forty-two women with mild-to-moderate dementia due to AD were enrolled into a randomized, double-blind, placebo-controlled, parallel-group trial of unopposed conjugated equine estrogens (1.25 mg/day) for 16 weeks. Outcome data were available for 40 women at 4 weeks and 36 women at 16 weeks. At both 4 and 16 weeks, there were no significant differences or statistical trends between treatment groups on the primary outcome measure (the cognitive subscale of the Alzheimer's Disease Assessment Scale), clinician-rated global impression of change, or caregiver-rated functional status. Exploratory analyses of mood and specific aspects of cognitive performance also failed to demonstrate substantial group differences. Although conclusions are limited by small sample size and the possibility of a type II error, results suggest that short-term estrogen therapy does not improve symptoms of most women with AD. These findings do not address possible long-term effects of estrogen in AD, possible interactions between estrogen and other treatment modalities, or putative effects of estrogen in preventing or delaying onset of this disorder.

  3. Promotion, Prevention and Early Intervention for Mental Health: National Consultation.

    ERIC Educational Resources Information Center

    2003

    This report provides a description of a national consultation that was undertaken in 2001-2002 to provide feedback on two companion national policy documents: "National Action Plan for Promotion, Prevention and Early Intervention for Mental Health 2000" and "Promotion, Prevention and Early Intervention for Mental Health: A…

  4. Contraceptive, estrogenic and anti-estrogenic potentials of methanolic root extract of Carpolobia lutea in rodents.

    PubMed

    Ettebong, Ette Okon; Nwafor, Paul Alozie; Ekpo, Memfin; Ajibesin, Kola Kayode

    2011-10-01

    Several plants are used in herbal medicine for family planning. Carpolobia lutea is a medicinal plant in South Eastern Nigeria used for family planning. The study was designed to investigate the contraceptive, estrogenic and antiestrogenic potentials of the methanolic root extract of Carpolobia lutea in both rats and mice. The contraceptive effect of extract (7 - 21mg/kg) administered by intraperitoneal route for four days in divided doses was tested in mice and rats. Sexually-active males were introduced on day 5 at the ratio of 3F:1M and kept with these females till the end of the experiment. Investigations on the estrogenic and antiestrogenic property of the extract (7-21mg/kg) were done in immature rats that had undergone surgical removal of both ovaries. The effects of the extract (vaginal opening, vaginal cornification, uterine wet weight) were compared with 17-beta-estradiol (0.1µg/rat/day) as standard drug. Twenty-four hours later, the animals were sacrificed following the last dose and the weights of uterus, kidney, liver and small intestine were recorded. The extract prevented conception in both mice and rats for two gestational periods. Significant changes (p<0.05-0.001) were observed in the length and weight of pups relative to control. There were no abnormalities observed in the pups over thirty days. In ovariectomized immature young rats, the extract showed estrogenic effect (vaginal opening, vaginal cornification and increased uterine wet weight) in low doses while in high doses, it showed anti-estrogenic effect. These findings agree with the traditional use of Carpolobia lutea in the control of fertility. The contraceptive property of the extract may be associated with the direct effects of its chemical constituents.

  5. Impact of Estrogens and Estrogen Receptor Alpha (ESR1) in Brain Lipid Metabolism.

    PubMed

    Morselli, Eugenia; de Souza Santos, Roberta; Gao, Su; Ávalos, Yenniffer; Criollo, Alfredo; Palmer, Biff F; Clegg, Deborah J

    2018-03-06

    Estrogens and their receptors play key roles in regulating body weight, energy expenditure, and metabolic homeostasis. It is known that lack of estrogens promotes increased food intake and induces the expansion of adipose tissues, for which much is known. An area of estrogenic research that has received less attention is the role of estrogens and their receptors in influencing intermediary lipid metabolism in organs such as the brain. In this review, we highlight the actions of estrogens and their receptors in regulating their impact on modulating fatty acid content, utilization, and oxidation through their direct impact on intracellular signaling cascades within the central nervous system.

  6. Preventability of early vs. late readmissions in an academic medical center

    PubMed Central

    Graham, Kelly L.; Dike, Ogechi; Doctoroff, Lauren; Jupiter, Marisa; Vanka, Anita

    2017-01-01

    Background It is unclear if the 30-day unplanned hospital readmission rate is a plausible accountability metric. Objective Compare preventability of hospital readmissions, between an early period [0–7 days post-discharge] and a late period [8–30 days post-discharge]. Compare causes of readmission, and frequency of markers of clinical instability 24h prior to discharge between early and late readmissions. Design, setting, patients 120 patient readmissions in an academic medical center between 1/1/2009-12/31/2010 Measures Sum-score based on a standard algorithm that assesses preventability of each readmission based on blinded hospitalist review; average causation score for seven types of adverse events; rates of markers of clinical instability within 24h prior to discharge. Results Readmissions were significantly more preventable in the early compared to the late period [median preventability sum score 8.5 vs. 8.0, p = 0.03]. There were significantly more management errors as causative events for the readmission in the early compared to the late period [mean causation score [scale 1–6, 6 most causal] 2.0 vs. 1.5, p = 0.04], and these errors were significantly more preventable in the early compared to the late period [mean preventability score 1.9 vs 1.5, p = 0.03]. Patients readmitted in the early period were significantly more likely to have mental status changes documented 24h prior to hospital discharge than patients readmitted in the late period [12% vs. 0%, p = 0.01]. Conclusions Readmissions occurring in the early period were significantly more preventable. Early readmissions were associated with more management errors, and mental status changes 24h prior to discharge. Seven-day readmissions may be a better accountability measure. PMID:28622384

  7. Preventing Obesity Across Generations: Evidence for Early Life Intervention.

    PubMed

    Haire-Joshu, Debra; Tabak, Rachel

    2016-01-01

    To prevent the intergenerational transfer of obesity and end the current epidemic, interventions are needed across the early life stages, from preconception to prenatal to infancy through the age of 2 years. The foundation for obesity is laid in early life by actions and interactions passed from parent to child that have long-lasting biologic and behavioral consequences. The purpose of this paper is to examine the best evidence about (a) factors in parents and offspring that promote obesity during the early life stages, (b) the social determinants and dimensions of obesity in early life, (c) promising and effective interventions for preventing obesity in early life, and (d) opportunities for future research into strategies to disrupt the intergenerational cycle of obesity that begins early in life. The pathway for halting the intergenerational obesity epidemic requires the discovery and development of evidence-based interventions that can act across multiple dimensions of influence on early life.

  8. Preventing Obesity Across Generations: Evidence for Early Life Intervention

    PubMed Central

    Haire-Joshu, Debra; Tabak, Rachel

    2017-01-01

    To prevent the intergenerational transfer of obesity and end the current epidemic, interventions are needed across the early life stages, from preconception to prenatal to infancy through the age of 2 years. The foundation for obesity is laid in early life by actions and interactions passed from parent to child that have long-lasting biologic and behavioral consequences. The purpose of this paper is to examine the best evidence about (a) factors in parents and offspring that promote obesity during the early life stages, (b) the social determinants and dimensions of obesity in early life, (c) promising and effective interventions for preventing obesity in early life, and (d) opportunities for future research into strategies to disrupt the intergenerational cycle of obesity that begins early in life. The pathway for halting the intergenerational obesity epidemic requires the discovery and development of evidence-based interventions that can act across multiple dimensions of influence on early life. PMID:26989828

  9. Distinct Effects of Estrogen on Mouse Maternal Behavior: The Contribution of Estrogen Synthesis in the Brain

    PubMed Central

    Murakami, Gen

    2016-01-01

    Estrogen surge following progesterone withdrawal at parturition plays an important role in initiating maternal behavior in various rodent species. Systemic estrogen treatment shortens the latency to onset of maternal behavior in nulliparous female rats that have not experienced parturition. In contrast, nulliparous laboratory mice show rapid onset of maternal behavior without estrogen treatment, and the role of estrogen still remains unclear. Here the effect of systemic estrogen treatment (for 2 h, 1 day, 3 days, and 7 days) after progesterone withdrawal was examined on maternal behavior of C57BL/6 mice. This estrogen regimen led to different effects on nursing, pup retrieval, and nest building behaviors. Latency to nursing was shortened by estrogen treatment within 2 h. Moreover, pup retrieval and nest building were decreased. mRNA expression was also investigated for estrogen receptor α (ERα) and for genes involved in regulating maternal behavior, specifically, the oxytocin receptor (OTR) and vasopressin receptor in the medial amygdala (MeA) and medial preoptic area (MPOA). Estrogen treatment led to decreased ERα mRNA in both regions. Although OTR mRNA was increased in the MeA, OTR and vasopressin receptor mRNA were reduced in the MPOA, showing region-dependent transcription regulation. To determine the mechanisms for the actions of estrogen treatment, the contribution of estrogen synthesis in the brain was examined. Blockade of estrogen synthesis in the brain by systemic letrozole treatment in ovariectomized mice interfered with pup retrieval and nest building but not nursing behavior, indicating different contributions of estrogen synthesis to maternal behavior. Furthermore, letrozole treatment led to an increase in ERα mRNA in the MeA but not in the MPOA, suggesting that involvement of estrogen synthesis is brain region dependent. Altogether, these results suggest that region-dependent estrogen synthesis leads to differential transcriptional activation due

  10. Vaginal estrogen: a dual-edged sword in postoperative healing of the vaginal wall.

    PubMed

    Ripperda, Christopher M; Maldonado, Pedro Antonio; Acevedo, Jesus F; Keller, Patrick W; Akgul, Yucel; Shelton, John M; Word, Ruth Ann

    2017-07-01

    Reconstructive surgery for pelvic organ prolapse is plagued with high failure rates possibly due to impaired healing or regeneration of the vaginal wall. Here, we tested the hypothesis that postoperative administration of local estrogen, direct injection of mesenchymal stem cells (MSCs), or both lead to improved wound healing of the injured vagina in a menopausal rat model. Ovariectomized rats underwent surgical injury to the posterior vaginal wall and were randomized to treatment with placebo (n = 41), estrogen cream (n = 47), direct injection of MSCs (n = 39), or both (n = 43). MSCs did not survive after injection and had no appreciable effects on healing of the vaginal wall. Acute postoperative administration of vaginal estrogen altered the response of the vaginal wall to injury with decreased stiffness, decreased collagen content, and decreased expression of transcripts for matrix components in the stromal compartment. Conversely, vaginal estrogen resulted in marked proliferation of the epithelial layer and increased expression of genes related to epithelial barrier function and protease inhibition. Transcripts for genes involved in chronic inflammation and adaptive immunity were also down-regulated in the estrogenized epithelium. Collectively, these data indicate that, in contrast to the reported positive effects of preoperative estrogen on the uninjured vagina, acute administration of postoperative vaginal estrogen has adverse effects on the early phase of healing of the stromal layer. In contrast, postoperative estrogen plays a positive role in healing of the vaginal epithelium after injury.

  11. Vaginal estrogen: a dual-edged sword in postoperative healing of the vaginal wall

    PubMed Central

    Ripperda, Christopher M.; Maldonado, Pedro Antonio; Acevedo, Jesus F.; Keller, Patrick W.; Akgul, Yucel; Shelton, John M.; Word, Ruth Ann

    2017-01-01

    Abstract Objective: Reconstructive surgery for pelvic organ prolapse is plagued with high failure rates possibly due to impaired healing or regeneration of the vaginal wall. Here, we tested the hypothesis that postoperative administration of local estrogen, direct injection of mesenchymal stem cells (MSCs), or both lead to improved wound healing of the injured vagina in a menopausal rat model. Methods: Ovariectomized rats underwent surgical injury to the posterior vaginal wall and were randomized to treatment with placebo (n = 41), estrogen cream (n = 47), direct injection of MSCs (n = 39), or both (n = 43). Results: MSCs did not survive after injection and had no appreciable effects on healing of the vaginal wall. Acute postoperative administration of vaginal estrogen altered the response of the vaginal wall to injury with decreased stiffness, decreased collagen content, and decreased expression of transcripts for matrix components in the stromal compartment. Conversely, vaginal estrogen resulted in marked proliferation of the epithelial layer and increased expression of genes related to epithelial barrier function and protease inhibition. Transcripts for genes involved in chronic inflammation and adaptive immunity were also down-regulated in the estrogenized epithelium. Conclusions: Collectively, these data indicate that, in contrast to the reported positive effects of preoperative estrogen on the uninjured vagina, acute administration of postoperative vaginal estrogen has adverse effects on the early phase of healing of the stromal layer. In contrast, postoperative estrogen plays a positive role in healing of the vaginal epithelium after injury. PMID:28169915

  12. The Molecular, Cellular and Clinical Consequences of Targeting the Estrogen Receptor Following Estrogen Deprivation Therapy

    PubMed Central

    Fan, Ping; Maximov, Philipp Y.; Curpan, Ramona F.; Abderrahman, Balkees; Jordan, V. Craig

    2015-01-01

    During the past twenty years our understanding of the control of breast tumor development, growth and survival has changed dramatically. The once long forgotten application of high dose synthetic estrogen therapy as the first chemical therapy to treat any cancer has been resurrected, refined and reinvented as the new biology of estrogen-induced apoptosis. High dose estrogen therapy was cast aside once tamoxifen, from its origins as a failed “morning after pill”, was reinvented as the first targeted therapy to treat any cancer. The current understanding of the mechanism of estrogen-induced apoptosis is described as a consequence of acquired resistance to long term antihormone therapy in estrogen receptor (ER) positive breast cancer. The ER signal transduction pathway remains a target for therapy in breast cancer despite “antiestrogen” resistance, but becomes a regulator of resistance. Multiple mechanisms of resistance come into play: Selective ER Modulator (SERM) stimulated growth, growth factor/ER crosstalk, estrogen-induced apoptosis and mutations of ER. But it is with the science of estrogen-induced apoptosis that the next innovation in women’s health will be developed. Recent evidence suggests that the glucocorticoid properties of medroxyprogesterone acetate blunt estrogen-induced apoptosis in estrogen deprived breast cancer cell populations. As a result breast cancer develops during long-term Hormone Replacement Therapy (HRT). A new synthetic progestin with estrogen-like properties, such as the 19 nortestosterone derivatives used in oral contraceptives, will continue to protect the uterus from unopposed estrogen stimulation but at the same time, reinforce apoptosis in vulnerable populations of nascent breast cancer cells. PMID:26052034

  13. Binding of Estrogenic Compounds to Recombinant Estrogen Receptor-α: Application to Environmental Analysis

    PubMed Central

    Pillon, Arnaud; Boussioux, Anne-Marie; Escande, Aurélie; Aït-Aïssa, Sélim; Gomez, Elena; Fenet, Hélène; Ruff, Marc; Moras, Dino; Vignon, Françoise; Duchesne, Marie-Josèphe; Casellas, Claude; Nicolas, Jean-Claude; Balaguer, Patrick

    2005-01-01

    Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activity by means of the aryl hydrocarbon receptor (AhR). In order to characterize compounds that mediate estrogenic activity in river water and sediment samples, we developed a tool based on the ER-αligand-binding domain, which permitted us to estimate contaminating estrogenic compound affinities. We designed a simple transactivation assay in which compounds of high affinity were captured by limited amounts of recombinant ER-αand whose capture led to a selective inhibition of transactivation. This approach allowed us to bring to light that water samples contain estrogenic compounds that display a high affinity for ERs but are present at low concentrations. In sediment samples, on the contrary, we showed that estrogenic compounds possess a low affinity and are present at high concentration. Finally, we used immobilized recombinant ER-αto separate ligands for ER and AhR that are present in river sediments. Immobilized ER-α, which does not retain dioxin-like compounds, enabled us to isolate and concentrate ER ligands to facilitate their further analysis. PMID:15743715

  14. A-C Estrogens as Potent and Selective Estrogen Receptor-Beta Agonists (SERBAs) to Enhance Memory Consolidation under Low-Estrogen Conditions.

    PubMed

    Hanson, Alicia M; Perera, K L Iresha Sampathi; Kim, Jaekyoon; Pandey, Rajesh K; Sweeney, Noreena; Lu, Xingyun; Imhoff, Andrea; Mackinnon, Alexander Craig; Wargolet, Adam J; Van Hart, Rochelle M; Frick, Karyn M; Donaldson, William A; Sem, Daniel S

    2018-06-14

    Estrogen receptor-beta (ERβ) is a drug target for memory consolidation in postmenopausal women. Herein is reported a series of potent and selective ERβ agonists (SERBAs) with in vivo efficacy that are A-C estrogens, lacking the B and D estrogen rings. The most potent and selective A-C estrogen is selective for activating ER relative to seven other nuclear hormone receptors, with a surprising 750-fold selectivity for the β over α isoform and with EC 50 s of 20-30 nM in cell-based and direct binding assays. Comparison of potency in different assays suggests that the ER isoform selectivity is related to the compound's ability to drive the productive conformational change needed to activate transcription. The compound also shows in vivo efficacy after microinfusion into the dorsal hippocampus and after intraperitoneal injection (0.5 mg/kg) or oral gavage (0.5 mg/kg). This simple yet novel A-C estrogen is selective, brain penetrant, and facilitates memory consolidation.

  15. Effect of halogenated substituents on the metabolism and estrogenic effects of the equine estrogen, equilenin.

    PubMed

    Liu, Xuemei; Zhang, Fagen; Liu, Hong; Burdette, Joanna E; Li, Yan; Overk, Cassia R; Pisha, Emily; Yao, Jiaqin; van Breemen, Richard B; Swanson, Steven M; Bolton, Judy L

    2003-06-01

    Estrogen replacement therapy has been correlated with an increased risk for developing breast and endometrial cancers. One potential mechanism of estrogen carcinogenesis involves metabolism of estrogens to 2- and 4-hydroxylated catechols, which are further oxidized to electrophilic/redox active o-quinones that have the potential to both initiate and promote the carcinogenic process. Previously, we showed that the equine estrogens, equilin and equilenin, which are major components of the estrogen replacement formulation Premarin (Wyeth-Ayerst), are primarily metabolized to the catechol, 4-hydroxyequilenin. This catechol was found to autoxidize to an o-quinone causing oxidation and alkylation of DNA in vitro and in vivo. To block catechol formation from equilenin, 4-halogenated equilenin derivatives were synthesized. These derivatives were tested for their ability to bind to the estrogen receptor, induce estrogen sensitive genes, and their potential to form catechol metabolites. We found that the 4-fluoro derivatives were more estrogenic than the 4-chloro and 4-bromo derivatives as demonstrated by a higher binding affinity for estrogen receptors alpha and beta, an enhanced induction of alkaline phosphatase activity in Ishikawa cells, pS2 expression in S30 cells, and PR expression in Ishikawa cells. Incubation of these compounds with tyrosinase in the presence of GSH showed that the halogenated equilenin compounds formed less catechol GSH conjugates than the parent compounds, equilenin and 17beta-hydroxyequilenin. In addition, these halogenated compounds showed less cytotoxicity in the presence of tyrosinase than the parent compounds in S30 cells. Also, as stated above, the 4-fluoro derivatives showed similar estrogenic effects as compared with parent compounds; however, they were less toxic in S30 cells as compared to equilenin and 17beta-equilenin. Because 17beta-hydroxy-4-halogenated equilenin derivatives showed higher estrogenic effects than the halogenated

  16. Dissolved organic matter and estrogen interactions regulate estrogen removal in the aqueous environment: A review.

    PubMed

    Ma, Li; Yates, Scott R

    2018-06-03

    This review summarizes the characterization and quantification of interactions between dissolved organic matter (DOM) and estrogens as well as the effects of DOM on aquatic estrogen removal. DOM interacts with estrogens via binding or sorption mechanisms like π-π interaction and hydrogen bonding. The binding affinity is evaluated in terms of organic-carbon-normalized sorption coefficient (Log K OC ) which varies with types and composition of DOM. DOM has been suggested to be a more efficient sorbent compared with other matrices, such as suspended particulate matter, sediment and soil; likely associated with its large surface area and concentrated carbon content. As a photosensitizer, DOM enhanced estrogen photodegradation when the concentration of DOM was below a threshold value, and when above, the acceleration effect was not observed. DOM played a dual role in affecting biodegradation of estrogens depending on the recalcitrance of the DOM and the nutrition status of the degraders. DOM also acted as an electron shuttle (redox mediator) mediating the degradation of estrogens. DOM hindered enzyme-catalyzed removal of estrogens while enhanced their transformation during the simultaneous photo-enzymatic process. Membrane rejection of estrogens was pronounced for hydrophobic DOM with high aromaticity and phenolic moiety content. Elimination of estrogens via photolysis, biodegradation, enzymolysis and membrane rejection in the presence of DOM is initiated by sorption, accentuating the role of DOM as a mediator in regulating aquatic estrogen removal. Published by Elsevier B.V.

  17. Endoxifen, 4-Hydroxytamoxifen and an Estrogenic Derivative Modulate Estrogen Receptor Complex Mediated Apoptosis in Breast Cancer.

    PubMed

    Maximov, Philipp Y; Abderrahman, Balkees; Fanning, Sean W; Sengupta, Surojeet; Fan, Ping; Curpan, Ramona F; Quintana Rincon, Daniela Maria; Greenland, Jeffery A; Rajan, Shyamala S; Greene, Geoffrey L; Jordan, V Craig

    2018-05-08

    Estrogen therapy was used to treat advanced breast cancer in postmenopausal women for decades until the introduction of tamoxifen. Resistance to long-term estrogen deprivation (LTED) with tamoxifen and aromatase inhibitors used as a treatment for breast cancer inevitably occurs, but unexpectedly low dose estrogen can cause regression of breast cancer and increase disease free survival in some patients. This therapeutic effect is attributed to estrogen-induced apoptosis in LTED breast cancer. Here we describe modulation of the estrogen receptor liganded with antiestrogens (endoxifen, 4-hydroxytamoxifen) and an estrogenic triphenylethylene (TPE) EthoxyTPE (EtOXTPE) on estrogen-induced apoptosis in LTED breast cancer cells. Our results show that the angular TPE estrogen (EtOXTPE) is able to induce the ER-mediated apoptosis only at a later time compared to planar estradiol in these cells. Using RT-PCR, ChIP, Western blotting, molecular modelling and X-ray crystallography techniques we report novel conformations of the ER complex with an angular estrogen EtOXTPE and endoxifen. We propose that alteration of the conformation of the ER complexes, with changes in coactivator binding, governs estrogen-induced apoptosis through the PERK sensor system to trigger an Unfolded Protein Response (UPR). The American Society for Pharmacology and Experimental Therapeutics.

  18. The E-screen assay as a tool to identify estrogens: An update on estrogenic environmental pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, A.M.; Sonnenschein, C.; Chung, K.L.

    1995-10-01

    Estrogens are defined by their ability to induce the proliferation of cells of the female genital tract. The wide chemical diversity of estrogenic compounds precludes an accurate prediction of estrogenic activity on the basis of chemical structure. Rodent bioassays are not suited for the large-scale screening of chemicals before their release into the environment because of their cost, complexity, and ethical concerns. The E-SCREEN assay was developed to assess the estrogenicity of environmental chemicals using the proliferative effect of estrogens on their target cells as an end point. This quantitative assay compares the cell number achieved by similar inocula ofmore » MCF-7 cells in the absence of estrogens (negative control) and in the presence of 17{beta}-estradiol (positive control) and a range of concentrations of chemicals suspected to be estrogenic. Among the compounds tested, several {open_quotes}new{close_quotes} estrogens were found; alkylphenols, phthalates, some PCB congeners and hydroxylated PCBs, and the insecticides dieldrin, endosulfan, and toxaphene were estrogenic by the E-SCREEN assay. In addition, these compounds competed with estradiol for binding to the estrogen receptor and increased the levels of progesterone receptor and pS2 in MCF-7 cells, as expected from estrogen mimics. Recombinant human growth factors (bFGF, EGF, IGF-1) and insulin did not increase cell yields. The aims of the work summarized in this paper were (a) to validate the E-SCREEN assay; (b) to screen a variety of chemicals present in the environment to identify those that may be causing reproductive effects in wildlife and humans; (c) to assess whether environmental estrogens may act cumulatively; and finally (d) to discuss the reliability of this and other assays to screen chemicals for their estrogenicity before they are released into the environment. 57 refs., 3 figs., 9 tabs.« less

  19. Hepatic gene expression patterns following trauma-hemorrhage: effect of posttreatment with estrogen.

    PubMed

    Yu, Huang-Ping; Pang, See-Tong; Chaudry, Irshad H

    2013-01-01

    The aim of this study was to examine the role of estrogen on hepatic gene expression profiles at an early time point following trauma-hemorrhage in rats. Groups of injured and sham controls receiving estrogen or vehicle were killed 2 h after injury and resuscitation, and liver tissue was harvested. Complementary RNA was synthesized from each RNA sample and hybridized to microarrays. A large number of genes were differentially expressed at the 2-h time point in injured animals with or without estrogen treatment. The upregulation or downregulation of a cohort of 14 of these genes was validated by reverse transcription-polymerase chain reaction. This large-scale microarray analysis shows that at the 2-h time point, there is marked alteration in hepatic gene expression following trauma-hemorrhage. However, estrogen treatment attenuated these changes in injured animals. Pathway analysis demonstrated predominant changes in the expression of genes involved in metabolism, immunity, and apoptosis. Upregulation of low-density lipoprotein receptor, protein phosphatase 1, regulatory subunit 3C, ring-finger protein 11, pyroglutamyl-peptidase I, bactericidal/permeability-increasing protein, integrin, αD, BCL2-like 11, leukemia inhibitory factor receptor, ATPase, Cu transporting, α polypeptide, and Mk1 protein was found in estrogen-treated trauma-hemorrhaged animals. Thus, estrogen produces hepatoprotection following trauma-hemorrhage likely via antiapoptosis and improving/restoring metabolism and immunity pathways.

  20. Estrogen signaling through the G protein-coupled estrogen receptor regulates granulocyte activation in fish.

    PubMed

    Cabas, Isabel; Rodenas, M Carmen; Abellán, Emilia; Meseguer, José; Mulero, Victoriano; García-Ayala, Alfonsa

    2013-11-01

    Neutrophils are major participants in innate host responses. It is well known that estrogens have an immune-modulatory role, and some evidence exists that neutrophil physiology can be altered by these molecules. Traditionally, estrogens act via classical nuclear estrogen receptors, but the identification of a G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor that binds estradiol and other estrogens, has opened up the possibility of exploring additional estrogen-mediated effects. However, information on the importance of GPER for immunity, especially, in neutrophils is scant. In this study, we report that gilthead seabream (Sparus aurata L.) acidophilic granulocytes, which are the functional equivalent of mammalian neutrophils, express GPER at both mRNA and protein levels. By using a GPER selective agonist, G1, it was found that GPER activation in vitro slightly reduced the respiratory burst of acidophilic granulocytes and drastically altered the expression profile of several genes encoding major pro- and anti-inflammatory mediators. In addition, GPER signaling in vivo modulated adaptive immunity. Finally, a cAMP analog mimicked the effects of G1 in the induction of the gene coding for PG-endoperoxide synthase 2 and in the induction of CREB phosphorylation, whereas pharmacological inhibition of protein kinase A superinduced PG-endoperoxide synthase 2. Taken together, our results demonstrate for the first time, to our knowledge, that estrogens are able to modulate vertebrate granulocyte functions through a GPER/cAMP/protein kinase A/CREB signaling pathway and could establish therapeutic targets for several immune disorders in which estrogens play a prominent role.

  1. Estrogenic Activity of Hyperforin in MCF-7 Human Breast Cancer Cells Transfected with Estrogen Receptor.

    PubMed

    Kwon, Joseph; Oh, Kyung Seo; Cho, Se-Young; Bang, Mi Ae; Kim, Hwan Seon; Vaidya, Bipin; Kim, Duwoon

    2016-11-01

    Hyperforin, a major active compound of St. John's wort extract, affects estrogenic activity. In this study, the compound evoked estrogen response element-dependent luciferase activity and cell proliferation in MCF-7 cells. Hyperforin-induced cell proliferation was significantly inhibited by the estrogen receptor antagonist ICI 182,780. These results suggested that hyperforin had estrogenic and cell proliferation activities, which were stimulated via the estrogen receptor. Compared to 17 β -estradiol, hyperforin showed significantly lower estrogenic activity and cell proliferation. The mechanism underlying the estrogenic activity of hyperforin was unknown, therefore, in this study, for the first time, the expression and post-translational modification of proteins were determined and compared among control, 17 β -estradiol-treated, and hyperforin-treated cells using proteomic techniques. A total of 453 proteins were identified, of which 282 proteins were significantly modulated in hyperforin-treated cells compared to 17 β -estradiol-treated cells. Ingenuity pathway analysis also demonstrated that hyperforin treatment induced less cell proliferation than 17 β -estradiol by downregulating estrogen receptor 1. Protein network analysis showed that cell proliferation was regulated mainly by cyclin D1 and extracellular signal-regulated kinases. In conclusion, although, hyperforin exhibited lower estrogenic activity than 17 β -estradiol, the compound induced lower levels of cancer cell proliferation in vitro . Georg Thieme Verlag KG Stuttgart · New York.

  2. Exposures to synthetic estrogens at different times during the life, and their effect on breast cancer risk.

    PubMed

    Hilakivi-Clarke, Leena; de Assis, Sonia; Warri, Anni

    2013-03-01

    Women are using estrogens for many purposes, such as to prevent pregnancy or miscarriage, or to treat menopausal symptoms. Estrogens also have been used to treat breast cancer which seems puzzling, since there is convincing evidence to support a link between high lifetime estrogen exposure and increased breast cancer risk. In this review, we discuss the findings that maternal exposure to the synthetic estrogen diethylstilbestrol during pregnancy increases breast cancer risk in both exposed mothers and their daughters. In addition, we review data regarding the use of estrogens in oral contraceptives and as postmenopausal hormone therapy and discuss the opposing effects on breast cancer risk based upon timing of exposure. We place particular emphasis on studies investigating how maternal estrogenic exposures during pregnancy increase breast cancer risk among daughters. New data suggest that these exposures induce epigenetic modifications in the mammary gland and germ cells, thereby causing an inheritable increase in breast cancer risk for multiple generations.

  3. Exposures to Synthetic Estrogens at Different Times During the Life, and Their Effect on Breast Cancer Risk

    PubMed Central

    de Assis, Sonia; Warri, Anni

    2013-01-01

    Women are using estrogens for many purposes, such as to prevent pregnancy or miscarriage, or to treat menopausal symptoms. Estrogens also have been used to treat breast cancer which seems puzzling, since there is convincing evidence to support a link between high lifetime estrogen exposure and increased breast cancer risk. In this review, we discuss the findings that maternal exposure to the synthetic estrogen diethylstilbestrol during pregnancy increases breast cancer risk in both exposed mothers and their daughters. In addition, we review data regarding the use of estrogens in oral contraceptives and as postmenopausal hormone therapy and discuss the opposing effects on breast cancer risk based upon timing of exposure. We place particular emphasis on studies investigating how maternal estrogenic exposures during pregnancy increase breast cancer risk among daughters. New data suggest that these exposures induce epigenetic modifications in the mammary gland and germ cells, thereby causing an inheritable increase in breast cancer risk for multiple generations. PMID:23392570

  4. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study.

    PubMed

    Flores, Roberto; Shi, Jianxin; Fuhrman, Barbara; Xu, Xia; Veenstra, Timothy D; Gail, Mitchell H; Gajer, Pawel; Ravel, Jacques; Goedert, James J

    2012-12-21

    High systemic estrogen levels contribute to breast cancer risk for postmenopausal women, whereas low levels contribute to osteoporosis risk. Except for obesity, determinants of non-ovarian systemic estrogen levels are undefined. We sought to identify members and functions of the intestinal microbial community associated with estrogen levels via enterohepatic recirculation. Fifty-one epidemiologists at the National Institutes of Health, including 25 men, 7 postmenopausal women, and 19 premenopausal women, provided urine and aliquots of feces, using methods proven to yield accurate and reproducible results. Estradiol, estrone, 13 estrogen metabolites (EM), and their sum (total estrogens) were quantified in urine and feces by liquid chromatography/tandem mass spectrometry. In feces, β-glucuronidase and β-glucosidase activities were determined by realtime kinetics, and microbiome diversity and taxonomy were estimated by pyrosequencing 16S rRNA amplicons. Pearson correlations were computed for each loge estrogen level, loge enzymatic activity level, and microbiome alpha diversity estimate. For the 55 taxa with mean relative abundance of at least 0.1%, ordinal levels were created [zero, low (below median of detected sequences), high] and compared to loge estrogens, β-glucuronidase and β-glucosidase enzymatic activity levels by linear regression. Significance was based on two-sided tests with α=0.05. In men and postmenopausal women, levels of total urinary estrogens (as well as most individual EM) were very strongly and directly associated with all measures of fecal microbiome richness and alpha diversity (R≥0.50, P≤0.003). These non-ovarian systemic estrogens also were strongly and significantly associated with fecal Clostridia taxa, including non-Clostridiales and three genera in the Ruminococcaceae family (R=0.57-0.70, P=0.03-0.002). Estrone, but not other EM, in urine correlated significantly with functional activity of fecal β-glucuronidase (R=0.36, P=0

  5. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER.

    PubMed

    Zekas, Erin; Prossnitz, Eric R

    2015-10-15

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  6. The Measurement of Estrogens

    NASA Astrophysics Data System (ADS)

    Holder, Geoff; Makin, Hugh L. J.; Bradlow, H. Leon

    Biologists use the word ‘estrogen' when referring to molecules which have the ability to induce uterine growth or vaginal cornification in the immature or ovariectomized rodent. The word estrogen was derived from two Greek words - oistros meaning frenzy and gennein - to beget. Chemists and biochemists, however, often restrict their use of this term to molecules that contain a characteristic 18-carbon steroid nucleus with an aromatic (phenolic) A-ring, both those that are biologically active estrogens and those without biologic activity but which are of intrinsic interest, such as the estrogen conjugates. This chapter is concerned only with these steroid compounds. The structure and inter-relationship of some common estrogens are given in Fig. 8.1. In addition to the biological estrogens, there are a wide variety of both natural and synthetic compounds which have estrogenic activity when measured by one or another parameter. While many of the assay procedures described in this review are applicable to these compounds, their application to non C18-steroids will not be discussed here. Methodology for these non-steroidal compounds can be found in reviews by Wang et al. (2002), Wu et al. (2004), Muir (2006), and Delmonte and Rader (2006). While not wishing to downgrade the importance of previous work in the estrogen field, the authors have taken a deliberate decision to exclude most publications prior to 1975, not because these do not have value but simply because space is not unlimited and readers of the present chapter might be expected to be seeking information about methodology which is less than 30 years old. Readers seeking pre-1975 information in this area can find it in Oakey and Holder (1995).

  7. Calmodulin Lobes Facilitate Dimerization and Activation of Estrogen Receptor-α*

    PubMed Central

    Li, Zhigang; Zhang, Yonghong; Hedman, Andrew C.; Ames, James B.

    2017-01-01

    Estrogen receptor α (ER-α) is a nuclear hormone receptor that controls selected genes, thereby regulating proliferation and differentiation of target tissues, such as breast. Gene expression controlled by ER-α is modulated by Ca2+ via calmodulin (CaM). Here we present the NMR structure of Ca2+-CaM bound to two molecules of ER-α (residues 287–305). The two lobes of CaM bind to the same site on two separate ER-α molecules (residues 292, 296, 299, 302, and 303), which explains why CaM binds two molecules of ER-α in a 1:2 complex and stabilizes ER-α dimerization. Exposed glutamate residues in CaM (Glu-11, Glu-14, Glu-84, and Glu-87) form salt bridges with key lysine residues in ER-α (Lys-299, Lys-302, and Lys-303), which is likely to prevent ubiquitination at these sites and inhibit degradation of ER-α. Transfection of cells with full-length CaM slightly increased the ability of estrogen to enhance transcriptional activation by ER-α of endogenous estrogen-responsive genes. By contrast, expression of either the N- or C-lobe of CaM abrogated estrogen-stimulated transcription of the estrogen responsive genes pS2 and progesterone receptor. These data suggest that CaM-induced dimerization of ER-α is required for estrogen-stimulated transcriptional activation by the receptor. In light of the critical role of ER-α in breast carcinoma, our data suggest that small molecules that selectively disrupt the interaction of ER-α with CaM may be useful in the therapy of breast carcinoma. PMID:28174300

  8. Estrogen receptor-a in medial amygdala neurons regulates body weight

    USDA-ARS?s Scientific Manuscript database

    Estrogen receptor–a (ERa) activity in the brain prevents obesity in both males and females. However, the ERa-expressing neural populations that regulate body weight remain to be fully elucidated. Here we showed that single-minded–1 (SIM1) neurons in the medial amygdala (MeA) express abundant levels ...

  9. Estrogen and the female heart.

    PubMed

    Knowlton, A A; Korzick, D H

    2014-05-25

    Estrogen has a plethora of effects in the cardiovascular system. Studies of estrogen and the heart span human clinical trials and basic cell and molecular investigations. Greater understanding of cell and molecular responses to estrogens can provide further insights into the findings of clinical studies. Differences in expression and cellular/intracellular distribution of the two main receptors, estrogen receptor (ER) α and β, are thought to account for the specificity and differences in responses to estrogen. Much remains to be learned in this area, but cellular distribution within the cardiovascular system is becoming clearer. Identification of GPER as a third ER has introduced further complexity to the system. 17β-estradiol (E2), the most potent human estrogen, clearly has protective properties activating a signaling cascade leading to cellular protection and also influencing expression of the protective heat shock proteins (HSP). E2 protects the heart from ischemic injury in basic studies, but the picture is more involved in the whole organism and clinical studies. Here the complexity of E2's widespread effects comes into play and makes interpretation of findings more challenging. Estrogen loss occurs primarily with aging, but few studies have used aged models despite clear evidence of differences between the response to estrogen deficiency in adult and aged animals. Thus more work is needed focusing on the effects of aging vs. estrogen loss on the cardiovascular system. Published by Elsevier Ireland Ltd.

  10. Breast cancer risk accumulation starts early: prevention must also.

    PubMed

    Colditz, Graham A; Bohlke, Kari; Berkey, Catherine S

    2014-06-01

    Nearly one in four breast cancers is diagnosed before the age of 50, and many early-stage premalignant lesions are present but not yet diagnosed. Therefore, we review evidence to support the strategy that breast cancer prevention efforts must begin early in life. This study follows the literature review methods and format. Exposures during childhood and adolescence affect a woman's long-term risk of breast cancer, but have received far less research attention than exposures that occur later in life. Breast tissue undergoes rapid cellular proliferation between menarche and first full-term pregnancy, and risk accumulates rapidly until the terminal differentiation that accompanies first pregnancy. Evidence on childhood diet and growth in height, and adolescent alcohol intake, among other adolescent factors is related to breast cancer risk and risk of premalignant proliferative benign lesions. Breast cancer prevention efforts will have the greatest effect when initiated at an early age and continued over a lifetime. Gaps in knowledge are identified and deserve increase attention to inform prevention.

  11. Estrogen Effects on Wound Healing

    PubMed Central

    Horng, Huann-Cheng; Chang, Wen-Hsun; Yeh, Chang-Ching; Huang, Ben-Shian; Chang, Chia-Pei; Chen, Yi-Jen; Tsui, Kuan-Hao

    2017-01-01

    Wound healing is a physiological process, involving three successive and overlapping phases—hemostasis/inflammation, proliferation, and remodeling—to maintain the integrity of skin after trauma, either by accident or by procedure. Any disruption or unbalanced distribution of these processes might result in abnormal wound healing. Many molecular and clinical data support the effects of estrogen on normal skin homeostasis and wound healing. Estrogen deficiency, for example in postmenopausal women, is detrimental to wound healing processes, notably inflammation and re-granulation, while exogenous estrogen treatment may reverse these effects. Understanding the role of estrogen on skin might provide further opportunities to develop estrogen-related therapy for assistance in wound healing. PMID:29099810

  12. Estrogen effects of Daldinia concentrica and Psathyrella efflorescens extracts in vitro.

    PubMed

    Benie, Tanon; Kouakou, Koffi; Thieulant, Marie-Lise

    2008-02-28

    Daldinia concentrica and Psathyrella efflorescens are two fungi used in African traditional medicine. In the present study, their extracts were evaluated for their steroid activities in estrogen- or androgen-dependent cell lines using as endpoints steroid-dependent transcriptional activity and cell proliferation. Treatment of human breast cancer MCF-7 cells with 15 or 30 microg/ml of Daldinia concentrica or Psathyrellaefflorescens extracts in the absence of 17beta-estradiol (E2) significantly increased the transcriptional activity of an estrogen receptor (ER)-dependent reporter gene, in the same range as E2. Similar data were obtained in gonadotrope cell line alpha-T3-1. All the effects were prevented by the pure estrogen antagonist, ICI 182,780. In the absence of steroid addition, the two extracts induced cell proliferation of ER-dependent MCF-7 and Ishikawa Var-I cell lines by approximately 100% of the E2 response. Combination treatments with E2 showed no competitive or additive effects in the two latter cell lines. Interestingly, the extracts had no androgen-like response in androgen receptor (AR)-positive and ER-negative MDA-MB231 cells, suggesting that fungi effects are estrogen specific and extracts are not toxic at used concentrations. Results provided evidence that Daldinia concentrica or Psathyrellaefflorescens extracts induce estrogen-like effects in ER-positive cell lines, which could be responsible of the effects observed in vivo.

  13. Interaction between parathyroid hormone and endogenous estrogen in normal women.

    PubMed

    Buchanan, J R; Santen, R J; Cavaliere, A; Cauffman, S W; Greer, R B; Demers, L M

    1986-06-01

    It has been hypothesized that estrogens conserve bone substance by blocking the resorbing effect of parathyroid hormone (PTH). We evaluated this hypothesis by examining the relation of circulating PTH to endogenous estrogen fluctuation during four quarters of a single menstrual cycle in 20 normal women. The hypothesis predicts that PTH should vary directly with estrogen, since PTH should increase following estrogen elevation to satisfy physiologic demands for calcium. Contrary to the predicted direct variation, PTH remained constant throughout the menstrual cycle despite sharply fluctuating estrogen levels. Furthermore, PTH was negatively associated with estrone during the early follicular (r = -.65, P less than 0.005) and late follicular (r = -.84, P less than 0.0001) phases. We attempted to determine whether this unexpected relationship between estrone and PTH signified a direct physiologic link, by excluding factors which could have spuriously engendered the inverse correlation. Stepwise multiple regression and partial correlation showed that estrone contributed significantly to circulating PTH independent of the effects of dietary calcium, 25-hydroxyvitamin D, serum calcium, 1,25-dihydroxyvitamin D, phosphate, estradiol, progesterone, and body weight. Therefore, it is possible that the inverse correlation between estrone and PTH signified a direct physiologic link, as an artifactual cause for the relationship could not be identified. These data imply that estrone interacts with PTH, but not by blocking PTH-mediated bone resorption. We conclude that estrone is associated with reduced circulating PTH through an as yet undetermined mechanism.

  14. Effects of environmental estrogenic chemicals on AP1 mediated transcription with estrogen receptors alpha and beta.

    PubMed

    Fujimoto, Nariaki; Honda, Hiroaki; Kitamura, Shigeyuki

    2004-01-01

    There has been much discussion concerning endocrine disrupting chemicals suspected of exerting adverse effects in both wildlife and humans. Since the majority of these compounds are estrogenic, a large number of in vitro tests for estrogenic characteristics have been developed for screening purpose. One reliable and widely used method is the reporter gene assay employing estrogen receptors (ERs) and a reporter gene with a cis-acting estrogen responsive element (ERE). Other elements such as AP1 also mediate estrogenic signals and the manner of response could be quite different from that of ERE. Since this has yet to be explored, the ER mediated AP1 activity in response to a series of environmental estrogens was investigated in comparison with ERE findings. All the compounds exhibited estrogenic properties with ERE-luc and their AP1 responses were quite similar. These was one exception, however, p,p'-DDT (1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane) did not exert any AP1-luc activity, while it appeared to be estrogenic at 10(-7) to 10(-5)M with the ERE action. None of the compounds demonstrated ER beta:AP1 activity. These data suggest that significant differences can occur in responses through the two estrogen pathways depending on environmental chemicals.

  15. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β

    PubMed Central

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-01-01

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ. PMID:28404976

  16. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β.

    PubMed

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-06-13

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ.

  17. Expression of Genomic Functional Estrogen Receptor 1 in Mouse Sertoli Cells

    PubMed Central

    Lin, Jing; Zhu, Jia; Li, Xian; Li, Shengqiang; Lan, Zijian; Ko, Jay

    2014-01-01

    There is no consensus whether Sertoli cells express estrogen receptor 1 (Esr1). Reverse transcription-polymerase chain reaction, Western blot, and immunofluorescence demonstrated that mouse Sertoli cell lines, TM4, MSC-1, and 15P-1, and purified primary mouse Sertoli cells (PSCs) contained Esr1 messenger RNA and proteins. Incubation of Sertoli cells with 17β-estradiol (E2) or ESR1 agonist stimulated the expression of an estrogen responsive gene Greb1, which was prevented by ESR inhibitor or ESR1 antagonist. Overexpression of Esr1 in MSC-1 enhanced E2-induced Greb1 expression, while knockdown of Esr1 by small interfering RNA in TM4 attenuated the response. Furthermore, E2-induced Greb1 expression was abolished in the PSCs isolated from Amh-Cre/Esr1-floxed mice in which Esr1 in Sertoli cells were selectively deleted. Chromatin immunoprecipitation assays indicated that E2-induced Greb1 expression in Sertoli cells was mediated by binding of ESR1 to estrogen responsive elements. In summary, ligand-dependent nuclear ESR1 was present in mouse Sertoli cells and mediates a classical genomic action of estrogens. PMID:24615934

  18. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Caroline; Grimaldi, Marina; Boulahtouf, Abdelhay

    2014-10-01

    Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28 °C as compared tomore » 37 °C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology. - Highlights: • Zebrafish is increasingly used to study the effects of estrogens. • We assessed the activity of pharmaceutical and environmental estrogens on zfERs. • Environmental estrogens displayed greater potency for zfERα compared to zfERβs. • hERβ selective agonists displayed greater

  19. Early onset of puberty and early ovarian failure in CYP7B1 knockout mice.

    PubMed

    Omoto, Yoko; Lathe, Richard; Warner, Margaret; Gustafsson, Jan-Ake

    2005-02-22

    CYP7B1 is the enzyme responsible for hydroxylation and termination of the estrogenic actions of the androgen metabolite, 5alpha-androstane-3beta, 17beta-diol (3betaAdiol). 3betaAdiol is estrogenic in ERalpha or ERbeta positive cells only if they do not express CYP7B1. In this study we show that female CYP7B1(-/-) mice experience early onset of growth of the uterus and mammary glands and commence estrus cycles 2 days earlier than their wild-type littermates. Adult mammary glands and uteri appear to be under continuous estrogenic stimulation. We conclude that, by cell-specific regulation of the estrogenicity of 3betaAdiol, CYP7B1 performs two major tasks: (i) it allows 3betaAdiol to have growth inhibitory effects through ERbeta and (ii) it permits estradiol-specific activation of estrogen receptors by protection of certain cells from the estrogenic effects of 3betaAdiol. When CYP7B1 is inactivated, 3betaAdiol activates estrogen receptors indiscriminately, and the overall effect is prolonged and inappropriate exposure to estrogen.

  20. Environmental estrogenic effects of alkylphenol ethoxylates.

    PubMed

    Nimrod, A C; Benson, W H

    1996-05-01

    Alkylphenol ethoxylates (APEs) and related compounds recently have been reported to be estrogenic because it has been demonstrated in laboratory studies that they mimic the effects of estradiol both in vitro and in vivo. Chemicals referred to as "environmental estrogens" are suspected of causing health effects in both humans and wildlife through disruption of the endocrine system. In this review, the occurrence, environmental fate, and biological effects of APEs are presented. To provide understanding of the potential for endocrine disruption due to environmental estrogens, the physiology of estrogens in mammals and fish is also reviewed. The estrogenic potency of other environmental estrogens is compared to the potency of APE degradation products. The reproductive effects of estrogenic compounds are considered when evaluating the potential health effects of APEs. Given the reported environmental concentrations and bioconcentration factors of APE products, the potential for these compounds to produce estrogenic effects in the environment appears low. Although questions concerning the physiological effects of APEs and other environmental estrogens remain unanswered, there are indications that research is in progress that will lead to better understanding of the risks to humans and wildlife.

  1. Local delivery of hormonal therapy with silastic tubing for prevention and treatment of breast cancer.

    PubMed

    Park, Jeenah; Thomas, Scott; Zhong, Allison Y; Wolfe, Alan R; Krings, Gregor; Terranova-Barberio, Manuela; Pawlowska, Nela; Benet, Leslie Z; Munster, Pamela N

    2018-01-08

    Broad use of germline testing has identified an increasing number of women at risk for breast cancer with a need for effective chemoprevention. We report a novel method to selectively deliver various anti-estrogens at high drug levels to the breast tissue by implanting a device comprised of silastic tubing. Optimized tubing properties allow elution of otherwise poorly bioavailable anti-estrogens, such as fulvestrant, into mammary tissue in vitro and in vivo with levels sufficient to inhibit estrogen receptor activation and tumor cell proliferation. Implantable silastic tubing delivers fulvestrant selectively to mouse mammary fat tissue for one year with anti-tumor effects similar to those achieved with systemic fulvestrant exposure. Furthermore, local delivery of fulvestrant significantly decreases cell proliferation, as assessed by Ki67 expression, most effectively in tumor sections adjacent to tubing. This approach may thereby introduce a potential paradigm shift and offer a promising alternative to systemic therapy for prevention and early interception of breast cancer.

  2. From the 90's to now: A brief historical perspective on more than two decades of estrogen neuroprotection.

    PubMed

    Engler-Chiurazzi, E B; Singh, M; Simpkins, J W

    2016-02-15

    Historical perspective abstract:From the 90's to now: a historical perspective on more than two decades of estrogen neuroprotection: In the early 90's, estrogens were known to exert organizational and activational effects on reproductive tissues and sexual behavior. As well, the role of sex and gonadal hormones in altering the risk for developing Alzheimer's Disease (AD) was only beginning to be elucidated. Preliminary investigations suggested that estrogen-containing therapies typically given for the management of disruptive menopausal symptoms could reduce AD risk, attenuate disease-associated cognitive deficits, and modulate brain substrates known to be dysregulated by the condition, such as the cholingeric system. The findings from our seminal paper demonstrating cognitive benefits and cholinergic impacts with exogenous estrogen treatment in a rodent model of surgical hormone depletion provided initial support for use of estrogen-containing therapies as a treatment for age-related brain disorders. We then went on to demonstrate neuroprotective actions of estrogen in several other in vivo and in vitro models of neurological challenge, including stroke and AD. Further, our findings of the chemical structure requirements for estrogen's neuroprotective effects identified a novel approach for optimizing future estrogen-containing hormone therapy options. These early efforts laid the groundwork for later, large-scale clinical investigations into the potential of estrogen-based menopausal hormone therapies for the prevention of a variety of age-related disorders. Although findings of these studies were equivocal, the neuroprotective actions of estrogen, and specifically 17β-estradiol, identified by early investigations, remain well-documented. Future development of interventions that optimize cognitive aging are crucial and, with proper understanding of the factors that influence the realization of beneficial impacts, estrogen-containing treatments may still be among

  3. TNF-{alpha} mediates the stimulation of sclerostin expression in an estrogen-deficient condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Beom-Jun; Bae, Sung Jin; Lee, Sun-Young

    Highlights: Black-Right-Pointing-Pointer Estrogen deprivation stimulates the bony sclerostin levels with reversal by estrogen. Black-Right-Pointing-Pointer TNF-{alpha} increases the activity and expression of MEF2 in UMR-106 cells. Black-Right-Pointing-Pointer TNF-{alpha} blocker prevents the stimulation of bony sclerostin expression by ovariectomy. Black-Right-Pointing-Pointer No difference in bony sclerostin expression between sham-operated and ovariectomized nude mice. -- Abstract: Although recent clinical studies have suggested a possible role for sclerostin, a secreted Wnt antagonist, in the pathogenesis of postmenopausal osteoporosis, the detailed mechanisms how estrogen deficiency regulates sclerostin expression have not been well-elucidated. Bilateral ovariectomy or a sham operation in female C57BL/6 mice and BALB/c nude micemore » was performed when they were seven weeks of age. The C57BL/6 mice were intraperitoneally injected with phosphate-buffered serum (PBS), 5 {mu}g/kg {beta}-estradiol five times per week for three weeks, or 10 mg/kg TNF-{alpha} blocker three times per week for three weeks. Bony sclerostin expression was assessed by immunohistochemistry staining in their femurs. The activity and expression of myocyte enhancer factors 2 (MEF2), which is essential for the transcriptional activation of sclerostin, in rat UMR-106 osteosarcoma cells were determined by luciferase reporter assay and western blot analysis, respectively. Bony sclerostin expression was stimulated by estrogen deficiency and it was reversed by estradiol supplementation. When the UMR-106 cells were treated with well-known, estrogen-regulated cytokines, only TNF-{alpha}, but not IL-1 and IL-6, increased the MEF2 activity. Consistently, TNF-{alpha} also increased the nuclear MEF2 expression. Furthermore, the TNF-{alpha} blocker prevented the stimulation of bony sclerostin expression by ovariectomy. We also found that there was no difference in sclerostin expression between

  4. Prevention of food allergy - Early dietary interventions.

    PubMed

    Du Toit, George; Foong, Ru-Xin M; Lack, Gideon

    2016-10-01

    The prevalence of food allergy has increased over the last 30 years and remains a disease, which significantly impacts on the quality of life of children and their families. Several hypotheses have been formulated to explain the increasing prevalence; this review will focus on the hypothesis that dietary factors may influence the development of food allergy. Historically, the prevention of food allergy has focused on allergen avoidance. However, recent findings from interventional studies have prompted a shift in the mind set from avoidance to early introduction of potentially allergenic foods. This review aims to facilitate a better understanding of contemporary research studies that make use of early introduction of common allergenic foods into infant diets as a preventative strategy against the development of food allergy. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  5. The potential contribution of dietary factors to breast cancer prevention.

    PubMed

    Shapira, Niva

    2017-09-01

    Breast cancer (BC), the leading cancer in women, is increasing in prevalence worldwide, concurrent with western metabolic epidemics, that is, obesity, metabolic syndrome, and diabetes, and shares major risk factors with these diseases. The corresponding potential for nutritional contributions toward BC prevention is reviewed and related to critical stages in the life cycle and their implications for carcinogenic and pathometabolic trajectories. BC initiation potentially involves diet-related pro-oxidative, inflammatory, and procarcinogenic processes, that interact through combined lipid/fatty acid peroxidation, estrogen metabolism, and related DNA-adduct/depurination/mutation formation. The pathometabolic trajectory is affected by high estrogen, insulin, and growth factor cascades and resultant accelerated proliferation/progression. Anthropometric risk factors - high birth weight, adult tallness, adiposity/BMI, and weight gain - are often reflective of these trends. A sex-based nutritional approach targets women's specific risk in western obesogenic environments, associated with increasing fatness, estrogen metabolism, n-6 : n-3 polyunsaturated fatty acid ratio, and n-6 polyunsaturated fatty acid conversion to proinflammatory/carcinogenic eicosanoids, and effects of timing of life events, for example, ages at menarche, full-term pregnancy, and menopause. Recent large-scale studies have confirmed the effectiveness of the evidence-based recommendations against BC risk, emphasizing low-energy density diets, highly nutritious plant-based regimes, physical activity, and body/abdominal adiposity management. Better understanding of dietary inter-relationships with BC, as applied to food intake, selection, combination, and processing/preparation, and recommended patterns, for example, Mediterranean, DASH, plant-based, low energy density, and low glycemic load, with high nutrient/phytonutrient density, would increase public motivation and authoritative support for early

  6. The polymorphism of estrogen receptor α is important for metabolic consequences associated with menopause.

    PubMed

    Pinkas, Jarosław; Gujski, Mariusz; Wierzbińska-Stępniak, Anna; Owoc, Alfred; Bojar, Iwona

    2016-01-01

    Menopause is associated with multiple health and metabolic consequences resulting from the decrease in estrogens level. Women at postmenopausal age are burdened with a higher risk of cardiovascular diseases, and the main cause of mortality in this group is ischemic heart disease. Estrogen deficiency is related, among other things, with frequent occurrence of dislipidemia, cessation of the beneficial effect of estrogens on the vascular wall, increase in body weight characterized by unfavourable redistribution of fatty tissue, with an increased amount of visceral fat and reduction of so-called non-fatty body mass. Estrogens exert an effect on metabolism, mainly through the genomic mechanism. The presence of α and β estrogen receptors was found in many tissues and organs. Recently, attention was paid to the fact that the effect of estrogens action on tissues and organs may depend not only on distribution, but also on their polymorphic types. The article presents the latest approach to the problem of metabolic consequences resulting from menopause, according to the possessed α estrogen receptor polymorphism (ERα).Genes encoding for ERα have many polymorphic variants, the most important of which from the clinical aspect are two single nucleotide polymorphisms (SNPs) - Xba1 and PvuII. The review of literature indicates that ERα polymorphisms are of great importance with respect to the effect of estrogens on the functioning of the body of a woman after menopause, and may imply the development of many pathological states, including the prevention or development of metabolic disorders. Identifying ERα polymorphisms may be useful in case of estrogen therapy for menopausal women who may benefit from it.

  7. Early childhood caries: risk-based disease prevention and management.

    PubMed

    Ng, Man Wai; Chase, Isabelle

    2013-01-01

    Early childhood caries (ECC), common in preschoolers, can lead to pain and infection if left untreated. Yet, ECC is largely preventable, and if it is identified early and the responsible risk factors are addressed, its progression can be halted or slowed. This article reviews the rationale for a first dental visit by age 1 year, caries risk assessment, and risk-based prevention and management of ECC and discusses strategies for providers to implement these contemporary evidence-based concepts into clinical practice. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Estrogenic activity, estrogens, and calcium in runoff post-layer litter application from rainfall simulated events

    USDA-ARS?s Scientific Manuscript database

    Estrogens in runoff from fields fertilized with animal wastes have been implicated as endocrine disruptors of fish in recipient surface waters. The goal of this study was to measure estrogenic activity in runoff post-application of animal waste with the greatest potential for estrogenic activity - ...

  9. New Directions and Challenges in Preventing Conduct Problems in Early Childhood.

    PubMed

    Shaw, Daniel S; Taraban, Lindsay E

    2017-06-01

    In this article, we review advances in developing and preventing conduct problems in early childhood and identify challenges. Among the topics we address are expanding the targets of prevention programs beyond improving parenting skills, implementing family-based interventions during early childhood for families living in impoverished communities, making greater use of community platforms that serve young children at risk for early conduct problems, and incorporating techniques such as motivational interviewing to improve families' engagement in nontraditional mental health settings.

  10. Estrogen Metabolites Are Not Associated With Colorectal Cancer Risk In Postmenopausal Women

    PubMed Central

    Falk, Roni T.; Dallal, Cher M.; Lacey, James V.; Bauer, Douglas C.; Buist, Diana SM; Cauley, Jane A.; Hue, Trisha F.; LaCroix, Andrea; Tice, Jeffrey A.; Pfeiffer, Ruth M.; Xu, Xia; Veenstra, Timothy D.; Brinton, Louise A.

    2015-01-01

    Background A potential protective role for estrogen in colon carcinogenesis has been suggested based on exogenous hormone use, but it is unclear from previous studies whether endogenous estrogens are related to colorectal cancer (CRC) risk. These few prior studies focused on parent estrogens; none evaluated effects of estrogen metabolism in postmenopausal women. Methods We followed 15,595 women (ages 55–80) enrolled in B~FIT (Breast and Bone Follow-up to the Fracture Intervention Trial (FIT)) who donated blood between 1992 and 1993 for cancer through December 2004. A panel of 15 estrogen metabolites (EM), including estradiol and estrone, were measured in serum from 187 CRC cases and a subcohort of 501 women not using exogenous hormones at blood draw. We examined EM individually, grouped by pathway (hydroxylation at the C-2, C-4, or C-16 position), and by ratios of the groupings using Cox proportional hazards regression models. Results No significant associations were seen for estrone (HRQ4 v Q1=1.15, 95% CI=0.69–1.93, ptrend=0.54), estradiol (HRQ4 v Q1= 0.98, 95% CI=0.58–1.64, ptrend>0.99) or total EM (the sum of all EM; HRQ4 v Q1=1.35. 95% CI=0.81–2.24, ptrend=0.33). Most metabolites in the 2-, 4- or 16-pathway were unrelated to risk, although a borderline trend in risk was associated with high levels of 17-epiestriol. Conclusion Circulating estrogens and their metabolites were generally unrelated to CRC risk in postmenopausal women. Impact Additional studies are needed to understand how exogenous estrogen may prevent CRC PMID:26104910

  11. Estrogenic agonist activity of ICI 182,780 (Faslodex) in hippocampal neurons: implications for basic science understanding of estrogen signaling and development of estrogen modulators with a dual therapeutic profile.

    PubMed

    Zhao, Liqin; O'Neill, Kathleen; Brinton, Roberta Diaz

    2006-12-01

    The present study sought to determine the characteristics of ICI 182,780 (Faslodex) action in rat primary hippocampal neurons. We first investigated the neuroprotective efficacy of ICI 182,780 against neurodegenerative insults associated with Alzheimer's disease and related disorders. Dose-response analyses revealed that ICI 182,780, in a concentration-dependent manner, significantly promoted neuron survival following exposure to either excitotoxic glutamate (200 muM)- or beta-amyloid(1-42) (1.5 muM)-induced neurodegeneration of hippocampal neurons. At a clinically relevant concentration of 50 ng/ml, ICI 182,780 exerted nearly maximal neuroprotection against both insults with efficacy comparable with that induced by the endogenous estrogen 17beta-estradiol. Thereafter, we investigated the impact of 50 ng/ml ICI 182,780 on mechanisms of 17beta-estradiol-inducible neuronal plasticity and neuroprotection. Results of these analyses demonstrated that ICI 182,780 directly induced a series of rapid intracellular Ca(2+) concentration ([Ca(2+)](i)) oscillations in a pattern comparable with that of 17beta-estradiol. In addition, ICI 182,780 exerted dual regulation of the glutamate-induced rise in [Ca(2+)](i) identical to that induced by 17beta-estradiol. Further analyses demonstrated that ICI 182,780 induced significant activation of extracellular signal-regulated kinase 1/2 and Akt (protein kinase B) and significantly increased expression of spinophilin and Bcl-2, with efficacy comparable with neurons treated with 17beta-estradiol. Taken together, results of these in vitro analyses of ICI 182,780 provide direct evidence of an estrogenic agonist profile of ICI 182,780 action in rat hippocampal neurons. Therapeutic development of neuroselective estrogen receptor modulators that mimic ICI 182,780 is discussed with respect to the potential of safe and efficacious alternatives to estrogen therapy for the prevention of postmenopausal cognitive decline and late-onset Alzheimer

  12. Estrogen, aging and the cardiovascular system

    PubMed Central

    Stice, James P.; Lee, Jennifer S.; Pechenino, Angela S.; Knowlton, Anne A.

    2014-01-01

    Estrogen is a powerful hormone with pleiotropic effects. Estrogens have potent antioxidant effects and are able to reduce inflammation, induce vasorelaxation and alter gene expression in both the vasculature and the heart. Estrogen treatment of cultured cardiac myocytes and endothelial cells rapidly activates NFκB, induces heat-shock protein (HSP)-72, a potent intracellular protective protein, and protects cells from simulated ischemia. In in vivo models, estrogens protect against ischemia and trauma/hemorrhage. Estrogens may decrease the expression of soluble epoxide hydrolase, which has deleterious effects on the cardiovascular system through metabolism of epoxyeicosatrienoic acids. Natural (endogenous) estrogens in premenopausal women appear to protect against cardiovascular disease and yet controlled clinical trials have not indicated a benefit from estrogen replacement postmenopause. Much remains to be understood in regards to the many properties of this powerful hormone and how changes in this hormone interact with aging-associated changes. The unexpected negative results of trials of estrogen replacement postmenopause probably arise from our lack of understanding of the many effects of this hormone. PMID:19371207

  13. Personal care products that contain estrogens or xenoestrogens may increase breast cancer risk.

    PubMed

    Donovan, Maryann; Tiwary, Chandra M; Axelrod, Deborah; Sasco, Annie J; Jones, Lovell; Hajek, Richard; Sauber, Erin; Kuo, Jean; Davis, Devra L

    2007-01-01

    Established models of breast cancer risk, such as the Gail model, do not account for patterns of the disease in women under the age of 35, especially in African Americans. With the possible exceptions of ionizing radiation or inheriting a known genetic mutation, most of the known risk factors for breast cancer are related to cumulative lifetime exposure to estrogens. Increased risk of breast cancer has been associated with earlier onset of menses or later age at menopause, nulliparity or late first parity, use of hormonal contraceptives or hormone replacement therapy, shorter lactation history, exposure to light at night, obesity, and regular ingestion of alcohol, all of which increase circulating levels of unbound estradiol. Among African Americans at all ages, use of hormone-containing personal care products (PCPs) is more common than among whites, as is premature appearance of secondary sexual characteristics among infants and toddlers. We hypothesize that the use of estrogen and other hormone-containing PCPs in young African American women accounts, in part, for their increased risk of breast cancer prior to menopause, by subjecting breast buds to elevated estrogen exposure during critical windows of vulnerability in utero and in early life. These early life and continuing exposures to estrogenic and xenoestrogenic agents may also contribute to the increased lethality of breast cancer in young women in general and in African American women of all ages. Public disclosure by manufacturers of proprietary hormonally active ingredients is required for this research to move forward.

  14. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    PubMed

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  15. Estrogens and Cognition: Friends or Foes?

    PubMed Central

    Korol, Donna L.; Pisani, Samantha L.

    2015-01-01

    Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings that show the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions. PMID:26149525

  16. GPER1 mediates estrogen-induced neuroprotection against oxygen-glucose deprivation in the primary hippocampal neurons.

    PubMed

    Zhao, Tian-Zhi; Shi, Fei; Hu, Jun; He, Shi-Ming; Ding, Qian; Ma, Lian-Ting

    2016-07-22

    It is well-known that the neuroprotective effects of estrogen have potential in the prevention and amelioration of ischemic and degenerative neurological disorders, while the underlying mechanisms for estrogen actions are undefined. As an important mediator for the non-genomic functions of estrogen, GPER1 (G Protein-coupled Estrogen Receptor 1) has been suggested to involve in the beneficial roles of estrogen in neural cells. Here our studies on primary hippocampal neurons have focused on GPER1 in an in vitro model of ischemia using oxygen-glucose deprivation (OGD). GPER1 expression in the primary hippocampal neurons was stimulated by the OGD treatments. Both E2 (estradiol) and E2-BSA (membrane impermeable estradiol by covalent conjugation of bovine serum albumin) attenuated OGD-induced cell death in primary cultures of hippocampal neurons. Importantly, this membrane-mediated estrogen function requires GPER1 protein. Knocking down of GPER1 diminished, while overexpression of GPER1 potentiated, the protective roles of E2/E2-BSA following OGD. Additionally, the downstream mechanisms employed by membrane-associated estrogen signaling were found to include PI3K/Akt-dependent Ask1 inhibition in the primary hippocampal neurons. Overall, these research results could enhance our understanding of the neuroprotective actions for estrogen, and provide a new therapeutic target for improving stroke outcome and ameliorating degenerative neurological diseases. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Estrogenic Environmental Chemicals and Drugs: Mechanisms for Effects on the Developing Male Urogenital System

    PubMed Central

    Taylor, Julia A.; Richter, Catherine A.; Ruhlen, Rachel L.; vom Saal, Frederick S.

    2011-01-01

    Development and differentiation of the prostate from the fetal urogenital sinus (UGS) is dependent on androgen action via androgen receptors (AR) in the UGS mesenchyme. Estrogens are not required for prostate differentiation but do act to modulate androgen action. In mice exposure to exogenous estrogen during development results in permanent effects on adult prostate size and function, which is mediated through mesenchymal estrogen receptor (ER) alpha. For many years estrogens were thought to inhibit prostate growth because estrogenic drugs studied were administered at very high concentrations that interfered with normal prostate development. There is now extensive evidence that exposure to estrogen at very low concentrations during the early stages of prostate differentiation can stimulate fetal/neonatal prostate growth and lead to prostate disease in adulthood. Bisphenol A (BPA) is an environmental endocrine disrupting chemical that binds to both ER receptor subtypes as well as to AR. Interest in BPA has increased because of its prevalence in the environment and its detection in over 90% of people in the USA. In tissue culture of fetal mouse UGS mesenchymal cells, BPA and estradiol stimulated changes in the expression of several genes. We discuss here the potential involvement of estrogen in regulating signaling pathways affecting cellular functions relevant to steroid hormone signaling and metabolism and to inter- and intra-cellular communications that promote cell growth. The findings presented here provide additional evidence that BPA and the estrogenic drug ethinylestradiol disrupt prostate development in male mice at administered doses relevant to human exposures. PMID:21827855

  18. Estrogen via estrogen receptor beta partially inhibits mandibular condylar cartilage growth.

    PubMed

    Chen, J; Kamiya, Y; Polur, I; Xu, M; Choi, T; Kalajzic, Z; Drissi, H; Wadhwa, S

    2014-11-01

    Temporomandibular joint (TMJ) diseases predominantly afflict women, suggesting a role for female hormones in the disease process. However, little is known about the role of estrogen receptor (ER) signaling in regulating mandibular condylar cartilage growth. Therefore, the goal of this study was to examine the effects of altered estrogen levels on the mandibular condylar cartilage in wild type (WT) and ER beta Knockout (KO) mice. 21-day-old female WT (n = 37) and ER beta KO mice (n = 36) were either sham operated or ovariectomized, and treated with either placebo or estradiol. The mandibular condylar cartilage was evaluated by histomorphometry, proliferation was analyzed by double ethynyl-2'-deoxyuridine/bromodeoxyuridine (EdU/BrdU) labeling, and assays on gene and protein expression of chondrocyte maturation markers were performed. In WT mice, ovariectomy caused a significant increase in mandibular condylar cartilage cell numbers, a significant increase in Sox9 expression and a significant increase in proliferation compared with sham operated WT mice. In contrast, ovariectomy did not cause any of these effects in the ER beta KO mice. Estrogen replacement treatment in ovariectomized WT mice caused a significant decrease in ER alpha expression and a significant increase in Sost expression compared with ovariectomized mice treated with placebo. Estrogen replacement treatment in ovariectomized ER beta KO mice caused a significant increase in Col2 expression, no change in ER alpha expression, and a significant increase in Sost expression. Estrogen via ER beta inhibits proliferation and ER alpha expression while estrogen independent of ER beta induces Col2 and Sost expression. Copyright © 2014 China University of Geosciences (Beijing) and Peking University. Published by Elsevier Ltd. All rights reserved.

  19. Prevention of early childhood caries: a public health perspective.

    PubMed

    Weintraub, J A

    1998-01-01

    This paper proposes strategies for preventing early childhood caries (ECC), preferably for the greatest number of children at the lowest cost. Population-based, public health approaches are more likely to reach the target population groups at risk of developing ECC than individual, private practice-based approaches. Different prevention and early intervention strategies are discussed and the following recommendations are made: 1) Continue to promote community water fluoridation. 2) Evaluate the effectiveness of other public health oriented measures to prevent ECC. 3) Develop a national ECC and rampant caries registry. 4) Link oral health screening and easily implemented, low-cost interventions with immunization schedules and public health nursing activities. 5) Increase opportunities for community-based interventions conducted by dental hygienists. 6) Change insurance reimbursement schedules to provide incentives for dentists to prevent disease. 7) Include dentistry in new child health insurance legislation for children as well as parents of infants and preschool children.

  20. Sustained attention is favored by progesterone during early luteal phase and visuo-spatial memory by estrogens during ovulatory phase in young women.

    PubMed

    Solís-Ortiz, S; Corsi-Cabrera, M

    2008-08-01

    Studies examining the influence of the menstrual cycle on cognitive function have been highly contradictory. The maintenance of attention is key to successful information processing, however how it co-vary with other cognitive functions and mood in function of phases of the menstrual cycle is not well know. Therefore, neuropsychological performance of nine healthy women with regular menstrual cycles was assessed during ovulation (OVU), early luteal (EL), late luteal (LL) and menstrual (MEN) phases. Neuropsychological test scores of sustained attention, executive functions, manual coordination, visuo-spatial memory, verbal fluency, spatial ability, anxiety and depression were obtained and submitted to a principal components analysis (PCA). Five eigenvectors that accounted the 68.31% of the total variance were identified. Performance of the sustained attention was grouped in an independent eigenvector (component 1), and the scores on verbal fluency and visuo-spatial memory were grouped together in an eigenvector (component 5), which explained 17.69% and 12.03% of the total variance, respectively. The component 1 (p<0.034) and the component 5 (p<0.003) showed significant variations during the menstrual cycle. Sustained attention showed an increase in the EL phase, when the progesterone is high. Visuo-spatial memory was increased, while that verbal fluency was decreased during the OVU phase, when the estrogens levels are high. These results indicate that sustained attention is favored by early luteal phase progesterone and do not covaried with any other neuropsychological variables studied. The influence of the estrogens on visuo-spatial memory was corroborated, and covaried inversely with verbal fluency.

  1. Estrogen modifies arousal but not memory for emotional events in older women

    PubMed Central

    Pruis, T.A.; Neiss, M.B.; Leigland, L.A.; Janowsky, J.S.

    2009-01-01

    Emotional arousal and the affective content of events influence memory. These effects shift with age such that older people find negative information less arousing and remember proportionately more positive events compared to the young. The emotional enhancement of memory is mediated by medial temporal lobe limbic structures and the prefrontal cortex, which are both affected by sex hormones. We examined whether hormone use (estrogen or estrogen and progesterone) in older women modulated perceptions of valence and arousal, and subsequent memory for emotional images or stories. Their performance was compared to younger women. Hormone use in older women resulted in higher arousal for negative images and stories but memory was not affected. We hypothesize that estrogen modifies the influence of the amygdala and the prefrontal cortex on emotion, but that age-related changes in the hippocampus prevent the enhancement of emotional memory in older women. PMID:18160182

  2. Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen

    PubMed Central

    Spurgeon, Megan E.; den Boon, Johan A.; Horswill, Mark; Barthakur, Sonalee; Forouzan, Omid; Rader, Janet S.; Beebe, David J.; Roopra, Avtar; Ahlquist, Paul; Lambert, Paul F.

    2017-01-01

    High-risk human papillomaviruses (HPVs) infect epithelial cells and are causally associated with cervical cancer, but HPV infection is not sufficient for carcinogenesis. Previously, we reported that estrogen signaling in the stromal tumor microenvironment is associated with cervical cancer maintenance and progression. We have now determined how HPV oncogenes and estrogen treatment affect genome-wide host gene expression in laser-captured regions of the cervical epithelium and stroma of untreated or estrogen-treated nontransgenic and HPV-transgenic mice. HPV oncogene expression in the cervical epithelium elicited significant gene-expression changes in the proximal stromal compartment, and estrogen treatment uniquely affected gene expression in the cervical microenvironment of HPV-transgenic mice compared with nontransgenic mice. Several potential estrogen-induced paracrine-acting factors were identified in the expression profile of the cervical tumor microenvironment. The microenvironment of estrogen-treated HPV-transgenic mice was significantly enriched for chemokine/cytokine activity and inflammatory and immune functions associated with carcinogenesis. This inflammatory signature included several proangiogenic CXCR2 receptor ligands. A subset of the same CXCR2 ligands was likewise increased in cocultures of early-passage cells from human cervical samples, with levels highest in cocultures of cervical fibroblasts and cancer-derived epithelial cells. Our studies demonstrate that high-risk HPV oncogenes profoundly reprogram the tumor microenvironment independently of and synergistically with estrogen. These observations illuminate important means by which HPVs can cause cancer through alterations in the tumor microenvironment. PMID:29073104

  3. Reprint of: From the 90׳s to now: A brief historical perspective on more than two decades of estrogen neuroprotection.

    PubMed

    Engler-Chiurazzi, E B; Singh, M; Simpkins, J W

    2016-08-15

    Historical perspective abstract:From the 90׳s to now: a historical perspective on more than two decades of estrogen neuroprotection: In the early 90׳s, estrogens were known to exert organizational and activational effects on reproductive tissues and sexual behavior. As well, the role of sex and gonadal hormones in altering the risk for developing Alzheimer׳s Disease (AD) was only beginning to be elucidated. Preliminary investigations suggested that estrogen-containing therapies typically given for the management of disruptive menopausal symptoms could reduce AD risk, attenuate disease-associated cognitive deficits, and modulate brain substrates known to be dysregulated by the condition, such as the cholingeric system. The findings from our seminal paper demonstrating cognitive benefits and cholinergic impacts with exogenous estrogen treatment in a rodent model of surgical hormone depletion provided initial support for use of estrogen-containing therapies as a treatment for age-related brain disorders. We then went on to demonstrate neuroprotective actions of estrogen in several other in vivo and in vitro models of neurological challenge, including stroke and AD. Further, our findings of the chemical structure requirements for estrogen׳s neuroprotective effects identified a novel approach for optimizing future estrogen-containing hormone therapy options. These early efforts laid the groundwork for later, large-scale clinical investigations into the potential of estrogen-based menopausal hormone therapies for the prevention of a variety of age-related disorders. Although findings of these studies were equivocal, the neuroprotective actions of estrogen, and specifically 17β-estradiol, identified by early investigations, remain well-documented. Future development of interventions that optimize cognitive aging are crucial and, with proper understanding of the factors that influence the realization of beneficial impacts, estrogen-containing treatments may still be

  4. Early Violence Prevention: Tools for Teachers of Young Children.

    ERIC Educational Resources Information Center

    Slaby, Ronald G.; And Others

    Based on the latest knowledge about early violence prevention and effective teaching strategies, this book describes practical ways for early childhood educators to handle children's aggression and shows how to help children become assertive, nonviolent problem solvers. The book's repertoire of proven approaches includes teaching children how to…

  5. Early onset of puberty and early ovarian failure in CYP7B1 knockout mice

    PubMed Central

    Omoto, Yoko; Lathe, Richard; Warner, Margaret; Gustafsson, Jan-Åke

    2005-01-01

    CYP7B1 is the enzyme responsible for hydroxylation and termination of the estrogenic actions of the androgen metabolite, 5α-androstane-3β, 17β-diol (3βAdiol). 3βAdiol is estrogenic in ERα or ERβ positive cells only if they do not express CYP7B1. In this study we show that female CYP7B1–/– mice experience early onset of growth of the uterus and mammary glands and commence estrus cycles 2 days earlier than their wild-type littermates. Adult mammary glands and uteri appear to be under continuous estrogenic stimulation. We conclude that, by cell-specific regulation of the estrogenicity of 3βAdiol, CYP7B1 performs two major tasks: (i) it allows 3βAdiol to have growth inhibitory effects through ERβ and (ii) it permits estradiol-specific activation of estrogen receptors by protection of certain cells from the estrogenic effects of 3βAdiol. When CYP7B1 is inactivated, 3βAdiol activates estrogen receptors indiscriminately, and the overall effect is prolonged and inappropriate exposure to estrogen. PMID:15710898

  6. Estrogen Metabolism and Breast Cancer

    PubMed Central

    Samavat, Hamed; Kurzer, Mindy S

    2015-01-01

    There is currently accumulating evidence that endogenous estrogens play a critical role in the development of breast cancer. Estrogens and their metabolites have been studied in both pre- and postmenopausal women with more consistent results shown in the latter population, in part because of large hormonal variations during the menstrual cycle and far fewer studies having been performed in premenopausal women. In this review we describe in detail estrogen metabolism and associated genetic variations, and provide a critical review of the current literature regarding the role of estrogens and their metabolites in breast cancer risk. PMID:24784887

  7. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.

    2011-02-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17{beta} to the four rainbow trout ER isoformsmore » with that of three known environmental estrogens 17{alpha}-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ER{alpha} subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17{beta}, bisphenol A binds less strongly to all four receptors, 17{alpha}-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the {alpha} subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.« less

  8. Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion.

    PubMed

    Qin, Sisi; Ingle, James N; Liu, Mohan; Yu, Jia; Wickerham, D Lawrence; Kubo, Michiaki; Weinshilboum, Richard M; Wang, Liewei

    2017-08-18

    We previously performed a case-control genome-wide association study in women treated with selective estrogen receptor modulators (SERMs) for breast cancer prevention and identified single nucleotide polymorphisms (SNPs) in ZNF423 as potential biomarkers for response to SERM therapy. The ZNF423rs9940645 SNP, which is approximately 200 bp away from the estrogen response elements, resulted in the SNP, estrogen, and SERM-dependent regulation of ZNF423 expression and, "downstream", that of BRCA1. Electrophoretic mobility shift assay-mass spectrometry was performed to identify proteins binding to the ZNF423 SNP and coordinating with estrogen receptor alpha (ERα). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing was applied to generate ZR75-1 breast cancer cells with different ZNF423 SNP genotypes. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to SERMs and poly(ADP-ribose) polymerase (PARP) inhibitors. We identified calmodulin-like protein 3 (CALML3) as a key sensor of this SNP and a coregulator of ERα, which contributes to differential gene transcription regulation in an estrogen and SERM-dependent fashion. Furthermore, using CRISPR/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to SERMs and PARP inhibitors, alone or in combination, were observed not only in cells but also in a mouse xenograft model. Our results have demonstrated the mechanism by which the ZNF423 rs9940645 SNP might regulate gene expression and drug response as well as its potential role in achieving more highly individualized breast cancer therapy.

  9. A New Signaling Pathway for HCV Inhibition by Estrogen: GPR30 Activation Leads to Cleavage of Occludin by MMP-9.

    PubMed

    Ulitzky, Laura; Lafer, Manuel M; KuKuruga, Mark A; Silberstein, Erica; Cehan, Nicoleta; Taylor, Deborah R

    2016-01-01

    Poor outcome in response to hepatitis C virus, including higher viral load, hepatocellular carcinoma and cirrhosis, is more associated with men and postmenopausal women than with premenopausal women and women receiving hormone replacement therapy, suggesting that β-estradiol plays an innate role in preventing viral infection and liver disease. Consequently, most research in the field has concluded that estrogen affects HCV replication through viral interactions with estrogen receptor-α. Previously, estrogen-like antagonists, including Tamoxifen, were shown to reduce HCV RNA production and prevent viral entry, although the authors did not identify host factors involved. Estrogen can act alternatively through the membrane-bound G-protein-coupled estrogen receptor, GPR30. Here, human hepatoma Huh7.5 cells were infected with HCV J6/JFH-1 and treated with estrogen or Tamoxifen, resulting in a marked decrease in detectable virus. The effect was mimicked by G1, a GPR30-specific agonist, and was reversed by the GPR30-specific antagonist, G15. While previous studies have demonstrated that estrogen down-regulated occludin in cervical cancer cells, its action on liver cells was unknown. Occludin is a tight junction protein and HCV receptor and here we report that activation and cellular export of MMP-9 led to the cleavage of occludin upon estrogen treatment of liver cells. This is the first report of the cleavage of an HCV receptor in response to estrogen. We also identify the occludin cleavage site in extracellular Domain D; the motif required for HCV entry and spread. This pathway gives new insight into a novel innate antiviral pathway and the suboptimal environment that estrogen provides for the proliferation of the virus. It may also explain the disparate host-virus responses to HCV demonstrated by the two sexes. Moreover, these data suggest that hormone replacement therapy may have beneficial antiviral enhancement properties for HCV-infected postmenopausal women and

  10. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors.

    PubMed

    Clegg, Deborah; Hevener, Andrea L; Moreau, Kerrie L; Morselli, Eugenia; Criollo, Alfredo; Van Pelt, Rachael E; Vieira-Potter, Victoria J

    2017-05-01

    With increased life expectancy, women will spend over three decades of life postmenopause. The menopausal transition increases susceptibility to metabolic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Thus, it is more important than ever to develop effective hormonal treatment strategies to protect aging women. Understanding the role of estrogens, and their biological actions mediated by estrogen receptors (ERs), in the regulation of cardiometabolic health is of paramount importance to discover novel targeted therapeutics. In this brief review, we provide a detailed overview of the literature, from basic science findings to human clinical trial evidence, supporting a protective role of estrogens and their receptors, specifically ERα, in maintenance of cardiometabolic health. In so doing, we provide a concise mechanistic discussion of some of the major tissue-specific roles of estrogens signaling through ERα. Taken together, evidence suggests that targeted, perhaps receptor-specific, hormonal therapies can and should be used to optimize the health of women as they transition through menopause, while reducing the undesired complications that have limited the efficacy and use of traditional hormone replacement interventions. Copyright © 2017 Endocrine Society.

  11. Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression.

    PubMed

    Bonkhoff, Helmut

    2018-01-01

    The androgen receptor (AR) is the classical target for prostate cancer prevention and treatment, but more recently estrogens and their receptors have also been implicated in prostate cancer development and tumor progression. Recent experimental and clinical data were reviewed to elucidate pathogenetic mechanisms how estrogens and their receptors may affect prostate carcinogenesis and tumor progression. The estrogen receptor beta (ERβ) is the most prevalent ER in the human prostate, while the estrogen receptor alpha (ERα) is restricted to basal cells of the prostatic epithelium and stromal cells. In high grade prostatic intraepithelial neoplasia (HGPIN), the ERα is up-regulated and most likely mediates carcinogenic effects of estradiol as demonstrated in animal models. The partial loss of the ERβ in HGPIN indicates that the ERβ acts as a tumor suppressor. The tumor promoting function of the TMPRSS2-ERG fusion, a major driver of prostate carcinogenesis, is triggered by the ERα and repressed by the ERβ. The ERβ is generally retained in hormone naïve and metastatic prostate cancer, but is partially lost in castration resistant disease. The progressive emergence of the ERα and ERα-regulated genes (eg, progesterone receptor (PR), PS2, TMPRSS2-ERG fusion, and NEAT1) during prostate cancer progression and hormone refractory disease suggests that these tumors can bypass the AR by using estrogens and progestins for their growth. In addition, nongenomic estrogen signaling pathways mediated by orphan receptors (eg, GPR30 and ERRα) has also been implicated in prostate cancer progression. Increasing evidences demonstrate that local estrogen signaling mechanisms are required for prostate carcinogenesis and tumor progression. Despite the recent progress in this research topic, the translation of the current information into potential therapeutic applications remains highly challenging and clearly warrants further investigation. © 2017 Wiley Periodicals, Inc.

  12. Does estrogen play a role in response to adjuvant bone-targeted therapies?

    PubMed Central

    Russell, Kent; Amir, Eitan; Paterson, Alexander; Josse, Robert; Addison, Christina; Kuchuk, Iryna; Clemons, Mark

    2013-01-01

    Bone remains the most common site of breast cancer recurrence. The results of population studies, pre-clinical research and clinical studies in patients with metastatic disease provided a rationale for testing bone-targeted agents in the adjuvant setting. Despite the initial optimism, results from eight prospectively designed, randomized control studies powered to assess the value of adjuvant bone-targeted therapy in early breast cancer are conflicting. Data have shown that, where benefit exists, it tends to be in women with a “low estrogen environment”, either through menopause or suppression of ovarian function. In this manuscript, we review clinical data supporting the hypothesis that estrogen levels may play a part in explaining the response of patients to bone-targeted agents in the adjuvant setting. The results presented to date suggest that there may be data supporting a unifying role for estrogen in adjuvant trials. However, in the absence of any prospective randomized trials in which estrogen data has been systematically collected we cannot specifically answer this question. We await the results of the Oxford overview analysis of individual patient data with interest. PMID:26909288

  13. Evaluation of Follicular Synchronization Caused by Estrogen Administration and Its Reproductive Outcome

    PubMed Central

    Wu, Bi; Shi, Yan; Gong, Xia; Yu, Lin; Chen, Qiuju; Wang, Jian; Sun, Zhaogui

    2015-01-01

    To evaluate multiple follicular development synchronization after estrogen stimulation in prepubertal mice, follicular responsiveness to gonadotropin superovulation, the prospective reproductive potential and ovarian polycystic ovary syndrome (PCOS)-like symptoms at adulthood, prepubertal mice were intraperitoneally injected with estrogen to establish an animal model with solvent as control. When synchronized tertiary follicles in ovaries, in vitro oocyte maturation and fertilization rates, blastocyst formation rate, developmental potential into offspring by embryo transfer, adult fertility and PCOS-like symptoms, and involved molecular mechanisms were focused, it was found that estrogen stimulation (10μg/gBW) leads to follicular development synchronization at the early tertiary stage in prepubertal mice; reproduction from oocytes to offspring could be realized by means of the artificial reproductive technology though the model mice lost their natural fertility when they were reared to adulthood; and typical symptoms of PCOS, except changes in inflammatory pathways, were not remained up to adulthood. So in conclusion, estrogen can lead to synchronization in follicular development in prepubertal mice, but does not affect reproductive outcome of oocytes, and no typical symptoms of PCOS remained at adulthood despite changes related to inflammation. PMID:26010950

  14. Prevention and Early Detection of Prostate Cancer

    PubMed Central

    Cuzick, Jack; Thorat, Mangesh A.; Andriole, Gerald; Brawley, Otis W.; Brown, Powel H.; Culig, Zoran; Eeles, Rosalind A.; Ford, Leslie G.; Hamdy, Freddie C.; Holmberg, Lars; Ilic, Dragan; Key, Timothy J.; La Vecchia, Carlo; Lilja, Hans; Marberger, Michael; Meyskens, Frank L.; Minasian, Lori M.; Parker, Chris; Parnes, Howard L.; Perner, Sven; Rittenhouse, Harry; Schalken, Jack; Schmid, Hans-Peter; Schmitz-Dräger, Bernd J.; Schröder, Fritz H.; Stenzl, Arnulf; Tombal, Bertrand; Wilt, Timothy J.; Wolk, Alicja

    2014-01-01

    Prostate cancer is one of the most common cancers in men and the global burden of this disease is rising. Lifestyle modifications like smoking cessation, exercise and weight control offer opportunities to decrease the risk of developing prostate cancer. Early detection of prostate cancer by PSA screening remains controversial; yet, changes in PSA threshold, frequency of screening, and addition of other biomarkers have potential to minimise overdiagnosis associated with PSA screening. Several new biomarkers appear promising in individuals with elevated PSA levels or those diagnosed with prostate cancer, these are likely to guide in separating individuals who can be spared of aggressive treatment from those who need it. Several pharmacological agents like 5α-reductase inhibitors, aspirin etc. have a potential to prevent development of prostate cancer. In this review, we discuss the current evidence and research questions regarding prevention, early detection of prostate cancer and management of men either at high risk of prostate cancer or diagnosed with low-grade prostate cancer. PMID:25281467

  15. Outcomes Associated With Early Preventive Dental Care Among Medicaid-Enrolled Children in Alabama

    PubMed Central

    Morrisey, Michael A.; Sen, Bisakha

    2017-01-01

    Importance There is a recommendation for children to have a dental home by 6 months of age, but there is limited evidence supporting the effectiveness of early preventive dental care or whether primary care providers (PCPs) can deliver it. Objective To investigate the effectiveness of preventive dental care in reducing caries-related treatment visits among Medicaid enrollees. Design, Setting, and Participants High-dimensional propensity scores were used to address selection bias for a retrospective cohort study of children continuously enrolled in coverage from the Alabama Medicaid Agency from birth between 2008 and 2012, adjusting for demographics, access to care, and general health service use. Exposures Children receiving preventive dental care prior to age 2 years from PCPs or dentists vs no preventive dental care. Main Outcome and Measures Two-part models estimated caries-related treatment and expenditures. Results Among 19 658 eligible children, 25.8% (n = 3658) received early preventive dental care, of whom 44% were black, 37.6% were white, and 16.3% were Hispanic. Compared with matched children without early preventive dental care, children with dentist-delivered preventive dental care more frequently had a subsequent caries-related treatment (20.6% vs 11.3%, P < .001), higher rate of visits (0.29 vs 0.15 per child-year, P < .001), and greater dental expenditures ($168 vs $87 per year, P < .001). Dentist-delivered preventive dental care was associated with an increase in the expected number of caries-related treatment visits by 0.14 per child per year (95% CI, 0.11-0.16) and caries-related treatment expenditures by $40.77 per child per year (95% CI, $30.48-$51.07). Primary care provider–delivered preventive dental care did not significantly affect caries-related treatment use or expenditures. Conclusions and Relevance Children with early preventive care visits from dentists were more likely to have subsequent dental care, including caries

  16. Cross-sex testosterone therapy in ovariectomized mice: addition of low-dose estrogen preserves bone architecture.

    PubMed

    Goetz, Laura G; Mamillapalli, Ramanaiah; Devlin, Maureen J; Robbins, Amy E; Majidi-Zolbin, Masoumeh; Taylor, Hugh S

    2017-11-01

    Cross-sex hormone therapy (XHT) is widely used by transgender people to alter secondary sex characteristics to match their desired gender presentation. Here, we investigate the long-term effects of XHT on bone health using a murine model. Female mice underwent ovariectomy at either 6 or 10 wk and began weekly testosterone or vehicle injections. Dual-energy X-ray absorptiometry (DXA) was performed (20 wk) to measure bone mineral density (BMD), and microcomputed tomography was performed to compare femoral cortical and trabecular bone architecture. The 6-wk testosterone group had comparable BMD with controls by DXA but reduced bone volume fraction, trabecular number, and cortical area fraction and increased trabecular separation by microcomputed tomography. Ten-week ovariectomy/XHT maintained microarchitecture, suggesting that estrogen is critical for bone acquisition during adolescence and that late, but not early, estrogen loss can be sufficiently replaced by testosterone alone. Given these findings, we then compared effects of testosterone with effects of weekly estrogen or combined testosterone/low-dose estrogen treatment after a 6-wk ovariectomy. Estrogen treatment increased spine BMD and microarchitecture, including bone volume fraction, trabecular number, trabecular thickness, and connectivity density, and decreased trabecular separation. Combined testosterone-estrogen therapy caused similar increases in femur and spine BMD and improved architecture (increased bone volume fraction, trabecular number, trabecular thickness, and connectivity density) to estrogen therapy and were superior compared with mice treated with testosterone only. These results demonstrate estradiol is critical for bone acquisition and suggest a new cross-sex hormone therapy adding estrogens to testosterone treatments with potential future clinical implications for treating transgender youth or men with estrogen deficiency. Copyright © 2017 the American Physiological Society.

  17. Breast cancer risk accumulation starts earlyPrevention must also

    PubMed Central

    Colditz, Graham A; Bohlke, Kari; Berkey, Catherine S.

    2014-01-01

    Purpose Nearly 1 in 4 breast cancers is diagnosed before the age of 50, and many early-stage premalignant lesions are present but not yet diagnosed. Therefore, we review evidence to support the strategy that breast cancer prevention efforts must begin early in life. Methods Literature review Results Exposures during childhood and adolescence affect a woman’s long-term risk of breast cancer, but have received far less research attention than exposures that occur later in life. Breast tissue undergoes rapid cellular proliferation between menarche and first full-term pregnancy, and risk accumulates rapidly until the terminal differentiation that accompanies first pregnancy. Evidence on childhood diet and growth in height, and adolescent alcohol intake, among other adolescent factors are related to breast cancer risk and risk of premalignant proliferative benign lesions. Conclusion Breast cancer prevention efforts will have the greatest effect when initiated at an early age and continued over a lifetime. Gaps in knowledge are identified and deserve increase attention to inform prevention. PMID:24820413

  18. Targeted Radiotherapy of Estrogen Receptor Positive Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan Rajagopalan

    The overall objectives of the proposal were to develop estrogen receptor (ER) binding small molecule radiopharmaceuticals for targeted radiotherapy of ER positive (ER+) tumors. In particular, this proposal focused on embedding a {sup 186,188}Re or a {sup 32}P radionuclide into an estrogen steroidal framework by isosteric substitution such that the resulting structure is topologically similar to the estrogen (estrogen mimic). The estrogen mimic molecules expected to bind to the ER and exhibit biodistribution akin to that of native estrogen due to structural mimicry. It is anticipated that the {sup 186,188}Re- or a {sup 32}P-containing estrogen mimics will be useful formore » targeted molecular radiotherapy of ER+ tumors. It is well established that the in vivo target tissue uptake of estrogen like steroidal molecules is related to the binding of the steroids to sex hormone binding globulin (SHBG). SHBG is important in the uptake of estrogens and testosterone in target tissues by SHBG receptors on the cell surface. However, hitherto the design of estrogen like small molecule radiopharmaceuticals was focused on optimizing ER binding characteristics without emphasis on SHBG binding properties. Consequently, even the molecules with good ER affinity in vitro, performed poorly in biodistribution studies. Based on molecular modeling studies the proposal focused on developing estrogen mimics 1-3 which were topologically similar to native estrogens, and form hydrogen bonds in ER and SHBG in the same manner as those of native estrogens. To this end the technical objectives of the proposal focused on synthesizing the rhenium-estrone and estradiol mimics 1 and 2 respectively, and phosphorous estradiol mimic 3 and to assess their stability and in vitro binding characteristics to ER and SHBG.« less

  19. Estrogen Signaling in Metabolic Inflammation

    PubMed Central

    Monteiro, Rosário; Teixeira, Diana; Calhau, Conceição

    2014-01-01

    There is extensive evidence supporting the interference of inflammatory activation with metabolism. Obesity, mainly visceral obesity, is associated with a low-grade inflammatory state, triggered by metabolic surplus where specialized metabolic cells such as adipocytes activate cellular stress initiating and sustaining the inflammatory program. The increasing prevalence of obesity, resulting in increased cardiometabolic risk and precipitating illness such as cardiovascular disease, type 2 diabetes, fatty liver, cirrhosis, and certain types of cancer, constitutes a good example of this association. The metabolic actions of estrogens have been studied extensively and there is also accumulating evidence that estrogens influence immune processes. However, the connection between these two fields of estrogen actions has been underacknowledged since little attention has been drawn towards the possible action of estrogens on the modulation of metabolism through their anti-inflammatory properties. In the present paper, we summarize knowledge on the modification inflammatory processes by estrogens with impact on metabolism and highlight major research questions on the field. Understanding the regulation of metabolic inflammation by estrogens may provide the basis for the development of therapeutic strategies to the management of metabolic dysfunctions. PMID:25400333

  20. Early Intervention Methods for Child Abuse Prevention.

    ERIC Educational Resources Information Center

    Wolfe, David A.

    A longitudinal study was made of a prevention-oriented early intervention program intended to help parents who had insufficient and inappropriate childrearing abilities. The program was designed for young parents with fewer than 5 years of childrearing experience; participants were referred from a child protection agency following investigation of…

  1. Corruption Early Prevention: Decision Support System for President of the Republic of Indonesia

    NASA Astrophysics Data System (ADS)

    Sasmoko; Widhoyoko, S. A.; Ariyanto, S.; Indrianti, Y.; Noerlina; Muqsith, A. M.; Alamsyah, M.

    2017-01-01

    Corruption is an extraordinary crime, and then the prevention must also be extraordinary, simultaneously (national) in the form of early warning that involves all elements; government, industry, and society. To realize it the system needs to be built which in this study is called the Corruption Early Prevention (CEP) as a Decision Support System for President of the Republic of Indonesia. This study aims to examine 1) how is the construct of the Corruption Early Prevention as a Decision Support System for President of the Republic of Indonesia?, and 2) how is the design form of the system of Corruption Early Prevention as a Decision Support System for President of Republic of Indonesia? The research method is using Neuro-Research which is the collaboration of qualitative and quantitative research methods and the model development of Information Technology (IT). The research found that: 1) the construct of CEP is theoretically feasible, valid and reliable by content to be developed in the context of the prevention of corruption in Indonesia as an early prevention system that diagnoses Indonesia simultaneously and in real time, and 2) the concept of system design and business process of CEP is predicted to be realized in the IT-based program.

  2. Hormone Therapy for the Primary Prevention of Chronic Conditions in Postmenopausal Women: US Preventive Services Task Force Recommendation Statement.

    PubMed

    Grossman, David C; Curry, Susan J; Owens, Douglas K; Barry, Michael J; Davidson, Karina W; Doubeni, Chyke A; Epling, John W; Kemper, Alex R; Krist, Alex H; Kurth, Ann E; Landefeld, C Seth; Mangione, Carol M; Phipps, Maureen G; Silverstein, Michael; Simon, Melissa A; Tseng, Chien-Wen

    2017-12-12

    Menopause occurs at a median age of 51.3 years, and the average US woman who reaches menopause is expected to live another 30 years. The prevalence and incidence of most chronic conditions, such as coronary heart disease, dementia, stroke, fractures, and breast cancer, increase with age; however, the excess risk for these conditions that can be attributed to menopause alone is uncertain. Since the publication of findings from the Women's Health Initiative that hormone therapy use is associated with serious adverse health effects in postmenopausal women, use of menopausal hormone therapy has declined. To update the 2012 US Preventive Services Task Force (USPSTF) recommendation on the use of menopausal hormone therapy for the primary prevention of chronic conditions. The USPSTF reviewed the evidence on the benefits and harms of systemic (ie, oral or transdermal) hormone therapy for the prevention of chronic conditions in postmenopausal women and whether outcomes vary among women in different subgroups or by timing of intervention after menopause. The review did not address hormone therapy for preventing or treating menopausal symptoms. Although the use of hormone therapy to prevent chronic conditions in postmenopausal women is associated with some benefits, there are also well-documented harms. The USPSTF determined that the magnitude of both the benefits and the harms of hormone therapy in postmenopausal women is small to moderate. Therefore, the USPSTF concluded with moderate certainty that combined estrogen and progestin has no net benefit for the primary prevention of chronic conditions for most postmenopausal women with an intact uterus and that estrogen alone has no net benefit for the primary prevention of chronic conditions for most postmenopausal women who have had a hysterectomy. The USPSTF recommends against the use of combined estrogen and progestin for the primary prevention of chronic conditions in postmenopausal women. (D recommendation) The USPSTF

  3. Estrogen Treatment After Ovariectomy Protects Against Fatty Liver and May Improve Pathway-Selective Insulin Resistance

    PubMed Central

    Zhu, Lin; Brown, William C.; Cai, Qing; Krust, Andrée; Chambon, Pierre; McGuinness, Owen P.; Stafford, John M.

    2013-01-01

    Pathway-selective insulin resistance where insulin fails to suppress hepatic glucose production but promotes liver fat storage may underlie glucose and lipid abnormalities after menopause. We tested the mechanisms by which estrogen treatment may alter the impact of a high-fat diet (HFD) when given at the time of ovariectomy (OVX) in mice. Female C57BL/6J mice underwent sham operation, OVX, or OVX with estradiol (E2) treatment and were fed an HFD. Hyperinsulinemic-euglycemic clamps were used to assess insulin sensitivity, tracer incorporation into hepatic lipids, and liver triglyceride export. OVX mice had increased adiposity that was prevented with E2 at the time of OVX. E2 treatment increased insulin sensitivity with OVX and HFD. In sham and OVX mice, HFD feeding induced fatty liver, and insulin reduced hepatic apoB100 and liver triglyceride export. E2 treatment reduced liver lipid deposition and prevented the decrease in liver triglyceride export during hyperinsulinemia. In mice lacking the liver estrogen receptor α, E2 after OVX limited adiposity but failed to improve insulin sensitivity, to limit liver lipid deposition, and to prevent insulin suppression of liver triglyceride export. In conclusion, estrogen treatment may reverse aspects of pathway-selective insulin resistance by promoting insulin action on glucose metabolism but limiting hepatic lipid deposition. PMID:22966069

  4. The effects of Cordyceps sinensis phytoestrogen on estrogen deficiency-induced osteoporosis in ovariectomized rats.

    PubMed

    Zhang, Da-wei; Wang, Zhen-lin; Qi, Wei; Zhao, Guang-yue

    2014-12-13

    Isoflavones are naturally occurring plant chemicals belonging to the "phytoestrogen" class. The aim of the present study was to examine the effects of isoflavones obtained from Cordyceps sinensis (CSIF) on development of estrogen deficiency-induced osteoporosis in ovariectomized rats. After the rats were treated orally with CSIF, serum alkaline phosphatase (ALP), tartarate resistant acid phosphatase (TRAP), serum osteocalcin (OC), homocysteine (HCY), C-terminal crosslinked telopeptides of collagen type I (CTX), estradiol and interferonγ (IFN-γ) level were examined. At the same time, the urine calcium, plasma calcium, plasma phosphorus and the mass of uterus, thymus and body were also examined. The beneficial effects of CSIF on improvement of osteoporosis in rats were attributable mainly to decrease ALP activity, TRAP activity, CTX level and IFN-γ level. At the same time, CSIF also increase the OC and estradiol level in ovariectomized osteopenic rats. The histological examination clearly showed that dietary CSIF can prevent bone loss caused by estrogen deficiency. The significant estrogenic activity of CSIF demonstrated that CSIF has significant estrogenic effects in OVX rats.

  5. Analysis of estrogenic activity in environmental waters in Rio de Janeiro state (Brazil) using the yeast estrogen screen.

    PubMed

    Dias, Amanda Cristina Vieira; Gomes, Frederico Wegenast; Bila, Daniele Maia; Sant'Anna, Geraldo Lippel; Dezotti, Marcia

    2015-10-01

    The estrogenicity of waters collected from an important hydrological system in Brazil (Paraiba do Sul and Guandu Rivers) was assessed using the yeast estrogen screen (YES) assay. Sampling was performed in rivers and at the outlets of conventional water treatment plants (WTP). The removal of estrogenic activity by ozonation and chlorination after conventional water treatment (clarification and sand filtration) was investigated employing samples of the Guandu River spiked with estrogens and bisphenol A (BPA). The results revealed a preoccupying incidence of estrogenic activity at levels higher than 1ngL(-1) along some points of the rivers. Another matter of concern was the number of samples from WTPs presenting estrogenicity surpassing 1ngL(-1). The oxidation techniques (ozonation and chlorination) were effective for the removal of estrogenic activity and the combination of both techniques led to good results using less amounts of oxidants. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Estrogen-Induced Depurination of DNA: A Novel Target for Breast Cancer Prevention

    DTIC Science & Technology

    2007-05-01

    Guttenplan, J., Hart, E., Ingle, J., Jankowiak, R ., Muti, P., Rogan, E., Russo, J., Santen, R . and Sutter, T . Catechol estrogen quinones as initiators of...Natl. Cancer Inst. 94 (2002) 606–616. [15] R . Kaaks, F. Berrino, T . Key, S. Rinaldi, L. Dossus, C. Biessy, G. Secreto, P. Amiano, S. Bingham, H...Tjonneland, M.D. Chirlaque, A. Trichopoulou, D. Trichopoulos, R . Tumino, P. Vineis, T . Norat, P. Ferrari, N. Slimani, E. Riboli, Serum sex steroids in

  7. Estrogen promotes cutaneous wound healing via estrogen receptor β independent of its antiinflammatory activities

    PubMed Central

    Campbell, Laura; Emmerson, Elaine; Davies, Faith; Gilliver, Stephen C.; Krust, Andre; Chambon, Pierre; Ashcroft, Gillian S.

    2010-01-01

    Post-menopausal women have an increased risk of developing a number of degenerative pathological conditions, linked by the common theme of excessive inflammation. Systemic estrogen replacement (in the form of hormone replacement therapy) is able to accelerate healing of acute cutaneous wounds in elderly females, linked to its potent antiinflammatory activity. However, in contrast to many other age-associated pathologies, the detailed mechanisms through which estrogen modulates skin repair, particularly the cell type–specific role of the two estrogen receptors, ERα and ERβ, has yet to be determined. Here, we use pharmacological activation and genetic deletion to investigate the role of both ERα and ERβ in cutaneous tissue repair. Unexpectedly, we report that exogenous estrogen replacement to ovariectomised mice in the absence of ERβ actually delayed wound healing. Moreover, healing in epidermal-specific ERβ null mice (K14-cre/ERβL2/L2) largely resembled that in global ERβ null mice. Thus, the beneficial effects of estrogen on skin wound healing are mediated by epidermal ERβ, in marked contrast to most other tissues in the body where ERα is predominant. Surprisingly, agonists to both ERα and ERβ are potently antiinflammatory during skin repair, indicating clear uncoupling of inflammation and overall efficiency of repair. Thus, estrogen-mediated antiinflammatory activity is not the principal factor in accelerated wound healing. PMID:20733032

  8. Estrogens and cognition: Friends or foes?: An evaluation of the opposing effects of estrogens on learning and memory.

    PubMed

    Korol, Donna L; Pisani, Samantha L

    2015-08-01

    This article is part of a Special Issue "Estradiol and cognition". Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings showing that the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Generative Mechanisms in Early Childhood Interventions: A Confirmatory Research Framework for Prevention.

    PubMed

    Reynolds, Arthur J; Ou, Suh-Ruu

    2016-10-01

    This article reviews methodological and analytic approaches and impact evidence for understanding the mechanisms of effects of early childhood interventions, including delinquency and violence prevention. Illustrations from longitudinal studies of preschool preventive interventions are provided. We restrict our attention to preventive interventions for children from birth to age 5, including evidence from the Chicago Longitudinal Study (CLS), which investigates the impact of an established school-based early childhood intervention. Frameworks and evidence will be organized according to the Five-Hypothesis Model (5HM), which postulates that a variety of early childhood interventions impact later well-being through the promotion of cognitive and scholastic advantages, motivational advantages, social adjustment, family support behaviors, and school supports. Recommendations are made for advancing confirmatory approaches for identifying the most effective prevention programs using identification of generative mechanisms as a major methodological criterion.

  10. Generative Mechanisms in Early Childhood Interventions: A Confirmatory Research Framework for Prevention

    PubMed Central

    Reynolds, Arthur J.; Ou, Suh-Ruu

    2015-01-01

    This article reviews methodological and analytic approaches, and impact evidence for understanding the mechanisms of effects of early childhood interventions, including delinquency and violence prevention. Illustrations from longitudinal studies of preschool preventive interventions are provided. We restrict our attention to preventive interventions for children from birth to age 5, including evidence from the Chicago Longitudinal Study (CLS), which investigates the impact of an established school-based early childhood intervention. Frameworks and evidence will be organized according to the 5-Hypothesis Model (5HM), which postulates that a variety of early childhood interventions impact later well-being through the promotion of cognitive and scholastic advantages, motivational advantages, social adjustment, family support behaviors, and school supports. Recommendations are made for advancing confirmatory approaches for identifying the most effective prevention programs using identification of generative mechanisms as a major methodological criterion. PMID:26497315

  11. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder.

    PubMed

    Dawson, Geraldine

    2008-01-01

    Advances in the fields of cognitive and affective developmental neuroscience, developmental psychopathology, neurobiology, genetics, and applied behavior analysis have contributed to a more optimistic outcome for individuals with autism spectrum disorder (ASD). These advances have led to new methods for early detection and more effective treatments. For the first time, prevention of ASD is plausible. Prevention will entail detecting infants at risk before the full syndrome is present and implementing treatments designed to alter the course of early behavioral and brain development. This article describes a developmental model of risk, risk processes, symptom emergence, and adaptation in ASD that offers a framework for understanding early brain plasticity in ASD and its role in prevention of the disorder.

  12. Estrogen and estrogen receptor alpha promotes malignancy and osteoblastic tumorigenesis in prostate cancer.

    PubMed

    Mishra, Sweta; Tai, Qin; Gu, Xiang; Schmitz, James; Poullard, Ashley; Fajardo, Roberto J; Mahalingam, Devalingam; Chen, Xiaodong; Zhu, Xueqiong; Sun, Lu-Zhe

    2015-12-29

    The role of estrogen signaling in regulating prostate tumorigenesis is relatively underexplored. Although, an increasing body of evidence has linked estrogen receptor beta (ERß) to prostate cancer, the function of estrogen receptor alpha (ERα) in prostate cancer is not very well studied. We have discovered a novel role of ERα in the pathogenesis of prostate tumors. Here, we show that prostate cancer cells express ERα and estrogen induces oncogenic properties in prostate cancer cells through ERα. Importantly, ERα knockdown in the human prostate cancer PacMetUT1 cells as well as pharmacological inhibition of ERα with ICI 182,780 inhibited osteoblastic lesion formation and lung metastasis in vivo. Co-culture of pre-osteoblasts with cancer cells showed a significant induction of osteogenic markers in the pre-osteoblasts, which was attenuated by knockdown of ERα in cancer cells suggesting that estrogen/ERα signaling promotes crosstalk between cancer and osteoblastic progenitors to stimulate osteoblastic tumorigenesis. These results suggest that ERα expression in prostate cancer cells is essential for osteoblastic lesion formation and lung metastasis. Thus, inhibition of ERα signaling in prostate cancer cells may be a novel therapeutic strategy to inhibit the osteoblastic lesion development as well as lung metastasis in patients with advanced prostate cancer.

  13. Estrogen receptors and biologic response in rat parathyroid tissue and C cells.

    PubMed Central

    Naveh-Many, T; Almogi, G; Livni, N; Silver, J

    1992-01-01

    The expression of the PTH and calcitonin genes is dramatically decreased by 1,25(OH)2D3 in vivo, and the PTH gene expression is increased by hypocalcemia. We have now studied the effect of estrogens on the expression of these genes in vivo. 17 beta-Estradiol, given to ovariectomized rats, led to a fourfold increase in PTH mRNA and calcitonin mRNA levels. These effects occurred 24 h after single injections of 37-145 nmol estradiol, or after constant infusions of 12 pmol/d for 1 or 2 wk, where there was no effect on serum calcium levels. The estrogen receptor mRNA was demonstrated in the thyroparathyroid tissue by polymerase chain reaction. The estrogen binding was localized to the parathyroid and C cells by immunohistochemistry. Uterus weight was increased by repeated larger doses (73 nmol/d x 7) of estradiol, but not by the small doses (12 pmol/d for 1 or 2 wk) which were effective on the PTH and calcitonin genes, suggesting a sensitive endocrine effect. These results confirm that the parathyroid and C cells are target organs for estrogen, leading to an increased expression of PTH and calcitonin, which by their combined anabolic effect on bone would help prevent osteoporosis. Images PMID:1469095

  14. Endometrial Cancer Prevention (PDQ®)—Health Professional Version

    Cancer.gov

    Endometrial cancer prevention strategies are associated with endogenous and exogenous estrogen effects. Get detailed information about known risk factors and prevention strategies for endometrial cancer in this summary for clinicians.

  15. The role of estrogens and estrogen receptor signaling pathways in cancer and infertility: the case of schistosomes.

    PubMed

    Botelho, Mónica C; Alves, Helena; Barros, Alberto; Rinaldi, Gabriel; Brindley, Paul J; Sousa, Mário

    2015-06-01

    Schistosoma haematobium, a parasitic flatworm that infects more than 100 million people, mostly in the developing world, is the causative agent of urogenital schistosomiasis, and is associated with a high incidence of squamous cell carcinoma (SCC) of the bladder. Schistosomiasis haematobia also appears to negatively influence fertility, and is particularly associated with female infertility. Given that estrogens and estrogen receptors are key players in human reproduction, we speculate that schistosome estrogen-like molecules may contribute to infertility through hormonal imbalances. Here, we review recent findings on the role of estrogens and estrogen receptors on both carcinogenesis and infertility associated with urogenital schistosomiasis and discuss the basic hormonal mechanisms that might be common in cancer and infertility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The Estrogen Receptors: An Overview from Different Perspectives.

    PubMed

    Eyster, Kathleen M

    2016-01-01

    The estrogen receptors, ERα, ERβ, and GPER, mediate the effects of estrogenic compounds on their target tissues. Estrogen receptors are located in the tissues of the female reproductive tract and breast as one would expect, but also in tissues as diverse as bone, brain, liver, colon, skin, and salivary gland. The purpose of this discussion of the estrogen receptors is to provide a brief overview of the estrogen receptors and estrogen action from perspectives such as the historical, physiological, pharmacological, pathological, structural, and ligand perspectives.

  17. Estrogen Induced Metastatic Modulators MMP-2 and MMP-9 Are Targets of 3,3′-Diindolylmethane in Thyroid Cancer

    PubMed Central

    Rajoria, Shilpi; Suriano, Robert; George, Andrea; Shanmugam, Arulkumaran; Schantz, Stimson P.; Geliebter, Jan; Tiwari, Raj K.

    2011-01-01

    Background Thyroid cancer is the most common endocrine related cancer with increasing incidences during the past five years. Current treatments for thyroid cancer, such as surgery or radioactive iodine therapy, often require patients to be on lifelong thyroid hormone replacement therapy and given the significant recurrence rates of thyroid cancer, new preventive modalities are needed. The present study investigates the property of a natural dietary compound found in cruciferous vegetables, 3,3′-diindolylmethane (DIM), to target the metastatic phenotype of thyroid cancer cells through a functional estrogen receptor. Methodology/Principal Findings Thyroid cancer cell lines were treated with estrogen and/or DIM and subjected to in vitro adhesion, migration and invasion assays to investigate the anti-metastatic and anti-estrogenic effects of DIM. We observed that DIM inhibits estrogen mediated increase in thyroid cell migration, adhesion and invasion, which is also supported by ER-α downregulation (siRNA) studies. Western blot and zymography analyses provided direct evidence for this DIM mediated inhibition of E2 enhanced metastasis associated events by virtue of targeting essential proteolytic enzymes, namely MMP-2 and MMP-9. Conclusion/Significance Our data reports for the first time that DIM displays anti-estrogenic like activity by inhibiting estradiol enhanced thyroid cancer cell proliferation and in vitro metastasis associated events, namely adhesion, migration and invasion. Most significantly, MMP-2 and MMP-9, which are known to promote and enhance metastasis, were determined to be targets of DIM. This anti-estrogen like property of DIM may lead to the development of a novel preventive and/or therapeutic dietary supplement for thyroid cancer patients by targeting progression of the disease. PMID:21267453

  18. Interactions between the cytomegalovirus promoter and the estrogen response element: implications for design of estrogen-responsive reporter plasmids.

    PubMed

    Derecka, K; Wang, C K; Flint, A P F

    2006-07-01

    We aimed to produce an estrogen-responsive reporter plasmid that would permit monitoring of estrogen receptor function in the uterus in vivo. The plasmid pBL-tk-CAT(+)ERE was induced by estrogen in bovine endometrial stromal cells. When the CAT gene was replaced by the secreted alkaline phosphatase SeAP, the resulting construct pBL-tk-SeAP(+)ERE remained estrogen responsive. However when the tk promoter was replaced by the cytomegalovirus (cmv) promoter, the resulting plasmid (pBL-cmv-SeAP(+)ERE) was not estrogen responsive. Inhibition of ERE function was not due to an effect in trans or due to lack of estrogen receptor. It was not due to an interaction between the cmv promoter and the SeAP gene. cmv promoter function was dependent on NF-kappaB, and mutagenesis in the NF-kappaB sites reduced basal reporter expression without imparting responsiveness to estrogen. A mutation in the TATA box also failed to impart estrogen responsiveness. Modeling of DNA accessibility indicated the ERE was inserted at a site accessible to transcription factors. We conclude that the cmv promoter inhibits ERE function in cis when the two sequences are located in the same construct, and that this effect does not involve an interaction between cmv and reporter gene, NF-kappaB sites or the TATA box, or DNA inaccessibility.

  19. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER.

    PubMed

    Barton, Matthias

    2016-07-01

    It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Fluorescent characteristics of estrogenic compounds in landfill leachate.

    PubMed

    Zhanga, Hua; Changb, Cheng-Hsuan; Lü, Fan; Su, Ay; Lee, Duu-Jong; He, Pin-Jing; Shao, Li-Ming

    2009-08-01

    Estrogens in landfill leachate could probably contaminate receiving water sources if not properly polished before discharge. This work measured, using an estrogen receptor-alpha competitor screening assay, the estrogenic potentials of leachate samples collected at a local sanitary landfill in Shanghai, China and their compounds fractionated by molecular weights. The chemical structures of the constituent compounds were characterized using fluorescence excitation and emission matrix (EEM). The organic matters of molecular weight <600 Da and of 3000-14,000 Da contributed most of the estrogenic potentials of the raw leachates. The former were considered as the typical endocrine disrupting compounds in dissolved state; while the latter the fulvic acids with high aromaticity that were readily adsorbed with estrogens (bound state). Statistical analysis on EEM peaks revealed that the chemical structures of noted estrogens in dissolved state and in bound state were not identical. Aerobic treatment effectively removed dissolved estrogens, but rarely removed those bound estrogens.

  1. Trajectories and phenotypes with estrogen exposures across the lifespan: What does Goldilocks have to do with it?

    PubMed Central

    Koebele, Stephanie V.; Bimonte-Nelson, Heather A.

    2015-01-01

    Estrogens impact the organization and activation of the mammalian brain in both sexes, with sex-specific critical windows. Throughout the female lifespan estrogens activate brain substrates previously organized by estrogens, and estrogens can induce non-transient brain and behavior changes into adulthood. Therefore, from early life through the transition to reproductive senescence and beyond, estrogens are potent modulators of the brain and behavior. Organizational, reorganizational, and activational hormone events likely impact the trajectory of brain profiles during aging. A “brain profile,” or quantitative brain measurement for research purposes, is typically a snapshot in time, but in life a brain profile is anything but static – it is in flux, variable, and dynamic. Akin to this, the only thing continuous and consistent about hormone exposures across a female's lifespan is that they are noncontinuous and inconsistent, building and rebuilding on past exposures to create a present brain and behavioral landscape. Thus, hormone variation is especially rich in females, and is likely the destiny for maximal responsiveness in the female brain. The magnitude and direction of estrogenic effects on the brain and its functions depend on a myriad of factors; a “Goldilocks” phenomenon exists for estrogens, whereby if the timing, dose, and regimen for an individual are just right, markedly efficacious effects present. Data indicate that exogenously-administered estrogens can bestow beneficial cognitive effects in some circumstances, especially when initiated in a window of opportunity such as the menopause transition. Could it be that the age-related reduction in efficacy of estrogens reflects the closure of a late-in-life critical window occurring around the menopause transition? Information from classic and contemporary works studying organizational/activational estrogen actions, in combination with acknowledging the tendency for maximal responsiveness to

  2. A recombinant estrogen receptor fragment-based homogeneous fluorescent assay for rapid detection of estrogens.

    PubMed

    Wang, Dan; Xie, Jiangbi; Zhu, Xiaocui; Li, Jinqiu; Zhao, Dongqin; Zhao, Meiping

    2014-05-15

    In this work, we demonstrate a novel estrogenic receptor fragment-based homogeneous fluorescent assay which enables rapid and sensitive detection of 17β-estradiol (E2) and other highly potent estrogens. A modified human estrogenic receptor fragment (N-His × 6-hER270-595-C-Strep tag II) has been constructed that contains amino acids 270-595 of wild-type human estrogenic receptor α (hER270-595) and two specific tags (6 × His and Strep tag II) fused to the N and C terminus, respectively. The designed receptor protein fragment could be easily produced by prokaryotic expression with high yield and high purity. The obtained protein exhibits high binding affinity to E2 and the two tags greatly facilitate the application of the recombinant protein. Taking advantage of the unique spectroscopic properties of coumestrol (CS), a fluorescent phytoestrogen, a CS/hER270-595-based fluorescent assay has been developed which can sensitively respond to E2 within 1.0 min with a linear working range from 0.1 to 20 ng/mL and a limit of detection of 0.1 ng/mL. The assay was successfully applied for rapid detection of E2 in the culture medium of rat hippocampal neurons. The method also holds great potential for high-throughput monitoring the variation of estrogen levels in complex biological fluids, which is crucial for investigation of the molecular basis of various estrogen-involved processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Estrogen anti-inflammatory activity on human monocytes is mediated through cross-talk between estrogen receptor ERα36 and GPR30/GPER1.

    PubMed

    Pelekanou, Vasiliki; Kampa, Marilena; Kiagiadaki, Foteini; Deli, Alexandra; Theodoropoulos, Panayiotis; Agrogiannis, George; Patsouris, Efstratios; Tsapis, Andreas; Castanas, Elias; Notas, George

    2016-02-01

    Estrogens are known modulators of monocyte/macrophage functions; however, the underlying mechanism has not been clearly defined. Recently, a number of estrogen receptor molecules and splice variants were identified that exert different and sometimes opposing actions. We assessed the expression of estrogen receptors and explored their role in mediating estrogenic anti-inflammatory effects on human primary monocytes. We report that the only estrogen receptors expressed are estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30/G-protein estrogen receptor 1, in a sex-independent manner. 17-β-Estradiol inhibits the LPS-induced IL-6 inflammatory response, resulting in inhibition of NF-κB transcriptional activity. This is achieved via a direct physical interaction of ligand-activated estrogen receptor-α 36-kDa splice variant with the p65 component of NF-κB in the nucleus. G-protein coupled receptor 30/G-protein estrogen receptor 1, which also physically interacts with estrogen receptor-α 36-kDa splice variant, acts a coregulator in this process, because its inhibition blocks the effect of estrogens on IL-6 expression. However, its activation does not mimic the effect of estrogens, on neither IL-6 nor NF-κB activity. Finally, we show that the estrogen receptor profile observed in monocytes is not modified during their differentiation to macrophages or dendritic cells in vitro and is shared in vivo by macrophages present in atherosclerotic plaques. These results position estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30 as important players and potential therapeutic targets in monocyte/macrophage-dependent inflammatory processes. © Society for Leukocyte Biology.

  4. Coexposure to phytoestrogens and bisphenol a mimics estrogenic effects in an additive manner.

    PubMed

    Katchy, Anne; Pinto, Caroline; Jonsson, Philip; Nguyen-Vu, Trang; Pandelova, Marchela; Riu, Anne; Schramm, Karl-Werner; Samarov, Daniel; Gustafsson, Jan-Åke; Bondesson, Maria; Williams, Cecilia

    2014-03-01

    Endocrine-disrupting chemicals (EDC) are abundant in our environment. A number of EDCs, including bisphenol A (BPA) can bind to the estrogen receptors (ER), ERα and ERβ, and may contribute to estrogen-linked diseases such as breast cancer. Early exposure is of particular concern; many EDCs cross the placenta and infants have measurable levels of, eg, BPA. In addition, infants are frequently fed soy-based formula (SF) that contains phytoestrogens. Effects of combined exposure to xeno- and phytoestrogens are poorly studied. Here, we extensively compared to what extent BPA, genistein, and an extract of infant SF mimic estrogen-induced gene transcription and cell proliferation. We investigated ligand-specific effects on ER activation in HeLa-ERα and ERβ reporter cells; on proliferation, genome-wide gene regulation and non-ER-mediated effects in MCF7 breast cancer cells; and how coexposure influenced these effects. The biological relevance was explored using enrichment analyses of differentially regulated genes and clustering with clinical breast cancer profiles. We demonstrate that coexposure to BPA and genistein, or SF, results in increased functional and transcriptional estrogenic effects. Using statistical modeling, we determine that BPA and phytoestrogens act in an additive manner. The proliferative and transcriptional effects of the tested compounds mimic those of 17β-estradiol, and are abolished by cotreatment with an ER antagonist. Gene expression profiles induced by each compound clustered with poor prognosis breast cancer, indicating that exposure may adversely affect breast cancer prognosis. This study accentuates that coexposure to BPA and soy-based phytoestrogens results in additive estrogenic effects, and may contribute to estrogen-linked diseases, including breast cancer.

  5. Coexposure to Phytoestrogens and Bisphenol A Mimics Estrogenic Effects in an Additive Manner

    PubMed Central

    Katchy, Anne; Pinto, Caroline; Williams, Cecilia

    2014-01-01

    Endocrine-disrupting chemicals (EDC) are abundant in our environment. A number of EDCs, including bisphenol A (BPA) can bind to the estrogen receptors (ER), ERα and ERβ, and may contribute to estrogen-linked diseases such as breast cancer. Early exposure is of particular concern; many EDCs cross the placenta and infants have measurable levels of, eg, BPA. In addition, infants are frequently fed soy-based formula (SF) that contains phytoestrogens. Effects of combined exposure to xeno- and phytoestrogens are poorly studied. Here, we extensively compared to what extent BPA, genistein, and an extract of infant SF mimic estrogen-induced gene transcription and cell proliferation. We investigated ligand-specific effects on ER activation in HeLa-ERα and ERβ reporter cells; on proliferation, genome-wide gene regulation and non-ER–mediated effects in MCF7 breast cancer cells; and how coexposure influenced these effects. The biological relevance was explored using enrichment analyses of differentially regulated genes and clustering with clinical breast cancer profiles. We demonstrate that coexposure to BPA and genistein, or SF, results in increased functional and transcriptional estrogenic effects. Using statistical modeling, we determine that BPA and phytoestrogens act in an additive manner. The proliferative and transcriptional effects of the tested compounds mimic those of 17β-estradiol, and are abolished by cotreatment with an ER antagonist. Gene expression profiles induced by each compound clustered with poor prognosis breast cancer, indicating that exposure may adversely affect breast cancer prognosis. This study accentuates that coexposure to BPA and soy-based phytoestrogens results in additive estrogenic effects, and may contribute to estrogen-linked diseases, including breast cancer. PMID:24284790

  6. The Dual Estrogen Receptor α Inhibitory Effects of the Tissue-Selective Estrogen Complex for Endometrial and Breast Safety

    PubMed Central

    Han, Sang Jun; Begum, Khurshida; Foulds, Charles E.; Hamilton, Ross A.; Bailey, Suzanna; Malovannaya, Anna; Chan, Doug; Qin, Jun

    2016-01-01

    The conjugated estrogen/bazedoxifene tissue-selective estrogen complex (TSEC) is designed to minimize the undesirable effects of estrogen in the uterus and breast tissues and to allow the beneficial effects of estrogen in other estrogen-target tissues, such as the bone and brain. However, the molecular mechanism underlying endometrial and breast safety during TSEC use is not fully understood. Estrogen receptor α (ERα)–estrogen response element (ERE)–DNA pull-down assays using HeLa nuclear extracts followed by mass spectrometry–immunoblotting analyses revealed that, upon TSEC treatment, ERα interacted with transcriptional repressors rather than coactivators. Therefore, the TSEC-mediated recruitment of transcriptional repressors suppresses ERα-mediated transcription in the breast and uterus. In addition, TSEC treatment also degraded ERα protein in uterine tissue and breast cancer cells, but not in bone cells. Interestingly, ERα-ERE-DNA pull-down assays also revealed that, upon TSEC treatment, ERα interacted with the F-box protein 45 (FBXO45) E3 ubiquitin ligase. The loss-of- and gain-of-FBXO45 function analyses indicated that FBXO45 is involved in TSEC-mediated degradation of the ERα protein in endometrial and breast cells. In preclinical studies, these synergistic effects of TSEC on ERα inhibition also suppressed the estrogen-dependent progression of endometriosis. Therefore, the endometrial and breast safety effects of TSEC are associated with synergy between the selective recruitment of transcriptional repressors to ERα and FBXO45-mediated degradation of the ERα protein. PMID:26487511

  7. [Ultraviolet radiation, tobacco smoke and estrogens pathways of influence on skin aging; capabilities of prevention].

    PubMed

    Wojas-Pelc, Anna; Sułowicz, Joanna; Nastałek, Magdalena

    2008-01-01

    Aging refers to the hole human body including the skin, but here it is usually better seen by milieu, repeatedly burdens life quality. There are many theories explaining the process of human aging, but its reasons, irrespectively of their criteria, are numerous and affect one another. Skin aging just like the entire body depends on the influence of genetics, environmental and hormonal factors. Ultraviolet radiation and tobacco smoking have confirmed influence on skin aging. The role of hormonal disorders, particularly estrogens are also underlined. Mechanisms of skin aging induced by UV radiation, tobacco smoke and estrogens are similar and included unfavourable effects of oxidative stress (free radicals) and also disturbances of the TGF beta pathway. Data of many clinical studies proved that avoiding sun and smoking, nucleic acids diet, antioxidant supplementation, everyday use of UV filter, moisturizers, topical use of antioxidants, retinoid derivatives and flavonoids have proved protective the influence to multidirectional process of skin aging.

  8. ANALYSIS OF LAGOON SAMPLES FROM DIFFERENT CONCENTRATED ANIMAL FEEDING OPERATIONS FOR ESTROGENS AND ESTROGEN CONJUGATES

    EPA Science Inventory

    Although Concentrated Animal Feeding Operations CAFOs) have been identified as potentially important sources for the release of estrogens into the environment, information is lacking on the concentrations of estrogens in whole lagoon effluents (including suspended solids)which ar...

  9. Comparative estrogenicity of endogenous, environmental and dietary estrogens in pregnant women I: Serum levels, variability and the basis for urinary biomonitoring of serum estrogenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleck, Stefanie C.; Twaddle, Nathan C.; Churchwell, Mona I.

    Biomonitoring of human exposure to estrogens most frequently focuses on environmental and dietary estrogens, and infrequently includes measures of exposure to potent endogenous estrogens present in serum. Pregnancy is a developmentally sensitive period during which “added” serum estrogenicity exceeding normal intra-individual daily variability may be of particular relevance. Here, we made repeated measurements of serum concentrations of estrone (E1), estradiol (E2), estriol (E3), estetrol (E4), daidzein (DDZ), genistein (GEN) and bisphenol A (BPA) in thirty pregnant women using ultra-performance liquid chromatography coupled with tandem mass spectrometry detection (UPLC-MS/MS) and electrospray ionization (ESI). Serum E1, E2, and E3 concentrations varied significantlymore » (coefficients of variation 9–10%) with broad ranges across the cohort: 1.61–85.1 nM, 9.09–69.7 nM, and 1.5–36.3 nM respectively. BPA (undetected, estimated from total exposure), DDZ and GEN concentrations were 1-5 orders of magnitude lower. The 24-h urinary elimination profiles of endogenous estrogens were each strongly correlated with their corresponding serum concentrations (Pearson's Correlation Coefficients of 0.83 (E1), 0.84 (E2) and 0.94 (E3)). Lastly, a multivariate regression analysis produced equations for estimating serum concentrations of E1, E2, E3, E4, GEN and DDZ from urinary elimination rates and gestation period, an important step towards non-invasive biomonitoring for assessment of “added” estrogenicity during pregnancy.« less

  10. Comparative estrogenicity of endogenous, environmental and dietary estrogens in pregnant women I: Serum levels, variability and the basis for urinary biomonitoring of serum estrogenicity

    DOE PAGES

    Fleck, Stefanie C.; Twaddle, Nathan C.; Churchwell, Mona I.; ...

    2018-03-13

    Biomonitoring of human exposure to estrogens most frequently focuses on environmental and dietary estrogens, and infrequently includes measures of exposure to potent endogenous estrogens present in serum. Pregnancy is a developmentally sensitive period during which “added” serum estrogenicity exceeding normal intra-individual daily variability may be of particular relevance. Here, we made repeated measurements of serum concentrations of estrone (E1), estradiol (E2), estriol (E3), estetrol (E4), daidzein (DDZ), genistein (GEN) and bisphenol A (BPA) in thirty pregnant women using ultra-performance liquid chromatography coupled with tandem mass spectrometry detection (UPLC-MS/MS) and electrospray ionization (ESI). Serum E1, E2, and E3 concentrations varied significantlymore » (coefficients of variation 9–10%) with broad ranges across the cohort: 1.61–85.1 nM, 9.09–69.7 nM, and 1.5–36.3 nM respectively. BPA (undetected, estimated from total exposure), DDZ and GEN concentrations were 1-5 orders of magnitude lower. The 24-h urinary elimination profiles of endogenous estrogens were each strongly correlated with their corresponding serum concentrations (Pearson's Correlation Coefficients of 0.83 (E1), 0.84 (E2) and 0.94 (E3)). Lastly, a multivariate regression analysis produced equations for estimating serum concentrations of E1, E2, E3, E4, GEN and DDZ from urinary elimination rates and gestation period, an important step towards non-invasive biomonitoring for assessment of “added” estrogenicity during pregnancy.« less

  11. Reversal of androgen inhibition of estrogen-activated sexual behavior by cholinergic agents.

    PubMed

    Dohanich, G P; Cada, D A

    1989-12-01

    Androgens have been found to inhibit lordosis activated by estrogen treatment of ovariectomized female rats. In the present experiments, dihydrotestosterone propionate (200 micrograms for 3 days) inhibited the incidence of lordosis in ovariectomized females treated with estradiol benzoate (1 microgram for 3 days). This inhibition of lordosis was reversed 15 min after bilateral intraventricular infusion of physostigmine (10 micrograms/cannula), an acetylcholinesterase inhibitor, or carbachol (0.5 microgram/cannula), a cholinergic receptor agonist. This reversal of inhibition appears to be mediated by cholinergic muscarinic receptors since pretreatment with scopolamine (4 mg/kg, ip), a muscarinic receptor blocker, prevented the reversal of androgen inhibition by physostigmine. These results indicate that androgens may inhibit estrogen-activated lordosis through interference with central cholinergic muscarinic mechanisms.

  12. EADB: An Estrogenic Activity Database for Assessing ...

    EPA Pesticide Factsheets

    Endocrine-active chemicals can potentially have adverse effects on both humans and wildlife. They can interfere with the body’s endocrine system through direct or indirect interactions with many protein targets. Estrogen receptors (ERs) are one of the major targets, and many endocrine disruptors are estrogenic and affect the normal estrogen signaling pathways. However, ERs can also serve as therapeutic targets for various medical conditions, such as menopausal symptoms, osteoporosis, and ER-positive breast cancer. Because of the decades-long interest in the safety and therapeutic utility of estrogenic chemicals, a large number of chemicals have been assayed for estrogenic activity, but these data exist in various sources and different formats that restrict the ability of regulatory and industry scientists to utilize them fully for assessing risk-benefit. To address this issue, we have developed an Estrogenic Activity Database (EADB; http://www.fda.gov/ScienceResearch/ BioinformaticsTools/EstrogenicActivityDatabaseEADB/default. htm) and made it freely available to the public. EADB contains 18,114 estrogenic activity data points collected for 8212 chemicals tested in 1284 binding, reporter gene, cell proliferation, and in vivo assays in 11 different species. The chemicals cover a broad chemical structure space and the data span a wide range of activities. A set of tools allow users to access EADB and evaluate potential endocrine activity of

  13. Trajectories of risk for early sexual activity and early substance use in the Fast Track prevention program.

    PubMed

    2014-02-01

    Children who exhibit early-starting conduct problems are more likely than their peers to initiate sexual activity and substance use at an early age, experience pregnancy, and contract a sexually-transmitted disease [STD], placing them at risk for HIV/AIDS. Hence, understanding the development of multi-problem profiles among youth with early-starting conduct problems may benefit the design of prevention programs. In this study, 1,199 kindergarten children (51% African American; 47% European American; 69% boys) over-sampled for high rates of aggressive-disruptive behavior problems were followed through age 18. Latent class analyses (LCA) were used to define developmental profiles associated with the timing of initiation of sexual activity, tobacco and alcohol/drug use and indicators of risky adolescent sex (e.g. pregnancy and STD). Half of the high-risk children were randomized to a multi-component preventive intervention (Fast Track). The intervention did not significantly reduce membership in the classes characterized by risky sex practices. However, additional analyses examined predictors of poor outcomes, which may inform future prevention efforts.

  14. G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress.

    PubMed

    Wang, Hao; Sun, Xuming; Lin, Marina S; Ferrario, Carlos M; Van Remmen, Holly; Groban, Leanne

    2018-04-25

    Oxidative stress has been implicated in the unfavorable changes in cardiac function and remodeling that occur after ovarian estrogen loss. Using ovariectomized rat models, we previously reported that the cardioprotective actions of estrogen are mediated by the G protein-coupled estrogen receptor (GPER). Here, in 9-month-old, female cardiomyocyte-specific GPER knockout (KO) mice vs sex- and age-matched wild-type (WT) mice, we found increased cardiac oxidative stress and oxidant damage, measured as a decreased ratio of reduced glutathione to oxidized glutathione, increased 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine (8-oxo-DG) staining, and increased expression of oxidative stress-related genes. GPER KO mice also displayed increased heart weight, cardiac collagen deposition, and Doppler-derived filling pressure, and decreased percent fractional shortening and early mitral annular velocity compared with WT controls. Treatment of GPER KO mice for 8 weeks with phosphonium [10-(4,5-dimethoxy-2-methyl 3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenyl-,mesylate (MitoQ), a mitochondria-targeted antioxidant, significantly attenuated these measures of cardiac dysfunction, and MitoQ decreased 8-oxo-DG intensity compared with treatment with an inactive comparator compound, (1-decyl)triphenylphosphonium bromide (P <0.05). A real-time polymerase chain reaction array analysis of 84 oxidative stress and antioxidant defense genes revealed that MitoQ attenuates the increase in NADPH oxidase 4 and prostaglandin-endoperoxide synthase 2 and the decrease in uncoupling protein 3 and glutathione S-transferase kappa 1 seen in GPER KO mice. Our findings suggest that the cardioprotective effects of GPER include an antioxidant role and that targeted strategies to limit oxidative stress after early noncancerous surgical extirpation of ovaries or menopause may help limit alterations in cardiac structure and function related to estrogen loss. Copyright © 2018 Elsevier Inc. All rights

  15. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    PubMed

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  16. Steinach and Young, Discoverers of the Effects of Estrogen on Male Sexual Behavior and the "Male Brain".

    PubMed

    Södersten, Per

    2015-01-01

    In the 1930s, Eugen Steinach's group found that estradiol induces lordosis in castrated rats and reduces the threshold dose of testosterone that is necessary for the induction of ejaculation, and that estradiol-treated intact rats display lordosis as well as mounting and ejaculation. The bisexual, estrogen-sensitive male had been demonstrated. Another major, albeit contrasting, discovery was made in the 1950s, when William Young's group reported that male guinea pigs and prenatally testosterone-treated female guinea pigs are relatively insensitive to estrogen when tested for lordosis as adults. Reduced estrogen sensitivity was part of the new concept of organization of the neural tissues mediating the sexual behavior of females into tissues similar to those of males. The importance of neural organization by early androgen stimulation was realized immediately and led to the discovery of a variety of sex differences in the brains of adult animals. By contrast, the importance of the metabolism of testosterone into estrogen in the male was recognized only after a delay. While the finding that males are sensitive to estrogen was based on Bernhard Zondek's discovery in 1934 that testosterone is metabolized into estrogen in males, the finding that males are insensitive to estrogen was based on the hypothesis that testosterone-male sexual behavior is the typical relationship in the male. It is suggested that this difference in theoretical framework explains the discrepancies in some of the reported results.

  17. Bioassay of estrogenicity and chemical analyses of estrogens in streams across the United States associated with livestock operations

    USGS Publications Warehouse

    Alvarez, David A.; Shappell, Nancy W.; Billey, L.O.; Bermudez, Dietrich S.; Wilson, Vickie S.; Kolpin, Dana W.; Perkins, Stephanie D.; Evans, Nicola; Foreman, William T.; Gray, James L.; Shipitalo, J.M.; Meyer, Michael T.

    2013-01-01

    Animal manures, used as a nitrogen source for crop production, are often associated with negative impacts on nutrient levels in surface water. The concentrations of estrogens in streams from these manures also are of concern due to potential endocrine disruption in aquatic species. Streams associated with livestock operations were sampled by discrete samples (n = 38) or by time-integrated polar organic chemical integrative samplers (POCIS,n = 19). Samples were analyzed for estrogens by gas chromatography-tandem mass spectrometry (GC-MSM2) and estrogenic activity was assessed by three bioassays: Yeast Estrogen Screen (YES), T47D-KBluc Assay, MCF-7 Estrogenicity Screen (E-Screen). Samples were collected from 19 streams within small (∼1-30 km2) watersheds in 12 U.S. states representing a range of hydrogeologic conditions, dominated by: dairy (3), grazing beef (3), feedlot cattle (1); swine (5); poultry (3); and 4 areas where no livestock were raised or manure was applied. Water samples were consistently below the United Kingdom proposed Lowest Observable Effect Concentration for 17b-estradiol in fish (10 ng/L) in all watersheds, regardless of land use. Estrogenic activity was often higher in samples during runoff conditions following a period of manure application. Estrone was the most commonly detected estrogen (13 of 38 water samples, mean 1.9, maximum 8.3 ng/L). Because of the T47D-KBluc assay’s sensitivity towards estrone (1.4 times 17β-estradiol) it was the most sensitive method for detecting estrogens, followed by the E-Screen, GC-MS2, and YES. POCIS resulted in more frequent detections of estrogens than discrete water samples across all sites, even when applying the less-sensitive YES bioassay to the POCIS extracts.

  18. MODELING THE EFFECTS OF FLEXIBILITY ON THE BINDING OF ENVIRONMENTAL ESTROGENS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the effects of flexibility on the binding of environmental estrogens to the estrogen receptor
    There are many reports of environmental endocrine disruption in the literature, yet it has been difficult to identify the specific chemicals responsible for these effects. ...

  19. [The biological and clinical relevance of estrogen metabolome].

    PubMed

    Kovács, Krisztián; Vásárhelyi, Barna; Mészáros, Katalin; Patócs, Attila; Karvaly, Gellért

    2017-06-01

    Considerable knowledge has been gathered on the physiological role of estrogens. However, fairly little information is available on the role of compounds produced in the breakdown process of estrone and estradiol wich may play a role in various diseases associated with estrogen impact. To date, approximately 15 extragonadal estrogen-related compounds have been identified. These metabolites may exert protective, or, instead, pro-inflammatory and/or pro-oncogenic activity in a tissue-specific manner. Systemic and local estrogen metabolite levels are not necesserily correlated, which may promote the diagnostic significance of the locally produced estrogen metabolites in the future. The aim of the present study is a bibliographic review of the extragonadal metabolome in peripheral tissues, and to highlight the role of the peripheral tissue homeostasis of estrogens as well as the non-hormonal biological activity and clinical significance of the estrogen metabolome. Orv Hetil. 2017; 158(24): 929-937.

  20. New advances on the functional cross-talk between insulin-like growth factor-I and estrogen signaling in cancer.

    PubMed

    Bartella, Viviana; De Marco, Paola; Malaguarnera, Roberta; Belfiore, Antonino; Maggiolini, Marcello

    2012-08-01

    There is increasing awareness that estrogens may affect cell functions through the integration with a network of signaling pathways. The IGF system is a phylogenetically highly conserved axis that includes the insulin receptor (IR) and the insulin-like growth factor I receptor (IGF-IR) pathways, which are of crucial importance in the regulation of metabolism and cell growth in relationship to nutrient availability. Numerous studies nowadays document that estrogens cooperate with IGF system at multiple levels both in physiology and in disease. Several studies have focused on this bidirectional cross-talk in central nervous system, in mammary gland development and in cancer. Notably, cancer cells show frequent deregulation of the IGF system with overexpression of IR and/or IGF-IR and their ligands as well as frequent upregulation of the classical estrogen receptor (ER)α and the novel ER named GPER. Recent studies have, therefore, unraveled further mechanisms of cross-talk involving membrane initiated estrogen actions and the IGF system in cancer, that converge in the stimulation of pro-tumoral effects. These studies offer hope for new strategies aimed at the treatment of estrogen related cancers in order to prevent an estrogen-independent and more aggressive tumor progression. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Estrogen attenuates glutamate-induced cell death by inhibiting Ca2+ influx through L-type voltage-gated Ca2+ channels

    PubMed Central

    Sribnick, Eric A.; Del Re, Angelo M.; Ray, Swapan K.; Woodward, John J.; Banik, Naren L.

    2009-01-01

    Estrogen-mediated neuroprotection is observed in neurodegenerative disease and neurotrauama models; however, determining a mechanism for these effects has been difficult. We propose that estrogen may limit cell death in the nervous system tissue by inhibiting increases in intracellular free Ca2+. Here, we present data using VSC 4.1 cell line, a ventral spinal motoneuron and neuroblastoma hybrid cell line. Treatment with 1 mM glutamate for 24 h induced apoptosis. When cells were pre-treated with 100 nM 17β-estradiol (estrogen) for 1 h and then co-treated with glutamate, apoptotic death was significantly attenuated. Estrogen also prevented glutamate-mediated changes in resting membrane potential and membrane capacitance. Treatment with either 17α-estradiol or cell impermeable estrogen did not mimic the findings seen with estrogen. Glutamate treatment significantly increased both intracellular free Ca2+ and the activities of downstream proteases such as calpain and caspase-3. Estrogen attenuated both the increases in intracellular free Ca2+ and protease activities. In order to determine the pathway responsible for estrogen-mediated inhibition of these increases in intracellular free Ca2+, cells were treated with several Ca2+ entry inhibitors, but only the L-type Ca2+ channel blocker nifedipine demonstrated cytoprotective effects comparable to estrogen. To expand these findings, cells were treated with the L-type Ca2+ channel agonist FPL 64176, which increased both cell death and intracellular free Ca2+, and estrogen inhibited both effects. From these observations, we conclude that estrogen limits glutamate-induced cell death in VSC 4.1 cells through effects on L-type Ca2+ channels, inhibiting Ca2+ influx as well as activation of the pro-apoptotic proteases calpain and caspase-3. PMID:19389388

  2. Melatonin affects the dynamic steady-state equilibrium of estrogen sulfates in human umbilical vein endothelial cells by regulating the balance between estrogen sulfatase and sulfotransferase.

    PubMed

    González, Alicia; Martínez-Campa, Carlos; Alonso-González, Carolina; Cos, Samuel

    2015-12-01

    Melatonin is known to reduce the growth of endocrine-responsive breast cancers by interacting with estrogen signaling pathways. Estrogens play an important role in breast cancer, but also in various types of tissues, including vascular tissue. Estrogen sulfatase (STS) converts inactive estrogen sulfates into active estrogens, whereas estrogen sulfotransferase (EST) sulfonates estrogens to estrogen sulfates. Therefore, STS and EST are considered to be involved in the regulation of local estrogen levels in hormone‑dependent tumors and in non-pathologic tissues, such as those of the vascular system. Estrogens have a major impact on the vasculature, influencing vascular function, the expression of adhesion proteins, angiogenesis and the inflammatory state. In this study, we investigated the status of STS and EST in human umbilical vein endothelial cells (HUVECs) and the modulatory effects of melatonin. Both STS and EST were highly expressed in the HUVECs. The enzymatic activity correlated with the expression levels in these cells. Our findings also demonstrated that melatonin, at physiological concentrations, modulated the synthesis and transformation of biologically active estrogens in HUVECs through the inhibition of STS activity and expression, and the stimulation of EST activity and expression. Since melatonin decreased the STS levels and increased the EST levels, it modified the dynamic steady‑state equilibrium of estrogen sulfates by increasing the inactive estrogen levels and decreasing the active estrogen levels. Therefore, melatonin may modulate the known different biological actions of estrogens in endothelial cells, as well as in estrogen-dependent tumors and non-pathologic tissues.

  3. Osteoporosis Prevention and Management.

    PubMed

    Pai, Muralidhar V

    2017-08-01

    Osteoporosis, defined by BMD at the hip or lumbar spine that is less than or equal to 2.5 standard deviations below the mean BMD of a young-adult reference population, is the most common bone disease in humans affecting both sexes and all races. It's a silent killer affecting the quality of life due to fractures and postural changes. In osteoporosis there is an imbalance between bone formation and bone resorption in favor of latter. Preventive measures and treatments are available to combat this evil. Counseling is the integral part of prevention as well as treatment of osteoporosis. Preventive strategy includes life style changes, exercise, intake of calcium and vitamin D, avoiding alcohol, smoking and excessive intake of salt. Estrogen therapy/estrogen+progesterone therapy (ET/EPT) is no longer recommended as a first-line therapy for the prevention of osteoporosis. They may be used in the therapy for osteoporosis in women under 60. Diagnosis and classification are made by assessment of BMD using DEXA or ultrasound and laboratory investigations. Management includes estimation of 10-year fracture risk using FRAX, life style and diet modification and pharmacological therapy. The drugs used in osteoporosis may be those that inhibit bone resorption-bisphosphonates, denosumab, calcitonin, SERMs, estrogen and progesterone-or that stimulate bone formation-PTH, Teriparatide. Combination therapies are not recommended as they do not have proven additional BMD/fracture benefits. No therapy should be indefinite in duration. There are no uniform recommendations to all patients. Duration decisions need to be individualized. While on treatment monitoring should be done with BMD assessment by DEXA/ultrasound and bone turnover markers.

  4. Estrogenic and anti-estrogenic influences in cultured brown trout hepatocytes: Focus on the expression of some estrogen and peroxisomal related genes and linked phenotypic anchors.

    PubMed

    Madureira, Tânia Vieira; Malhão, Fernanda; Pinheiro, Ivone; Lopes, Célia; Ferreira, Nádia; Urbatzka, Ralph; Castro, L Filipe C; Rocha, Eduardo

    2015-12-01

    Estrogens, estrogenic mimics and anti-estrogenic compounds are known to target estrogen receptors (ER) that can modulate other nuclear receptor signaling pathways, such as those controlled by the peroxisome proliferator-activated receptor (PPAR), and alter organelle (inc. peroxisome) morphodynamics. By using primary isolated brown trout (Salmo trutta f. fario) hepatocytes after 72 and 96h of exposure we evaluated some effects in selected molecular targets and in peroxisomal morphological features caused by: (1) an ER agonist (ethinylestradiol-EE2) at 1, 10 and 50μM; (2) an ER antagonist (ICI 182,780) at 10 and 50μM; and (3) mixtures of both (Mix I-10μM EE2 and 50μM ICI; Mix II-1μM EE2 and 10μM ICI and Mix III-1μM EE2 and 50μM ICI). The mRNA levels of the estrogenic targets (ERα, ERβ-1 and vitellogenin A-VtgA) and the peroxisome structure/function related genes (catalase, urate oxidase-Uox, 17β-hydroxysteroid dehydrogenase 4-17β-HSD4, peroxin 11α-Pex11α and PPARα) were analyzed by real-time polymerase chain reaction (RT-PCR). Stereology combined with catalase immunofluorescence revealed a significant reduction in peroxisome volume densities at 50μM of EE2 exposure. Concomitantly, at the same concentration, electron microscopy showed smaller peroxisome profiles, exacerbated proliferation of rough endoplasmic reticulum, and a generalized cytoplasmic vacuolization of hepatocytes. Catalase and Uox mRNA levels decreased in all estrogenic stimuli conditions. VtgA and ERα mRNA increased after all EE2 treatments, while ERβ-1 had an inverse pattern. The EE2 action was reversed by ICI 182,780 in a concentration-dependent manner, for VtgA, ERα and Uox. Overall, our data show the great value of primary brown trout hepatocytes to study the effects of estrogenic/anti-estrogenic inputs in peroxisome kinetics and in ER and PPARα signaling, backing the still open hypothesis of crosstalk interactions between these pathways and calling for more mechanistic

  5. GPER Mediates Non-Genomic Effects of Estrogen.

    PubMed

    Pupo, Marco; Maggiolini, Marcello; Musti, Anna Maria

    2016-01-01

    Estrogens are important modulators of a broad spectrum of physiological functions in humans. However, despite their beneficial actions, a number of lines of evidence correlate the sustained exposure to exogenous estrogen with increased risk of the onset of various cancers. Mainly these steroid hormones induce their effects by binding and activating estrogen receptors (ERα and ERβ). These receptors belong to the family of ligand-regulated transcription factors, and upon activation they regulate the expression of different target genes by binding directly to specific DNA sequences. On the other hand, in recent years it has become clear that the G protein-coupled estrogen receptor 30 (GPR30/GPER) is able to mediate non-genomic action of estrogens in different cell contexts. In particular, GPER has been shown to specifically bind estrogens, and in turn to functionally cross-react with diverse cell signaling systems such as the epidermal growth factor receptor (EGFR) pathway, the Notch signaling pathway and the mitogen-activated protein kinases (MAPK) pathway. In this chapter we will present some of the different experimental techniques currently used to demonstrate the functional role of GPER in mediating non-genomic actions of estrogens, such as the dual luciferase assay, assessment of the involvement of GPER in the stimulation of cell migration in breast cancer cell lines and in cancer-associated fibroblasts, and chromatin immunoprecipitation assay. Overall, the experimental procedures described herein represent key instruments for assessing the biological role of GPER in mediating non-genomic signals of estrogen.

  6. Insulin, estrogen, inflammatory markers, and risk of benign proliferative breast disease.

    PubMed

    Catsburg, Chelsea; Gunter, Marc J; Chen, Chu; Cote, Michele L; Kabat, Geoffrey C; Nassir, Rami; Tinker, Lesley; Wactawski-Wende, Jean; Page, David L; Rohan, Thomas E

    2014-06-15

    Women with benign proliferative breast disease (BPBD) are at increased risk for developing breast cancer. Evidence suggests that accumulation of adipose tissue can influence breast cancer development via hyperinsulinemia, increased estrogen, and/or inflammation. However, there are limited data investigating these pathways with respect to risk of BPBD. We evaluated serologic markers from these pathways in a case-control study of postmenopausal women nested within the Women's Health Initiative Clinical Trial. Cases were the 667 women who developed BPBD during follow-up, and they were matched to 1,321 controls. Levels of insulin, estradiol, C-reactive protein (CRP), and adiponectin were measured in fasting serum collected at baseline. Conditional logistic regression models were used to estimate ORs for the association of each factor with BPBD risk. Among nonusers of hormone therapy, fasting serum insulin was associated with a statistically significant increase in risk of BPBD (OR for highest vs. lowest quartile = 1.80; 95% confidence interval, CI, 1.16-2.79; Ptrend = 0.003) as were levels of estradiol (OR for highest vs. lowest tertile = 1.89; 95% CI, 1.26-2.83; Ptrend = 0.02) and CRP (OR for highest vs. lowest quartile = 2.46; 95% CI, 1.59-3.80; Ptrend < 0.001). Baseline adiponectin level was inversely associated with BPBD risk (OR for highest vs. lowest quartile = 0.47; 95% CI, 0.31-0.71; Ptrend < 0.001). These associations persisted after mutual adjustment, but were not observed among users of either estrogen alone or of estrogen plus progestin hormone therapy. Our results indicate that serum levels of estrogen, insulin, CRP, and adiponectin are independent risk factors for BPBD and suggest that the estrogen, insulin, and inflammation pathways are associated with the early stages of breast cancer development. ©2014 American Association for Cancer Research.

  7. Early Childhood Intervention Programs: Opportunities and Challenges for Preventing Child Maltreatment

    ERIC Educational Resources Information Center

    Asawa, Lindsay E.; Hansen, David J.; Flood, Mary Fran

    2008-01-01

    Due to the destructive impact of child maltreatment and limited available funding to address its consequences, the value of preventive measures is evident. Early Childhood Intervention Programs (ECIPs) provide excellent opportunities to prevent and identify cases of child maltreatment, among other varied objectives. These programs are typically…

  8. Preventive Intervention for Anxious Preschoolers and Their Parents: Strengthening Early Emotional Development

    ERIC Educational Resources Information Center

    Fox, Jeremy K.; Warner, Carrie Masia; Lerner, Amy B.; Ludwig, Kristy; Ryan, Julie L.; Colognori, Daniela; Lucas, Christopher P.; Brotman, Laurie Miller

    2012-01-01

    The high prevalence and early onset of anxiety disorders have inspired innovative prevention efforts targeting young at-risk children. With parent-child prevention models showing success for older children and adolescents, the goal of this study was to evaluate a parent-child indicated preventive intervention for preschoolers with mild to moderate…

  9. Formononetin upregulates nitric oxide synthase in arterial endothelium through estrogen receptors and MAPK pathways.

    PubMed

    Sun, Tao; Cao, Lei; Ping, Na-Na; Wu, Yue; Liu, Dong-Zheng; Cao, Yong-Xiao

    2016-03-01

    Formononetin, a phytoestrogen, can improve arterial endothelial cell function by upregulating endothelial nitric oxide synthase (eNOS). The estrogen receptor plays an important role in the regulation of eNOS. This study investigated the hypothesis that formononetin upregulates eNOS through estrogen receptors and MAPK pathways. The rat superior mesenteric arteries were cultured with formononetin or formononetin plus inhibitors for 24 h. The isometric tension of the arteries was measured using a myograph system. The mRNA and protein expression levels of eNOS were determined by real-time PCR and immunohistochemistry, respectively. Acetylcholine (ACh) relaxed the mesenteric arteries precontracted with 5-hydroxytryptamine. This relaxation could be enhanced by formononetin. The removal of endothelium or incubation with l-NAME (a NOS inhibitor) completely abolished the formononetin-enhanced relaxation induced by ACh, suggesting that the formononetin-enhanced vasodilatation is dependent on endothelium and NO pathway. The estrogen receptor inhibitor ICI 182780 attenuated the formononetin-enhanced vasodilatation induced by ACh, suggesting that the formononetin-enhanced arterial relaxation is mediated by the estrogen receptor. Formononetin increased the mRNA and protein expression levels of eNOS. ICI 182780, U0126 (an ERK1/2 inhibitor) and SP600125 (a JNK inhibitor) prevented the increases in arterial relaxation and eNOS levels. Formononetin upregulates eNOS expression in mesenteric arteries via estrogen receptors, ERK1/2 and JNK pathways. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  10. Aromatase inhibitors and breast cancer prevention.

    PubMed

    Litton, Jennifer Keating; Arun, Banu K; Brown, Powel H; Hortobagyi, Gabriel N

    2012-02-01

    Endocrine therapy with selective estrogen receptor modulators (SERMs) has been the mainstay of breast cancer prevention trials to date. The aromatase inhibitors, which inhibit the final chemical conversion of androgens to estrogens, have shown increased disease-free survival benefit over tamoxifen in patients with primary hormone receptor-positive breast cancer, as well as reducing the risk of developing contralateral breast cancers. The aromatase inhibitors are being actively evaluated as prevention agents for women with a history of ductal carcinoma in situ as well as for women who are considered to be at high risk for developing primary invasive breast cancer. This review evaluates the available prevention data, as evidenced by the decrease in contralateral breast cancers, when aromatase inhibitors are used in the adjuvant setting, as well as the emerging data of the aromatase inhibitors specifically tested in the prevention setting for women at high risk. Exemestane is a viable option for breast cancer prevention. We continue to await further follow-up on exemestane as well as other aromatase inhibitors in the prevention setting for women at high risk of developing breast cancer or with a history of ductal carcinoma in situ.

  11. Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor.

    PubMed

    Nuñez, S B; Medin, J A; Braissant, O; Kemp, L; Wahli, W; Ozato, K; Segars, J H

    1997-03-14

    Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.

  12. [Practice and experience in early clinical education of dental students in preventive dentistry].

    PubMed

    Tao, Dan-ying; Shu, Chen-bin; Pan, Ying; Feng, Xi-ping

    2013-02-01

    To help dental students acquaint the medical environment, doctor-patient communication and relationship, early clinic education was arranged in our college of stomatology. The interesting topics were chosen to enhance the learning enthusiasm of the students in the teaching practice of preventive dentistry. Students were encouraged to practice the skill of doctor-patient communication. To obtain the satisfactory teaching effect and aim, it was important to pay attention to the aspects in the groups and clinical practice. Early clinic education in preventive dentistry help the students understand the specialty of preventive dentistry.

  13. Distribution of aromatase and sex steroid receptors in the baculum during the rat life cycle: effects of estrogen during the early development of the baculum.

    PubMed

    Yonezawa, Tomohiro; Higashi, Mayuko; Yoshioka, Kazuki; Mutoh, Ken-ichiro

    2011-07-01

    The baculum, also called os penis, plays an important role during copulation. However, the hormonal regulation of its development remains to be elucidated. To determine the direct involvement of sex steroids in the development of the baculum of rats, the distributions of androgen receptors (ARs), aromatase, and estrogen receptor alpha (ESR1) were observed immunohistochemically. On Postnatal Day 1, the rudiment of the baculum expressed ARs, aromatase, and ESR1. In the proximal segment of the baculum of neonatal rats, ARs were expressed in the parosteal layer but not in the periosteum or osteoblasts. Aromatase was expressed from the parosteal layer to the endosteum, particularly in the inner osteogenic layer. ESR1 was also abundantly expressed in almost all cells from the parosteal layer to the endosteum. ARs, aromatase, and ESR1 were all abundantly expressed during the neonatal period in the hyaline cartilage of the proximal segment and in fibrocartilage of the distal segment of the baculum. Expression in all the tissues was attenuated in an age-dependent manner and became quite weak at puberty. To determine the effect of estrogen on the growth of the baculum, the aromatase inhibitor 1,4,6-androstatrien-3,17-dione (ATD) was subcutaneously injected daily into pregnant rats from Days 19 to 23 of gestation and into pups on postnatal Days 1, 3, 5, 7, and 9. On Day 10, the length of the baculum in the ATD-treated rats was significantly shorter than that in the controls, although the body weight did not change. These findings suggest that not only androgen but also locally aromatized estrogen is involved in the early growth and development of the baculum.

  14. Targeting estrogen/estrogen receptor alpha enhances Bacillus Calmette-Guérin efficacy in bladder cancer

    PubMed Central

    Shang, Zhiqun; Li, Yanjun; Hsu, Iawen; Zhang, Minghao; Tian, Jing; Wen, Simeng; Han, Ruifa; Messing, Edward M.; Chang, Chawnshang; Niu, Yuanjie; Yeh, Shuyuan

    2016-01-01

    Recent studies showed the potential linkage of estrogen/estrogen receptor signaling with bladder tumorigenesis, yet detailed mechanisms remain elusive. Here we found a new potential therapy with the combination of Bacillus Calmette Guerin (BCG) and the anti-estrogen ICI 182,780 led to better suppression of bladder cancer (BCa) than BCG alone. Mechanism dissection found ICI 182,780 could promote BCG attachment/internalization to the BCa cells through increased integrin-α5β1 expression and IL-6 release, which may enhance BCG-induced suppression of BCa cell growth via recruiting more monocytes/macrophages to BCa cells and increased TNF-α release. Consistently, in vivo studies found ICI 182,780 could potentiate the anti-BCa effects of BCG in the carcinogen-induced mouse BCa models. Together, these in vitro and in vivo results suggest that combining BCG with anti-estrogen may become a new therapeutic approach with better efficacy to suppress BCa progression and recurrence. PMID:27092883

  15. Targeting estrogen/estrogen receptor alpha enhances Bacillus Calmette-Guérin efficacy in bladder cancer.

    PubMed

    Shang, Zhiqun; Li, Yanjun; Hsu, Iawen; Zhang, Minghao; Tian, Jing; Wen, Simeng; Han, Ruifa; Messing, Edward M; Chang, Chawnshang; Niu, Yuanjie; Yeh, Shuyuan

    2016-05-10

    Recent studies showed the potential linkage of estrogen/estrogen receptor signaling with bladder tumorigenesis, yet detailed mechanisms remain elusive. Here we found a new potential therapy with the combination of Bacillus Calmette-Guerin (BCG) and the anti-estrogen ICI 182,780 led to better suppression of bladder cancer (BCa) than BCG alone. Mechanism dissection found ICI 182,780 could promote BCG attachment/internalization to the BCa cells through increased integrin-α5β1 expression and IL-6 release, which may enhance BCG-induced suppression of BCa cell growth via recruiting more monocytes/macrophages to BCa cells and increased TNF-α release. Consistently, in vivo studies found ICI 182,780 could potentiate the anti-BCa effects of BCG in the carcinogen-induced mouse BCa models. Together, these in vitro and in vivo results suggest that combining BCG with anti-estrogen may become a new therapeutic approach with better efficacy to suppress BCa progression and recurrence.

  16. Early prevention of pressure ulcers among elderly patients admitted through emergency departments: a cost-effectiveness analysis.

    PubMed

    Pham, Ba'; Teague, Laura; Mahoney, James; Goodman, Laurie; Paulden, Mike; Poss, Jeff; Li, Jianli; Ieraci, Luciano; Carcone, Steven; Krahn, Murray

    2011-11-01

    Every year, approximately 6.2 million hospital admissions through emergency departments (ED) involve elderly patients who are at risk of developing pressure ulcers. We evaluated the cost-effectiveness of pressure-redistribution foam mattresses on ED stretchers and beds for early prevention of pressure ulcers in elderly admitted ED patients. Using a Markov model, we evaluated the incremental effectiveness (quality-adjusted life-days) and incremental cost (hospital and home care costs) between early prevention and current practice (with standard hospital mattresses) from a health care payer perspective during a 1-year time horizon. The projected incidence of ED-acquired pressure ulcers was 1.90% with current practice and 1.48% with early prevention, corresponding to a number needed to treat of 238 patients. The average upgrading cost from standard to pressure-redistribution mattresses was $0.30 per patient. Compared with current practice, early prevention was more effective, with 0.0015 quality-adjusted life-days gained, and less costly, with a mean cost saving of $32 per patient. If decisionmakers are willing to pay $50,000 per quality-adjusted life-year gained, early prevention was cost-effective even for short ED stay (ie, 1 hour), low hospital-acquired pressure ulcer risk (1% prevalence), and high unit price of pressure-redistribution mattresses ($3,775). Taking input uncertainty into account, early prevention was 81% likely to be cost-effective. Expected value-of-information estimates supported additional randomized controlled trials of pressure-redistribution mattresses to eliminate the remaining decision uncertainty. The economic evidence supports early prevention with pressure-redistribution foam mattresses in the ED. Early prevention is likely to improve health for elderly patients and save hospital costs. Copyright © 2011 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  17. Tamoxifen induces the expression of maspin through estrogen receptor-alpha.

    PubMed

    Liu, Zesheng; Shi, Heidi Y; Nawaz, Zafar; Zhang, Ming

    2004-06-08

    Maspin (mammary serine protease inhibitor) is a tumor suppressor gene that plays an important role in inhibiting tumor growth, invasion and metastasis. Maspin expression is down regulated at transcription level in primary and metastatic breast tumor cells. Previous studies on hormonal regulation of maspin prompt us to test whether an estrogen antagonist tamoxifen (TAM) can exert its anti-tumor function by up regulating maspin gene expression. For this purpose, we first tested whether maspin promoter could be activated in normal and several breast tumor cells. We then carried out a series of promoter analysis in which estrogen receptors and TAM were reconstituted in an in vitro cell culture system. Here we report our new finding that tumor suppresser gene maspin is one of the TAM target genes. TAM induces a maspin/luciferase reporter in cell culture and this induction requires the presence of (estrogen receptor alpha) ERalpha but not estrogen receptor-beta (ERbeta). Maspin promoter deletion and mutation analysis showed that the cis element(s) within a region between -90and+87 bp but not the HRE site (-272 bp) was involved in TAM induction of maspin expression. TAM bound ERalpha may directly control maspin gene expression through the interaction with cofactor (s). Analysis using several ERalpha mutants showed that the N-terminal A/B motif (AF-1) was critical for maspin basal level transcription activation. An ERalpha mutant with point mutations at DNA binding domain abolished estrogen induction of an ERE-luciferase reporter but was still active in activating maspin promoter by TAM. LBD-AF2 domain was required for ERalpha-dependent TAM induction. Deletion of LBD-AF2 or a point mutation in the ERalpha LBD-AF2 region (LBDmtL539A) completely abolished the activation of maspin promoter, suggesting that TAM induction of maspin involves the recruitment of cofactor(s) by ERalpha to the maspin promoter region. This finding indicates that one of the pathways for cancer

  18. Estrogen receptor 1 and 2 mRNA expression and protein localization in the porcine endometrium during the estrous cycle and early pregnancy

    USDA-ARS?s Scientific Manuscript database

    Between d 10 and 12 of gestation, the pig embryo undergoes elongation and produces estrogen, which serves as the key molecule for maternal recognition of pregnancy. Around d 15 of gestation, the embryo begins its superficial implantation with the endometrium and a second spike in estrogen occurs fro...

  19. Estrogen synthesis and signaling pathways during ageing: from periphery to brain

    PubMed Central

    Cui, Jie; Shen, Yong; Li, Rena

    2012-01-01

    Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissue as liver, heart, muscle, bone and brain. The tissue-specific estrogen synthesis is consistent with a diversity of estrogen actions. Here, we will focus on tissue and cell-specific estrogen synthesis and estrogen receptor signaling. This review will include three parts: (I) tissue and cell-specific estrogen synthesis and metabolism, (II) tissue and cell-specific distribution of estrogen receptors and signaling and (III) tissue-specific estrogen function and related disorders, including cardiovascular diseases, osteoporosis, Alzheimer's disease and Parkinson disease. This comprehensive review provides new insights into estrogens by giving a better understanding of the tissue-specific estrogen effects and their roles in various diseases. PMID:23348042

  20. Estrogen and Progestin (Hormone Replacement Therapy)

    MedlinePlus

    ... progestin are two female sex hormones. Hormone replacement therapy works by replacing estrogen hormone that is no ... Progestin is added to estrogen in hormone replacement therapy to reduce the risk of uterine cancer in ...

  1. Depression Prevention for Early Adolescent Girls

    PubMed Central

    Chaplin, Tara M.; Gillham, Jane E.; Reivich, Karen; Elkon, Andrea G. L.; Samuels, Barbra; Freres, Derek R.; Winder, Breanna; Seligman, Martin E. P.

    2015-01-01

    Given the dramatic increase in depression that occurs during early adolescence in girls, interventions must address the needs of girls. The authors examined whether a depression prevention program, the Penn Resiliency Program, was more effective for girls in all-girls groups than in co-ed groups. Within co-ed groups, the authors also tested whether there were greater effects for boys than for girls. Participants were 208 11- to 14-year-olds. Girls were randomly assigned to all-girls groups, co-ed groups, or control. Boys were assigned to co-ed groups or control. Students completed questionnaires on depressive symptoms, hopelessness, and explanatory style before and after the intervention. Girls groups were better than co-ed groups in reducing girls’hopelessness and for session attendance rates but were similar to co-ed groups in reducing depressive symptoms. Co-ed groups decreased depressive symptoms, but this did not differ by gender. Findings support prevention programs and suggest additional benefits of girls groups. PMID:26139955

  2. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants.

    PubMed

    Conley, Justin M; Evans, Nicola; Mash, Heath; Rosenblum, Laura; Schenck, Kathleen; Glassmeyer, Susan; Furlong, Ed T; Kolpin, Dana W; Wilson, Vickie S

    2017-02-01

    In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated water samples were assayed for estrogenic activity using T47D-KBluc cells and analyzed by liquid chromatography-Fourier transform mass spectrometry (LC-FTMS) for natural and synthetic estrogens (including estrone, 17β-estradiol, estriol, and ethinyl estradiol). None of the estrogens were detected above the LC-FTMS quantification limits in treated samples and only 5 source waters had quantifiable concentrations of estrone, whereas 3 treated samples and 16 source samples displayed in vitro estrogenicity. Estrone accounted for the majority of estrogenic activity in respective samples, however the remaining samples that displayed estrogenic activity had no quantitative detections of known estrogenic compounds by chemical analyses. Source water estrogenicity (max, 0.47ng 17β-estradiol equivalents (E2Eq) L -1 ) was below levels that have been linked to adverse effects in fish and other aquatic organisms. Treated water estrogenicity (max, 0.078ngE2EqL -1 ) was considerably below levels that are expected to be biologically relevant to human consumers. Overall, the advantage of using in vitro techniques in addition to analytical chemical determinations was displayed by the sensitivity of the T47D-KBluc bioassay, coupled with the ability to measure cumulative effects of mixtures, specifically when unknown chemicals may be present. Published by Elsevier B.V.

  3. Aerobic Exercise, Estrogens, and Breast Cancer Risk

    DTIC Science & Technology

    2011-11-01

    on endogenous sex hormone levels, menstrual cycle characteristics, and estrogen metabolism in sedentary, eumenorrheic, healthy premenopausal women...changes in menstrual cycle length, and 4) limited changes in estrogen metabolism. The resulting increases in urinary 2-hydroxyestrone levels and 2...effects of a 16-week, aerobic exercise intervention on endogenous sex hormone levels, menstrual cycle characteristics, and estrogen metabolism of young

  4. A randomised controlled trial for overweight and obese parents to prevent childhood obesity--Early STOPP (STockholm Obesity Prevention Program).

    PubMed

    Sobko, Tanja; Svensson, Viktoria; Ek, Anna; Ekstedt, Mirjam; Karlsson, Håkan; Johansson, Elin; Cao, Yingting; Hagströmer, Maria; Marcus, Claude

    2011-05-18

    Overweight and obesity have a dramatic negative impact on children's health not only during the childhood but also throughout the adult life. Preventing the development of obesity in children is therefore a world-wide health priority. There is an obvious urge for sustainable and evidenced-based interventions that are suitable for families with young children, especially for families with overweight or obese parents. We have developed a prevention program, Early STOPP, combating multiple obesity-promoting behaviors such unbalanced diet, physical inactivity and disturbed sleeping patterns. We also aim to evaluate the effectiveness of the early childhood obesity prevention in a well-characterized population of overweight or obese parents. This protocol outlines methods for the recruitment phase of the study. This randomized controlled trial (RCT) targets overweight and/or obese parents with infants, recruited from the Child Health Care Centers (CHCC) within the Stockholm area. The intervention starts when infants are one year of age and continues until they are six and is regularly delivered by a trained coach (dietitian, physiotherapist or a nurse). The key aspects of Early STOPP family intervention are based on Swedish recommendations for CHCC, which include advices on healthy food choices and eating patterns, increasing physical activity/reducing sedentary behavior and regulating sleeping patterns. The Early STOPP trial design addresses weaknesses of previous research by recruiting from a well-characterized population, defining a feasible, theory-based intervention and assessing multiple measurements to validate and interpret the program effectiveness. The early years hold promise as a time in which obesity prevention may be most effective. To our knowledge, this longitudinal RCT is the first attempt to demonstrate whether an early, long-term, targeted health promotion program focusing on healthy eating, physical activity/reduced sedentary behaviors and normalizing

  5. Environmental estrogen(s) induced swimming behavioural alterations in adult zebrafish (Danio rerio).

    PubMed

    Goundadkar, Basavaraj B; Katti, Pancharatna

    2017-09-01

    The present study is an attempt to investigate the effects of long-term (75days) exposure to environmental estrogens (EE) on the swimming behaviour of zebrafish (Danio rerio). Adult zebrafish were exposed semi-statically to media containing commonly detected estrogenic water contaminants (EE2, DES and BPA) at a concentration (5ng/L) much lower than environmentally recorded levels. Time spent in swimming, surface preference, patterns and path of swimming were recorded (6mins) for each fish using two video cameras on day 15, 30 60 and 75. Video clips were analysed using a software program. Results indicate that chronic exposure to EE leads to increased body weight and size of females, reduced (P<0.05) swimming time, delay in latency, increased (P<0.05) immobility, erratic movements and freezing episodes. We conclude that estrogenic contamination of natural aquatic systems induces alterations in locomotor behaviour and associated physiological disturbances in inhabitant fish fauna. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Inhibitory effects of γ- and δ-tocopherols on estrogen-stimulated breast cancer in vitro and in vivo

    PubMed Central

    Bak, Min Ji; Gupta, Soumyasri Das; Wahler, Joseph; Lee, Hong Jin; Li, Xiaowei; Lee, Mao-Jung; Yang, Chung S; Suh, Nanjoo

    2017-01-01

    Estrogens have been implicated as complete carcinogens for breast and other tissues through mechanisms involving increased cell proliferation, oxidative stress and DNA damage. Because of their potent antioxidant activity and other effects, tocopherols have been shown to exert anti-tumor activities in various cancers. However, limited information is available on the effect of different forms of tocopherols in estrogen-mediated breast cancer. To address this, we examined the effects of α-, γ- and δ-tocopherols as well as a natural γ-tocopherol rich mixture of tocopherols, γ-TmT, on estrogen-stimulated MCF-7 cells in vitro and in vivo. For the in vivo studies, MCF-7 cells were injected into the mammary fat pad of immunodeficient mice previously implanted with estrogen pellets. Mice were then administered diets containing 0.2% α-, γ-, δ-tocopherol or γ-TmT for 5 weeks. Treatment with α-, γ-, δ-tocopherols and γ-TmT reduced tumor volumes by 29% (p<0.05), 45% (p<0.05), 41% (p<0.05) and 58% (p<0.01), as well as tumor weights by 20%, 37% (p<0.05), 39% (p<0.05) and 52% (p<0.05), respectively. γ- and δ-Tocopherols and γ-TmT inhibited the expression of cell proliferation-related genes such as cyclin D1 and c-Myc, and estrogen-related genes such as TFF/pS2, cathepsin D and progesterone receptor in estrogen-stimulated MCF-7 cells in vitro. Further, γ- and δ-tocopherols decreased the levels of estrogen-induced oxidative stress and nitrosative stress markers, 8-hydroxy-2’-deoxyguanosine and nitrotyrosine, as well as the DNA damage marker, γ-H2AX. Our results suggest that γ- and δ-tocopherols and the γ-tocopherol rich mixture are effective natural agents for the prevention and treatment of estrogen-mediated breast cancer. PMID:28096236

  7. Interaction of polymorphisms in the genes encoding interleukin-6 and estrogen receptor beta on the susceptibility to Parkinson's disease.

    PubMed

    Håkansson, Anna; Westberg, Lars; Nilsson, Staffan; Buervenich, Silvia; Carmine, Andrea; Holmberg, Björn; Sydow, Olof; Olson, Lars; Johnels, Bo; Eriksson, Elias; Nissbrandt, Hans

    2005-02-05

    The multifunctional cytokine interleukin-6 (IL-6) is involved in inflammatory processes in the central nervous system and increased levels of IL-6 have been found in patients with Parkinson's disease (PD). It is known that estrogen inhibits the production of IL-6, via action on estrogen receptors, thereby pointing to an important influence of estrogen on IL-6. In a previous study, we reported an association between a G/A single nucleotide polymorphism (SNP) at position 1730 in the gene coding for estrogen receptor beta (ERbeta) and age of onset of PD. To investigate the influence of a G/C SNP at position 174 in the promoter of the IL-6 gene, and the possible interaction of this SNP and the ERbeta G-1730A SNP on the risk for PD, the G-174C SNP was genotyped, by pyrosequencing, in 258 patients with PD and 308 controls. A significantly elevated frequency of the GG genotype of the IL-6 SNP was found in the patient group and this was most obvious among patients with an early age of onset (early age of onset, than respective GG genotype when analyzed separately. Our results indicate that the G-174C SNP in the IL-6 promoter may influence the risk for developing PD, particularly regarding early age of onset PD, and that the effect is modified by interaction of the G-1730A SNP in the ERbeta gene. (c) 2004 Wiley-Liss, Inc.

  8. Estrogen receptor status of breast cancer in Ontario

    PubMed Central

    McKeown-Eyssen, Gail E.; Rogers-Melamed, Iris; Clarke, E. Aileen

    1985-01-01

    Data from a number of studies of breast cancer have suggested that after the ages associated with the menopause the rates of estrogen-receptor-positive tumours increase with age, whereas the rates of estrogen-receptor-negative tumours do not. Previous investigators studied cases in specific treatment centres, so there was a possibility that the findings were influenced by differences in patterns of case referral by age. A review of all the cases of breast cancer diagnosed in Ontario women in 1981 and assayed for estrogen receptors, however, confirmed the earlier findings. The results showed that the incidence of estrogen-receptor-positive and estrogen-receptor-negative tumours increased at about the same rate before age 45, but thereafter an increase in incidence was seen only for estrogen-receptor-positive tumours. These differences in patterns of incidence suggest the possibility that the two types of tumour may have different etiologic factors. PMID:4063915

  9. Estrogen Injection

    MedlinePlus

    ... used to treat hot flushes (hot flashes; sudden strong feelings of heat and sweating) and/or vaginal ... the symptoms of certain types of prostate (a male reproductive organ) cancer. The conjugated estrogens form of ...

  10. Insights into Rapid Modulation of Neuroplasticity by Brain Estrogens

    PubMed Central

    Woolfrey, Kevin M.; Penzes, Peter

    2013-01-01

    Converging evidence from cellular, electrophysiological, anatomic, and behavioral studies suggests that the remodeling of synapse structure and function is a critical component of cognition. This modulation of neuroplasticity can be achieved through the actions of numerous extracellular signals. Moreover, it is thought that it is the integration of different extracellular signals regulation of neuroplasticity that greatly influences cognitive function. One group of signals that exerts powerful effects on multiple neurologic processes is estrogens. Classically, estrogens have been described to exert their effects over a period of hours to days. However, there is now increasing evidence that estrogens can rapidly influence multiple behaviors, including those that require forebrain neural circuitry. Moreover, these effects are found in both sexes. Critically, it is now emerging that the modulation of cognition by rapid estrogenic signaling is achieved by activation of specific signaling cascades and regulation of synapse structure and function, cumulating in the rewiring of neural circuits. The importance of understanding the rapid effects of estrogens on forebrain function and circuitry is further emphasized as investigations continue to consider the potential of estrogenic-based therapies for neuropathologies. This review focuses on how estrogens can rapidly influence cognition and the emerging mechanisms that underlie these effects. We discuss the potential sources and the biosynthesis of estrogens within the brain and the consequences of rapid estrogenic-signaling on the remodeling of neural circuits. Furthermore, we argue that estrogens act via distinct signaling pathways to modulate synapse structure and function in a manner that may vary with cell type, developmental stage, and sex. Finally, we present a model in which the coordination of rapid estrogenic-signaling and activity-dependent stimuli can result in long-lasting changes in neural circuits

  11. Estrogens and Androgens in Skeletal Physiology and Pathophysiology

    PubMed Central

    Almeida, Maria; Laurent, Michaël R.; Dubois, Vanessa; Claessens, Frank; O'Brien, Charles A.; Bouillon, Roger; Vanderschueren, Dirk

    2016-01-01

    Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution. PMID:27807202

  12. Estrogens and Androgens in Skeletal Physiology and Pathophysiology.

    PubMed

    Almeida, Maria; Laurent, Michaël R; Dubois, Vanessa; Claessens, Frank; O'Brien, Charles A; Bouillon, Roger; Vanderschueren, Dirk; Manolagas, Stavros C

    2017-01-01

    Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution. Copyright © 2017 the American Physiological Society.

  13. The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen improve ANP levels and decrease nuclear translocation of NF-kB in estrogen-deficient rats.

    PubMed

    Lamas, Aline Z; Nascimento, Andrews M; Medeiros, Ana Raquel S; Caliman, Izabela F; Dalpiaz, Polyana L M; Firmes, Luciana B; Sousa, Glauciene J; Oliveira, Phablo Wendell C; Andrade, Tadeu U; Reis, Adelina M; Gouvea, Sônia A; Bissoli, Nazaré S

    2017-08-01

    The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen are used for the treatment of osteoporosis and cancer, respectively, in women. The impairment of both the Atrial Natriuretic Peptide (ANP) cell signaling system and the translocation of nuclear factor-kappa B (NF-kB) to the cell nucleus are associated with detrimental cardiovascular effects and inflammation. The effects of SERMs on these parameters in the cardiac tissue of estrogen-deficient rats has not been reported. We investigated the effects of raloxifene and tamoxifen on ANP signaling, p65 NF-kB nuclear translocation, cardiac histology and contractility. Female rats were divided into five groups: control (SHAM), ovariectomized (OVX), OVX-treated 17-β-estradiol (E), OVX-treated raloxifene (RLX) and OVX-treated tamoxifen (TAM). The treatments started 21days after ovariectomy and continued for 14days. Ovariectomy reduced ANP mRNA in the left atrium (LA), decreased the content of ANP protein in the LA and in plasma, and increased the level of p65 NF-kB nuclear translocation in the left ventricle. Both 17-β-estradiol and SERMs were able to reverse these alterations, which were induced by the estrogen deficient state. The hemodynamic and cardiac structural parameters analyzed in the present work were not modified by the interventions. Our study demonstrates, for the first time, the additional benefits of raloxifene and tamoxifen in an estrogen-deficient state. These include the normalization of plasmatic and cardiac ANP levels and cardiac p65 NF-kB translocation. Therefore, these treatments promote cardiovascular protection and may contribute to the prevention of cardiac dysfunction observed long-term in postmenopausal women. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  14. Selective Estrogen Receptor Modulator (SERM)-like Activities of Diarylheptanoid, a Phytoestrogen from Curcuma comosa, in Breast Cancer Cells, Pre-osteoblast Cells, and Rat Uterine Tissues.

    PubMed

    Thongon, Natthakan; Boonmuen, Nittaya; Suksen, Kanoknetr; Wichit, Patsorn; Chairoungdua, Arthit; Tuchinda, Patoomratana; Suksamrarn, Apichart; Winuthayanon, Wipawee; Piyachaturawat, Pawinee

    2017-05-03

    Diarylheptanoids from Curcuma comosa, of the Zingiberaceae family, exhibit diverse estrogenic activities. In this study we investigated the estrogenic activity of a major hydroxyl diarylheptanoid, 7-(3,4 -dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene (compound 092) isolated from C. comosa. The compound elicited different transcriptional activities of estrogen agonist at low concentrations (0.1-1 μM) and antagonist at high concentrations (10-50 μM) using luciferase reporter gene assay in HEK-293T cells. In human breast cancer (MCF-7) cells, compound 092 showed an anti-estrogenic activity by down-regulating ERα-signaling and suppressing estrogen-responsive genes, whereas it attenuated the uterotrophic effect of estrogen in immature ovariectomized rats. Of note, compound 092 promoted mouse pre-osteoblastic (MC3T3-E1) cell differentiation and the related bone markers, indicating its positive osteogenic effect. Our findings highlight a new, nonsteroidal, estrogen agonist/antagonist of catechol diarylheptanoid from C. comosa, which is scientific evidence supporting its potential as a dietary supplement to prevent bone loss with low risk of breast and uterine cancers in postmenopausal women.

  15. Estrogen and colorectal cancer incidence and mortality.

    PubMed

    Lavasani, Sayeh; Chlebowski, Rowan T; Prentice, Ross L; Kato, Ikuko; Wactawski-Wende, Jean; Johnson, Karen C; Young, Alicia; Rodabough, Rebecca; Hubbell, F Allan; Mahinbakht, Ali; Simon, Michael S

    2015-09-15

    The preponderance of observational studies describe an association between the use of estrogen alone and a lower incidence of colorectal cancer. In contrast, no difference in the incidence of colorectal cancer was seen in the Women's Health Initiative (WHI) randomized, placebo-controlled trial with estrogen alone after a mean intervention of 7.1 years and cumulative follow-up of 13.2 years. This study extends these findings by providing detailed analyses of the effects of estrogen alone on the histology, grade, and stage of colorectal cancer, relevant subgroups, and deaths from and after colorectal cancer. The WHI study was a randomized, double-blind, placebo-controlled trial involving 10,739 postmenopausal women with prior hysterectomy. Participants were assigned to conjugated equine estrogen at 0.625 mg/d (n = 5279) or a matching placebo (n = 5409). Rates of colorectal cancer diagnoses and deaths from and after colorectal cancer were assessed throughout the study. Colorectal cancer rates in the estrogen-alone and placebo groups were comparable: 0.14% and 0.12% per year, respectively (hazard ratio [HR], 1.13; 95% confidence interval [CI], 0.83-1.58; P = .43). Bowel screening examinations were comparable between the 2 groups throughout the study. The grade, stage, and location of colorectal cancer did not differ between the randomization groups. There were more colorectal cancer deaths in the estrogen-alone group (34 [0.05%] vs 24 [0.03%]; HR, 1.46, 95% CI, 0.86-2.46; P = .16), but the difference was not statistically significant. The colorectal cancer incidence was higher for participants with a history of colon polyp removal in the estrogen-alone group (0.23% vs 0.02%; HR, 13.47; nominal 95% CI, 1.76-103.0; P < .001). The use of estrogen alone in postmenopausal women with prior hysterectomy does not influence the incidence of colorectal cancer or deaths from or after colorectal cancer. A possibly higher risk of colorectal cancer in women with

  16. Inhibition of Estrogen-induced Growth of Breast Cancer by Targeting Mitochondrial Oxidants

    DTIC Science & Technology

    2009-04-01

    chemical antioxidants, [N- acetylcysteine (NAC) and ebselen], inhibits estrogen induced expression of cell cycle genes as well as prevention of...the original First Task (i) both antioxidants, N- acetylcysteine and ebselen, overexpression of ROS lowering genes, such as, catalase or PrxIII; and... acetylcysteine and ebselen; overexpression of MnSOD, catalase, PrxIII, Trx2, or mtTFA silencing. Major findings are described in detail below: 1

  17. ANALYSIS OF LAGOON SAMPLES FROM DIFFERENT CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFOS) FOR ESTROGENS AND ESTROGEN CONJUGATES (PRESENTATION)

    EPA Science Inventory

    Although Concentrated Animal Feeding Operations (CAFOs) have been identified as potentially important sources for the release of estrogens into the environment, information is lacking on the concentrations of estrogens in whole lagoon effluents (including suspended solids) which ...

  18. Cost-effectiveness model for prevention of early childhood caries.

    PubMed

    Ramos-Gomez, F J; Shepard, D S

    1999-07-01

    This study presents and illustrates a model that determines the cost-effectiveness of three successively more complete levels of preventive intervention (minimal, intermediate, and comprehensive) in treating dental caries in disadvantaged children up to 6 years of age. Using existing data on the costs of early childhood caries (ECC), the authors estimated the probable cost-effectiveness of each of the three preventive intervention levels by comparing treatment costs to prevention costs as applied to a typical low-income California child for five years. They found that, in general, prevention becomes cost-saving if at least 59 percent of carious lesions receive restorative treatment. Assuming an average restoration cost of $112 per surface, the model predicts cost savings of $66 to $73 in preventing a one-surface, carious lesion. Thus, all three levels of preventive intervention should be relatively cost-effective. Comprehensive intervention would provide the greatest oral health benefit; however, because more children would receive reparative care, overall program costs would rise even as per-child treatment costs decline.

  19. Modeling the interaction of binary and ternary mixtures of estradiol with bisphenol A and bisphenol A F in an in vitro estrogen mediated transcriptional activation assay (T47D-KBluc)

    EPA Science Inventory

    Exposure to xenoestrogens occurs against a backdrop to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in early childhood to high levels during pregnancy and in young women. For example, children have circulating E2concentrations rang...

  20. Estrogenic modulation of auditory processing: a vertebrate comparison

    PubMed Central

    Caras, Melissa L.

    2013-01-01

    Sex-steroid hormones are well-known regulators of vocal motor behavior in several organisms. A large body of evidence now indicates that these same hormones modulate processing at multiple levels of the ascending auditory pathway. The goal of this review is to provide a comparative analysis of the role of estrogens in vertebrate auditory function. Four major conclusions can be drawn from the literature: First, estrogens may influence the development of the mammalian auditory system. Second, estrogenic signaling protects the mammalian auditory system from noise- and age-related damage. Third, estrogens optimize auditory processing during periods of reproductive readiness in multiple vertebrate lineages. Finally, brain-derived estrogens can act locally to enhance auditory response properties in at least one avian species. This comparative examination may lead to a better appreciation of the role of estrogens in the processing of natural vocalizations and may provide useful insights toward alleviating auditory dysfunctions emanating from hormonal imbalances. PMID:23911849

  1. Repression of adenosine triphosphate-binding cassette transporter ABCG2 by estrogen increases intracellular glutathione in brain endothelial cells following ischemic reperfusion injury.

    PubMed

    Shin, Jin A; Jeong, Sae Im; Kim, Hye Won; Jang, Gyeonghui; Ryu, Dong-Ryeol; Ahn, Young-Ho; Choi, Ji Ha; Choi, Youn-Hee; Park, Eun-Mi

    2018-06-01

    The adenosine triphosphate-binding cassette efflux transporter ABCG2, which is located in the blood-brain barrier limits the entry of endogenous compounds and xenobiotics into the brain, and its expression and activity are regulated by estrogen. This study was aimed to define the role of ABCG2 in estrogen-mediated neuroprotection against ischemic injury. ABCG2 protein levels before and after ischemic stroke were increased in the brain of female mice by ovariectomy, which were reversed by estrogen replacement. In brain endothelial cell line bEnd.3, estrogen reduced the basal ABCG2 protein level and efflux activity and protected cells from ischemic injury without inducing ABCG2 expression. When bEnd.3 cells were transfected with ABCG2 small interfering RNA, ischemia-induced cell death was reduced, and the intracellular concentration of glutathione, an antioxidant that is transported by ABCG2, was increased. In addition, after ischemic stroke in ovariectomized mice, estrogen prevented the reduction of intracellular glutathione level in brain microvessels. These data suggested that the suppression of ABCG2 by estrogen is involved in neuroprotection against ischemic injury by increasing intracellular glutathione, and that the modulation of ABCG2 activity offers a therapeutic target for brain diseases in estrogen-deficient aged women. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Extracellular matrix integrity: a possible mechanism for differential clinical effects among selective estrogen receptor modulators and estrogens?

    PubMed

    Cox, David A; Helvering, Leah M

    2006-03-09

    Recent gene microarray studies have illustrated heterogeneity in gene expression changes not only between estrogens and selective estrogen receptor modulators (SERMs), but also across different SERM molecules. In ovariectomized rats, this phenomenon was observed with respect to a number of genes involved in collagen turnover and extracellular matrix (ECM) integrity in the uterus and vaginal tissues. Preliminary mechanistic data suggest that these effects on ECM integrity may have relevance in the context of the effect of estrogens and some SERMs to increase the risk of pelvic organ prolapse and the incidence of urinary incontinence in postmenopausal women. Given the pivotal role of ECM integrity and collagen turnover in other tissues and disease states, these processes may provide a fruitful target for future research into the mechanisms for the heterogeneous pharmacology of estrogens and SERMs across different cell types and target tissues.

  3. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens

    USGS Publications Warehouse

    Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki

    2014-01-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  4. [Raloxifene - an unexploited possibility of prevention and treatment of postmenopausal osteoporosis].

    PubMed

    Štěpán, Jan; Rosa, Jan; Pavelka, Karel

    Long-term estrogen deficiency after menopause is responsible for different disorders, which not only make the quality of life in the older age worse but also are the major causes of womens mortality. It is especially the case for cardiovascular disease and osteoporosis. Aim of this review is to point at efficacy of raloxifene (a selective estrogen receptor modulator) in the long-term care of the women in their non-reproductive period of life, and namely in prevention and treatment of postmenopausal osteoporosis.Key words: bone turnover - breast cancer - postmenopausal osteoporosis - prevention - raloxifene.

  5. Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse

    PubMed Central

    Li, Leping; Grimm, Sara A.; Winuthayanon, Wipawee; Hamilton, Katherine J.; Pockette, Brianna; Rubel, Cory A.; Pedersen, Lars C.; Fargo, David; Lanz, Rainer B.; DeMayo, Francesco J.; Schütz, Günther; Korach, Kenneth S.

    2014-01-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as “tethering.” Evidence for tethering is based on in vitro studies and a widely used “KIKO” mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the “EAAE” ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null–like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo. PMID:24713037

  6. Estrogen-induced myelotoxicity in dogs: A review

    PubMed Central

    Sontas, Hasan B.; Dokuzeylu, Banu; Turna, Ozge; Ekici, Hayri

    2009-01-01

    Exogenous estrogens used for therapeutic purposes or endogenous estrogen sources such as functional Sertoli cell or ovarian granulosa cell tumors may cause bone marrow toxicity in dogs. The condition is characterized by hematologic abnormalities including thrombocytopenia, anemia, and leukocytosis or leukopenia. Despite intensive therapy with blood or platelet-rich transfusions, broad-spectrum antibiotics, steroids, and bone marrow stimulants, prognosis is unfavorable. Due to the the risk of stimulating the development of uterine diseases and the potential for inducing aplastic anemia, estrogen use in dogs is best avoided where possible. This paper describes the causes of estrogen-induced myelotoxicity, the clinical presentation of the patients, the diagnosis, and the treatment options in the dog. PMID:20046604

  7. Quantum chemical studies of estrogenic compounds

    USDA-ARS?s Scientific Manuscript database

    Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...

  8. Effects of early prevention programs on adult criminal offending: a meta-analysis.

    PubMed

    Deković, Maja; Slagt, Meike I; Asscher, Jessica J; Boendermaker, Leonieke; Eichelsheim, Veroni I; Prinzie, Peter

    2011-06-01

    This meta-analysis investigated the long term effects of prevention programs conducted during early and middle childhood on criminal offending during adulthood. The analyses included 3611 participants in 9 programs. The effect size for adult criminal offending was significant, but small in magnitude (OR=1.26; 95% CI=1.06-1.50, p=.011). The effects of the programs on positive outcomes (academic attainment and involvement in productive activity, such as being engaged in school or work) were somewhat larger and more consistent than effects on crime (OR=1.36, 95% CI=1.20-1.55, p<.001). Several participant and program characteristics moderated the effectiveness of (early) prevention. Children who were more at-risk and those from a lower SES benefited more. Shorter, but more intensive programs, and programs that focus on social and behavioral skills, rather than on academic skills or family support, tend to produce larger effects. Taken together, these results indicate that early prevention programs can help put children on a more positive developmental trajectory that is maintained into adulthood, but there is still no convincing evidence that they can prevent adult crime. Implications of the findings for research, policy and clinical practice are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Nonylphenol and estrogenic activity in aquatic environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanghe, T.; Devriese, G.; Verstraete, W.

    1999-03-01

    The authors surveyed a series of surface waters and sewage treatment plants in Flanders (north of Belgium) for the presence of estrogenic activity and a xeno-estrogenic compound para-nonylphenol (NP), respectively. The surface waters of rural origin, used for drinking water production were free of significant levels of estrogenic activity and NP. Domestic sewage, after proper treatment, appeared to be no major source of this chemical. Yet, in some industrial effluents and surface waters of highly industrialized regions, NP and/or estrogenic activity was prominent, that is, <1 to 122 {micro}g NP/L and 11 to 42 {micro}g NP/L, respectively. This is becausemore » of the ongoing use of NP polyethoxylates in industry. The response of the recombinant yeast estrogen assay to the environmental samples tested was not consistent with the detected concentrations of NP. Standard addition of a natural estrogen, 17{beta}-estradiol, generated no or a reduced response compared to the standard curve concentration. Application of humic acids to standard series of NP and 17{beta}-estradiol resulted in a dose-dependent decrease of the estrogenic response. It appears that this bioassay is subject to considerable interferences due to the complexity of environmental samples. Parallel implementation of extensive chemical screening for xenobiotics and use of the bioassay are needed for adequate assessment of the potential estrogenic hazard to avoid false negative evaluations.« less

  10. Estrogens and progression of diabetic kidney damage.

    PubMed

    Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Elliot, Sharon J

    2011-01-01

    It is generally accepted that estrogens affect and modulate the development and progression of chronic kidney diseases (CKD) not related to diabetes. Clinical studies have indeed demonstrated that the severity and rate of progression of renal damage tends to be greater among men, compared with women. Experimental studies also support the notion that female sex is protective and male sex permissive, for the development of CKD in non-diabetics, through the opposing actions of estrogens and testosterone. However, when we consider diabetes-induced kidney damage, in the setting of either type 1 or type 2 diabetes, the contribution of gender to the progression of renal disease is somewhat uncertain. Previous studies on the effects of estrogens in the pathogenesis of progressive kidney damage have primarily focused on mesangial cells. More recently, data on the effects of estrogens on podocytes, the cell type whose role may include initiation of progressive diabetic renal disease, became available. The aim of this review will be to summarize the main clinical and experimental data on the effects of estrogens on the progression of diabetes-induced kidney injury. In particular, we will highlight the possible biological effects of estrogens on podocytes, especially considering those critical for the pathogenesis of diabetic kidney damage.

  11. Estrogen Abolishes Latent Inhibition in Ovariectomized Female Rats

    ERIC Educational Resources Information Center

    Nofrey, Barbara S.; Ben-Shahar, Osnat M.; Brake, Wayne G.

    2008-01-01

    Estrogen is frequently prescribed as a method of birth control and as hormone replacement therapy for post-menopausal women with varied effects on cognition. Here the effects of estrogen on attention were examined using the latent inhibition (LI) behavioral paradigm. Ovariectomized (OVX) female rats were given either estrogen benzoate (EB, 10 or…

  12. Type-I Insulin-Like Growth Factor Receptor (IGF1R)-Estrogen Receptor (ER) Crosstalk Contributes to Antiestrogen Therapy Resistance in Breast Cancer Cells

    DTIC Science & Technology

    2013-02-01

    penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR...great success in treating estrogen receptor (ER) positive breast cancer. However, both acquired and de novo resistance to this therapy prevents it from...has shown great success in treating estrogen receptor (ER) positive breast tumors. However, both acquired and de novo resistance to this therapy

  13. Repression of Osteoblast Maturation by ERRα Accounts for Bone Loss Induced by Estrogen Deficiency

    PubMed Central

    Gallet, Marlène; Saïdi, Soraya; Haÿ, Eric; Photsavang, Johann; Marty, Caroline; Sailland, Juliette; Carnesecchi, Julie; Tribollet, Violaine; Barenton, Bruno; Forcet, Christelle; Birling, Marie-Christine; Sorg, Tania; Chassande, Olivier; Cohen-Solal, Martine; Vanacker, Jean-Marc

    2013-01-01

    ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency. PMID:23359549

  14. Repression of osteoblast maturation by ERRα accounts for bone loss induced by estrogen deficiency.

    PubMed

    Gallet, Marlène; Saïdi, Soraya; Haÿ, Eric; Photsavang, Johann; Marty, Caroline; Sailland, Juliette; Carnesecchi, Julie; Tribollet, Violaine; Barenton, Bruno; Forcet, Christelle; Birling, Marie-Christine; Sorg, Tania; Chassande, Olivier; Cohen-Solal, Martine; Vanacker, Jean-Marc

    2013-01-01

    ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency.

  15. Prevention and early intervention to improve mental health in higher education students: a review.

    PubMed

    Reavley, Nicola; Jorm, Anthony F

    2010-05-01

    The age at which most young people are in higher education is also the age of peak onset for mental and substance use disorders, with these having their first onset before age 24 in 75% of cases. In most developed countries, over 50% of young people are in higher education. To review the evidence for prevention and early intervention in mental health problems in higher education students. The review was limited to interventions targeted to anxiety, depression and alcohol misuse. Interventions to review were identified by searching PubMed, PsycINFO and the Cochrane Database of Systematic Reviews. Interventions were included if they were designed to specifically prevent or intervene early in the general (non-health professional) higher education student population, in one or more of the following areas: anxiety, depression or alcohol misuse symptoms, mental health literacy, stigma and one or more behavioural outcomes. For interventions to prevent or intervene early for alcohol misuse, evidence of effectiveness is strongest for brief motivational interventions and for personalized normative interventions delivered using computers or in individual face-to-face sessions. Few interventions to prevent or intervene early with depression or anxiety were identified. These were mostly face-to-face, cognitive-behavioural/skill-based interventions. One social marketing intervention to raise awareness of depression and treatments showed some evidence of effectiveness. There is very limited evidence that interventions are effective in preventing or intervening early with depression and anxiety disorders in higher education students. Further studies, possibly involving interventions that have shown promise in other populations, are needed.

  16. Estrogen-dependent changes in serum iron levels as a translator of the adverse effects of estrogen during infection: a conceptual framework.

    PubMed

    Hamad, Mawieh; Awadallah, Samir

    2013-12-01

    Elevated levels of estrogen often associate with increased susceptibility to infection. This has been attributed to the ability of estrogen to concomitantly enhance the growth and virulence of pathogens and suppress host immunity. But the exact mechanism of how estrogen mediates such effects, especially in cases where the pathogen and/or the immune components in question do not express estrogen receptors, has yet to be elucidated. Here we propose that translating the adverse effects of estrogen during infection is dependent to a significant degree upon its ability to manipulate iron homeostasis. For elevated levels of estrogen alter the synthesis and/or activity of several factors involved in iron metabolism including hypoxia inducible factor 1α (HIF-1α) and hepcidin among others. This leads to the inhibition of hepcidin synthesis in hepatocytes and the maintenance of ferroportin (FPN) integrity on the surface of iron-releasing duodenal enterocytes, hepatocytes, and macrophages. Intact FPN permits the continuous efflux of dietary and stored iron into the circulation, which further enhances pathogen growth and virulence on the one hand and suppresses host immunity on the other. This new conceptual framework may help explain a multitude of disparate clinical and experimental observations pertinent to the relationship between estrogen and infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens.

    PubMed

    Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S

    2014-09-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines. Published by Elsevier Ltd.

  18. Activation of the G protein-coupled estrogen receptor, but not estrogen receptor α or β, rapidly enhances social learning.

    PubMed

    Ervin, Kelsy Sharice Jean; Mulvale, Erin; Gallagher, Nicola; Roussel, Véronique; Choleris, Elena

    2015-08-01

    Social learning is a highly adaptive process by which an animal acquires information from a conspecific. While estrogens are known to modulate learning and memory, much of this research focuses on individual learning. Estrogens have been shown to enhance social learning on a long-term time scale, likely via genomic mechanisms. Estrogens have also been shown to affect individual learning on a rapid time scale through cell-signaling cascades, rather than via genomic effects, suggesting they may also rapidly influence social learning. We therefore investigated the effects of 17β-estradiol and involvement of the estrogen receptors (ERs) using the ERα agonist propyl pyrazole triol, the ERβ agonist diarylpropionitrile, and the G protein-coupled ER 1 (GPER1) agonist G1 on the social transmission of food preferences (STFP) task, within a time scale that focused on the rapid effects of estrogens. General ER activation with 17β-estradiol resulted in a modest facilitation of social learning, with mice showing a preference up to 30min of testing. Specific activation of the GPER1 also rapidly enhanced social learning, with mice showing a socially learned preference up to 2h of testing. ERα activation instead shortened the expression of a socially learned food preference, while ERβ activation had little to no effects. Thus, rapid estrogenic modulation of social learning in the STFP may be the outcome of competing action at the three main receptors. Hence, estrogens' rapid effects on social learning likely depend on the specific ERs present in brain regions recruited during social learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Vitex Agnus Castus Extract Improves Learning and Memory and Increases the Transcription of Estrogen Receptor α in Hippocampus of Ovariectomized Rats.

    PubMed

    Allahtavakoli, Mohammad; Honari, Najmeh; Pourabolli, Iran; Kazemi Arababadi, Mohammad; Ghafarian, Hossein; Roohbakhsh, Ali; Esmaeili Nadimi, Ali; Shamsizadeh, Ali

    2015-07-01

    Lower level of estrogen hormone is considered as an important factor for loss of learning and memory in postmenopausal women. Although estrogen replacement therapy is used for compensation, but long-term usage of estrogen is associated with a higher risk of hormone-dependent cancers. Phytoestrogens, due to fewer side effects, have been proposed to prevent menopause-related cognitive decline. 24 female Wistar rats weighing 180-220 g were used in this study. The animals were ovariectomized and randomly divided into four groups including, control and two groups which received 8 and 80 mg/kg Vitex agnus castus (VAC) ethanolic extract orally. The last groups were treated with 40 μg/kg of estradiol valerat. Step-through passive avoidance (STPA) test was used for the evaluation of learning and memory. The hippocampal estrogen receptor α (ERα) expression was measured using Real-Time PCR. The results demonstrated that VAC extract or estradiol had better performance on step-through passive avoidance test than control group (all P<0.05). Moreover, administration of either estradiol or VAC extract increased the hippocampal mRNA level of ERα and prevented the decrease in uterine weight of ovariectomized rats. Based on our data, VAC extract improves learning and memory in ovariectomized rats. The positive effect of VAC extract on learning and memory is possibly associated with an increase in ERα gene expression in the hippocampal formation.

  20. Brain Sex Matters: estrogen in cognition and Alzheimer’s disease

    PubMed Central

    Li, Rena; Cui, Jie; Shen, Yong

    2014-01-01

    Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissues such as liver, heart, muscle, bone and the brain. During the past decade, increasing evidence suggests that brain estrogen can not only be synthesized by neurons, but also by astrocytes. Brain estrogen also works locally at the site of synthesis in paracrine and/or intracrine fashion to maintain important tissue-specific functions. Here, we will focus on the biology of brain estrogen and its impact on cognitive function and Alzheimer’s disease. This comprehensive review provides new insights into brain estrogens by presenting a better understanding of the tissue-specific estrogen effects and their roles in healthy ageing and cognitive function. PMID:24418360

  1. Disseminated intravascular coagulation induced by progesterone in the pregnant rat. Prevention by estogens.

    PubMed

    Stamler, F W

    1977-03-01

    Fatal disseminated intravascular coagulation (DIC) was induced in female rats by administration of progesterone in late pregnacy. This prevented parturition, with intrauterine fetal death 2 to 4 days past term and subsequent retention of dead fetuses. Concomitantly with or closely following the intrauterine death of their litters, a large proportion of pregnant rats died with histologically evident DIC. Administration of cortisone, heparin, or disoumarin did not prevent DIC, and xi-aminocaproic acid, acetylsalicylic acid, or an onion-rich diet tended to increase its incidence. Antibiotic regimens gave variable results, with significant decrease in DIC only with a combination of two wide-spectrum penicillins. Neomycin and polymyxin had little effect on susceptible Sprague-dawley derived rats, but polymxin caused a significant increase in DIC in a resistant strain of hooded rats. Fatal maternal DIC was completely prevented only by use of natural or synthetic estrogens concurrently with progesterone, although this did not alter the sequence of abnormally prolonged pregnacy with intrauterine fetal death and retention of dead fetuses. Potencies of estrogens varied greatly, but all compounds tested prevented DIC at adequate dosage levels. Diethylstilbestrol, the most potent drug tested, was completely protective at 1 mug daily given subcutaneously. beta-Estradiol was the most effective natural estrogen, giving complete protection with a 10-mug daily subcutaneous injection. Estrogens were much more potent by subcutaneous injection than by oral ingestion, and toxic side effects were sometimes noted with higher levels of the latter. For estrogen therapy to be effective, it was necessary to begin its use before the expected onset of DIC, and in no instance was there evidence of reversal of this process after signs of illness were observed.

  2. Mechanism of estrogen activation of c-myc oncogene expression.

    PubMed

    Dubik, D; Shiu, R P

    1992-08-01

    The estrogen receptor complex is a known trans-acting factor that regulates transcription of specific genes through an interaction with a specific estrogen-responsive cis-acting element (ERE). In previous studies we have shown that in estrogen-responsive human breast cancer cells estrogen rapidly activates c-myc expression. This activated expression occurs through enhanced transcription and does not require the synthesis of new protein intermediates; therefore, an ERE is present in the human c-myc gene regulatory region. To localize the ERE, constructs containing varying lengths of the c-myc 5'-flanking region ranging from -2327 to +25 (relative to the P1 promoter) placed adjacent to the chloramphenicol acetyl transferase reporter gene (CAT) were prepared. They were used in transient transfection studies in MCF-7 and HeLa cells co-transfected with an estrogen receptor expression vector. These studies reveal that all constructs containing the P2 promoter region exhibited estrogen-regulated CAT expression and that a 116-bp region upstream and encompassing the P2 TATA box is necessary for this activity. Analysis of this 116-bp region failed to identify a cis-acting element with sequences resembling the consensus ERE; however, co-transfection studies with mutant estrogen receptor expression vectors showed that the DNA-binding domain of the receptor is essential for estrogen-regulated CAT gene expression. We have also observed that anti-estrogen receptor complexes can weakly trans-activate from this 116-bp region but fail to do so from the ERE-containing ApoVLDLII-CAT construct. To explain these results we propose a new mechanism of estrogen trans-activation in the c-myc gene promoter.

  3. Postmenopausal estrogen and progestin effects on the serum proteome

    PubMed Central

    2009-01-01

    Background Women's Health Initiative randomized trials of postmenopausal hormone therapy reported intervention effects on several clinical outcomes, with some important differences between estrogen alone and estrogen plus progestin. The biologic mechanisms underlying these effects, and these differences, have yet to be fully elucidated. Methods Baseline serum samples were compared with samples drawn 1 year later for 50 women assigned to active hormone therapy in both the estrogen-plus-progestin and estrogen-alone randomized trials, by applying an in-depth proteomic discovery platform to serum pools from 10 women per pool. Results In total, 378 proteins were quantified in two or more of the 10 pooled serum comparisons, by using strict identification criteria. Of these, 169 (44.7%) showed evidence (nominal P < 0.05) of change in concentration between baseline and 1 year for one or both of estrogen-plus-progestin and estrogen-alone groups. Quantitative changes were highly correlated between the two hormone-therapy preparations. A total of 98 proteins had false discovery rates < 0.05 for change with estrogen plus progestin, compared with 94 for estrogen alone. Of these, 84 had false discovery rates <0.05 for both preparations. The observed changes included multiple proteins relevant to coagulation, inflammation, immune response, metabolism, cell adhesion, growth factors, and osteogenesis. Evidence of differential changes also was noted between the hormone preparations, with the strongest evidence in growth factor and inflammation pathways. Conclusions Serum proteomic analyses yielded a large number of proteins similarly affected by estrogen plus progestin and by estrogen alone and identified some proteins and pathways that appear to be differentially affected between the two hormone preparations; this may explain their distinct clinical effects. PMID:20034393

  4. Cumulative estrogen exposure and prospective memory in older women.

    PubMed

    Hesson, Jacqueline

    2012-10-01

    This study looked at cumulative lifetime estrogen exposure, as estimated with a mathematical index (Index of Cumulative Estrogen Exposure (ICEE)) that included variables (length of time on estrogen therapy, age at menarche and menopause, postmenopausal body mass index, time since menopause, nulliparity and duration of breastfeeding) known to influence estrogen levels across the life span, and performance on prospective and retrospective memory measures in a group of 50 postmenopausal women (mean age=69.3years) who, if they were current or former users of estrogen therapy, had started therapy within 5years of menopause. The ICEE was found to be a significant predictor of performance on the Prospective Memory task (F(1)=4.21, p=.046, η(p)(2)=.084). No significant relationship was noted between the ICEE and performance on measures of retrospective memory. The results suggest that the level of cumulative lifetime exposure to estrogen a woman has influences her prospective memory performance later in life and that the influence of reproductive and biological markers of endogenous estrogen exposure are relevant factors to consider when studying the effect of estrogen therapy on cognitive functioning in postmenopausal women. In addition, the finding that performance on a measure of prospective memory, but not performance on measures of retrospective memory, was associated with the ICEE adds further support to the theory that the frontal cortex may be especially sensitive to estrogen. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The Endocrine Role of Estrogens on Human Male Skeleton

    PubMed Central

    Rochira, Vincenzo; Kara, Elda; Carani, Cesare

    2015-01-01

    Before the characterization of human and animal models of estrogen deficiency, estrogen action was confined in the context of the female bone. These interesting models uncovered a wide spectrum of unexpected estrogen actions on bone in males, allowing the formulation of an estrogen-centric theory useful to explain how sex steroids act on bone in men. Most of the principal physiological events that take place in the developing and mature male bone are now considered to be under the control of estrogen. Estrogen determines the acceleration of bone elongation at puberty, epiphyseal closure, harmonic skeletal proportions, the achievement of peak bone mass, and the maintenance of bone mass. Furthermore, it seems to crosstalk with androgen even in the determination of bone size, a more androgen-dependent phenomenon. At puberty, epiphyseal closure and growth arrest occur when a critical number of estrogens is reached. The same mechanism based on a critical threshold of serum estradiol seems to operate in men during adulthood for bone mass maintenance via the modulation of bone formation and resorption in men. This threshold should be better identified in-between the ranges of 15 and 25 pg/mL. Future basic and clinical research will optimize strategies for the management of bone diseases related to estrogen deficiency in men. PMID:25873947

  6. Seasonal variation of red clover (Trifolium pratense L., Fabaceae) isoflavones and estrogenic activity

    PubMed Central

    Booth, Nancy L.; Overk, Cassia R.; Yao, Ping; Totura, Steve; Deng, Yunfan; Hedayat, A. S.; Bolton, Judy L.; Pauli, Guido F.; Farnsworth, Norman R.

    2007-01-01

    Red clover (Trifolium pratense L., Fabaceae) dietary supplements are currently used to treat menopausal symptoms because of their high content of the mildly estrogenic isoflavones daidzein, genistein, formononetin and biochanin A. These compounds are estrogenic in vitro and in vivo, but little information exists on the best time to harvest red clover fields to maximize content of the isoflavones and thus make an optimal product. Samples of cultivated red clover aboveground parts and flower heads were collected in parallel over one growing season in northeastern Illinois. Generally, autohydrolytic extracts of aboveground parts contained more isoflavones and had more estrogenic activity in Ishikawa endometrial cells, compared with extracts of flower heads. Daidzein and genistein content peaked around June to July, while formononetin and biochanin A content peaked in early September. Flower head and total aboveground parts extracts exhibited differential estrogenic activity in an Ishikawa (endometrial) cell-based alkaline phosphatase (AP) induction assay, whereas nondifferential activity was observed for most extracts tested in an MCF-7 (breast) cell proliferation assay when tested at the same final concentrations. Ishikawa assay results could be mapped onto the extracts’ content of individual isoflavones, but MCF-7 results did not show such a pattern. These results suggest that significant metabolism of isoflavones may occur in MCF-7 cells, but not in Ishikawa cells, and therefore caution is advised in the choice of bioassay used for the biological standardization of botanical dietary supplements. PMID:16478248

  7. GPR30: A G protein-coupled receptor for estrogen.

    PubMed

    Prossnitz, Eric R; Arterburn, Jeffrey B; Sklar, Larry A

    2007-02-01

    Estrogen is a critical steroid in human physiology exerting its effect both at the transcriptional level as well as at the level of rapid intracellular signaling through second messengers. Many of estrogen's transcriptional effects have long been known to be mediated through classical nuclear steroid receptors but recent studies also demonstrate the existence of a 7-transmembrane G protein-coupled receptor, GPR30 that responds to estrogen with rapid cellular signaling. There is currently controversy over the ability of classical estrogen receptors to recapitulate GPR30-mediated signaling mechanisms and vice versa. This article will summarize recent literature and address the relationship between GPR30 and conventional estrogen receptor signaling.

  8. Steinach and Young, Discoverers of the Effects of Estrogen on Male Sexual Behavior and the “Male Brain”1,2

    PubMed Central

    2015-01-01

    Abstract In the 1930s, Eugen Steinach’s group found that estradiol induces lordosis in castrated rats and reduces the threshold dose of testosterone that is necessary for the induction of ejaculation, and that estradiol-treated intact rats display lordosis as well as mounting and ejaculation. The bisexual, estrogen-sensitive male had been demonstrated. Another major, albeit contrasting, discovery was made in the 1950s, when William Young’s group reported that male guinea pigs and prenatally testosterone-treated female guinea pigs are relatively insensitive to estrogen when tested for lordosis as adults. Reduced estrogen sensitivity was part of the new concept of organization of the neural tissues mediating the sexual behavior of females into tissues similar to those of males. The importance of neural organization by early androgen stimulation was realized immediately and led to the discovery of a variety of sex differences in the brains of adult animals. By contrast, the importance of the metabolism of testosterone into estrogen in the male was recognized only after a delay. While the finding that males are sensitive to estrogen was based on Bernhard Zondek’s discovery in 1934 that testosterone is metabolized into estrogen in males, the finding that males are insensitive to estrogen was based on the hypothesis that testosterone–male sexual behavior is the typical relationship in the male. It is suggested that this difference in theoretical framework explains the discrepancies in some of the reported results. PMID:26601123

  9. 21 CFR 862.1270 - Estrogens (total, in pregnancy) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Estrogens (total, in pregnancy) test system. 862... Test Systems § 862.1270 Estrogens (total, in pregnancy) test system. (a) Identification. As estrogens (total, in pregnancy) test system is a device intended to measure total estrogens in plasma, serum, and...

  10. Influence of testosterone on synaptic transmission in the rat medial vestibular nuclei: estrogenic and androgenic effects.

    PubMed

    Grassi, S; Frondaroli, A; Di Mauro, M; Pettorossi, V E

    2010-12-15

    In brainstem slices of young male rat, we investigated the influence of the neuroactive steroid testosterone (T) on the synaptic responses by analyzing the field potential evoked in the medial vestibular nucleus (MVN) by vestibular afferent stimulation. T induced three distinct and independent long-term synaptic changes: fast long-lasting potentiation (fLP), slow long-lasting potentiation (sLP) and long-lasting depression (LD). The fLP was mediated by 17β-estradiol (E(2)) since it was abolished by blocking the estrogen receptors (ERs) or the enzyme converting T to E(2). Conversely, sLP and LD were mediated by 5α-dihydrotestosterone (DHT) since they were prevented by blocking the androgen receptors (ARs) or the enzyme converting T to DHT. Therefore, the synaptic effects of T were mediated by its androgenic or estrogenic metabolites. The pathways leading to estrogenic and androgenic conversion of T might be co-localized since, the occurrence of fLP under block of androgenic pathway, and that of sLP and LD under estrogenic block, were higher than those observed without blocks. In case of co-localization, the effect on synaptic transmission should depend on the prevailing enzymatic activity. We conclude that circulating and neuronal T can remarkably influence synaptic responses of the vestibular neurons in different and opposite ways, depending on its conversion to estrogenic or androgenic metabolites. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Expression and functional roles of estrogen receptor GPR30 in human intervertebral disc.

    PubMed

    Wei, Aiqun; Shen, Bojiang; Williams, Lisa A; Bhargav, Divya; Yan, Feng; Chong, Beng H; Diwan, Ashish D

    2016-04-01

    Estrogen withdrawal, a characteristic of female aging, is associated with age-related intervertebral disc (IVD) degeneration. The function of estrogen is mediated by two classic nuclear receptors, estrogen receptor (ER)-α and -β, and a membrane bound G-protein-coupled receptor 30 (GPR30). To date, the expression and function of GPR30 in human spine is poorly understood. This study aimed to evaluate GPR30 expression in IVD, and its role in estrogen-related regulation of proliferation and apoptosis of disc nucleus pulposus (NP) cells. GPR30 expression was examined in 30 human adult NP and 9 fetal IVD. Results showed that GPR30 was expressed in NP cells at both mRNA and protein levels. In human fetal IVD, GPR30 protein was expressed in the NP at 12-14 weeks gestation, but was undetectable at 8-11 weeks. The effect of 17β-estradiol (E2) on GPR30-mediated proliferation and interleukin-1β (IL-1β)-induced apoptosis of NP cells was investigated. Cultured NP cells were treated with or without E2, GPR30 antagonist G36, and ER antagonist ICI 182,780. NP cell viability was tested by MTS assay. Apoptosis was determined by flow cytometry using fluorescence labeled annexin-V, TUNEL assay and immumnocytochemical staining of activated caspase-3. E2 enhanced cell proliferation and prevented IL-1β-induced cell death, but the effect was partially blocked by G36 and completely abrogated by a combination of ICI 182,780 and G36. This study demonstrates that GPR30 is expressed in human IVD to transmit signals triggering E2-induced NP cell proliferation and protecting against IL-1β-induced apoptosis. The effects of E2 on NP cells require both GPR30 and classic estrogen receptors. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Differential neonatal imprinting and regulation by estrogen of estrogen receptor subtypes alpha and beta and of the truncated estrogen receptor product (TERP-1) mRNA expression in the male rat pituitary.

    PubMed

    Tena-Sempere, M; Barreiro, M L; González, L C; Pinilla, L; Aguilar, E

    2001-11-01

    Two distinct nuclear estrogen receptors (ERs) have been identified, the classical one, renamed ERalpha, and the more recently cloned ERbeta. In a variety of tissues, gene expression of both receptor subtypes results in the generation of multiple transcripts encoding the full-length as well as several alternately spliced isoforms. In the rat pituitary, a truncated, tissue-specific variant of ERalpha, called TERP-1, has been identified and found able to modulate ERalpha and ERbeta activity. So far, its pattern of expression and hormonal regulation have been mostly studied in females. The present study was designed to analyze the pattern of expression of TERP-1 mRNA in the male rat pituitary at different stages of postnatal development, and to evaluate the impact of neonatal imprinting and estrogen treatment upon TERP-1 expression in the male pituitary. Assessment of TERP-1 mRNA levels by semi-quantitative RT-PCR, using a variant-specific primer pair, revealed that TERP-1 is also expressed in the male rat pituitary. Relative mRNA expression levels changed markedly during postnatal development, with moderate expression of the TERP-1 transcript at birth, barely detectable levels during the infantile-prepubertal period, and maximal values in adulthood. Expression of TERP-1 was sensitive to neonatal estrogen exposure, which resulted in a significant, persistent increase in mRNA levels from the infantile period until puberty. This phenomenon was not mimicked by neonatal blockade of endogenous GnRH. In addition, estrogen was able to acutely up-regulate pituitary TERP-1 mRNA expression levels in prepubertal (30-day-old) and adult (75-day-old) males. Interestingly, neonatal imprinting as well as acute estrogen treatment resulted in opposite effects on TERP-1 and full-length ERalpha and ERbeta transcripts, the latter being decreased under both conditions. In conclusion, our data indicate that TERP-1 mRNA is expressed in a developmentally regulated manner in the male rat

  13. Effect of vaginal estrogen on pessary use

    PubMed Central

    Dessie, Sybil G.; Armstrong, Katherine; Modest, Anna M.; Hacker, Michele R.

    2016-01-01

    Introduction and hypothesis Many providers recommend concurrent estrogen therapy with pessary use to limit complications; however, limited data exist to support this practice. We hypothesized that vaginal estrogen supplementation decreases incidence of pessary-related complications and discontinuation. Methods We performed a retrospective cohort study of women who underwent a pessary fitting from 1 January 2007 through 1 September 2013 at one institution; participants were identified by billing code and were eligible if they were post-menopausal and had at least 3 months of pessary use and 6 months of follow-up. All tests were two sided, and P values < 0.05 were considered statistically significant. Results Data from 199 women were included; 134 used vaginal estrogen and 65 did not. Women who used vaginal estrogen had a longer median follow-up time (29.5 months) compared with women who did not (15.4 months) and were more likely to have at least one pessary check (98.5 % vs 86.2 %, P < 0.001). Those in the estrogen group were less likely to discontinue using their pessary (30.6 % vs 58.5 %, P < 0.001) and less likely to develop increased vaginal discharge than women who did not [hazard ratio (HR) 0.31, 95 % confidence interval (CI) 0.17–0.58]. Vaginal estrogen was not protective against erosions (HR 0.93, 95 % CI 0.54–1.6) or vaginal bleeding (HR 0.78, 95 % CI 0.36–1.7). Conclusions Women who used vaginal estrogen exhibited a higher incidence of continued pessary use and lower incidence of increased vaginal discharge than women who did not. PMID:26992727

  14. FDA-Approved Selective Estrogen Receptor Modulators Inhibit Ebola Virus Infection

    PubMed Central

    Johansen, Lisa M.; Brannan, Jennifer M.; Delos, Sue E.; Shoemaker, Charles J.; Stossel, Andrea; Lear, Calli; Hoffstrom, Benjamin G.; DeWald, Lisa Evans; Schornberg, Kathryn L.; Scully, Corinne; Lehár, Joseph; Hensley, Lisa E.; White, Judith M.; Olinger, Gene G.

    2014-01-01

    Ebola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)– and ex–US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV). From this screen, we identified a set of selective estrogen receptor modulators (SERMs), including clomiphene and toremifene, which act as potent inhibitors of EBOV infection. Anti-EBOV activity was confirmed for both of these SERMs in an in vivo mouse infection model. This anti-EBOV activity occurred even in the absence of detectable estrogen receptor expression, and both SERMs inhibited virus entry after internalization, suggesting that clomiphene and toremifene are not working through classical pathways associated with the estrogen receptor. Instead, the response appeared to be an off-target effect where the compounds interfere with a step late in viral entry and likely affect the triggering of fusion. These data support the screening of readily available approved drugs to identify therapeutics for the Ebola viruses and other infectious diseases. The SERM compounds described in this report are an immediately actionable class of approved drugs that can be repurposed for treatment of filovirus infections. PMID:23785035

  15. Treatment of BG-1 Ovarian Cancer Cells Expressing Estrogen Receptors with Lambda-cyhalothrin and Cypermethrin Caused a Partial Estrogenicity Via an Estrogen Receptor-dependent Pathway

    PubMed Central

    Kim, Cho-Won; Go, Ryeo-Eun

    2015-01-01

    Synthetic pyrethroids (SPs) are the most common pesticides which are recently used for indoor pest control. The widespread use of SPs has resulted in the increased exposure to wild animals and humans. Recently, some SPs are suspected as endocrine disrupting chemicals (EDCs) and have been assessed for their potential estrogenicity by adopting various analyzing assays. In this study, we examined the estrogenic effects of lambda-cyhalothrin (LC) and cypermethrin (CP), the most commonly used pesticides in Korea, using BG-1 ovarian cancer cells expressing estrogen receptors (ERs). To evaluate the estrogenic activities of two SPs, LC and CP, we employed MTT assay and reverse-transcription polymerase chain reaction (RT-PCR) in LC or CP treated BG-1 ovarian cancer cells. In MTT assay, LC (10−6 M) and CP (10−5 M) significantly induced the growth of BG-1 cancer cells. LC or CP-induced cell growth was antagonized by addition of ICI 182,720 (10−8 M), an ER antagonist, suggesting that this effect appears to be mediated by an ER-dependent manner. Moreover, RT-PCR results showed that transcriptional level of cyclin D1, a cell cycle-regulating gene, was significantly up-regulated by LC and CP, while these effects were reversed by co-treatment of ICI 182,780. However, p21, a cyclin D-ckd-4 inhibitor gene, was not altered by LC or CP. Moreover, ERα expression was not significantly changed by LC and CP, while downregulated by E2. Finally, in xenografted mouse model transplanted with human BG-1 ovarian cancer cells, E2 significantly increased the tumor volume compare to a negative control, but LC did not. Taken together, these results suggest that LC and CP may possess estrogenic potentials by stimulating the growth of BG-1 ovarian cancer cells via partially ER signaling pathway associated with cell cycle as did E2, but this estrogenic effect was not found in in vivo mouse model. PMID:26877835

  16. Economic Evaluation of Obesity Prevention in Early Childhood: Methods, Limitations and Recommendations.

    PubMed

    Döring, Nora; Mayer, Susanne; Rasmussen, Finn; Sonntag, Diana

    2016-09-13

    Despite methodological advances in the field of economic evaluations of interventions, economic evaluations of obesity prevention programmes in early childhood are seldom conducted. The aim of the present study was to explore existing methods and applications of economic evaluations, examining their limitations and making recommendations for future cost-effectiveness assessments. A systematic literature search was conducted using PubMed, Cochrane Library, the British National Health Service Economic Evaluation Databases and EconLit. Eligible studies included trial-based or simulation-based cost-effectiveness analyses of obesity prevention programmes targeting preschool children and/or their parents. The quality of included studies was assessed. Of the six studies included, five were intervention studies and one was based on a simulation approach conducted on secondary data. We identified three main conceptual and methodological limitations of their economic evaluations: Insufficient conceptual approach considering the complexity of childhood obesity, inadequate measurement of effects of interventions, and lack of valid instruments to measure child-related quality of life and costs. Despite the need for economic evaluations of obesity prevention programmes in early childhood, only a few studies of varying quality have been conducted. Moreover, due to methodological and conceptual weaknesses, they offer only limited information for policy makers and intervention providers. We elaborate reasons for the limitations of these studies and offer guidance for designing better economic evaluations of early obesity prevention.

  17. Economic Evaluation of Obesity Prevention in Early Childhood: Methods, Limitations and Recommendations

    PubMed Central

    Döring, Nora; Mayer, Susanne; Rasmussen, Finn; Sonntag, Diana

    2016-01-01

    Despite methodological advances in the field of economic evaluations of interventions, economic evaluations of obesity prevention programmes in early childhood are seldom conducted. The aim of the present study was to explore existing methods and applications of economic evaluations, examining their limitations and making recommendations for future cost-effectiveness assessments. A systematic literature search was conducted using PubMed, Cochrane Library, the British National Health Service Economic Evaluation Databases and EconLit. Eligible studies included trial-based or simulation-based cost-effectiveness analyses of obesity prevention programmes targeting preschool children and/or their parents. The quality of included studies was assessed. Of the six studies included, five were intervention studies and one was based on a simulation approach conducted on secondary data. We identified three main conceptual and methodological limitations of their economic evaluations: Insufficient conceptual approach considering the complexity of childhood obesity, inadequate measurement of effects of interventions, and lack of valid instruments to measure child-related quality of life and costs. Despite the need for economic evaluations of obesity prevention programmes in early childhood, only a few studies of varying quality have been conducted. Moreover, due to methodological and conceptual weaknesses, they offer only limited information for policy makers and intervention providers. We elaborate reasons for the limitations of these studies and offer guidance for designing better economic evaluations of early obesity prevention. PMID:27649218

  18. Caffeine, coffee and tea intake and urinary estrogens and estrogen metabolites in premenopausal women

    PubMed Central

    Sisti, Julia S.; Hankinson, Susan E.; Caporaso, Neil E.; Gu, Fangyi; Tamimi, Rulla M.; Rosner, Bernard; Xu, Xia; Ziegler, Regina; Eliassen, A. Heather

    2015-01-01

    Background Prior studies have found weak inverse associations between breast cancer and caffeine and coffee intake, possibly mediated through their effects on sex hormones. Methods High-performance liquid chromatography/tandem mass spectrometry was used to quantify levels of 15 individual estrogens and estrogen metabolites (EM) among 587 premenopausal women in the Nurses’ Health Study II with mid-luteal phase urine samples and caffeine, coffee and/or tea intakes from self-reported food frequency questionnaires. Multivariate linear mixed models were used to estimate geometric means of individual EM, pathways and ratios by intake categories, and P-values for tests of linear trend. Results Compared to women in the lowest quartile of caffeine consumption, those in the top quartile had higher urinary concentrations of 16α-hydroxyestrone (28% difference; P-trend=0.01) and 16-epiestriol (13% difference; P-trend=0.04), and a decreased parent estrogens/2-, 4-, 16-pathway ratio (P-trend=0.03). Coffee intake was associated with higher 2-catechols, including 2-hydroxyestradiol (57% difference, ≥4 cups/day vs. ≤6 cups/week; P-trend=0.001) and 2-hydroxyestrone (52% difference; P-trend=0.001), and several ratio measures. Decaffeinated coffee was not associated with 2-pathway metabolism, but women in the highest (vs. lowest) category of intake (≥2 cups/day vs. ≤1–3 cups/month) had significantly lower levels of two 16-pathway metabolites, estriol (25% difference; P-trend=0.01) and 17-epiestriol (48% difference; Ptrend=0.0004). Tea intake was positively associated with 17-epiestriol (52% difference; Ptrend=0.01). Conclusion Caffeine and coffee intake were both associated with profiles of estrogen metabolism in premenopausal women. Impact Consumption of caffeine and coffee may alter patterns of premenopausal estrogen metabolism. PMID:26063478

  19. Caffeine, coffee, and tea intake and urinary estrogens and estrogen metabolites in premenopausal women.

    PubMed

    Sisti, Julia S; Hankinson, Susan E; Caporaso, Neil E; Gu, Fangyi; Tamimi, Rulla M; Rosner, Bernard; Xu, Xia; Ziegler, Regina; Eliassen, A Heather

    2015-08-01

    Prior studies have found weak inverse associations between breast cancer and caffeine and coffee intake, possibly mediated through their effects on sex hormones. High-performance liquid chromatography/tandem mass spectrometry was used to quantify levels of 15 individual estrogens and estrogen metabolites (EM) among 587 premenopausal women in the Nurses' Health Study II with mid-luteal phase urine samples and caffeine, coffee, and/or tea intakes from self-reported food frequency questionnaires. Multivariate linear mixed models were used to estimate geometric means of individual EM, pathways, and ratios by intake categories, and P values for tests of linear trend. Compared with women in the lowest quartile of caffeine consumption, those in the top quartile had higher urinary concentrations of 16α-hydroxyestrone (28% difference; Ptrend = 0.01) and 16-epiestriol (13% difference; Ptrend = 0.04), and a decreased parent estrogens/2-, 4-, 16-pathway ratio (Ptrend = 0.03). Coffee intake was associated with higher 2-catechols, including 2-hydroxyestradiol (57% difference, ≥4 cups/day vs. ≤6 cups/week; Ptrend = 0.001) and 2-hydroxyestrone (52% difference; Ptrend = 0.001), and several ratio measures. Decaffeinated coffee was not associated with 2-pathway metabolism, but women in the highest (vs. lowest) category of intake (≥2 cups/day vs. ≤1-3 cups/month) had significantly lower levels of two 16-pathway metabolites, estriol (25% difference; Ptrend = 0.01) and 17-epiestriol (48% difference; Ptrend = 0.0004). Tea intake was positively associated with 17-epiestriol (52% difference; Ptrend = 0.01). Caffeine and coffee intake were both associated with profiles of estrogen metabolism in premenopausal women. Consumption of caffeine and coffee may alter patterns of premenopausal estrogen metabolism. ©2015 American Association for Cancer Research.

  20. A Cognitive Behavioral Depression Prevention Program for Early Adolescents

    ERIC Educational Resources Information Center

    Miloseva, Lence

    2013-01-01

    The aim of this study was to present results of our one year experience with Cognitive Behavioral Psychology Program, in order to contribute to the building of whole school approach and positive psychology preventive mental health problems model. Based on Penn Resilience program (PRP), we modify and create program for early adolescents: how to…

  1. The human oxytocin gene promoter is regulated by estrogens.

    PubMed

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  2. Behaviour of estrogenic endocrine-disrupting chemicals in permeable carbonate sands.

    PubMed

    Shepherd, Benjamin O; Erler, Dirk V; Tait, Douglas R; van Zwieten, Lukas; Kimber, Stephen; Eyre, Bradley D

    2015-08-01

    The remediation of four estrogenic endocrine-disrupting compounds (EDCs), estrone (E1), estradiol (E2), ethinylestradiol (EE2) and estriol (E3), was measured in saturated and unsaturated carbonate sand-filled columns dosed with wastewater from a sewage treatment plant. The estrogen equivalency (EEQ) of inlet wastewater was 1.2 ng L(-1) and was remediated to an EEQ of 0.5 ng L(-1) through the unsaturated carbonate sand-filled columns. The high surface area of carbonate sand and associated high microbial activity may have assisted the degradation of these estrogens. The fully saturated sand columns showed an increase in total estrogenic potency with an EEQ of 2.4 ng L(-1), which was double that of the inlet wastewater. There was a significant difference (P < 0.05) in total estrogenic potency between aerobic and anaerobic columns. The breakdown of conjugated estrogens to estrogenic EDCs formed under long residence time and reducing conditions may have been responsible for the increase in the fully saturated columns. This may also be explained by the desorption of previously sorbed estrogenic EDCs. The effect of additional filter materials, such as basalt sediment and coconut fibre, on estrogenic EDC reduction was also tested. None of these amendments provided improvements in estrogen remediation relative to the unamended unsaturated carbonate sand columns. Aerobic carbonate sand filters have good potential to be used as on-site wastewater treatment systems for the reduction of estrogenic EDCs. However, the use of fully saturated sand filters, which are used to promote denitrification, and the loss of nitrogen as N2 were shown to cause an increase in EEQ. The potential for the accumulation of estrogenic EDCs under anaerobic conditions needs to be considered when designing on-site sand filtration systems required to reduce nitrogen. Furthermore, the accumulation of estrogens under anaerobic conditions such as under soil absorption systems or leachate fields has the

  3. Sports and Marfan Syndrome: Awareness and Early Diagnosis Can Prevent Sudden Death.

    ERIC Educational Resources Information Center

    Salim, Mubadda A.; Alpert, Bruce S.

    2001-01-01

    Physicians who work with athletes play an important role in preventing sudden death related to physical activity in people who have Marfan syndrome. Flagging those who have the physical stigmata and listening for certain cardiac auscultation sounds are early diagnostic keys that can help prevent deaths. People with Marfan syndrome should be…

  4. Inhibitory Effects of γ- and δ-Tocopherols on Estrogen-Stimulated Breast Cancer In Vitro and In Vivo.

    PubMed

    Bak, Min Ji; Das Gupta, Soumyasri; Wahler, Joseph; Lee, Hong Jin; Li, Xiaowei; Lee, Mao-Jung; Yang, Chung S; Suh, Nanjoo

    2017-03-01

    Estrogens have been implicated as complete carcinogens for breast and other tissues through mechanisms involving increased cell proliferation, oxidative stress, and DNA damage. Because of their potent antioxidant activity and other effects, tocopherols have been shown to exert antitumor activities in various cancers. However, limited information is available on the effect of different forms of tocopherols in estrogen-mediated breast cancer. To address this, we examined the effects of α-, γ-, and δ-tocopherols as well as a natural γ-tocopherol-rich mixture of tocopherols, γ-TmT, on estrogen-stimulated MCF-7 cells in vitro and in vivo For the in vivo studies, MCF-7 cells were injected into the mammary fat pad of immunodeficient mice previously implanted with estrogen pellets. Mice were then administered diets containing 0.2% α-, γ-, δ-tocopherol, or γ-TmT for 5 weeks. Treatment with α-, γ-, δ-tocopherols, and γ-TmT reduced tumor volumes by 29% ( P < 0.05), 45% ( P < 0.05), 41% ( P < 0.05), and 58% ( P < 0.01), as well as tumor weights by 20%, 37% ( P < 0.05), 39% ( P < 0.05), and 52% ( P < 0.05), respectively. γ- and δ-tocopherols and γ-TmT inhibited the expression of cell proliferation-related genes such as cyclin D1 and c-Myc, and estrogen-related genes such as TFF/pS2, cathepsin D, and progesterone receptor in estrogen-stimulated MCF-7 cells in vitro Further, γ- and δ-tocopherols decreased the levels of estrogen-induced oxidative stress and nitrosative stress markers, 8-hydroxy-2'-deoxyguanosine and nitrotyrosine, as well as the DNA damage marker, γ-H2AX. Our results suggest that γ- and δ-tocopherols and the γ-tocopherol-rich mixture are effective natural agents for the prevention and treatment of estrogen-mediated breast cancer. Cancer Prev Res; 10(3); 188-97. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Early amniotomy and early oxytocin for prevention of, or therapy for, delay in first stage spontaneous labour compared with routine care

    PubMed Central

    Wei, Shuqin; Wo, Bi Lan; Qi, Hui-Ping; Xu, Hairong; Luo, Zhong-Cheng; Roy, Chantal; Fraser, William D

    2014-01-01

    Background Caesarean section rates are over 20% in many developed countries. The main diagnosis contributing to the high rate in nulliparae is dystocia or prolonged labour. The present review assesses the effects of a policy of early amniotomy with early oxytocin administration for the prevention of, or the therapy for, delay in labour progress. Objectives To estimate the effects of early augmentation with amniotomy and oxytocin for prevention of, or therapy for, delay in labour progress on the caesarean birth rate and on indicators of maternal and neonatal morbidity. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (15 February 2012), MEDLINE (1966 to 15 February 2012), EMBASE (1980 to 15 February 2012), CINAHL (1982 to 15 February 2012), MIDIRS (1985 to February 2012) and contacted authors for data from unpublished trials. Selection criteria Randomized and quasi-randomized controlled trials that compared oxytocin and amniotomy with expectant management. Data collection and analysis Three review authors extracted data independently. We stratified the analyses into ’Prevention Trials’ and ’Therapy Trials’ according to the status of the woman at the time of randomization. Participants in the ’Prevention Trials’ were unselected women, without slow progress in labour, who were randomized to a policy of early augmentation or to routine care. In ’Treatment Trials’ women were eligible if they had an established delay in labour progress. Main results For this update, we have included a further two new clinical trials. This updated review includes 14 trials, randomizing a total of 8033 women. The unstratified analysis found early intervention with amniotomy and oxytocin to be associated with a modest reduction in the risk of caesarean section; however, the confidence interval (CI) included the null effect (risk ratio (RR) 0.89; 95% CI 0.79 to 1.01; 14 trials; 8033 women). In prevention trials, early augmentation was

  6. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    PubMed Central

    Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965

  7. The role of estrogen in cutaneous ageing and repair.

    PubMed

    Wilkinson, Holly N; Hardman, Matthew J

    2017-09-01

    Combined advances in modern medical practice and increased human longevity are driving an ever-expanding elderly population. Females are particularly at risk of age-associated pathology, spending more of their lives in a post-menopausal state. Menopause, denoted by a rapid decline in serum sex steroid levels, accelerates biological ageing across the body's tissues. Post-menopause physiological changes are particularly noticeable in the skin, which loses structural architecture and becomes prone to damage. The sex steroid most widely discussed as an intrinsic contributor to skin ageing and pathological healing is 17β-estradiol (or estrogen), although many others are involved. Estrogen deficiency is detrimental to many wound-healing processes, notably inflammation and re-granulation, while exogenous estrogen treatment widely reverses these effects. Over recent decades, many of the molecular and cellular correlates to estrogen's beneficial effect on normal skin homeostasis and wound healing have been reported. However, disparities still exist, particularly in the context of mechanistic studies investigating estrogen receptor signalling and its potential cellular effects. New molecular techniques, coupled with increased understanding of estrogen in skin biology, will provide further opportunities to develop estrogen receptor-targeted therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Characterization of estrogens, testosterone, and cortisol in normal bottlenose dolphin (Tursiops truncatus) pregnancy.

    PubMed

    Steinman, Karen J; Robeck, Todd R; O'Brien, Justine K

    2016-01-15

    The goal of this study was to describe profiles of serum estrogens, testosterone and cortisol during normal pregnancy in bottlenose dolphins. Predominant estrogens in all categories of dolphin sera pools during estrus and pregnancy (EARLY: Days 0-120; MID: Days 121-240; LATE: Days 241 to parturition; Day 0=day of conception) were estrone/estrone conjugates (E1-C) and estriol (E3). Serum samples collected throughout 101 normal pregnancies were analyzed for E1-C, E3, testosterone (T) and cortisol (CORT). E1-C was higher (P<0.05) during LATE compared to EARLY and MID, and higher (P<0.05) in nulliparous than multiparous females. E1-C concentrations were also inversely associated with maternal age (P=0.05). E3 was higher (P<0.05) in EARLY than MID and LATE, and higher overall for nulliparous than multiparous females, but concentrations were similar among gestational stages when parity was excluded from analyses. Analysis by indexed month post-conception (IMPC) demonstrated that E1-C increased from IMPC 9 and peaked at IMPC 11. E3 was significantly elevated during IMPC 1, decreased until IMPC 6 and peaked at IMPC 11. T increased (P<0.05) at IMPC 3 and continued to increase throughout gestation (P<0.05). CORT was higher (P<0.05) during LATE compared to EARLY and MID (P<0.05), peaked during IMPC 12, and was not affected by parity. Hormone profiles were not influenced by fetal sex. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. DCP's Early Detection Research Guides Future Science | Division of Cancer Prevention

    Cancer.gov

    Early detection research funded by the NCI's Division of Cancer Prevention has positively steered both public health and clinical outcomes, and set the stage for findings in the next generation of research. |

  10. GAS6 is an estrogen-inducible gene in mammary epithelial cells

    PubMed Central

    Mo, Rigen; Zhu, Yiwei Tony; Zhang, Zhongyi; Rao, Sambasiva M.; Zhu, Yi-Jun

    2007-01-01

    To identify estrogen responsive genes in mammary glands, microarray assays were performed. Twenty genes were found to be up-regulated while 16 genes were repressed in the 9h estrogen treated glands. The induction of GAS6, one of the genes up-regulated by estrogen, was confirmed by RNase protection assay. Furthermore, GAS6 was also demonstrated to be induced by estrogen in ER positive breast cancer cells. Analysis of GAS6 promoter revealed that GAS6 promoter was regulated by estrogen. An estrogen response element (ERE) was identified in the GAS6 promoter. Electrophoretic mobility shift assay revealed that ERα interacted with the ERE in the GAS6 promoter. Chromatin immunoprecipitation demonstrated that ERα was recruited to the GAS6 promoter upon estrogen stimulation. These results suggested that GAS6 is an estrogen target gene in mammary epithelial cells. PMID:17174935

  11. The Early Impact Program: An Early Intervention and Prevention Program for Children and Families At-Risk of Conduct Problems

    ERIC Educational Resources Information Center

    Larmar, Stephen; Gatfield, Terry

    2007-01-01

    The Early Impact (EI) program is an early intervention and prevention program for reducing the incidence of conduct problems in pre-school aged children. The EI intervention framework is ecological in design and includes universal and indicated components. This paper delineates key principles and associated strategies that underpin the EI program.…

  12. Glucocorticoids and estrogens modulate the NF-κB pathway differently in the micro- and macrovasculature.

    PubMed

    Edgar, Abarca-Rojano; Judith, Pacheco-Yépez; Elisa, Drago-Serrano Maria; Rafael, Campos-Rodríguez

    2013-12-01

    Estrogens and glucocorticoids have synergistic effects in the micro and macrovasculature of endothelial cells (ECs), having pro-inflammatory effects in the former and inhibiting the expression of adhesion molecules in the latter. The molecular basis of these effects in the endothelium has not yet been clarified. We postulate that the ECs of the micro- and macrovasculature have different non-genomic mechanisms that regulate levels of preexisting complexes of glucocorticoids and estrogens with their respective receptors. Since these receptors are regulated by NF-κB, their expression could be critical to the activation of a pro- or anti-inflammatory response. In the macrovasculature the synergistic effects of estrogens and glucocorticoids on ECs may be through the inhibition of NF-κB, leading to the inhibition of the expression of inflammatory molecules. It seems likely that glucocorticoid-receptor and estrogen-receptor complexes directly bind to NF-κB proteins in the macrovasculature, resulting in the inhibition of an excessive proinflammatory response. Further insights into these processes may help clarify the role of the endothelial cells of different vascular beds during the inflammatory response and chronic inflammation, and thus contribute to the design of more effective therapeutic strategies for the prevention of diseases related to inflammation, including atherosclerosis, systemic lupus erythematosus and rheumatoid arthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Mixture interactions of xenoestrogens with endogenous estrogens.

    EPA Science Inventory

    There is growing concern of exposure to fish, wildlife, and humans to water sources contaminated with estrogens and the potential impact on reproductive health. These environmental estrogens originate from various sources including concentrated animal feedlot operations (CAFO), m...

  14. Aromatase and estrogen receptors in male reproduction.

    PubMed

    Carreau, Serge; Delalande, Christelle; Silandre, Dorothée; Bourguiba, Sonia; Lambard, Sophie

    2006-02-26

    Aromatase is a terminal enzyme which transforms irreversibly androgens into estrogens and it is present in the endoplasmic reticulum of numerous tissues. We have demonstrated that mature rat germ cells express a functional aromatase with a production of estrogens equivalent to that of Leydig cells. In humans in addition to Leydig cells, we have shown the presence of aromatase in ejaculated spermatozoa and in immature germ cells. In most tissues, high affinity estrogen receptors, ERalpha and/or ERbeta, mediate the role of estrogens. Indeed, in human spermatozoa, we have successfully amplified ERbeta mRNA but the protein was not detectable. Using ERalpha antibody we have detected two proteins in human immature germ cells: one at the expected size 66 kDa and another at 46 kDa likely corresponding to the ERalpha isoform lacking exon 1. In spermatozoa only the 46 kDa isoform was present, and we suggest that it may be located on the membrane. In addition, in men genetically deficient in aromatase, it is reported that alterations of spermatogenesis occur both in terms of the number and motility of spermatozoa. All together, these observations suggest that endogenous estrogens are important in male reproduction.

  15. Estrogen's Place in the Family of Synaptic Modulators.

    PubMed

    Kramár, Enikö A; Chen, Lulu Y; Rex, Christopher S; Gall, Christine M; Lynch, Gary

    2009-01-01

    Estrogen, in addition to its genomic effects, triggers rapid synaptic changes in hippocampus and cortex. Here we summarize evidence that the acute actions of the steroid arise from actin signaling cascades centrally involved in long-term potentiation (LTP). A 10-min infusion of E2 reversibly increased fast EPSPs and promoted theta burst-induced LTP within adult hippocampal slices. The latter effect reflected a lowered threshold and an elevated ceiling for the potentiation effect. E2's actions on transmission and plasticity were completely blocked by latrunculin, a toxin that prevents actin polymerization. E2 also caused a reversible increase in spine concentrations of filamentous (F-) actin and markedly enhanced polymerization caused by theta burst stimulation (TBS). Estrogen activated the small GTPase RhoA, but not the related GTPase Rac, and phosphorylated (inactivated) synaptic cofilin, an actin severing protein targeted by RhoA. An inhibitor of RhoA kinase (ROCK) thoroughly suppressed the synaptic effects of E2. Collectively, these results indicate that E2 engages a RhoA >ROCK> cofilin> actin pathway also used by brain-derived neurotrophic factor and adenosine, and therefore belongs to a family of 'synaptic modulators' that regulate plasticity. Finally, we describe evidence that the acute signaling cascade is critical to the depression of LTP produced by ovariectomy.

  16. Cumulative Estrogen Exposure and Prospective Memory in Older Women

    ERIC Educational Resources Information Center

    Hesson, Jacqueline

    2012-01-01

    This study looked at cumulative lifetime estrogen exposure, as estimated with a mathematical index (Index of Cumulative Estrogen Exposure (ICEE)) that included variables (length of time on estrogen therapy, age at menarche and menopause, postmenopausal body mass index, time since menopause, nulliparity and duration of breastfeeding) known to…

  17. 21 CFR 310.515 - Patient package inserts for estrogens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Patient package inserts for estrogens. 310.515... package inserts for estrogens. (a) Requirement for a patient package insert. FDA concludes that the safe... patient package insert containing information concerning the drug's benefits and risks. An estrogen drug...

  18. Characterization of an estrogen-responsive element implicated in regulation of the rainbow trout estrogen receptor gene.

    PubMed

    Le Dréan, Y; Lazennec, G; Kern, L; Saligaut, D; Pakdel, F; Valotaire, Y

    1995-08-01

    We previously reported that the expression of the rainbow trout estrogen receptor (rtER) gene is markedly increased by estradiol (E2). In this paper, we have used transient transfection assays with reporter plasmids expressing chloramphenicol acetyl transferase (CAT), linked to 5' flanking regions of the rtER gene promoter, to identify cis-elements responsible for E2 inducibility. Deletion analysis localized an estrogen-responsive element (ERE), at position +242, with one mutation on the first base compared with the consensus sequence. This element confers estrogen responsiveness to CAT reporter linked to both the herpes simplex virus thymidine kinase promoter and the homologous rtER promoter. Moreover, using a 0.2 kb fragment of the rtER promoter encompassing the ERE and the rtER DNA binding domain obtained from a bacterial expression system, DNase I footprinting experiments demonstrated a specific protection covering 20 bp (+240/+260) containing the ERE sequence. Based on these studies, we believe that this ERE sequence, identified in the rtER gene promoter, may be a major cis-acting element involved in the regulation of the gene by estrogen.

  19. Determination of the Role of Estrogen Receptors and Estrogen Regulated Genes in B Cell Autoreactivity

    DTIC Science & Technology

    2008-07-01

    signaling strength was a consequence of enhanced expression of CD22 , an inhibitory regulator of the BCR. We now know this conjecture is incorrect as...estrogen causes an upregulation of CD22 in ERα-/- and ERβ-/- mice (Fig 4a) but there is no associated estrogen-induced reduction of BCR signalling... CD22 expression (Fig 4b). We believe the discrepancy between the analysis of genetically manipulated mice given estradiol and wildtype mice given

  20. A role for G-protein coupled estrogen receptor (GPER) in estrogen-induced carcinogenesis: Dysregulated glandular homeostasis, survival and metastasis.

    PubMed

    Filardo, Edward J

    2018-02-01

    Mechanisms of carcinogenesis by estrogen center on its mitogenic and genotoxic potential on tumor target cells. These models suggest that estrogen receptor (ER) signaling promotes expansion of the transformed population and that subsequent accumulation of somatic mutations that drive cancer progression occur via metabolic activation of cathecol estrogens or by epigenetic mechanisms. Recent findings that GPER is linked to obesity, vascular pathology and immunosuppression, key events in the development of metabolic syndrome and intra-tissular estrogen synthesis, provides an alternate view of estrogen-induced carcinogenesis. Consistent with this concept, GPER is directly associated with clinicopathological indices that predict cancer progression and poor survival in breast and gynecological cancers. Moreover, GPER manifests cell biological responses and a microenvironment conducive for tumor development and cancer progression, regulating cellular responses associated with glandular homeostasis and survival, invading surrounding tissue and attracting a vascular supply. Thus, the cellular actions attributed to GPER fit well with the known molecular mechanisms of G-protein coupled receptors, GPCRs, namely, their ability to transactivate integrins and EGF receptors and alter the interaction between glandular epithelia and their extracellular environment, affecting epithelial-to-mesenchymal transition (EMT) and allowing for tumor cell survival and dissemination. This perspective reviews the molecular and cellular responses manifested by GPER and evaluates its contribution to female reproductive cancers as diseases that progress as a result of dysregulated glandular homeostasis resulting in chronic inflammation and metastasis. This review is organized in sections as follows: I) a brief synopsis of the current state of knowledge regarding estrogen-induced carcinogenesis, II) a review of evidence from clinical and animal-based studies that support a role for GPER in cancer

  1. Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells.

    PubMed

    Jiang, Cheng; Guo, Junming; Wang, Zhe; Xiao, Bingxiu; Lee, Hyo-Jung; Lee, Eun-Ok; Kim, Sung-Hoon; Lu, Junxuan

    2007-01-01

    Estrogen and estrogen receptor (ER)-mediated signaling are crucial for the etiology and progression of human breast cancer. Attenuating ER activities by natural products is a promising strategy to decrease breast cancer risk. We recently discovered that the pyranocoumarin compound decursin and its isomer decursinol angelate (DA) have potent novel antiandrogen receptor signaling activities. Because the ER and the androgen receptor belong to the steroid receptor superfamily, we examined whether these compounds affected ER expression and signaling in breast cancer cells. We treated estrogen-dependent MCF-7 and estrogen-independent MDA MB-231 human breast cancer cells with decursin and DA, and examined cell growth, apoptosis, and ERalpha and ERbeta expression in both cell lines - and, in particular, estrogen-stimulated signaling in the MCF-7 cells. We compared these compounds with decursinol to determine their structure-activity relationship. Decursin and DA exerted growth inhibitory effects on MCF-7 cells through G1 arrest and caspase-mediated apoptosis. These compounds decreased ERalpha in MCF-7 cells at both mRNA and protein levels, and suppressed estrogen-stimulated genes. Decursin and the pure antiestrogen Faslodex exerted an additive growth inhibitory effect on MCF-7 cells. In MDA MB-231 cells, these compounds induced cell-cycle arrests in the G1 and G2 phases as well as inducing apoptosis, accompanied by an increased expression of ERbeta. In contrast, decursinol, which lacks the side chain of decursin and DA, did not have these cellular and molecular activities at comparable concentrations. The side chain of decursin and DA is crucial for their anti-ER signaling and breast cancer growth inhibitory activities. These data provide mechanistic rationales for validating the chemopreventive and therapeutic efficacy of decursin and its derivatives in preclinical animal models of breast cancer.

  2. Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells

    PubMed Central

    Jiang, Cheng; Guo, Junming; Wang, Zhe; Xiao, Bingxiu; Lee, Hyo-Jung; Lee, Eun-Ok; Kim, Sung-Hoon; Lu, Junxuan

    2007-01-01

    Introduction Estrogen and estrogen receptor (ER)-mediated signaling are crucial for the etiology and progression of human breast cancer. Attenuating ER activities by natural products is a promising strategy to decrease breast cancer risk. We recently discovered that the pyranocoumarin compound decursin and its isomer decursinol angelate (DA) have potent novel antiandrogen receptor signaling activities. Because the ER and the androgen receptor belong to the steroid receptor superfamily, we examined whether these compounds affected ER expression and signaling in breast cancer cells. Methods We treated estrogen-dependent MCF-7 and estrogen-independent MDA MB-231 human breast cancer cells with decursin and DA, and examined cell growth, apoptosis, and ERα and ERβ expression in both cell lines – and, in particular, estrogen-stimulated signaling in the MCF-7 cells. We compared these compounds with decursinol to determine their structure-activity relationship. Results Decursin and DA exerted growth inhibitory effects on MCF-7 cells through G1 arrest and caspase-mediated apoptosis. These compounds decreased ERα in MCF-7 cells at both mRNA and protein levels, and suppressed estrogen-stimulated genes. Decursin and the pure antiestrogen Faslodex™ exerted an additive growth inhibitory effect on MCF-7 cells. In MDA MB-231 cells, these compounds induced cell-cycle arrests in the G1 and G2 phases as well as inducing apoptosis, accompanied by an increased expression of ERβ. In contrast, decursinol, which lacks the side chain of decursin and DA, did not have these cellular and molecular activities at comparable concentrations. Conclusion The side chain of decursin and DA is crucial for their anti-ER signaling and breast cancer growth inhibitory activities. These data provide mechanistic rationales for validating the chemopreventive and therapeutic efficacy of decursin and its derivatives in preclinical animal models of breast cancer. PMID:17986353

  3. Disseminated intravascular coagulation induced by progesterone in the pregnant rat. Prevention by estogens.

    PubMed Central

    Stamler, F. W.

    1977-01-01

    Fatal disseminated intravascular coagulation (DIC) was induced in female rats by administration of progesterone in late pregnacy. This prevented parturition, with intrauterine fetal death 2 to 4 days past term and subsequent retention of dead fetuses. Concomitantly with or closely following the intrauterine death of their litters, a large proportion of pregnant rats died with histologically evident DIC. Administration of cortisone, heparin, or disoumarin did not prevent DIC, and xi-aminocaproic acid, acetylsalicylic acid, or an onion-rich diet tended to increase its incidence. Antibiotic regimens gave variable results, with significant decrease in DIC only with a combination of two wide-spectrum penicillins. Neomycin and polymyxin had little effect on susceptible Sprague-dawley derived rats, but polymxin caused a significant increase in DIC in a resistant strain of hooded rats. Fatal maternal DIC was completely prevented only by use of natural or synthetic estrogens concurrently with progesterone, although this did not alter the sequence of abnormally prolonged pregnacy with intrauterine fetal death and retention of dead fetuses. Potencies of estrogens varied greatly, but all compounds tested prevented DIC at adequate dosage levels. Diethylstilbestrol, the most potent drug tested, was completely protective at 1 mug daily given subcutaneously. beta-Estradiol was the most effective natural estrogen, giving complete protection with a 10-mug daily subcutaneous injection. Estrogens were much more potent by subcutaneous injection than by oral ingestion, and toxic side effects were sometimes noted with higher levels of the latter. For estrogen therapy to be effective, it was necessary to begin its use before the expected onset of DIC, and in no instance was there evidence of reversal of this process after signs of illness were observed. Images Figure 3 Figure 4 Figure 1 Figure 2 PMID:65916

  4. Mixture Effects of Estrogenic Pesticides at the Human Estrogen Receptor α and β

    PubMed Central

    Seeger, Bettina; Klawonn, Frank; Nguema Bekale, Boris; Steinberg, Pablo

    2016-01-01

    Consumers of fruits and vegetables are frequently exposed to small amounts of hormonally active pesticides, some of them sharing a common mode of action such as the activation of the human estrogen receptor α (hERα) or β (hERβ). Therefore, it is of particular importance to evaluate risks emanating from chemical mixtures, in which the individual pesticides are present at human-relevant concentrations, below their corresponding maximum residue levels. Binary and ternary iso-effective mixtures of estrogenic pesticides at effect concentrations eliciting a 1 or 10% effect in the presence or absence of 17β-estradiol were tested experimentally at the hERα in the yeast-based estrogen screen (YES) assay as well as in the human U2-OS cell-based ERα chemical-activated luciferase gene expression (ERα CALUX) assay and at the hERβ in the ERβ CALUX assay. The outcome was then compared to predictions calculated by means of concentration addition. In most cases, additive effects were observed with the tested combinations in all three test systems, an observation that supports the need to expand the risk assessment of pesticides and consider cumulative risk assessment. An additional testing of mixture effects at the hERβ showed that most test substances being active at the hERα could also elicit additive effects at the hERβ, but the hERβ was less sensitive. In conclusion, effects of the same ligands at the hERα and the hERβ could influence the estrogenic outcome under physiological conditions. PMID:26812056

  5. Emerging Estrogenic Pollutants in the Aquatic Environment and Breast Cancer

    PubMed Central

    Lecomte, Sylvain; Charlier, Thierry D.; Pakdel, Farzad

    2017-01-01

    The number and amount of man-made chemicals present in the aquatic environment has increased considerably over the past 50 years. Among these contaminants, endocrine-disrupting chemicals (EDCs) represent a significant proportion. This family of compounds interferes with normal hormonal processes through multiple molecular pathways. They represent a potential risk for human and wildlife as they are suspected to be involved in the development of diseases including, but not limited to, reprotoxicity, metabolic disorders, and cancers. More precisely, several studies have suggested that the increase of breast cancers in industrialized countries is linked to exposure to EDCs, particularly estrogen-like compounds. Estrogen receptors alpha (ERα) and beta (ERβ) are the two main transducers of estrogen action and therefore important targets for these estrogen-like endocrine disrupters. More than 70% of human breast cancers are ERα-positive and estrogen-dependent, and their development and growth are not only influenced by endogenous estrogens but also likely by environmental estrogen-like endocrine disrupters. It is, therefore, of major importance to characterize the potential estrogenic activity from contaminated surface water and identify the molecules responsible for the hormonal effects. This information will help us understand how environmental contaminants can potentially impact the development of breast cancer and allow us to fix a maximal limit to the concentration of estrogen-like compounds that should be found in the environment. The aim of this review is to provide an overview of emerging estrogen-like compounds in the environment, sum up studies demonstrating their direct or indirect interactions with ERs, and link their presence to the development of breast cancer. Finally, we emphasize the use of in vitro and in vivo methods based on the zebrafish model to identify and characterize environmental estrogens. PMID:28914763

  6. Direct radioimmunoassay of urinary estrogen and pregnanediol glucuronides during the menstrual cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanczyk, F.Z.; Miyakawa, I.; Goebelsmann, U.

    Assays measuring immunoreactive estrone glucuronide (E/sub 1/G), estradiol-3-glucuronide (E/sub 2/-3G), estradiol-17..beta..-glucuronide (E/sub 2/-17G), estriol-3-glucuronide (E/sub 3/-3G), estriol-16..cap alpha..-glucuronide (E/sub 3/-16G), and pregnanediol-3..cap alpha..-glucuronide (Pd-3G) directly in diluted urine were developed and validated. These estrogen and pregnanediol glucuronide fractions were measured in aliquots of 24-hour and overnight samples of urine collected daily from seven women for one menstrual cycle. Urinary hormone excretion was correlated with daily serum estradiol (E/sub 2/), progesterone (P), and lutenizing hormonee (LH) levels. A sharp midcycle LH peak preceded by a preovulatory rise in serum E/sub 2/ and followed by luteal phase serum P levels were notedmore » in each of the seven apparently ovulatory cycles. Twenty-four-hour and overnight urinary excretion patterns of estrogen glucuronides were similar to those of serum E/sub 2/. Of the five estrogen glucuronide fractions tested, excretion of E/sub 2/-17G exhibited the earliest and steepest ascending slope of the preovulatory estrogen surge and correlated best with serum E/sub 2/ levels. Urinary excretion of E/sub 1/-G, E/sub 2/-3G, and E/sub 3/-16G also showed an early and steep preovulatory rise and preceded that of E/sub 3/-3G, whereas urinary excretion of E/sub 3/-3G exhibited the poorest correlation with serum E/sub 2/ concentrations. The urinary excretion of Pd-3G rose parallel to serum P levels and was markedly elevated 2 to 3 days after the midcycle LH peak in both 24-hour and overnight collections of urine. These results indicate that among the urinary estrogen conjugate fractions tested, E/sub 2/-17G is the one that most suitably predicts ovulation.« less

  7. Vitex Agnus Castus Extract Improves Learning and Memory and Increases the Transcription of Estrogen Receptor α in Hippocampus of Ovariectomized Rats

    PubMed Central

    Allahtavakoli, Mohammad; Honari, Najmeh; Pourabolli, Iran; Kazemi Arababadi, Mohammad; Ghafarian, Hossein; Roohbakhsh, Ali; Esmaeili Nadimi, Ali; Shamsizadeh, Ali

    2015-01-01

    Introduction: Lower level of estrogen hormone is considered as an important factor for loss of learning and memory in postmenopausal women. Although estrogen replacement therapy is used for compensation, but long-term usage of estrogen is associated with a higher risk of hormone-dependent cancers. Phytoestrogens, due to fewer side effects, have been proposed to prevent menopause-related cognitive decline. Methods: 24 female Wistar rats weighing 180–220 g were used in this study. The animals were ovariectomized and randomly divided into four groups including, control and two groups which received 8 and 80 mg/kg Vitex agnus castus (VAC) ethanolic extract orally. The last groups were treated with 40 μg/kg of estradiol valerat. Step-through passive avoidance (STPA) test was used for the evaluation of learning and memory. The hippocampal estrogen receptor α (ERα) expression was measured using Real-Time PCR. Results: The results demonstrated that VAC extract or estradiol had better performance on step-through passive avoidance test than control group (all P<0.05). Moreover, administration of either estradiol or VAC extract increased the hippocampal mRNA level of ERα and prevented the decrease in uterine weight of ovariectomized rats. Discussion: Based on our data, VAC extract improves learning and memory in ovariectomized rats. The positive effect of VAC extract on learning and memory is possibly associated with an increase in ERα gene expression in the hippocampal formation. PMID:26904176

  8. Proapoptotic protein Bim attenuates estrogen-enhanced survival in lymphangioleiomyomatosis

    PubMed Central

    Li, Chenggang; Li, Na; Liu, Xiaolei; Zhang, Erik Y.; Sun, Yang; Masuda, Kouhei; Li, Jing; Sun, Julia; Morrison, Tasha; Li, Xiangke; Chen, Yuanguang; Wang, Jiang; Karim, Nagla A.; Zhang, Yi; Blenis, John; Reginato, Mauricio J.; Henske, Elizabeth P.; Yu, Jane J.

    2016-01-01

    Lymphangioleiomyomatosis (LAM) is a progressive lung disease that primarily affects young women. Genetic evidence suggests that LAM cells bearing TSC2 mutations migrate to the lungs, proliferate, and cause cystic remodeling. The female predominance indicates that estrogen plays a critical role in LAM pathogenesis, and we have proposed that estrogen promotes LAM cell metastasis by inhibition of anoikis. We report here that estrogen increased LAM patient–derived cells’ resistance to anoikis in vitro, accompanied by decreased accumulation of the proapoptotic protein Bim, an activator of anoikis. The resistance to anoikis was reversed by the proteasome inhibitor, bortezomib. Treatment of LAM patient–derived cells with estrogen plus bortezomib promoted anoikis compared with estrogen alone. Depletion of Bim by siRNA in TSC2-deficient cells resulted in anoikis resistance. Treatment of mice with bortezomib reduced estrogen-promoted lung colonization of TSC2-deficient cells. Importantly, molecular depletion of Bim by siRNA in Tsc2-deficient cells increased lung colonization in a mouse model. Collectively, these data indicate that Bim plays a key role in estrogen-enhanced survival of LAM patient–derived cells under detached conditions that occur with dissemination. Thus, targeting Bim may be a plausible future treatment strategy in patients with LAM. PMID:27882343

  9. Estrogen-DNA Adducts as Novel Biomarkers for Ovarian Cancer Risk and for Use in Prevention

    DTIC Science & Technology

    2013-03-01

    genes for four selected estrogen-metabolizing enzymes : cytochrome P450 (CYP)1A1 (I462V), CYP1B1 (V432L),catechol-O-methyltransferase (COMT) (V158M...homozygous for the catechol-O-methyltransferase allele and the cytochrome P450 1B1 high activity allele had significantly increased DNA adduct ratios and... enzyme polymorphisms to serve as biomarkers to screen for ovarian cancer . Task 1. Obtain approval of the protocol from the OCRP Human Research

  10. Estrogen-Cholinergic Interactions: Implications for Cognitive Aging

    PubMed Central

    Newhouse, Paul; Dumas, Julie

    2015-01-01

    While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. PMID:26187712

  11. Alzheimer's disease prevention: from risk factors to early intervention.

    PubMed

    Crous-Bou, Marta; Minguillón, Carolina; Gramunt, Nina; Molinuevo, José Luis

    2017-09-12

    Due to the progressive aging of the population, Alzheimer's disease (AD) is becoming a healthcare burden of epidemic proportions for which there is currently no cure. Disappointing results from clinical trials performed in mild-moderate AD dementia combined with clear epidemiological evidence on AD risk factors are contributing to the development of primary prevention initiatives. In addition, the characterization of the long asymptomatic stage of AD is allowing the development of intervention studies and secondary prevention programmes on asymptomatic at-risk individuals, before substantial irreversible neuronal dysfunction and loss have occurred, an approach that emerges as highly relevant.In this manuscript, we review current strategies for AD prevention, from primary prevention strategies based on identifying risk factors and risk reduction, to secondary prevention initiatives based on the early detection of the pathophysiological hallmarks and intervention at the preclinical stage of the disease. Firstly, we summarize the evidence on several AD risk factors, which are the rationale for the establishment of primary prevention programmes as well as revising current primary prevention strategies. Secondly, we review the development of public-private partnerships for disease prevention that aim to characterize the AD continuum as well as serving as platforms for secondary prevention trials. Finally, we summarize currently ongoing clinical trials recruiting participants with preclinical AD or a higher risk for the onset of AD-related cognitive impairment.The growing body of research on the risk factors for AD and its preclinical stage is favouring the development of AD prevention programmes that, by delaying the onset of Alzheimer's dementia for only a few years, would have a huge impact on public health.

  12. Immune-Specific Expression and Estrogenic Regulation of the Four Estrogen Receptor Isoforms in Female Rainbow Trout (Oncorhynchus mykiss).

    PubMed

    Casanova-Nakayama, Ayako; Wernicke von Siebenthal, Elena; Kropf, Christian; Oldenberg, Elisabeth; Segner, Helmut

    2018-03-21

    Genomic actions of estrogens in vertebrates are exerted via two intracellular estrogen receptor (ER) subtypes, ERα and ERβ, which show cell- and tissue-specific expression profiles. Mammalian immune cells express ERs and are responsive to estrogens. More recently, evidence became available that ERs are also present in the immune organs and cells of teleost fish, suggesting that the immunomodulatory function of estrogens has been conserved throughout vertebrate evolution. For a better understanding of the sensitivity and the responsiveness of the fish immune system to estrogens, more insight is needed on the abundance of ERs in the fish immune system, the cellular ratios of the ER subtypes, and their autoregulation by estrogens. Consequently, the aims of the present study were (i) to determine the absolute mRNA copy numbers of the four ER isoforms in the immune organs and cells of rainbow trout, Oncorhynchus mykiss , and to compare them to the hepatic ER numbers; (ii) to analyse the ER mRNA isoform ratios in the immune system; and, (iii) finally, to examine the alterations of immune ER mRNA expression levels in sexually immature trout exposed to 17β-estradiol (E2), as well as the alterations of immune ER mRNA expression levels in sexually mature trout during the reproductive cycle. All four ER isoforms were present in immune organs-head kidney, spleen-and immune cells from head kidney and blood of rainbow trout, but their mRNA levels were substantially lower than in the liver. The ER isoform ratios were tissue- and cell-specific, both within the immune system, but also between the immune system and the liver. Short-term administration of E2 to juvenile female trout altered the ER mRNA levels in the liver, but the ERs of the immune organs and cells were not responsive. Changes of ER gene transcript numbers in immune organs and cells occurred during the reproductive cycle of mature female trout, but the changes in the immune ER profiles differed from those in the

  13. Estrogen signaling is not required for prostatic bud patterning or for its disruption by 2,3,7,8-tetrachlorodibenzo-p-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgeier, Sarah Hicks; Vezina, Chad M.; Lin, T.-M.

    2009-08-15

    Estrogens play an important role in prostatic development, health, and disease. While estrogen signaling is essential for normal postnatal prostate development, little is known about its prenatal role in control animals. We tested the hypothesis that estrogen signaling is needed for normal male prostatic bud patterning. Budding patterns were examined by scanning electron microscopy of urogenital sinus epithelium from wild-type mice, mice lacking estrogen receptor (ER){alpha}, ER{beta}, or both, and wild-type mice exposed to the antiestrogen ICI 182,780. Budding phenotypes did not detectably differ among any of these groups, strongly suggesting that estrogen signaling is not needed to establish themore » prototypical prostatic budding pattern seen in control males. This finding contributes to our understanding of the effects of low-level estrogen exposure on early prostate development. In utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can greatly alter the pattern in which prostatic buds form and reduce their number. For several reasons, including a prior observation that inhibitory effects of TCDD on prostatic budding in rats depend heavily on the sex of adjacent fetuses, we tested the hypothesis that estrogen signaling is needed for TCDD to disrupt prostatic budding. However, budding did not detectably differ among wild-type mice, or mice lacking ER{alpha}, ER{beta}, or both, that were exposed prenatally to TCDD (5 {mu}g/kg on embryonic day 13.5). Nor did ICI 182,780 detectably affect the response to TCDD. These results strongly suggest that estrogen signaling is not needed for TCDD to inhibit prostatic epithelial budding.« less

  14. Prevention of Bullying in Early Educational Settings: Pedagogical and Organisational Factors Related to Bullying

    ERIC Educational Resources Information Center

    Repo, Laura; Sajaniemi, Nina

    2015-01-01

    Research suggests that bullying behaviour begins at an early age (three to six years) and that preventive practices should target early educational settings. However, no previous studies focus on early educational settings (kindergartens) as an arena for bullying behaviour. The aim of this study was to find what kind of organisational and…

  15. Estrogen Receptors Alpha and Beta in Bone

    PubMed Central

    Khalid, Aysha B.; Krum, Susan A.

    2016-01-01

    Estrogens are important for bone metabolism via a variety of mechanisms in osteoblasts, osteocytes, osteoclasts, immune cells and other cells to maintain bone mineral density. Estrogens bind to estrogen receptor alpha (ERα) and ERβ, and the roles of each of these receptors are beginning to be elucidated through whole body and tissue-specific knockouts of the receptors. In vitro and in vivo experiments have shown that ERα and ERβ antagonize each other in bone and in other tissues. This review will highlight the role of these receptors in bone, with particular emphasis on their antagonism. PMID:27072516

  16. Estrogen receptor ligands: a patent review update.

    PubMed

    Paterni, Ilaria; Bertini, Simone; Granchi, Carlotta; Macchia, Marco; Minutolo, Filippo

    2013-10-01

    The role of estrogens is mostly mediated by two nuclear receptors (ERα and ERβ) and a membrane-associated G-protein (GPR30 or GPER), and it is not limited to reproduction, but it extends to the skeletal, cardiovascular and central nervous systems. Various pathologies such as cancer, inflammatory, neurodegenerative and metabolic diseases are often associated with dysfunctions of the estrogenic system. Therapeutic interventions by agents that affect the estrogenic signaling pathway might be useful in the treatment of many dissimilar diseases. The massive chemodiversity of ER ligands, limited to patented small molecules, is herein reviewed. The reported compounds are classified on the basis of their chemical structures. Non-steroidal derivatives, which mostly consist of diphenolic compounds, are further segregated into chemical classes based on their central scaffold. Estrogens have been used for almost a century and their earlier applications have concerned interventions in the female reproductive functions, as well as the treatment of some estrogen-dependent cancers and osteoporosis. Since the discovery of ERβ in 1996, the patent literature has started to pay a progressively increasing attention to this newer receptor subtype, which holds promise as a target for new indications, most of which still need to be clinically validated.

  17. Estrogen levels modify scopolamine-induced amnesia in gonadally intact rats.

    PubMed

    de Macêdo Medeiros, André; Izídio, Geison Souza; Sousa, Diego Silveira; Macedo, Priscila Tavares; Silva, Anatildes Feitosa; Shiramizu, Victor Kenji Medeiros; Cabral, Alicia; Ribeiro, Alessandra Mussi; Silva, Regina Helena

    2014-08-04

    Previous studies suggested that estrogen plays a role in cognitive function by modulating the cholinergic transmission. However, most of the studies dealing with this subject have been conducted using ovariectomized rats. In the present study we evaluated the effects of physiological and supra-physiological variation of estrogen levels on scopolamine-induced amnesia in gonadally intact female rats. We used the plus-maze discriminative avoidance task (PMDAT) in order to evaluate anxiety levels and motor activity concomitantly to the memory performance. In experiment 1, female Wistar rats in each estrous cycle phase received scopolamine (1 mg/kg) or saline i.p. 20 min before the training session in the PMDAT. In experiment 2, rats in diestrus received estradiol valerate (1 mg/kg) or sesame oil i.m., and scopolamine (1 mg/kg) or saline i.p., 45 min and 20 min before the training, respectively. In experiment 3, rats in diestrus received scopolamine (1 mg/kg) or saline i.p. 20 min before the training, and estradiol valerate (1 mg/kg) or sesame oil i.m. immediately after the training session. In all experiments, a test session was performed 24 h later. The main results showed that: (1) scopolamine impaired retrieval and induced anxiolytic and hyperlocomotor effects in all experiments; (2) this cholinergic antagonist impaired acquisition only in animals in diestrus; (3) acute administration of estradiol valerate prevented the learning impairment induced by scopolamine and (4) interfered with memory consolidation process. The results suggest that endogenous variations in estrogen levels across the estrous cycle modulate some aspects of memory mediated by the cholinergic system. Indeed, specifically in diestrus, a stage with low estrogen levels, the impairment produced by scopolamine on the acquisition was counteracted by exogenous administration of the hormone, whereas the posttraining treatment potentiated the negative effects of scopolamine during the consolidation phase

  18. Premature menopause or early menopause and risk of ischemic stroke

    PubMed Central

    Rocca, Walter A.; Grossardt, Brandon R.; Miller, Virginia M.; Shuster, Lynne T.; Brown, Robert D.

    2011-01-01

    Objective The general consensus has been that estrogen is invariably a risk factor for ischemic stroke (IS). We reviewed new observational studies that challenge this simple conclusion. Methods This was a review of observational studies of the association of premature or early menopause with stroke or IS published in English from 2006 through 2010. Results Three cohort studies showed an increased risk of all stroke in women who underwent bilateral oophorectomy compared with women who conserved their ovaries before age 50 years. The increased risk of stroke was reduced by hormonal therapy (HT) in one of the studies, suggesting that estrogen deprivation is involved in the association. Four additional observational studies showed an association of all stroke or IS with the early onset of menopause or with a shorter lifespan of ovarian activity. In three of the seven studies, the association was restricted to IS. Age at menopause was more important than type of menopause (natural vs induced). Conclusions The findings from seven recent observational studies challenge the consensus that estrogen is invariably a risk factor for IS and can be reconciled by a unifying timing hypothesis. We hypothesize that estrogen is protective for IS before age 50 years and may become a risk factor for IS after age 50 years or, possibly, after age 60 years. These findings are relevant to women who experienced premature or early menopause, or to women considering prophylactic bilateral oophorectomy before the onset of natural menopause. PMID:21993082

  19. Future Directions for Research on the Development and Prevention of Early Conduct Problems

    ERIC Educational Resources Information Center

    Shaw, Daniel S.

    2013-01-01

    This article describes our state of knowledge regarding the development and prevention of conduct problems in early childhood, then identifies directions that would benefit future basic and applied research. Our understanding about the course and risk factors associated with early-developing conduct problems has been significantly enhanced during…

  20. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    PubMed

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  1. Probiotics in the Prevention and Treatment of Postmenopausal Vaginal Infections: Review Article

    PubMed Central

    Park, Yoo Jin

    2017-01-01

    Bacterial vaginosis (BV) and complicated vulvovaginal candidiasis (VVC) are frequently occurring vaginal infections in postmenopausal women, caused by an imbalance in vaginal microflora. Postmenopausal women suffer from decreased ovarian hormones estrogen and progesterone. A normal, healthy vaginal microflora mainly comprises Lactobacillus species (spp.), which act beneficially as a bacterial barrier in the vagina, interfering with uropathogens. During premenopausal period, estrogen promotes vaginal colonization by lactobacilli that metabolizing glycogen and producing lactic acid, and maintains intravaginal health by lowering the intravaginal pH level. A lower vaginal pH inhibits uropathogen growth, preventing vaginal infections. Decreased estrogen secretion in postmenopausal women depletes lactobacilli and increases intravaginal pH, resulting in increased vaginal colonization by harmful microorganisms (e.g., Enterobacter, Escherichia coli, Candida, and Gardnerella). Probiotics positively effects on vaginal microflora composition by promoting the proliferation of beneficial microorganisms, alters the intravaginal microbiota composition, prevents vaginal infections in postmenopausal. Probiotics also reduce the symptoms of vaginal infections (e.g., vaginal discharge, odor, etc.), and are thus helpful for the treatment and prevention of BV and VVC. In this review article, we provide information on the intravaginal mechanism of postmenopausal vaginal infections, and describes the effectiveness of probiotics in the treatment and prevention of BV and VVC. PMID:29354612

  2. Probiotics in the Prevention and Treatment of Postmenopausal Vaginal Infections: Review Article.

    PubMed

    Kim, Jun-Mo; Park, Yoo Jin

    2017-12-01

    Bacterial vaginosis (BV) and complicated vulvovaginal candidiasis (VVC) are frequently occurring vaginal infections in postmenopausal women, caused by an imbalance in vaginal microflora. Postmenopausal women suffer from decreased ovarian hormones estrogen and progesterone. A normal, healthy vaginal microflora mainly comprises Lactobacillus species (spp.), which act beneficially as a bacterial barrier in the vagina, interfering with uropathogens. During premenopausal period, estrogen promotes vaginal colonization by lactobacilli that metabolizing glycogen and producing lactic acid, and maintains intravaginal health by lowering the intravaginal pH level. A lower vaginal pH inhibits uropathogen growth, preventing vaginal infections. Decreased estrogen secretion in postmenopausal women depletes lactobacilli and increases intravaginal pH, resulting in increased vaginal colonization by harmful microorganisms (e.g., Enterobacter , Escherichia coli , Candida , and Gardnerella ). Probiotics positively effects on vaginal microflora composition by promoting the proliferation of beneficial microorganisms, alters the intravaginal microbiota composition, prevents vaginal infections in postmenopausal. Probiotics also reduce the symptoms of vaginal infections (e.g., vaginal discharge, odor, etc.), and are thus helpful for the treatment and prevention of BV and VVC. In this review article, we provide information on the intravaginal mechanism of postmenopausal vaginal infections, and describes the effectiveness of probiotics in the treatment and prevention of BV and VVC.

  3. Selective Prevention Approaches to Build Protective Factors in Early Intervention

    ERIC Educational Resources Information Center

    Shapiro, Cheri J.

    2014-01-01

    Young children with disabilities may be at elevated risk for behavior problems as well as maltreatment. preventive approaches that can be infused into early intervention services are needed to support parents, build competencies among young children, and enhance protective factors that may temper risk. Two interventions--Stepping Stones Triple P,…

  4. The role of estrogens for male bone health.

    PubMed

    Ohlsson, Claes; Vandenput, Liesbeth

    2009-06-01

    Sex steroids are important for the growth and maintenance of both the female and the male skeleton. However, the relative contribution of androgens versus estrogens in the regulation of the male skeleton is unclear. Experiments using mice with inactivated sex steroid receptors demonstrated that both activation of the estrogen receptor (ER)alpha and activation of the androgen receptor result in a stimulatory effect on both the cortical and trabecular bone mass in males. ERbeta is of no importance for the skeleton in male mice while it modulates the ERalpha-action on bone in female mice. Previous in vitro studies suggest that the membrane G protein-coupled receptor GPR30 also might be a functional ER. Our in vivo analyses of GPR30-inactivated mice revealed no function of GPR30 for estrogen-mediated effects on bone mass but it is required for normal regulation of the growth plate and estrogen-mediated insulin-secretion. Recent clinical evidence suggests that a threshold exists for estrogen effects on bone in men: rates of bone loss and fracture risk seem to be the highest in men with estradiol levels below this threshold. Taken together, even though these findings do not exclude an important role for testosterone in male skeletal homeostasis, it is now well-established that estrogens are important regulators of bone health in men.

  5. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnant mice.

    PubMed

    Pazos, Michael A; Kraus, Thomas A; Muñoz-Fontela, César; Moran, Thomas M

    2012-01-01

    Pregnancy is a leading risk factor for severe complications during an influenza virus infection. Women infected during their second and third trimesters are at increased risk for severe cardiopulmonary complications, premature delivery, and death. Here, we establish a murine model of aerosolized influenza infection during pregnancy. We find significantly altered innate antiviral responses in pregnant mice, including decreased levels of IFN-β, IL-1α, and IFN-γ at early time points of infection. We also find reduced cytotoxic T cell activity and delayed viral clearance. We further demonstrate that pregnancy levels of the estrogen 17-β-estradiol are able to induce key anti-inflammatory phenotypes in immune responses to the virus independently of other hormones or pregnancy-related stressors. We conclude that elevated estrogen levels result in an attenuated anti-viral immune response, and that pregnancy-associated morbidities occur in the context of this anti-inflammatory phenotype.

  6. Promoting Good Mental Health from Primary to Early Secondary Grades--Preventive Interventions in Schools.

    ERIC Educational Resources Information Center

    Jason, Leonard A.; Ferone, Louise

    1980-01-01

    The paper describes a four-year research effort aimed at developing preventive educational interventions for children with behavior problems in inner city schools. The implications of switching the emphasis from early secondary to primary preventive programs are discussed. (Author)

  7. Evaluation of estrogen and G protein-coupled estrogen receptor 1 (GPER) levels in drug-naïve patients with attention deficit hyperactivity disorder (ADHD).

    PubMed

    Sahin, Nilfer; Altun, Hatice; Kurutaş, Ergül Belge; Fındıklı, Ebru

    2018-05-20

    Estrogen has a crucial role in the regulation of reproductive and neuroendocrine function and exerts its effects through two classes of receptors, nuclear and membrane estrogen receptors (mERs). G protein-coupled estrogen receptor 1 (GPER) is a member of mERs, and despite limited research on the levels of GPER in patients with psychiatric diseases, a role of GPER in such conditions has been suggested. Here we evaluated serum estrogen and GPER levels in children with attention deficit hyperactivity disorder (ADHD) in relation to their age- and gender-matched healthy controls. A total of 82 children were included in the study, 47 drug- naïve patients with ADHD (age: 6-12 years; male/female: 34/13) and 35 healthy controls (age: 6-12 years; male/female: 19/16). The subgroups according to ADHD types were inattentive, hyperactive/impulsive, and combined. Serum estrogen was measured using an immunoassay system, while serum GPER was determined using a commercial sandwich enzyme-linked immunosorbent assay kit. Estrogen levels in children with ADHD were similar as in control group, while GPER levels were significantly lower in ADHD group compared to controls (p < 0.05). Logistic regression analysis showed a significant association between GPER levels and ADHD (p < 0.05), and no association between estrogen levels and ADHD (p > 0.05). No significant differences were found in GPER and estrogen levels between ADHD subgroups (p > 0.05). To the best of our knowledge, this study is the first to investigate estrogen and GPER levels in ADHD. Our preliminary findings suggest a relationship between serum GPER levels and ADHD, and this should be further investigated.

  8. Influence of different estrogens on neuroplasticity and cognition in the hippocampus.

    PubMed

    Barha, Cindy K; Galea, Liisa A M

    2010-10-01

    Estrogens modulate the morphology and function of the hippocampus. Recent studies have focused on the effects of different types of estrogens on neuroplasticity in the hippocampus and cognition. There are three main forms of estrogens found in mammals: estradiol, estrone, and estriol. The vast majority of studies have used estradiol to investigate the effects of estrogens on the brain. This review focuses on the effects of different estrogens on adult hippocampal neurogenesis, synaptic plasticity in the hippocampus, and cognition in female rats. Different forms of estrogens modulate neuroplasticity and cognition in complex and intriguing ways. Specifically, estrogens upregulate adult hippocampal neurogenesis (via cell proliferation) and synaptic protein levels in the hippocampus in a time- and dose-dependent manner. Low levels of estradiol facilitate spatial working memory and contextual fear conditioning while high levels of estradiol impair spatial working, spatial reference memory and contextual fear conditioning. In addition, estrone impairs contextual fear conditioning. Advances in our knowledge of how estrogens exert their effects on the brain may ultimately lead to refinements in targeted therapies for cognitive impairments at all stages of life. However caution should be taken in interpreting current research and in conducting future studies as estrogens likely work differently in males than in females. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. The Early Risers Preventive Intervention: Testing for Six-year Outcomes and Mediational Processes

    ERIC Educational Resources Information Center

    Bernat, Debra H.; August, Gerald J.; Hektner, Joel M.; Bloomquist, Michael L.

    2007-01-01

    We examined effects of the Early Risers "Skills for Success" early-age-targeted prevention program on serious conduct problems following 5 years of continuous intervention and one year of follow-up. We also examined if intervention effects on proximally-targeted variables found after 3 years mediated intervention effects on conduct…

  10. A Theater-Based Approach to Primary Prevention of Sexual Behavior for Early Adolescents

    ERIC Educational Resources Information Center

    Lieberman, Lisa D.; Berlin, Cydelle; Palen, Lori-Ann; Ashley, Olivia Silber

    2012-01-01

    Early adolescence is a crucial period for preventing teen pregnancy and sexually transmitted infections. This study evaluated STAR LO, a theater-based intervention designed to affect antecedents of sexual activity among urban early adolescents (N = 1,143). Public elementary/middle schools received the intervention or served as a wait-listed…

  11. Detecting Estrogenic Ligands in Personal Care Products using a Yeast Estrogen Screen Optimized for the Undergraduate Teaching Laboratory.

    PubMed

    Edwards, Thea M; Morgan, Howard E; Balasca, Coralia; Chalasani, Naveen K; Yam, Lauren; Roark, Alison M

    2018-01-01

    The Yeast Estrogen Screen (YES) is used to detect estrogenic ligands in environmental samples and has been broadly applied in studies of endocrine disruption. Estrogenic ligands include both natural and manmade "Environmental Estrogens" (EEs) found in many consumer goods including Personal Care Products (PCPs), plastics, pesticides, and foods. EEs disrupt hormone signaling in humans and other animals, potentially reducing fertility and increasing disease risk. Despite the importance of EEs and other Endocrine Disrupting Chemicals (EDCs) to public health, endocrine disruption is not typically included in undergraduate curricula. This shortcoming is partly due to a lack of relevant laboratory activities that illustrate the principles involved while also being accessible to undergraduate students. This article presents an optimized YES for quantifying ligands in personal care products that bind estrogen receptors alpha (ERα) and/or beta (ERβ). The method incorporates one of the two colorimetric substrates (ortho-nitrophenyl-β-D-galactopyranoside (ONPG) or chlorophenol red-β-D-galactopyranoside (CPRG)) that are cleaved by β-galactosidase, a 6-day refrigerated incubation step to facilitate use in undergraduate laboratory courses, an automated application for LacZ calculations, and R code for the associated 4-parameter logistic regression analysis. The protocol has been designed to allow undergraduate students to develop and conduct experiments in which they screen products of their choosing for estrogen mimics. In the process, they learn about endocrine disruption, cell culture, receptor binding, enzyme activity, genetic engineering, statistics, and experimental design. Simultaneously, they also practice fundamental and broadly applicable laboratory skills, such as: calculating concentrations; making solutions; demonstrating sterile technique; serially diluting standards; constructing and interpolating standard curves; identifying variables and controls; collecting

  12. Detecting Estrogenic Ligands in Personal Care Products using a Yeast Estrogen Screen Optimized for the Undergraduate Teaching Laboratory

    PubMed Central

    Edwards, Thea M.; Morgan, Howard E.; Balasca, Coralia; Chalasani, Naveen K.; Yam, Lauren; Roark, Alison M.

    2018-01-01

    The Yeast Estrogen Screen (YES) is used to detect estrogenic ligands in environmental samples and has been broadly applied in studies of endocrine disruption. Estrogenic ligands include both natural and manmade "Environmental Estrogens" (EEs) found in many consumer goods including Personal Care Products (PCPs), plastics, pesticides, and foods. EEs disrupt hormone signaling in humans and other animals, potentially reducing fertility and increasing disease risk. Despite the importance of EEs and other Endocrine Disrupting Chemicals (EDCs) to public health, endocrine disruption is not typically included in undergraduate curricula. This shortcoming is partly due to a lack of relevant laboratory activities that illustrate the principles involved while also being accessible to undergraduate students. This article presents an optimized YES for quantifying ligands in personal care products that bind estrogen receptors alpha (ERα) and/or beta (ERβ). The method incorporates one of the two colorimetric substrates (ortho-nitrophenyl-β-D-galactopyranoside (ONPG) or chlorophenol red-β-D-galactopyranoside (CPRG)) that are cleaved by β-galactosidase, a 6-day refrigerated incubation step to facilitate use in undergraduate laboratory courses, an automated application for LacZ calculations, and R code for the associated 4-parameter logistic regression analysis. The protocol has been designed to allow undergraduate students to develop and conduct experiments in which they screen products of their choosing for estrogen mimics. In the process, they learn about endocrine disruption, cell culture, receptor binding, enzyme activity, genetic engineering, statistics, and experimental design. Simultaneously, they also practice fundamental and broadly applicable laboratory skills, such as: calculating concentrations; making solutions; demonstrating sterile technique; serially diluting standards; constructing and interpolating standard curves; identifying variables and controls; collecting

  13. Estrogenic control of behavioral sex change in the bluehead wrasse, Thalassoma bifasciatum.

    PubMed

    Marsh-Hunkin, K Erica; Heinz, Heather M; Hawkins, M Beth; Godwin, John

    2013-12-01

    Estrogens activate male-typical sexual behavior in several mammalian and avian models. Estrogen signaling also appears critical in the control of sex change in some fishes, in which it is instead decreases in estradiol levels that may permit development of male-typical behaviors. The bluehead wrasse is a protogynous hermaphrodite that exhibits rapid increases in aggressive and male-typical courtship behavior as females undergo sex change. Removal of the ovaries does not prevent these changes. In two field experiments involving gonadally-intact and gonadectomized females, estradiol (E2) implants prevented behavioral sex change in large females who were made the largest members of their social groups through removals of more dominant fish. In contrast, cholesterol-implanted control females showed full behavioral sex change, along with a higher frequency both of aggressive interactions and of male-typical courtship displays than occurred in E2-implanted animals. To assess potential neural correlates of these behavioral effects of E2, we evaluated abundances of aromatase mRNA using in situ hybridization. Aromatase mRNA was more abundant in the POA of E2-implanted females than in cholesterol-implanted controls in gonadally-intact females. The lack of behavioral sex change coupled with increased levels of aromatase mRNA are consistent with an inhibitory role for E2, likely of neural origin, in regulating socially controlled sex change.

  14. Estrogen-cholinergic interactions: Implications for cognitive aging.

    PubMed

    Newhouse, Paul; Dumas, Julie

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. Published by Elsevier Inc.

  15. Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells.

    PubMed

    Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ripoll, Cristina; Fuentes, Esther; Quesada, Ivan; Ropero, Ana Belen

    2011-01-01

    Estrogen receptors (ER) are emerging as important molecules involved in the adaptation of beta-cells to insulin resistance. The onset of type 2 diabetes is marked by insulin secretory dysfunction and decreased beta-cell mass. During pregnancy, puberty and obesity there is increased metabolic demand and insulin resistance is developed. This metabolic state increases the demand on beta-cells to augment insulin biosynthesis and release. In this respect, ERalpha is directly implicated in the E2-regulation of insulin content and secretion, while ERbeta is in the E2-potentiation of glucose-induced insulin release. Both receptors develop their actions within the physiological range of E2. In addition, the G protein-coupled estrogen receptor (GPER1/GPR30) seems to be implicated in the E2-regulation of stimulus-secretion coupling in the three cell types of the islet. The increased demand of insulin production for long time may lead to beta-cell stress and apoptosis. ERalpha, ERbeta and GPER1/GPR30 are involved in preventing beta-cell apoptosis, impeding the loss of critical beta-cell mass. Therefore, estrogen receptors may play an essential role in the adaptation of the pancreas to insulin resistant periods.

  16. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    PubMed Central

    2010-01-01

    Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively). Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are vulnerable to very

  17. The Role and Use of Estrogens Following Trauma.

    PubMed

    Weniger, Maximilian; Angele, Martin K; Chaudry, Irshad H

    2016-09-01

    Several lines of evidence indicate that female sex is a protective factor in trauma and hemorrhage. In both clinical and experimental studies, proestrus females have been shown to have better chances of survival and reduced rates of posttraumatic sepsis. Estrogen receptors are expressed in a variety of tissues and exert genomic, as well as nongenomic effects. By improving cardiac, pulmonary, hepatic, and immune function, estrogens have been shown to prolong survival in animal models of hemorrhagic shock. Despite encouraging results from experimental studies, retrospective clinical studies have not clearly pointed to advantages of estrogens following trauma-hemorrhage, which may be due to insufficient study design. Therefore, this review aims to give an overview on the current evidence and emphasizes on the importance of further clinical investigation on estrogens following trauma.

  18. U-Shape Suppressive Effect of Phenol Red on the Epileptiform Burst Activity via Activation of Estrogen Receptors in Primary Hippocampal Culture

    PubMed Central

    Liu, Xu; Chen, Ben; Chen, Lulan; Ren, Wan-Ting; Liu, Juan; Wang, Guoxiang; Fan, Wei; Wang, Xin; Wang, Yun

    2013-01-01

    Phenol red is widely used in cell culture as a pH indicator. Recently, it also has been reported to have estrogen-like bioactivity and be capable of promoting cell proliferation in different cell lines. However, the effect of phenol red on primary neuronal culture has never been investigated. By using patch clamp technique, we demonstrated that hippocampal pyramidal neurons cultured in neurobasal medium containing no phenol red had large depolarization-associated epileptiform bursting activities, which were rarely seen in neurons cultured in phenol red-containing medium. Further experiment data indicate that the suppressive effect of the phenol red on the abnormal epileptiform burst neuronal activities was U-shape dose related, with the most effective concentration at 28 µM. In addition, this concentration related inhibitory effect of phenol red on the epileptiform neuronal discharges was mimicked by 17-β-estradiol, an estrogen receptor agonist, and inhibited by ICI-182,780, an estrogen receptor antagonist. Our results suggest that estrogen receptor activation by phenol red in the culture medium prevents formation of abnormal, epileptiform burst activity. These studies highlight the importance of phenol red as estrogen receptor stimulator and cautions of careful use of phenol red in cell culture media. PMID:23560076

  19. An Assessment of Potential Exposure and Risk from Estrogens in Drinking Water

    PubMed Central

    Caldwell, Daniel J.; Mastrocco, Frank; Nowak, Edward; Johnston, James; Yekel, Harry; Pfeiffer, Danielle; Hoyt, Marilyn; DuPlessie, Beth M.; Anderson, Paul D.

    2010-01-01

    Background Detection of estrogens in the environment has raised concerns in recent years because of their potential to affect both wildlife and humans. Objectives We compared exposures to prescribed and naturally occurring estrogens in drinking water to exposures to naturally occurring background levels of estrogens in the diet of children and adults and to four independently derived acceptable daily intakes (ADIs) to determine whether drinking water intakes are larger or smaller than dietary intake or ADIs. Methods We used the Pharmaceutical Assessment and Transport Evaluation (PhATE) model to predict concentrations of estrogens potentially present in drinking water. Predicted drinking water concentrations were combined with default water intake rates to estimate drinking water exposures. Predicted drinking water intakes were compared to dietary intakes and also to ADIs. We present comparisons for individual estrogens as well as combined estrogens. Results In the analysis we estimated that a child’s exposures to individual prescribed estrogens in drinking water are 730–480,000 times lower (depending upon estrogen type) than exposure to background levels of naturally occurring estrogens in milk. A child’s exposure to total estrogens in drinking water (prescribed and naturally occurring) is about 150 times lower than exposure from milk. Adult margins of exposure (MOEs) based on total dietary exposure are about 2 times smaller than those for children. Margins of safety (MOSs) for an adult’s exposure to total prescribed estrogens in drinking water vary from about 135 to > 17,000, depending on ADI. MOSs for exposure to total estrogens in drinking water are about 2 times lower than MOSs for prescribed estrogens. Depending on the ADI that is used, MOSs for young children range from 28 to 5,120 for total estrogens (including both prescribed and naturally occurring sources) in drinking water. Conclusions The consistently large MOEs and MOSs strongly suggest that

  20. Determination of estrogenic potential in waste water without sample extraction.

    PubMed

    Avberšek, Miha; Žegura, Bojana; Filipič, Metka; Uranjek-Ževart, Nataša; Heath, Ester

    2013-09-15

    This study describes the modification of the ER-Calux assay for testing water samples without sample extraction (NE-(ER-Calux) assay). The results are compared to those obtained with ER-Calux assay and a theoretical estrogenic potential obtained by GC-MSD. For spiked tap and waste water samples there was no statistical difference between estrogenic potentials obtained by the three methods. Application of NE-(ER-Calux) to "real" influent and effluents from municipal waste water treatment plants and receiving surface waters found that the NE-(ER-Calux) assay gave higher values compared to ER-Calux assay and GC-MSD. This is explained by the presence of water soluble endocrine agonists that are usually removed during extraction. Intraday dynamics of the estrogenic potential of a WWTP influent and effluent revealed an increase in the estrogenic potential of the influent from 12.9 ng(EEQ)/L in the morning to a peak value of 40.0 ng(EEQ)/L in the afternoon. The estrogenic potential of the effluent was estrogenic potential was 92-98%. Daytime estrogenic potential values varied significantly. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Early Childhood Malaria Prevention and Children's Patterns of School Leaving in the Gambia

    ERIC Educational Resources Information Center

    Zuilkowski, Stephanie S.; Jukes, Matthew C. H.

    2014-01-01

    Background: Early childhood malaria is often fatal, but its impact on the development and education of survivors has not received much attention. Malaria impacts cognitive development in a number of ways that may impact later educational participation. Aims: In this study, we examine the long-term educational effects of preventing early childhood…

  2. Chronic estrogen deficiency leads to molecular aberrations related to neurodegenerative changes in follitropin receptor knockout female mice.

    PubMed

    Tam, J; Danilovich, N; Nilsson, K; Sairam, M R; Maysinger, D

    2002-01-01

    The follitropin receptor knockout (FORKO) mouse undergoes ovarian failure, thereby providing an animal model to investigate the consequences of the depletion of circulating estrogen in females. The estrogen deficiency causes marked defects in the female reproductive system, obesity, and skeletal abnormalities. In light of estrogen's known pleiotropic effects in the nervous system, our study examined the effects of genetically induced estrogen-testosterone imbalance on this system in female FORKO mice. Circulating concentrations of 17-beta-estradiol (E2) in FORKO mice are significantly decreased (FORKO -/-: 1.13+/-0.34 pg/ml; wild-type +/+: 17.6+/-3.5 pg/ml, P<0.0001, n=32-41); in contrast, testosterone levels are increased (-/-: 37.7+/-2.3 pg/ml; wild-type +/+: 3.9+/-1.7 pg/ml, P<0.005, n=25-33). The focus was on the activities of key enzymes in the central cholinergic and peripheral nervous systems, on dorsal root ganglia (DRGs) capacity for neurite outgrowth, and on the phosphorylation state of structural neurofilament (NF) proteins. Choline acetyltransferase activity was decreased in several central cholinergic structures (striatum 50+/-3%, hippocampus 24+/-2%, cortex 12+/-3%) and in DRGs (11+/-6%). Moreover, we observed aberrations in the enzymatic activities of mitogen-activated protein kinases (extracellular-regulated kinase and c-Jun N-terminal kinase) in the hippocampus, DRGs, and sciatic nerves. Hippocampal and sensory ganglia samples from FORKO mice contained hyper-phosphorylated NFs. Finally, explanted ganglia of FORKO mice displayed decreased neurite outgrowth (20-50%) under non-treated conditions and when treated with E2 (10 nM). Our results demonstrate that genetic depletion of circulating estrogen leads to biochemical and morphological changes in central and peripheral neurons, and underlie the importance of estrogen in the normal development and functioning of the nervous system. In particular, the findings suggest that an early and persisting

  3. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    PubMed Central

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  4. Developmental estrogen exposures and disruptions to maternal behavior and brain: Effects of ethinyl estradiol, a common positive control.

    PubMed

    Catanese, Mary C; Vandenberg, Laura N

    2017-11-07

    Due of its structural similarity to the endogenous estrogen 17β-estradiol (E2), the synthetic estrogen 17α-ethinyl estradiol (EE2) is widely used to study the effects of estrogenic substances on sensitive organs at multiple stages of development. Here, we investigated the effects of EE2 on maternal behavior and the maternal brain in females exposed during gestation and the perinatal period. We assessed several components of maternal behavior including nesting behavior and pup retrieval; characterized the expression of estrogen receptor (ER)α in the medial preoptic area (MPOA), a brain region critical for the display of maternal behavior; and measured expression of tyrosine hydroxylase, a marker for dopaminergic cells, in the ventral tegmental area (VTA), a brain region important in maternal motivation. We found that developmental exposure to EE2 induces subtle effects on several aspects of maternal behavior including time building the nest and time spent engaged in self-care. Developmental exposure to EE2 also altered ERα expression in the central MPOA during both early and late lactation and led to significantly reduced tyrosine hydroxylase immunoreactivity in the VTA. Our results demonstrate both dose- and postpartum stage-related effects of developmental exposure to EE2 on behavior and brain that manifest later in adulthood, during the maternal period. These findings provide further evidence for effects of exposure to exogenous estrogenic compounds during the critical periods of fetal and perinatal development. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Probiotics in early life: a preventative and treatment approach.

    PubMed

    Hashemi, Ashkan; Villa, Christopher R; Comelli, Elena M

    2016-04-01

    Microbial colonization of the infant gut plays a key role in immunological and metabolic pathways impacting human health. Since the maturation of the gut microbiota coincides with early life development, failure to develop a health compatible microbiota composition may result in pathology and disease in later life. Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Maternal transfer of microorganisms is possible during pregnancy and lactation, and the mother's diet and microbiota can influence that of her offspring. Furthermore, pre-term birth, Caesarean section birth, formula feeding, antibiotic use, and malnutrition have been linked to dysbiosis, which in turn is associated with several pathologies such as necrotizing enterocolitis, inflammatory bowel diseases, antibiotic associated diarrhea, colic, and allergies. Thus, early life should represent a preferred stage of life for probiotic interventions. In this context, they could be regarded as a means to 'program' the individual for health maintenance, in order to prevent pathologies associated with dysbiosis. In order to elucidate the mechanisms underlying the benefits of probiotic administration, pre-clinical studies have been conducted and found an array of positive results such as improved microbial composition, intestinal maturation, decreased pathogenic load and infections, and improved immune response. Moreover, specific probiotic strains administered during the perinatal period have shown promise in attenuating severity of necrotizing enterocolitis. The mechanisms elucidated suggest that probiotic interventions in early life can be envisaged for disease prevention in both healthy offspring and offspring at risk of chronic disease.

  6. Rapid control of male typical behaviors by brain-derived estrogens

    PubMed Central

    Cornil, Charlotte A.; Ball, Gregory F.; Balthazart, Jacques

    2012-01-01

    Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanism that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators. PMID:22983088

  7. A preliminary study on the occurrence and dissipation of estrogen in livestock wastewater.

    PubMed

    Tang, Xianjin; Naveedullah; Hashmi, Muhammad Zaffar; Zhang, Hu; Qian, Mingrong; Yu, Chunna; Shen, Chaofeng; Qin, Zhihui; Huang, Ronglang; Qiao, Jiani; Chen, Yingxu

    2013-04-01

    Livestock wastewater has high estrogen activity because animal excreta contain estrogen. In the past, when biological technologies were applied to treat livestock wastewater, the removal efficiency of estrogen pollutants was always ignored. Therefore, the efficiency of estrogen removal by anaerobic/aerobic (A/O) treatment and by up flow anaerobic sludge blanket and step-fed sequencing batch reactor (UASB-SFSBR) treatment was investigated in the present study. The results showed that the A/O treatment had no significant estrogenic removal ability, whereas the removal rates of estrogen after UASB-SFSBR treatment reached approximately 78 %, as measured by liquid chromatography and tandem mass spectrometry. The estrogen concentration decreased from 31.5 ng/L to an undetectable level according to the yeast estrogen screen analysis. We found differences between the estrogen removal rates measured by the chemical assay and those measured using the bioassay. More attention must be paid to the removal of estrogen pollutants in livestock wastewater to reduce the environmental risk.

  8. Immunosuppression Following Exposure to Exogenous Estrogens

    DTIC Science & Technology

    1983-08-01

    and laboratory animals aad has been associated with endo- metrial cancer, breast cancer, and vaginal adenocarcinoma (McLachlan, 1980). In mice, DES ... DES ), a nonsteroidal synthet- ic estrogen with potent estrogenic activity was examined. This compound has been employed as a therapeutic agent in...humans as well as a growth promotant in livestock (McMartin, 1978). There is mounting evidence, however, that DES is potentially carcinogenic in humans

  9. Estrogen receptor mRNA in mineralized tissues of rainbow trout: calcium mobilization by estrogen.

    PubMed

    Armour, K J; Lehane, D B; Pakdel, F; Valotaire, Y; Graham, R; Russell, R G; Henderson, I W

    1997-07-07

    RT-PCR was undertaken on total RNA extracts from bone and scales of the rainbow trout, Oncorhynchus mykiss. The rainbow trout estrogen receptor (ER)-specific primers used amplified a single product of expected size from each tissue which, using Southern blotting, strongly hybridized with a 32P-labelled rtER probe under stringent conditions. These data provide the first in vivo evidence of ER mRNA in bone and scale tissues of rainbow trout and suggest that the effects of estrogen observed in this study (increased bone mineral and decreased scale mineral contents, respectively) may be mediated directly through ER.

  10. Red Clover Aryl Hydrocarbon Receptor (AhR) and Estrogen Receptor (ER) Agonists Enhance Genotoxic Estrogen Metabolism

    PubMed Central

    2017-01-01

    Many women consider botanical dietary supplements (BDSs) as safe alternatives to hormone therapy for menopausal symptoms. However, the effect of BDSs on breast cancer risk is largely unknown. In the estrogen chemical carcinogenesis pathway, P450 1B1 metabolizes estrogens to 4-hydroxylated catechols, which are oxidized to genotoxic quinones that initiate and promote breast cancer. In contrast, P450 1A1 catalyzed 2-hydroxylation represents a detoxification pathway. The current study evaluated the effects of red clover, a popular BDS used for women’s health, and its isoflavones, biochanin A (BA), formononetin (FN), genistein (GN), and daidzein (DZ), on estrogen metabolism. The methoxy estrogen metabolites (2-MeOE1, 4-MeOE1) were measured by LC-MS/MS, and CYP1A1 and CYP1B1 gene expression was analyzed by qPCR. Nonmalignant ER-negative breast epithelial cells (MCF-10A) and ER-positive breast cancer cells (MCF-7) were derived from normal breast epithelial tissue and ER+ breast cancer tissue. Red clover extract (RCE, 10 μg/mL) and isoflavones had no effect on estrogen metabolism in MCF-10A cells. However, in MCF-7 cells, RCE treatments downregulated CYP1A1 expression and enhanced genotoxic metabolism (4-MeOE1/CYP1B1 > 2-MeOE1/CYP1A1). Experiments with the isoflavones showed that the AhR agonists (BA, FN) preferentially induced CYP1B1 expression as well as 4-MeOE1. In contrast, the ER agonists (GN, DZ) downregulated CYP1A1 expression likely through an epigenetic mechanism. Finally, the ER antagonist ICI 182,780 potentiated isoflavone-induced XRE-luciferase reporter activity and reversed GN and DZ induced downregulation of CYP1A1 expression. Overall, these studies show that red clover and its isoflavones have differential effects on estrogen metabolism in “normal” vs breast cancer cells. In breast cancer cells, the AhR agonists stimulate genotoxic metabolism, and the ER agonists downregulate the detoxification pathway. These data may suggest that especially breast

  11. Environmental impact of estrogens on human, animal and plant life: A critical review.

    PubMed

    Adeel, Muhammad; Song, Xiaoming; Wang, Yuanyuan; Francis, Dennis; Yang, Yuesuo

    2017-02-01

    Since the inception of global industrialization, steroidal estrogens have become an emerging and serious concern. Worldwide, steroid estrogens including estrone, estradiol and estriol, pose serious threats to soil, plants, water resources and humans. Indeed, estrogens have gained notable attention in recent years, due to their rapidly increasing concentrations in soil and water all over the world. Concern has been expressed regarding the entry of estrogens into the human food chain which in turn relates to how plants take up and metabolism estrogens. In this review we explore the environmental fate of estrogens highlighting their release through effluent sources, their uptake, partitioning and physiological effects in the ecological system. We draw attention to the potential risk of intensive modern agriculture and waste disposal systems on estrogen release and their effects on human health. We also highlight their uptake and metabolism in plants. We use MEDLINE and other search data bases for estrogens in the environment from 2005 to the present, with the majority of our sources spanning the past five years. Published acceptable daily intake of estrogens (μg/L) and predicted no effect concentrations (μg/L) are listed from published sources and used as thresholds to discuss reported levels of estrogens in the aquatic and terrestrial environments. Global levels of estrogens from river sources and from Waste Water Treatment Facilities have been mapped, together with transport pathways of estrogens in plants. Estrogens at polluting levels have been detected at sites close to waste water treatment facilities and in groundwater at various sites globally. Estrogens at pollutant levels have been linked with breast cancer in women and prostate cancer in men. Estrogens also perturb fish physiology and can affect reproductive development in both domestic and wild animals. Treatment of plants with steroid estrogen hormones or their precursors can affect root and shoot

  12. The Distinct Effects of Estrogen and Hydrostatic Pressure on Mesenchymal Stem Cells Differentiation: Involvement of Estrogen Receptor Signaling.

    PubMed

    Zhao, Ying; Yi, Fei-Zhou; Zhao, Yin-Hua; Chen, Yong-Jin; Ma, Heng; Zhang, Min

    2016-10-01

    This study aimed to investigate the differential and synergistic effects of mechanical stimulation and estrogen on the proliferation and osteogenic or chondrogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs) and the roles of estrogen receptor (ER) in them. BMSCs were isolated and cultured using the whole bone marrow adherence method, and flow cytometry was used to identify the surface marker molecules of BMSCs. Cells were pre-treated with 1 nM 17β-estradiol or 1 nM of the estrogen receptor antagonist tamoxifen. Then, the cells were stimulated with hydrostatic pressure. Assessment included flow cytometry analysis of the cell cycle; immunofluorescent staining for F-actin; protein quantification for MAPK protein; and mRNA analysis for Col I, OCN, OPN and BSP after osteogenic induction and Sox-9, Aggrecan and Col-II after chondrogenic induction. Hydrostatic pressure (90 kPa/1 h) and 1 nM 17β-estradiol enhanced the cellular proliferation ability and the cytoskeleton activity but without synergistic biological effects. Estrogen activated ERKs and JNKs simultaneously and promoted the osteogenic differentiation, whereas the pressure just caused JNK-1/2 activation and promoted the chondrogenic differentiation of BMSCs. Estrogen had antagonism effect on chondrogenic promotion of hydrostatic pressure. Mechanobiological effects of hydrostatic pressure are closely associated with ERα activity. MAPK molecules and F-actin were likely to be important mediator molecules in the ER-mediated mechanotransduction of BMSCs.

  13. Designer interface peptide grafts target estrogen receptor alpha dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K., E-mail: pbiswas@tougaloo.edu

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization.more » Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  14. Assessment of a lecture on cancer prevention and the early detection of cancer.

    PubMed

    Banner, William P; Booroojian, Stefani; Hernandez, Lori; Lopez, Brad; Pinzon-Perez, Helda

    2002-01-01

    Cancer prevention and the early detection can affect morbidity and mortality. Through educational programs, recommendations for beneficial lifestyle changes and cancer screening may be introduced to the public. The purpose of this study was to determine whether a videotaped lecture concerning cancer prevention and early detection is of educational value. College students in a health science class participated in the study. The students' comprehension of the subject matter was assessed immediately before and a week after they viewed the lecture. The students' scores on the second test were significantly better as measured by a paired-difference experiment. This videotaped lecture has merit as an educational program.

  15. Measuring estrogens in women, men, and children: Recent advances 2012-2017.

    PubMed

    Smy, Laura; Straseski, Joely

    2018-05-22

    The measurement of estrogens is important for diagnosing and monitoring the health of women, men, and children. For example, for postmenopausal women or women undergoing treatment for breast cancer with aromatase inhibitors, the measurement of extremely low concentrations of estrogens in serum, especially estradiol, is problematic but essential for proper medical care. Achieving superb analytical sensitivity and specificity has been and continues to be a challenge for the clinical laboratory, but is a challenge that is being taken seriously. Focusing on publications from 2012 to 2017, this review will provide an overview of recent research in the development of methods to accurately and precisely measure estrogens, including a variety of estrogen metabolites. Additionally, the latest in clinical research involving estrogen measurement in women, men, and children will be presented to provide an update on the association of estrogens with diseases or conditions such as breast cancer, precocious puberty, infertility, and pregnancy. This research update will provide context as to why estrogen measurement is important and why laboratories are working hard to support the recommendations made by the Endocrine Society regarding estrogen measurement. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Estrogenic effects of marijuana smoke condensate and cannabinoid compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soo Yeun; Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746; Oh, Seung Min

    Chronic exposure to marijuana produces adverse effects on the endocrine and reproductive systems in humans; however, the experimental evidence for this presented thus far has not been without controversy. In this study, the estrogenic effect of marijuana smoke condensate (MSC) was evaluated using in vitro bioassays, viz., the cell proliferation assay, the reporter gene assay, and the ER competitive binding assay. The results of these assays were compared with those of three major cannabinoids, i.e., THC, CBD, and CBN. The estrogenic effect of MSC was further confirmed by the immature female rat uterotrophic assay. MSC stimulated the estrogenicity related tomore » the ER-mediated pathway, while neither THC, CBD, nor CBN did. Moreover, treatment with 10 and 25 mg/kg MSC induced significant uterine response, and 10 mg/kg MSC resulted in an obvious change in the uterine epithelial cell appearance. MSC also enhanced the IGFBP-1 gene expression in a dose-dependent manner. To identify the constituents of MSC responsible for its estrogenicity, the MSC fractionated samples were examined using another cell proliferation assay, and the estrogenic active fraction was analyzed using GC-MS. In the organic acid fraction that showed the strongest estrogenic activity among the seven fractions of MSC, phenols were identified. Our results suggest that marijuana abuse is considered an endocrine-disrupting factor. Furthermore, these results suggest that the phenolic compounds contained in MSC play a role in its estrogenic effect.« less

  17. Determining estrogenic activity in serum from ovariectomized rats treated with environmental compounds using an in vitro estrogen-mediated transcriptional activation assay (T47D-KBluc).

    EPA Science Inventory

    The use of cell-based assays to quantify low levels of estrogen in human serum is an accepted method. These assays are more sensitive but less specific than radioimmunoassays (RIA). Thus, we hypothesized that estrogen responsive T47D-KBluc cells would detect estrogenic activity i...

  18. Determining estrogenic activity in serum from ovariectomized rats treated with environmental compounds using an in vitro estrogen-mediated transcriptional activation assay (T47D-KBluc)

    EPA Science Inventory

    The use of cell-based assays to quantify low levels of estrogen in human serum is an accepted method. These assays are more sensitive but less specific than radioimmunoassays (RIA). Thus, we hypothesized that estrogen responsive T47D-KBluc cells would detect estrogenic activity i...

  19. Evidence of estrogen modulation on memory processes for emotional content in healthy young women.

    PubMed

    Pompili, Assunta; Arnone, Benedetto; D'Amico, Mario; Federico, Paolo; Gasbarri, Antonella

    2016-03-01

    It is well accepted that emotional content can affect memory, interacting with the encoding and consolidation processes. The aim of the present study was to verify the effects of estrogens in the interplay of cognition and emotion. Images from the International Affective Pictures System, based on valence (pleasant, unpleasant and neutral), maintaining arousal constant, were viewed passively by two groups of young women in different cycle phases: a periovulatory group (PO), characterized by high level of estrogens and low level of progesterone, and an early follicular group (EF), characterized by low levels of both estrogens and progesterone. The electrophysiological responses to images were measured, and P300 peak was considered. One week later, long-term memory was tested by means of free recall. Intra-group analysis displayed that PO woman had significantly better memory for positive images, while EF women showed significantly better memory for negative images. The comparison between groups revealed that women in the PO phase had better memory performance for positive pictures than women in the EF phase, while no significant differences were found for negative and neutral pictures. According to the free recall results, the subjects in the PO group showed greater P300 amplitude, and shorter latency, for pleasant images compared with women in the EF group. Our results showed that the physiological hormonal fluctuation of estrogens during the menstrual cycle can influence memory, at the time of encoding, during the processing of emotional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Lifetime exposure to estrogens and Parkinson's disease in California teachers.

    PubMed

    Gatto, N M; Deapen, D; Stoyanoff, S; Pinder, R; Narayan, S; Bordelon, Y; Ritz, B

    2014-11-01

    Parkinson's disease (PD) is consistently observed to occur less frequently in women than men, prompting investigation into whether estrogen protects against neurodegeneration of dopaminergic neurons. We used baseline data in the California Teachers Study, a prospective cohort of women, to investigate whether reproductive factors indicating higher long-term estrogen levels are associated with PD using a nested case-control approach. We identified 228 PD cases and 3349 unaffected controls frequency matched by age and race. Women who reported using combined estrogen/progesterone therapy or progesterone only formulations had a 57% increase in PD risk (OR = 1.57, 95% CI = 1.06, 2.34) compared to never having used HT. Compared to women with menopause at 50-52 years, menopause at younger (<35-46 years: OR = 0.59, 95% CI = 0.37, 0.94) and older ages (≥53 years: OR = 0.54, 95% CI = 0.36, 0.83) had lower PD risk. A derived composite estrogen summary score for women's exposure to both endogenous and exogenous estrogens throughout life indicated that women with presumed higher cumulative lifetime levels of estrogen (a score of 3-5) had a significantly reduced PD risk [(OR = 0.57, 95% CI = 0.35, 0.91) relative to those with lower lifetime estrogen exposure or a composite estrogen summary score of 0-1]. These results provide some support for the hypothesis that lifelong high estrogen is protective in PD, suggesting that the level and persistence of exposure over the long term may be important in PD risk reduction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Rapid effects of estrogens on short-term memory: Possible mechanisms.

    PubMed

    Paletta, Pietro; Sheppard, Paul A S; Matta, Richard; Ervin, Kelsy S J; Choleris, Elena

    2018-06-01

    Estrogens affect learning and memory through rapid and delayed mechanisms. Here we review studies on rapid effects on short-term memory. Estradiol rapidly improves social and object recognition memory, spatial memory, and social learning when administered systemically. The dorsal hippocampus mediates estrogen rapid facilitation of object, social and spatial short-term memory. The medial amygdala mediates rapid facilitation of social recognition. The three estrogen receptors, α (ERα), β (ERβ) and the G-protein coupled estrogen receptor (GPER) appear to play different roles depending on the task and brain region. Both ERα and GPER agonists rapidly facilitate short-term social and object recognition and spatial memory when administered systemically or into the dorsal hippocampus and facilitate social recognition in the medial amygdala. Conversely, only GPER can facilitate social learning after systemic treatment and an ERβ agonist only rapidly improved short-term spatial memory when given systemically or into the hippocampus, but also facilitates social recognition in the medial amygdala. Investigations into the mechanisms behind estrogens' rapid effects on short term memory showed an involvement of the extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) kinase pathways. Recent evidence also showed that estrogens interact with the neuropeptide oxytocin in rapidly facilitating social recognition. Estrogens can increase the production and/or release of oxytocin and other neurotransmitters, such as dopamine and acetylcholine. Therefore, it is possible that estrogens' rapid effects on short-term memory may occur through the regulation of various neurotransmitters, although more research is need on these interactions as well as the mechanisms of estrogens' actions on short-term memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Antiosteoclastic activity of milk thistle extract after ovariectomy to suppress estrogen deficiency-induced osteoporosis.

    PubMed

    Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Han, Seoung-Jun; Kang, Young-Hee

    2013-01-01

    Bone integrity abnormality and imbalance between bone formation by osteoblasts and bone resorption by osteoclasts are known to result in metabolic bone diseases such as osteoporosis. Silymarin-rich milk thistle extract (MTE) and its component silibinin enhanced alkaline phosphatase activity of osteoblasts but reduced tartrate-resistant acid phosphatase (TRAP) activity of osteoclasts. The osteoprotective effects of MTE were comparable to those of estrogenic isoflavone. Low-dose combination of MTE and isoflavone had a pharmacological synergy that may be useful for osteogenic activity. This study attempted to reveal the suppressive effects of MTE on bone loss. C57BL/6 female mice were ovariectomized (OVX) as a model for postmenopausal osteopenia and orally administered 10 mg/kg MTE or silibinin for 8 weeks. The sham-operated mice served as estrogen controls. The treatment of ovariectomized mice with nontoxic MTE and silibinin improved femoral bone mineral density and serum receptor activator of nuclear factor- κB ligand/osteoprotegerin ratio, an index of osteoclastogenic stimulus. In addition, the administration of MTE or silibinin inhibited femoral bone loss induced by ovariectomy and suppressed femoral TRAP activity and cathepsin K induction responsible for osteoclastogenesis and bone resorption. Collectively, oral dosage of MTE containing silibinin in the preclinical setting is effective in preventing estrogen deficiency-induced bone loss.

  3. Antiosteoclastic Activity of Milk Thistle Extract after Ovariectomy to Suppress Estrogen Deficiency-Induced Osteoporosis

    PubMed Central

    Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Han, Seoung-Jun; Kang, Young-Hee

    2013-01-01

    Bone integrity abnormality and imbalance between bone formation by osteoblasts and bone resorption by osteoclasts are known to result in metabolic bone diseases such as osteoporosis. Silymarin-rich milk thistle extract (MTE) and its component silibinin enhanced alkaline phosphatase activity of osteoblasts but reduced tartrate-resistant acid phosphatase (TRAP) activity of osteoclasts. The osteoprotective effects of MTE were comparable to those of estrogenic isoflavone. Low-dose combination of MTE and isoflavone had a pharmacological synergy that may be useful for osteogenic activity. This study attempted to reveal the suppressive effects of MTE on bone loss. C57BL/6 female mice were ovariectomized (OVX) as a model for postmenopausal osteopenia and orally administered 10 mg/kg MTE or silibinin for 8 weeks. The sham-operated mice served as estrogen controls. The treatment of ovariectomized mice with nontoxic MTE and silibinin improved femoral bone mineral density and serum receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio, an index of osteoclastogenic stimulus. In addition, the administration of MTE or silibinin inhibited femoral bone loss induced by ovariectomy and suppressed femoral TRAP activity and cathepsin K induction responsible for osteoclastogenesis and bone resorption. Collectively, oral dosage of MTE containing silibinin in the preclinical setting is effective in preventing estrogen deficiency-induced bone loss. PMID:23781510

  4. Targeted Therapy for Breast Cancer Prevention

    PubMed Central

    den Hollander, Petra; Savage, Michelle I.; Brown, Powel H.

    2013-01-01

    With a better understanding of the etiology of breast cancer, molecularly targeted drugs have been developed and are being testing for the treatment and prevention of breast cancer. Targeted drugs that inhibit the estrogen receptor (ER) or estrogen-activated pathways include the selective ER modulators (tamoxifen, raloxifene, and lasofoxifene) and aromatase inhibitors (AIs) (anastrozole, letrozole, and exemestane) have been tested in preclinical and clinical studies. Tamoxifen and raloxifene have been shown to reduce the risk of breast cancer and promising results of AIs in breast cancer trials, suggest that AIs might be even more effective in the prevention of ER-positive breast cancer. However, these agents only prevent ER-positive breast cancer. Therefore, current research is focused on identifying preventive therapies for other forms of breast cancer such as human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC, breast cancer that does express ER, progesterone receptor, or HER2). HER2-positive breast cancers are currently treated with anti-HER2 therapies including trastuzumab and lapatinib, and preclinical and clinical studies are now being conducted to test these drugs for the prevention of HER2-positive breast cancers. Several promising agents currently being tested in cancer prevention trials for the prevention of TNBC include poly(ADP-ribose) polymerase inhibitors, vitamin D, and rexinoids, both of which activate nuclear hormone receptors (the vitamin D and retinoid X receptors). This review discusses currently used breast cancer preventive drugs, and describes the progress of research striving to identify and develop more effective preventive agents for all forms of breast cancer. PMID:24069582

  5. Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle.

    PubMed

    Trenti, Annalisa; Tedesco, Serena; Boscaro, Carlotta; Trevisi, Lucia; Bolego, Chiara; Cignarella, Andrea

    2018-03-15

    Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERβ, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17β-estradiol can influence the cardiovascular and immune systems.

  6. Estrogen receptor α is required for oviductal transport of embryos

    PubMed Central

    Li, Shuai; O’Neill, Sofia R. S.; Zhang, Yong; Holtzman, Michael J.; Takemaru, Ken-Ichi; Korach, Kenneth S.; Winuthayanon, Wipawee

    2017-01-01

    Newly fertilized embryos spend the first few days within the oviduct and are transported to the uterus, where they implant onto the uterine wall. An implantation of the embryo before reaching the uterus could result in ectopic pregnancy and lead to maternal death. Estrogen is necessary for embryo transport in mammals; however, the mechanism involved in estrogen-mediated cellular function within the oviduct remains unclear. In this study, we show in mouse models that ciliary length and beat frequency of the oviductal epithelial cells are regulated through estrogen receptor α (ESR1) but not estrogen receptor β (ESR2). Gene profiling indicated that transcripts in the WNT/β-catenin (WNT/CTNNB1) signaling pathway were regulated by estrogen in mouse oviduct, and inhibition of this pathway in a whole oviduct culture system resulted in a decreased embryo transport distance. However, selective ablation of CTNNB1 from the oviductal ciliated cells did not affect embryo transport, possibly because of a compensatory mechanism via intact CTNNB1 in the adjacent secretory cells. In summary, we demonstrated that disruption of estrogen signaling in oviductal epithelial cells alters ciliary function and impairs embryo transport. Therefore, our findings may provide a better understanding of etiology of the ectopic pregnancy that is associated with alteration of estrogen signals.—Li, S., O’Neill, S. R. S., Zhang, Y., Holtzman, M. J., Takemaru, K.-I., Korach, K. S., Winuthayanon, W. Estrogen receptor α is required for oviductal transport of embryos. PMID:28082352

  7. Estrogen rapidly enhances incisional pain of ovariectomized rats primarily through the G protein-coupled estrogen receptor.

    PubMed

    An, Guanghui; Li, Wenhui; Yan, Tao; Li, Shitong

    2014-06-11

    It has become increasingly apparent that the pain threshold of females and males varies in an estrogen dependent manner. To investigate the modulation of pain by estrogen and the molecular mechanisms involved in this process. A total of 48 rats were ovariectomized (OVX). At 14 and 20 days after OVX, rats were divided into eight groups: groups 1-4 were administered drugs intravenously (IV); groups 5-8 were administered through intrathecal (IT) catheter. Hind paw incision was made in all animals to determine incisional pain. Paw withdraw threshold (PWT) was tested prior to and 24 h after incision. The test drugs were applied 24 h after the incision. Rats were either IV or IT administered with: 17-β-estradiol (E2), G protein-coupled estrogen receptor (GPER)-selective agonist (G1), GPER-selective antagonist (G15) and E2 (G15+E2), or solvent. Before and 30 min after IV drug administration and 20 min during the IT catheter administration, PWT was tested and recorded. 24 h after incisional surgery, the PWT of all rats significantly decreased. Both in the IV group and IT group: administration of E2 and G1 significantly decreased PWT. Neither administration of G15+E2 nor solvent significantly changed PWT. Estrogen causes rapid reduction in the mechanical pain threshold of OVX rats via GPER.

  8. Estrogen Receptors Modulation of Anxiety-Like Behavior.

    PubMed

    Borrow, A P; Handa, R J

    2017-01-01

    Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems. © 2017 Elsevier Inc. All rights reserved.

  9. Estrogenic exposure affects metamorphosis and alters sex ratios in the northern leopard frog (Rana pipiens): identifying critically vulnerable periods of development.

    PubMed

    Hogan, Natacha S; Duarte, Paula; Wade, Michael G; Lean, David R S; Trudeau, Vance L

    2008-05-01

    During the transformation from larval tadpole to juvenile frog, there are critical periods of metamorphic development and sex differentiation that may be particularly sensitive to endocrine disruption. The aim of the present study was to identify sensitive developmental periods for estrogenic endocrine disruption in the northern leopard frog (Rana pipiens) using short, targeted exposures to the synthetic estrogen, ethinylestradiol (EE2). Post-hatch tadpoles (Gosner stage 27) were exposed over five distinct periods of metamorphosis: early (stage 27-30), mid (stage 30-36), early and mid (stage 27-36), late (stage 36-42), and the entire metamorphic period (chronic; stage 27-42). For each period, animals were sampled immediately following the EE2 exposure and at metamorphic climax (stage 42). The effects of EE2 on metamorphic development and sex differentiation were assessed through measures of length, weight, developmental stage, days to metamorphosis, sex ratios and incidence of gonadal intersex. Our results show that tadpoles exposed to EE2 during mid-metamorphosis were developmentally delayed immediately following exposure and took 2 weeks longer to reach metamorphic climax. In the unexposed groups, there was low proportion (0.15) of intersex tadpoles at stage 30 and gonads appeared to be morphologically distinct (male and female) in all individuals by stage 36. Tadpoles exposed early in development displayed a strong female-biased sex ratio compared to the controls. Moreover, these effects were also seen at metamorphic climax, approximately 2-3 months after the exposure period, demonstrating that transient early life-stage exposure to estrogen can induce effects on the reproductive organs that persist into the beginning of adult life-stages.

  10. Anti-Estrogen Regulation of Macrophage Products that Influence Breast Cancer Cell Proliferation and Susceptibility to Apoptosis

    DTIC Science & Technology

    2004-08-01

    Susceptibility to Apoptosis PRINCIPAL INVESTIGATOR: Theodore Bremner, Ph.D. CONTRACTING ORGANIZATION: Howard University Washington, DC 20060 REPORT DATE...S) Theodore Bremner, Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Howard University REPORT NUMBER Washington...Bremner, Howard University , Washington, DC Tamoxifen (TMX) is the most widely used anti-estrogen for breast cancer prevention and treatment, but its

  11. BIOCHEMICAL AND ANALYTICAL CHARACTERIZATION OF ESTROGENICALLY ACTIVE WASTEWATER: COMPARISON OF FIELD EXTRAPOLATIONS TO THE MEASURED CONCENTRATION OF ESTROGENS IN SEWAGE EFFLUENT

    EPA Science Inventory

    Estrogenically active wastewater was observed at two municipal wastewater treatment plants (WWTPs) utilizing caged male channel catfish in a previous study. The focus of this investigation was to identify and characterize the compound(s) responsible for this estrogenic response. ...

  12. Estradiol prevents ozone-induced increases in brain lipid peroxidation and impaired social recognition memory in female rats.

    PubMed

    Guevara-Guzmán, R; Arriaga, V; Kendrick, K M; Bernal, C; Vega, X; Mercado-Gómez, O F; Rivas-Arancibia, S

    2009-03-31

    There is increasing concern about the neurodegenerative and behavioral consequences of ozone pollution in industrialized urban centers throughout the world and that women may be more susceptible to brain neurodegenerative disorders. In the present study we have investigated the effects of chronic (30 or 60 days) exposure to ozone on olfactory perception and memory and on levels of lipid peroxidation, alpha and beta estrogen receptors and dopamine beta-hydroxylase in the olfactory bulb in ovariectomized female rats. The ability of 17beta-estradiol to prevent these effects was then assessed. Results showed that ozone exposure for 30 or 60 days impaired formation/retention of a selective olfactory recognition memory 120 min after exposure to a juvenile stimulus animal with the effect at 60 days being significantly greater than at 30 days. They also showed impaired speed in locating a buried chocolate reward after 60 days of ozone exposure indicating some loss of olfactory perception. These functional impairments could all be prevented by coincident estradiol treatment. In the olfactory bulb, levels of lipid peroxidation were increased at both 30- and 60-day time-points and numbers of cells with immunohistochemical staining for alpha and beta estrogen receptors, and dopamine beta-hydroxylase were reduced as were alpha and beta estrogen receptor protein levels. These effects were prevented by estradiol treatment. Oxidative stress damage caused by chronic exposure to ozone does therefore impair olfactory perception and social recognition memory and may do so by reducing noradrenergic and estrogen receptor activity in the olfactory bulb. That these effects can be prevented by estradiol treatment suggests increased susceptibility to neurodegenerative disorders in aging women may be contributed to by reduced estrogen levels post-menopause.

  13. Dose-response effects of aerobic exercise on estrogen among women at high risk for breast cancer: a randomized controlled trial.

    PubMed

    Schmitz, Kathryn H; Williams, Nancy I; Kontos, Despina; Domchek, Susan; Morales, Knashawn H; Hwang, Wei-Ting; Grant, Lorita L; DiGiovanni, Laura; Salvatore, Domenick; Fenderson, Desire'; Schnall, Mitchell; Galantino, Mary Lou; Stopfer, Jill; Kurzer, Mindy S; Wu, Shandong; Adelman, Jessica; Brown, Justin C; Good, Jerene

    2015-11-01

    Medical and surgical interventions for elevated breast cancer risk (e.g., BRCA1/2 mutation, family history) focus on reducing estrogen exposure. Women at elevated risk may be interested in less aggressive approaches to risk reduction. For example, exercise might reduce estrogen, yet has fewer serious side effects and less negative impact than surgery or hormonal medications. Randomized controlled trial. Increased risk defined by risk prediction models or BRCA mutation status. Eligibility: Age 18-50, eumenorrheic, non-smokers, and body mass index (BMI) between 21 and 50 kg/m(2). 139 were randomized. Treadmill exercise: 150 or 300 min/week, five menstrual cycles. Control group maintained exercise <75 min/week. Area under curve (AUC) for urinary estrogen. Secondary measures: urinary progesterone, quantitative digitized breast dynamic contrast-enhanced magnetic resonance imaging background parenchymal enhancement. Mean age 34 years, mean BMI 26.8 kg/m(2). A linear dose-response relationship was observed such that every 100 min of exercise is associated with 3.6 % lower follicular phase estrogen AUC (linear trend test, p = 0.03). No changes in luteal phase estrogen or progesterone levels. There was also a dose-response effect noted: for every 100 min of exercise, there was a 9.7 % decrease in background parenchymal enhancement as measured by imaging (linear trend test, p = 0.009). Linear dose-response effect observed to reduce follicular phase estrogen exposure measured via urine and hormone sensitive breast tissue as measured by imaging. Future research should explore maintenance of effects and extent to which findings are repeatable in lower risk women. Given the high benefit to risk ratio, clinicians can inform young women at increased risk that exercise may blunt estrogen exposure while considering whether to try other preventive therapies.

  14. A novel approach to breast cancer prevention: reducing excessive ovarian androgen production in elderly women.

    PubMed

    Secreto, Giorgio; Sieri, Sabina; Agnoli, Claudia; Grioni, Sara; Muti, Paola; Zumoff, Barnett; Sant, Milena; Meneghini, Elisabetta; Krogh, Vittorio

    2016-08-01

    Minimizing endogenous estrogen production and activity in women at high risk for breast cancer is a prominent approach to prevention of the disease. A number of clinical trials have shown that the administration of selective-estrogen receptor modulators or aromatase inhibitors significantly reduces the incidence of breast cancer in healthy women. Unfortunately, these drugs often produce adverse effects on the quality of life and are, therefore, poorly accepted by many women, even those who are at high risk for breast cancer. We propose a novel alternative approach to decreasing estrogen production: suppression of ovarian synthesis of the androgen precursors of estrogens by administration of long-acting gonadotropin-releasing hormone analogs to women with ovarian stromal hyperplasia. The specific target population would be elderly postmenopausal women, at increased risk of breast cancer, and with high blood levels of testosterone, marker of ovarian hyperandrogenemia, and recognized factor of risk for breast cancer. Testosterone levels are measured at baseline to identify women at risk and during the follow-up to evaluate the effectiveness of therapy. The postmenopausal ovary is an important source of excessive androgen production which originates from the ovarian interstitial cell hyperplasia frequently present in breast cancer patients. We propose to counter the source of androgen excess in women with ovarian stromal hyperplasia, thus reducing the substrate for estrogen formation without completely inhibiting estrogen synthesis. Available evidence indicates that gonadotropin-releasing hormone analogs can be safely used for breast cancer prevention in postmenopausal women.

  15. Estrogenic and anti-estrogenic activity of off-the-shelf hair and skin care products.

    PubMed

    Myers, Sharon L; Yang, Chun Z; Bittner, George D; Witt, Kristine L; Tice, Raymond R; Baird, Donna D

    2015-05-01

    Use of personal care products is widespread in the United States but tends to be greater among African Americans than whites. Of special concern is the possible hazard of absorption of chemicals with estrogenic activity (EA) or anti-EA (AEA) in these products. Such exposure may have adverse health effects, especially when it occurs during developmental windows (e.g., prepubertally) when estrogen levels are low. We assessed the ethanol extracts of eight commonly used hair and skin products popular among African Americans for EA and AEA using a cell proliferation assay with the estrogen sensitive MCF-7:WS8 cell line derived from a human breast cancer. Four of the eight personal care products tested (Oil Hair Lotion, Extra-dry Skin Lotion, Intensive Skin Lotion, Petroleum Jelly) demonstrated detectable EA, whereas three (Placenta Hair Conditioner, Tea-Tree Hair Conditioner, Cocoa Butter Skin Cream) exhibited AEA. Our data indicate that hair and skin care products can have EA or AEA, and suggest that laboratory studies are warranted to investigate the in vivo activity of such products under chronic exposure conditions as well as epidemiologic studies to investigate potential adverse health effects that might be associated with use of such products.

  16. Src-JNK Potentiation of Estrogen Receptor AF-1; Mechanism, and Role in Estrogen Action in Breast Cancer

    DTIC Science & Technology

    2002-08-01

    an increase in estrogen receptor activity. A second objective is to understand the potential role of Src in estrogen induced mammary ductal development ...bPcis i on to The Ser-ilS-dependent link wt GR- t KaroBio AB, a Swedish pharmaceutical development company with CBP is in addition to the Ser-1l8...the ECL detection kit (Amersham Pharmacia Biotech ). phoresis, stained with Coomassic Blue to monitor expression, and sub- Fluorescence Microscopy

  17. BMI-1 Mediates Estrogen-Deficiency-Induced Bone Loss by Inhibiting Reactive Oxygen Species Accumulation and T Cell Activation.

    PubMed

    Li, Jinbo; Wang, Qian; Yang, Renlei; Zhang, Jiaqi; Li, Xing; Zhou, Xichao; Miao, Dengshun

    2017-05-01

    Previous studies have shown that estrogen regulates bone homeostasis through regulatory effects on oxidative stress. However, it is unclear how estrogen deficiency triggers reactive oxygen species (ROS) accumulation. Recent studies provide evidence that the B lymphoma Mo-MLV insertion region 1 (BMI-1) plays a critical role in protection against oxidative stress and that this gene is directly regulated by estrogen via estrogen receptor (ER) at the transcriptional level. In this study, ovariectomized mice were given drinking water with/without antioxidant N-acetyl-cysteine (NAC, 1 mg/mL) supplementation, and compared with each other and with sham mice. Results showed that ovariectomy resulted in bone loss with increased osteoclast surface, increased ROS levels, T cell activation, and increased TNF and RANKL levels in serum and in CD4 T cells; NAC supplementation largely prevented these alterations. BMI-1 expression levels were dramatically downregulated in CD4 T cells from ovariectomized mice. We supplemented drinking water to BMI-1-deficient mice with/without NAC and compared them with each other and with wild-type (WT) mice. We found that BMI-1 deficiency mimicked alterations observed in ovariectomy whereas NAC supplementation reversed all alterations induced by BMI-1 deficiency. Because T cells are critical in mediating ovariectomy-induced bone loss, we further assessed whether BMI-1 overexpression in lymphocytes can protect against estrogen deficiency-induced osteoclastogenesis and bone loss by inhibiting oxidative stress, T cell activation, and RANKL production. When WT and Eμ-BMI-1 transgenic mice with BMI-1 specifically overexpressed in lymphocytes were ovariectomized and compared with each other and with WT sham mice, we found that BMI-1 overexpression in lymphocytes clearly reversed all alterations induced by ovariectomy. Results from this study indicate that estrogen deficiency downregulates BMI-1 and subsequently increases ROS, T cell activation, and

  18. Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.

    PubMed

    Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei

    2016-08-05

    It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals. Copyright © 2016. Published by Elsevier B.V.

  19. Integrating Early Child Development and Violence Prevention Programs: A Systematic Review

    ERIC Educational Resources Information Center

    Efevbera, Yvette; McCoy, Dana C.; Wuermli, Alice J.; Betancourt, Theresa S.

    2018-01-01

    Limited evidence describes promoting development and reducing violence in low- and middle-income countries (LMICs), a missed opportunity to protect children and promote development and human capital. This study presents a systematic literature review of integrated early childhood development plus violence prevention (ECD+VP) interventions in…

  20. Severe malformations of eelpout (Zoarces viviparus) fry are induced by maternal estrogenic exposure during early embryogenesis.

    PubMed

    Morthorst, Jane E; Korsgaard, Bodil; Bjerregaard, Poul

    2016-02-01

    Pregnant eelpout were exposed via the water to known endocrine disrupting compounds (EDCs) to clarify if EDCs could be causing the increased eelpout fry malformation frequencies observed in coastal areas receiving high anthropogenic input. The presence of a teratogenic window for estrogen-induced malformations was also investigated by starting the exposure at different times during eelpout pregnancy. Both 17α-ethinylestradiol (EE2) (17.8 ng/L) and pyrene (0.5 μg/L) significantly increased fry malformation frequency whereas 4-t-octylphenol (4-t-OP) up to 14.3 μg/L did not. Vitellogenin was significantly induced by EE2 (5.7 and 17.8 ng/L) but not by 4-t-OP and pyrene. A critical period for estrogen-induced fry malformations was identified and closed between 14 and 22 days post fertilization (dpf). Exposure to 17β-estradiol (E2) between 0 and 14 dpf caused severe malformations and severity increased the closer exposure start was to fertilization, whereas malformations were absent by exposure starting later than 14 dpf. Data on ovarian fluid volume and larval length supported the suggested teratogenic window. Larval mortality also increased when exposure started right after fertilization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Breast Cancer Prevention

    MedlinePlus

    ... estrogen-only hormone therapy after hysterectomy, selective estrogen receptor modulators, or aromatase inhibitors and inactivators Estrogen-only ... who take estrogen after a hysterectomy. Selective estrogen receptor modulators Tamoxifen and raloxifene belong to the family ...

  2. Role of Estrogens in the Regulation of Liver Lipid Metabolism.

    PubMed

    Palmisano, Brian T; Zhu, Lin; Stafford, John M

    2017-01-01

    Before menopause, women are protected from atherosclerotic heart disease associated with obesity relative to men. Sex hormones have been proposed as a mechanism that differentiates this risk. In this review, we discuss the literature around how the endogenous sex hormones and hormone treatment approaches after menopause regulate fatty acid, triglyceride, and cholesterol metabolism to influence cardiovascular risk.The important regulatory functions of estrogen signaling pathways with regard to lipid metabolism have been in part obscured by clinical trials with hormone treatment of women after menopause, due to different formulations, routes of delivery, and pairings with progestins. Oral hormone treatment with several estrogen preparations increases VLDL triglyceride production. Progestins oppose this effect by stimulating VLDL clearance in both humans and animals. Transdermal estradiol preparations do not increase VLDL production or serum triglycerides.Many aspects of sex differences in atherosclerotic heart disease risk are influenced by the distributed actions of estrogens in the muscle, adipose, and liver. In humans, 17β-estradiol (E2) is the predominant circulating estrogen and signals through estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G-protein-coupled estrogen receptor (GPER). Over 1000 human liver genes display a sex bias in their expression, and the top biological pathways are in lipid metabolism and genes related to cardiovascular disease. Many of these genes display variation depending on estrus cycling in the mouse. Future directions will likely rely on targeting estrogens to specific tissues or specific aspects of the signaling pathways in order to recapitulate the protective physiology of premenopause therapeutically after menopause.

  3. Rapid Actions of Xenoestrogens Disrupt Normal Estrogenic Signaling

    PubMed Central

    Watson, Cheryl S.; Hu, Guangzhen; Paulucci-Holthauzen, Adriana A.

    2014-01-01

    Some chemicals used in consumer products or manufacturing (eg. plastics, surfactants, pesticides, resins) have estrogenic activities; these xenoestrogens (XEs) chemically resemble physiological estrogens and are one of the major categories of synthesized compounds that disrupt endocrine actions. Potent rapid actions of XEs via nongenomic mechanisms contribute significantly to their disruptive effects on functional endpoints (eg. cell proliferation/death, transport, peptide release). Membrane-initiated hormonal signaling in our pituitary cell model is predominantly driven by mERα with mERβ and GPR30 participation. We visualized ERα on plasma membranes using many techniques in the past (impeded ligands, antibodies to ERα ) and now add observations of epitope proximity with other membrane signaling proteins. We have demonstrated a range of rapid signals/protein activations by XEs including: calcium channels, cAMP/PKA, MAPKs, G proteins, caspases, and transcription factors. XEs can cause disruptions of the oscillating temporal patterns of nongenomic signaling elicited by endogenous estrogens. Concentration effects of XEs are nonmonotonic (a trait shared with natural hormones), making it difficult to design efficient (single concentration) toxicology tests to monitor their harmful effects. A plastics monomer, Bisphenol A, modified by waste treatment (chlorination) and other processes causes dephosphorylation of extracellular-regulated kinases, in contrast to having no effects as it does in genomic signaling. Mixtures of XEs, commonly found in contaminated environments, disrupt the signaling actions of physiological estrogens even more severely than do single XEs. Understanding the features of XEs that drive these disruptive mechanisms will allow us to redesign useful chemicals that exclude estrogenic or anti-estrogenic activities. PMID:24269739

  4. Molecular imaging provides novel insights on estrogen receptor activity in mouse brain.

    PubMed

    Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana

    2008-01-01

    Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application stands as a candidate as an innovative methodology for the study and development of drugs targeting brain estrogen receptors.

  5. Molecular Imaging Provides Novel Insights on Estrogen Receptor Activity in Mouse Brain

    PubMed Central

    Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana

    2009-01-01

    Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application candidates as an innovative methodology for the study and development of drugs targeting brain estrogen receptors. PMID:19123998

  6. Estrogen Deficiency Promotes Cerebral Aneurysm Rupture by Upregulation of Th17 Cells and Interleukin-17A Which Downregulates E-Cadherin.

    PubMed

    Hoh, Brian L; Rojas, Kelley; Lin, Li; Fazal, Hanain Z; Hourani, Siham; Nowicki, Kamil W; Schneider, Matheus B; Hosaka, Koji

    2018-04-13

    Estrogen deficiency is associated with the development of cerebral aneurysms; however, the mechanism remains unknown. We explored the pathway of cerebral aneurysm development by investigating the potential link between estrogen deficiency and inflammatory factors. First, we established the role of interleukin-17 (IL-17)A. We performed a cytokine screen demonstrating that IL-17A is significantly expressed in mouse and human aneurysms ( P =0.03). Likewise, IL-17A inhibition was shown to prevent aneurysm formation by 42% ( P =0.02) and rupture by 34% ( P <0.05). Second, we found that estrogen deficiency upregulates T helper 17 cells and IL-17A and promotes aneurysm rupture. Estrogen-deficient mice had more ruptures than control mice (47% versus 7%; P =0.04). Estradiol supplementation or IL-17A inhibition decreased the number of ruptures in estrogen-deficient mice (estradiol 6% versus 37%; P =0.04; IL-17A inhibition 18% versus 47%; P =0.018). Third, we found that IL-17A-blockade protects against aneurysm formation and rupture by increased E-cadherin expression. IL-17-inhibited mice had increased E-cadherin expression ( P =0.003). E-cadherin inhibition reversed the protective effect of IL-17A inhibition and increased the rate of aneurysm formation (65% versus 28%; P =0.04) and rupture (12% versus 0%; P =0.22). However, E-cadherin inhibition alone does not significantly increase aneurysm formation in normal mice or in estrogen-deficient mice. In cell migration assays, E-cadherin inhibition promoted macrophage infiltration across endothelial cells ( P <0.05), which may be the mechanism for the estrogen deficiency/IL-17/E-cadherin aneurysm pathway. Our data suggest that estrogen deficiency promotes cerebral aneurysm rupture by upregulating IL-17A, which downregulates E-cadherin, encouraging macrophage infiltration in the aneurysm vessel wall. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  7. Estrogen-related receptor alpha is critical for the growth of estrogen receptor-negative breast cancer

    PubMed Central

    Stein, Rebecca A.; Chang, Ching-yi; Kazmin, Dmitri A.; Way, James; Schroeder, Thies; Wergin, Melanie; Dewhirst, Mark W.; McDonnell, Donald P.

    2009-01-01

    Expression of estrogen-related receptor alpha (ERRα) has recently been shown to carry negative prognostic significance in breast and ovarian cancers. The specific role of this orphan nuclear receptor in tumor growth and progression, however, is yet to be fully understood. The significant homology between estrogen receptor alpha (ERα) and ERRα initially suggested that these receptors may have similar transcriptional targets. Using the well-characterized ERα-positive MCF-7 breast cancer cell line, we sought to gain a genome-wide picture of ERα-ERRα cross-talk using an unbiased microarray approach. In addition to generating a host of novel ERRα target genes, this study yielded the surprising result that most ERRα-regulated genes are unrelated to estrogen-signaling. The relatively small number of genes regulated by both ERα and ERRα led us to expand our study to the more aggressive and less clinically treatable ERα-negative class of breast cancers. In this setting we found that ERRα expression is required for the basal level of expression of many known and novel ERRα target genes. Introduction of an siRNA directed to ERRα into the highly aggressive breast carcinoma MDA-MB-231 cell line dramatically reduced the migratory potential of these cells. Although stable knockdown of ERRα expression in MDA-MB-231 cells had no impact on in vitro cell proliferation, a significant reduction of tumor growth rate was observed when these cells were implanted as xenografts. Our results confirm a role for ERRα in breast cancer growth and highlight it as a potential therapeutic target for estrogen receptor-negative breast cancer. PMID:18974123

  8. Effectiveness of a community-based program for suicide prevention among elders with early-stage dementia: A controlled observational study.

    PubMed

    Kim, Jong-Pill; Yang, Jinhyang

    The purpose of this study was to develop a small-group-focused suicide prevention program for elders with early-stage dementia and to assess its effects. This was a quasi-experimental study with a control group pretest-posttest design. A total of 62 elders diagnosed with early-stage dementia who were receiving care services at nine daycare centers in J City Korea participated in this study. The experimental group participated in the suicide prevention program twice a week for 5 weeks with a pretest and two posttests The developed suicide prevention program had a significant effect on the perceived health status, social support, depression, and suicidal ideation of elders with early-stage dementia. Nurses should integrate risk factors such as depression and protective factors such as health status and social support into a suicide prevention program. This community-based program in geriatric nursing practice can be effective in preventing suicide among elders with early-stage dementia. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Insights from the Study of Animals Lacking Functional Estrogen Receptor

    NASA Astrophysics Data System (ADS)

    Korach, Kenneth S.

    1994-12-01

    Estrogen hormones produce physiological actions within a variety of target sites in the body and during development by activating a specific receptor protein. Hormone responsiveness for the estrogen receptor protein was investigated at different stages of development with the use of gene knockout techniques because no natural genetic mutants have been described. A mutant mouse line without a functional estrogen receptor was created and is being used to assess estrogen responsiveness. Both sexes of these mutant animals are infertile and show a variety of phenotypic changes, some of which are associated with the gonads, mammary glands, reproductive tracts, and skeletal tissues.

  10. Estetrol, a Fetal Selective Estrogen Receptor Modulator, Acts on the Vagina of Mice through Nuclear Estrogen Receptor α Activation.

    PubMed

    Benoit, Thibaut; Valera, Marie-Cecile; Fontaine, Coralie; Buscato, Melissa; Lenfant, Francoise; Raymond-Letron, Isabelle; Tremollieres, Florence; Soulie, Michel; Foidart, Jean-Michel; Game, Xavier; Arnal, Jean-Francois

    2017-11-01

    The genitourinary syndrome of menopause has a negative impact on quality of life of postmenopausal women. The treatment of vulvovaginal atrophy includes administration of estrogens. However, oral estrogen treatment is controversial because of its potential risks on venous thrombosis and breast cancer. Estetrol (E4) is a natural estrogen synthesized exclusively during pregnancy by the human fetal liver and initially considered as a weak estrogen. However, E4 was recently evaluated in phase 1 to 2 clinical studies and found to act as an oral contraceptive in combination with a progestin, without increasing the level of coagulation factors. We recently showed that E4 stimulates uterine epithelial proliferation through nuclear estrogen receptor (ER) α, but failed to elicit endothelial responses. Herein, we first evaluated the morphological and functional impacts of E4 on the vagina of ovariectomized mice, and we determined the molecular mechanism mediating these effects. Vaginal epithelial proliferation and lubrication after stimulation were found to increase after E4 chronic treatment. Using a combination of pharmacological and genetic approaches, we demonstrated that these E4 effects on the vagina are mediated by nuclear ERα activation. Altogether, we demonstrate that the selective activation of nuclear ERα is both necessary and sufficient to elicit functional and structural effects on the vagina, and therefore E4 appears promising as a therapeutic option to improve vulvovaginal atrophy. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Prevention of diseases after menopause.

    PubMed

    Lobo, R A; Davis, S R; De Villiers, T J; Gompel, A; Henderson, V W; Hodis, H N; Lumsden, M A; Mack, W J; Shapiro, S; Baber, R J

    2014-10-01

    Women may expect to spend more than a third of their lives after menopause. Beginning in the sixth decade, many chronic diseases will begin to emerge, which will affect both the quality and quantity of a woman's life. Thus, the onset of menopause heralds an opportunity for prevention strategies to improve the quality of life and enhance longevity. Obesity, metabolic syndrome and diabetes, cardiovascular disease, osteoporosis and osteoarthritis, cognitive decline, dementia and depression, and cancer are the major diseases of concern. Prevention strategies at menopause have to begin with screening and careful assessment for risk factors, which should also include molecular and genetic diagnostics, as these become available. Identification of certain risks will then allow directed therapy. Evidence-based prevention for the diseases noted above include lifestyle management, cessation of smoking, curtailing excessive alcohol consumption, a healthy diet and moderate exercise, as well as mentally stimulating activities. Although the most recent publications from the follow-up studies of the Women's Health Initiative do not recommend menopause hormonal therapy as a prevention strategy, these conclusions may not be fully valid for midlife women, on the basis of the existing data. For healthy women aged 50-59 years, estrogen therapy decreases coronary heart disease and all-cause mortality; this interpretation is entirely consistent with results from other randomized, controlled trials and observational studies. Thus. as part of a comprehensive strategy to prevent chronic disease after menopause, menopausal hormone therapy, particularly estrogen therapy may be considered as part of the armamentarium.

  12. Estrogen biology: new insights into GPER function and clinical opportunities.

    PubMed

    Prossnitz, Eric R; Barton, Matthias

    2014-05-25

    Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen's rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and the activity of clinically used drugs, such as SERMs and SERDs, in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    PubMed

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    PubMed Central

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  15. The penis: a new target and source of estrogen in male reproduction.

    PubMed

    Mowa, C N; Jesmin, S; Miyauchi, T

    2006-01-01

    In the past decade, interest and knowledge in the role of estrogen in male reproduction and fertility has gained significant momentum. More recently, the cellular distribution and activity of estrogen receptors (alpha and beta)(ER) and aromatase (estrogen synthesis) has been reported in the penis, making the penis the latest "frontier" in the study of estrogen in male reproduction. ER and aromatase are broadly and abundantly expressed in various penile compartments and cell types (erectile tissues, urethral epithelia, vascular and neuronal cells), suggesting the complexity and significance of the estrogen-ER system in penile events. Unraveling this complexity is important and will require utilization of the various resources that are now at our disposal including, animal models and human lacking or deficient in ER and aromatase and the use of advanced and sensitive techniques. Some of the obvious areas that require our attention include: 1) a comprehensive mapping of ER-alpha and -beta cellular expression in the different penile compartments and subpopulations of cells, 2) delineation of the specific roles of estrogen in the different subpopulations of cells, 3) establishing the relationship of the estrogen-ER system with the androgen-androgen receptor system, if any, and 4) characterizing the specific penile phenotypes in human and animals lacking or deficient in estrogen and ER. Some data generated thus far, although preliminary, appear to challenge the long held dogma that, overall, androgens have a regulatory monopoly of penile development and function.

  16. The Role of Hypothalamic Estrogen Receptors in Metabolic Regulation

    PubMed Central

    Frank, Aaron; Brown, Lynda M.; Clegg, Deborah J.

    2014-01-01

    Estrogens regulate key features of metabolism, including food intake, body weight, energy expenditure, insulin sensitivity, leptin sensitivity, and body fat distribution. There are two ”classical“ estrogen receptors (ERs): estrogen receptor alpha (ERS1) and estrogen receptor beta (ERS2). Human and murine data indicate ERS1 contributes to metabolic regulation more so than ESR2. For example, there are human inactivating mutations of ERS1 which recapitulate aspects of the metabolic syndrome in both men and women. Much of our understanding of the metabolic roles of ERS1 was initially uncovered in estrogen receptor α-null mice (ERS1−/−); these mice display aspects of the metabolic syndrome, including increased body weight, increased visceral fat deposition and dysregulated glucose intolerance. Recent data further implicate ERS1 in specific tissues and neuronal populations as being critical for regulating food intake, energy expenditure, body fat distribution and adipose tissue function. This review will focus predominantly on the role of hypothalamic ERs and their critical role in regulating all aspects of energy homeostasis and metabolism. PMID:24882636

  17. The role of hypothalamic estrogen receptors in metabolic regulation.

    PubMed

    Frank, Aaron; Brown, Lynda M; Clegg, Deborah J

    2014-10-01

    Estrogens regulate key features of metabolism, including food intake, body weight, energy expenditure, insulin sensitivity, leptin sensitivity, and body fat distribution. There are two 'classical' estrogen receptors (ERs): estrogen receptor alpha (ERS1) and estrogen receptor beta (ERS2). Human and murine data indicate ERS1 contributes to metabolic regulation more so than ESR2. For example, there are human inactivating mutations of ERS1 which recapitulate aspects of the metabolic syndrome in both men and women. Much of our understanding of the metabolic roles of ERS1 was initially uncovered in estrogen receptor α-null mice (ERS1(-/-)); these mice display aspects of the metabolic syndrome, including increased body weight, increased visceral fat deposition and dysregulated glucose intolerance. Recent data further implicate ERS1 in specific tissues and neuronal populations as being critical for regulating food intake, energy expenditure, body fat distribution and adipose tissue function. This review will focus predominantly on the role of hypothalamic ERs and their critical role in regulating all aspects of energy homeostasis and metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Androgens and estrogens in benign prostatic hyperplasia: past, present and future

    PubMed Central

    Nicholson, Tristan M.; Ricke, William A.

    2011-01-01

    Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms (LUTS) are common clinical problems in urology. While the precise molecular etiology remains unclear, sex steroids have been implicated in the development and maintenance of BPH. Sufficient data exists linking androgens and androgen receptor pathways to BPH and use of androgen reducing compounds, such as 5α-reductase inhibitors which block the conversion of testosterone into dihydrotestosterone, are a component of the standard of care for men with LUTS attributed to an enlarged prostate. However, BPH is a multifactorial disease and not all men respond well to currently available treatments, suggesting factors other than androgens are involved. Testosterone, the primary circulating androgen in men, can also be metabolized via CYP19/aromatase into the potent estrogen, estradiol-17β. The prostate is an estrogen target tissue and estrogens directly and indirectly affect growth and differentiation of prostate. The precise role of endogenous and exogenous estrogens in directly affecting prostate growth and differentiation in the context of BPH is an understudied area. Estrogens and selective estrogen receptor modulators (SERMs) have been shown to promote or inhibit prostate proliferation signifying potential roles in BPH. Recent research has demonstrated that estrogen receptor signaling pathways may be important in the development and maintenance of BPH and LUTS; however, new models are needed to genetically dissect estrogen regulated molecular mechanisms involved in BPH. More work is needed to identify estrogens and associated signaling pathways in BPH in order to target BPH with dietary and therapeutic SERMs. PMID:21620560

  19. Estrogen: The necessary evil for human health, and ways to tame it.

    PubMed

    Patel, Seema; Homaei, Ahmad; Raju, Akondi Butchi; Meher, Biswa Ranjan

    2018-06-01

    Estrogen is a pivotal enzyme for survival and health in both genders, though their quantum, tropism, tissue-specific distribution, and receptor affinity varies with different phases of life. Converted from androgen via aromatase enzyme, this hormone is indispensable to glucose homeostasis, immune robustness, bone health, cardiovascular health, fertility, and neural functions. However, estrogen is at the center of almost all human pathologies as well-infectious, autoimmune, metabolic to degenerative. Both hypo and hyper level of estrogen has been linked to chronic and acute diseases. While normal aging is supposed to lower its level, leading to tissue degeneration (bone, muscle, neural etc.), and metabolite imbalance (glucose, lipid etc.), the increment in inflammatory agents in day-to-day life are enhancing the estrogen (or estrogen mimic) level, fueling 'estrogen dominance'. The resultant excess estrogen is inducing an overexpression of estrogen receptors (ERα and ERβ), harming tissues, leading to autoimmune diseases, and neoplasms. The unprecedented escalation in the polycystic ovary syndrome, infertility, breast cancer, ovary cancer, and gynecomastia cases are indicating that this sensitive hormone is getting exacerbated. This critical review is an effort to analyze the dual, and opposing facets of estrogen, via understanding its crosstalk with other hormones, enzymes, metabolites, and drugs. Why estrogen level correction is no trivial task, and how it can be restored to normalcy by a disciplined lifestyle with wise dietary and selective chemical usage choices has been discussed. Overall, our current state of knowledge does not disclose the full picture of estrogen's pleiotropic importance. Hence, this review should be a resource for general public as well as researchers to work in that direction. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Estrogen Inhibits Dlk1/FA1 Production: A Potential Mechanism for Estrogen Effects on Bone Turnover

    PubMed Central

    Abdallah, B. M.; Bay-Jensen, A.; Srinivasan, B.; Tabassi, N. C.; Garnero, P.; Delaissé, J.; Khosla, S.; Kassem, M.

    2011-01-01

    We have recently identified Dlk1/FA1 (Delta-like 1/FA1) as a novel regulator of bone mass that functions to mediate bone loss, under estrogen deficiency, in mice. In this report, we investigated the effects of estrogen (E)-deficiency and E replacement on serum (s) levels of Dlk1/FA1 (s-Dlk1FA1) and its correlation with bone turnover markers. s-Dlk1/FA1 and bone turnover markers (s-CTx and s-osteocalcin), were measured in two cohorts: a group of pre- and postmenopausal women (n=100) and a group of postmenopausal women, where half had received estrogen replacement therapy (ERT) (n=166). s-Dlk1/FA1, and s-CTX were elevated in postmenopausal E-deficient compared to premenopausal E-replete women (both; P<0.001). s-Dlk1/FA1 was correlated with s-CTX (r=0.30, P<0.01). ERT, in postmenopausal women, decreased s-Dlk1/FA1, as well as s-CTX and s-osteoclacin (all; P<0.0001). Changes in s-Dlk1 were significantly correlated with those observed in s-CTx (r=0.18, P<0.05) and s-osteocalcin (r=0.28, P<0.001). In conclusion, s-Dlk1/FA1 is influenced by E-deficiency and is correlated with bone turnover. Increased levels of s-Dlk1/FA1 in post-menopausal women may be a mechanism mediating the effects estrogen deficiency on bone turnover. PMID:21681814

  1. Transport and fate of estrogenic hormones in slurry-treated soil monoliths.

    PubMed

    Laegdsmand, Mette; Andersen, Henrik; Jacobsen, Ole Hørbye; Halling-Sørensen, Bent

    2009-01-01

    The naturally occurring hormones, such as 17-beta-estradiol, 17-alpha-estradiol, and estrone, present in livestock manure may have detrimental environmental effects if released into surface waters. In areas where manure application is intensive, estrogens have been found in surface waters in concentrations known to affect the endocrine system of fish and amphibians. How the estrogens reach the surface waters is unclear. To investigate whether leaching through the soil profile plays a significant role, we conducted leaching experiments on intact soil cores. Lysimeter soil monoliths (60 cm in diameter and 100 cm long) were excavated from two sites in Denmark (one loamy and one sandy soil). The soil monoliths were treated with pig slurry containing estrogenic hormones and amended with an estrogen tracer (17-alpha-ethinylestradiol) and a conservative tracer (bromide). 17-alpha-ethinylestradiol is a synthetic analog of 17-beta-estradiol with sorption characteristics and molecular structure similar to those of the naturally occurring estrogens in slurry. The monoliths were exposed to a short-term irrigation event (12 h) followed by a long-term semi-field experiment (16 wk), during which leaching of natural estrogens and tracers was followed. Estrogens from slurry were transported to a depth of 1 m in loamy soil and sandy soil. The estrogen concentrations in the leachate were at a level known to affect the endocrine system of aquatic organisms.

  2. EARLY STABILIZING ALVEOLAR VENTILATION PREVENTS ARDS- A NOVEL TIMING-BASED VENTILATORY INTERVENTION TO AVERT LUNG INJURY

    PubMed Central

    Roy, Shreyas; Sadowitz, Benjamin; Andrews, Penny; Gatto, Louis; Marx, William; Ge, Lin; Wang, Guirong; Lin, Xin; Dean, David A.; Kuhn, Michael; Ghosh, Auyon; Satalin, Joshua; Snyder, Kathy; Vodovotz, Yoram; Nieman, Gary; Habashi, Nader

    2012-01-01

    Background Established ARDS is often refractory to treatment. Clinical trials have demonstrated modest treatment effects, and mortality remains high. Ventilator strategies must be developed to prevent ARDS. Hypothesis Early ventilatory intervention will block progression to ARDS if the ventilator mode: 1) maintains alveolar stability and 2) reduces pulmonary edema formation. Methods Yorkshire Pigs (38–45kg) were anaesthetized and subjected to "2-hit" Ischemia-Reperfusion and Peritoneal Sepsis. Following injury, animals were randomized into two groups: Early Preventative Ventilation (Airway Pressure Release Ventilation- APRV) vs. Non-Preventative Ventilation (NPV) and followed for 48hr. All animals received anesthesia, antibiotics, and fluid/vasopressor therapy per Surviving Sepsis Campaign. Ventilation parameters: 1) NPV Group - Tidal volume (Vt): 10cc/kg + PEEP- 5 cm/H2O volume-cycled mode, 2) APRV Group - Vt: 10–15 cc/kg; Phigh, Plow, Thigh, Tlow were titrated for optimal alveolar stability. Physiologic data and plasma were collected throughout the 48hr study period, followed by BAL and necropsy. Results APRV prevented development of ARDS (p<0.001 vs NPV) by PaO2/FiO2 ratio. Quantitative histological scoring showed APRV prevented lung tissue injury (p<0.001 vs. NPV). BALF showed APRV lowered total protein and IL-6, while preserving surfactant proteins A & B (p<0.05 vs. NPV). APRV significantly lowered lung water (p<0.001 vs. NPV). Plasma IL-6 concentrations were similar between groups. Conclusions Early preventative mechanical ventilation with APRV blocked ARDS development, preserved surfactant proteins, and reduced pulmonary inflammation and edema, despite systemic inflammation similar to NPV. These data suggest early preventative ventilation strategies stabilizing alveoli and reducing pulmonary edema can attenuate ARDS after ischemia-reperfusion-sepsis. PMID:22846945

  3. Prevention and early intervention for behaviour problems in children with developmental disabilities.

    PubMed

    Einfeld, Stewart L; Tonge, Bruce J; Clarke, Kristina S

    2013-05-01

    To review the recent evidence regarding early intervention and prevention studies for children with developmental disabilities and behaviour problems from 2011 to 2013. Recent advances in the field are discussed and important areas for future research are highlighted. Recent reviews and studies highlight the utility of antecedent interventions and skills training interventions for reducing behaviour problems. There is preliminary evidence for the effectiveness of parent training interventions when delivered in minimally sufficient formats or in clinical settings. Two recent studies have demonstrated the utility of behavioural interventions for children with genetic causes of disability. Various forms of behavioural and parent training interventions are effective at reducing the behaviour problems in children with developmental disabilities. However, research on prevention and early intervention continues to be relatively scarce. Further large-scale dissemination studies and effectiveness studies in clinical or applied settings are needed.

  4. INTRODUCTION OF THE VITELLOGENIN GENE IN EARLY LIFE STAGE FATHEAD MINNOWS AS AN EFFECTIVE EXPOSURE INDICATOR FOR ESTROGENIC COMPOUNDS

    EPA Science Inventory

    Vitellogenin (Vg) gene expression in adult male fathead minnows (FHM) has previously been used successfully to detect exposures to estrogenic compounds in aquatic systems; however, sample volume(s)required for >24h exposure durations and the logistics of sampling pose some limita...

  5. Effect of estrogens on skin aging and the potential role of SERMs

    PubMed Central

    Stevenson, Susan; Thornton, Julie

    2007-01-01

    In humans, structural and functional changes attributable to aging are more visibly evident in the skin than in any other organ. Estrogens have significant effects on skin physiology and modulate epidermal keratinocytes, dermal fibroblasts and melanocytes, in addition to skin appendages including the hair follicle and the sebaceous gland. Importantly, skin aging can be significantly delayed by the administration of estrogen. This paper reviews the effects of estrogens on skin and the mechanisms by which estrogens can alleviate the changes due to aging that occur in human skin. The relevance of estrogen replacement therapy (HRT) in post-menopausal women and the potential value of selective estrogen receptor modulators (SERMs) as a therapy for diminishing skin aging are also highlighted. PMID:18044179

  6. Induction of uterine adenocarcinoma in CD-1 mice by catechol estrogens.

    PubMed

    Newbold, R R; Liehr, J G

    2000-01-15

    Catechol estrogens may mediate estrogen-induced carcinogenesis because 4-hydroxyestradiol induces DNA damage and renal tumors in hamsters, and this metabolite is formed in the kidney and estrogen target tissues by a specific estrogen 4-hydroxylase. We examined the carcinogenic potential of catechol estrogen in an experimental model previously reported to result in a high incidence of uterine adenocarcinoma after neonatal exposure to diethylstilbestrol. Outbred female CD-1 mice were treated with 2- or 4-hydroxyestradiol, 17beta-estradiol, or 17alpha-ethinyl estradiol on days 1-5 of neonatal life (2 microg/pup/day) and sacrificed at 12 or 18 months of age. Mice treated with 17beta-estradiol or 17a-ethinyl estradiol had a total uterine tumor incidence of 7% or 43%, respectively. 2-Hydroxyestradiol induced tumors in 12% of the mice, but 4-hydroxyestradiol was the most carcinogenic estrogen, with a 66% incidence of uterine adenocarcinoma. Both 2- and 4-hydroxylated catechols were estrogenic and increased uterine wet weights in these neonates. These data demonstrate that both 2- and 4-hydroxyestradiol are carcinogenic metabolites. The high tumor incidence induced by 4-hydroxyestradiol supports the postulated role of this metabolite in hormone-associated cancers.

  7. Role of Estrogens in the Size of Neuronal Somata of Paravaginal Ganglia in Ovariectomized Rabbits

    PubMed Central

    Hernández-Aragón, Laura G.; García-Villamar, Verónica; Carrasco-Ruiz, María de los Ángeles; Nicolás-Toledo, Leticia; Ortega, Arturo; Cuevas-Romero, Estela; Martínez-Gómez, Margarita

    2017-01-01

    We aimed to determine the role of estrogens in modulating the size of neuronal somata of paravaginal ganglia. Rabbits were allocated into control (C), ovariectomized (OVX), and OVX treated with estradiol benzoate (OVX + EB) groups to evaluate the neuronal soma area; total serum estradiol (E2) and testosterone (T) levels; the percentage of immunoreactive (ir) neurons anti-aromatase, anti-estrogen receptor (ERα, ERβ) and anti-androgen receptor (AR); the intensity of the immunostaining anti-glial cell line-derived neurotrophic factor (GDNF) and the GDNF family receptor alpha type 1 (GFRα1); and the number of satellite glial cells (SGCs) per neuron. There was a decrease in the neuronal soma size for the OVX group, which was associated with low T, high percentages of aromatase-ir and neuritic AR-ir neurons, and a strong immunostaining anti-GDNF and anti-GFRα1. The decrease in the neuronal soma size was prevented by the EB treatment that increased the E2 without affecting the T levels. Moreover, there was a high percentage of neuritic AR-ir neurons, a strong GDNF immunostaining in the SGC, and an increase in the SGCs per neuron. Present findings show that estrogens modulate the soma size of neurons of the paravaginal ganglia, likely involving the participation of the SGC. PMID:28316975

  8. The effect of tamoxifen and raloxifene on estrogen metabolism and endometrial cancer risk.

    PubMed

    Williams-Brown, Marian Y; Salih, Sana M; Xu, Xia; Veenstra, Timothy D; Saeed, Muhammad; Theiler, Shaleen K; Diaz-Arrastia, Concepcion R; Salama, Salama A

    2011-09-01

    Selective estrogen receptor modulators (SERMs) demonstrate differential endometrial cancer (EC) risk. While tamoxifen (TAM) use increases the risk of endometrial hyperplasia and malignancy, raloxifene (RAL) has neutral effects on the uterus. How TAM increases the risk of EC and why TAM and RAL differentially modulate the risk for EC, however, remain elusive. Here, we tested the hypothesis that TAM increases the risk for EC, at least in part, by enhancing the local estrogen biosynthesis and directing estrogen metabolism towards the formation of genotoxic and hormonally active estrogen metabolites. In addition, the differential effects of TAM and RAL in EC risk are attributed to their differential effect on estrogen metabolism/metabolites. The endometrial cancer cell line (Ishikawa cells) and the nonmalignant immortalized human endometrial glandular cell line (EM1) were used for the study. The profile of estrogen/estrogen metabolites (EM), depurinating estrogen-DNA adducts, and the expression of estrogen-metabolizing enzymes in cells treated with 17β-estradiol (E2) alone or in combination with TAM or RAL were investigated using high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS(2)), ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), and Western blot analysis, respectively. TAM significantly increased the total EM and enhanced the formation of hormonally active and carcinogenic estrogen metabolites, 4-hydroxestrone (4-OHE1) and 16α-hydroxyestrone, with concomitant reduction in the formation of antiestrogenic and anticarcinogenic 2-hydroxyestradiol and 2-methoxyestradiol. Furthermore, TAM increased the formation of depurinating estrogen-DNA adducts 4-OHE1 [2]-1-N7Guanine and 4-OHE1 [2]-1-N3 Adenine. TAM-induced alteration in EM and depurinating DNA adduct formation is associated with altered expression of estrogen metabolizing enzymes CYP1A1, CYP1B1, COMT, NQO1, and SF-1 as revealed by

  9. Expression of the IGF and the aromatase/estrogen receptor systems in human adrenal tissues from early infancy to late puberty: implications for the development of adrenarche.

    PubMed

    Belgorosky, Alicia; Baquedano, María Sonia; Guercio, Gabriela; Rivarola, Marco A

    2009-03-01

    Adrenarche is a process of postnatal sexual maturation occurring in higher primates, in which there is an increase in the secretion of adrenal androgens. It is the consequence of a process of postnatal organogenesis characterized by the development of a new zone in the adrenal cortex, the zona reticularis (ZR). The mechanism of this phenomenon remains poorly understood, suggesting that it might be a multifactorial event. A relationship between circulating IGF-I, insulin sensitivity, and adrenal androgens has been postulated. Boys and girls have different patterns of changes in insulin sensitivity at puberty, perhaps secondary to differences in the estrogen milieu. Estrogen effects may also play a role in premature adrenarche. Peripheral or local IGF-1 actions could regulate adrenal progenitor cell proliferation and migration. Since adrenal progenitor cells as well as IGF-I and the IGF-R1 are located in the outer zone of the adrenal cortex during childhood and adolescence, this peripheral cell layer, below the capsule, may contain undifferentiated progenitor cells. Therefore, the IGF-R1 signaling pathway might positively modulate the proliferation and migration of adrenal progenitor cell to stimulate the development of adrenal zones, including ZR. However, no evidence of a direct action of IGF-I on ZR was found. In addition, a role for estrogens in the ontogenesis of ZR is suggested by the presence of aromatase (CYP19) in the subcapsular zona glomerulosa and in the adrenal medulla. Estrogens produced locally could act on ZR by interacting with estrogen receptor beta (ERbeta), but not alpha, and membrane estrogen receptor GPR-30. An estradiol-induced increase in DHEA/cortisol ratio was indeed seen in cultures of adrenocortical cells from post-adrenarche adrenals. In summary, several lines of evidence point to the action of multiple factors, such as local adrenal maturational changes and peripheral metabolic signals, on postnatal human adrenal gland ZR formation.

  10. Identifying the Tautomeric Form of a Deoxyguanosine-Estrogen Quinone Intermediate.

    PubMed

    Stack, Douglas E

    2015-09-10

    Mechanistic insights into the reaction of an estrogen o-quinone with deoxyguanosine has been further investigated using high level density functional calculations in addition to the use of 4-hyroxycatecholestrone (4-OHE₁) regioselectivity labeled with deuterium at the C1-position. Calculations using the M06-2X functional with large basis sets indicate the tautomeric form of an estrogen-DNA adduct present when glycosidic bonds cleavage occurs is comprised of an aromatic A ring structure. This tautomeric form was further verified by use of deuterium labelling of the catechol precursor use to form the estrogen o-quinone. Regioselective deuterium labelling at the C1-position of the estrogen A ring allows discrimination between two tautomeric forms of a reaction intermediate either of which could be present during glycosidic bond cleavage. HPLC-MS analysis indicates a reactive intermediate with a m/z of 552.22 consistent with a tautomeric form containing no deuterium. This intermediate is consistent with a reaction mechanism that involves: (1) proton assisted Michael addition; (2) re-aromatization of the estrogen A ring; and (3) glycosidic bond cleavage to form the known estrogen-DNA adduct, 4-OHE₁-1-N7Gua.

  11. Early administration of trimetazidine may prevent or ameliorate diabetic cardiomyopathy.

    PubMed

    Wenmeng, Wang; Qizhu, Tang

    2011-02-01

    Diabetic cardiomyopathy is a type of cardiac dysfunction resulting from diabetes, independent of vascular or valvular pathology. It clinically manifests initially as asymptomatic diastolic dysfunction and then progresses to symptomatic heart failure. Two major contributors to the development of diabetic cardiomyopathy, which are unique to diabetes, are hyperglycemia and diabetes-related alterations in myocardial metabolism. Diabetes mellitus is characterized by reduced glucose and lactate metabolism and enhanced fatty acid metabolism, which are the early consequences of the disease. Studies on the effect of intensive glucose control on heart failure events in patients with diabetes have been conducted with neutral results. However, no study on the effect of metabolic modulators on the prevention of heart failure has been reported. Trimetazidine, a 3-ketoacyl coenzyme A thiolase (3-KAT) inhibitor, shifts cardiac energy metabolism from free fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-KAT, and is used clinically as an effective antianginal agent. Studies have shown that trimetazidine improves heart function in patients with idiopathic cardiomyopathy and in diabetic patients with cardiac ischemia or heart failure. In addition to being effective, trimetazidine has only mild side effects. Therefore, instead of routine administration of trimetazidine for the treatment of diabetic cardiomyopathy, we hypothesize that the early application of trimetazidine may prevent or ameliorate diabetic cardiomyopathy. In addition to life style modifications, ACEI, ARB, and beta-blockers, which have been recommended in the past, trimetazidine should be administered to those patients with impaired glucose tolerance or patients in the early course of diabetes. In this way, we may reduce the prevalence of heart failure and improve the long-term survival of patients with diabetes through early normalization of the myocardial substrate metabolism

  12. Experimental study on the estrogen-like effect of boric Acid.

    PubMed

    Wang, Yadong; Zhao, Yingzheng; Chen, Xiaoyu

    2008-02-01

    There are now considerable evidences that boric acid has reproductive and developmental toxicity, but it is uncertain whether such toxicity is caused by estrogen-like effect. Our objective is to determine the estrogen-like effect of boric acid. Proliferation assay of MCF-7 human breast cancer cells, uterotrophic assay, measure assay of the estradiol (E2), proliferation assay of mucous membrane cells, and assay of estrogen receptor were conducted in this study. Boric acid could increase the weight of uterus of ovariectomized SD rats and the height of epithelium cells of mucous membrane, enhance the expression of the proliferating cell nucleus antigen, and reduce the density of estrogen receptors. However, boric acid could not affect the level of estradiol in serum and stimulate the proliferation of MCF-7 human breast cancer cells. In this study, boric acid exhibited the estrogen-like effect in vivo.

  13. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System

    PubMed Central

    Menazza, Sara; Murphy, Elizabeth

    2016-01-01

    Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to two nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue specific co-activators and co-repressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as GPER to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long term effects. The kinase signaling pathways can also mediate transcriptional changes, and can synergize with the estrogen receptor to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER-membrane signaling mechanisms. PMID:26838792

  14. Preventive intervention for anxious preschoolers and their parents: strengthening early emotional development.

    PubMed

    Fox, Jeremy K; Masia Warner, Carrie; Lerner, Amy B; Ludwig, Kristy; Ryan, Julie L; Colognori, Daniela; Lucas, Christopher P; Brotman, Laurie Miller

    2012-08-01

    The high prevalence and early onset of anxiety disorders have inspired innovative prevention efforts targeting young at-risk children. With parent-child prevention models showing success for older children and adolescents, the goal of this study was to evaluate a parent-child indicated preventive intervention for preschoolers with mild to moderate anxiety symptoms. Sixteen children (ages 3-5) and at least one of their parents participated in Strengthening Early Emotional Development (SEED), a new 10-week intervention with concurrent groups for parents and children. Outcome measures included clinician-rated and parent-rated assessments of anxiety symptoms, as well as measures of emotion knowledge, parent anxiety, and parental attitudes about children's anxiety. Participation in SEED was associated with reduced child anxiety symptoms and improved emotion understanding skills. Parents reported decreases in their own anxiety, along with attitudes reflecting enhanced confidence in their children's ability to cope with anxiety. Reductions in child and parent anxiety were maintained at 3-month follow-up. Findings suggest that a parent-child cognitive-behavioral preventive intervention may hold promise for young children with mild to moderate anxiety. Improvements in parent anxiety and parental attitudes may support the utility of intervening with parents. Fostering increased willingness to encourage their children to engage in new and anxiety-provoking situations may help promote continued mastery of new skills and successful coping with anxiety.

  15. Preventive Intervention for Anxious Preschoolers and Their Parents: Strengthening Early Emotional Development

    PubMed Central

    Fox, Jeremy K.; Lerner, Amy B.; Ludwig, Kristy; Ryan, Julie L.; Colognori, Daniela; Lucas, Christopher P.; Brotman, Laurie Miller

    2013-01-01

    The high prevalence and early onset of anxiety disorders have inspired innovative prevention efforts targeting young at-risk children. With parent–child prevention models showing success for older children and adolescents, the goal of this study was to evaluate a parent–child indicated preventive intervention for preschoolers with mild to moderate anxiety symptoms. Sixteen children (ages 3–5) and at least one of their parents participated in Strengthening Early Emotional Development (SEED), a new 10-week intervention with concurrent groups for parents and children. Outcome measures included clinician-rated and parent-rated assessments of anxiety symptoms, as well as measures of emotion knowledge, parent anxiety, and parental attitudes about children’s anxiety. Participation in SEED was associated with reduced child anxiety symptoms and improved emotion understanding skills. Parents reported decreases in their own anxiety, along with attitudes reflecting enhanced confidence in their children’s ability to cope with anxiety. Reductions in child and parent anxiety were maintained at 3-month follow-up. Findings suggest that a parent–child cognitive-behavioral preventive intervention may hold promise for young children with mild to moderate anxiety. Improvements in parent anxiety and parental attitudes may support the utility of intervening with parents. Fostering increased willingness to encourage their children to engage in new and anxiety-provoking situations may help promote continued mastery of new skills and successful coping with anxiety. PMID:22331442

  16. Estrogenic modulation of inflammation-related genes in male rats following volume overload

    PubMed Central

    McLarty, Jennifer L.; Meléndez, Giselle C.; Levick, Scott P.; Bennett, Shanté; Sabo-Attwood, Tara; Brower, Gregory L.

    2012-01-01

    Our laboratory has previously reported significant increases of the proinflammatory cytokine TNF-α in male hearts secondary to sustained volume overload. These elevated levels of TNF-α are accompanied by left ventricular (LV) dilatation and cardiac dysfunction. In contrast, estrogen has been shown to protect against this adverse cardiac remodeling in both female and male rats. The purpose of this study was to determine whether estrogen has an effect on inflammation-related genes that contribute to this estrogen-mediated cardioprotection. Myocardial volume overload was induced by aortocaval fistula in 8 wk old male Sprague-Dawley rats (n = 30), and genes of interest were identified using an inflammatory PCR array in Sham, Fistula, and Fistula + Estrogen-treated (0.02 mg/kg per day beginning 2 wk prior to fistula) groups. A total of 55 inflammatory genes were modified (≥2-fold change) at 3 days postfistula. The number of inflammatory gene was reduced to 21 genes by estrogen treatment, whereas 13 genes were comparably modulated in both fistula groups. The most notable were TNF-α, which was downregulated by estrogen, and the TNF-α receptors, which were differentially regulated by estrogen. Specific genes related to arachidonic acid metabolism were downregulated by estrogen, including cyclooxygenase-1 and -2. Finally, gene expression for the β1-integrin cell adhesion subunit was significantly upregulated in the LV of estrogen-treated animals. Protein levels reflected the changes observed at the gene level. These data suggest that estrogen provides its cardioprotective effects, at least in part, via genomic modulation of numerous inflammation-related genes. PMID:22274565

  17. Effect of protracted estrogen administration on the thyroid of Ames dwarf mice.

    PubMed

    Vidal, S; Cameselle-Teijeiro, J; Horvath, E; Kovacs, K; Bartke, A

    2001-04-01

    The effect of protracted estrogen administration on estrogen receptor expression and cellular composition of the thyroid was examined in genetically thyrotropin (TSH)-deficient female Ames dwarf mice (df/df) to reveal whether estrogen might act independently from TSH. inducing changes in thyroid morphology and function. To evaluate such changes, the thyroid from four estrogen-implanted Ames dwarf mice, four sham-implanted Ames dwarf mice and four sham-implanted normal littermate mice were investigated histologically, immunohistochemically and morphometrically. Our morphologic study demonstrated significant differences in the colloid areas of normal and dwarf mice (P<0.001). The correlation observed between this parameter and body weights (r=0.610, P<0.05) and thyroid weights (r=0.729, P<0.01) suggests that the decrease in the colloid areas is not a result of abnormal folliculogenesis but is in direct correlation with the small thyroid and body size of dwarf mice. Although two types of estrogen receptors are known to exist in the present study, only the alpha (ERalpha) variant was found in the thyroid. ERalpha immunoreactivity was detected in the nuclei of parafollicular cells but not of the follicular epithelium. No significant differences were reported in ER expression between estrogen-implanted dwarf mice and sham-implanted dwarf mice, suggesting that estrogen receptor expression in the thyroid is independent of circulating estrogen levels. In spite of the absence of ERalpha in follicular cells, protracted estrogen administration affected mainly the follicular cells. Our results suggest that when TSH is absent estrogens may exert a negative feedback on the activity of follicular cells.

  18. Intravenous calcitriol therapy in an early stage prevents parathyroid gland growth

    PubMed Central

    Taniguchi, Masatomo; Tokumoto, Masanori; Tsuruya, Kazuhiko; Hirakata, Hideki; Iida, Mitsuo

    2008-01-01

    Background. Both the phenotypic alterations of parathyroid (PT) cells, e.g. down-regulation of the calcium-sensing receptor, and the increase of the PT cell number in nodular hyperplasia are the main causes of refractory secondary hyperparathyroidism. It is of great importance to prevent PT growth in an early stage. Methods. To examine a more effective method of calcitriol therapy for the prevention of PT hyperplasia, we randomized haemodialysis patients with mild hyperparathyroidism to receive either daily orally administered calcitriol (n = 33) or intravenous calcitriol (n = 27) over a 12-month study period. Calcitriol was modulated so as to keep the serum intact PTH level between 100 and 150 pg/ml. Results. Both groups showed similar reductions of the serum PTH level and similar increases in serum calcium. In both groups, there were no significant changes in the serum phosphate level. Long-term daily oral calcitriol therapy failed to prevent the increase of both maximum PT volume and total volume, as assessed by ultrasonography; however, intravenous calcitriol therapy successfully suppressed this progression. In the daily, oral group, both the bone-specific alkaline phosphatase (BAP) and the N-telopeptide cross-linked of type I collagen (NTX) significantly decreased, which was probably due to the PTH suppression. However, these bone metabolism markers remained stable in the intravenous group. The total dosage of calcitriol during the study was comparable in both groups. Conclusions. These data indicate that intravenous calcitriol therapy in an early stage of secondary hyperparathyroidism is necessary to prevent PT growth and to keep a good condition of bone metabolism. PMID:18515308

  19. The selective estrogen enzyme modulators in breast cancer: a review.

    PubMed

    Pasqualini, Jorge R

    2004-06-07

    It is well established that increased exposure to estradiol (E(2)) is an important risk factor for the genesis and evolution of breast tumors, most of which (approximately 95-97%) in their early stage are estrogen-sensitive. However, two thirds of breast cancers occur during the postmenopausal period when the ovaries have ceased to be functional. Despite the low levels of circulating estrogens, the tissular concentrations of these hormones are significantly higher than those found in the plasma or in the area of the breast considered as normal tissue, suggesting a specific tumoral biosynthesis and accumulation of these hormones. Several factors could be implicated in this process, including higher uptake of steroids from plasma and local formation of the potent E(2) by the breast cancer tissue itself. This information extends the concept of 'intracrinology' where a hormone can have its biological response in the same organ where it is produced. There is substantial information that mammary cancer tissue contains all the enzymes responsible for the local biosynthesis of E(2) from circulating precursors. Two principal pathways are implicated in the last steps of E(2) formation in breast cancer tissues: the 'aromatase pathway' which transforms androgens into estrogens, and the 'sulfatase pathway' which converts estrone sulfate (E(1)S) into E(1) by the estrone-sulfatase. The final step of steroidogenesis is the conversion of the weak E(1) to the potent biologically active E(2) by the action of a reductive 17beta-hydroxysteroid dehydrogenase type 1 activity (17beta-HSD-1). Quantitative evaluation indicates that in human breast tumor E(1)S 'via sulfatase' is a much more likely precursor for E(2) than is androgens 'via aromatase'. Human breast cancer tissue contains all the enzymes (estrone sulfatase, 17beta-hydroxysteroid dehydrogenase, aromatase) involved in the last steps of E(2) biosynthesis. This tissue also contains sulfotransferase for the formation of the

  20. Association of environmental chemicals & estrogen metabolites in children.

    PubMed

    Ihde, Erin Speiser; Loh, Ji Meng; Rosen, Lawrence

    2015-12-17

    The prevalence of pediatric hormonal disorders and hormonally-sensitive cancers are rising. Chemicals including bisphenol A (BPA), phthalates, parabens, 4-nonylphenol (4NP) and triclosan have been linked to disruption of endocrine pathways and altered hormonal status in both animal and human studies. Additionally, changes in estrogen metabolism have been associated with pediatric endocrine disorders and linked to estrogen-dependent cancers. The main objective of the study was to measure the presence of these environmental chemicals in prepubescent children and assess the relationship between chemical metabolites and estrogen metabolism. 50 subjects (25 male, 25 female) were recruited from the principal investigator's existing patient population at his pediatric primary care office. The first 5 boys and 5 girls in each age group (4 through 8 years old inclusive) who presented for annual examinations were included, as long as they were Tanner Stage I (prepubertal) on physical exam, without diagnosis of hormonally-related condition and/or cancer and able to give a urine sample. Urine samples were collected in glass containers for analysis of chemical and estrogen metabolites. Study kits and lab analysis were provided by Genova Diagnostics (Duluth, GA). Summary statistics for the concentrations of each chemical metabolite as well as estrogen metabolites were computed (minimum, maximum, median and inter-quartile range) for males only, for females only and for all subjects. Comparisons between groups (e.g. males v. females) were assessed using the nonparametric Wilcoxon test, since the data was skewed. The correlation between concentrations of chemical metabolites and estrogen metabolites in prepubescent children were examined by the Spearman's correlation coefficient (ρ). 100 % of subjects had detectable levels of at least five chemicals [corrected] in their urine, and 74 % had detectable levels of eight or more chemicals. 28 % of subjects had measurable levels of 4NP

  1. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass.

    PubMed

    Farman, H H; Windahl, S H; Westberg, L; Isaksson, H; Egecioglu, E; Schele, E; Ryberg, H; Jansson, J O; Tuukkanen, J; Koskela, A; Xie, S K; Hahner, L; Zehr, J; Clegg, D J; Lagerquist, M K; Ohlsson, C

    2016-08-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα(-/-)). Female POMC-ERα(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice.

  2. Extent of Vascular Remodeling Is Dependent on the Balance Between Estrogen Receptor α and G-Protein-Coupled Estrogen Receptor.

    PubMed

    Gros, Robert; Hussain, Yasin; Chorazyczewski, Jozef; Pickering, J Geoffrey; Ding, Qingming; Feldman, Ross D

    2016-11-01

    Estrogens are important regulators of cardiovascular function. Some of estrogen's cardiovascular effects are mediated by a G-protein-coupled receptor mechanism, namely, G-protein-coupled estrogen receptor (GPER). Estradiol-mediated regulation of vascular cell programmed cell death reflects the balance of the opposing actions of GPER versus estrogen receptor α (ERα). However, the significance of these opposing actions on the regulation of vascular smooth muscle cell proliferation or migration in vitro is unclear, and the significance in vivo is unknown. To determine the effects of GPER activation in vitro, we studied rat aortic vascular smooth muscle cells maintained in primary culture. GPER was reintroduced using adenoviral gene transfer. Both estradiol and G1, a GPER agonist, inhibited both proliferation and cell migration effects that were blocked by the GPER antagonist, G15. To determine the importance of the GPER-ERα balance in regulating vascular remodeling in a rat model of carotid ligation, we studied the effects of upregulation of GPER expression versus downregulation of ERα. Reintroduction of GPER significantly attenuated the extent of medial hypertrophy and attenuated the extent of CD45 labeling. Downregulation of ERα expression comparably attenuated the extent of medial hypertrophy and inflammation after carotid ligation. These studies demonstrate that the balance between GPER and ERα regulates vascular remodeling. Receptor-specific modulation of estrogen's effects may be an important new approach in modifying vascular remodeling in both acute settings like vascular injury and perhaps in longer term regulation like in hypertension. © 2016 American Heart Association, Inc.

  3. Estrogenic and anti-estrogenic activity of off-the-shelf hair and skin care products

    PubMed Central

    Myers, Sharon L.; Yang, Chun Z.; Bittner, George D.; Witt, Kristine L.; Tice, Raymond R.; Baird, Donna D.

    2014-01-01

    Use of personal care products is widespread in the United States but tends to be greater among African Americans than whites. Of special concern is the possible hazard of absorption of chemicals with estrogenic activity (EA) or anti-EA (AEA) in these products. Such exposure may have adverse health effects, especially when it occurs during developmental windows (e.g., prepubertally) when estrogen levels are low. We assessed the ethanol extracts of eight commonly used hair and skin products popular among African Americans for EA and AEA using a cell proliferation assay with the estrogen sensitive MCF-7:WS8 cell line derived from a human breast cancer. Four of the eight personal care products tested (Oil Hair Lotion, Extra-dry Skin Lotion, Intensive Skin Lotion, Petroleum Jelly) demonstrated detectable EA, whereas three (Placenta Hair Conditioner, Tea-Tree Hair Conditioner, Cocoa Butter Skin Cream) exhibited AEA. Our data indicate that hair and skin care products can have EA or AEA, and suggest that laboratory studies are warranted to investigate the in vivo activity of such products under chronic exposure conditions as well as epidemiologic studies to investigate potential adverse health effects that might be associated with use of such products. PMID:24849798

  4. Analytical techniques for steroid estrogens in water samples - A review.

    PubMed

    Fang, Ting Yien; Praveena, Sarva Mangala; deBurbure, Claire; Aris, Ahmad Zaharin; Ismail, Sharifah Norkhadijah Syed; Rasdi, Irniza

    2016-12-01

    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Synthetic estrogen derivatives demonstrate the functionality of intracellular GPR30.

    PubMed

    Revankar, Chetana M; Mitchell, Hugh D; Field, Angela S; Burai, Ritwik; Corona, Cesear; Ramesh, Chinnasamy; Sklar, Larry A; Arterburn, Jeffrey B; Prossnitz, Eric R

    2007-08-17

    Estrogen mediates its effects through multiple cellular receptors. In addition to the classical nuclear estrogen receptors (ERalpha and ERbeta), estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPCR) GPR30. Although estrogen is a cell-permeable ligand, it is often assumed that all GPCRs function solely as cell surface receptors. Our previous results showed that GPR30 appeared to be expressed predominantly in the endoplasmic reticulum. A critical question that arises is whether this localization represents the site of functional receptor. To address this question, we synthesized a collection of cell-permeable and cell-impermeable estrogen derivatives. We hypothesized that if functional GPR30 were expressed at the cell surface, both permeable and impermeable derivatives would show activity. However, if functional GPR30 were predominantly intracellular, like ERalpha, only the permeable ligands should show activity. Cell permeability was assessed using cells expressing ERalpha as a model intracellular estrogen-binding receptor. Our results reveal that despite exhibiting similar binding affinities for GPR30, only the cell-permeable ligands are capable of stimulating rapid calcium mobilization and phosphoinositide 3-kinase (PI3K) activation. We conclude that GPR30 expressed intracellularly is capable of initiating cellular signaling and that there is insufficient GPR30 expressed on the cell surface to initiate signaling in response to impermeable ligands in the cell lines examined. To our knowledge, this is the first definitive demonstration of a functional intracellular transmembrane estrogen receptor.

  6. Regulation of baboon fetal ovarian development by placental estrogen: onset of puberty is delayed in offspring deprived of estrogen in utero.

    PubMed

    Pepe, Gerald J; Lynch, Terrie J; Albrecht, Eugene D

    2013-12-01

    Using the baboon as a model for studies of human reproductive biology, we previously showed that placental estrogen regulates fetal ovarian follicle development. In this study, offspring of baboons untreated or treated in utero with the aromatase inhibitor letrozole (estradiol reduced >95%) or letrozole and estradiol were reared to adulthood to determine whether estrogen programming of the fetal ovary impacted puberty and reproduction in adulthood. All offspring exhibited normal growth and blood pressure/chemistries. Puberty onset in untreated baboons (43.2 ± 1.4 mo) was delayed (P < 0.01) in animals of letrozole-treated mothers (49.0 ± 1.2 mo) and normal in offspring of mothers treated with letrozole and estradiol (42.7 ± 0.8 mo). During the first 2 yr postmenarche, menstrual cycles in estrogen-suppressed animals (43.2 ± 1.3 days) were longer (P < 0.05) than in untreated baboons (38.3 ± 0.5 days) or those treated with letrozole and estrogen (39.6 ± 0.8 days). Moreover, in estrogen-suppressed offspring, serum levels of estradiol were lower and follicle-stimulating hormone greater (P < 0.05) in the follicular and luteal phases, and the elevation in luteal-phase progesterone extended (P < 0.02). Thus, puberty onset was delayed and menstrual cycles prolonged and associated with altered serum hormone levels in baboon offspring that developed in an intrauterine environment in which estradiol levels were suppressed. Because puberty and follicle development, as shown previously, were normal in baboons treated in utero with letrozole and estradiol, we propose that fetal ovarian development and timely onset of puberty in the primate is programmed by fetal exposure to placental estrogen.

  7. "Greenlight study": a controlled trial of low-literacy, early childhood obesity prevention.

    PubMed

    Sanders, Lee M; Perrin, Eliana M; Yin, H Shonna; Bronaugh, Andrea; Rothman, Russell L

    2014-06-01

    Children who become overweight by age 2 years have significantly greater risks of long-term health problems, and children in low-income communities, where rates of low adult literacy are highest, are at increased risk of developing obesity. The objective of the Greenlight Intervention Study is to assess the effectiveness of a low-literacy, primary-care intervention on the reduction of early childhood obesity. At 4 primary-care pediatric residency training sites across the US, 865 infant-parent dyads were enrolled at the 2-month well-child checkup and are being followed through the 24-month well-child checkup. Two sites were randomly assigned to the intervention, and the other sites were assigned to an attention-control arm, implementing the American Academy of Pediatrics' The Injury Prevention Program. The intervention consists of an interactive educational toolkit, including low-literacy materials designed for use during well-child visits, and a clinician-centered curriculum for providing low-literacy guidance on obesity prevention. The study is powered to detect a 10% difference in the number of children overweight (BMI > 85%) at 24 months. Other outcome measures include observed physician-parent communication, as well as parent-reported information on child dietary intake, physical activity, and injury-prevention behaviors. The study is designed to inform evidence-based standards for early childhood obesity prevention, and more generally to inform optimal approaches for low-literacy messages and health literacy training in primary preventive care. This article describes the conceptual model, study design, intervention content, and baseline characteristics of the study population. Copyright © 2014 by the American Academy of Pediatrics.

  8. Nitric oxide is cytoprotective to breast cancer spheroids vulnerable to estrogen-induced apoptosis

    PubMed Central

    Shafran, Yana; Zurgil, Naomi; Ravid-Hermesh, Orit; Sobolev, Maria; Afrimzon, Elena; Hakuk, Yaron; Shainberg, Asher; Deutsch, Mordechai

    2017-01-01

    Estrogen-induced apoptosis has become a successful treatment for postmenopausal metastatic, estrogen receptor-positive breast cancer. Nitric oxide involvement in the response to this endocrine treatment and its influence upon estrogen receptor-positive breast cancer progression is still unclear. Nitric oxide impact on the MCF7 breast cancer line, before and after estrogen-induced apoptosis, was investigated in 3D culture systems using unique live-cell imaging methodologies. Spheroids were established from MCF7 cells vulnerable to estrogen-induced apoptosis, before and after exposure to estrogen. Spheroids derived from estrogen-treated cells exhibited extensive apoptosis levels with downregulation of estrogen receptor expression, low proliferation rate and reduced metabolic activity, unlike spheroids derived from non-treated cells. In addition to basic phenotypic differences, these two cell cluster types are diverse in their reactions to exogenous nitric oxide. A dual effect of nitric oxide was observed in the breast cancer phenotype sensitive to estrogen-induced apoptosis. Nitric oxide, at the nanomolar level, induced cell proliferation, high metabolic activity, downregulation of estrogen receptor and enhanced collective invasion, contributing to a more aggressive phenotype. Following hormone supplementation, breast cancer 3D clusters were rescued from estrogen-induced apoptosis by these low nitric oxide-donor concentrations, since nitric oxide attenuates cell death levels, upregulates survivin expression and increases metabolic activity. Higher nitric oxide concentrations (100nM) inhibited cell growth, metabolism and promoted apoptosis. These results suggest that nitric oxide, in nanomolar concentrations, may inhibit estrogen-induced apoptosis, playing a major role in hormonal therapy. Inhibiting nitric oxide activity may benefit breast cancer patients and ultimately reduce tumor recurrence. PMID:29312577

  9. Effect-related monitoring: estrogen-like substances in groundwater.

    PubMed

    Kuch, Bertram; Kern, Frieder; Metzger, Jörg W; von der Trenck, Karl Theo

    2010-02-01

    Concentration monitoring as a basis for risk assessment is a valid approach only if there is an unambiguous relation between concentration and effect. In many cases, no such unambiguous relation exists, since various substances can exert the same effect with differing potencies. If some or all of these substances contributing to a biological effect are unknown, effect-related monitoring becomes indispensable. Endocrine-disrupting substances in water bodies, including the groundwater, are a prominent example of such a case. The aim of the investigations described here was to detect hormonally active substances in the groundwater downstream of obsolete landfills by using the E-screen assay and to possibly assign the biological effect to individual chemical compounds by means of instrumental analyses carried out in parallel. Grab samples of the groundwater were collected downstream from abandoned landfills and prepared by liquid/liquid extraction. The total estrogenic activity in these samples was determined in vitro by applying the E-screen assay. The human breast cancer cells (MCF-7) used in the E-screen proliferate in response to the presence of estrogenically active compounds. Expressed in concentration units of the reference substance 17beta-estradiol (E2), the test system allows the quantification of estrogenicity with a limit of detection (LOD) in the range of 0.1 ng/L. Aliquots of the samples were screened using gas chromatography/mass spectrometry (GC/MS) in order to quantify known estrogenically active substances and to identify unknown compounds. Estrogen-positive samples were extracted at different pH values, split into acidic, neutral, and basic fractions and analyzed by GC/MS, searching for individual components that display estrogenic activity. Estrogenic activity exceeding the LOD and the provisional benchmark of 0.5 ng E2/L was found at three out of seven abandoned waste disposal sites tested. The low concentrations of known xenoestrogens such as

  10. Raloxifen prevents bone loss in castrated male mice.

    PubMed

    Broulík, P D; Broulíková, K

    2007-01-01

    Raloxifen is a selective estrogen receptor modulator which prevents bone loss in ovariectomized female mice in a fashion similar to estrogens. Since testosterone-deficient male mice also lose bone mass, we were interested in testing the effects of raloxifen on bones in intact and castrated male mice. Bone density was significantly reduced in castrated animals (1.36+/-0.04 g/ml) as compared to intact animals (1.42+/-0.03 g/ml) (p<0.01). When castrated mice with extraordinarily low concentrations of testosterone and with reduced weight of seminal vesicles were treated with raloxifen, the changes in bone density and bone minerals resulting from castration (1.36+/-0.04 g/ml) were entirely prevented (1.40+/-0.01 g/ml). Cortical bone was lost in orchidectomized mice, and this decrease in cortical thickness of the femur was prevented by raloxifen administration. Raloxifen in a dose used in humans for treatment of osteoporosis decreased the weight of seminal vesicles, an organ which is highly sensitive to the androgenic effect, decreased the concentration of testosterone (12.5+/-2.8 micromol/l) (p<0.01) but not to the same level as in the case of castrated animals (0.6+/-0.3 micromol/l), and did not have any effect on bone density or mineral content in intact mice. The results of the present study may thus be interpreted as supporting the hypothesis that raloxifen is an effective agent against the deleterious effects of castration-induced osteopenia in male mice and also support the hypothesis that estrogens may have physiological skeletal effects in male mice.

  11. Estrogen-dependent gallbladder carcinogenesis in LXRbeta-/- female mice.

    PubMed

    Gabbi, Chiara; Kim, Hyun-Jin; Barros, Rodrigo; Korach-Andrè, Marion; Warner, Margaret; Gustafsson, Jan-Ake

    2010-08-17

    Gallbladder cancer is a highly aggressive disease with poor prognosis that is two to six times more frequent in women than men. The development of gallbladder cancer occurs over a long time (more than 15 y) and evolves from chronic inflammation to dysplasia/metaplasia, carcinoma in situ, and invasive carcinoma. In the present study we found that, in female mice in which the oxysterol receptor liver X receptor-beta (LXRbeta) has been inactivated, preneoplastic lesions of the gallbladder developed and evolved to cancer in old animals. LXRbeta is a nuclear receptor involved in the control of lipid homeostasis, glucose metabolism, inflammation, proliferation, and CNS development. LXRbeta(-/-) female gallbladders were severely inflamed, with regions of dysplasia and high cell density, hyperchromasia, metaplasia, and adenomas. No abnormalities were evident in male mice, nor in LXRalpha(-/-) or LXRalpha(-/-)beta(-/-) animals of either sex. Interestingly, the elimination of estrogens with ovariectomy prevented development of preneoplastic lesions in LXRbeta(-/-) mice. The etiopathological mechanism seems to involve TGF-beta signaling, as the precancerous lesions were characterized by strong nuclear reactivity of phospho-SMAD-2 and SMAD-4 and loss of E-cadherin expression. Upon ovariectomy, E-cadherin was reexpressed on the cell membranes and immunoreactivity of pSMAD-2 in the nuclei was reduced. These findings suggest that LXRbeta in a complex interplay with estrogens and TGF-beta could play a crucial role in the malignant transformation of the gallbladder epithelium.

  12. Estrogenic effects of nonylphenol and octylphenol isomers in vitro by recombinant yeast assay (RYA) and in vivo with early life stages of zebrafish.

    PubMed

    Puy-Azurmendi, E; Olivares, A; Vallejo, A; Ortiz-Zarragoitia, M; Piña, B; Zuloaga, O; Cajaraville, M P

    2014-01-01

    Commercial OP and NP are complex isomer mixtures that can be individually present in the environment, showing different estrogenic potencies. The aims of this study were to establish the estrogenic potency of some AP isomers in comparison to the commercial NP (cNP) mixture in vitro and to investigate in vivo their possible effects during the embryo and larval development of zebrafish. An in vitro estrogen receptor-based recombinant yeast assay was used to test the estrogenicity of specific AP isomers (22-OP, 33-OP, 22-NP, 33-NP and 363-NP) and cNP. The EC₅₀ was in the range of 0.6-7.7 mg/L. Both OP isomers and 363-NP exhibited higher estrogenic activity than cNP. For in vivo experiments, one-day postfertilisation (dpf) embryos were exposed to cNP (50, 250 and 500 μg/L), 363-NP and 33-OP (50 μg/L), 17β-estradiol (100 ng/L) and DMSO (0.01% v/v) for 4weeks. After exposure fish were maintained for 2 weeks in clean water in order to evaluate a possible recovery. Fish of groups exposed to cNP and 363-NP were the last to hatch. Histological alterations were not observed after 7, 28 or 42 dpf. Exposure to 33-OP increased transcriptional levels of erα, vtg and cyp19a1b genes. However, transcriptional response in E2 exposure was observed at later stages and with higher fold induction levels. Exposure to cNP decreased levels of erα whereas increased levels of rxrγ and cyp19a1b. Exposure to 363-NP did not cause changes in transcriptional levels of studied genes. The differences in response of the OP isomer compared to the NP isomer in zebrafish could be related to the rapid decay in concentration of the latter. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. THE ESTROGENS / CHROMIUM INTERACTION IN THE NITRIC OXIDE GENERATION.

    PubMed

    Sawicka, Ewa; Piwowar, Agnieszka; Musiala, Tomasz; Dlugosz, Anna

    2017-05-01

    The interaction of estrogens with environmental toxins in free radicals generation: reactive oxygen species (ROS) or reactive nitrogen species (RNS) which participates in cancerogenesis is not yet recognized. Chromium(VI) is widely present in environment. One of its toxicity pathway is free radicals generation. Estrogens have the ability to scavenge free radicals, but may also act as prooxidants. Both chromium(VI) and estrogens are classified by International Agency for Research on Cancer (IARC) as carcinogens, so synergistic effect seems very dangerous. The interaction of chromium and estrogens in ROS generation are partly described but there are no reports on estrogen/chromium interaction on nitric oxide (NO) generation. The aim of the study was to examine the interaction of chromium(VI) and 17-p-estradiol (E2) on NO level in human blood as well as the role of E2 metabolites: 4-hydroxyestradiol (4-OHE2) and 16a-hydroxyestrone (16α-OHE1) in these processes. The NO level was estimated with the diagnostic kit (Nitric Oxide Colorimetric Detection Kit from Arbor Assays) in human blood in vitm. The results showed that Cr(VI) in used concentration (0.5; 1.0 and 5.0 gg/mL) decreases significantly NO level in blood, acting antagonistically to E2 and 4-OHE2. Estrogens (E2, 4-OHE2 and 16α-OHEI) do not protect against inhibiting effect of Cr(VI) on nitric oxide generation in blood because after combined exposure the decreased production of NO in blood was noted. In conclusion, presented results provide the information about the character of estrogen/Cr(VI) interaction in NO level in human blood. It is important knowledge for cardio protected effect e.g., hormone replacement therapy in environmental or occupational exposure to Cr(VI), chromium supplementation, also important for cancer risk evaluation.

  14. Estrogen modulates mesenchyme-epidermis interactions in the adult nipple

    PubMed Central

    Wu, Hsing-Jung; Oh, Ji Won; Spandau, Dan F.; Tholpady, Sunil; Diaz, Jesus; Schroeder, Laura J.; Offutt, Carlos D.; Glick, Adam B.; Plikus, Maksim V.; Koyama, Sachiko

    2017-01-01

    Maintenance of specialized epidermis requires signals from the underlying mesenchyme; however, the specific pathways involved remain to be identified. By recombining cells from the ventral skin of the K14-PTHrP transgenic mice [which overexpress parathyroid hormone-related protein (PTHrP) in their developing epidermis and mammary glands] with those from wild type, we show that transgenic stroma is sufficient to reprogram wild-type keratinocytes into nipple-like epidermis. To identify candidate nipple-specific signaling factors, we compared gene expression signatures of sorted Pdgfrα-positive ventral K14-PTHrP and wild-type fibroblasts, identifying differentially expressed transcripts that are involved in WNT, HGF, TGFβ, IGF, BMP, FGF and estrogen signaling. Considering that some of the growth factor pathways are targets for estrogen regulation, we examined the upstream role of this hormone in maintaining the nipple. Ablation of estrogen signaling through ovariectomy produced nipples with abnormally thin epidermis, and we identified TGFβ as a negatively regulated target of estrogen signaling. Estrogen treatment represses Tgfβ1 at the transcript and protein levels in K14-PTHrP fibroblasts in vitro, while ovariectomy increases Tgfb1 levels in K14-PTHrP ventral skin. Moreover, ectopic delivery of Tgfβ1 protein into nipple connective tissue reduced epidermal proliferation. Taken together, these results show that specialized nipple epidermis is maintained by estrogen-induced repression of TGFβ signaling in the local fibroblasts. PMID:28289136

  15. Lupinalbin A as the most potent estrogen receptor α- and aryl hydrocarbon receptor agonist in Eriosema laurentii de Wild. (Leguminosae).

    PubMed

    Ateba, Sylvin Benjamin; Njamen, Dieudonné; Medjakovic, Svjetlana; Zehl, Martin; Kaehlig, Hanspeter; Jungbauer, Alois; Krenn, Liselotte

    2014-08-09

    Eriosema laurentii De Wild. (Leguminosae) is a plant used in Cameroon against infertility and gynecological or menopausal complaints. In our previous report, a methanol extract of its aerial parts was shown to exhibit estrogenic and aryl hydrocarbon receptor agonistic activities in vitro and to prevent menopausal symptoms in ovariectomized Wistar rats. In order to determine the major estrogen receptor α (ERα) agonists in the extract, an activity-guided fractionation was performed using the ERα yeast screen. To check whether the ERα active fractions/compounds also accounted for the aryl hydrocarbon receptor (AhR) agonistic activity of the crude methanol extract, they were further tested on the AhR yeast screen. This study led to the identification of 2'-hydroxygenistein, lupinalbin A and genistein as major estrogenic principles of the extract. 2'-hydroxygenistein and lupinalbin A were, for the first time, also shown to possess an AhR agonistic activity, whereas genistein was not active in this assay. In addition, it was possible to deduce structure-activity relationships. These results suggest that the identified compounds are the major active principles responsible for the estrogenic and AhR agonistic activities of the crude methanol extract of the aerial parts of Eriosema laurentii.

  16. High-throughput screening and mechanism-based evaluation of estrogenic botanical extracts

    PubMed Central

    Overk, Cassia R.; Yao, Ping; Chen, Shaonong; Deng, Shixing; Imai, Ayano; Main, Matthew; Schinkovitz, Andreas; Farnsworth, Norman R.; Pauli, Guido F.; Bolton, Judy L.

    2009-01-01

    Symptoms associated with menopause can greatly affect the quality of life for women. Botanical dietary supplements have been viewed by the public as safe and effective despite a lack of evidence indicating a urgent necessity to standardize these supplements chemically and biologically. Seventeen plants were evaluated for estrogenic biological activity using standard assays: competitive estrogen receptor (ER) binding assay for both alpha and beta subtypes, transient transfection of the estrogen response element luciferase plasmid into MCF-7 cells expressing either ER alpha or ER beta, and the Ishikawa alkaline phosphatase induction assay for both estrogenic and antiestrogenic activities. Based on the combination of data pooled from these assays, the following was determined: a) a high rate of false positive activity for the competitive binding assays, b) some extracts had estrogenic activity despite a lack of ability to bind the ER, c) one extract exhibited selective estrogen receptor modulator (SERM) activity, and d) several extracts show additive/synergistic activity. Taken together, these data indicate a need to reprioritize the order in which the bioassays are performed for maximal efficiency of programs involving bioassay-guided fractionation. In addition, possible explanations for the conflicts in the literature over the estrogenicity of Cimicifuga racemosa (black cohosh) are suggested. PMID:18473738

  17. Is there a role for estrogen activity assays? Recombinant cell bioassay for estrogen: Development and applications.

    PubMed

    Klein, Karen Oerter

    2015-07-01

    There are many questions which cannot be answered without a very sensitive estradiol assay. A recombinant cell bioassay (RCBA) for estradiol was developed in 1994. The sensitivity of the bioassay is 0.02-0.2 pg/ml (0.07-0.7 pmol/L), more than 20 times more sensitive than commercial RIAs and 10 times more sensitive than newer mass spectrometry assays. The RCBA for estradiol opened the door to study low levels of estradiol equivalents (EE) across the physiological spectrum of life from prepubertal children through menopause and across the spectrum from normal physiology, in boys as well as girls, to pathology, including: premature thelarche; estradiol suppression in children treated with GnRH analogues for precocious puberty; aromatase inhibition in boys with growth hormone deficiency; the differences between oral and transdermal routes of estrogen administration in girls with Turner's syndrome; women with breast cancer treated with aromatase inhibitors; and women with urogenital atrophy treated with low dose vaginal estrogen. A bioassay also allows study of endocrine disruptors, like phytoestrogens and other environmental compounds, which are relevant to public health and alternative medicine options. This paper reviews the assay and the last 20 years of applications. A bioassay for estrogen has a role because measuring biological effect is theoretically useful, increasing the understanding of physiology in addition to biochemical levels, giving different information than other assays, and opening the door to measure very low levels of estrogen activity in both humans and the environment. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants

    EPA Science Inventory

    In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated drinking water samples were assayed for estrogenic activity using T47D...

  19. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α

    PubMed Central

    Chen, Xueyan; Uzuner, Ugur; Li, Man; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.

    2016-01-01

    Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors. PMID:27589781

  20. Preventive child health care findings on early childhood predict peer-group social status in early adolescence.

    PubMed

    Jaspers, Merlijne; de Winter, Andrea F; Veenstra, René; Ormel, Johan; Verhulst, Frank C; Reijneveld, Sijmen A

    2012-12-01

    A disputed social status among peers puts children and adolescents at risk for developing a wide range of problems, such as being bullied. However, there is a lack of knowledge about which early predictors could be used to identify (young) adolescents at risk for a disputed social status. The aim of this study was to assess whether preventive child health care (PCH) findings on early childhood predict neglected and rejected status in early adolescence in a large longitudinal community-based sample. Data came from 898 participants who participated in TRAILS, a longitudinal study. Information on early childhood factors was extracted from the charts of routine PCH visits registered between infancy and age of 4 years. To assess social status, peer nominations were used at age of 10-12 years. Multinomial logistic regression showed that children who had a low birth weight, motor problems, and sleep problems; children of parents with a low educational level (odds ratios [ORs] between 1.71 and 2.90); and those with fewer attention hyperactivity problems (ORs = .43) were more likely to have a neglected status in early adolescence. Boys, children of parents with a low educational level, and children with early externalizing problems were more likely to have a rejected status in early adolescence (ORs between 1.69 and 2.56). PCH findings on early childhood-on motor and social development-are predictive of a neglected and a rejected status in early adolescence. PCH is a good setting to monitor risk factors that predict the social status of young adolescents. Copyright © 2012 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.